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Abstract

Cold environments are highly variable and play an important role in the global

change debate. At freezing point temperatures, they react sensitively even to

minor climatic variations and therefore they need to be monitored closely and

constantly. The relative inaccessibility of alpine and polar regions can be partly

compensated for by the almost global availability of remote sensing data. Due

to high relief energy, cloud, snow and ice cover, it is challenging to monitor

these regions from a distance. This interdisciplinary feasibility study analyses

remote sensing from a theoretical point of view and in three exemplary high

mountain case studies. The potential of remote sensing for monitoring cold

climate environments in lower (European Alps, Venezuelan Andes) and higher

latitudes (Spitsbergen) is investigated with data from passive optical and active

radar satellite sensors.

First of all, the scientific basis of remote sensing is examined, and the ques-

tion is raised as to whether it is science or method. It is argued that sciences

nowadays can hardly be separated from the methodologies and technologies

they make use of for their advancement. The myth of the supremacy of science

over technology may prove to be an outdated remnant of former, less technol-

ogised times. The elusiveness of the terms ‘science’ and ‘remote sensing’ is

symptomatic of a general problem of categorisation found in modern sciences.

For the first case study, the characteristic features of geomorphological

landforms are initially identified. In a segment-based approach on four scales,

an optical Advanced Spaceborne Thermal Emission and Reflection Radiometer

(ASTER) satellite scene and a digital elevation model (DEM) are then clas-

XIX
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sified hierarchically with fuzzy membership functions. The resulting thematic

map of the Reintal catchment reaches an overall accuracy of 92 % and a kappa

coefficient of 0.915. It is possible to identify both sediment stores and activity

status within the alpine sediment cascade system.

The second case study examines mass movements in the Venezuelan Andes

with a DEM and an ASTER scene. The potential occurrence of debris flows

is modelled as a function of topography and sediment dynamics. The results

represent a realistic first hazard assessment of qualitative debris flow prob-

abilities in the region and underline the importance of further displacement

measurement, modelling and monitoring.

Glacier mass movement is the focus of the third case study. Synthetic aper-

ture radar (SAR) scenes by the European Remote Sensing satellites ERS-1 and

ERS-2 are used for differential interferometry along with a DEM. An average

of a few centimetres per day and maximum horizontal displacements of 18 to

20 cm d−1 indicate pre-surge conditions on Comfortlessbreen in 1996. These

and other data as well as previous surge studies are then turned into a synthe-

sized conceptual model, which accommodates both temperate and polythermal

glacier surges and also accounts for processes prior to surge visibility.

This work shows the usefulness of multi-sensor remote sensing for spatial

mapping, monitoring and modelling in cold climate environments. One univer-

sal approach for all possible research questions does not exist; adequate data

and methods have to be chosen in accordance with their respective strengths

for the particular topic. The findings are not only of interest for applied re-

search questions, but also exemplify the need for further theory formation.



Sammendrag

Kalde omr̊ader er svært omskiftelige og spiller en viktig rolle i den globale kli-

madebatten. De reagerer sensitivt selv p̊a små klimatiske variasjoner, ettersom

temperaturene fluktuerer rundt frysepunktet. Det er derfor behov for grundig

og konstant overv̊akning. Utilgjengeligheten i alpine og polare omr̊ader kan

delvis kompenseres med fjernm̊alingsdata med tilnærmet global dekning. P̊a

grunn av høy reliefenergi, skyer, snø- og isdekke er det utfordrende å overv̊ake

disse omr̊adene fra rommet. I denne tverrfaglige geografiske mulighetsstu-

dien diskuteres fjernanalyse fra et teoretisk st̊asted og eksemplifiseres ved tre

anvendelser fra høyfjellsomr̊ader. Potensialet fjernanalyse har for m̊aling av

klimatisk kalde omr̊ader i lavere (europeiske Alper, venezuelanske Andesfjel-

lene) og høyere (Svalbard) breddegrader, blir undersøkt med data fra b̊ade

passive optiske og aktive radar satellittsensorer.

Først og fremst undersøkes det vitenskapelige grunnlaget for fjernanalyse,

og det diskuteres hvorvidt det er en metode eller en vitenskap. Det argu-

menteres for at vitenskap i dag knapt kan skilles fra metoder og teknologi som

benyttes i vitenskapens framgang. Myten om at vitenskapen er overordnet

teknologien kan vise seg å være en utdatert rest fra tidligere, mindre teknol-

ogiske tider. De vanskelig definerbare termene ‘vitenskap’ og ‘fjernanalyse’

gjenspeiler et generelt problem med kategorisering i den moderne vitenskapen.

I det første studieomr̊adet identifiseres de karakteristiske geomorforlogiske

landformene. Deretter klassifiseres et optisk ASTER (Advanced Spaceborne

Thermal Emission and Reflection Radiometer) satellittbilde og en digital ter-

rengmodell (DTM) hierarkisk med fuzzy medlemskapsfunksjoner i en segment-
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basert tilnærming i fire skalaer. Det resulterende tematiske kartet av Reintal

har en samlet nøyaktighet p̊a 92 % og en kappa-koeffisient p̊a 0,915. Det

p̊aviser b̊ade sedimentlagre og deres aktivitetsniv̊a innen det alpine sediment

systemet.

I det andre studieomr̊adet undersøkes, ved hjelp av en radar DTM og et

ASTER-bilde, massebevegelse i de venezuelanske Andesfjellene. Den mulige

forekomsten av løsmasse- og sørpeskred blir modellert som en funksjon av

topografi og sedimentdynamikk. Resultatet representerer en realistisk ini-

tiell risikovurdering av kvalitativ sannsynlighet for løsmasse- og sørpeskred

i omr̊adet, og understreker viktigheten av videre måling, modellering og over

v̊akning av bevegelse.

I det tredje studieomr̊adet fokuseres det p̊a bevegelse i ismasser. Synthetic

aperture radar (SAR) bilder fra satellittene ERS-1 og ERS-2 (European Re-

mote Sensing) benyttes sammen med en DTM til differensiel interferometri.

Et gjennomsnitt p̊a noen f̊a centimeter per dag og maksimal horisontal forfly-

tning p̊a 18 til 20 cm d−1 indikerer forholdene før surge p̊a Comfortlessbreen

i 1996. Sammen med andre data og tidligere surgestudier inng̊ar disse resul-

tatene deretter i en samlet konseptuell surgemodell. Denne omfatter surge i

b̊ade tempererte og polytermale breer, s̊a vel som prosessene før den synlige

surgen.

Dette arbeidet viser anvendeligheten av multi-sensor fjernanalyse for romlig

kartlegging, overv̊akning og modellering i kalde miljøer. En universal tilnærm-

ing for alle mulige forskningsspørsmål finnes ikke; adekvate data og metoder

bør velges ut fra deres respektive styrke i forhold til det bestemte emnet.

Funnene er ikke bare av interesse for den anvendte vitenskapen, men eksem-

plifiserer ogs̊a behovet for ytterligere teoretisk utvikling.



1 Introductory overview

Field research in alpine1 and polar regions provides important insights into

global and climate change, amongst other things (Eiken et al., 1997; Hagen

et al., 2003, 2005; Chiverrell et al., 2008; Otto & Schrott, 2010; Keiler et

al., 2012), but encounters limitations in terms of accessibility, expense and

repeatability. Remote sensing2 offers a valuable additional dimension of feature

monitoring: it enables us to operate on global scales with uniform data sets

and measuring methods, thus providing long, continuous and intercomparable

series of measurements (Hall & Martinec, 1986; Haeberli et al., 2002; Kääb,

2005a; Wangensteen, 2006; Lubin & Massom, 2007; Skorve, 2007; Smith &

Pain, 2009; Kääb, 2010; Copland et al., 2011; Riedel et al., 2011; Wilson, 2012).

Moreover, mapping and monitoring with remote sensing data is relatively cost-

and time-effective (Konecny, 1999; Kääb, 2005b; Lubin & Massom, 2007; Rees

& Pellikka, 2010; Joughin et al., 2010a; Debella-Gilo, 2011; Heid, 2011).

Improvements in geometric, spectral and radiometric resolution in the mul-

titude of air- and spaceborne sensors available today enable a remote assess-

ment of alpine and polar features at least to a certain extent (Richards, 2005;

Lubin & Massom, 2007; Rott, 2009; Smith & Pain, 2009; Pellikka & Rees,

1In this thesis, the capitalised adjective Alpine designates features of the Eu-
ropean Alps, whereas alpine with a small letter is used with the meaning ‘high
mountain’, ‘of high mountains’.

2Remote sensing refers to satellite and aerial sensors in this work, cf. Ch. 2.1.
Photogrammetry, ground penetrating radar, sonar etc. are not explicitely targeted,
although overlaps do exist.

1
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2010; ESA, 2012; Wilson, 2012). Yet the rapid advancements in image aqui-

sition coverage and volumes are not matched by the current level of image

analysis (Debella-Gilo, 2011; Riedel et al., 2011; Bishop et al., 2012; Casey et

al., 2012): a wealth of data slumbers in the remote sensing data archives, the

potential of which remains to be unlocked.

While a lot of new sensors with enhanced resolutions have become opera-

tional since the turn of the millenium (cf. ESA, 2012), many research questions

want to look further back in time in order to derive trends and developments

over time. Archived data is cheaper than preordered new acquisitions or even

available for free, as e.g. the optical Landsat archives, RAdio Detection And

Ranging (radar) data on certain earthquake events or the Shuttle Radar To-

pography Mission (SRTM) digital elevation model (DEM) (cf. ESA, 2012).

Data quality can be directly assessed in the archives and the best suitable

scenes selected, unlike with new orders. Older data can thus be used to close

data gaps in research projects.

In this thesis, remote sensing is used in three exemplary case studies to

investigate cold climate mountainous landscapes (Fig. 1.1). These regions are

formed and characterised by the past and present existence of ice and water

above and below the ground (Thorn, 1992; Haeberli, 1996; Shroder Jr. &

Bishop, 2004; Kääb, 2005b; Gruber & Haeberli, 2007; Gruber et al., 2009;

Band et al., 2012; Zwieback et al., 2012). Over a long period of time, glacial

erosion can outperform the effects of denudative and fluvial erosion (Hallet

et al., 1996; Brocklehurst & Whipple, 2002). As glacial and geomorphologic

activity, change and process rates are significantly more accelerated there than

elsewhere (Caine, 1974; Abele et al., 1993; Slaymaker, 2010; Keiler et al., 2012),

glacial and periglacial dynamics rapidly and effectively shape the landscapes of

high elevations and latitudes (Thorn, 1992; Haeberli, 1996; Band et al., 2012).

The effects of global change may increase the already high process activity

in those regions (Gude et al., 2002; Gruber & Haeberli, 2007; Lubin & Massom,

2007; Gruber et al., 2009; Stoffel, 2010; Stoffel & Huggel, 2012; Goode et al.,
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2012), leading to even less stable geomorphological and glaciological process-

form-relationships, which need to be further monitored. A step in this direction

is undertaken in this dissertation.

Landforms and glaciers cannot always be observed in total from the ground

due to relative terrain inaccessibility, while satellite scenes can be purchased

for most parts of the Earth. In order to find out more about the possibilities

and limitations of cold climate remote sensing, both optical and radar satel-

lite images as well as elevation data have been analysed in this thesis. Yet

areas with high relief energy make image processing a challenge due to high

variability in topography and illumination (Kääb, 2005b; Smith et al., 2006;

d’Oleire-Oltmanns et al., 2012). Snow and ice offer little visual contrast, and

snow and vegetation often cover the target features on the ground (Lubin &

Massom, 2007; Smith & Pain, 2009; Pellikka & Rees, 2010). Hence this thesis

investigates to what extent multi-sensor satellite remote sensing can further

alpine geomorphological and glaciological investigations.

Knowledge of surface characteristics is a key to understanding the processes

taking place and long-term landscape evolution (Abele et al., 1993; Hutchinson

& Gallant, 2000; Gude et al., 2002; Bishop & Shroder, 2004; Lubin & Massom,

2007; Wilson 2012). Environmental assessments form the basis of many re-

search questions, but also of political decision-making and surveying (Lubin &

Massom, 2007; Smith & Pain, 2009; Klemenjak et al., 2012). Innovative land-

cover mapping and classification is the first and foremost application of remote

sensing (Waske, 2007) and considered a “major research theme” (Bishop et al.,

2012: 17), just as exact quantifications of sediment and glacier mass budgets

and dynamics (Gude et al., 2002; Bartsch et al., 2009; Burt & Allison, 2010;

Otto & Schrott, 2010). Remote sensing can provide new insights into research

questions which have been pending for a long time (Lubin & Maasom, 2007;

Sund et al., 2009; Burgess et al., 2012; Paper VII), which also promotes theory

formation.
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Reinal 

Comfortlessbreen 

Chama river basin 

Reintal 

Figure 1.1: Study Areas in the Alps, the Andes and on Svalbard

Comfortlessbreen glacier near Ny Ålesund on Svalbard, the Reintal val-
ley in the Bavarian Alps, and the upper Chama river basin in Venezuela.
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1.1 Objectives

The major goal of this thesis is to use satellite remote sensing data for as-

sessing cold climate environments. Both passive and active sensors should be

considered in order to make optimal use of the optical and radar data avail-

able for the chosen study test areas. The remote investigation of alpine and

polar terrain represents a challenge, which is why the applicability of various

approaches to mountainous regions has to be tested and adapted accordingly.

The exact identification of geomorphological landforms and processes is

demanding both in the field and in remote sensing data. Characteristic features

have to be found which allow for their recognition in image and elevation

data. This requires knowledge of the spatial linkages between geomorphologic

processes and sediment storage types in catchments. Precise descriptions of

the target classes and their typical features form the necessary prerequisite of

classification, which is why this data base has to be assembled first.

The suitability of satellite and elevation data for detecting rock and sedi-

ment storage areas is tested in the Bavarian Alps with the objective of finding

a way of classifying spectrally and topographically often rather similar land-

forms. The superordinate goal of this is to further the research on the function-

ing of sediment stores as components of the sediment cascade. The identifica-

tion of storage type patterns and the classification of geomorphological units,

ultimately aims at an integrative model describing landform development in

high mountain regions (Schrott & Dikau, 1998; Schrott et al., 2002).

The appropriateness of satellite elevation data for modelling and validating

debris flows is studied in the Venezuelan Andes. The DEM has to be corrected

and adequate parameters and models must befound in order to be able to

calculate the debris flow probability at a reginal scale. The ultimate goal is to

deliver a first hazard assessment of the study area, which was lacking prior to

this study. The contribution of debris flows to the sediment dynamics of the

regional river system also needs further investigation.
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Active and passive satellite remote sensing for movement measurements

is investigated in Spitsbergen, Svalbard. Appropriate archived data has to

be found for the mid-1990s to close an existing data gap, as ground truth

is lacking for that period of time. In order to gain more insight into surge

patterns (Sund et al., 2009), glacier velocities are to be derived in the area of

interest. Out of different existing approaches, an adequate technique has to

be chosen for doing so. This case study ultimately aims at more thoroughly

describing surge behaviour to develop an integrative conceptual surge model.

Although the term ‘remote sensing’ has been used since the 1960s, the na-

ture of the term still needs to be defined properly: is it a real science or a

mere method which is being used? Therefore a clarification of the theoretical

scientific basis of remote sensing is aimed at by analysing the ontology of re-

mote sensing, i.e. its metaphysical nature from a philosophy of science point of

view. Definitions of both the terms ‘science’ (Ch. 2.2) and ‘remote sensing’ are

attempted at (Ch. 2.1, 2.3) by means of a literature review. Similarly, image

segmentation techniques and geomorphological systems theory are theoreti-

cally linked/coupled in order to show parallels between these two approaches

from two unrelated fields of research.

In summary, the following objectives are pursued in this work:

• to further the theoretical foundations of remote sensing by clarifying its

ontology and by coupling image segmentation with systems theory,

• to detect alpine landforms by assembling their characteristics and by

finding a suitable approach to classifying them in remote sensing data,

• to derive processes and (potential) displacement by means of assessing

process activity, modelling flow paths and measuring movement from

space,

• to assess both optical and radar data in search of their most appropriate

usage in the given study areas, thus combining passive and active sensors.
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1.2 Structure of the thesis

This feasibility study analyses the drawbacks and opportunities of satellite

remote sensing of landforms and movements. Three case studies cover cold

climate environments in lower and higher latitudes, i.e. in the European Alps,

the Venezuelan Andes and in Spitsbergen, Svalbard (Fig. 1.1). The study

areas are further detailed in the respective papers (Chs. 4.2, 5.2, 6.2, 7.2).

Alpine landforms are looked at in the first case study. Landform changing sur-

face processes can involve mass movements such as debris flows, the potential

occurence of which is investigated in the second case study. Finally, glacier

movement itself is tackled in the third case study in order to find out more

about the surge phenomenon.

The case studies are bracketed by theoretical considerations. The practical

applications of remote sensing, which are suitable for many different topics of

research as exemplified in this thesis, make it scientifically valuable. However,

every science needs a theoretical basis on which the research dwells, in the

name of which it is conducted. Does remote sensing have such a theoretical

foundation? The scientific framework of the remote sensing discipline is ex-

amined at the beginning of the thesis. The surge study eventually leads to a

revised and synthesised conceptual surge model at the very end of the thesis,

thus coming back to theory formation.

The introductory overview chapter puts the content of the dissertation pa-

pers into context and elaborates on their common ground. Remote sensing

forms the leitmotiv around which the dissertation papers evolve. Their scien-

tific background and geographical context is presented. Particular attention

is paid to Earth system science and the global change debate. Matters are

elaborated upon which have not received much attention in the papers, but

which further clarify the scientific context. Some additional material is pre-

sented as well. When issues have been discussed extensively in a paper, the

relevant paper section is referred to. The content of each paper is summarised
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Table 1.1: Overview of Dissertation Paper Topics

Paper 
Topic 

I  II III IV V VI VII 

Remote sensing X X X X X X X 

Optical data X X X X X X 

Radar data X X X 

Geomorphology X X X X (X) 

Glaciology X X X 

Forms and shapes X X X X 

Movement X X X 

Theory of science X X (X) (X) X 

Didactics X X X 

at the beginning of the respective chapter, corresponding to the publication’s

abstract. The subsequent seven chapters reproduce Papers I to VII (see p. IX).

Some of these contain minor changes to the published versions not only in the

interest of readability, but also to offer added value. This does not alter nor

update their peer-reviewed content, but only its presentation, and is indicated

above the paper reference at the beginning of each chapter.

Paper I is a theoretical review article analysing the nature of both sci-

ence in general and remote sensing in particular, thus laying some theoretical

foundations for the practise of remote sensing. The next three papers form a

logical sequence around the first case study in the Bavarian Alps (Figs. 1.1,

1.2), departing from and further developing Schneevoigt (2004). Geomorphic

systems theory and segment-based remote sensing have been linked in Paper

II in order to convey the conceptual background of the study. Its geomorphic

side is accentuated in Paper III, which particularly stresses the nature and

characteristics of the Alpine landforms examined and to what extent they can
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be classified. Paper IV describes the remote sensing methods employed in fur-

ther depth, i.e. the segmentation-based classification hierarchy. The second

case study modelling potential debris flows in the Venezuelan Andes (Fig. 1.1)

is described in Paper V, which is partly based on Ortega (2007). The last two

papers focus on the third case study on Svalbard (Figs. 1.1, 1.3). Paper VI

derives glacier movement by means of radar interferometry. Paper VII uses

these and other measurements to develop a new conceptual surge model, which

takes the dissertation full circle and back to theory formation.

This work thus unites diverse spheres of research which have not been

linked in this way before. In sum, the thesis deals with active and passive

remote sensing applied to several fields of research: scientific theory and phi-

losophy of science, geomorphology and glaciology, while a certain emphasis

has also been placed on didactics and understandability when presenting the

work (Tab. 1.1). This makes it interdisciplinary and very geographical by its

nature, similar to e.g. Earth system studies.

1.3 Scientific background

This section is organised as follows, inductively moving from practical to ab-

stract issues: remote sensing is useful for the monitoring of global change,

of which glaciers are prime indicators (Ch. 1.3.1). Glacier movement, espe-

cially in the form of surge (Ch. 1.3.2), can be likened to mass movement, e.g.

debris flow (Ch. 1.3.3). Such sediment fluxes control landform development

(Ch. 1.3.4) and move down-slope through sediment cascade systems, a branch

of systems theory (Ch. 1.3.5). This finally leads to the theoretical concept of

remote sensing (Ch. 1.3.6).
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Figure 1.2: View of the Oversteepened Rockwalls of the Reintal

The dammed lake on Vordere Gumpe foodplain in the foreground, the
Zugspitzplatt plateau in the background, view facing west. Photo by L.
Schrott, 2001.

1.3.1 Cold climate environments and global change

The global interest in cold climate environments (i.e. high altitudes and high

latitudes) stems from the fact that they form strongholds of resources, en-

ergy production, biodiversity, biotic refugia (survival habitats) and recreation

(Fig. 1.2), amongst other things (Briggs et al., 1997; Ives et al., 1997; Ives &

Messerli, 2001; Davies & Korup, 2010; Keiler et al., 2012). These regions are

highly variable and react sensitively to even minor climatic or environmental

change (Caine, 1974; Abele et al., 1993; Lubin & Massom, 2007; Humlum

et al., 2011; Stoffel & Huggel, 2012). Because of their closeness to the melt-

ing point, often in combination with the pronounced relief energy of alpine

terrain, even small changes in temperatures can lead to movements in wa-
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ter/ice and sediment, which quickly engender modifications of landforms and

glaciers (Abele et al., 1993; Orwin et al., 2010; Bimböse et al., 2011; Debella-

Gilo, 2011; Stoffel & Huggel, 2012). Climate change has already led to a

considerable melt of glaciers, ice caps and permafrost, and consequent hydro-

logical changes and mass movements may endanger humans and infrastructure

(Maisch, 1995; Haeberli et al., 1999; Kääb, 2003, 2005b; Gruber & Haeberli,

2007; Gruber et al., 2009; Thomas et al., 2009; Slaymaker, 2010; Debella-Gilo,

2011; Zemp, 2011; Radić & Hock, 2011; Stoffel & Huggel, 2012). In order to

monitor such changes, it is important to closely observe those landscapes as

well as specific processes which may alter them, for instance debris flows (Ch.

1.3.3) and glacier surges (Ch. 1.3.2).

Global change also affects mountains and highlands in their function as

natural “water towers” in global hydrology, as they supply up to 95 % of the

available freshwater (Briggs et al., 1997; Ives & Messerli, 2001; Viviroli et al.,

2003; Viviroli & Weingartner, 2008; Radić & Hock, 2011; Bolch et al., 2012;

Kääb et al., 2012). This is significant both on local scales regarding watersheds

and inhabitants and on a global perspective: for Earth system sciences, the

global ice masses in the form of glaciers, ice caps and permafrost constitute

both the most important freshwater store and the most important indicator

of climate and global change (IPCC, 2001, 2007; Kääb, 2005b; UNEP, 2007;

Kääb, 2010; Kääb et al., 2012).

The ice of glaciers and ice caps, the Earth´s most important freshwater

reservoirs, hold an amount equivalent to almost 70 m of potential sea level

rise (SLR) (IPCC, 2007; UNEP, 2007). Most of it (> 99 %) is contained in

Antarctica and Greenland (∼ 61 and ∼ 7 m, respectively), while the remaining

smaller glaciers and ice caps hold only ∼ 0.6 m (IPCC, 2007; UNEP, 2007;

Radić & Hock, 2011; Paul, 2011). However, the latter contribute with ∼ 60

% to current eustatic SLR induced by ice melt, which is responsible for about

half of today’s SLR - the other half resulting from thermal expansion of the

warming oceans (IPCC, 2007; Meier et al., 2007; Hock et al., 2009; Radić &
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Figure 1.3: Surge Crevasses on upper Comfortlessbreen

Photo of the upper portion of the glacier, taken during ongoing surge
by M. Sund, 2009.

Hock, 2011; Gardner et al., 2011; Jacob et al., 2012). Uncertainties regarding

regional SLR contributions and SLR estimates are large (IPCC, 2007; Thomas

et al., 2009; Paul, 2011; Gardner et al., 2011; Jacob et al., 2012; Kääb et

al., 2012). Meier et al. (2007) and B laszczyk et al. (2009) argue for a more

pronounced eustatic SLR through glaciers and ice caps outside Antarctica and

Greenland than estimated by IPCC (2007).

The global ice masses are primary climate indicators: close to the melting

point, they respond sensitively to climatic variations (IPCC, 2001, 2007; Kääb,

2005b; Humlum et al., 2011; Zemp, 2011; Bolch et al., 2012; Kääb et al., 2012).

Glaciers can be seen as indicators of climate change in a twofold way: firstly,

their surface mass balance, i.e. the ‘vertical’ difference in thickness between

snow and ice accumulation and ablation, directly reflects snowfall and melt
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and hence short-time trends in precipitation and temperature (Hagen et al.,

2005; Zemp, 2011; Bolch et al., 2012). Secondly, overall ‘horizontal’ glacier

geometry indirectly expresses changes in climate over longer periods of time,

dating as far back as it takes for the glacier ice to travel down to the terminus,

the glacier tongue (Jóhannesson & Sigurdsson, 1998; Zemp, 2011; Bolch et al.,

2012).

However, glacier surges, i.e. the phenomenon of sudden glacier speed-ups,

complicate the picture (Ch. 1.3.2, Fig. 1.3). Most likely, internal glacier insta-

bilities drive the cyclic surge reoccurrence rather than climate change (Meier &

Post, 1969; Raymond, 1987; Sund et al., subm.); the cause of these instabilities

is still unknown. Yet the influence of surge dynamics can blur the long-term

climate signal contained in glaciers (Jóhannesson & Sigurdsson, 1998), which

has not been taken sufficiently into account in recent studies: while quies-

cent build-up phases may delay reactions on global change, accentuated mass

loss and thus SLR can occur when warming and surge phases coincide (Sund

et al., subm.). More knowledge of surges is all the more important as of all

latitudes, global (glacier mass) change is most marked in the Arctic (ACIA,

2005; IPCC 2007; Jacob et al., 2012), and Svalbard is considered especially

climate-sensitive (Serreze & Francis, 2006; B laszczyk et al., 2009; Humlum

et al., 2011). The project ‘The dynamic response of Arctic glaciers to global

warming’ (Glaciodyn) investigates selected glaciers to better understand their

reactions to and interactions with their environment, and to derive enhanced

input for climate models.

1.3.2 Glacier movement and surge

Most of Svalbard´s glaciers are polythermal, i.e. partly at the pressure-melting

point (warm-based), a prerequisite for fast flow, and partly frozen to the ground

(cold-based), which impedes flow (Hagen & Sætrang, 1991; Mansell et al, 2012;

Sund, 2011). In contrast, temperate glaciers are at melting point, apart from
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Fig. 15. Longitudinal profile 

changes during a surge. 

A is a sketch of a calving 

glaeier and B is measured 

changes on a glaeier ending 

on land. 

A: a) pre-surge surface, A 
b) post-surge surface, 

c) concentric crevasses 

in the upper basin close 

to a cliff. 

B: a) pre-surge surface 

b) post-surge surface, 

c) marked convex front. 
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case, the entire glaeier system is usually affected, the main stream trig­
gering the surge of many minor tributaries. On glaciers ending on land, 
however, only the surging stream is involved, resulting in the forma­
tion of the complicated, folded, moraine systems frequently observed 
on Svalbard glaeiers. 

A number of descriptions of surge events have been published from 
Svalbard, inc1uding observations recorded by various expeditions. In 
1839, the French Recherche Expedition described the Recherchebreen 
glaeier in Bellsund as being heavily crevassed, with the ice front extend­
ing 3 km beyond its present position. Fridtjovbreen on the north side 
of Bellsund surged in 1858-61. The glaeier advanced 6 km, filling the 
entire Fridtjov Harbour. Some of the sea floor was pushed up in front 
of the glaeier and banks of shell-bearing c1ay were observed. 

The two largest surges known in Svalbard occurred at approximately 
the same time, Negribreen in 1935-36 and Bråsvellbreen in 1937-38. 
During one year, Negribreen advanced 12 km into the fjord along a 15 
km wide section of the front. Bråsvellbreen advanced 20 km into the 
sea along a 30 km wide front (Liestøl1969). 

Detailed observations have been made on Hessbreen in Van Keulen­
fjorden (Liestøi 1974), Usherbreen in Storfjorden (Hagen 1987) and 
Bakaninbreen, a tributary glacier of Paulabreen in the inner part of 
Van Mijenfjorden (Dowdeswell et al. 1991). 

When a glaeier surges into the sea, it becomes heavily crevassed and 
numerous, but relative ly small, icebergs are produced during the active 
advance period. However, during the years following the advance, 
when glaeier activity decreases, fewer, but larger, icebergs are pro­
duced. 

The duration of the active phase is significantly longer on Svalbard gla­
eiers than for surge-type glaeiers observed elsewhere (Dowdeswell et 

25 

Figure 1.4: Schematical Surge Advance

Longitudinal glacier profile changes from Hagen et al. (1993). The over-
thickened reservoir zone is quickly lowered by up to 100 m, feeding into
the receiving zone which gains mass significantly. A: Calving glacier
with crevasses (c). B: Land-terminating glacier with its marked convex
terminus (c). Shown are glacier surfaces before (a) and after surge (b).

a colder surface layer, whereas cold glaciers remain at freezing temperatures

throughout (Cuffey & Paterson, 2010). Glaciers move down-slope under the

influence of gravity via basal sliding and internal plasticity (Cuffey & Pat-

terson, 2010). Through this movement, a glacier adapts to the given climate

conditions: if in dynamic equilibrium and at balance flux, the glacier keeps its

steady-state surface profile (Cuffey & Paterson, 2010; Dunse, 2011). Meier &

Post (1969) first defined glacier surges as quasi periodic oscillations between

longer quiescent phases of slow flow and shorter intervals of highly accelerated

glacier movement with 10 to 100 times higher velocities. Murray et al. (2003a,

b) even speak of speed increases of up to 1000 times. Such speeds imply basal
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motion, through which much faster flow than in plastic deformation becomes

possible. While changes in accumulation and ablation can trigger glacier re-

sponse of up to centuries, changes in the basal thermal regime or hydrology

provoke glacier reactions within days or months, thus facilitating surges (Cuf-

fey & Paterson, 2010; Dunse, 2011).

Svalbard’s surges tend to show especially long quiescent phases of up to 500

years (Dowdeswell et al., 1991; Solheim, 1991) and comparatively slow surge

velocities due to high mass turnover (Hagen et al., 1993; Dowdeswell et al.,

2001; B laszczyk et al., 2009; Eiken & Sund, 2012). Oscillation intervals vary for

each glacier individually, yet some general patterns do exist which most surges

follow at least in parts (cf. Meier & Post, 1969; Fowler, 1987; Raymond, 1987;

Lefauconnier & Hagen, 1991; Hagen et al., 1993): the origin of surge behaviour

lies in flow rates which are too low to transport all ice accumulation from the

surge reservoir to the receiving zone. Hence mass builds up in the reservoir

zone, causing surface gradient and basal shear stress to increase (Fig. 1.4).

At some critical, but unknown threshold value, the slow glacier switches

mode and becomes very fast flowing. This results from the heating of the

glacier bed via high ice overburden pressure; frictional heat due to motion

further lubricates the bed. This is sometimes accompanied by an advance of

the terminus; up to 20 km have been observed on Svalbard (Liestøl, 1969;

Schytt, 1969). However, the surge front may also stop before reaching the

terminus (Meier & Post, 1969; Fowler et al., 2001; Sund et al., 2009; Sund

& Eiken, 2010). Marked longitudinal and transverse crevassing (Fig. 1.3) of

the glacier surface reflects the stress build-up and release of the whole process

(Lefauconnier & Hagen, 1991; Hagen et al., 1993). Figure 1.4 represents the

typically changing geometries.

Surge-type glaciers are unequally distributed and clustered on Svalbard,

Greenland, Iceland, in Alaska, the Canadian Arctic, the Karakoram, the Pamirs

and the Andes (Clarke et al., 1984). They supposedly constitute ∼ 1 %

of glaciers worldwide (Raymond, 1987; Jiskoot et al., 2000; Murray et al.,
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Figure 1.5: ASTER scene with Svalbard Coast Lines

Contour lines of north-western Svalbard archipelago. Behind its largest
island, Spitsbergen, an optical ASTER scene, which roughly covers the
area of interest near Ny Ålesund, of 17 August 2000 provided by NASA
and the US/Japan ASTER science team.

2003a, b). Yet this percentage may not be exact, as recent research indicates

a greater frequency of surges (Copland et al., 2003, 2011; Grant et al., 2009;

Sund et al., 2009; B laszczyk et al., 2009). On Svalbard (Figs. 1.1, 1.5), the

percentage of surging glaciers is estimated to lie between 13 % (Jiskoot et

al., 1998) and 90 % (Lefauconnier & Hagen, 1991), which shows how great

the uncertainties in surge research still are. The trigger of the internal in-

stabilities causing surges (Meier & Post, 1969) is still uncertain. A possible

environmental or climatic control in global surge distribution is being debated;

while Raymond (1987) denies it, Murray et al. (2000) object that the regional

clustering hints at exactly such a control, e.g. deformable glacier bed geol-

ogy. Surge recurrence intervals may be modified or even stopped because of
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constrained accumulation in the reservoir zone in a changing climate (Hagen

et al., 1993; Dowdeswell et al., 1995). Thermal trigger mechanisms have been

proposed (Schytt, 1969; Clarke, 1976; Fowler et al., 2001) as well as changes

in the subglacial drainage system (Clarke et al., 1984; Kamb et al., 1985).

In order to find out about possible surge behaviour, glacier flow veloci-

ties have to be obtained. In this thesis, this is done for Comfortlessbreen

(c. 65 km2, 15 km long), a partly tidewater glacier south of Ny Ålesund on

Spitsbergen, Svalbard (Figs. 1.1, 1.5, 7.1), which recently surged (Sund et

al., 2009; Sund & Eiken, 2010). Amongst other things, glacier movement can

be derived from optical or radar data via image matching (e.g. Berthier et

al., 2005; Kääb et al., 2005b; Debella-Gilo, 2011; Heid, 2011) or from radar

data by means of offset tracking or interferometry (e.g. Mohr et al., 1998;

Dowdeswell et al., 1999; Strozzi et al., 2002; Eldhuset et al., 2003; Pritchard

et al., 2005; Joughin et al., 2010a; Mansell et al., 2012).

1.3.3 Mass movement and debris flow

Mass movement or wasting is defined as any gravitational down-slope displace-

ment of earth material, possibly also involving water (Ritter, 2011). Moun-

tainous terrain is characterised by mass movement, which occurs due to “slope

instability or ‘failure’” (Gruber et al., 2009: 527) when a certain relief energy

is given. Mass deformation, detachment and finally displacement result once

the withholding shear strength of the material is surpassed by the gravitational

stress it is exposed to (Abele et al., 1993; Debella-Gilo, 2011; Ritter, 2011).

Common types of mass movement are (land-) slide, slump, (rock) fall, (soil)

creep, solifluction and (debris, earth, mud) flow (Dikau, 1996; Gruber et al.,

2009; Ritter, 2011; Ch. 4.3.1). Mass movement thus most commonly refers

to deforming and moving earth materials, yet Gruber et al. (2009) also in-

clude snow avalanches, and Debella-Gilo (2011) glacier ice flow, which is why

the glacier movement studied in this thesis can also be subsumed under mass
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movement. Debris flows mostly consist of water-saturated soil, sediments, re-

golith, rocks and water moving downhill (Dikau, 1996; Haeberli, 1996; Ritter,

2011; Yu, 2011; Ch. 4.3.1). These poorly sorted mass movements usually

show sediment concentrations of ≥ 60% and deposit en masse, which places

them somewhere between landslides and runoff (Rickenmann, 1999; Lavigne

& Thouret, 2002; Mergili et al., 2012; Worni et al., 2012; Kaitna et al., 2013;

Rickenmann & Scheidl, 2013). Their activity is characterised by certain fre-

quencies and magnitudes (Stoffel, 2010; Kaitna et al., 2013). Steep slopes and

abundant sediment stores are the essential prerequisite for their formation,

which is mostly triggered by rainfall (Dikau, 1996; Haeberli, 1996; Yu, 2011).

Debris flows as further described in Chapters 4.3.1 and 6.1 show site-specific

variations (Ingeomin, 2007) and occur frequently in the Venezuelan Andes

(Laffaille, 2005), which are characterised by high sediment transfer rates and

geomorphologic processes activity. Its central region in the Mérida Mountain

Range (Fig. 6.1; Ch. 6.2) is investigated, i.e. the upper Chama river basin

(1900 km2).

Cold-climate mountain environments feature steep slopes, abundant sed-

iment supply and vaste amounts of frozen water, essential prerequisites for

debris flows. In a warming climate, rising temperatures, increased precipita-

tion and accelerated melt lead to rising pore water pressure and reduced shear

strength in mountain (ice) masses (Debella-Gilo, 2011; Band et al., 2012; Stof-

fel & Huggel, 2012). This creates more possible source areas for mass move-

ment and thus increases the hazard potential in these regions (Salzmann et al.,

2004; Kääb et al., 2005a; Gruber & Haeberli, 2007; Gruber et al., 2009; Otto

& Schrott, 2010; Orwin et al., 2010; Debella-Gilo, 2011; Bimböse et al., 2011;

Hölbling et al., 2012; Huggel et al., 2012; Stoffel & Huggel, 2012). Geohaz-

ards put humans and infrastructure at risk and can cause casualties and high

costs by quickly remodelling the landscape, e.g. via debris flows, landslides,

damming of rivers, lake outburst floods, snow and ice avalanches or rock falls

(Kääb, 2003, 2005b; Salzmann et al., 2004; Kääb et al., 2005a; Noetzli et

al., 2006; Debella-Gilo, 2011; Zemp, 2011; Stoffel & Huggel, 2012; Worni et
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al., 2012; Hölbling et al., 2012; Huggel et al., 2012). It is therefore necessary

to monitor geohazards such as the highly destructive debris flows (Davies &

Korup, 2010; Yu, 2011) and the impact of global change.

1.3.4 Geomorphological target landforms

Alpine landforms are an expression of ongoing processes, i.e. sediment or

mass movements, which constantly remodel cold climate environments. Alpine,

periglacial and glacial regions display complex landform associations (Fig. 3.1):

from earliest deglacion onwards, climatic and vegetative variations have influ-

enced geomorphological process activity and hence landform evolution. Due to

morphometric changes over time, some forms were ruled by different parame-

ters in the past than they are nowadays, some have been overprinted by more

recent processes (Dikau, 1996; Bartsch et al., 2002; Gude et al., 2002; Schrott

et al., 2003; Bishop et al., 2012). Our incomplete knowledge about the geomor-

phological processes involved complicates the choice of the best parameters for

analysis (Etzelmüller et al., 2001; Evans, 2011; Wilson, 2012; Tabs. 4.1, 4.2).

The exact identification of geomorphological landforms therefore represents a

challenge both in the field and in remote sensing data (Bartsch et al., 2002;

Gude et al., 2002; Drăguţ & Blaschke, 2008; Berthling, 2011; Bishop et al.,

2012; d’Oleire-Oltmanns et al., 2012; Wilson, 2012), but remote sensing can

continuously monitor otherwise inaccessible terrain (Skorve, 2007; Kääb, 2010;

Bishop et al., 2012). The detection of alpine landforms incorporates the third

dimension to a great extent. Different landforms are often covered by the same

kind of vegetation, sediment or ground and therefore cannot be differentiated

by their spectral characteristics alone, but only with the help of a DEM and

its derivatives (Bishop et al., 2012; Wilson, 2012; Tabs. 4.1, 4.2).

The first case study concentrates on the spatial extension of sediment

stores, covering the scales of the Reintal catchment (c. 17 km2) to the small-

est landforms of a few metres extension, hence mesoscale according to Slay-
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maker (1991). The “interaction between topography, lithology, and climate

in mountain environments leads to the development of a particular landform

assemblage” (Schrott et al., 2003: 58): the Reintal (Figs. 1.1, 1.2, 4.2, 5.1)

forms an example of a now deglaciated valley, “one of the most prominent

U-shaped valleys in the German Alps” (Schrott et al., 2003: 47; Fig. 1.2),

whose present shape results from several Pleistocene glaciations. Therefore,

the Holocene Reintal can be divided into three vertical zones (crest regions,

rockwalls and valley bottom) which play an important role in the landform

classification scheme (Chs. 4.3, 5.3). The oversteepened rock faces of the

orographically right valley side sloping above 70° (Fig. 1.2) challenge remote

sensing approaches.

Target landforms as defined in Chapters 3.2.1 and 4.3.1 originate from inter-

acting, partly equifinal processes, and therefore often show fuzzy boundaries

(Fig. 3.1; Schrott et al., 2003; Drăguţ & Blaschke, 2008; Berthling, 2011).

Their morphometry also varies and overlaps, so that ‘natural’ and unequivocal

devides between forms often cannot be found (Berthling, 2011), yet charac-

teristic attributes have to be found for target class identifiction. Increased

knowledge of target classes leads to more possibilities for feature analysis and

differentiation in classification. As the identification of sediment–landform as-

semblages helps to ascertain the central processes responsible for landform

and landscape development (Chiverrell et al., 2008; Berthling & Etzelmüller,

2011), more insights into sediment systems can be simultaneously gained.

1.3.5 Sediment cascade systems

Systems theory stands for the general study of systems, which aims at unifying

principles inherent in all systems disregarding their scientific origins. The term,

which still needs further definition, further generalises systems science. It was

first coined by von Bertalanffy (1950, 1975) and further developed by Lazlo

(1972a, b, 1996) and e.g. Luhmann (1984) within sociology. With its inter- and
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transdisciplinary orientation, it bridges philosophy, computer sciences, physics,

engineering, as well as geography, politics and sociology, amongst other dis-

ciplines. Systems theory seems very geographical by nature (cf. Ch. 2.4;

Blotevogel, 1997; Castree, 2005), as it stimulates cross-disciplinary exchange.

Yet even human and physical geographers do not have the same concepts

and epistemologies, i.e. perceptions and theories of knowledge and its genera-

tion, of systems (Egner & von Elverfeldt, 2009). Interestingly, von Bertalanffy

(1950, 1975) delineates systems inquiry within three central fields of study:

philosophy, science and technology, the core of Paper I. Strahler (1950, 1952)

already stresses the necessity of quantitative process monitoring in order to

draw conclusions about landform evolution and adapts the concept of open

systems by von Bertalanffy (1950) to geomorphology. The systems approach

within process-orientated geomorphology is described in Chapter 3.2.2.

Cascade systems transfer material and energy from source to sink (Chorley

& Kennedy, 1971; Burt & Allison, 2010). Akin to water cascades, sediment

cascade systems picture the pathways of sediment and water from their genera-

tion in upland environments via transfer and intermediate storage to sediment

sinks (Becht et al., 2005; Davies & Korup, 2010; Burt & Allison, 2010). Ex-

act quantifications of sediment transfers and budgets at catchment scales in

time and space and their transformation into efficient models represent today’s

main research challenges (Gude et al., 2002; Schrott et al., 2002, 2006; Burt &

Allison, 2010; Trimble, 2010; Keiler et al., 2012). In order to understand natu-

ral sediment cascades, both sediment delivery systems and the thereby formed

and interacting landscape components need to be investigated (Schrott et al.,

2006; Burt & Allison, 2010). Through coupling and buffering process links

within the system, the build-up and depletion of sediment stores can happen

suddenly, sometimes even dramatically (Davies & Korup, 2010; Harvey, 2010;

Keiler et al., 2012), as in the Reintal dambreak flood in 2005 (Bimböse et al.,

2011). The detection and volumetric assessment of mobilisable sediment stores

are also crucial for land management and hazard monitoring and prediction,

e.g. regarding debris flows (Becht et al., 2005; Yu, 2011; Paper V).
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The case study on geomorphological landforms (Papers II to IV) forms part

of the project collection ‘SEDiment cascades in Alpine Geosystems’ (SEDAG).

Until 2008, SEDAG aimed at developing a model describing landform develop-

ment in high mountain regions. The present-day pattern of sediment storage

types, geomorphological units and process activity were examined to decipher

the functioning of the alpine sediment cascade (Schrott & Dikau, 1998; Schrott

et al., 2002, 2003, 2006).

1.3.6 Remote sensing concept and foundation

Space- and airborne remote sensing lets us get unprecedented perspectives

onto and insights into spatial patterns on Earth, and it has been successfully

applied for the generation of knowledge for decades now (Casey, 2011). But

what actually is remote sensing? Scientific work is thought to depart from

a theoretical background. At the onset of modern scientific endeavour, the-

oretical considerations, philosophy of science and reflection on the nature of

research were constitutional, fundamental and essential questions which sci-

entists pondered over, possibly because the scope of sophisticated practical

applications was still limited. Science was necessarily more theoretically based

and oriented than in today’s technical world. Nowadays, these questions have

moved into the background, largely replaced by very concrete and applied sci-

entific problem definitions, as, for instance, described by IPCC (2001, 2007).

Scepticism towards theory and philosophy of science is common in the domains

of applied sciences (Wolpert, 1992; Malanson, 1999; Pernu, 2008; von Elver-

feldt & Glade, 2011; Ruse, 2012). The problems of the world are concrete and

practical, approaches for their solution require further research, so why do we

need abstract metaphysics?

”Whenever anyone mentions theory to a geomorphologist, he instinctively

reaches for his soil auger” (Chorley, 1978: 1). According to Cox (2007), this

quote is still valid; empirical research remains the order of the day. Nobel
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prize laureate Richard Feynman stated that philosophy of science “is about as

useful to scientists as ornithology is to birds” (Pernu, 2008: 30; Ruse, 2012:

47). Such words from a theoretical physicist may seem surprising. “It is a

good thing that Feynman clarified this, since one could easily have been led

into making the mistake of thinking that nothing could be more useful to

birds than ornithology. After all, [...] the very existence of many bird species

is dependent on our knowledge about their ecology, physiology, and genetics.

In fact, [...] the only reason why it makes sense to say that ornithology is not

useful to birds is that birds are not clever enough to understand it. Should

Feynman be interpreted as implying that there is a similar relationship between

philosophy and scientists? Hopefully not” (Pernu, 2008: 30f.).

To take a meta-level perspective of one’s own subject can help finding the

solutions we are looking for. In interdisciplinary research projects, which are

at the scientific forefront today, it is particularly important to realise that our

theoretical background determines our perception (Rhoads & Thorn, 1996;

von Elverfeldt & Glade, 2011; von Elverfeldt, 2012). Regarding cold climate

mountainous landscapes (which themselves need forther definition, cf. Berth-

ling & Etzelmüller, 2011), a geographer sees different overlapping physical and

human spheres shaping specific spatial patterns, a geomorphologist focuses on

forms and formative processes, a glaciologist looks at ice and its behaviour,

and a geodesist finds survey points to measure planimetric geometries. An

economist may wonder how most economically to get rid of all the debris and

rubble, build a scenic hotel and refinance the project within five years. What

would a remote senser see? What is more, is there such a category as a ‘remote

senser’ per se, or is remote sensing just a technique used by e.g. one of the

specialists named above?

Practitioners of empirical science may not always be aware of this, but

“there is no observation, no explanation, no research design without theory,

and the respective results are strongly dependent on theoretical backgrounds”

(von Elverfeldt & Glade, 2011: 88). It is therefore useful to know what our
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Figure 1.6: ASTER Spectral Bands in Comparison to C-Band

Multispectral optical and microwave satellite bands considered in this
thesis. Their wavelengths and frequencies within the electromagnetic
spectrum are indicated by the blue rectangles above and below the
spectrum beam. The 14 rectangles to the right represent the 14 ASTER
bands, the one to the left above the microwave range stands for radar
C-band (modified from L.E. Keiner and A. Kääb).

theoretical background actually is. There is also “the knock-out argument

that science is not scientific without a coherent foundation in theory and epis-

temology” (von Elverfeldt & Glade, 2011: 88). Hence it is worthwhile taking a

dispassionate look at the nature or ontology of remote sensing in order to clarify

the theoretical background of the applied research and case studies conducted

in its name. Although the term ‘remote sensing’ has been used since the 1960s,

the nature of the term still needs to be defined properly: is it a real science or a

mere method which is being used? Self-image, professional ethos and practical

organisational matters at geography departments and within working groups

would benefit from a clarification. This is not only an academic question; on

a very practical departmental level, it is relevant to know whether either a



1.4. Remote sensing data sets 25

method should be taught or a legitimate scientific discipline stimulated and

supported (Wright et al., 1997). After all, budget allocations also depend on

the importance assigned to a research field (Jones, 1988).

1.4 Remote sensing data sets

Because of frequent cloud cover and changeable weather and illumination con-

ditions over cold climate mountainous landscapes, both optical and radar sen-

sors are considered in this thesis. The image and elevation data analysed here

stem preponderantly from spaceborne sensors.

1.4.1 Optical data

Optical images depict the ground in the visible and infrared portion of the elec-

tromagnetic spectrum (Fig. 1.6). Surfaces reflect and emit radiances which

vary according to their specific properties, which allows for target class de-

termination in image classification (Lillesand et al., 2008; Rees & Pellikka,

2010).

Optical images from the Advanced Spaceborne Thermal Emission and Re-

flection Radiometer (ASTER) onboard the Terra satellite (Figs. 1.5, 1.6) are

used in this thesis. ASTER ground resolution varies between 15 m in the three

visible and near-infrared (VNIR) bands, 30 m in the six short wave infrared

(SWIR) bands and 90 m in the five thermal infrared (TIR) ones, as shown in

Figures 1.6 and 4.4. ASTER scenes cover an area of 60 x 60 km (Fig. 1.5) and

are further described in Chapter 4.3.2 as well as by Abrams & Hook (2002)

and ERSDAC (2005). Their spectral resolution in SWIR and TIR is unique,

yet since April 2008, the SWIR bands are no longer usable (Casey, 2011; ESA,

2012). An ASTER scene from 29 May 2001 (Fig. 4.2) proved most suitable for

landform detection, and one from 1 February 2004 (Fig. 6.7) for debris flow

assessment.



26 Introductory overview

Figure 1.7: SAR Terminology and Viewing Geometry

Emission of a pulsed radar beam by an active antenna, its footprint
on the ground and its backscattered return recorded at sensor over
time. The satellite flies in azimuth direction and looks into range di-
rection. The sideward viewing geometry helps disambiguating ground
target echoes and leads to a distinct radar image geometry as shown in
Figure 1.8 (from Langley, 2007).

Scenes by the Satellite Pour l’Observation de la Terre 3 (SPOT 3, French

for ‘Earth observation satellite 3’) are also assessed. They have a panchromatic

resolution of 10 m and a multispectral one of 20 m, respectively, and also cover

60 x 60 km.

1.4.2 Radar data

While cloudy or overcast skies and darkness hamper optical data, radar data

is independent of cloud cover and daylight: an active antenna emits radar

pulses in the microwave portion of the electromagnetic spectrum (Fig. 1.6),

the returns of which are then recorded by the sensor. Yet its sideward viewing

geometry (Fig. 1.7) results in distortions such as foreshortening, layover and

radar shadow (Fig. 1.8) in synthetic aperture radar (SAR) imagery (Wey-
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Figure 1.8: ERS SAR amplitude Image of north-west Svalbard
Radar scene with strong, bright backscatter returns and darker, weaker
responses. Forshortening, layover and radar shadow are relief displace-
ments in radar imagery due to the sideward radar viewing geometry,
where foreshortening leads to compressed slopes in slant-range towards
the sensor, layover to first returns of tops of tall features and radar
shadow to missing returns where the radar beam cannot reach surfaces
facing away from the sensor. SAR data provided by ESA.

dahl, 1998; Rott, 2009). The radar signal penetrates the ground to a certain

extent; its amplitudinal backscatter depends on humidity, amongst other fac-

tors. Backscatter, polarisation and interferometric phase coherence provide

information on e.g. surface humidity, roughness, facies, melting and changes

(e.g. Kelly et al., 1997; Engeset & Weydahl, 1998; Weydahl, 1998; Braun,

2001; Rignot et al., 2001; Weydahl, 2001; König, 2004; Brown et al., 2005;

Langley, 2007; Langley et al., 2008, 2009; Rees & Pellikka, 2009; Høgda et al.,

2010; Müller, 2011; Gardelle et al., 2012; Kääb et al., 2012; Zwieback et al.,

2012).
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Figure 1.9: The two SAR Amplitude one-day Tandem Image Pairs
Azimuth and range arrows indicate the satellite flight path and radar
viewing directions respectively. Offset estimation via image matching is
used to co-register the image pairs. Image size ca. 100 x 100 km. SAR
data provided by ESA.
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A SAR scene contains a real-valued image consisting of radar pulse backscat-

ter amplitude values from the ground (Figs. 1.7 to 1.9), as well as complex

radar phase information. The phase differences or interferometric phases be-

tween two SAR images acquired over the same area using the same satellite

orbit (Fig. 1.9) can be used for interferometry (Gens & van Genderen, 1996).

The interferometric SAR technique is best utilized when high correlation or

coherence is found between the image pairs. However, high coherence poses

problems in high latitudes like Svalbard with its very changeable weather and

precipitation conditions (Moholdt, 2010).

Because of their very short, one-day interval, the data from the 1996 repeat-

pass tandem mission (from April 1995 to July 1996) of the European Remote

Sensing satellites 1 and 2 (ERS-1/-2) are characterised by a remarkably high

coherence potential, which substantiates their special scientific value to this

day (Rott, 2009; Strozzi et al., 2010b; Sansosti et al., 2010). Four C-band

ERS-1/-2 SAR scenes from April and May 1996 (Fig. 1.9, Tab. 7.1) were

chosen amongst other things because of their good coherence according to

Weydahl (1998, 2001). They cover an area of ca. 100 x 100 km (Fig. 1.9) and

are further described in Weydahl (1998).

1.4.3 Elevation data

A digital elevation model (DEM) represents a tridimensional surface. Some-

times, albeit not in this introductory overview, a difference is made between

digital surface models (DSMs), which also contain raised features, i.e. vege-

tation and buildings, and digital terrain models (DTMs) depicting solely the

ground (Kääb, 2005b; Nuth, 2011).

The DEM used within the Reintal study has 5 m ground resolution and

a vertical accuracy better than 0.5 m (further details in Chapter 4.3.2 and

Schrott et al., 2003). Five DEM derivatives (geomorphometric grids of hori-

zontal, vertical and total curvature, slope and aspect) are derived from it.
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A SPOT 5 HRS (High Resolution Stereoscopic) SPIRIT (SPOT 5 stereo-

scopic survey of Polar Ice: Reference Images and Topographies) DEM from

2007, thoroughly described by Korona et al. (2009), with 40 m resolution and

5 m height accuracy is employed in the Svalbard study, while a DEM from

1990 (20 m resolution, 1 m height accuracy) compiled by the Norwegian Polar

Institute is additionally assessed.

A Shuttle Radar Topography Mission (SRTM) DEM (90 m resolution, 10-

16 m height accuracy) from an InSAR campaign in February 2000, collected

in C-band (Kääb, 2005b; Farr et al., 2007; Paul & Hendriks, 2010b; Nuth &

Kääb, 2011; Bishop et al., 2012; Frey & Paul, 2012, for more information),

was used in the Venezuela study.

1.5 Image classification

Image classification is used to (semi-)automatically assign the pixels in an

image to specific classes or themes; this can be done pixel by pixel or in a

segment-based approach as described in Ch. 1.5.1. While unsupervised meth-

ods cluster classes automatically, supervised approaches require expert knowl-

edge and ground truth for reference. Hard classifiers assign one pixel exactly

to one class, whereas soft or fuzzy classifiers rely on class-specific likelihoods

for each pixel (Jensen, 2005; Kääb, 2005b; Waske, 2007; Lillesand et al, 2008

for more information).

1.5.1 Segment-based landform classification

In order to establish meaningful form-process connections in accordance with

the sediment cascade (Ch. 1.3.5; Fig. 3.2), neighbourhoods as well as sub- and

superordinations should also be taken into account by the Reintal landform

classification scheme. Image segmentation, an approach which dates back to

the 1970s, allows for this. A considerable number of algorithms have been
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Figure 1.10: Hierachical Multiresolution Segmentation Levels

Features are increasingly averaged and homogenised in the higher seg-
mentation levels (modified from Baatz et al., 2002)

developed since, by Haralik (1973), Baatz & Schäpe (2000), Evans (2002)

and Tarabalka et al. (2012) amongst others. Yet those algorithms only

became operational with enhanced computing capacities (Baatz & Schäpe,

2000; Richards, 2005; Waske & van der Linden, 2008; Minár & Evans, 2008;

Blaschke, 2010). Segmentations are increasingly used as input for modelling

and complex image analysis (Hay & Castilla, 2008; Drăguţ & Blaschke, 2008;

Drăguţ & Eisank, 2011).

Segmentation algorithms assume that adjacent pixels showing certain sim-

ilarities belong to one group, so that an entire scene is segmented into image

objects (Figs. 1.10, 4.5). Not only are the spectral characteristics of each pixel

considered individually; relationships, neighbourhoods and similarities are also

taken into account (Blaschke et al., 2002, 2008). Each image object can be de-

scribed by a multitude of features, such as mean value, standard deviation and

ratio of the incorporated pixels next to geometric features (Baatz & Schäpe,

2000; Blaschke et al., 2008; Addink et al., 2012; Chs. 3.3.2, 5.3.2).

This approach is also called Object-based Image Analysis (OBIA) (Blaschke

et al., 2008) or more specificly Geographic or Geospatial Object-Based Image

Analysis (GEOBIA) (Hay & Castilla, 2008; Blaschke, 2010; Addink et al.,

2012). Yet the terms are often used synonymously (Blaschke, 2010). The ad-

jective object-oriented also refers to a computer programming concept. Object-

based can lead one to assume that the algorithm truly describes existing ob-
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jects, while image objects are purely based on statistics, not nature. The user

tries to match the statistical image objects to the desired target classes. As

segment-based appears most neutral, it is used in this introductory summary.

Segment-based class descriptions thus go far beyond spectral information

alone if the segmentation process is able to produce objects which describe

natural features geometrically well. DEM and other additional information

can be integrated and analysed for each object individually. This asset out-

weighs the fact that segmentation prior to classification introduces an addi-

tional, time-consuming step: segment-based image analysis unites the spectral

interpretation capacities of remote sensing and the geometric tools of geo-

graphical information systems (GIS) in one desktop environment. In this

respect, segment-based analysis is superior to pixel-oriented approaches, es-

pecially when dealing with high mountain data (Blaschke, 2000; Blaschke &

Hay, 2001; Blaschke et al., 2002; Hay & Castilla, 2008; Drăguţ et al., 2011;

Drăguţ & Eisank, 2011; Addink et al., 2012; Romstad & Etzelmüller, 2012).

In the Reintal study, alpine landforms are assessed with a segment-based,

hierarchical approach based on initial image segmentation and subsequent clas-

sification (Figs. 3.3, 4.1), which is extensively described in Chapter 5.3. Op-

tical ASTER imagery and various ratios, e.g. the Normalised Difference Veg-

etation Index (NDVI; cf. Mao et al., 2011; Fensholt & Proud, 2012 for more

information), are analysed in combination with the Reintal DEM. Geomorpho-

logical maps of the Reintal valley (Schrott et al., 2003; Fig. 4.3) and photos of

the study area serve as ground truth and reference. The segmentation scales

for generating adequately sized image objects have to be determined and the

corresponding number of hierarchical working levels created (Fig. 1.10). The

levels are classified individually in a second but separate step, where the most

suitable classifier can be chosen for each segmentation level. Only on the finest

level L1, which focusses on spectral land cover characteristics alone, is a nearest

neighbour classifier used; all other levels are based on an iteratively generated

fuzzy membership function hierarchy (Fig. 5.2).
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1.5.2 Accuracy assessment

Statistical accuracy assessments are used to judge the quality of the classifi-

cation (cf. Ch. 5.4). In an error matrix, also called contingency or confusion

table, classification results are compared to ground truth (Richards & Jia,

2006; Lillesand et al., 2008). In the Reintal, test areas are selected manually

and without regular spatial pattern, the most appropriate image objects or

clusters being chosen according to field evidence.

By dividing of the correctly classified pixels of one class (from the major

diagonal in Tab. 5.2) by the total of test area pixels (the pixel sum of that

same column), producer´s accuracy is calculated. In contrast, the division of

the correctly classified pixels by the row total of the respective class gives the

user´s accuracy. As a measure of omission (i.e. exclusion; given by the matrix

columns) error, the producer’s accuracy expresses how exactly the test area

pixels of this class are assigned. In contrast, the division of the correctly classi-

fied pixels by the row total of the respective class gives the user´s accuracy. By

analogy to commission (i.e. inclusion; represented by the rows of the matrix)

error, it indicates the probability of a user finding the L2 classification result

in situ (Congalton & Green, 1999; de Lange, 2006).

For overall accuracy, the sum of correctly classified pixels is divided by

the total number of pixels (Jensen, 2005, Congalton & Green, 1999). The

kappa coefficient κ determines the difference between the result of the given

classification and a randomly produced one (Cohen, 1960; Lillesand et al.,

2008). Fuzzy classification stability and best membership assignments of the

hierarchical classification scheme are also assessed.
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1.6 Displacement measurements and modelling

Displacement can be measured, analysed and modelled by means of a large

variety of methods and techniques. As in-situ measurements are spatially and

temporally limited by feasibility and expense, remote sensing approaches are

welcome alternatives (Joughin et al., 2010a; Debella-Gilo & Kääb, 2012), an

overview of which is given in Kääb (2005b). Amongst other things, movement

can be derived from optical or radar data via image matching, and from radar

data by means of speckle, coherence or offset tracking and interferometry (cf.

Kääb, 2005b; Høgda et al., 2010; Joughin et al., 2010a; Debella-Gilo, 2011;

Heid, 2011).

Image matching compares overlapping repeat images from the same area

in order to find similarities between them, aiming at e.g. geometric image

registration, image fusion or change tracking (Brown, 1992; Zitová & Flusser,

2003; Debella-Gilo, 2011). This can be done via feature-based or area-based

matching, by looking for prominent features or by comparing grey value inten-

sities of image subsets or templates. Area-based similarity measures include

normalized cross-correlation and least squares matching (Brown, 1992; Zitová

& Flusser, 2003; Kääb, 2005b; Debella-Gilo, 2011).

Tracking in SAR data is yet another form of image matching. Speckle

tracking exploits the correlated noise or speckle, a salt-and-pepper effect due

to the many scatterers within one image pixel, in coherent real-valued SAR

amplitude images. Coherence tracking relies on the complex phase informa-

tion, and also requires high correlation between the images. In contrast, offset

or feature tracking estimates the offset between image pairs from prominent

visible features (e.g. glacier crevasses) in the respective amplitudes alone and

is therefore independent of coherence. Temporal decorrelation, the shortcom-

ing of all coherence-based SAR applications, hence becomes therefore much

less of a problem. Yet the measurement precision is lower in offset tracking

and lies within the range of meters (cf. Weydahl, 1998; Høgda et al., 2010).
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1.6.1 Differential interferometry

SAR interferometry (InSAR) is a technique for analysing both topography

and movement information inherent in SAR data, for which a high correlation

or coherence between the the tandem SAR image pairs is needed. It is the

most accurate means of measuring movement in slant-range direction as it

detects changes on a scale of milli- and centimetres from space (Gabriel et al.,

1989; Goldstein et al., 1993; Weydahl, 2001; Strozzi et al., 2002, Høgda et al.,

2010). Offset estimation via image matching is used to co-register the image

pairs with sub-pixel precision (Fig. 1.9). Interferogram generation includes

“flat Earth” correction and unwrapping (Fig. 1.11; Kwok & Fahnestock, 1996;

Rott, 2009). Phase unwrapping means transforming the interferometric phase,

which is initially wrapped around 2π and thus repeatedly reset to 0, into

continuous values which constantly augment from one single initial 0-value

Fig. 1.11). This is a crucial and difficult undertaking, all the more in rugged

terrain (Gens & van Genderen 1996; Wegmüller & Werner 1997; Strozzi et al.,

2004, 2010a; Moholdt 2010).

Differential SAR interferometry (DInSAR) is a means of separating dis-

placement from topographic information by subtracting one interferometric

phase from the other one. Hence pure displacement can be obtained with-

out residual height information in it or vice versa - topographical information

can be freed from any displacement on the ground. However, when aiming

at glacier velocities as e.g. in the Svalbard case study, only the component

of movement in line-of-sight direction with the satellite sensor, i.e. in range

direction, is depicted in a differential interferogram (Cumming et al., 1989;

Kwok & Fahnestock, 1996; Rott, 2009; Joughin et al., 2010a).

There are several ways of doing DInSAR; 2-pass DInSAR with two tan-

dem SAR scenes and a DEM as first described by Cumming et al. (1989),

or by combining three (3-pass DInSAR), four (4-pass DInSAR) or more satel-

lite scenes from the same orbit. The basic principle behind those different
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Figure 1.11: SAR Interferogram Generation and Correction
A: SAR amplitude image of 5 April 1996. B: Interferogram of 5-6
April 1996, amplitude image as background. Fringe structures from
“flat Earth”, topography and movement. C: Interferogram of 5-6 April
1996, “flat Earth” corrected. Remaining fringes from topography and
movements. D: Unwrapped interferogram where the fringes represent
continuous values (793 m per colour cycle) instead of modulo 2 π.
Marked areas indicate fringe deformation due to glacier movement.
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approaches is that two interferograms are first generated and then subtracted

from one another (Joughin et al., 1996; Kwok & Fahnestock, 1996; Eldhuset

et al., 2003; Joughin et al., 2010a).

2-pass DInSAR is applied in this study, which means that in addition to

one conventional interferogram generated from the two SAR scenes of two

satellite passes on the same orbit, a reference interferogram with phases cor-

responding to surface topography is simulated from a DEM which has to be

transferred into radar geometry. Differential interferograms then result from

subtracting the simulated from the conventional interferogram. Glacier ve-

locities are obtained from the interferometric fringe structures. The exact

workflow, including preprocessing, intermediate image products, unwrapping

and generation of displacement maps, are thoroughly detailed in Chapter 7.4.

It deliberately offers the InSAR beginner many illustrations of the different

processing steps in order to facilitate the use of this technique. Focus has been

placed on didactics and understandability when presenting the workflow.

1.6.2 Digital terrain modelling

Digital terrain modelling comprises the methods and techniques for visualis-

ing and analysing topography, often in the form of DEMs (Pike, 1995, 2000;

Wilson, 2012; Romstad & Etzelmüller, 2012). Quantitative topographic data

assessment is also referred to as geomorphometry, which combines morphome-

tric and geomorphological enquiries (Pike, 1995, 2000; Li et al. 2005; Zhou et

al., 2008; Hengl & Evans, 2009; Hengl & Reuter, 2009; Wilson, 2012). For the

most part, continuous land surfaces are numerically analysed, yet also discrete

features such as landforms (cf. Chs. 1.3.4, 4.3.1) and watersheds (cf. Chs.

1.3.3, 6.2) can be in the focus of interest (Hengl & Evans, 2009).

Modelling procedures involve surface sampling, DEM generation/correction,

and deriving and applying primary and secondary land surface parameters

(Hengl & Evans, 2009, Wilson, 2012) This is further detailed in e.g. Salzmann
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et al. (2004), Noetzli et al. (2006), Band (2012), Bishop (2012), Evans (2012)

and Mitášová et al. (2012) with respect to different terrain modelling and

landform classification approaches (Wilson, 2012). Parameter values are usu-

ally initially obtained from in-situ observations or scientific literature (Lavigne

& Thouret, 2002; Salzmann et al., 2004; Worni et al., 2012). Topographic at-

tributes are then mostly calculated by pixel from the gridded DEM, where the

challenge lies in the meaningful assignment of landform patterns and systems,

as context is hardly considered (Romstad & Etzelmüller, 2012).

After SRTM DEM correction, morphometric and geomorphological param-

eters are derived from the DEM of the Chama river watershed in the Venezue-

lan Andes. Amongst other things, they are used to determine potential debris

flow source areas by means of the Distributed Melton’s Ruggedness Number

(DMRN), a dimensionless index of basin ruggedness (Jackson et al., 1987;

Marchi & Fontana, 2005; Rowbotham et al., 2005) explained in Chapter 6.3.2.

Suitability for the research goal determines the choice between simple pa-

rameterisation models such as the one used in the Venezuela study and more

complex models based on physical processes (Gruber et al., 2009). The Modi-

fied Single Flow Model (MSFM) is used to model debris flows along the Chama

River and its tributaries as a function of topography and sediment dynamics.

The MSFM uses the single-flow direction algorithm introduced by O’Callaghan

and Mark (1984) and developed by Huggel et al. (2003, 2004) to model flow

propagation at regional scales in mountainous environments (Huggel et al.,

2008; Gruber et al., 2009). Based on a qualitative probability function (Huggel

et al., 2003, 2008), it calculates flow trajectories and runout areas as further

described by Gruber et al. (2009) and in Chapter 6.3.3. Modelling the flow

and runout of debris flows is similar to detecting snow or debris avalanches or

lahars (Huggel et al., 2003, 2004, 2008; Salzmann et al., 2004; Rickenmann &

Scheidl, 2013).
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1.7 Results and discussion

1.7.1 Science and remote sensing

In search of a definition of ‘science’ (Paper I), literature relating to various

scientific concepts is here reviewed. Empirical induction, positivism and logical

empirism are considered first, followed by empirical falsification and critical

rationalism (Popper, 1989, 1998). The picture is rounded off by sociological

and postmodernist views on science (Kuhn, 1996; Lakatos, 1970; Feyerabend,

1998; Zieman, 1968; Knorr, 1979). These considerations show that science is

not easy to grasp and its definition depends on whom one reads and quotes. Yet

science may not be as noble and rigorous as often claimed (Chs. 2.2, 2.4, 2.5).

Subsequently, remote sensing is subsumed under these different ontological

concepts in order to find out whether it belongs more to the realm of science

or of technology. This is partly based on a debate between Curran (1987a, b)

and Fussell et al. (1986, 1987). The reasoning suggests that remote sensing

can be understood as developing from a method to an applied science.

When differentiating between science and methods or technology (or sci-

entific methods), borderlines and overlaps abound, not only regarding remote

sensing but also computer sciences and GIS. Wilson (2012: 107) writes about

“the science of digital terrain modeling”, and Pike et al. (2009: 29) define

geomorphometry as “the science of quantitative land-surface analysis. A mix

of Earth and computer science, engineering, and mathematics, it is a new field

paralleling analytical cartography and GIS”. Is the term ‘science’ used cor-

rectly or just uncritically in these examples? This leads to the question of how

most natural sciences nowadays can be distinguished from the technologies

they use. Even if this distinction is still possible today, no modern applied

natural science will be likely to function and to define itself without regress to

technology in the future. Hence the entire differentiation between science and

methodology may prove to be an artificial, outdated distinction between the

flip sides of one coin (Chs. 2.3, 2.4, 2.5).
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Science and technology are moving closer together. In a high-tech scientific

world, methodology and its scientific application can no longer be clearly dis-

tinguished from one another. Modern ontologies of both science and remote

sensing remain ambiguous and complex; they depend largely on the quoted

source (Paper I). In general, categorisations and demarcations appear less

clear-cut today than in the past. Remote sensing started out as a method,

but is turning into an applied science with many technological qualities. Yes-

terday´s reassuring simplicity seems to be gone for good: it is becoming in-

creasingly difficult to make a clear distinction between science, non-science

and technology . The elusiveness of terminology, definition and categorisa-

tion constitutes a feature of modern science or possibly of modern society in

general.

The prevailing disdain for philosophy of science within applied sciences

leads to a lack of exchange between these disciplines, although philosophy of

science and ethics belong to the mandatory curriculum at many universities.

This can be traced down to the current scientific practise where peer-review

and impact factors “encourage both scientists and philosophers to stay within

the boundaries of well-defined questions, concepts, and paradigms. [B]reaching

these boundaries, one risks the chance of slipping in between fields and finding

oneself doing work that no one finds relevant. It is better to play it safe

and stick to one’s last” (Pernu, 2008: 32). However, just as remote sensing

looks at things from a distance and gives us get precedented perspectives on

and insights into spatial patterns on Earth, a philosophical “gazing at things

from a distance and getting a view of the big picture can provide us with

understanding about science, just as ornithology provides understanding about

birds, even though the objects themselves are oblivious to it” (Pernu, 2008:

31). More exchange between disciplines, including those which are not directly

related and therefore speak different scientific languages, could be beneficial

for all involved. Natural scientists for instance still claim to be practising

positivist and empirical science, and assume that philosophers of science are

doing the same. However, the concept of positivism started to become historic
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within philosophy even in the 1950s (Pernu, 2008). “So if positivism continues

to do harm, it is because scientists continue to cling to it. Philosophers let

it go decades ago” (Pernu, 2008: 31). Maybe it is time to drop soil augurs

and to start dialoguing. There needs to be more room for theoretical debate

in geosciences (Malanson, 1999; Cox, 2007; Egner & von Elverfeldt, 2009; von

Elverfeldt & Glade 2011; von Elverfeldt, 2012).

1.7.2 Systems theory and segmentation

Geomorphic systems theory is related to segment-based remote sensing and

relationships established between them (Chs. 3.2.2, 3.2.3). Surprisingly many

parallels can be found between the completely distinct approaches from two

entirely different fields of research: systems theory facilitates the delimitation

of individual system components by allowing the user to zoom into systemic

details while placing all components into subsystems and superordinate sys-

tems, thus restoring the entirety of landscape and, for example, leading to the

conceptional Alpine sediment cascade (Fig. 3.2).

This corresponds to the way how image segmentation works, which com-

bines the spectral analyses of remote sensing and the geometric tools of GIS: a

simultaneous depiction of several image levels segmented at different scales by

multiresolution segmentation (Figs. 1.10, 3.3) leads to relationships, sub- and

superordinations, morphometric and class-related features which can be used

for class descriptions (Papers III, IV). Through spectral generalisation, results

appear more homogeneous, thus smoothing out irregular pixel-dominated pat-

terns and creating more realistic forms (Baatz & Schäpe, 2000; van der Linden

et al., 2007).

The theoretical and applied sides of geomorphic systems theory and segment-

based remote sensing have a lot in common: they have regained acceptance

as high-performance computing has finally allowed large datasets to be pro-

cessed. They meet the demand for hierarchical and scale-dependent analyses
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made both in remote sensing and in geomorphology, thus helping to overcome

scale problems in space. Multiscalar, segment-based approaches take the hier-

archical organisation of alpine topography into account. As meaningful form-

process connections in accordance with the the sediment cascade (Fig. 3.2)

were to be established, neighbourhoods as well as sub- and superordinations

had to be accessible in the classification scheme. A hierarchical, segment-based

detection method is thus most appropriate for addressing alpine landforms, as

also shown by van Niekerk (2010), Drăguţ & Eisank (2011), Romstad & Et-

zelmüller (2012).

When developing the classification hierarchy, the iterative insertion of in-

formation by fuzzy descriptions can be likened to fractal net evolution: on

multiple levels of abstraction, a process akin to human visual perception occurs

(Blaschke & Hay, 2001; Blaschke et al., 2002; Addink et al., 2012). Multiscalar

levels focussing on different-sized landforms imitate the geomorphic systems

approach, allowing for detailed and general views at the same time (Paper II).

It is of interest here that some authors (e.g. Hay & Castilla, 2008) are now

beginning to liken the advent of the segment-based approach to a paradigm

shift, a scientific revolution (or rather evolution) in the Kuhnian sense (Kuhn,

1996). Meanwhile, geomorphology has also matured, progressively evolving

from quantitative and systems considerations to a unification phase indicative

of a ‘modern science’, where complex conceptual and multidisciplinary ques-

tions are brought into focus (Bauer, 2004; Smith & Pain, 2009). Technology in

the form of remote sensing and GIS plays a decisive role in this development

(Smith & Pain, 2009).

To further the dialogue on systems theory, Egner & von Elverfeldt (2009)

explain and bridge the differences between the concepts of systems in physical

versus human geography, where a second-order sociological systems approach

based on Luhmann (1984) is used. The concept of open geomorphic systems

implies ambiguous system confines and logical fallacies regarding equilibrium

and cause-and-effect relationships (von Elverfeldt & Glade, 2011). Introducing
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self-reference, autopoiesis and operative closeness of systems, a paradigm shift

within the theoretical foundations of geomorphology is proposed (Egner &

von Elverfeldt 2009; von Elverfeldt & Glade, 2011). Finally, von Elverfeldt

(2012) develops a stringent geomorphological system theory, which facilitates

exchange with neighbouring disciplines.

The argumentation convinces, but a footnote is puzzling. “Within the

framework of general systems theory, we observe the world in terms of sys-

tems. It has to be emphasized, however, that it is only a way to look at the

respective objects of interest: Systems do not exist. Therefore, whenever a

phrase similar to ‘the system is (open/isolated/...)’ is used in this paper it

does not connote any ontological statement” (von Elverfeldt & Glade, 2011:

88). At the same time, the paper attempts to answer the question ‘What is a

system?’ (von Elverfeldt & Glade, 2011: 91), which looks like an ontological

question by its very nature. Does everything invisible and intangible not exist?

That seems to put the discussion back to before Popper; then all abstractions,

conceptualisations and models would not exist, maybe not even philosophy

of science and theoretical discourse as such. The existence of the quoted pa-

pers could literally prove otherwise, and another issue is put up for discussion:

when do conceptual models start to exist?

1.7.3 Alpine landform detection

A literature survey has resulted in an extensive overview of alpine landform

features and characteristics as displayed in Tables 4.1 and 4.2. These tables

distinguish between fourteen landforms and twelve landform characteristics.

These characteristics can be divided into four greater categories: visible ma-

terial, particle size and superficial sorting describe the sediment surface, while

slope, horizontal and vertical curvature constitute form parameters. In con-

trast, spatial distribution comprises the spatial extent, location in the valley

and the process link of the different landforms. The categories activity status,
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vegetation cover, dominant process and processual link specify the processes

involved. These tables form the foundation of the classification of geomor-

phological landforms. The proposed landform subdivisions take the concept

of fuzzy boundaries into account, but are necessarily arbitrary to a certain

degree. More work on landform and landscape definitions is required when

assessing today’s wealth of remote sensing data (Berthling, 2011; Berthling &

Etzelmüller; Evans, 2012).

In the multiscale project, the segmentations with different scale parameters

(Fig. 3.4) make it possible to focus on different features on each of the four

levels: the first level L1 based on pure spectral ASTER information defines

all boundaries of the project at a very high resolution, resulting in a classic

remotely sensed land cover map (Fig. 4.6). The coarsest Level L4 displays the

altitudinal strata mask generated in a separate project, while L3 focuses on

eastern and western walls of cirques and hanging valleys in the upper valley

portions (Fig. 3.4). L2 is designed for merging the information of all four

levels. In the final landform classification on level L2 (Figs. 3.4, 5.3), the

majority of classes such as cirques, rockwalls, floodplains and sediments are

accurately assigned. Detection limits are reached with moraine and rockfall

deposits which have been overprinted by more recent processes for centuries

or millennia (Schrott et al., 2003). Some target classes (Tab. 3.1) are more

precisely differentiated than previously expected (Tab. 4.3), e.g. vegetation-

covered slopes and talus cover, leading to 20 final thematic landform classes.

The resulting thematic map shows the present-day pattern of geomorpholog-

ical process units in the entire valley up to its less accessible upper regions

(Figs. 3.4, 4.6, 5.3), whilst previously only the valley floor could be mapped

in situ. Many other segment-based landform classification do not produce co-

herent maps, but just aim at certain landforms of interest, e.g. Eisank et al.

(2010, 2011), Ferentinou et al. (2011), d’Oleire-Oltmanns et al. (2012) and

Hölbling et al. (2012). Van Niekerk (2010) stresses the particular sensitivity of

the multi-resolution segmentation algorithm to morphological discontinuities,

which makes it most appropriate for detecting land units from DEM.
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From these results, it becomes evident that the geomorphic (in-)activity of

an area is spectrally better defined than the actual type of landform present.

The classification of geomorphological activity or possibly geomorphic process

units (i.e. areas with homogeneous process types and rates; cf. Gude et

al., 2002; Bartsch et al., 2002, 2009) seems therefore easier than assessing

landforms, as one form is often made up of areas with changing activity and

cover. Through the NDVI, the degree of vegetative cover can be determined

quickly (cf. Mao et al., 2011; Fensholt & Proud, 2012), and hence also process

activity. However, soil-adjusted vegetation indices (SAVIs) should be tested

against the performance of the NDVI (Huete et al., 1985; Baret & Guyot,

1991; Garćıa-Haro et al., 1996; Gilabert et al., 2002; Ch. 4.5.2). Yet SAVIs

require soil-line or brightness information, which may hamper transferability.

Machine learning approaches (cf. Ch. 1.7.4) could render the intermediate

step via spectral indices obsolete.

While the sediment cascade of the Reintal forms a closed system charac-

terised by sediment input and a high inactivity rate in the studied data sets

(Ch. 3.2.3), some changes have taken place on the valley floor since. After

a high magnitude dambreak flood on Vordere Gumpe floodplain (Figs. 1.2,

4.3) in 2005, the (re-)coupling and activity of sediment stores has increased

considerably in this area, as quantified by Terrestrial Laser Scanning (TLS)

amongst other things (Morche et al., 2007, 2008; Bimböse et al., 2010, 2011).

The system has switched to a state of disequilibrium and an imbalance in

favour of sediment output: sediment stores continue to be depleted, yet quan-

titative fluxes are declining with time as is customary after extreme events

(Morche et al., 2008; Bimböse et al., 2011). TSL makes it possible to compare

intra- and interannual sediment dynamics from the slopes to the catchment

exit, and to conclude that the sediment budget is now negative, but the role of

fluvial transit and stores requires further study (Morche et al., 2008; Bimböse

et al., 2011). It is uncertain whether the changes on the valley floor due to

that dambreak flood could be detected in ASTER data; maybe by means of

novel segment-based, sub-pixel mapping models to solve the mixed pixel prob-
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lem and increase classification results through post-processing (Li et al., 2011;

Ling et al., 2012). Yet new and high-resolution remote sensing images and

DEMs allow for more scrutinous and sophisticated extractions of form fea-

tures today (Smith & Pain, 2009; Ch. 1.7.8). Hillslope-glacier coupling and

glacial erosion (Scherler et al., 2011) as well as supraglacial debris flux patterns

(Casey et al., 2012) have been successfully studied by remote sensing, which

can benefit sediment cascade research. Quantifications of sediment fluxes and

stores over different time scales are needed (Schrott et al.,2002, 2006; Otto &

Schrott, 2010). Due to close connexions and interlinkages at various scales,

the influence of individual systemic parts is still hard to assess (Smith & Pain,

2009; Slaymaker, 2010; Keiler et al., 2012).

It remains to be investigated to which extend a purely pixel-based clas-

sification scheme may handle this data. To further evaluate the results, the

exact influences of image and DEM data respectively should be assessed by

analysing them individually. Recent studies have analysed DEM segmenta-

tion and its potentials for landform discrimination (Drăguţ & Blaschke, 2006;

Drăguţ et al., 2010, 2011; Drăguţ & Eisank, 2011; Drăguţ & Eisank, 2012;

Matsuura & Aniya, 2012; Romstad & Etzelmüller, 2012). A purely spectral

SVM classification has been used by van der Linden et al. (2007) to compare

spectral properties and generalisations to pixel-based results, where both ap-

proaches reached comparable accuracies, yet the segment-based results were

more homogeneous.

1.7.4 Classification accuracy and transferability

A kappa coefficient of 0.915 confirms the good match of the L2 classification

results to ground truth. Overall accuracy amounts to 92 % for L2, while

producer’s and user’s accuracies also generally score high. Bartsch et al. (2002)

obtain accuracies between 85 % and 93 % in their identification of geomorphic

process units. Saadat et al. (2008) reach even higher accuracies in their
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intricate landform classification approach based on polygons and segmentation.

Fuzzy classification stability comes out a little lower in the Reintal, but best

membership assignments generally turn out high (see Ch. 5.4 and Fig. 5.4

for details). Drăguţ & Blaschke (2008) also find fuzzy stability to score lower

than other methods for assessing DEM-based classifications.

The simple overall accuracy ignores wrongly classified pixels (i.e. errors of

commission and omission), but allows for chance agreements, which is why high

accuracies in the single classes and the kappa coefficient have more analytical

significance (Cohen, 1960; Kellenberger, 1996). Kappa statistics also allow

comparisons between matrices of different data sets, which makes them the

most objective accuracy measure (Kellenberger, 1996; Lillesand et al., 2008).

Yet Pontius Jr. & Millones (2011) draw attention to repeated past criticism of

kappa indices and conclude that they are of no use for practical remote sensing,

declaring death to kappa and birth to quantity disagreement and allocation

disagreement, which should be assessed for the Reintal.

The accuracy values given are based on manually chosen image objects, not

individual pixels. While manual selection ensures the quality and correctness

of the assessments, it makes them also more subjective, less random and less

easily transferrable to other regions. The accuracy assessment could be opti-

mised by choosing test areas according to a random or regular spatial pattern,

and by using individual pixels instead of image objects. While van der Linden

et al. (2007) note slightly lower accuracies with segmented data, especially

with increasing segment size, Waske (2007) and Waske et al. (2008) found

that both image segmentation and multilevel information lead to significantly

increased classification accuracies. Therefore a pixel-based accuracy assess-

ment may just lower the accuracies per se, without giving further evidence on

the quality of the values given in Table 5.2 (cf. Pontius Jr. & Millones, 2011).

It may not be usefully applicable to segment-based classifications at all, as

segment-based spatial generalisations risk to be evaluated as errors (Castilla

et al., 2012; Marinho et al., 2012). For comparison, the accuracy assessments
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of contextual, segment-based classification results as proposed by Castilla et al.

(2012), Marinho et al. (2012) and Thoonen et al. (2012) should be evaluated.

The applicability of the Reintal study to other regions remains to be in-

vestigated. Blaschke et al. (2002), Drăguţ & Blaschke (2006) and Drăguţ &

Eisank (2011) argue that segment-based classification leads to better trans-

ferability, as variations in reflectances and atmospheric influences are levelled

out to a certain extent (Ch. 5.6). However, the number of segment-based

studies has not increased in as spectacularly as expected at the turn of the

millennium. As both segmentation and classification need to be adjusted to

other data sets, it is generally more difficult to transfer segment-based schemes

to different study areas than single step classifications. The more supervised,

knowledge-based steps have to be taken, the less universal a method becomes

(Eisank et al., 2011; d’Oleire-Oltmanns et al., 2012; Zwieback et al., 2012).

As all cirques in the Reintal align from north to south, for example, cirque

segmentation rests on aspect and slope in our study. If it were based on water-

sheds as in Romstad & Etzelmüller (2012), application to other regions may be

facilitated. Yet Drăguţ & Blaschke (2006) stress the importance of slope aspect

in segmentation and classification and see its enhanced utilisation as a major

research priority. Minár and Evans (2008) introduce small elementary forms as

indivisible basic units in relief segmentation, which may facilitate transferabil-

ity. Attempts at objectivising landform descriptions by introducing semantic

models (Eisank et al., 2010, 1011) go in the same direction. Drăguţ et al.

(2010) propose a tool to objectivise the selection for appropriating scales for

segmentation, and Drăguţ & Eisank (2012) suggest an automated segment-

based classification method for topography from SRTM data, which should be

considered in future work. All of these findings indicate that the segmentation

part of the Reintal study could be made transferrable.

The trend in classification is going from statistical to more elaborate classi-

fiers (cf. Richards, 2005; Pal & Mather, 2006; Waske, 2007; Waske & van der

Linden, 2008; van der Linden, 2008; Drăguţ & Eisank, 2011; Shoa & Lunetta,
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2012), i.e. artificial neural networks (Benediktsson et al., 1990; Ferentinou

et al., 2011), self-learning decision trees (Friedl & Brodley, 1997) or support

vector machines (SVMs) which fit optimal hyperplanes for class separation

(Huang et al., 2002; Waske, 2007; van der Linden et al., 2007; van der Lin-

den, 2008; Waske & van der Linden, 2009; Riedel et al., 2011; Klemenjak et

al., 2012). For comparisons of different classifiers, see Waske (2007), Waske

& van der Linden (2009), Brenning et al. (2012) and Shao & Lunetta (2012)

amongst others. Best performances vary, but SVM can outperform the other

approaches in land cover classification (Shao & Lunetta; 2012) and facilitate

the updating of land cover maps (Bruzzone & Marconcini, 2009).

Prerequisites for the application of the classification hierarchy to other re-

gions and data sets are its optimisation and generalisation. However, landforms

of such different sizes can hardly be captured by one single segmentation level.

Waske and van der Linden (2008) argue that the information of different in-

dividual levels may be relevant for the classification decision, but that the

decision does not have to be taken on the respective level. They classify pixels

by including the information from very many levels of segmentation by means

of decision fusion during classification. Advanced classifiers, e.g. SVM or ran-

dom forest classifier systems based on a set of decision trees (cf. Breiman, 2001;

Waske, 2007; Waske et al., 2012), select the most suitable level per pixel and

target class in a user-controlled way within supervised classification. Hence a

supervised step occurs only once, but replaces the two steps of segmentation

and classification; both optical and radar data can be analysed in this way.

The marker-based method for image and elevation data by Tarabalka et al.

(2012) goes in the same direction, which may be applied for locally optimising

the Reintal study. A wrapper approach (cf. Kohavi & John, 1997) for feature

selection and morphological profiles (i.e. chains of mathematical operators to

analyse the image surface) as suggested by Waske et al. (2009) could also be

useful. in general, the combination of one supervised and one unsupervised

processing step seems most appropriate for transferability.



50 Introductory overview

1.7.5 Potential debris flows

53 potential source areas for debris flows are found with the help of the DMRN

(Fig. 6.5) and 48 potential debris flow runouts with the MSFM (Fig. 6.6).

Five runouts are missing because they slope below 11°, the stopping threshold

value of the model. The DMRN also shows the level of dissection of the

watershed based on relief variation, by means of which areas with high versus

low sediment dynamics can be distinguished (cf. Jackson et al., 1987; Marchi

& Fontana, 2005; Rowbotham et al., 2005).

These results are qualitatively assessed with the orthorectified ASTER im-

age (Fig. 6.7), a historical aerial photo (Fig. 6.8) and a morphopedological

map. This is validated through three fieldwork excursions, which proved the

consistency of the results. However, the overall slope threshold of 11°, which

stems from the Swiss Alps (Huggel et al., 2003, 2004), does not always reflect

the Venezuelan reality. The DEM dependency of the model also introduces

some errors (cf. Miliaresis, 2008; Ch. 6.8), but in general, the SRTM DEM

allows us to calculate realistic results, and this is congruent with the SRTM

evaluation of Huggel et al. (2008). The hazard maps produced (Figs. 6.5, 6.6,

6.10) reflect the given sediment dynamics and are consistent with other re-

cent vulnerability and susceptibility studies (cf. Maldonado, 2007; Roa, 2007;

Caritas, 2010).

A simple parameterisation model such as the MSFM is well suited for larger

areas such as the 1900 km2 evaluated in the Chama river basin. Model and

SRTM DEM limitations are reached when one is interested in specific sedi-

ment volumes and types. More precise DEMs and more complex and detailed

models based on physical processes, for instance 3D dynamic models should

be considered for this effect (Gruber et al., 2009; Bell et al., 2012). For exam-

ple, Becht et al. (2005) analyse and model debris flow events on one talus in

the Reintal, concluding that debris flows remove far greater sediment volumes

from the cascade than rockfalls put in, so that the talus sediment sources are
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currently depleting. Yet this precise piece of evidence implies considerable

downscaling, from watershed dimensions to the scope of one talus and an-

nexes. ”At present, no generally applicable model is able to cover the range

of all possible material mixtures and event scenarios. This complexity results

in different torrential processes and results in a large variety of approaches to

predict debris-flow mobility” (Rickenmann & Scheidl, 2013: 75).

Band et al. (2012) propose an optimised estimation of slope instability sites

without a priori, in-situ ground knowledge: the integrated modelling of slope

stability as a function of geomorphological, hydrological and ecosystem pro-

cesses may be an alternative for debris flow source area detection and provide

more insights into systemic connections in watersheds. What is more, the GIS-

based geomorphological mapping method presented by Theler et al. (2010)

focuses explicitly on the sediment source areas and their potential for debris

flow generation, translating the sediment cascade model into a cartographic

system. Brenning (2009) and Brenning et al. (2012) test several predictor

variables for debris flow pattern recognition via modelling and classification

techniques. They find that image classification leads to an enhanced spatial

predictability and transferability of the texture attributes when compared to

linear and additive statistical modelling. Therefore classification methods as

decribed in Chapters 1.6, 1.7.4 and 1.7.5 should be considered in further re-

search on Venezuelan debris flows. A combination of segmentation and InSAR

as proposed by Hölbling et al. (2012) should be evaluated. Sediment volumes

and transfer rates involved may be quantified following Bartsch et al. (2009).

The evaluation of remote sensing data can be extremely helpful in assessing

potential mass movements and can form the only available source of informa-

tion (Kääb et al., 2005a; Gruber et al., 2009; Sund et al., 2009; Kääb, 2010;

Debella-Gilo, 2011; Bell et al., 2012; Debella-Gilo & Kääb, 2012; Eiken &

Sund, 2012). To date, major changes in sediment supply and mass-movement

activity have not been documented, but the potential for them to occur is

given (Goode et al., 2012; Stoffel & Huggel, 2012). Yet global change may also
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deplete some sediment sources or decouple them from the sediment cascade,

as ”slope stability and mass movements in high-mountain regions are complex

and highly interlinked systems” (Stoffel & Huggel, 2012: 430). Recent investi-

gations hint at unprecedented reactions, events and magnitudes triggered by a

warming climate, which is why sediment and process cascades have to be mon-

itored closely and further (Stoffel, 2010; Stoffel & Huggel, 2012; Goodfellow &

Boelhouwers, 2012; Goode et al., 2012).

1.7.6 Glacier displacement and surge

In the rugged terrain around Ny Ålesund, the minimum cost flow (MCF)

technique with a triangular irregular network (TIN) described by Costantini

(1998) led to better interometric phase unwrapping results than the branch-cut

algorithm by Goldstein et al. (1988). Glacier velocities in line-of-sight of the

sensor are obtained from the differential phase after filtering and unwrapping

by MCF, leading to orthonormal displacement maps for horizontal, vertical

and look vector movement components (Fig. 7.9). Horizontal displacements

of ∼ 20 cm d−1 (5-6 April 1996) and ∼ 18 cm d−1 (10-11 May 1996) are found

at the glacier terminus and < 3 cm d−1 in the middle and upper portions of

Comfortlessbreen (Fig. 7.9). The cirque area (Figs. 1.3, 1.12), however, shows

velocities of around 6 cm d−1 both in April and May 1996. DInSAR allows

us to look into the past of Comfortlessbreen to retrospectively deduce 1996

velocities and thereby fill an existing data gap. The DInSAR displacement

rates are consistent for both April and May 1996. They hint at a pre-surge

velocity level of the glacier in 1996, which underwent full surge a decade later

(Sund et al., 2009; Sund & Eiken, 2010; Eiken & Sund, 2012). Surge-type

glaciers on Svalbard are mostly characterised by low velocities of around 10 m

a−1 during quiescence (cf. Nuttall et al., 1997; Melvold et al., 1998) because

of their polythermal regime, as indicated by the velocities found. Tidewater

glaciers usually increase velocities towards the terminus (Vieli et al., 2004), as

is the case on Comfortlessbreen in 1996 (Fig. 7.9).
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Figure 1.12: View of the Cirque Region of Comfortlessbreen

The uppermost area of the glacier, where velocities were possibly
higher than further downglacier in 1996. Photo taken by M. Sund
in 2009 during glacier surge as indicated by the crevasses.

The errors within the velocity maps (Figs. 7.8, 7.9) produced cannot be

precisely calculated within Gamma for all pixel values of a DInSAR scene.

Crosetto et al. (2008) and Strozzi et al. (2010) assume an error in line-of-

sight displacement of < 0.7 cm for ERS-1/-2. As shown in Equations 7.4 and

7.5, contributions from atmospheric influences and noise are still contained

in the generated differential interferograms (Weydahl et al., 2001; Li et al.,

2003; Rott, 2009; Danklmayer et al., 2009). This is difficult to amend be-

cause the necessary additional meteorological data is not available (Gens &

van Genderen, 1996; Hanssen, 2001; Rott, 2009). Signal noise can be reduced

by transforming the SAR image into a multilook image (MLI). However, this

implies a reduction of the spatial resolution (Kwok & Fahnestock, 1996), which
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is inconvenient for a small glacier such as Comfortlessbreen. MLI generation

can be used to find out how much noise is left in the interferograms; therefore

different MLI parameter settings should be compared to the DInSAR results

obtained.

Testing all possible combinations of the ERS-1/-2 SAR scenes together

with several DEMs represents a means of producing more DInSAR results. A

comparison of those results with 3- and 4-pass DInSAR may make it possible

to account for the potential error sources in DInSAR and to filter out noise

(Sansosti et al., 2010; Current et al., 2012), yet DEM errors would still be

contained as well. Advanced algorithms such as persistent scatterer interfer-

ometry (cf. Ferretti et al., 2000; Werner et al., 2003; Hooper et al., 2004, 2007;

Hölbling et al., 2012), small baseline interferometry (cf. Berardino et al., 2002;

Schmidt and Bürgmann, 2003; Lauknes et al., 2010b; Henderson et al., 2011)

or combinations of both (Hooper, 2008; Lauknes, 2010; Lauknes et al., 2010a)

can help filter out atmospheric effects and noise (Li et al. 2003; Ferretti et al.,

2000; Berardino et al., 2002; Sansosti et al., 2010).

Knowledge of displacement rates is of central importance in alpine and

polar settings regarding analysis and modelling of e.g. glacier surges, glacier

dynamics, calving, rock glacier creep, rock slope deformation, sediment fluxes

and budgets, slope instabilities. Studies on InSAR and glacier displacement

abound (e.g. Joughin et al., 1998; Mohr et al., 1998; Dowdeswell et al., 1999;

Michel & Rignot, 1999; Rosen et al., 2000; Joughin, 2002; Eldhuset et al., 2003;

Strozzi et al., Luckman et al., 2002, 2007; Palmer et al., 2009; Quincey et al.,

2009; Joughin et al., 2010b; Kumar et al., 2011), most of them also involving

ERS-1 and/or ERS-2 data. InSAR for the study of slope deformation, rock-

and landslides (Osmundsen et al., 2009; Lauknes et al., 2010; Henderson et al.,

2011) provides important insights into alpine sediment systems, or even into

deformation patterns and mechanisms of seismic activation (Currenti et al.,

2012). But InSAR has also been successfully applied to rock glaciers (Strozzi

et al., 2004, 2008, 2010a, 2010b), which couple glacier and alpine landform.
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In an approach similar to the Svalbard study, Strozzi et al. (2010b) detect

rock glacier movement of ≥ 1 cm d−1 in ERS-1/-2 tandem data, in three-day

repeat ERS-1 images from 1991 and in terrestrial DInSAR. They argue that

such speeds can hardly be detected with present satellite SAR data because

the 35-, 46- and 11-day repeat intervals (corresponding to C-, L- and X-band

data currently available) lead to decorrelation. This applies all the more to

Comfortlessbreen with its considerably higher velocities of up to ≤ 20 cm d−1

even in quiescence. By combining ascending and descending orbit passes with

slope information, a full 2-D or 3-D flow velocity field can be derived (Joughin

et al., 1998; Palmer et al., 2009), so that also glaciers flowing perpendicularly

to the line of sight of the sensor can be measured by InSAR.

Not only does DInSAR yield glacier displacement, but also SAR speckle,

coherence and feature offset tracking (e.g. Lucchitta et al., 1995; Michel &

Rignot, 1999; Strozzi et al., 2002, 2008; Pritchard et al., 2005; Burgess et al.,

2012; cf. Ch. 1.7). These different approaches have been combined and com-

pared by e.g. Michel & Rignot (1999), Joughin (2002), Strozzi et al. (2002),

Luckman et al. (2007), Quincey et al. (2009), Joughin et al. (2010a) and

Kumar et al. (2011). The great advantage of feature offset estimation lies in

the fact that unambiguous values are produced, so that phase unwrapping, the

most intricate part of InSAR, can be avoided (Strozzi et al., 2008). Mansell et

al. (2012) study Comfortlessbreen by feature tracking on pairs of ERS-1/-2.

Their resulting velocity maps seem to mainly cover the lower glacier portions

and the frontal areas, probably due to the fact that feature tracking cannot

capture the very slow speeds further up, whereas DInSAR accurately measures

the flow of the entire glacier (Fig. 7.9; Palmer et al., 2009). While their surge

flow speeds of 2008 correspond to the ones described by Sund & Eiken (2010),

they report just small terminus variations before surge onset, which matches

the pre-surge velocity levels described in Chapter 7.5.

In a changing climate, glacier mass accumulation and hence glacier veloci-

ties, particularly of mountain and land-terminating glaciers, could decrease on
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regional scales (Heid & Kääb, 2012a). Yet melt-induced speed-ups have also

been observed, especially in tidewater, but also in land-terminating glaciers

(Thomas et al., 2009; Sundal et al., 2011). More monitoring and compar-

isons with earlier glacier velocities are necessary for the assessment of climate

change, especially over large areas (Lubin & Maasom, 2007; Joughin et al.,

2010b; Haug et al., 2010; Casey et al., 2012; Heid & Kääb, 2012a; Kääb et al.,

2012).

The new tandem missions are of special interest as they provide data for

interferometric analyses again, e.g. the COnstellation of small Satellites for

the Mediterranean basin Observation (COSMO-SkyMed) with its possibility

of either one-day, four-day, eight-day or 16-day tandem recording. The X-band

SAR satellite TerraSAR-X and its twin satellite TerraSAR-X Add-oN for Dig-

ital Elevation Measurement (TanDEM-X) or the C-band Radarsat Constella-

tion Mission should also be considered for further interferometric study, while

the existing full and underused data archives ought to be remembered as well

(ESA, 2012; Debella-Gilo, 2011; Sansosti et al., 2010; Joughin et al., 2010a).

1.7.7 Towards a new glacier surge model

In a paper entitled “Is there a single surge mechanism?”, the strong con-

trast in surge dynamics between Svalbard and other regions makes Murray et

al. (2003b) conclude that there are at least two distinct surge mechanisms:

Svalbard-type, in which polythermal glaciers are controlled by thermal mech-

anisms as modelled by Fowler et al. (2001), and Variegated-type named after

the fast temperate Variegated glacier surge in Alaska described by Kamb et

al. (1985) and Kamb (1987) which is hydraulically controlled. Sund et al.

(2009) propose three surge stages, the first of which comprises initial features

which have not been associated with surge before. Remote sensing enables

the detection of small changes which often occur years before the first typical,

visible surge characteristics (Chs. 8.1, 8.2)
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Taking Sund et al. (2009) and the results from Paper VI as points of depar-

ture, Paper VII suggests one common surge theory for all types of observations.

Svalbard´s surge-type glaciers are polythermal; only their margins and lower

reaches are frozen to the ground, which hinders flow. Yet temperate conditions

dominate their upper portions (e.g. Hagen & Sætrang, 1991; Björnsson et al.,

1996; Ødeg̊ard et al., 1997; Melvold & Hagen, 1998; Sund & Eiken, 2004).

This corresponds to the thermal regime of polythermal surge-type glaciers in

other regions (e.g. Clarke et al, 1984; Grant et al., 2009). Hence the upper

portions of both temperate and polythermal glaciers are characterised by the

same basic conditions and determining factors. It is suggested that surges

initiate in these upper regions (Sund et al., 2009; Chs. 8.2, 8.3). The greater

DInSAR velocities of around 6 cm d−1 in the cirque area (cf. Ch. 7.5; Figs.

1.3, 1.12) could constitute a first indicator of surge initiation, surge stage 1 as

suggested by Sund et al. (2009) and Chapter 8.3. This contrasts with other

studies on tidewater-terminating glaciers (e.g. Rolstad et al., 1997; Luckman

et al., 2002; Dowdeswell & Benham, 2003; Murray et al., 2003a), which assume

surges to initiate in the lower glacier reaches.

As Chapter 8.3 proposes a conceptual surge model which includes a stage

before any visible surge signs can be observed (Figs. 8.2, 8.3), these findings

need not contradict one another. A joint perspective on surge initiation both in

polythermal and temperate glaciers is therefore proposed in Chapter 8.3. The

coupling between build-up and surge initiation is evidenced as well as prereq-

uisites for build-up, primary controls for surge initiation and individual glacier

(secondary controls) of surge propagation. As the example of Comfortlessbreen

shows, changes in flow velocities and surface elevation over time are observed

(Fig. 8.1). The DInSAR velocities obtained for 1996 and Global Navigation

Satellite System (GNSS) velocity measurements in 2001 make it possible to

conclude on upglacier changes in mass movement (Ch. 8.2.3). These results,

further remote sensing findings and a reinterpretation and synthesis of previ-

ous studies leads to a synthesised conceptual surge model (Ch. 8.3; Figs. 8.2,

8.3), which is applicable to both temperate and polythermal glaciers.



58 Introductory overview

Various processes occurring during surge are similar to those occurring in

non-surge-type glaciers, i.e. regarding glacier hydrology (e.g. Raymond et al.,

1995). Surges may then result from a certain series of ordered factors, processes

and reactions. The generalised model aims at illustrating this order of surge

process activity, from which individual glaciers may deviate due to secondary

controls. This does not necessarily contradict the divergent earlier theories

on surges: the apparent differences in dynamics can be seen as variations in

already ongoing surges, which stem from different thermal regimes, glacier

properties and surge stages. Budd (1975) had already suggested that surge

process features were not basically different from those observed in non-surge-

type glaciers. The model offers a new perspective and framework for future

surge studies, and may be further fine-tuned, just as sediment cascade models

have been developed and refined over time (cf. Ch. 3.2.2). Scherler et al.

(2011) present a conceptual model coupling hillslope and glacier dynamics,

which explains relief and landscape evolution in cold climate environments.

The alpine sediment cascade, glacier movement and theoretical models are

thus closely connected.

1.7.8 Optical as opposed to radar data

Traditional remote sensing often focuses either on optical (e.g. Paul, 2000;

Dowdeswell & Benham, 2003; Kääb et al., 2003, 2005b; Berthier et al., 2005,

2006; Liu et al., 2009; Casey et al., 2012) or on microwave imagery (e.g. Kelly

et al., 1997; Dowdeswell et al., 1999; Engeset, 1999; Braun, 2001; Palmer et

al., 2009). Studies based on the combination of both are still rare, which is

largely due to the different geometries in optical as opposed to radar data. This

has also hindered them being linked to the desired degree within this thesis.

Moreover, the limited availability of optical and radar data from the same

place and time restricts research possibilities more than previously estimated.

It is also unclear from which calendaric dates the optical and radar data should

be for combination. Data from as proximate calendaric dates as possible may
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not show the same surface, because the radar signal penetrates the surface to

a certain extent (Kelly et al., 1997; Brown et al., 2005). SAR backscatter from

glaciers partly depicts the previous summer surface or even subsurface features

(Langley et al., 2008, 2009; Müller, 2011).

Frequent cloud cover over alpine, nordic and polar regions limits the choice

of usable optical satellite scenes (Weydahl, 1998), which has hindered the com-

bined analysis of optical and radar data in the Svalbard study. For instance,

when aiming at optical image matching for combination with the DInSAR

results on glacier displacement described in Paper VI, optical scenes turned

out to be very scarce over the research area around 1996: no Landsat scenes

are available over Ny Ålesund between 1993 and 1999. Only a few SPOT 3

scenes taken between 3 and 27 August 1996 can be found, many of them misty,

cloudy and with poor optical contrast. Even in a set dating from 3 and 17

August 1996 from the same orbit track and frame, topographical distortions

and haze blur potential movement. Besides, the short time interval between

those SPOT scenes results in hardly any displacement signal exceeding the

statistical significance level.

New satellite missions are characterised by increased spatial resolution and

shorter revisit times (Liu et al., 2009; ESA, 2012), so that the optical data pool

is constantly being enlargened. Optical satellite sensors have been detecting

at high resolutions for more than a decade now. Recent missions such as For-

mosat (cf. Liu et al., 2009), WorldView, GeoEye and the upcoming Pleiades

and Sentinels continue the trends set by e.g. Ikonos, Quickbird and OrbView.

The Landsat Data Continuity Mission follows up on the thermal dimensions of

the Landsat series and ASTER (cf. ESA, 2012). When working in the visible

spectral range, interpretations appear quite straightforward. Reconnaissance,

understanding and the spread of methods to larger user groups benefit from

the fact that optical data roughly depict the ground as it is perceived by the

human eye. This holds especially for geometries; the multispectral bands of

optical data contain far more information. For instance, false colour compos-
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Figure 1.13: False Colour Composites of northern Svalbard
Different combinations of ASTER spectral bands (17 August 2000). A:
ASTER bands 3-2-1 for the red, green and blue (RGB) image channels,
the band combination for closest approximation of human vision. B:
RGB 4-3-2 for distinguishing snow from ice. C: RGB 1-3-2 with linear
stretch and normal brightness. D: RGB 1-3-2 without linear stretch
and with increased brightness. E: RGB 4-5-3 differentiates the glacier
forefield. F: RGB 7-3-4 illustrates glacier flow structures and debris
cover. G: RGB 10-12-14 for masking out glaciers. H: RGB 1-3-4
highlights snow and ice surface structures.
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ites (FCCs, Fig. 1.13) combine other bands than the three conventional red,

green and blue (RGB) channels approximating the human visual experience

(cf. Kääb, 2005b; Paul et al., 2007; B laszczyk et al., 2009; Paul & Hendriks,

2010a). They sometimes allow for a neater distinction between surface features

(Fig. 1.13). Besides, a vast number of optical images are available in extensive

archives.

Because they are not dependent on daylight and clear skies, radar data

can be more convenient for studies in these regions, yet until 2007, commer-

cially available SAR resolution was still rather coarse (cf. Rott, 2009; ESA,

2012). Such small landforms as on the Reintal valley floor would not have

been detectable, so optical data was the only option at hand then. Yet with

Radarsat-2, the COnstellation of small Satellites for the Mediterranean basin

Observation (COSMO-SkyMed), TerraSAR-X and TanDEM-X, the commer-

cial SAR product range has been widened considerably and made more flexible

(Weydahl et al., 2008; Yoon et al., 2009; Høgda et al., 2010; Mittermayer et

al., 2010; Sansosti et al., 2010; Thonfeld & Menz, 2011). SAR resolutions have

been brought down to the 1 m range, thus approaching the very high optical

resolutions, which makes the microwave spectrum a lot more attractive for

many small-scale applications in geomorphology and glaciology today.

The methods applied in this thesis offer multiple possibilities for a syner-

gistic usage of optical and radar data. Segmentation of SAR intensity images

is possible, yet variations in backscatter and speckle can make an exact de-

lineation of ground features difficult, which is why object shapes may be best

derived from optical data alone in combined analyses (Thonfeld & Menz, 2011).

Classification accuracies rise, especially when using SVM and random forest

classifiers on optical and (even multipolarised) radar data (Waske, 2007; Waske

& Benediktsson, 2007; McNairn et al., 2009; Riedel et al., 2011; Klemenjak

et al., 2012). New processing chains aim at increasing degrees of automation,

also regarding training area selection, for the integrated assessment of optical

and radar data (Bruzzone et al., 2004; Bruzzone & Marconcini, 2009; Baraldi
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et al., 2010; Riedel et al., 2011; Bishop et al., 2012; Klemenjak et al., 2012;

Zwieback et al., 2012). High automation is an asset for operational and large

scale monitoring as it reduces user input and ground truth requirements to a

minimum (Bishop et al., 2012; Klemenjak et al., 2012).

The choice of SAR image pairs suitable for interferometric analysis is lim-

ited (Rott, 2009), which is also why scenes of 1996 are used in Paper VI. When

aiming at glacier observation in Svalbard with its highly changeable weather

conditions and consequent rapid loss of coherence, this relative scarcety of

InSAR-compliant data will persist to a certain degree, even though new tan-

dem missions have been installed, e.g. the COSMO-SkyMed constellation

(Sansosti et al., 2010; Stramondo et al., 2011; Currenti et al., 2012) with its

current four satellites (X-band SAR), TerraSAR-X and TanDEM-X (Weydahl

et al., 2008; Yoon et al., 2009; Mittermayer et al., 2010) or the planned C-band

Radarsat Constellation Mission. In contrast, feature offset tracking offers more

possibilities for change detection as larger temporal intervals can be covered

by this technique than by InSAR. When coherence does not matter, a wider

range of SAR data beyond tandem missions can be used for glacier flow mea-

surements, from e.g. the planned Sentinel missions or the entire ERS-1/-2

archives.

When aiming at change or movement detection, be it in sediment or glacier

dynamics, pronounced changes or displacements appear blurred in interfero-

metric applications due to decorrelation. While InSAR is well suited for rock

glaciers and the accumulation area of a glacier, which is dominated by slow

movements and little melting (Toutin, 1995, 2000; Toutin & Gray, 2000; Eld-

huset et al., 2003; Strozzi et al., 2004, 2008, 2010a, 2010b; Paper VI), it often

fails in the ablation zone, which changes quickly (Fig. 7.3). For example, fast

flowing Kronebreen with its 2 m d−1 (Weydahl, 2001; Eldhuset et al., 2003;

Kääb et al., 2005b; B laszczyk et al., 2009) decorrelates in Figure 7.3 (cf. Ch.

7.6). Similar velocities were measured in the Comfortlessbreen surge in 2008

(Sund & Eiken, 2010; Eiken & Sund, 2012; Mansell et al., 2012). They lie
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beyond the scope of DInSAR; SAR feature offset tracking and optical image

matching are complementary alternatives (Berthier et al., 2005; Kääb et al.,

2005b; Luckman et al., 2007; Haug et al., 2010; Joughin et al., 2010a; Mansell

et al., 2012).

Radar and its optical counterpart, airborne or terrestrial laser scanning

(TLS) or Light Detection And Ranging (LiDAR), have taken DEM genera-

tion to the next level (Geist & Stötter, 2010; Moholdt & Kääb, 2012; Wilson,

2012). LiDAR’s high spatial and vertical resolution depicts even small-scale

geomorphological features with unprecedented clarity (Chiverell et al., 2008;

Bimböse et al., 2010; Bell et al., 2012). TanDEM-X and TerraSAR-X have

meanwhile covered the entire Earth, which will result in a high-precision DEM

of Earth (ESA, 2012). A combination of optical and radar may also be bene-

ficial for optimised DEM compilation (Toutin, 2000; Karkee et al., 2006). It is

an open question whether this should best be done after or during the actual

DEM generation process. In the latter case, either the radar information can

be introduced into the matching process based on optical data, or the optical

data can be embedded in the unwrapping of the interferometric phase. Error

propagation and the derivation of changes in elevation constitute other fields

of further research concerning combined DEMs.

In short, multi-sensor remote sensing promises an increased gain in infor-

mation: concurrent analyses based on both optical and radar data can com-

plement one another with their respective strengths (e.g. Toutin, 1995, 2000;

Honikel, 1999, 2002; Weydahl, 1998; Jansa et al., 2002; Kääb, 2005a; Kääb et

al., 2005b; Richards, 2005; Karkee, 2006; Luckman et al., 2007; Waske, 2007;

Waske & van der Linden, 2008; Joughin et al., 2010a; Riedel et al., 2011) and

thereby further research on cold climate landscape evolution.
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1.8 Conclusions and perspectives

This thesis has assessed the potential of passive and active satellite remote

sensing for investigating cold climate environments. Three exemplary case

studies focused on process units and mass movements. They evidence the

need to choose different data and methods according to the particular research

questions, which is also highlighted by e.g. Brenning (2009), Brenning et

al. (2012), Marmion et al. (2008) and Mountrakis et al. (2011). Although

new sensors are customarily regarded as the frontline of research, the existing

data archives are underused and of scientific potential (Sansosti et al., 2010;

Debella-Gilo, 2011; Heid, 2011). The following conclusions can be drawn from

this work:

With respect to its theoretical background, remote sensing initially was a

method, but is gradually moving towards being regarded as an applied science.

Yet both the nature of remote sensing and of science can hardly be defined

unequivocally, all the more so in today’s high-tech scientific world, where for-

merly distinct categories and domains are moving closer together. This is

illustrated by the fact that two seemingly unrelated approaches from distinct

scientific disciplines, namely geomorphic systems theory and segment-based

image classification, show surprisingly many similarities.

As segment-based class descriptions go beyond spectral per-pixel analysis

and allow for the incorporation of DEM and other spatial information, they

are especially suited for three-dimensional applications in rugged terrain. The

identification of geomorphological process units, even with regard to their ac-

tivity status, becomes possible. The inaccessible upper alpine regions have also

been mapped for the first time. The necessity of four differently scaled levels in

the classification hierarchy shows the scale dependency of feature extraction.

The Reintal case study hence forms a valid approach for both the thematic

mapping of alpine landforms and the monitoring of accelerated landscape de-

velopment.
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It remains to be investigated to what extent a purely pixel-based classifi-

cation scheme may handle this data. Before 2008, available SAR resolutions

were too coarse for the landforms investigated, yet the new generation of radar

satellite sensors, e.g. Radarsat-2 and TerraSAR-X, should be considered along

with recent very high resolution optical data. The latest classficators should

be tested as well. The segmentation and classification hierarchy can be ex-

tended to other reseach questions, e.g. the space-time variations of landscape

and radiation or erosive processes. It may also benefit and assist studies on

glacier mass and sediment balance, to name just some examples of important

fields in (peri-)glacial research (cf. Bishop & Shroder Jr., 2004; Bishop et al.,

2012).

For the upper Chama river watershed, a regional debris flow hazard assess-

ment was lacking prior to the Venezuelan case study. In spite of the complex

terrain and certain model limitations, the chosen parameterisation in combina-

tion with the SRTM DEM proved to be suitable for assessing geomorphologic

processes at regional scales. New and enhanced DEMs, e.g. by TerraSAR-X

and TanDEM-X data, may facilitate the downscaling of the modelling ap-

proach to achieve a more specific investigation of selected sites of interest.

The Svalbard case study shows that 2-pass DInSAR makes it possible to

derive coherent glacier displacement rates which cover the entire Comfortless-

breen from the cirque area to its terminus. This fills an existing data gap and

allows us to deduce the surge stage of the glacier in 1996, which corresponds

to pre-surge conditions at the time, with surge initiation possibly detected

in the cirque regions. In general, InSAR better reflects slow displacement.

Faster movement or pronounced change is detectable by SAR feature offset

tracking or in the visible range of the electromagnetic spectrum, where opti-

cal image matching produces suitable results. These methods should be used

in a combined approach to assess other and also faster flowing glaciers than

Comfortlessbreen, also integrating recent interferometry-compliant data from

the new tandem missions with their shorter revisit times.
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The resulting conceptual surge model implies that the three surge stages

described in Sund et al. (2009) and Paper VII underlie the development of all

surge behaviour in both temperate and polythermal glaciers, thus synthesising

earlier surge theories. The wealth of archived and new, enhanced remote sens-

ing data in combination with remote sensing and photogrammetric analyses

(Joughin et al., 2010a; Eiken & Sund, 2012) make surge research at large scales

possible. Thus the validity of the model can be further investigated.

In short, segment-based classification is applicable to spatial mapping and

monitoring research questions in cold climate environments where the features

of interest can only be differentiated by combining different sources of informa-

tion. Process activity can also partially be observed this way, while potential

movements and pending hazards should rather be modelled. Ongoing move-

ment is detected at milli- to centimetre range by SAR interferometry, limited

only by the relative scarcety of coherent data. Yet existing archived remote

sensing data can be used retrospectively in order to fill data gaps in time series.

Several subjects and methods of research have been tackled in this thesis,

but they could be combined within one single study as well. For instance, Parry

(2011) applies geomorphological mapping for landslide, i.e. movement hazard

modelling and assessment. If glacial hazards and small-scale measurements

of movement were involved, too, all practical aspects of this thesis would be

covered. In general, theoretical considerations and hypothesis formation form

the starting point of any scientific research (Papers I, II). Terrain sounding

and mapping is a prerequisite in most research projects and can be aided

by space-borne data and segment-based classification (Papers III, IV). The

modelling of hazard potential (Paper V) and movement detection (Paper VI)

often accompany one another. In cold climate environments, geomorphological

(Papers II, III, IV, V) and glaciological (Papers VI, VII) spheres overlap and

are closely coupled, as the sediment cascade (Papers II, III, IV) initiates in the

glacial domain.
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To further the knowledge of glacial and geomorphological processes and

to assess to what extent global change is actually happening (cf. Humlum

et al., 2011), global monitoring and interdisciplinary research is needed which

unites both remote sensing and in-situ data analysis to be able to model future

trends. This will enhance the scientific understanding of cold climate landscape

evolution through ice and sediment dynamics.

The following perspectives for future work can be deduced from the work

presented in this thesis:

• If remote sensing really is being regarded as a science, then one should

not only invest in applied research, but also strengthen and develop its

theoretical foundations.

• The segment-based approach can deal with alpine terrain and landforms

and leads to sound results. The exact influences of image and DEM

data respectively should be assessed by analysing them individually. The

degree of transferability of both segmentation and classification schemes

to different study areas and kinds of data, e.g. high resolution optical and

radar, remains to be investigated, as well as the utility of new classifiers.

• For debris flow investigations, a downscaling of the approach presented

and the integration of other topographic parameters is suggested. An

enhancement via land cover classification with an emphasis on stream

channel domains should be considered.

• DInSAR can be used retrospectively in order to draw conclusions on ear-

lier glacier surge stages; analysis ought to be extended to other glaciers.

The results are also valuable with regard to new tandem missions which

allow for interferometric analyses again and thus for a better quantifi-

cation and understanding of temporal deformation patterns, which will

benefit further surge research.

• The combination of optical and radar data promises to provide an in-

crease in information. Further research into spectral and polarimetric



68 Introductory overview

analyses of combined optical and SAR data on a multitemporal and

multifrequency basis is needed.

• Scientific literature on glacier surges has been published for 50 years

now; scientific observations date back even further. Yet in spite of an

increasing number of surge studies especially in the last two decades,

the phenomenon has not been fully understood as yet; more work needs

to be done. Therefore, the investigation of the question of whether all

glacier surges could be explained by a single, unified surge theory as

presented in Paper VII necessarily reflects the knowledge about surges

which has been published to date - further corrections and amendments

are possible and probable. Besides, as not ALL glacier surges have been

studied yet, the initial question can, in fact, never be answered with an

unequivocal ‘yes’, at least not from a philosophy of science point of view:

even if all observations indicated one single surge mechanism, at least the

possibility of a so-far unobserved exception to the rule is always present

- the logical error of induction or the principle of empirical falsification

(Popper, 1989; Curran, 1987).
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für Dietrich Barsch. Heidelberger Geographische Arbeiten 104, 15-23.

d’Oleire-Oltmanns, S., Eisank, C., Drăguţ, L., Schrott, L., Marzolff, I. &
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Eisank, C., Drăguţ, L., Götz, J. & Blaschke, T. (2010): Developing a se-
mantic model of glacial landforms for object-based terrain classification -
the example of glacial cirques. In: Addink, E.A. & Van Coillie, F.M.B.
(eds.): GEOBIA 2010 - Geographic Object-Based Image Analysis. Ghent,
Belgium. ISPRS XXXVIII-4/C7, ISSN 1682-1777.

Eldhuset, K., Andersen, P.H., Hauge, S., Isaksson, E. & Weydahl, D.J. (2003):
ERS tandem InSAR processing for DEM generation, glacier motion estima-
tion and coherence analysis on Svalbard. International Journal of Remote
Sensing 24(7), 1415-1437.

Engeset, R.V. (1999): Comparison of annual changes in winter ERS-1 SAR im-
ages and glacier mass balance of Slakbreen, Svalbard. International Journal
of Remote Sensing 20(2), 259-271.



76 Introductory overview

Engeset, R.V. & Weydahl, D.J. (1998): Analysis of glaciers and geomorphology
on Svalbard using multitemporal ERS-1 SAR images. IEEE Transactions
on Geoscience and Remote Sensing 36(6), 1879-1887.

ERSDAC (2005): ASTER User’s guide - Part I. http://www.science.aster.ers
dac. or.jp/en/documnts/users guide/part1/pdf/Part1 4E.pdf, 04.11.2011.

ESA (2012): Earthnet Online: Missions. https://earth.esa.int/web/guest/
missions (12.09.2012).

Etzelmüller, B., Ødeg̊ard, R., Berthling, I., & Sollid, J. (2001): Terrain pa-
rameters and remote sensing data in the analysis of permafrost distribution
and periglacial processes: principles and examples from southern Norway.
Permafrost and Periglacial Processes 12, 79-92.

Evans, I.S. (2012): Geomorphometry and landform mapping: What is a land-
form? Geomorphology 137, 94-106.

Evans, C., Jones, R., Svalbe, I. & Berman, M. (2002): Segmenting Multispec-
tral Landsat TM Images into Field Units. IEEE Transactions on Geoscience
and Remote Sensing 40(5), 1054-1064.

Farr, T.G., Rosen, P.A., Caro, E., Crippen, R., Duren, R., Hensley, S., Ko-
brick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shi-
mada, J., Umland, J., Werner, M., Oskin, M., Burbank, D. & Alsdorf, D.
(2007): The Shuttle Radar Topography Mission. Reviews of Geophysics
45, RG2004, doi:10.1029/2005RG000183.

Fensholt, R. & Proud, S.R. (2012): Evaluation of Earth Observation based
global long term vegetation trends — Comparing GIMMS and MODIS
global NDVI time series. Remote Sensing of Environment 119, 131–147.

Ferentinou, M., Karymbalis, E., Charou, E. & Sakellariou, M. (2011): Using
self organising maps in applied geomorphology. In: Mwasiagi, J.I. (ed.):
Self organizing maps - applications and novel algorithm design. InTech,
Rijeka, 274-298.

Ferretti, A., Prati, C. & Rocca, F. (2001): Permanent scatterers in SAR inter-
ferometry. IEEE Transactions on Geoscience and Remote Sensing 39(1),
8–20.

Feyerabend, P. (19983): How to defend society against science. In: Klemke,
E.D., Hollinger, R., Rudge, D.W. & Kline, A.D. (eds.): Introductory read-
ings in the philosophy of science. Prometheus Books, Amherst.

Fowler, A.C. (1987): A theory of glacier surges. Journal of Geophysical Re-
search 92(B9), 9111-9120.

Fowler, A.C., Murray, T. & Ng, F.S.L. (2001): Thermally controlled glacier
surging. Journal of Glaciology 47(159), 527-538.

Friedl, M.A. & Brodley, C.E. (1997): Decision tree classification of land cover
from remotely sensed data. Remote Sensing of Environment 61(3), 399-409.

Frey, H. & Paul, F. (2012): On the suitability of the SRTM DEM and ASTER
GDEM for the compilation of topographic parameters in glacier inventories.



1.9. References 77

International Journal of Applied Earth Observation and Geoinformation 18,
480–490.

Fussell, J., Rundquist, D. & Harrington, J.A. (1986): On defining remote
sensing. Photogrammetric Engineering and Remote Sensing 52(9), 1507-
1511.

Fussell, J., Rundquist, D. & Harrington, J.A. (1987): On defining remote
sensing, a response. Photogrammetric Engineering and Remote Sensing
53(8), 1096.

Gabriel, A.K., Goldstein, R.M. & Zebker, H.A. (1989): Mapping small eleva-
tion changes over large areas: differential radar interferometry. Journal of
Geophysical Research 94(B7), 9183–9191.

Garćıa-Haro, F., Gilabert, M. & Meĺıa, J. (1996): Linear spectral mixture mo-
delling to estimate vegetation amount from optical spectral data. Interna-
tional Journal of Remote Sensing 17(17), 3373-3400.

Gardelle, J., Berthier, E. & Arnaud, Y. (2012): Impact of resolution and radar
penetration on glacier elevation changes computed from multi-temporal
DEMs. Journal of Glaciology 58, 419–422.

Gardner, A.S., Moholdt, G., Wouters, B., Wolken, G.J., Burgess, D.O., Sharp,
M.J., Cogley, J.G., Braun, C. & Labine, C. (2011): Sharply increased mass
loss from glaciers and ice caps in the Canadian Arctic Archipelago. Nature
473, 357-360.

Geist, T. & Stötter, J. (2010): Airborne laser scanning in glacier studies. In:
Pellikka, P. & Rees, W.G. (eds.): Remote sensing of glaciers. Techniques for
topographic, spatial and thematic mapping of glaciers. Taylor & Francis,
London, 179-194.

Gens, R. & van Genderen, J.L. (1996): SAR interferometry – issues, tech-
niques, applications. International Journal of Remote Sensing 17(10),
1803–1835.

Gilabert, M., Gonzáles-Piqueras, J., Garćıa-Haro, F., & Meĺıa, J. (2002): A
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Schneevoigt, N.J. & L. Schrott (2006):

Linking geomorphic systems theory and remote sensing.

A conceptual approach to Alpine landform detection

(Reintal, Bavarian Alps, Germany).

Geographica Helvetica 61(3): 181-190.

Although the global importance of high mountains is increasingly being recog-

nised, their geomorphic process system has not been completely understood

as yet. While systems theory and geographical information systems (GIS)

approaches have long been applied in the alpine geomorphology community,

the implementation of remote sensing software is just beginning. However,

object-oriented image analysis lends itself to alpine applications, as it unites

the benefits of remote sensing and GIS.

Taking the Reintal (Bavarian Alps) as an example, the systems approach

and the object-oriented classification of an Advanced Spaceborne Thermal

Emission and Reflection Radiometer (ASTER) satellite scene with digital ele-

vation information are parallelised. In a hierarchical, multiscale data segmen-
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tation and classification, Alpine landforms can be detected with high accuracy.

Hence remote sensing techniques represent a valuable tool for geomorphologic

research in high mountains, especially in otherwise inaccessible terrain.

3.1 Introduction

Mountain regions have moved into the focus of scientific attention: chapter 13

of the Agenda 21 is dedicated to the world´s mountains (United Nations, 1992;

Ives et al., 1997), 2002 was declared ‘International Year of the Mountain’ by

the United Nations (Ives & Messerli, 2001), and the German Geographers Day

2003 had as its motto ‘Alpine World - Mountain World: Islands, Bridges, Bor-

ders’. The sustainable preservation of alpine regions is a global issue, because a

tenth of the world´s population lives in mountain regions, while a much larger

number indirectly depend on mountain resources (United Nations, 1992).

Geomorphologic activity in alpine regions is significantly increased when

compared to their forelands. Therefore, mountain environments display quick

changefulness in time and space (Caine, 1974) and hence react very sensitively

to global change (Kääb, 2002). However, scientific knowledge about their

geomorphologic process structure remains sketchy, especially quantitatively.

Similarly, the question of potentially mobilisable sediments in the upper regions

of high mountain catchments still calls for an answer (Schrott et al., 2002,

2003). As upper areas, for the most part, cannot be observed from the ground,

remote sensing applications lend themselves to closing this gap which impedes

a full understanding of the alpine sediment cascade.

While research on high mountain geomorphology often uses GIS coupled

with remote sensing data, only few genuine remote sensing techniques are

employed. Difficulties in the accurate designation of high mountain landforms

add to the general intricacy of handling alpine data in remote sensing. Yet

object-oriented classification constitutes a new and promising approach which

combines the advantages of GIS and remote sensing.
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This paper pursues the following objectives:

• To convey the theoretical and conceptual background of a study on

object-oriented classification of geomorphological landforms.

• To link geomorphic systems theory and object-oriented remote sensing in

order to draw a parallel between those two approaches from completely

different scientific disciplines, thus showing how they complement each

other.

• To illustrate the potential of remote sensing as a tool in high moun-

tain geomorphology within the context of systems approaches to alpine

sediment fluxes and deposits.

3.2 Allocation of landforms in alpine regions

In order to detect landforms by remote sensing, a compilation of their distinc-

tive features is required. The better the knowledge about the target classes

(Tab. 3.1), the more possibilities arise to differentiate between them in im-

age data (Schneevoigt et al., 2008). Landforms are systematically distributed

in landscape, but varying geomorphic process activity results in a patchwork

structure of landforms (Fig. 3.1). Activity status and the processes involved

play an important role in their space- and airborne detection: texture and

spectral characteristics of individual landforms can be very heterogeneous.

Table 3.1: Target Groups of Alpine Landform Classification

crest regions rockwalls valley bottom

cirques &               

hanging valleys

avalanche &             

debris flow tracks

avalanche &           

debris flow tracks

avalanche &           

debris flow deposits

less inclined                          

bare rock                    

vegetation covered 

slopes

talus sheets                          

& cones

rockfall partly/                

fully overgrown

free faces free faces alluvial fans rockfall deposits

snow & ice loose sediments floodplains moraine deposits
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3.2.1 Target landforms

A landform is defined by its particular shape. However, strict delineations of

landforms rarely exist in landscape, as many forms show no clear boundaries

(Fig. 3.1). Moreover, landforms often form part of other landforms - scale and

specific objectives determine where to set a division (Mark & Smith, 2004).

Depending on the geographic situation, age, maturity and markedness of a

landform, its geomorphometry varies enormously (Dikau, 1994; Rasemann et

al., 2004).

Detection of landforms can also be hindered by the fact that many land-

forms originate from interacting processes and display complex assemblages

instead of clear features (Fig. 3.1). Besides, equifinality blurs underlying

processes: different processes can produce the same landform shapes, which

however should bear different names according to the building process. For

instance, a strict separation of avalanche from debris flow deposits is neither

always possible in situ (Fig. 3.1) nor hence in a satellite scene. As partially

interfingered deposits are frequent, form characteristics deviate from the ideal.

This “fuzzy nature of most high-mountain terrain features” (Kääb, 2002: 50)

makes it neccessary to consider context to achieve sound classifications.

Geomorphological landforms result from spatially distributed and inter-

linked geomorphologic processes, which consecutively model the landscape by

filling and emptying different types of stores. Monocausal, linear process-form

relations cannot be established because of interactions which vary spatially and

temporally. As a result, alpine sediment transport, storage and their proces-

sual links need further investigation to enable us to fully understand landform

development in high mountains (Jordan & Slaymaker, 1991; Haeberli, 1996;

Schrott et al., 2002, 2003; Krautblatter & Moser, 2005; Becht et al., 2005).

Remote sensing applications also benefit from increased knowledge relating

to target classes (Tab. 3.1), as more possibilities of feature analysis arise in

classification hierarchies.



3.2. Allocation of landforms in alpine regions 129

rockfall

free faces

Partnach creek

floodplain

talus cone

Steingerümpel

rockfall 
tear-off 
niche

Hintere Gumpe

talus cone
alluvial fan

alluvial fan coalescing 
talus cones

talus conedeb
ris

 flo
w

talus s
heet

talus cone

alluvial fan

talus 
sheettalus s

heet

talus s
he

et
de

br
is 

flo
w

debr
is 

flo
w

debr
is 

flo
w

avalanche               track
alluvial fan

slopes 
covered with 
vegetation

Figure 3.1: Alpine Landform Assemblage in the Reintal

Photo by L. Schrott, 2001, overlaid with landform denominations
around Hintere Gumpe floodplain, view facing south-east.

The difficulty in deciphering sediment flow and storage lies in their sophis-

tication: a focus on single events or forms ignores greater context (Fig. 3.1),

whereas a large-scale perspective cannot fully grasp the complexity of land-

form assemblages. A systemic approximation unites those antipodes: on the

one hand, it facilitates the delimitation of single components by making it pos-

sible to zoom into systemic details. On the other hand, its holistic approach

places all components into subsystems and these into greater superordinate

systems, thus restoring the entirety of landscape.

Hence systems theory, in conjunction with object-oriented remote sensing,

helps to overcome the scale problematics in space. As the temporal aspect of

remote sensing is limited, the following section focuses on the micro time scale

of the present according to Slaymaker (1991).
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3.2.2 Systemic approach to sediment fluxes and deposits

With the onset of process-orientated geomorphology, Strahler (1952) stresses

the need for quantitative process monitoring to comprehend landform evolu-

tion. He adapts the concept of open systems to geomorphology: in- and output

of energy and matter characterise these flow systems striving for a steady state,

i.e. an equilibrium of transfers in the system as a whole. Hack (1960) refers to

the dynamic relationships between process components: as soon as a system

contains negative feedback loops, it shows a tendency to establish a dynamic

equilibrium, because hence a capability of compensation is given. Within a

certain expanse frame specific to the form and its given surroundings, land-

forms thus develop to a state of maturity, which is constantly destroyed and

subsequently reattained.

Chorley (1962) and Chorley & Kennedy (1971) further promote general

systems theory, focusing on structure or inner complexity: they perceive en-

vironment as a hierarchy of organised and interlinked subsystems. Dynamic

cascading systems prevail in mountainous regions. Ahnert (1994) remarks

that not all processes involved work in a downslope direction like a cascade

and proposes the term ‘process system’. Yet ‘sediment cascade’ has gained

general acceptance for designating alpine material transport. It is defined as

a structure in which the output of one subsystem forms the input of another

(Fig. 3.2). In between subsystems, ‘throughput’ or mere transmission also

occurs. Likewise, energy and matter can be transferred into stores and thus

be withheld from the cascade (Chorley & Kennedy, 1971).

Any movement is determined by regulators at the interfaces between pro-

cesses and forms (Fig. 3.2), i.e. by the disposition, presence or absence of

geomorphological variables (e.g. infiltration capacity, storage potential, slope).

Internal thresholds of the individual variables interfere with external thresholds

of other regulators in the same or surrounding subsystems. Together with their

discontinuity in time and space, allowing for reaction intervals and different
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reaction patterns of adjacent forms, this explains the complexity and nonlin-

earity of alpine systems. Generally speaking, high rates of energy transfer

result in rapid sediment turnover in alpine environments (Chorley & Kennedy,

1971; Caine, 1974).

Despite its benefits, the systems approach initially did not gain general

acceptance on account of limitations in quantification and modelling. With

the advent of more powerful computer systems in the 1990s, paradigms in

geomorphology changed: with the increasing improvement of memory space,

the systems approach regained vitality. Recent research on the coupling of

sediment transport systems increasingly captures qualitative and quantitative

simulation of the sediment cascade in (peri-)glacial environments, e.g. Haeberli

(1996), Ballantyne (2002), Otto & Dikau (2004), Becht et al. (2005), Zemp et

al. (2005) and Rothenbühler (2006).

3.2.3 The Alpine sediment cascade of the Reintal

The project ‘SEDiment cascades in Alpine Geosystems’ (’Sedimentkaskaden

in Alpinen Geosystemen’ - SEDAG) models the Alpine sediment cascade, in-

tegrating qualitative and quantitative sediment turnover (Unbenannt, 2002;

Schrott et al., 2002, 2003; Becht et al., 2005; Krautblatter & Moser, 2005;

Schmidt & Morche, 2006). The identification of different storage types (Tab.

3.1) and an analysis of their present-day spatial pattern forms part of this. Re-

mote sensing hence represents a helpful tool, especially considering the higher,

inaccessible parts of the valley (Fig. 3.1; Schneevoigt et al., 2008).

The conceptional Alpine sediment cascade (Fig. 3.2) by Schrott et al.

(2002) is based on systems theory, synthesising Chorley & Kennedy´s hierar-

chical cascading systems concept (1971) and Caine´s alpine sediment transfer

model (1974). With symbols after Chorley & Kennedy (1971), it shows the

spatial distribution of storage types in the Reintal in three subsystems: I

(free faces and cirques), II (slopes below rockwalls) and III (valley floor and
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Figure 3.2: Conceptual Alpine Sediment Cascade of the Reintal
Symbols after Chorley & Kennedy´s (1971) systems representations,
taken from Schrott et al. (2002).

channel). These subsystems form a cascade linked by processes (rockfalls,

avalanches, debris flow, sheetwash and fluvial processes) in the direction of

drop. Today, 79% of the sediment stores representing geomorphic process

units in the Reintal are inactive, overgrown (Fig. 3.1) and decoupled from the

cascade system.

As hardly any sediment leaves the subcatchment, the Reintal equals a

nearly closed sediment system (Unbenannt, 2002). This is possible because

karst limestone allows for considerable subterranean drainage, while two rock-

falls and a major cirque threshold form natural dams trapping sediment in

natural sinks (Schrott et al., 2002). An imbalance in favour of input neither

allows the onset of a steady state nor of a general dynamic equilibrium. It

leads to a reinforced building up of sediment stores, exemplified in very high

mean sedimentation rates between 18 and 27 mm a−1 (Schrott et al., 2002,

2006). These stores form buffers which can trap material for centuries and

millennia (Jordan & Slaymaker, 1991). They thus introduce major temporal

variations into the entire system, leading to the sediment delivery problem.

The heterogeneity of alpine regions and recent climate change add to the dif-
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ficulty of designing universally applicable schemes of sediment fluxes. Thus

overall, quantitative models of sediment cascades fully describing landscape

development are still lacking.

3.3 Optical remote sensing in alpine

geomorphology

High mountains must be further monitored in order to better understand their

complex material flow systems engendering high landscape variability and nat-

ural hazards (Kääb et al., 2005). To that effect, remote sensing constitutes an

adequate tool, as it permits global, regular coverage of remote areas at a wide

range of scales. However, alpine terrain poses problems for remote sensing:

extreme altitudinal differences within small horizontal intervals may result in

offsets of several pixels or hundreds of meters if scanned at disadvantageous

angles. Illumination and shading vary enormously because of relief influences.

Nonetheless, high mountain geomorphologists increasingly recognise the po-

tential of remote sensing applications for their interests (Bishop & Shroder Jr.,

2004). The long-distance perspective facilitates pattern detection and monitor-

ing of otherwise inaccessible landscape sections: remotely sensed imagery and

digital elevation models (DEM) complement one another for geomorphological

analyses based on automated applications from the remote sensing community

(Giles & Franklin, 1998).

3.3.1 GIS versus remote sensing

According to Bishop & Shroder Jr. (2004), GIS is favoured in alpine ge-

omorphology because spatial analysis in the form of statistical arithmetics,

neighbourhood relationships, regional clusters, continuities and discontinuities

can be used to differentiate patterns in landscape. While first order descriptive
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statistics comprise calculations such as minima, maxima, means or standard

deviations, second order statistics imply spatial texture analysis. First order

calculations per cell have belonged to geomorphic standard repertoire for long

now, applied for an automated extraction and frequency analysis of geomor-

phometric mountain properties such as slope, aspect and curvature (Bishop

& Shroder Jr., 2004). Second order digital terrain analyses have only been

operationalised in GIS environments of late, e.g. (semi-) empirical GIS mod-

elling. Several studies confirm the potential of optical imagery and GIS for the

assessment, modeling and monitoring of geomorphic forms and processes (e.g.

McDermid & Franklin, 1994; Walsh et al., 1998; Etzelmüller et al., 2001). The

same goes for glacier observation (e.g. Paul et al., 2002; Huggel et al., 2004).

Whereas GIS approaches to analyse remote sensing data in general are

manifold, studies employing remote sensing methodology occur less frequently

in the field of high mountain geomorphology. Snow and ice monitoring repre-

sents the foremost research topic when it comes to genuine remote sensing, as

field measurements quickly reach their limits here. For more than two decades

now, the full range of possibilities concerning optical satellite data on snow

applications has been exploited (e.g. Hall & Martinec, 1986; Schaper, 2000).

Due to its relative independence from weather conditions, radar data is also

employed (e.g. Haefner et al., 2000). As foreshortening, layover and shadow

effects exorbitantly increase, stereo pairs of radar images are often dealt with

in alpine terrain.

Rock glaciers and debris-covered glaciers are also increasingly investigated

by remote sensing (Kääb et al., 2003; Paul, 2000; Paul et al., 2004). The

Global Land Ice Measurements from Space (GLIMS) programme represents

a scientific project centred on the ASTER sensor, scenes of which also form

the basis of this study. For climate monitoring, an inventory of global land-

ice extension is thus being developed by a worldwide consortium combining

remote sensing and GIS (Schaper, 2000; Kääb, 2002, Kääb et al., 2003). Here

a trend towards GIS integration into remote sensing applications is emerging.
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Recent developments lead to a coalescence of GIS and remote sensing: cur-

rent object-oriented software unites remote sensing tools with with first and

second order GIS statistics into one desktop environment. Remote sensing im-

agery can be interpreted in a pixel- or in an object-oriented mode. While the

former analyses each single pixel individually according to its spectral charac-

teristics, the latter also considers the neighbourhood of a pixel. It assumes that

adjacent pixels showing certain similarities belong to one group, so that the

entire scene is divided into image segments (Fig. 3.3) before classifying it in

a second but separate step. This method produces more homogeneous results

through spectral generalisation, thus smoothing out irregular pixel-dominated

patterns and creating more realistic forms (Baatz & Schäpe, 2000; Blaschke &

Hay, 2001; Koch et al., 2003).

3.3.2 Segmenting images into objects

The idea of image segmentation arose in the 1970s. A considerable number

of algorithms have been developed since, but they only became operational

with the improved computer systems of the 1990s. Segmentation techniques

are used to deal with intensified in-class variability brought forth by increasing

spectral and spatial image resolution (Baatz & Schäpe, 2000; Schiewe & Tufte,

2002). Object-orientation implies two steps: first, the data set is split up into

image objects (Fig. 3.3). Only afterwards can it be classified by assigning the

objects to different classes or themes (Fig. 3.3). Supervised classification relies

on interaction with an operator. With a priori terrain knowledge, the latter

has to select representative areas or features of the different target classes to

be detected in the scene (Tab. 3.1). This allows a focus on specific classes of

interest, also in the high mountain context. Regarding alpine relief, Giles &

Franklin (1998) classify slope units in a moderate- to high-relief area in south-

west Canada. The studies show that prior image segmentation and assemblage

of specific geomorphic signatures for landform discrimination produces sound

results.
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data base

workflow in object-oriented classification

layer creation segmentation
classification

hierarchy
classification

multiscalar project 

L1   land cover

L4   strata mask

L3   hollow forms 

L2   landforms
landform

classification

strata mask

accuracy
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L2
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Figure 3.3: Input and Steps of Object-oriented Classification.

Top: Input data for object-oriented analysis: ASTER satellite scene
(15 m resolution resampled to 5 m), DEM (5 m resolution) and five
DEM derivatives (5 m resolution). Bottom left: Segmentation on four
hierarchical levels L1 to L4. Bottom right: Classifications of different
land cover features on four levels L1 to L4.
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The spectral properties of image objects are addressed by mean values,

standard deviations and ratios of the incorporated pixels. Image objects also

comprise geometric features, as image objects vary in shape and extent (Fig.

3.3, Bottom left). Neighbourhood relationships, sub- and superordinations,

morphometric and class-related features can be analysed as well (Blaschke &

Hay, 2001; Baatz & Schäpe, 2000; Benz et al., 2004). As object-based class

descriptions hence reach far beyond spectral information, they are well suited

for three-dimensional alpine applications, where spectral input alone does not

suffice (Giles & Franklin 1998; Schneevoigt et al., 2008).

The object-oriented software eCognition segments an image in a knowledge

free way via region-growing, an automatized heuristic optimization method: a

‘composition of homogeneity’ criterion assesses potential increase of spectral

heterogeneity in a merge weighed by the size of two pixels or segments consid-

ered. Next to this colour criterion based on spectral information alone, shape

parameters can be used to correct highly textured data which otherwise would

produce frayed and distorted segments. This constitutes an advantage espe-

cially in high mountain data. Yet it must be applied carefully, as it implies

an arbitrary divergence from the given spectral information based on pure

arithmetics (Baatz & Schäpe, 2000).

From the colour and shape input, the region-growing algorithm produces

image objects with a minimized average heterogeneity in any desired resolution

or scale. However, vital information for the desired classes often cannot be dis-

played in one single resolution, while segmentation must be applied to an entire

image with one single scale parameter. Multiresolution segmentation allows

a simultaneous depiction of several image levels segmented at different scales

(Benz et al., 2004; Blaschke & Hay, 2001; Schiewe & Tufte, 2002). For example,

a small scale parameter best conveys the heterogeneous Reintal ground surface,

whereas the delineation of a mask encompassing three altitudinal subsystems
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(Figs. 3.2, 3.4) implies a very high scale parameter. The final classification

should be executed at an intermediate level, not too detailed but showing also

relatively small landforms.

This meets the demand for hierarchical and scale dependent remote sens-

ing classifications. Dikau (1994) states that the hierarchical organisation of

topography has not yet been taken appropriately into account in studies on

mountain geomorphology. Multiscalar approaches can correct for this defect

(Figs. 3.3, 3.4).

3.3.3 Hierarchical landform classification

An ASTER satellite scene, a DEM (5 m resolution, generated in the ArcInfo

spline algorithm Topogrid from data by the Bavarian Geodetic Survey) and its

derivatives were assessed at four levels ranging from very small spectral units to

the altitudinal strata mask (Fig. 3.3). The finest level L1 was segmented based

on spectral (colour) information only, while the coarsest layer, L4, represents

a strata mask made in a separate object-oriented project.

All segmented levels were then classified individually (see Schneevoigt et

al., 2010 for details) with a knowledge base containing features immanent in a

class itself and inherited ones passed on by parent classes in the classification

hierarchy. Thus, working on multiscalar levels focussing on differently sized

landform features imitates the systems approach, allowing for detailed and

general views at once (Figs. 3.2, 3.3). The L1 classification renders ground

land cover, level L3 eastern and western walls of cirques and hanging valleys,

all of which leads to a sound L2 landform classification shown in Figure 3.4

(see Schneevoigt et al., 2008, 2010 for more information). The good fit of

the results to ground truth is demonstrated in Schneevoigt et al. (2008).

Detection limitations are reached with landforms such as moraine and rockfall

deposits (which have been overprinted by more recent processes for centuries

or millennia) and some complex alluvial fans. The majority of classes such as



3.3. Optical remote sensing in alpine geomorphology 139

186 Geographica Helvetica  Jg. 61  2006/Heft 3 Linking geomorphic systems theory and remote sensing  Nora Jennifer Schneevoigt, Lothar Schrott 187

 
S

pe
ct

ra
l l

an
d 

co
ve

r c
la

ss
ifi

ca
tio

n 
at

 le
ve

l L
1

H
ol

lo
w

 fo
rm

s 
in

 th
e 

cr
es

t r
eg

io
ns

 a
t l

ev
el

 L
3

A
lti

tu
di

na
l s

tra
ta

 m
as

k 
at

 le
ve

l L
4

La
nd

fo
rm

 c
la

ss
ifi

ca
tio

n 
at

 le
ve

l L
2

K
ilo

m
et

er
s

0.
5

0
0.

5

ba
re

 ro
ck

 <
50

°
ba

re
 ro

ck
 >

50
°

ci
rq

ue
 w

al
l E

 <
50

°
ci

rq
ue

 w
al

l E
 >

50
°

ci
rq

ue
 w

al
l W

 <
50

°
ci

rq
ue

 w
al

l W
 >

50
°

fin
e 

se
di

m
en

ts
co

ar
se

 s
ed

im
en

ts

gr
as

s 
co

ve
re

d 
sl

op
es

sh
ru

b 
co

ve
re

d 
sl

op
es

tre
e 

co
ve

re
d 

sl
op

es
ch

an
ne

l

ve
ge

ta
tio

n 
co

ve
re

d 
ch

an
ne

l
de

br
is

/g
ra

ss
 c

ov
er

ed
 ta

lu
s

sh
ru

b 
co

ve
re

d 
ta

lu
s

tre
e 

co
ve

re
d 

ta
lu

s

al
lu

vi
al

 fa
n

flo
od

pl
ai

n
ro

ck
fa

ll d
ep

os
it

sn
ow

 a
nd

 ic
e

52
51

52
52

52
53

52
54

44
26

44
27

44
28

44
29

44
30

44
31

Fi
g.

 5
: O

bj
ec

t-
or

ie
nt

ed
 c

la
ss

ifi
ca

ti
on

 r
es

ul
ts

: s
pe

ct
ra

l l
an

d 
co

ve
r 

cl
as

si
fic

at
io

n 
at

 le
ve

l L
1,

 la
nd

fo
rm

 c
la

ss
ifi

ca
ti

on
 a

t 
le

ve
l L

2,
 h

ol
lo

w
 f

or
m

s 
in

 t
he

 c
re

st
 r

eg
io

ns
 

at
 le

ve
l L

3,
 a

lt
it

ud
in

al
 s

tr
at

a 
m

as
k 

at
 le

ve
l L

4
E

rg
eb

ni
ss

e 
de

r 
ob

je
kt

or
ie

nt
ie

rt
en

 K
la

ss
ifi

ka
tio

n:
 s

pe
kt

ra
le

 O
be

rfl
äc

he
n-

K
la

ss
ifi

ka
tio

n 
au

f E
be

ne
 L

1,
 G

eo
re

lie
ff

or
m

en
-K

la
ss

ifi
ka

tio
n 

au
f E

be
ne

 L
2,

 H
oh

lf
or

m
en

 
de

r 
G

ip
fe

lr
eg

io
ne

n 
au

f 
E

be
ne

 L
3,

 H
öh

en
st

uf
en

-M
as

ke
 a

uf
 E

be
ne

 L
4

R
és

ul
ta

ts
 d

e 
la

 c
la

ss
ifi

ca
tio

n:
 c

la
ss

ifi
ca

tio
n 

sp
ec

tr
al

e 
de

 la
 c

ou
ve

rt
ur

e 
te

rr
es

tr
e 

au
 n

iv
ea

u 
L

1,
 c

la
ss

ifi
ca

tio
n 

de
s 

fo
rm

es
 d

u 
re

lie
f 

au
 n

iv
ea

u 
L

2,
 d

ép
re

ss
io

ns
 d

an
s 

la
 

ré
gi

on
 d

es
 c

rê
te

s 
au

 n
iv

ea
u 

L
3,

 m
as

qu
e 

de
s 

st
ra

te
s 

ve
rt

ic
al

es
 a

u 
ni

ve
au

 L
4

Figure 3.4: Object-oriented Classification Results on four Levels
Spectral land cover classification on level L1, landform classification on
level L2, hollow forms in the crest regions on level L3, altitudinal strata
mask on level L4.
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cirques, rockwalls, floodplains, fine and coarse sediments were well assessed,

and some could even be differentiated more than previously expected, e.g. the

vegetation covered slopes and talus cover, leading to twenty final thematic

landform classes (Fig. 3.4).

3.4 Conclusions

Remote sensing applications with geometrically medium-resolved, multispec-

tral image data allow the classification of Alpine landforms or geomorphic

process units to a great extent, even when dealing with such small landscape

units as on the valley bottom of the Reintal (Fig. 3.1). Thus, remote sensing

constitutes a valuable tool in the elaboration of the Alpine sediment cascade,

particularly on account of its high detection capacity in otherwise inaccessi-

ble crest regions and rockwalls. Object-oriented classification rules should be

transferable to other regions, as they depend less on reflection values, atmo-

spheric conditions and arbitrarily selected training areas than pixel-based ones

(Blaschke et al., 2002). Application of the approach to different study areas

will show whether or not it prepares the ground for a semi-automatic landform

classification scheme.
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This study investigates the suitability of remote sensing for detecting rock and

sediment storage areas in the Reintal subcatchment (17 km2) east of Zugspitze,

Germany. First, characteristic features of Alpine landforms such as curvature,

process coupling or type of deposited sediment were compiled. Based on this,

a landform classification was performed: topographical information from a

digital elevation model (DEM) and spectral data from an Advanced Space-

borne Thermal Emission and Reflection Radiometer (ASTER) satellite scene

were classified using a multiscale, object-oriented approach comprising four

differently scaled levels. The complex decision-tree hierarchy is based for the

most part on fuzzy membership functions and to a lesser extent on the hard

nearest neighbour classifier. The results show that both an identification of
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the present-day pattern of storage types and the classification of geomorpho-

logic units, also with regard to their activity status and complexity, is largely

possible. Moreover, the methodology developed in this study permits a first

assessment of the upper regions of the study area which could not be included

in any previous survey because of their inaccessibility. Coherent landform clas-

sification using remote sensing methods, as developed in this study, constitutes

a promising scientific approach, especially with regard to the enhanced spatial

and spectral resolution of modern satellite systems.

4.1 Introduction

Whereas many high alpine areas are only accessible to a certain extent, re-

motely sensed imagery is available for most regions in the world. More-

over, mapping with remote sensing data is relatively cost and time efficient

(Konecny, 1999). However, high mountain regions represent difficult terrain

for remote sensing applications: extreme altitudinal differences occur within

small horizontal intervals and may result in offsets of several pixels or hundreds

of meters if scanned at disadvantageous angles. Illumination varies enormously

because of relief influences. For instance, dark shadows hamper more than half

of the imagery evaluated for this work.

Studies using remote sensing applications and focussing on high mountain

landforms are rare. Etzelmüller et al. (2001) and Bartsch et al. (2002), for

example, try to identify geomorphological process units by integrating remote

sensing information into a geographic information system (GIS) environment.

Snow and glacier investigations rely more often on remote sensing alone (Hall

and Martinec, 1986; Hall et al., 1995; Haefner et al., 1997; Rango, 1999;

Paul, 2000), but overlaps with GIS applications are also frequent in this field

(Jansa et al., 2002; Paul et al., 2002, 2004; Kääb et al., 2002, 2003a,b). Yet

the relatively recent trend of image segmentation and object-oriented image

interpretation allows new ways of linking remote sensing and GIS. It has found
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its way into high mountain applications, e.g. with Giles (1998) and Giles and

Franklin (1998) classifying geomorphological slope units or Blaschke (2000)

extracting image objects for monitoring purposes.

At present, sensor development is constantly bringing forth improvements

in spatial and spectral resolution, which leads to increased spectral heterogene-

ity within target classes. Conventional classification per pixel forms clusters

based on spectral similarities alone and can result in many dispersed classes

(salt-and-pepper effect) which often do not grasp the essence of the information

inherent in the scene (Kartikeyan et al., 1998).

In contrast, image segmentation prior to classification helps to manage in-

creased geometric resolution by merging adjacent pixels based on grey value

homogeneity and form parameters. It assumes that proximate pixels with cer-

tain similarities represent the same kind of surface or feature on the ground.

Thus the entire image is divided into spectrally akin objects which vary in

shape and extent. Simultaneously, object outlines or borders represent tran-

sitions between heterogeneous surfaces. Consequently, the spectral generalisa-

tion inherent in pixel-mergers counteracts the salt-and-pepper effect by pro-

ducing more homogeneous results. This is why segmentation techniques are

increasingly used to deal with intensified in-class variability (Kartikeyan et al.,

1998; Hill, 1999; Rodŕıguez-Yi et al., 2000; Blaschke et al., 2002; Neubert and

Meinel, 2002; Schiewe and Tufte, 2002; Koch et al., 2003; Schneevoigt and

Schrott, 2006).

This study presents a coherent landform classification with complete spatial

coverage of the study area from DEM information and a satellite scene. It

forms part of a set of projects called ‘Sediment Cascades in Alpine Geosystems’

(SEDAG), which are jointly aiming at developing a model to describe landform

evolution in high mountain regions. At present, the Universities of Eichstätt,

Erlangen, Halle and Bonn (all in Germany) are cooperating within SEDAG.

The database gathered since 2000 gave rise to the idea of using that knowledge

to test remote sensing methods for sediment storage detection.
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The first part of this paper describes the exact spatial setting and processual

order of Alpine storage types and gives a general overview of characteristical

landform features derived from literature and field data. This information is

utilised in a landform classification of the Reintal based on previously seg-

mented image data (Fig. 4.1). These objectives are pursued in the following:

• to develop an inventory of landforms present in the Reintal, a prerequisite

for the remote sensing applications,

• to find out which landforms are detectable by a semiautomatic classifi-

cation scheme,

• to classify alpine landforms even in inaccessible crest regions,

• to show the potential of object-oriented image analysis as an efficient

mapping tool.

4.2 Geological and geomorphological settings of

the study area

The Reintal valley is situated in the Bavarian Alps, a part of the Northern

Calcareous Alps (Fig. 4.2A), where the valley extends in an east-westerly di-

rection along the Austro-German border. Excluding the Zugspitzplatt plateau

to the west, a subcatchment of 17 km2 was considered in this study (Fig.

4.2B), mostly consisting of dolomitized limestone (Wettersteinkalk). The rel-

ative relief within the high mountainous study area amounts to 1692 m from

a minimum of 1052 m asl at the valley entrance to a maximum of 2744 m asl

(Fig. 4.2B).

Due to former glacial erosion, the Reintal is divided into three vertical

zones, namely upper regions (with cirques and hanging valleys), oversteepened

rockwalls and a broadened valley bottom. However, with the climatic snow-

line lying at around 2700 m asl, no glaciers remain today. Vegetation belts
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Figure 4.1: Representation of the Workflow followed in this
Study

stretch from upper montane to nival zone; the Alpine tree line is located at

around 1700 m. Both the precipitous rock faces and extensive tree cover raise

problems for image segmentation and subsequent classification.

The landforms in the valley bottom, covering an area of 5.9 km length and

maximum 700 m width, were mapped by Schrott et al. (2002) (for details

see Fig. 4.3), with a terminology following Ballantyne and Harris (1994). The

spatial distribution of these sediment storage types (Figs. 3.1, 4.3) exemplarily

illustrates the conditions in a high mountain drainage basin: typically, talus

sheets and cones dominate the overall picture with 41% and 26% of the valley
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floor respectively. Rock falls (11%), alluvial fans (9%), floodplains and fluvial

deposits (6%) cover another quarter of that area. The share of debris cones

amounts to 5% and of avalanche deposits to only 1%, however the latter par-

tially overprint the former, larger storage types. Thus the actual occurrence

of debris and avalanche deposits in situ exceeds the figures given, while the

other mapped landforms to some extent incorporate such deposits (Schrott et

al., 2002). Manual mapping of the rockwalls and upper regions in the field was

impossible due to the inaccessibility of the higher regions. However, the most

important landforms in terms of area coverage are free faces, hanging valleys

and cirques in the upper regions of the Reintal.

4.3 Methods and techniques

In order to distinguish landforms by remote sensing techniques, a compilation

of their distinctive features is necessary. The better the knowledge basis con-

cerning the target classes, the more possibilities arise to extract them from

satellite and DEM data (Figs. 4.1, 4.2). Therefore, the first step within this

study was to assemble the characteristics of the different landforms occurring

in the Reintal (see Section 4.3.1), which also facilitates the understanding of

their systematic distribution in landscape. As shown in Fig. 4.1, information

from an ASTER scene and a DEM were subsequently examined and classified

in an object-oriented approach (see Section 4.3.2) on four different scales with

varying foci.

4.3.1 Alpine landform characteristics

According to Mark and Smith (2004), a landform is a ”part of the Earth’s

surface that is characteristically apprehended as a unitary entity because of its

particular shape” (p. 78). Geomorphological landforms result from spatially

distributed and interlinked geomorphological processes, which are consecu-
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Figure 4.2: Reintal valley Drape and Location

(A) Geographical location of the Reintal study area in the Northern
Calcareous Alps. (B) The 2001 ASTER scene in RGB 3-1-2 draped over
the DEM (view from north). The valley stretches in an east-westerly
direction along the Austro-German border, which runs on the southern
valley crest.

tively modelling landscape by filling and emptying different types of sediment

stores (Dikau, 1996; Schrott et al., 2003). As many forms are vague or graded,

they do not display clear boundaries in landscape. Moreover, landforms often

form part of other landforms — scale and given interest determine where a

spectator would set a division (Mark and Smith, 2004). Depending on geo-

graphic situation, age, maturity and markedness of a landform, its geomor-

phometry varies also (Dikau, 1994; Rasemann et al., 2004). Monocausal linear

process-form relations cannot be established because of mutual influences and

interactions which vary spatially and temporally (Schrott et al., 2003). How-

ever, target classes must be defined for classification, so the characteristic

features of the landforms occurring in the Reintal (Fig. 3.1) are described in

the following (see Tabs. 4.1 and 4.2).
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Glacial erosion has led to an extreme oversteepening of the rockwalls, espe-

cially obvious in the almost vertical free faces of the southern valley side (Figs.

1.3, 3.1), leading to a mean slope angle of 41.2° in the subcatchment (Unbe-

nannt, 2002). Rapp (1960) and Bartsch et al. (2002) delimit steep slopes to

values above 40°. In the classification hierarchy, a fuzzy threshold from 45°

to 55° served best for separating free faces from steep talus and less inclined

rockwalls by the DEM slope criterion.

The delimiting upper crests as well as the bottoms of cirques and hanging

valleys, snow-covered for most of the year, can be easily discerned in aerial

and satellite images (Fig. 4.2B). However, remote sensing applications hardly

detect them from spectra or DEM because of relatively smooth transitions

stretching over several pixels. Five hanging valleys and three cirques were

detectable by aspect and height in the DEM in the Reintal, though. In ac-

cordance with the valley bottom, the threshold of the different hollow forms

lowers from c. 1900 m asl in the west to c. 1600 m asl in the east (Fig. 4.2B),

values circumscribing them in the DEM.

As typical, the talus sheets and cones in the Reintal are coupled with steep

slopes (Fig. 3.1). Yet they show internal sorting, which is seldom found and

implies that not only gravitative fall must have contributed to talus forma-

tion, but also to a large extent sheetwash and wet snow avalanches (Schrott

et al., 2003). Hence the Reintal limestone taluses differ from the usual rock-

fall talus described in crystalline alpine areas such as Northern Scandinavia,

the Canadian Rocky Mountains or the French Alps (Rapp, 1960; Luckman,

1976; Jomelli and Francou, 2000). As with internal sorting, sheetwash also

leads to a lowering of slope, a feature which facilitates talus detection in the

DEM. Active avalanche taluses show extensive vertical concavity and mostly

angles below 30°, since the avalanche debris tends to be reworked successively

downslope by later events, leaving the talus tongue to stretch all across the

valley basin (Caine, 1974; Jomelli and Francou, 2000). In the Reintal, talus

activity is higher on the southern slopes than on the northern ones, but in
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Figure 4.3: Geomorphological Maps of the Reintal valley Floor
Maps after Schrott et al. (2003), highlighting the distribution of sedi-
ment storage types, their process activity status and process coupling
with respect to sediment input, sediment output or both.
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general, talus sheets and cones belong rather to areas with moderate to no

activity. More than 85% of the taluses are completely covered by vegetation

without receiving any noticeable quantities of sediment (Figs. 4.2, 4.3, 3.1).

These relict landforms hence experience neither input nor output (Fig. 4.3,

Schrott et al., 2002, 2003).

Five rockfall deposits are discernable in the Reintal (Schrott et al., 2003)

(Fig. 4.3), but three of them form relict and overprinted features. They

constitute the only landforms in the valley exclusively built up by gravitational

processes and shape the landscape by damming vast floodplains and lakes

behind them, if they exceed a certain volume (Figs. 3.1, 4.3). Their very

diverse extension, form and vegetation cover hinder their remote classification

as one single class, but curvature may allow detection individually.

Alluvial fans should be extractable from DEM and curvature files by their

concave long-profiles and convex cross-profiles with mean slopes between 2°

and 12° (Blair and McPherson, 1994), but they slope more in the Reintal

DEM. They occur in areas levelling out and are mostly linked to sheet flow,

rather than veritable fluvial activity. Both eroded material from upslope and

undercut sediments from adjacent stores contribute to their development (Fig.

3.1). Fans represent predominantly active landforms (Fig. 4.3), which are

responsible for most of actual sediment transport in the valley (Schrott et al.,

2003).

Unlike alluvial fans, floodplains hardly show any inclination with slopes of

maximum 2° (Mark and Smith, 2004), but again were found to slope more in

the Reintal DEM. Channel courses change rapidly, which leads to the develop-

ment of a broad braided river system with terraces. Although floodplains cover

only 6% of the valley bottom (Fig. 4.3), they impressively imprint landscape

with formative sediment stores (Fig. 3.1).

Debris flows initiate in unconsolidated sediment that rests at angles be-

tween 25° to 46° (Dikau, 1996; Haeberli, 1996) above couloirs (Schrott et al.,
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2003). Their flow tracks drop down between 24° and 35° (Zimmermann, 1996)

and lie in the middle of boulder levées as a vertically rectilinear hollow form.

The corresponding U-shaped cross-profile constitutes another clear indicator of

debris flow, but this feature was not assessable in the 5 m DEM. Debris cones

slope between 12° to 25° and thus flatter than talus cones due to their higher

water content, which reduces shear strength. Superficial sorting does not occur,

but rather internal stratification from overlying lobes (Zimmermann, 1996). In

the Reintal, most debris flows originate at the border between rockwalls and

taluses (Figs. 4.3, 3.1). They rarely form separate forms, but rather over-

print other, older storage types, constituting a palimpsest of systems (Dikau,

1996; Schrott et al., 2003). Moreover, they are often associated with avalanche

tracks.

Avalanche tracks, chutes or couloirs develop where plant growth proves

impossible on account of repeated devastating events. These concave channels

mostly lie below cirques in the rockwalls. Regular avalanche events lead to

avalanche deposits in the form of narrow cones or elongated tongues (Jomelli

and Francou, 2000). Valley geomorphology encourages avalanche activity in

the Reintal, where avalanches often deposit on other landforms (Fig. 3.1),

e.g. on floodplains (Heckmann et al., 2002; Schrott et al., 2002). Hence

avalanche deposits labelled as such in Fig. 4.3 comprise only very active ones

refilled more than once annually (Schrott et al., 2003). Typically, they display

vertically rectilinear profiles and horizontal breadths of 10 to 20 m.

Moraine deposits cover 1% of the geomorphically mapped area (Fig. 4.3),

but these relict landforms occur more frequently in the valley. They are covered

by younger sediments and are only revealed when exposed by erosion, which

is why their detection by remote sensing seems highly unlikely.

Schrott et al. (2002) developed a conceptual Alpine sediment cascade de-

picting the spatial distribution of storage types in the Reintal in a cascade

linked by processes. Today, 79 % of the sediment stores in the valley bottom

are considered to be relict forms and completely decoupled from the sedi-
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ment cascade system (Schrott et al., 2002; Schneevoigt and Schrott, 2006).

Avalanche and debris-flow tracks, alluvial fans and floodplains represent the

most active storage types (Fig. 4.3). The upper parts of the valley deglaciated

more than 2000 years later than the lower subunits, so process activity rises

with valley altitude. Very low clastic sediment output turns the Reintal into

an effective serial sediment trap. As most active landforms receive input only,

sediment stores build up quickly (Schrott et al., 2002, 2003). All landform

characteristics are summarised in Tables 4.1 and 4.2.

4.3.2 Segmenting and classifying optical imagery

Data basis employed

In this study, the suitability of ASTER imagery for landform detection was

tested, because it compromises near global coverage, acceptable resolution and

pricing. Since 2000, spectral data from the ASTER sensor recording at nadir

are available in scenes of 60 x 60 km. Ground resolution varies between 15min

the three visible and near-infrared (VNIR) bands (no. 1–3), 30 m in the six

short wave infrared (SWIR) bands (no. 4–9) and 90 m in the five thermal in-

frared (TIR, no. 10–14). Both spectral coverage and orbit parameters resemble

the younger Landsat sensor generations, but ASTER’s geometric and spectral

resolution is higher and offers more differentiation in the infrared spectrum

(Fig. 4.4; Kääb et al., 2003a,b).

Ten bands of an ASTER scene from 29th May 2001 (Fig. 4.2) were selected

for classification, i.e. VNIR, SWIR and TIR band 11. SWIR and TIR bands

are useful for the detection of snow, ice and geological features. The bands

were stacked, geometrically rectified to fixed landmarks in a monochrome or-

thophoto of 1996 (background in Fig. 4.3) and simultaneously resampled by

cubic convolution to a resolution of 5 m to match DEM resolution. The or-

thophoto itself did not form part of the data set to be examined due to the

five-year interval between its exposure and the ASTER scene. As in other



4.3. Methods and techniques 157

               ASTER spatial resolution:               30 m 

 
 
               90 m 

 

 

 
 
 

TIR

 
 
  SWIR 

VNIR

Figure 4.4: ASTER Bands in Comparison to Landsat ETM+

The upper row of rectangles represents the 14 ASTER spectral bands,
the lower one the 7 Landsat ETM+ bands; their respective spatial res-
olutions are indicated above the rectangles. The shaded curve conveys
atmospheric transmission dependent on wavelength, the thick one the
spectral properties of snow. The box above the diagram shows the pro-
portions between the different spatial ASTER band resolutions (modi-
fied from Kääb et al., 2003a).

monotemporal investigations (e.g. Hill, 1999; Etzelmüller et al., 2001; Bartsch

et al., 2002), atmospheric and illumination correction were rejected, since they

can introduce additional errors into the data set (Itten et al., 1992; Kellen-

berger, 1996; Vermote at al., 1997; Florinsky, 1998; Jansa et al., 2002; Bishop

and Shroder, 2004). Atmospheric and brightness effects were counterbalanced

by using a mask of different altitudinal strata (see Section 4.3.3) and band

ratios (see Section 4.5.2).

A stream-corrected DEM (5 m ground resolution, vertical accuracy better

than 0.5 m) served for topographical analysis. The DEM was generated by

SEDAG partners using the ArcInfo spline algorithm Topogrid and photogram-

metric data by the Bavarian Geodetic Survey. In this study, it served for the
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generation of five DEM derivatives within ArcInfo. These geomorphometric

grids of horizontal, vertical and total curvature, slope and aspect were also in-

corporated in the remote sensing applications. For the detection of landforms,

they play a decisive role in the segmentation and classification processes, since

spectral signatures alone often do not suffice for landform differentiation.

Object-oriented classification of landforms

Object-oriented approaches aim at creating areas which depict realistic forms

rather than pixelled landscapes. However, segmenting a scene into objects im-

plies more than a mere merging of pixels: while all pixels constitute equally

sized squares, the different image objects vary in shape and extent. Thus also

geometric features are extractable from the data, which can be helpful in classi-

fication. In addition, the spectral properties of image objects can be described

both by mean values, standard deviations and ratios of the incorporated pix-

els. Working on several levels of abstraction is also possible. Finally, context

emerges from considering neighbourhood relationships, sub- and superordi-

nations, object-based morphometric and class-related features (Blaschke and

Strobl, 2001; Baatz et al., 2002; Blaschke et al., 2002; Neubert and Meinel,

2002; Benz et al., 2004).

Object-based class descriptions hence reach beyond spectral information,

provided that segmentation leads to objects which describe natural features

geometrically well. In particular, DEM and other additional information can

be usefully integrated and analysed for each object individually. This asset

outweighs the fact that segmentation prior to classification represents an addi-

tional, time-consuming step: object-oriented image analysis unites the spectral

interpretation capacities of remote sensing and the geometric tools of GIS into

one desktop environment, hence combining both approaches. This constitutes

an advantage in comparison to pixel-oriented analysis, especially when deal-

ing with high mountain data (Giles, 1998; Giles and Franklin, 1998; Blaschke,
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Figure 4.5: Multiresolution Segmentation of the four Levels
Displayed are the image object outlines of the four hierarchical layers

L1 to L4.

2000; Schneevoigt and Schrott, 2006). However, the degree of transferability of

both segmentation and classification schemes to different study areas remains

to be investigated in further studies.

Objects which result from an image segmentation at a certain scale often

depict certain class features very well, but do not render vital information for

other classes because this information can only be displayed in another resolu-

tion. For example, a small scale parameter is very useful for precisely conveying

the spectral information of the heterogeneous structure of the Reintal, whereas

a division of the valley into three functional and altitudinal subsystems requires

a very high scale parameter. The final classification, however, is best executed

on an intermediate level in order not to show too heterogeneous details but to

still capture relatively small landforms.

The multiresolution segmentation algorithm (Baatz and Schäpe, 2000) al-

lows a simultaneous depiction of several so-called levels segmented on different

scales (Blaschke and Strobl, 2001; Baatz et al., 2002; Blaschke et al., 2002;
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Table 4.1: Alpine Landform Characteristics A

landform 

class

 surface 

material

particle size  superficial 

sorting

 vegetation 

cover

 activity 

status

shape slope

 glacial 

cirque

bedrock - - scarce mats of 

bristle grass

high hollow 

form

 steep   

head- and 

sidewalls, 

bottom <20° 

 hanging 

valley

bedrock - - scarce mats of 

bristle grass

high hollow 

form

 steep   

head- and 

sidewalls, 

bottom <20° 

free face bedrock - - none high extended 40°-90°

 talus 

sheet

 angular 

clasts

    coarse     

gravel to 

boulders

 coarsening 

downslope

   high,   except 

at apex

85% inactive; 

apex slightly 

active 

extended active: 25°-

38°, inac- 

tive: >20°

 talus 

cone

 angular 

clasts

    coarse     

gravel to 

boulders

 coarsening 

downslope

high, except at 

apex; 1 cone 

without cover

85% inactive; 

apex slightly 

active

cone active: 25°-

38°, inac- 

tive: >20°

 rockfall 

deposit

 angular 

clasts

 cobbles to 

boulders

 rather 

unsorted; 

coarsening 

little to high inactive extended 

 to 

variable

<20°

 alluvial 

fan

rounded 

clasts

silt to gravel poorly to 

unsorted; 

possibly fining 

downslope

none to high  inactive to 

high

elon- 

gated, 

flat cone

1°-12°

flood- 

plain, 

fluvial 

deposit

 rounded 

clasts

mainly sand 

to cobbles, 

silt at plain 

foot

fining 

downslope

inactive to high  inactive to 

high

extended <2°

debris 

flow track

 bedrock 

and 

angular 

clasts

 sand to 

boulders

unsorted none or low mostly high linear >24°

debris 

cone/ 

flow 

deposit

 angular 

clasts

 sand to 

boulders

unsorted none or low  mostly 

moderate to 

high

cone 12°-25°

avalanche 

 track

 bedrock 

and 

angular 

clasts

 fine gravel 

(grit) to 

boulders

unsorted none or low mostly high linear >25°

aval- 

anche 

deposit

 angular 

clasts

 fine gravel 

(grit) to 

boulders

unsorted none or low mostly high narrow 

cones or 

tongues

<25°

 moraine 

deposit

 angular 

and 

rounded 

clasts

silt to 

boulders

unsorted little to high inactive dyke <20°

vegetation 

 covered 

slope

- - - high inactive  mostly 

linear

expanse
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Table 4.2: Alpine Landform Characteristics B
Processes are plotted in square brackets if they are relict processes but
the form they produced still today shapes the land surface.

landform 

class

horizontal 

curvature

 vertical 

curvature

location                        dominant process further characteristics

 glacial 

cirque

concave concave  above 1600 m asl. [glacial], weathering 

(gelifraction), rockfall, 

sheetwash, avalanche, 

debris flow

debris source for lower 

sediment stores 

 hanging 

valley

concave concave  above 1600 m asl. [glacial], weathering 

(gelifraction), rockfall, 

sheetwash, avalanche, 

debris flow

debris source for lower 

sediment stores 

free face straight straight upper regions [glacial], weathering 

(gelifraction), rockfall, 

sheetwash

debris source for lower 

sediment stores 

 talus 

sheet

rectilinear concave mainly below 

waterfall on N-side

rockfall, sheetwash, 

avalanche

located below broad 

erosive zone in steep free 

face

 talus 

cone

convex concave mainly on S-side; 

just before waterfall

rockfall, sheetwash, 

avalanche

located below linear 

ravine, gully or chute in 

steep free face

 rockfall 

deposit

 convex or 

straight

 convex 

or straight

centre of valley 

floor

[gravitational 

fall/topple/slide], 

sediment accumulation

larger events create 

sediment sinks behind 

rockfall dams 

 alluvial 

fan

concave convex mostly to W and S 

of valley floor 

 fluvial accumulation, 

avalanche, debris flow 

linked to drainage 

channels; accumulation 

where gradient decreases

flood- 

plain, 

fluvial 

deposit

 slightly 

concave

convex centre of valley 

floor

fluvial accumulation braided river system; lake 

formation before rockfall 

deposits

debris 

flow track

   convex-   

 concave- 

convex

rectilinear upper regions with 

a concentration in 

the E

mixture of gravitative 

and suspended 

transport

located below sediment 

source and above debris 

flow cone/alluvial fan

debris 

cone/ 

flow 

deposit

convex rectilinear 

to convex

     mainly on the      

 S-side

 accumulation of a 

mixture of gravitative 

and suspended 

transport

located on steep slopes 

(>25°) and below a 

sediment source; channel 

usually with levées

avalanche 

 track

concave rectilinear      mainly on the      

 N-side

nival transport located below cirques, 

above avalanche 

deposits/alluvial fans and 

perennial snow packs

avalanche 

 deposit

convex rectilinear 

to 

concave

     mainly on the      

 N-side

nival accumulation below cirques, avalanche 

tracks and snow packs

 moraine 

deposit

convex rectilinear 

to convex

sporadicly on 

valley floor

glacial accumulation [stages of glacier retreat]

vegetation 

 covered 

slope

straight mostly 

rectilinear

     mainly on the      

 N-side

infiltration located above sediment 

stores and below rockwalls
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Schiewe and Tufte, 2002; Benz et al., 2004) (Fig. 4.5). This way, natural

features of various sizes can be jointly treated in an object-oriented manner.

Yet the integration of additional levels only makes sense if this implies a gain

of information which cannot be retrieved from the existing levels.

The pixel-based software package Erdas Imagine was used for data prepara-

tion and preprocessing, whilst the segmentation and classification process and

accuracy assessment took place in the object-oriented eCognition programme.

The latter allows simultaneous treatment of objects at different levels of ab-

straction, hence allowing for an image analysis on various, hierarchical scales

(Baatz and Schäpe, 2000; Baatz et al., 2002). In order to create the bound-

aries needed to recognise the target landforms in the Reintal, segmentation

of the data set into image objects proved to be necessary on four levels (Fig.

4.5): in a first step, the ASTER scene, the DEM and the five geomorphometric

grids were used to generate a mask with the three altitudinal strata of crest

regions, rockwalls and valley floor in a multiscale set of preclassifications (L4

in Fig. 4.5). After creating and segmenting the other three levels L1 to L3

(Fig. 4.5), a classification hierarchy was developed. Only level L1 employs

the hard nearest neighbour classifier, all other levels use fuzzy membership

functions to adjacent image objects or sub- and superobjects of other layers

(Baatz and Schäpe, 2000; Baatz et al., 2002). Finally, the quality of the final

L2 landform classification was evaluated. For accuracy assessment, up to ten

representative test areas of ten to hundreds of pixels were chosen per land-

form class, depending on the availability of both unequivocal ground truth

and appropriate image objects. They were selected all over the study area,

conforming to 19,968 pixels in total.
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4.4 Results

4.4.1 Landform characteristics condensed

The table of landform features distinguishes between fourteen landforms and

twelve landform characteristics. The latter can be divided into four superordi-

nate categories: visible material, particle size and superficial sorting describe

the sediment surface, while slope, horizontal and vertical curvature constitute

form parameters. In contrast, spatial distribution comprises the spatial extent,

location in the valley and the process link of the different landforms. The

categories activity status, vegetation cover, dominant process and processual

link specify the processes involved (Tabs. 4.1, 4.2; Fig. 4.3).

4.4.2 Landform segmentation and classification

In the multiscale eCognition project, different scale parameters allowed varying

features on each level (Fig. 4.5) to be recognised: the first level L1 based on

pure spectral VNIR ASTER information defines all boundaries of the project

at a very high resolution, rendering a classic remotely sensed land cover map.

Level L4 displays the strata mask, while L3 focuses on hollow forms in the

crest regions. L2 was designed for the final landform classification into which

the entire information of all levels merged after their individual classification

(Fig. 4.5).

All four levels were classified individually. The results of the levels L1 and

L2 are displayed in Fig. 4.6. Level L3 assigns eastern and western walls of

cirques and hanging valleys, while L4 represents the three altitudinal strata

(shown in Schneevoigt and Schrott, 2006).
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B

A

Figure 4.6: Final Classification on Levels L1 and L2
Results of the classification on level L1 focussing on surface cover (A)
and on the final level L2 showing 20 landform classes and in blue the
lake of Vordere Gumpe (B). For comparison, see the geomorphological
map (Fig. 4.3).
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4.5 Discussion

4.5.1 Comparison of classification and ground truth

In contrast to the detection of single geomorphic objects, the development of

a classification scheme for a complete geomorphologic coverage represents a

highly experimental approach. The intention of this study was investigating

which landforms can successfully be detected in a semi-automatic, object-

oriented approach. We were aware that not all landforms present in the Reintal

can be detected, which is partly due to the 15 m resolution of the ASTER scene.

For ground truthing of crest areas, rockwalls and sediment stores on the val-

ley floor, the orthophoto of 1996 and digital photos taken from opposite slopes

and peaks were used, as was the geomorphological map of the Reintal bottom

(Fig. 4.3, Tab. 4.3). This approach is limited, for several reasons: (I) on the

ground, boundaries are blurred by landform coalescence, complexity, overlap-

ping and vegetation cover (see Section 4.3.1), (II) surface conditions in alpine

environments change rapidly (Caine, 1974; Schrott et al., 2002, 2003), and

(III) traditional geomorphological mapping involves subjective and to some

degree arbitrary judgments. Some geomorphological features might also be

overprinted and thus were not identified in the traditional approach.

As can be seen from Fig. 4.6B, the 20 landform classes finally differentiated

on level L2 (Tab. 4.3) generally closely approximate the ground truths:

• Detection accuracy of the different classes is relatively high. Landforms

in the crest regions are detected particularly well as they are usually not

covered by vegetation.

• In the class ‘vegetation covered channels’, sediment transport tracks and

deposits from debris flows and avalanches occur. A further differentiation

was not possible.
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Table 4.3: The final Landform Classes differentiated on Level L2

Listed are the targeted landforms, the detail of classification finally ob-
tained with L2 and comments on the classification process for each class.

target landforms classification on L2 comment 

glacial cirque and eastern cirque wall (<50°) classification more detailed than expected; 

hanging valley eastern cirque wall (>50°) was derived from aspect in the Reintal, 

 western cirque wall (<50°) but should be based on watershed outlines 

 western cirque wall (>50°) when applied to other study areas; 

 fine sediment distinction between sediments and talus in 

 coarse sediment the cirques not possible due to lacking ground 

 snow and ice truth and snow cover in the scene 

free face bare rock (<50°) classification more detailed than expected 

 bare rock (>50°)  

 fine sediment  

 coarse sediment  

 snow and ice  

talus sheet debris/grass covered talus classification more detailed than expected 

and cone shrub covered talus inseparable from one another due to  

 tree covered talus coalescence in the field 

rockfall deposit rockfall deposit were only detected if recent and uncovered 

alluvial fan alluvial fan difficult to separate from floodplains and 

  vegetation covered channels 

floodplain floodplain difficult to separate from alluvial fans due to 

  very high floodplain gradients in the DEM 

fluvial deposit alluvial fan spectrally not separable and topographically 

 vegetation covered channel too small and indistict for a class on its own; 

  
creek slopes too much for an assignment of fluvial 

deposits to class "floodplain" 

moraine deposit not classified classification impossible due to poor landform  

  preservation  

vegetation  grass covered slope classification more detailed than expected 

covered slope shrub covered slope  

  tree covered slope   

debris flow channel equifinality hinders effective field identification 

debris cone vegetation covered channel of the 4 target classes 

avalanche track   

avalanche deposit   
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• Separation of alluvial fans and floodplains, as well as talus sheets and

cones was difficult. This is at least partially based on the coalescent

character of these landforms and the subjective decisions involved in

field mapping. The overall largest problems for effective classification

occurred with vegetation covered talus slopes.

• Relict forms are largely overprinted by more recent features in the Rein-

tal, which often prevents their detection by satellite imagery and DEM

information. At the scale parameter of L2, no distinguishing features ex-

ist for older rockfall and moraine deposits which were therefore excluded

from the classification hierarchy.

The 20 landform classes (Tab. 4.3) finally differentiated on L2 score very

high in the accuracy assessment with an overall accuracy of 92% and a kappa

coefficient of 0.915. Fuzzy classification stability is slightly lower. These good

results partially owe to the fact that two distinct data sources were combined

for analysis: some target classes appear spectrally distinct (e.g. sediments,

rocks vs. vegetation covered features), whereas other landforms could be sep-

arated using topographic information. Giles (1998) and Giles and Franklin

(1998) reach an overall accuracy of 88.5% in a supervised classification of ge-

omorphological slope units based on prior image segmentation and training

areas. Bartsch et al. (2002) attain overall accuracies ranging from 85% to

93% for the classification of geomorphological process units by maximum like-

lihood. They conclude that the “synergy of remote sensing and GIS enables

a sophisticated methodology for the identification of spatial distributions and

interrelationships” (p. 177). Paul’s (2000) maximum likelihood classification

of glaciers obtains an overall accuracy of 95%.

However, our accuracy values have to be taken with care: on the one hand,

object-oriented accuracy assessments tend to overestimate as they are based

on averaged image objects and not on individual pixels. On the other, test

areas were selected randomly, but without following a regular spatial pattern.

Hence further accuracy assessment with different software is required. As older
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rockfall and moraine deposits were excluded from classification, the overall

accuracy of the landform detection compared to the geomorphological map

will be lower than the values given above.

4.5.2 Possibilities and restraints of remote landform

mapping

The L2 classification shows that landform classification based on the vegeta-

tion cover (Fig. 4.6A) is only partly successful. In the higher elevated areas,

landform detection worked well because surface characteristics are not blurred

by vegetation cover. Here, landforms are often correctly classified and thus

detectable based on their surface characteristics (e.g. free faces, cirque walls).

However, classifying accumulation forms in the valley (e.g. talus sheets, allu-

vial fans, floodplains) utilises more complex process and form descriptions, so

that spectral information alone is insufficient. In general, a linear relationship

between land cover and landform cannot be established, as similar vegeta-

tion may cover different landforms and ASTER resolution does not permit

analysing sediment texture beyond ‘coarse’ and ‘fine’. It has to be doubted if

a better resolution would improve classification.

Spectral features generally reflect an area’s geomorphic activity better than

the type of landform present. Hence the development of a geomorphological

activity classification would be an easier task than assessing landforms, which

often comprise areas of varying activity. The Normalised Difference Vegetation

Index (NDVI) formed an important differentiating feature in the classification

hierarchy. This stresses the relative facility of assessing vegetation characteris-

tics and hence process activity. The NDVI was chosen because it was success-

fully used on alpine landforms by Etzelmüller et al. (2001) and Bartsch et al.

(2002). To obtain a better separation between vegetated and non-vegetated

areas, the NDVI had to be adapted to the three different altitudinal strata.

Even within each stratum, differences in NDVI based area assignments could
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be noticed, possibly dependent on altitude or the effect of soil colour. The

drawback of NDVI application in sparsely vegetated areas has been treated by

Huete et al. (1985), Garćıa-Haro et al. (1996) and Gilabert et al. (2002). They

found that NDVI does not reflect pure plant biotic information when spectral

soil features shine through thin canopy. Yet the homogeneous lithology of

the Reintal uniformly influences the NDVI, so that useful information could

still be derived. When transferring the methodology to other regions, the ap-

propriateness of NDVI application has to be established against soil-adjusted

vegetation indices (SAVIs).

Shadowing constitutes another restraint for alpine remote sensing appli-

cations. Its effects can be reduced by band ratio formation, i.e. calculating

the ratio of adjacent satellite image bands. This reinforces differences while

similarities are eliminated: features like vegetation outlines and ice/snow are

enhanced, and atmospheric and relief induced variations in illumination are

diminished as they are highly correlated in neighbouring bands (Paul, 2000;

Schaper, 2000). Here, the NDVI and simple ratios were successfully used

for that purpose. The strata mask also compensates for variations in height

and eases detection of altitude-dependent landforms. According to Florinsky

(1998), such deterministic and probabilistic scene stratification prior to actual

classification allows an enhanced assessment of image patterns with similar

spectral responses. Itten et al. (1992), Kellenberger (1996) and Bishop and

Shroder (2004) underline the use of creating areas of similar elevation as well.

Data resolution determines classification possibilities to a large extent. The

relatively coarse ASTER resolution of 15 m posed an obstacle to exact landform

tracing, as only landforms larger than this can be identified. For instance, find-

ing an optimal segmentation for L2 constituted a time-consuming challenge,

because the often faint signals from avalanche and debris flow tracks still had

to be captured without resulting in too small a scale. Not all target classes

could therefore be identified, for example a distinction of the different kinds

of channels (Tab. 4.3) proved impossible. Furthermore, evaluating slope and
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curvature was not possible to the extent desired, despite the high resolution

DEM. The table of landform characteristics (Tabs. 4.1, 4.2, 4.3) was useful as

a general lead. Yet figures (especially concerning slope angles) in the Reintal

DEM sometimes diverged considerably from the values given in literature (see

Section 4.3.1). This is possibly due to both, average calculation on the DEM

pixels and landform coalescence on the ground. With a higher resolution in

image and elevation data, figures may be better approximated. However, the

majority of classes were well assessed, and some could even be further dif-

ferentiated than previously expected, e.g. the vegetation covered slopes, talus

cover, and cirques and hanging valleys, leading to a total of 20 landform classes

that were finally satisfactorily mapped (Fig. 4.6B, Tab. 4.3).

4.6 Conclusion and perspectives

This study demonstrates the benefits of an object-oriented approach for geo-

morphological mapping in Alpine regions:

• Remote sensing techniques allow identification of both the present-day

pattern of sediment storage types and geomorphologic units, for the later

even insights in activity status and complexity.

• This methodology permits, for the first time, an assessment of the higher

elevated areas of the Reintal, which could not be included in previous

surveys because of inaccessibility.

• Coherent landform classification based on remote sensing data and DEM

using image segmentation represents a promising new approach for ge-

omorphic mapping, as not just individual geomorphic objects but an

entire study area can be classified.

In future studies, a closer look should be taken at the particular impact

of the two data sources by assessing them individually. Thus the extent can

be determined to which spectral versus DEM information is responsible for



4.7. Acknowledgements 171

landform delineation, and whether their combined analysis results in synergetic

effects. To further assess the scale-dependence of landform detection, other

data sets should be evaluated, such as very high resolution imagery and DEM.

Conversely, it would also be interesting to see to what extent lower resolution

elevation models with near global coverage, such as from the ASTER sensor, or

even from the Shuttle Radar Topography Mission (SRTM), can be integrated

into this approach.

Future applications of the classification hierarchy, including the different

scales of segmentation, at different study areas will show if the semi-automated

landform classification scheme is transferable. Considering the very good

match of this initial landform classification and ground truth, remote sensing

constitutes a valuable tool for the examination of alpine geomorphic systems,

particularly in otherwise inaccessible regions on crest and rock walls.
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Paul, F., Kääb, A., Maisch, M., Kellenberger, T., Haeberli, W., 2002. The
new remote sensing derived Swiss glacier inventory: I. Methods. Annals of
Glaciology, 34, 355-361.

Rango, A., 1999. Spaceborn remote sensing for snow hydrology applications.
Hydrological Sciences, 41(4), 477-494.

Rapp, A., 1960. Recent development of mountain slopes in Kaerkevagge and
surroundings, Northern Scandinavia. Geografiska Annaler, A 42(2-3), 71-
200.

Rasemann, S., Schmidt, J., Schrott, L., Dikau, R., 2004. Geomorphometry in
mountain terrain. In: Bishop, M.P., Shroder Jr., J.F. (eds.): Geographic
information science and mountain geomorphology. Springer Verlag, Berlin,
Heidelberg, 101-146.
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from an ASTER scene and digital elevation data

(Reintal, Bavarian Alps).
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High mountain regions represent difficult terrain for detecting rock and sed-

iment storage areas. By means of a satellite scene by the Advanced Space-

borne Thermal Emission and Reflection Radiometer (ASTER) and a digital

elevation model, the geomorphological setting of the Reintal subcatchment

(17 km2) east of the Zugspitze is analysed. Characteristic landforms are clas-

sified in an object-oriented approach comprising four spatial levels of differen-

tiation. The complex, object-based decision tree hierarchy largely founds on

fuzzy membership functions and to a lesser extent on a minimum distance clas-

sifier. The final landform classification scores high in the accuracy assessments.
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The results show that an identification of the present-day pattern of geomor-

phological process units is possible by remote sensing. Besides, the approach

provides a first insight into the otherwise inaccessible upper regions of the

study area which could not be included in any previous survey.

5.1 Introduction

High mountain regions display a “geomorphic environment of considerable di-

versity. This variability in both time and space is perhaps the single most

significant geomorphic characteristic of the alpine zone” (Caine, 1974: 722).

Therefore these fragile environments react very quickly and sensitively to

global change (Kääb, 2002). However, scientific knowledge about their ge-

omorphologic process structure remains sketchy and incomplete, especially

quantitatively. Similarly, the question of potentially mobilisable sediments

in the upper regions of high mountain catchments still calls for an answer

(Schrott et al., 2003). Within a set of projects called ‘Sediment Cascades in

Alpine Geosystems’ (SEDAG), the universities of Eichstätt, Erlangen, Halle

and Bonn/Salzburg have developed a model to describe landform evolution in

high mountain regions.

This study forms part of the SEDAG research and represents the third

of a series of papers: geomorphic systems theory and object-oriented remote

sensing have been linked in Schneevoigt & Schrott (2006) in order to convey

the theoretical and conceptual background of the analysis. Schneevoigt et al.

(2008) accentuates its geomorphological side, particularly stressing the nature

of the alpine landforms examined. In contrast, this paper at hand describes

the remote sensing methods employed in further depth.

It aims at a semi-automatic classification scheme for geomorphological land-

forms, which can supply otherwise inaccessible information besides assisting

landscape monitoring and mapping. As upper areas mostly cannot be observed

from the ground, remote sensing applications represent a means of closing this
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Figure 5.1: The Geographical Location of the Reintal
Location of the study area within the Wetterstein massif (The valley
stretches in an east-westerly direction along the Austro- German border,
which runs on the southern valley crest. Modified from Geographie
Innsbruck, 2011).

gap which hampers a full understanding of the alpine sediment cascade. Many

studies on high mountain geomorphology use GIS coupled with remote sensing

data, whereas only few employ genuine remote sensing techniques (for details

see Schneevoigt et al., 2008; Schneevoigt & Schrott, 2006). Object-oriented

image segmentation prior to classification constitutes a novel and promising

approach (Blaschke et al., 2002; Benz et al., 2004). This relatively new trend

has also found its way into high mountain applications, e.g. with Giles &

Franklin (1998) classifying geomorphological slope units.
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5.2 Geographical setting

The Reintal valley is situated 7 km south of the town of Garmisch-Parten-

kirchen in the Bavarian Alps (Fig. 5.1). It extends over 8 km in predomi-

nantly dolomitised limestone or Wettersteinkalk. As the Zugspitzplatt is not

linked to the valley in terms of sediment transfer, it has been excluded from

the study area amounting to 17 km2. No glaciers persist today, but Pleis-

tocene glaciations have typically shaped cirques and hanging valleys in the

upper regions, oversteepened rockwalls and a broadened valley bottom. The

relative relief within the study area amounts to 1690 m reaching a maximum

of 2744 m asl. at Hochwanner peak, a fact which amongst others confirms the

high mountainous nature of the Reintal.

Today, 79% of the sediment stores on the valley floor are relict or inac-

tive and completely decoupled from the sediment cascade system. Avalanche

and debris flow tracks, alluvial fans and floodplains represent the most active

storage types. In general, process activity rises with valley altitude. Very low

clastic sediment output turns the Reintal into an effective serial sediment trap.

As most active landforms receive input only, sediment stores build up quickly

(Schrott et al., 2003).

5.3 Object-oriented landform classification

5.3.1 Optical data basis

In this study, ASTER scenes were assessed because of their spatial resolu-

tion, pricing and near global coverage (Klug, 2002, Kääb, 2002, with more

information). Ten bands of an ASTER scene from 29th May 2001 (Fig.

4.2B) were selected for classification, i.e. all the visible/near-infrared (VNIR)

and short wave infrared (SWIR) bands together with thermal infrared (TIR)

band 11. The bands were stacked, geometrically rectified to fixed landmarks
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in a monochrome orthophoto of 1996 and simultaneously resampled by cubic

convolution to a resolution of 5 m to match DEM resolution. As in other

monotemporal investigations, atmospheric and topographic corrections were

rejected, since they can introduce additional errors into the data set (relevant

reference in Schneevoigt et al., 2008). Several ratios were used in this work; the

Normalised Difference Vegetation Index (NDVI) forms important thresholds

in the classification hierarchy (Fig. 5.2).

A digital elevation model (DEM) of 5 m ground resolution (Fig. 3.3 top)

was generated and hydrologically stream corrected by SEDAG partners using

photogrammetric data by the Bavarian Geodetic Survey. It served for the

generation of five DEM derivatives. These geomorphometric grids of horizon-

tal, vertical and total curvature, slope and aspect were incorporated in the

classification process in addition to the DEM (Fig. 3.3).

The landforms considered in this study are summarized in Table 5.1 (addi-

tional information can be found in Schneevoigt et al., 2008). They result from

interacting and partially equifinal processes. Thus strict delimitations of land-

forms do not always exist in landscape: many forms show no clear boundaries

(Figs. 3.1, 4.2). As partially interfingered deposits are frequent, form char-

acteristics deviate from the ideal. This “fuzzy nature of most high mountain

terrain features” (Kääb, 2002: 50) makes it necessary to consider context for

sound classifications. Keeping the interval of time in mind, the orthophoto of

1996 served as ground truth for crest and rockwall regions as well as for the

Table 5.1: Target Classes in the Classification Process
Target classes sorted according to their predominant location in the study
area.

upper regions rockwalls valley bottom ubiquitary

snow and ice grass covered slopes shrub covered talus bare rock (<50°)

eastern cirque wall (<50°) shrub covered slopes tree covered talus bare rock (>50°)

eastern cirque wall (>50°) tree covered slopes alluvial fan fine sediments

western cirque wall (<50°) floodplain coarse sediments

western cirque wall (>50°) rockfall deposits channel

vegetation covered channel

debris/grass covered talus
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sediment stores on the valley floor. Digital photos taken, as far as accessible,

from opposed slopes and peaks, were used for the same purpose. A geomor-

phological map drawn up by Schrott et al. (2003) served as reference when

dealing with the Reintal valley bottom.

5.3.2 Image segmentation into objects

The object-oriented approach (not to be confused with the homonymous pro-

gramming mode) consists of two separate steps. First, the data employed is

segmented into homogeneous image objects through generalisation and average

determination, smoothing out irregular pixel-dominated patterns and creating

more realistic forms. Secondly, these entire objects are classified, not individ-

ual pixels. Object-oriented image analysis hence unites the spectral analyses of

remote sensing and the geometric tools of GIS into one desktop environment.

The segmentation algorithm by Baatz & Schäpe (2000) segments an image

in a knowledge-free way via region-growing, an automatized heuristic opti-

mization method: the potential increase of spectral heterogeneity is assessed

in a merge weighed by the size of two pixels or segments considered. Next

to this colour criterion based on spectral information alone, shape parameters

can be used to correct highly textured data which otherwise would produce

frayed and distorted segments. This constitutes an advantage especially in

high mountain data. Yet it must be applied carefully, as it implies an arbi-

trary divergence from the given spectral information based on pure arithmetics

(Baatz & Schäpe, 2000).

Not only spectral data, but also DEMs and all kinds of derivatives from im-

age and elevation information can be integrated in the segmentation process.

The available sources or parameters can be weighed by factors to differentiate

their respective influence on the creation of a layer. These assets compensate

for the extra time-consumption of finding adequate segmentation parameters.



5.3. Object-oriented landform classification 183
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Figure 5.2: Extract of the Classification Hierarchy

The figures around the membership function icons to the right indicate
the thresholds of the fuzzy areas.
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To address features at different scales, individual layers must be segmented

for each scale. The multiresolution segmentation algorithm (Baatz & Schäpe,

2000) permits a simultaneous depiction of several image levels segmented at

various spatial resolutions (Benz et al., 2004). Yet the integration of additional

levels only makes sense if this implies a gain of information which cannot be

retrieved from the existing levels.

Initially, a strata mask distinguishing three altitudinal storeys was gener-

ated in an ancillary project with three levels. In this set of preclassifications,

crest regions and valley bottom both carry an error of commission to guaran-

tee inclusion of all relevant image objects. The resulting layer was imported

as L4 into the main project (Fig. 3.3). Here, segmentation on four levels

was necessary in order to create the boundaries for all target classes. A small

scale parameter conveys the spectral ground information of the Reintal (L1,

Fig. 3.3). Conversely, the imported mask of three altitudinal subsystems (L4)

requires a very high scale parameter, and the cirques and hanging valleys (L3)

a relatively high one. An intermediate level serves for the final classification

(L2), so that smaller landforms can be displayed while preserving a certain

degree of generalization.

The segmentation of level L2 comprises the scales and parameters necessary

to optimally depict the different landforms. For example, decreasing the colour

criterion improves the representation of water bodies, but worsens the taluses

at the same time. VNIR bands and DEM derivatives were brought into an

equilibrium of 4:3, so that spectral information dominates. Scale 13 guaranteed

the existence of necessary boundaries; decisive further ameliorations only set in

below scale 10. However, this would have increased the project and processing

times on the one hand, while leading to a lesser degree of abstraction due to

small image objects on the other. Hence parameterisation resulted in level L2

illustrated in Figure 3.3.



5.3. Object-oriented landform classification 185

Figure 5.3: The final Landform Classification on Level L2
Its 20 distinct classes completely cover the study area, leading to a
coherent thematic map which approximates ground truth well.
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5.3.3 Classification of the image objects on four levels

Each image object can be addressed by mean value, standard deviation and

ratio of the incorporated pixels next to its individual geometric features and its

neighbourhood. When working on several image levels, relationships, sub- and

superordinations, morphometric and class-related features can also be used for

class descriptions (Benz et al., 2004; Blaschke et al., 2002). This accommo-

dates three-dimensional alpine applications, provided that segmentation leads

to objects which describe natural features geometrically well (Schneevoigt et

al., 2008).

The four segmented levels were classified individually after developing the

corresponding classification hierarchy (Fig. 5.2). This knowledge base is edited

from class descriptions, which divide into contained features immanent in a

class itself and inherited ones passed on by parent classes in the class hierar-

chy. A combination of hard (L1) and soft (L2, L3, L4) classifiers enables this

approach generally resting on fuzzy logic. Hereby, floating thresholds provide

a margin for the attribution of an object to a class (Fig. 5.2, right). Soft

membership classifiers return fuzzy values between 0 (no assignment at all)

and 1 (full assignment) for each feature and image object considered. Besides,

fuzzy logic operators, which produce for instance sums, subsets and means,

link different feature terms (Baatz & Schäpe, 2000).

5.4 Results

The classification of level L1 renders ground land cover, level L4 the strata

mask, level L3 eastern and western walls of cirques and hanging valleys (see

Schneevoigt & Schrott, 2006). This leads to a sound L2 landform classification

(Fig. 5.3). The majority of classes such as cirques, rockwalls, floodplains and

sediments are identified well. Detection limits are reached with moraine and

rockfall deposits, because they have been overprinted by more recent processes
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Table 5.2: Confusion Table of the L2 Classification
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for centuries or millennia and therefore leave no characteristic marks on the

land surface. Then again, some target classes (Tab. 5.1) are further differen-

tiated than previously expected. For instance, the vegetation cover of slopes

and taluses was subdivided into high, medium and low natural cover, leading

to 20 thematic landform classes (Tab. 5.2) in Figure 5.3.

The final landform classification scores high in the assessments of both

overall accuracy (92 %), kappa coefficient (0.915), user’s and producer’s accu-

racy (Tab. 5.2). Only a few misclassifications occur, but they concern high

amounts of pixels, as level L2 consists of image objects of ten to hundreds of

pixels. Fuzzy classification stability, i.e. the degree of distinctness between

most and second most probable class affiliation, is lower (Fig. 5.4), but best

membership assignments score generally high, too. Alluvial fans tend to inter-

mingle with floodplains, while talus sheets and cones could not be differentiated

from one another. This owes to the fact that in situ, these landforms tend to

mostly coalesce, so that their exact assignment relies on interpretation by the

observer. Overall, the vegetation covers of talus show the highest confusion.

5.5 Discussion

Image segmentation represents an additional, time consuming step in the clas-

sification routine. Finding an optimal segmentation for L2 constituted a veri-

table challenge, because the often very faint signals from avalanche and debris

flow tracks should still be captured without ending at too small a resolution.

VNIR bands have to be given considerable weight, as they trace landforms

best. Yet the object-oriented approach makes the difficult high mountain ter-

rain manageable (Schneevoigt et al., 2008) and leads to sound results.

The good results partially owe to the fact that two distinct data sources

were combined for analysis: some target classes appear spectrally distinct (e.g.

sediments, rocks vs. vegetation covered features), whereas other landforms

could be separated by topographic information. For instance, Giles & Franklin
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Figure 5.4: Fuzzy Classification Stability of Level L2
Red = close proximity of best and second best membership assignment;
green = distal, stable assignments. The north-easternmost part of the
valley shows the most unstable memberships.
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(1998) investigating geomorphological slope units reach an overall accuracy of

88.5 % in their supervised classification based on prior image segmentation

and subsequent classification from training areas. However, the values in the

confusion matrix (Tab. 5.2) have to be taken with care: on the one hand,

object-oriented accuracy assessments tend to overestimate as they are based

on the previously generated, averaged image objects and not on individual

pixels. On the other, test areas were selected randomly, but without following

a regular spatial pattern. Hence further accuracy assessment with different,

pixel-based software is required. Besides, the classification quality of older

rockfall and moraine deposits could not be assessed, as they form no classes in

the hierarchy.

Varying illumination constitutes a problem in high mountain areas. It can

partially be mended by band ratio formation, i.e. the division of adjacent

satellite image bands: discrepancies between them are reinforced, while simi-

lar structures are simultaneously eliminated. Hence while useful features like

outlines of vegetation or ice/snow appear more clearly, atmosphere and re-

lief induced variations in illumination disappear, as they are highly correlated

in neighbouring bands (Paul, 2000). NDVI and other ratios form important

thresholds in the classification hierarchy (Fig. 5.2).

5.6 Conclusions and outlook

To further evaluate the results, the exact influences of image and DEM data

respectively should be assessed by analysing them individually. Moreover, the

transferability both of the segmentation parameterisation and the classifica-

tion hierarchy still has to be investigated. One can assume that the application

of such a two-step routine poses double problems. Conversely, Blaschke et al.

(2002) argue that object-oriented classification rules should be easier transfer-

able than pixel-based ones, as the former depend less on reflection values and

atmospherical conditions. When transferring the methodology developed in
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this study both to other datasets and regions, the appropriateness of NDVI

application should also be compared to soil-adjusted vegetation indices (for

details see Schneevoigt et al., 2008).

Many open questions remain to be answered in this interdisciplinary work

linking geomorphology and remote sensing. Albertz (2001) stresses that the

appropriate analysis of remotely sensed imagery can become highly difficult

when operating between disciplines, as remote sensing methods are not de-

livered with problem-adapted assessment factors. Then again, a broadened

knowledge on sediment storage features represents the prerequisite for further

insights into processual behaviour and landform development in the fragile

mountain environment (Schrott et al., 2003). Considering the good match

of the final landform classification and ground truth, the object-oriented ap-

proach constitutes a valuable tool for the Alpine sediment cascade, especially

in inaccessible regions. It remains to be investigated to which extend a purely

pixel-based classification scheme may handle this data.
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dung von ASTER. Asterdaten und ihre Verwendung im landschaftsöko-
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Modelling mass movement from

radar elevation data

published as

Ortega, R.Z. & N.J. Schneevoigt (2012):

Modelling potential debris flows from SRTM data in the up-

per Chama river watershed, northwestern Venezuela.

Revista Geográfica Venezolana 53(1): 93-108.

Debris flows in the Venezuelan Andes are common geomorphologic processes

which reflect the sediment supply capacity of this regional mountain system. In

this study, a regional model for potential debris flows on soil- and vegetation-

covered hillslopes in watershed domains is presented. The method consists of

a combination of remote sensing techniques, morphometric and hydrological

parameters using a Shuttle Radar Topography Mission (SRTM) digital ele-

vation model and an Advanced Spaceborne Thermal Emission and Reflection

Radiometer (ASTER) scene. The study area comprises the upper Chama river

basin, located in the central Andean region of Venezuela. Source, runout and

deposition areas for the potential debris flows are modelled as a function of

topography and sediment dynamics, implementing the Distributed Melton´s

Ruggedness Number (DMRN) and the Modified Single Flow Model (MSFM).
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6.1 Introduction

Hydrologically induced debris flows are the most common mass movement

types in the Venezuelan Andes (Laffaille, 2005). They often occur in forested

areas of watershed domains, and are usually associated with the seasonal varia-

tion of precipitation patterns in this region (Ferrer, 1993; Laffaille, 2005). The

debris flow events in the upper Chama river basin, central Andean region of

Venezuela, are characterised by coarse, poorly sorted, non-cohesive weathered

material, including large boulders (Ingeomin, 2007; Roa, 2007). Their source

areas are mainly located in the proximity of ridges, e.g. Montalbán debris flow,

or close to primary and secondary stream channels, e.g. Las Calaveras debris

flow, with slopes ranging from 20◦ to 40◦ (Ingeomin, 2007; Roa, 2007).

Debris flows are caused by intensive downpours over a short period of time

and occur mainly at the end of the second precipitation season (October -

November). This indicates a relationship between the first precipitation season

(April - May), soil moisture conditions, runoff infiltration in hillslopes and the

triggering of debris flows in the basin (Ferrer and Laffaille, 2005). Runouts

range from 4 km length, e.g. Las Calaveras debris flow, to 11,5 km, e.g.

Montalbán debris flow. They differ from place to place as a function of distance

between source areas and potential deposition areas, slope and rheological

characteristics of the flow (Ingeomin, 2007). The last one is beyond the scope

of this study. In spite of the threat that these geomorphological processes pose

for inhabited areas along the upper Chama river basin, a regional debris flow

hazard assessment has not been proposed yet. Furthermore, the contribution

of these natural phenomena to the overall sediment dynamics of the regional

river system, and their influence on the torrential behaviour of the Chama

River and its tributaries, is poorly understood.

In this study, a regional model for potential debris flows on soil- and

vegetation-covered catchment areas is proposed for the upper Chama river

basin, north-western Venezuela. It models source, run-out and deposition ar-
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Figure 6.1: Relief Map of the upper Chama river basin

Relative location map (upper left) modified from Corporación Andina
de Fomento (CAF, 2008). The yellow numbers indicate the rain stations
displayed in Fig. 6.2.
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eas for potential debris flows along the Chama River and its tributaries as a

function of topography and sediment dynamics. A set of morphometric and

geomorphological parameters are applied to determine potential source areas

using the Distributed Melton’s Ruggedness Number (DMRN) in combination

with primary topographic derivatives.

6.2 Study area

The area of study is located in the central region of the Venezuelan Andes in the

Mérida Mountain Range (Fig. 6.1). It comprises the upper Chama river basin

between 8◦ 29’ and 8◦ 53’ N and 71◦ 19’ and 70◦ 53’ S, and covers a total area

of 1900 km2. In the north, it is flanked by Sierra de La Culata, with maximum

heights of 4800 metres above sea level (m a.s.l), and in the south by the Sierra

Nevada reaching 5000 m a.s.l (Schubert, 1980; Bellizzia et al., 1981; Ferrer,

1993). Both Sierras are formed by a Precambrian crystalline basement that

consists mainly of igneous and metamorphic rocks, and present very distinctive

periglacial, alluvial and fluvial landforms (Cabello, 1966; Bellizzia et al., 1981;

Ferrer, 1993; Schubert and Vivas, 1993; Silva, 1999; Ferrer and Laffaille, 2005).

Regarding precipitation patterns, the study area is characterised by a bimodal

precipitation regime, with two maxima in April and October and two minima

in February and August (Ponte, 1976; Rojas and Alfaro, 2000) (Fig. 6.2).

6.3 Methods

The methodology employed in this study consists of a combination of morpho-

metric and geomorphological analyses. Their inputs are a Shuttle Radar To-

pography Mission (SRTM) digital elevation model (DEM) collected in C-band

(90 m resolution) in February 2000 and an Advanced Spaceborne Thermal

Emission and Reflection Radiometer (ASTER) satellite image (15 m resolu-

tion) of 1 February 2004. Their geomorphological assessment involves three
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Figure 6.2: Monthly Precipitation along Chama River.

The locations of the respective rain stations (MARN, 2006) are shown
in Fig. 6.1.

distinct steps: DEM optimisation and evaluation, identification of source areas

and identification of probable run-out areas (Fig. 6.3).

6.3.1 DEM optimisation

The information gaps in the original SRTM DEM (SRTM FTP server, 2006)

were filled by spline interpolation and the random errors removed using a low-

pass filter (Li et al., 2005; Neteler and Mitasova, 2007). The accuracy of the

SRTM DEM was assessed with the root mean square error (RMSE) equation:

RMSE =

√√√√ 1

n

n∑
i=1

di
2 (6.1)

where di
2 = Zest − Zobs. Zest is the DEM value, Zobs the field-measured

elevation value and n the number of ground control points (GCPs) collected.

For this purpose, 76 GCPs were collected with a hand-held GPS receiver during

a field excursion.
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6.3.2 Identification of source areas using the DMRN

In this step, the processed SRTM DEM is used to calculate the hydrological

parameters, i.e. flow accumulation, flow direction and pour points, required to

extract the basin area extent and catchment height. These DEM derivatives

are further used as main input parameters for calculating Melton´s Ruggedness

number (MRN) in a distributed form. MRN is a dimensionless index of basin

ruggedness, that normalises the basin relief by areas (Marchi and Fontana,

2005; Rowbotham et al., 2005). Ruggedness is one of the most commonly

used morphometric measures to identify debris torrent basins, since it reflects

the relief potential of a landscape (Rowbotham et al., 2005). The MRN was

also successfully used to differentiate debris flow prone basins from non debris

flow prone basins (cf. Jackson et al., 1987; Rowbotham et al., 2005), and to

identify channels with high versus low sediment transport capacity (Marchi

and Fontana, 2005).

For the purpose of this study, the original MRN was calculated as a con-

centrated morphometric indicator from

MRN =
Hmax −Hmin

A0.5
(6.2)

where Hmax and Hmin are maximum and minimum elevation values within

the basin and A0.5 is the drainage basin area (Melton, 1958). Equation 6.2 is

modified, resulting in the Distributed Melton´s Ruggedness Number (DMRN):

DMRN =
Have −Hc

A0.5
(6.3)

where Have represents the average height of all upslope cells over each

other, Hc the height of the considered cell in the SRTM DEM, and A0.5 the

drainage basin area in square metres (Marchi and Fontana, 2005). Catchment

height Have−Hc, also referred to as the average expected relative altitude of the
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Figure 6.3: Structure and Workflow of the Investigation
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upslope catchment area (cf. Gacetta, 1999), is obtained by assigning a value

equal to the average upslope catchment elevation minus the pixel elevation in

the SRTM DEM. This calculation uses an upward recursive method based on

the Multiple-Flow Direction Algorithm (MFDA) (Quinn et al., 1991),

di =
(tan βi)

fLi
n∑
j=1

(tan βj)
fLj

(6.4)

where j is the total amount number of downhill directions, tan β the local

slope, f a flow apportioning weight, Li the contour length weighting factors

for each flow direction i, and di represents the flow fraction allocated to each

pixel in the direction of i (Quinn et al., 1991; Holmgren, 1994). The reason

for selecting the MFDA lies in its high ability to capture spatial variability

of geomorphological features, when compared to other algorithms, i.e. Single-

Flow Algorithms (McNamara et al., 1999).

6.3.3 Identification of probable runout areas

Based on former empirical studies (cf. Eisbacher and Clague, 1984; Jackson

et al., 1987; Patton, 1987; Wieczorek, 1987; Marchi and Fontana, 2005; Row-

botham et al., 2005), the results of the DMRN, local slope calculation and

field observations, three criteria were established to delineate potential source

areas:

1) Only cells with DMRN values equal or higher than 0,17 were considered

(cf. Jackson et al., 1987; Marchi and Fontana, 2005; Rowbotham et al., 2005)

2) Slope values of the considered cells were equal or higher than 20° and

lower or equal 40°(cf. Wieczorek, 1987; Patton, 1987)

3) Cells were located in the proximity of ridges and close to expected pri-

mary and secondary stream channels (cf. Eisbacher and Clague, 1984; Patton,

1987; Wieczorek, 1987).
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Figure 6.4: SRTM DEM RMSE versus GCPs

SRTM DEM root mean square error (RMSE) compared to manually
collected GCPs.

Based on these three criteria, 53 potential source areas containing one or

more cells, were selected, and used as input to the Modified Single Flow Model

(MSFM). The MSFM is based on a single flow direction algorithm, where

the central flow line follows the direction of the steepest descent, and was

developed by Huggel et al., (2003, 2004). However, single flow algorithms

are unable to adequately simulate the spreading behaviour of debris flows in

less steep terrain and unconfined zones (Huggel et al., 2004). To solve this

limitation, Huggel et al., (2004) modified the model by integrating a function

that allows the flow to diverge up to 45° in unconfined and less steep areas.

This modification enables the model to simulate different characteristics of

debris flows in confined channel sections (stream channels) and in flat or convex

terrain, e.g. alluvial fans (Huggel et al., 2004).

Modelled debris flows stop when an average slope of eleven degrees (≤ 11°)

is reached. This last parameter is based on the H/L ratio (H is the difference

in elevation and L the path length) and can be modified to fit site specific

characteristics, where detailed information regarding the behaviour of debris

flows exists. For the study area, this information was not available; so that an
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Figure 6.5: Distributed Melton’s Ruggedness Numbers
DMRN values for the upper Chama river basin, where 0,34 indicates
high and 0 low sediment dynamics.
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average slope of 11°, originally calculated by Huggel et al., 2004 for the Swiss

Alps region (equivalent to a minimum H/L ratio of 0,19), had to be used. The

model also delineates the potential areas to be affected and assigns to each

cell the relative probability it has to be affected by a mass movement. It is

based on a linear function that defines that the more the flow diverges from the

steepest descent direction, the greater becomes the resistance, and therefore

the lower the probability for a point or cell to be reached (Huggel et al., 2004).

6.4 Results

6.4.1 DEM evaluation

The RMSE shows that the SRTM instrument over- and underestimates the

terrain elevation of the study area. A subtraction of the SRTM DEM values

and the observed values (GCPs) also reveals that the overestimation occurs

above 2800 m a.s.l and the underestimation below this elevation. These values

vary between +73 m and -49 m (Fig. 6.4). Furthermore, the elevation errors

of the SRTM DEM also indicate a slope/aspect dependency, which has been

already addressed by former studies (cf. Miliaresis, 2008).

In this particular case, the SRTM DEM underestimates the elevation in

east-facing slopes, and overestimates it in southeast-facing slopes. However,

to determine if the errors found in SRTM DEM are systematic it is necessary

to collect more GCPs, which is beyond the scope of this investigation.

6.4.2 Potential source areas

The 53 potential source areas for debris flows used in this study were delineated

with help of the DMRN and the local slope. For this purpose, hillslopes with

high relief potential, as a function of ruggedness and slope, were determined.

Using map algebra, the DMRN map was obtained by dividing the catchment
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height map by the entire catchment area map. In Figure 6.5, the grey colour

represents areas with very low sediment dynamics, which are mainly found

on ridges and plateaus. The green colour represents areas with low sediment

dynamics and constitutes the transition zones towards areas with medium to

high sediment dynamics (yellow and red colours). In addition, the DMRN map

also provides a general overview of the potential hazardousness of the Chama

river basin, especially of those hazards that are related to sediment dynamics,

e.g. sediment mobilisation as well as slope and fluvial erosion.

6.4.3 Modelled runout areas

48 potential debris flow runouts, out of the 53 source areas were delineated

with the MSFM. This represents 91 % of the total potential source areas. The

remaining 5 potential source areas (9 %), for which the MSFM did not model

the runout, are attributed to the existence of grid cells with slope values below

11◦, which is the average slope where the modelled debris stops. The results

of the MSFM are presented in Figure 6.6 which depicts the areas potentially

affected by debris flows (relative probability), the potential maximum inunda-

tion zones, as well as the flow reach of these events. The relative probability

indicates that the more the flow diverges from the steepest descent direction,

the greater becomes the resistance, and therefore the lower the probability for

a point or cell to be affected.

The flow reach component, on the other hand, is determined by the H/L

ratio used for calculating the MSFM. In this case, a H/L ratio 0,19 (equivalent

to an average slope 11◦) is used (Huggel et al., 2004). The value of the modelled

debris ranges from 0,5 to 1,0 and is expressed as a probability function, where

1,0 represents the highest and 0,5 the lowest probability for a point to be

reached by the modelled debris flow (Fig. 6.6).
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Figure 6.6: Modelled Debris Flows

DEM with 100 m contour lines shows modelled debris flows around the
city of Mérida. 1,0 represents the highest probability and 0,5 the lowest
probability for any point to be reached by a debris flow.



208

Paper V

Modelling mass movement from radar elevation data

Figure 6.7: False Colour Composite ASTER image

False colour composite ASTER image (Bands 2, 3 and 4), light green
represents sparse vegetation and agricultural land, bright purple urban
areas/bare soil and dark purple shows densely vegetated areas. De-
bris flow El Arenal, Nov. 2007 (lower right; photo taken by George
Volkhard); debris flow Las Calaveras, Nov. 2006 (upper left). Regard-
ing debris flow Montalbán, Oct. 1947, Fig. 6.9. The contour line
interval is 100 m.
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6.5 Discussion

Whenever a new model is applied on a theoretical basis, it needs to be vali-

dated with respect to its practical applications. In this case, it is of interest

to determine in which extent the DMRN and the MSFM correspond to the

reality of the study area. In order to establish qualitative statements about

the performance of the model, a comparative visual assessment was carried out

using the following materials: a historical air photo (1947) with spatial reso-

lution of 1:40000 (Ingeomin, 2006), a morphopedological map with a 1:50000

scale (Contreras, 2005) and an orthorectified ASTER image (1 February 2004)

with a resolution of 15 m. This visual assessment was validated through three

fieldwork excursions between November 2006 and March 2007. During these

excursions, GPS points were collected and complemented with further imagery,

i.e. digital photos (Figs. 6.7 and 6.8).

In general, the MSFM determined the relative probability for a cell to be

affected, the potential maximum inundation extent of the modelled debris flows

and flow reach of the events. The discrepancies between the model and reality

resulted from the usage of a H/L ratio of 0,19 equivalent to overall slope 11°,

originally calculated for the Swiss Alps region in Europe. Another source of

discrepancies lies in DEM model dependency. The MSFM used the steepest

descent path approach (single flow algorithm) and the H/L ratio to calculate

the direction and the outreach of debris flows. Both calculations implied the

use of slope as main parameter. In former studies, slope values were found

to exhibit variations with the change of the DEM resolution (cf. Deng et

al., 2007), resulting in a systematic decrease or increase of slope values by

coarsening or fine-graining DEM resolution.

Regarding the DMRN, the model showed not only areas of the subbasins

where sediment transport initiates, but also locations along stream channels

suitable for trapping debris material from upstream areas. These areas rep-

resent transition zones from debris flows to bedload transport and are very
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Figure 6.8: Montalbán Debris Flow Event

Aerial photo taken in 1947 in the aftermath of the Montalbán debris
flow event (Ingeomin, 2006).

important to predict the flow process at the outlet of the basin. The DMRN

also determined deposition areas, which are consistent with the deposition ar-

eas modelled by the MSFM and with the alluvial fans mapped by Contreras

(2005) and Roa (2007) (Fig. 6.9). The results of the DMRN were satisfying

with regard to their function as geomorphologic indicator, i.e. differentiating

between areas with high and low sediment transport (cf. Jackson et al., 1987;

Marchi and Fontana, 2005; Rowbotham et al., 2005). Besides, they provided

a general overview of the distribution of the topographic ruggedness.

Regarding the relative probability of being affected, the highest probability

(1,0) is found in the proximity of the defined source areas, at the base of

steep slopes, while low and medium values of relative probability characterised

diverting areas, i.e. alluvial fans. In general, MSFM results indicated that

the relative probability for cells or areas to be affected varies from high to
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Figure 6.9: Modelled Debris Flow Deposition Zones

Example of deposition zones as modelled by the DMRN and MSFM,
draped over the SRTM DEM (box A) and the false colour ASTER image
(urban areas appear in light blue colour). The contour line interval in
both images is 100 m. To the lower right, a terrain complexes map of
the Chama river Basin depicting the predominant landforms.
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Figure 6.10: Debris flows reaching Alluvial Fans

Examples of modelled debris flows reaching alluvial fan areas, e.g.
urban areas, draped over the SRTM DEM. Urban areas are shown in
black on the DEM (A, B, C and D). The same areas are shown in the
ASTER image (A, B, C and D). Ruby colour implies vegetated areas,
light blue represents buildings. The contour line interval is 100 m.
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low along the entire upper Chama river basin with the highest values located

in tributary watershed systems (Fig. 6.6). Through a visual assessment of

the orthorectified ASTER image, it is estimated that 48 potential debris flows

out of 53 modelled source areas will reach an alluvial fan, i.e. farmland or

residential areas (Fig. 6.10 A, B, C and D). The five remaining potential

source areas exhibit a short runout, which can be attributed to overall slope

value lower than the threshold of 11◦.

6.6 Conclusions

This investigation demonstrates that the combination of remote sensing data

(SRTM DEM) with morphometric and hydrologic parameters is suitable for

modelling geomorphologic processes on the regional scale of the study area.

Despite the complex characteristics of rugged terrain and the limitations stem-

ming from the structure of the models used and their DEM dependency, the

results of the DMRN and MSFM in the Venezuelan Andes are considered to

be realistic. They reflect the sediment dynamics of the study area and coin-

cided with vulnerability and susceptibility studies conducted in recent years

(cf. Maldonado, 2007; Roa, 2007; Caritas, 2010).

The following main conclusions can be drawn:

1. The DMRN is useful to determine potential debris source areas in wa-

tershed domains. Furthermore, it provides a general overview of the level of

dissection of the basin based on relief variation, thus allowing to differentiate

areas with high sediment dynamics from those with low sediment turnover.

2. MSFM is able to model runout and deposition zones for potential debris

flows along the upper Chama river basin using a SRTM DEM with a resolution

of 90 m. The areas where the potential debris flow model shows a short runout

are consistent with the presence of grid cells with overall slopes ≤ 11◦, which

is the stopping threshold value (H/L ratio) for the modelled debris.
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3. MSFM and DMRN render divergent results in some sections of the po-

tential deposition zones on flat terrain, i.e. on alluvial fans. These differences

originate from the different flow algorithms used for the calculation of both

models.

Regarding the limitations of this model, it is important to mention that

both DMRN and MSFM consider neither the volume of the potential source

areas, nor the type of material available. This deficiency can however be

counterbalanced by extensive surveying in the respective basin domains or by

using advanced models in combination with the model proposed here, e.g. 3D

dynamic models. For further studies, a downscaling of this approach and the

use of detailed geological maps are suggested. The inclusions of topographic

parameters like curvature and wetness index are recommended, as well as a

landcover classification with emphasis on stream channel domains.

6.7 Acknowledgements
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valle del ŕıo Mocot́ıes y su impacto geomorfológico. Revista Geográfica
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Differential synthetic aperture radar interferometry (DInSAR) exploits the co-

herence between the phases of two or more satellite synthetic aperture radar

(SAR) scenes taken from the same orbit to separate the phase contributions

from topography and movement by subtracting either phase. Hence pure ter-

rain displacement can be derived without residual height information in it, but

only the component of movement in line-of-sight direction is represented in a

differential interferogram. Comfortlessbreen, a recently surging glacier, flows

predominantly in this direction with respect to the European Remote Sens-

ing satellites ERS-1 and ERS-2. Four C-band SAR scenes from spring 1996

were selected because of the high coherence between the respective pairs of

219
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the one-day repeat-pass tandem mission of the ERS sensors. 2-pass DInSAR

is performed in combination with a SPOT 5 (Satéllite pour l´Observation de

la Terre 5) SPIRIT (SPOT 5 stereoscopic survey of Polar Ice: Reference Im-

ages and Topography) digital elevation model (DEM) from 2007. The different

processing steps and intermediate image products, including unwrapping and

generation of displacement maps, are detailed in order to convey the DInSAR

processing chain to the beginner in the field of interferometry. Maximum hor-

izontal displacements of 18 to 20 cm d−1 in ground range direction can be

detected at the glacier terminus, while a few centimetres per day characterised

most of the middle and upper portions of Comfortlessbreen in spring 1996.

7.1 Introduction

Spaceborne interferometric synthetic aperture radar (InSAR) was introduced

by Goldstein and others (1988) and first applied to glaciers by Goldstein and

others (1993). It takes advantage of the coherence between the phases of

two SAR scenes from the same satellite orbit, even in areas with poor visual

contrast like ice caps and glaciers. As it depends on active microwave sensing,

SAR data can also be acquired through clouds and at night. Information on

movement and elevation are both contained in a single interferometric phase

(Gens and van Genderen 1996; Joughin and others 1996).

Differential interferometry represents a means to separate displacement

from topographic information. While Gabriel and others (1989) described

DInSAR using three SAR scenes (3-pass DInSAR without DEM) over land,

Kwok and Fahnestock (1996) obtained glacier velocities by differentiating the

fringe structures in two independent interferograms (4-pass DInSAR without

DEM). Cumming and others (1997) applied 2-pass DInSAR with DEM to

measure alpine glacier flow. These different approaches have become estab-

lished glacier monitoring tools, which are constantly being refined (Rosen and

others, 2000; Rott, 2009). Because of the short 24 h time span and hence the
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Figure 7.1: Comfortlessbreen on Svalbard Archipelago

Background: section of a modified C-band SAR amplitude image
(5 April 1996) by ERS 1.

high potential for coherence between SAR scene acquisitions, the ERS-1/-2

tandem mission of 1995/96 still represents a unique data source for interfero-

metric and glaciological analyses (Eldhuset and others 2003; Wangensteen and

others 2005; Rott 2009). Examples of interferometric surge research are given

in Joughin and others (1996), Murray and others (2003) and Pritchard and

others (2005).

This study focuses on glacier dynamics, aiming at a reconstruction of glacier

flow with ERS-1/-2 data from April and May 1996 and a SPOT 5 DEM from

2007 (Tab. 7.1). This allows a look into the past quiescent phase of Comfort-

lessbreen (Fig. 7.1) about a decade before its surge (Sund and others 2009;
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Sund and Eiken 2010), to infer 1996 velocities. The goal of this paper is to

render a thorough and well illustrated, low threshold description of the DIn-

SAR workflow necessary to arrive at movement information. The entry into

differential interferometry shall thus be facilitated.

7.2 Geographical setting and glacier surges

Svalbard lies in the North Atlantic (74◦ to 84◦ N, 10◦ to 34◦ E), south of the

Arctic Ocean (Fig. 7.1). Glaciers cover about 60 % of the archipelago. Many

of them are surgetype (Hagen and others 1993; Sund and others 2009) with

typically low quiescent-phase velocities around 10 m a−1 (Melvold and Hagen

1998; Nuttall and others 1997).

Glacier surges are sudden increases in velocity of 10 to 1000 times the

quiescent flow, rapidly transferring large ice masses from higher to lower areas

(Meier and Post 1969; Murray and others 2003). In Svalbard, surges tend to

last in total at least∼ 10 a (Dowdeswell and others 1991; Sund and others 2009)

and quiescence 30 to 500 a (Dowdeswell and others 1991; Hagen and others

1993). Between surges, velocities remain too low to maintain balance, which

causes build-up of glacier mass (Melvold and Hagen 1998). More knowledge on

surge dynamics is important because surges can have great impact on glacier

geometry, and may affect assessments relating to climate change.

Some 20 km south of Ny Ålesund on Spitsbergen, the glacier Comfortless-

breen (Fig. 7.1), with an area of ∼ 65 km2 and a length of ∼ 15 km, is flowing

in a northwesterly direction from 1000 m above sea level (a.s.l.) to its partly

tidewater terminus (Hagen and others 1993). Its recent surge is described by

Sund and others (2009) and Sund and Eiken (2010).
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7.3 Data basis

Four C-band SAR scenes from April and May 1996 from the one-day repeat-

pass tandem mission of ERS-1/-2 are used for differential SAR interferometry

over Comfortlessbreen together with a SPOT 5 HRS (High Resolution Stereo-

scopic) SPIRIT DEM from 2007 (Korona and others 2009) with 40 m resolution

and 5 m height accuracy (Table 7.1). Each SAR image covers an area of ∼
100 x 100 km and was provided in single look complex (SLC) format to be

read into the Gamma Remote Sensing software (Wegmüller and Werner 1997)

in which all data processing was done.

Table 7.1: Data Basis of the Study.

Sensor Date Data type 

ERS 1 05.04.1996 SAR SLC 

ERS 1 10.05.1996 SAR SLC 

ERS 2 06.04.1996 SAR SLC 

ERS 2 11.05.1996 SAR SLC 

SPOT5-HRS 01.09.2007 SPOT DEM 

 

7.4 Differential SAR interferometry

7.4.1 Interferometric SAR (InSAR) principles

An SLC SAR image s consists of amplitude, magnitude or intensity informa-

tion | s | representing backscatter from the ground as perceived in Fig. 7.1,

and phase angles ϕ recorded as fractions (0 - 2π) of a radar wavelength λ with

an ambiguous number of full wavelengths. The number of fully completed

wavelengths of a radar signal is not measured (Hanssen 2001):

s = | s | e iϕ = | s | (cos ϕ + i sin ϕ) (7.1)
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Figure 7.2: Schematic Principles of SAR Interferometry
Two colour fringes with their interferometric phase ∆ϕ (left). Across-
track InSAR geometry with fat parallel baseline Bpara, perpendicular
baseline Bperp and antenna distances r1 and r2 (right). Satellite flight
direction perpendicular to figure plane.

Figure 7.3: Phase Coherence between Image Pairs
Left: 5–6 April 1996, right: 10–11 May 1996. Bright, yellow areas repre-
sent high coherence values. Intermediate, pink tones indicate moderate
correlation, while darker, turquoise zones imply low coherence.
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The phases of one SAR image alone contain few interpretable features, yet

when using the phase differences or interferometric phases ∆ϕ between two

images of the same orbit and area (Fig. 7.2), the phase differences ∆ϕ can

be represented in an interferogram to infer ground information (Gens and van

Genderen 1996; Moholdt 2010):

∆ϕ = ϕ2 − ϕ1 =
4π

λ
(r2 − r1)

=
4π

λ
(Bpara sin θ − Bperp cos θ)

(7.2)

with the distances r1 and r2 from a point on the ground to the satellite an-

tenna on the first and the second pass respectively (Fig. 7.2) and the radar

look angle θ between nadir and the target on the ground (topographic infor-

mation). Those two orbit passes are separated from one another temporally

by a temporal baseline Bt = 24 h in the case of the ERS-1/-2 tandem mission,

and in space by the spatial baseline Bs, corresponding to the distance between

the two satellite orbits. Bs can be expressed by parallel baseline Bpara and

perpendicular baseline Bperp (Fig. 7.2); those are calculated and refined during

interferogram generation.

In case of terrain displacement or deformation within the time interval

corresponding to Bt, this will lead to a distinct signal in phase difference next

to the inherent topographic contribution (Fig. 7.2). Hence Eq. 7.2 needs to be

expanded with a deformation term (Kwok and Fahnestock 1996; Wangensteen

and others 2005):

∆ϕ =
4π

λ
(Bpara sin θ − Bperp cos θ) +

4π

λ
∆ρ

= ∆ϕtopo + ∆ϕdisp

(7.3)

where ∆ρ represents the displacement component in line-of-sight direction.

This shows that the topography summand ∆ϕtopo is dependent on a spatial

baseline Bs, while the movement summand only depends on Bt, but not on

any Bs (Wangensteen and others 2005; Moholdt 2010).
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Figure 7.4: Flat Earth Correction in Wrapped Interferograms
Interferograms of 5–6 April 1996 (top) and 10–11 May 1996 (bottom)
wrapped around modulus 2π with amplitude images as background.
Phases from flat Earth, topography, movement, atmosphere and noise
(left). Flat Earth phase corrected (right).
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7.4.2 Phase coherence and interferogram generation

Very accurate image co-registration as well as high coherence (Fig. 7.3), that

is only slight differences within a SLC image pair, are mandatory for interfer-

ogram generation (Rosen and others 2000; Weydahl 2001). Offset estimation

via iterative image matching was used to co-register the two respective image

pairs (Table 1), which were selected because of their high coherence (Weydahl

2001), with sub-pixel precision. Then one complex ERS-1 SAR image was mul-

tiplied with the complex conjugate of the other ERS-2 image taken 24 h later

(Rosen and others 2000; Rott 2009). In the resulting raw interferogram, the

phase differences ∆ϕ between the two satellite images are displayed modulo

2π as colour fringes (Figs. 7.2, 7.4). Those phase differences contain a mixed

signal made up not only of topography (∆ϕtopo) and displacement (∆ϕdisp)

as represented in Eq. 7.3, but also of contributions from flat Earth trend

(∆ϕflat), and possibly atmospheric influences (∆ϕatmo) and noise (∆ϕnoise)

(Weydahl and others 2001; Fig. 7.4, left):

∆ϕ = ∆ϕflat + ∆ϕtopo + ∆ϕdisp + ∆ϕatmo + ∆ϕnoise (7.4)

∆ϕflat and ∆ϕtopo result from the sideward SAR viewing geometry and can

be precisely computed with accurate orbit data and DEMs; ∆ϕdisp only cap-

tures displacements in range line of sight of the sensor (Cumming and others

1989; Kwok and Fahnestock 1996; Rott 2009). Fast movements appear blurred

in radar applications due to decorrelation or coherence loss (Weydahl, 2001;

Eldhuset and others, 2003). Therefore, radar imagery better reflects glacial ac-

cumulation areas and slowflowing glacier parts (Goldstein et al, 1993; Joughin

and others, 1996; Eldhuset and others, 2003; Pritchard and others, 2005).

Flat Earth phase removal constitutes the first step in interferometric pro-

cessing (Fig. 7.4), followed by filtering (Rott 2009; Wegmüller and Werner

1997). Remaining phase differences are then due to topography, movement,

atmosphere and noise (Fig. 7.4, right). When working with only one single

SLC pair as in basic InSAR processing (Goldstein and others 1993), the ∆ϕ
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Figure 7.5: Removal of badly correlated Image Sections
Coherence masks with threshold 0.8 for the interferograms of April (left)
and May 1996 (right). Coherence ≤ 0.8 is masked out for unwrapping
(black colour).

constituents (Eq. 7.4) cannot be further resolved without additional support-

ing data; ground control points, other ground truth or DInSAR applications

(see 4.4.) are necessary to this end.

7.4.3 Phase unwrapping

Fig. 7.4 represents intermediate InSAR results; phase unwrapping must be

effectuated in order to obtain a final interferogram. This can then be inter-

preted correctly, as its fringes represent continuous values instead of being

wrapped around modulus 2π. Phase unwrapping means adding integer multi-

ples of 2π to ∆ϕ whenever it jumps back to 0 from 2π; a crucial and difficult

step (Gens and van Genderen 1996; Wegmüller and Werner 1997; Moholdt

2010). Low coherence cannot be unwrapped and has to be masked out (Fig.

7.5). Several algorithms have been developed for unwrapping; implemented

in Gamma (Wegmüller and Werner 1997) are the branchcut region growing

algorithm (Goldstein and others 1988) and the minimum cost flow (MCF)
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Figure 7.6: Interferogram Simulation from Elevation Data
Simulated interferogram from SPOT 5 DEM of 2007 transformed from
map projection into radar geometry (left) based on simulated amplitude
image from DEM in RDC (right).

technique with a triangular irregular network (TIN) (Costantini 1998). Both

approaches were tested in this study.

7.4.4 2-pass differential InSAR (DInSAR) with DEM

DInSAR consists in subtracting the interferometric phases of one interfero-

gram (∆ϕ1) from another one (∆ϕ2) to separate the phase contributions from

topography and movement (Eqs. 3, 4) by subtracting and thus removing ei-

ther of those phases. Hence pure terrain displacement can be derived without

residual height information, or alternatively pure DEM information without

motion signals. The InSAR baselines Bs1 and Bs2 must differ for this effect,

while motion is assumed to be constant (Rott 2009):

∆ϕ1−2 = ∆ϕ1 − k ∆ϕ2

= (∆ϕtopo1 − k ∆ϕtopo2) + (∆ϕdisp1 − k ∆ϕdisp2)

+ (∆ϕatmo1 − k ∆ϕatmo2) + (∆ϕnoise1 − k ∆ϕnoise2)

(7.5)
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Figure 7.7: InSAR Phase Unwrapping using MCF
Linear jumps due to tile borders, phase inconsistencies and some base-
line effects. Left: 5-6 April 1996 (Bperp ∼ 12 m), right: 10-11 May 1996
(Bperp ∼ -66 m).

A scaling factor k is introduced at this point. When aiming at the topographic

phase component ∆ϕ1−2 = ∆ϕtopo12 , k must equal 1 (Moholdt 2010). As

topography depends on Bs, while movement does not (Eq. 7.3), constant

movement becomes fully subtracted for k = 1. Then topography or DEM

information can be generated from Eq. 7.5. However, when aiming at displace-

ment ∆ϕ1−2 = ∆ϕdisp12 , a scaling factor k 6= 1 has to be used to allow for

a complete removal of the perpendicular baseline and hence the topographic

phase. Phase noise may increase due to interferogram scaling (Eq. 7.5).

Differential interferometry can be done by 2-pass DInSAR with two tandem

SAR scenes and a DEM (Cumming and others 1989) as in this study, or

by combining three (3-pass DInSAR) or more satellite scenes from the same

orbit. Two interferograms are generated and then subtracted from one another

(Joughin and others 1996; Kwok and Fahnestock 1996; Eldhuset and others

2003). In 2-pass DInSAR, a reference interferogram with ∆ϕ corresponding

to surface topography is simulated based on a DEM in radar geometry (Fig.

7.6). Thus the DEM must be read into radar doppler coordinates (RDC). An
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initial geocoding look-up table links Universal Transverse Mercator (UTM)

coordinates to range-doppler geometry (Fig. 6, left). Then a SAR intensity

image is simulated based on DEM and SAR imaging geometry (Fig. 6, right).

Offsets are iteratively improved via pixel matching and subsequently the look-

up table, so that a fine registration of the DEM becomes possible. Forward

geocoding finally allows the transformation of the DEM UTM projection into

RDC with improved coordinate relationships (Wegmüller and Werner 1997).

Afterwards, a first wrapped differential interferogram (Fig. 7.8, top) is

generated by subtracting the unwrapped simulated phase k∆ϕ2 (Eq. 7.5)

from the complex, that is wrapped interferogram ∆ϕ1 (Fig. 7.4, left); both still

contain ∆ϕflat. Residual linear phase trends are determined by Fast Fourier

Transform and removed by baseline model refinement. The corresponding

unwrapped unflattened topographic interferometric phase is then resimulated

with a baseline refined with help of the RDC DEM, and a second differential

interferogram produced (Fig. 7.8, bottom).

7.5 Results

When unwrapping the interferograms, the MCF technique with a TIN (Costan-

tini 1998) led to smoother and more continuous results than the branch-cut

algorithm (Goldstein and others 1988), therefore it was given preference in

this study. Figure 7.7 shows the maximum spatial unwrapping extent when

using 5 x 5 tiles, which divide the image into 25 rectangles. Those tiles are

unwrapped individually with a certain overlap and then reassembled by the

algorithm. A few horizontal and vertical linear jumps in the colour fringes

remain from tiling in Fig. 7.7. Besides, some baseline effects from the lower

right to the higher left corner can be observed (Fig. 7.7, left). The final

interferograms were generated using 3 x 2 tiles and a reduced image subset.
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Figure 7.8: Differential Interferograms of Comfortlessbreen
Top: first complex-valued differential interferogram based on ERS-1/-2
data of 5-6 April 1996 and the SPOT-5 DEM. Linear colour shift from
top left to bottom right due to small errors in the baseline model. Bot-
tom: refined complex-valued differential interferogram after removal of
linear phase trends via baseline residual correction.

The elevation difference corresponding to one 2π fringe in an unwrapped

interferogram is (Weydahl and others 2001):

∆h2π =
λ ra sin θ

2Bperp
(7.6)

with ra being antenna distance r1 or r2. For 5-6 April 1996 with Bperp ∼ 12 m,

one fringe represents ∆h2π = 793 m of altitude, and for 10-11 May 1996 (Bperp

∼ -66 m) 144 m.

Glacier velocities in line-of-sight between scene acquisitions can be derived

from the differential phase (Murray and others 2003; Wangensteen and others

2005) after filtering and unwrapping by MCF, leading to orthonormal dis-

placement maps for horizontal, vertical and look vector movement component

respectively (Fig. 7.9). The DInSAR analysis of Comfortlessbreen reveals hor-

izontal displacements of ∼ 20 cm d−1 (5-6 April 1996) and ∼ 18 cm d−1 (10-11

May 1996) at the glacier terminus and < 3 cm d−1 in the middle and upper
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Figure 7.9: Comfortlessbreen Glacier Flow
Filtered and unwrapped differential interferograms transformed into dis-
placement maps (left: 5–6 April 1996 and SPOT5 DEM, right: 10–11
May 1996 and SPOT5 DEM): horizontal (top), vertical (middle) and
movement along the look vector (bottom) with 20 cm d−1 displacement
per full colour cycle (from cyan to magenta).
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glacier portions (Fig. 7.9). These measured velocities correspond to < 11 m

a−1 along most of the glacier, while they increase towards 73 m a−1 in the

lowermost 2.5 km, respectively. In the topmost area of the glacier, velocities

of around 6 cm d−1 can be noted, which is commensurate to 22 m a−1.

7.6 Discussion

The DInSAR displacement rates stated above are consistent for both April and

May scenes and indicate a pre-surge velocity level on Comfortlessbreen in 1996.

For Svalbard glaciers known to have surged, low velocities around 10 m a−1 are

typically measured during quiescence (Nuttall and others 1997; Melvold and

Hagen 1998) due to their polythermal regime. Tidewater glaciers commonly

increase velocities towards the terminus (Vieli and others 2004), as is the case

here (Fig. 7.9). The ratio from lowest (< 3 cm d−1) to highest (20 cm d−1)

velocities is 7 (11 m a−1 to 73 m a−1). Increasing velocities in the cirque

region in spring 1996 (Fig. 7.9, top) may represent the first indicator of surge

initiation, surge stage 1 as suggested by Sund and others (2009). During surge

in 2008 however, this pattern changed. Despite generally increased velocities

of ∼ 2 m d−1 (730 m a−1), the velocity gradient, was reduced, ranging from

1.17 m d−1 (427 m a−1) at mid-glacier to 2.06 m d−1 (752 m a−1) at the

terminus (Sund and Eiken 2010; M. Sund, personal communication, 2011),

hence reducing the velocity ratio along glacier to < 2. DInSAR thus provides

a basis for the comparison of changes from quiescence displacement levels to

surge.

The potential accuracy of repeat-pass InSAR surface change detection lies

in the millimeter range (Gabriel and others 1989; Goldstein and others 1993;

Weydahl 2001). Yet ∆ϕ decorrelates for ERS SAR images at ∼ 7.2 cm for

horizontal movements in line of sight (Weydahl 2001). To the central west in

Fig. 7.3, fast flowing Kronebreen with its 2 m d−1 (Weydahl 2001; Eldhuset

and others 2003) appears very blue and decorrelated especially towards its
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margins. Such speeds as also reached in the Comfortlessbreen surge in 2008

(Sund and Eiken 2010) cannot be captured by DInSAR; SAR offset tracking

and optical image matching represent possible alternatives.

Atmospheric influences, imprecise orbit information, signal noise and as-

sumption of displacement along the elevation gradient represent the principal

error sources in InSAR (Strozzi and others 2010). An assumed error in line-of-

sight displacement of < 0.7 cm for ERS-1/-2 results from a total phase error of

a quarter wavelength (Crosetto and others 2008; Strozzi and others 2010). As

shown in Eqs. 4 and 5, contributions from atmospheric influences (∆ϕatmo)

and noise (∆ϕnoise) are still contained in the generated (differential) interfer-

ograms (Weydahl and others 2001; Rott 2009). Ideally, ∆ϕatmo and ∆ϕnoise

would be fully subtracted in the DInSAR process. However, ∆ϕatmo may dif-

fer between repeat pass acquisitions due to varying atmospheric water vapour

content. This cannot easily be corrected for, as the necessary additional data

would have to cover the entirety of the atmospheric strata and is seldom avail-

able (Gens and van Genderen 1996; Hanssen 2001; Rott 2009). As shown in

Fig. 7.3, the phase coherence of the May image set is higher than in the April

one, in which some temporal decorrelation over the northern central part of

the scene occurs, possibly due to snowfall, snow drift, melting or atmospheric

influences (Rott 2009). Besides, SAR data penetrates the ground surface to

a certain extent. Hence inferences on and even below the glacier surface are

possible, concerning roughness, wetness and melting conditions amongst oth-

ers.

Because of the introduction of k, ∆ϕnoise may increase. In order to reduce

noise or speckle, a salt-and-pepper effect due to interferences between the many

scatterers within one image pixel, the image grid can be spatially transformed

to a lower resolution by averaging several looks at the same pixel, resulting in

a multilook image (MLI) with better amplitude correlation and phase coher-

ence between images at the expense of a lower spatial resolution (Kwok and

Fahnestock 1996). MLI generation represents a means to find out how much
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noise is left in the interferograms; therefore different MLI parameter settings

should be compared to the results given here. With regard to the velocities

given earlier, the errors cannot be precisely calculated within Gamma for all

pixel values of a DInSAR scene. Testing all possible combinations of ERS-1/-2

SAR scenes together with more DEMs represents a means to account for the

various possible error sources.

A short Bperp is advantageous for deriving displacement such as glacier flow,

as it leads to extremely high topographic height spans represented within one

fringe, like ∆h2π = 793 m as given for the April pair. This reduces DEM influ-

ence to a minimum, as most fringes in the corresponding interferogram then

result from movement. The tallest peaks on Svalbard reach ∼ 1700 m a.s.l.,

thus a maximum of only two entire colour cycles stem from topography in the

case of Bperp ∼ 12 m (Fig. 7.4, top). As Comfortlessbreen reaches up to 1000

m a.s.l., some 1.3 colour cycles represent the maximum possible topographic

contribution which might still be found in the unwrapped interferogram in

Fig. 7.7 (left) which has not been differentiated from a simulated radar DEM

phase. Since interferometric sensitivity to displacement is independent of the

baseline Bperp, while it increases with the baseline for topography, short (or

zero) spatial baselines are advantageous for InSAR displacement assessments

and provide better coherence (Rott 2009).

7.7 Conclusion and outlook

This study provides a step-by-step introduction to differential interferometry

exemplified by Comfortlessbreen. 2-pass DInSAR with DEM yields useful and

consistent displacement maps for 1996, a period where little ground truth is

available for the glacier. The results allow for comparison between surge and

quiescence levels, showing a reduction in velocity gradient along glacier within

∼20 years to a fourth, even though velocities increased 10 to 60 times. More

flow analyses are necessary to assess surge behaviour.
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It would be interesting to look further into atmospheric influences by com-

paring our results to local meteorological data, which are limited to ground

observations in 1996. No accurate corrections are hence possible. By assess-

ing different DInSAR combinations of the ERS-1/-2 scenes with and without

DEMs, conclusions could be drawn on whether the decorrelation in the April

set is due to changes in the atmosphere or on the ground.

Our results are also valuable with regard to new tandem missions which al-

low for interferometric analyses again. For example, the COSMO/SkyMed con-

stellation with its current four satellites (X-band SAR) can be flown in InSAR

modus with either one-day, four-day, eight-day or 16-day tandem recording.

TerraSAR-X and TanDEM-X or the C-band Radarsat Constellation Mission

represent other sources of interferometry-compliant SAR data.
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Annual Alumni Meeting of the Daimler and Benz Foundation, Ladenburg,

Germany (talk).

Schneevoigt, N.J., Bogren, W., Sund, M., Weydahl, D.J. & A. Kääb (2011):
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