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 Preface 

1. Introduction 

1.1. Motivation and scope of the thesis 

Lithospheric-scale faults and shear zones produce large offsets of crustal rock units. A 

number of thermal processes, such as shear heating, fluid flow, and/or metamorphic reactions, 

may be active during the tectonic evolution of these structures and significantly perturb the 

thermal state of the crust. 

In compression, thrust faults may transport nappes over large distances, e.g. exceeding several 

hundreds of kilometres in the case of the Scandinavian Caledonides (Gee, 1978). Inverted 

metamorphic isograds in the Scandinavian Caledonides (Andreasson and Lagerblad, 1980) 

and in the Main Central Thrust of the Himalayas (England and Molnar, 1993; Pecher, 1989), 

amongst others, exemplify the thermal signature associated with thrusting and suggest a 

coupling between the tectonic setting and the thermal state of the crust. Such geological 

observations led to extensive research in identifying particular processes controlling the 

coupling and interplay between tectonics, deformation, and temperature evolution. 

In extension, crustal-scale detachments may develop along low-angle normal faults and 

extensional shear zones (Lister et al., 1986; Wernicke, 1981, 1985, 2009). Low-angle 

extensional structures have been recognised in many orogenic belts such as in the Basin and 

Range Province (Wernicke, 1981), in the Hercynian French Massif Central (Malavieille et al., 

1990; Menard and Molnar, 1988), or in the Scandinavian Caledonides in western Norway 

(Hossack, 1984; Norton, 1986; Seranne and Seguret, 1987). Large crustal-scale extensional 

detachments appear to be a common geological feature accommodating mantle exhumation 

both during post-orogenic extension (Davis, 1983; Lister and Davis, 1989) and during hyper-

extension in rifted passive margins (Lagabrielle et al., 2010; Manatschal, 2004; Osmundsen 

and Ebbing, 2008). 
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The thermal evolution of crustal-scale detachments have been mostly determined by the study 

of high-grade metamorphic rocks in their footwalls (Hacker et al., 2003; Johnston et al., 2007; 

Jolivet et al., 1996; Labrousse et al., 2004; Root et al., 2005; Young et al., 2011). Veins 

analysis from detachment shear zones suggest fluid circulations during deformation but the 

thermal feedback to the system is still poorly quantified (Famin and Nakashima, 2005; Famin 

et al., 2004; Gottardi et al., 2011; Morrison and Anderson, 1998; Mulch et al., 2006). In 

comparison to the studies in the footwalls, the thermal evolution of the hangingwall units has 

received much less considerations.  

The subsidence of the hangingwall of a crustal-scale detachment is usually accompanied with 

the formation of sedimentary basins on the top, known as supra-detachment basins 

(Friedmann and Burbank, 1995). The thermal characterisation of such sedimentary basins can 

potentially provide new insights into the thermal evolution of detachment systems. In return, a 

quantitative understanding of the key-processes controlling the temperature of the sediments 

in this particular structural setting could be profitable for potential prospectivity and 

exploration of resources such as hydrocarbons, ore deposits or geothermal energy. The 

thermal evolution of supra-detachment basins should be addressed by considering the 

interplay between different thermal processes operating during the dynamic evolution of the 

detachment. 

This thesis presents an integrated cross-disciplinary study conducted to identify and quantify 

thermal processes operating in sedimentary basins during the development of adjacent 

detachment faults and shear zones. The Devonian supra-detachment basins of western 

Norway have been used as field analogues in the study. The selection of this geological area is 

motivated by the presence of a remarkable tectonic contact exposed between the Devonian 

basins and the crustal-scale Nordfjord-Sogn Detachment Zone, which is interpreted to be a 

major extensional structure active during the post-orogenic collapse of the Caledonian orogen. 

Detailed field studies, sampling and laboratory analysis have been carried out in order to 

better characterise the thermal structure of the basins. The results of this work are presented in 

Paper I. Paper II and Paper III present two numerical studies that have been conducted to 

model the thermal evolution of the detachment and the adjacent sedimentary basins. In Paper 

II, we quantify the generation of shear heating produced by the development of the Nordfjord-

Sogn Detachment Zone and explore its relative importance regarding the thermal structure of 

the Devonian basins. In Paper III, we analyse the potential heat transport induced by fluid 
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flow in the system by considering thermally driven flow in the sediments. The numerical tools 

used in the last two studies have been developed within the framework of this PhD. 

1.2. Background geology of western Norway 

1.2.1. The Scandian continent collision 

The Scandian continent collision is the main Caledonian mountain building event in 

Scandinavia and east Greenland. The collision took place after rapid plate-convergence (>10 

cm/yr) between Baltica and Laurentia in the Early Silurian, which resulted in the complete 

closure of the Iapetus ocean at approximately 430 to 425 Ma (Torsvik and Cocks, 2005). The 

collision gave rise to crustal thickening and thrusting of the Caledonian nappes and a deep 

burial of Baltica beneath the overriding Laurentian plate (Fig. 1 a and b). In the Lower 

Devonian (416-400 Ma), the Caledonian mountain-belt acquired a size comparable to the 

present-day Himalayas (Andersen et al., 1991; Fossen, 2000, 2010; Labrousse et al., 2010; 

Roberts, 2003). Towards the end of the collision in the Lower Devonian, the Western Gneiss 

Region (WGR), which is a window of the Fennoscandian basement of Baltica, was partially 

subducted to reach high- and ultra-high pressure [(U)HP] metamorphic conditions at depths of 

~50 to 100 km (Andersen et al., 1991; Cuthbert et al., 2000; Kylander-Clark et al., 2009; 

Milnes et al., 1997). The thrust-stacking and deep burial of Baltica resulted in a 

gravitationally unstable thick lithosphere and the onset of orogenic extension (Fig. 1c). The 

extensional reactivation of thrusts and the development of strike-slip and normal faults in the 

hinterland was contemporaneous with nappe thrusting toward the forelands (Andersen and 

Jamtveit, 1990; Dewey et al., 1993; Fossen, 2010; Osmundsen et al., 2005).  

1.2.2. Post-Caledonian collapse and activation of the Nordfjord-Sogn 

Detachment Zone 

The post-orogenic collapse, characterized by gravitational spreading and development of 

extensional detachments, resulted in the unroofing of the Caledonian orogenic root. Eclogites 

are exposed as lenses within the WGR, and, together with the basement gneisses, have been 

the focus of intense studies in recent years (Cuthbert et al., 2000; Glodny et al., 2008; Hacker 

et al., 2010; Hacker et al., 2003; Kylander-Clark et al., 2009; Labrousse et al., 2004; Milnes et 

al., 1997; Root et al., 2005). The age of the (U)HP metamorphism and the cooling history is 

now relatively well constrained. Here we present a brief description of the exhumation history 

in two main stages. 
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Fig. 1. Schematic cross-sections illustrating the evolution and timing of the Caledonian orogeny and collapse. 

The red marker illustrates the burial and exhumation of metamorphosed Caledonian nappes exposed today 

within the Nordfjord-Sogn Detachment Zone. a) 430 Ma: closure of the Iapetus ocean and beginning of the 

continent-continent collision between Baltica (Norway) and Laurentia (Greenland). b) 400 Ma: Caledonian 

metamorphism age of high- to ultra-high pressure (U)HP rocks and thickened orogenic crust. c-d) 400-385 Ma: 

decompression of the (U)HP rocks and post-orogenic extension, development of crustal-scale detachments 

associated with the formation of Devonian basins. Illustration based on Fossen (2000) and Hacker et al. (2010). 

 

i) Near isothermal decompression marks the first stage of the exhumation (Labrousse 

et al., 2004). The fabrics associated with the initial decompression were formed at eclogite- to 

amphibolite-facies conditions (Engvik and Andersen, 2000; Hacker et al., 2010; Terry et al., 

2000). Local partial melting is an important element in the fabric formation, particularly in the 

highest-grade parts of the WGR (Hacker et al., 2010; Labrousse et al., 2011). This fabric 

dominates in the WGR away from the detachments and records co-axial vertical shortening 

(e.g. Andersen et al., 1994). It formed after peak-pressure metamorphism approximately 405 

Ma and gave rise to a vertical exhumation of the deepest buried rocks by 20 to 40 km (Engvik 

and Andersen, 2000; Fossen, 2000; Labrousse et al., 2004; Milnes et al., 1997). 



 

5 

ii) The second exhumation stage is associated with the development of crustal-scale 

detachments and sets the geodynamical framework for the development of the Devonian 

basins (Andersen and Jamtveit, 1990; Fossen, 2000; Fossen and Dallmeyer, 1998; Milnes et 

al., 1997). This stage is characterized by fast decompression and cooling of the footwall and 

by large-magnitude normal-shearing within the detachments. The thermo-chronology 

(40Ar/39Ar mineral and model ages) of the WGR implies that the juxtaposition of low-grade 

metamorphic rocks in the hangingwall with high-grade metamorphic rocks of the WGR took 

place shortly after ~400 Ma (Andersen, 1998; Eide et al., 1999; Fossen and Dallmeyer, 1998; 

Fossen and Dunlap, 1998; Hacker et al., 2003; Young et al., 2011). The orogen-parallel 

average strike of the detachments suggests the inheritance of older collision structures and the 

reactivation of thrust zones (Fossen, 2000; Gabrielsen et al., 2010), however, in many 

localities the detachment mylonites truncate older structures such as seen in the Hornelen area 

(Johnston et al., 2007; Krabbendam and Dewey, 1998; Young et al., 2007; Young et al., 

2011). 

The Nordfjord-Sogn Detachment Zone (NSDZ) is by far the largest extensional structure 

formed during the post-Caledonian extension, but similar detachment systems, connected by 

strike-slip transfer-faults, occur further north in the Scandinavian Caledonides and also have 

counterparts in east Greenland (Braathen et al., 2000; Fossen, 2010; Osmundsen and 

Andersen, 2001). The intense top-W shearing on the NSDZ produced a several kilometre 

thick shear zone characterized by an average shear strain of 20 (Marques et al., 2007). The 

displacement along the detachment is estimated to be in the order of 60-100 km. This 

contributes to approximately 40-60 km of exhumation assuming an average dip of 30° along 

the detachment (Andersen and Jamtveit, 1990; Fossen, 2000; Hacker et al., 2003). The timing 

of the main crustal excision along the NSDZ is bracketed between ~405 Ma and ~395 Ma 

corresponding respectively to the Caledonian metamorphism and the 40Ar/39Ar cooling ages 

of the footwall (Andersen, 1998; Chauvet and Dallmeyer, 1992; Fossen and Dunlap, 1998; 

Hacker et al., 2010; Hacker et al., 2003; Young et al., 2011).  

1.2.3. The Devonian basins of western Norway 

The Norwegian Devonian basins (Fig. 2) differ from other “Old Red Sandstone” units 

deposited contemporaneously in northern Europe by their supra-detachment setting (e.g. 

Fossen, 2010; Osmundsen et al., 2000; Seranne and Seguret, 1987). From south to north, the 

Fensfjorden, Solund, Kvamshesten, Håsteinen, and Hornelen basins of western Norway are 

exposed in relatively narrow synclines, bounded by the NSDZ at their eastern margins, and by  
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Fig. 2. Simplified geological map of western Norway showing the Nordfjord-Sogn Detachment Zone (NSDZ) 

with the Devonian basins juxtaposed to the Western Gneiss Region (WGR). 

 

depositional contacts on eroded Caledonian nappes at their western margins (Fig. 2). The fish 

and plant fossils (Fig. 3 e and f) constrain their deposition age from Lower Devonian (416-

390 Ma) for the Solund basin to Middle Devonian (390-380 Ma) for the Kvamshesten and 

Hornelen basins (Høegh, 1945; Kolderup, 1916). The youngest “Old Red Sandstone” basin in 

Norway may be Early Carboniferous as indicated by detrital mineral ages in the Asenøya 

basin (Eide et al., 2005). However, the earliest sedimentation is coeval with the isothermal 

decompression of the (U)HP rocks (405-395 Ma). 
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The clast provenance reflects the local origin from the eroded Caledonian nappes in the upper 

stratigraphic level of the hangingwall (Cuthbert, 1991; Nilsen, 1968). The immature sediment 

fill, particularly represented by the coarse conglomerates of the Fensfjorden, Solund and 

Håsteinen basins (Fig. 3 a and b) and the marginal fanglomerates of the Kvamshesten and 

Hornelen basins (Osmundsen and Andersen, 2001; Osmundsen et al., 1998; Osmundsen et al., 

2000; Steel et al., 1977), suggests an intramontane setting with rough fault-bounded relief. 

The central parts of the Kvamshesten and Hornelen basins have fluvial, minor lacustrine and 

alluvial red sand- and siltstones (Fig. 3 c and d), whereas the Fensfjorden, Solund and the 

Håsteinen basins are dominated by conglomerates.  

Structurally the basins were originally bounded by listric and low-angle normal faults along 

the detachment contact in the south and south-east margins, and by higher angle strike-slip 

faults in the north and north-east margins (Osmundsen and Andersen, 2001; Osmundsen et al., 

1998; Osmundsen et al., 2000). The existence of listric faults is indirectly deduced from the 

internal basin architecture characterized by nearly uniform eastward titling of the layering 

(25-30°E in Hornelen) and interpreted as rollover deformations above the faults (Osmundsen 

et al., 1998). As describe by several studies (Osmundsen et al., 2000; Seguret et al., 1989; 

Steel et al., 1977) the lateral growth, and the great stratigraphic thickness of the basins (>25 

km in the Hornelen basin) is explained by eastward shift of the depo-centers during the 

extension.  

In contrast to a large number of detailed sedimentological and tectono-stratigraphic studies, 

the thermal states of the basins have been studied only scarcely. Palaeomagnetic data suggest 

a thermo-chemical resetting of the remanent magnetism after deposition (Smethurst, 1990; 

Torsvik et al., 1988). Braathen et al. (2004) described a complex structure (including sheared 

conglomerates in a phyllonitic matrix) at the base of the Kvamshesten basin along the contact 

with the NSDZ. Low greenschist facies metamorphism accompanied by localized ductile 

deformation of conglomerates along the NSDZ was also reported in the Solund basin 

(Seranne and Seguret, 1987). The mineralogy of authigenic minerals and fluid inclusion 

analysis of metamorphic veins found in the Hornelen, Kvamshesten and Solund basins 

document an incipient regional Devonian metamorphism (Svensen et al., 2001). These 

authors also suggest that the temperature and burial depth of the basins increased southward 

from 250 ± 20 °C at a depth of 9.1 ± 1.6 km in the Hornelen and Kvamshesten basins to 315 ± 

15 °C at a depth of 13.4 ± 0.6 km in the Solund basin. 
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Fig. 3. Some examples of rocks and fossil plants found in the Devonian basins of western Norway. a-b) Coarse 

conglomerates in the Solund basin. c) Red sandstones and conglomerates in the Solund basin, near Liavika. d) 

Surface of a siltstone layer with presence of fossil raindrop-prints in the Solund basin, near Liavika. e-f) 

Devonian plant fossils in siltstones from the Solund basin, at Lambholmen, and from the easternmost parts of the 

Hornelen basin, near Skjerdingane, respectively.     
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2. Summary of the papers 

This thesis is a collection of three main papers that first present field and laboratory-based 

geological data (Paper I) that are later used and discussed in numerical studies (Paper II and 

Paper III). Paper I is published in the Journal of Geological Society of London, Paper II is 

submitted to Tectonophysics and Paper III is prepared for submission to Geofluids.  

In annex, the thesis contains a fourth paper, which presents the results of a side project started 

before but carried out mainly during the period of the PhD. This paper discusses the origin of 

uplifts along Greenland’s margins and is submitted to Geomorphology. 

 

Paper I: Thermal structure of supra-detachment basins, a case study of the Devonian basins 

of western Norway 

This paper presents new peak temperature estimates from the three main Devonian basins of 

western Norway and explores the thermal structure of the basins in relation to the distance to 

the detachment contact. These data were obtained using Raman spectroscopy on detrital 

carbonaceous material found in the sediments. Extensive field work and systematic sampling 

and analysis of the rocks throughout the stratigraphy of the Hornelen, Kvamshesten and 

Solund basins, have been carry out, but the presence of the required carbonaceous material 

was only preserved in some rare plant fossil-bearing siltstones. The data set presented in this 

paper was combined with previous fluid inclusion data and peak temperature estimates from 

metamorphic veins found in the same basins (Svensen et al., 2001). A lateral variation of the 

peak temperature conditions, elevated towards the contact with the shear zone of the 

Nordfjord-Sogn Detachment, is demonstrated. Two main conclusions are drawn in this paper; 

first that the development of the detachment controlled the peak temperature distribution in 

the supra-detachment basins, and secondly, that sediments close to the detachment contact 

may have been exposed to temperature up to 100 oC higher than few kilometers away from 

the detachment. The temperature estimates presented in this paper are used to discuss the 

model results obtained in Paper II and Paper III.  
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Paper II: Shear heating in extensional detachments: implications for the thermal history of 

the Devonian basins of western Norway 

This paper presents a numerical study conducted to quantify the influence of shear heating 

generated by rock deformation during the development of the Nordfjord-Sogn Detachment 

Zone. The model geometry and a number of important model constraints are based on 

published geological observations and data. Shear heating is estimated with a lower and upper 

bound depending on two kinematic models used to estimate the velocity in the shear zone of 

the detachment. The model results illustrate the importance of shear heating as a heat source 

in tectonic settings characterized by the excision of a major portion of the crust along a main 

shear zone. The results are compared with geological data from the Devonian basins and from 

exhumed Caledonian nappes exposed in the footwall of the detachment. We conclude that 

shear heating may lead to an increase of the peak temperature conditions in the order of 100 

°C close to the detachment contact and contribute up to 25% of the thermal budget of the 

supra-detachment basins. 

 

Paper III: Modelling thermal convection in supra-detachment basins: example from western 

Norway 

In this paper, we quantify the importance of thermally driven fluid flow as a heat transport 

mechanism in supra-detachment basins shortly after the exhumation of warmer footwalls. The 

flow is computed from a regional background temperature field obtained from the study 

presented in Paper II. Geological features observed in the Devonian basins of western 

Norway, such as the internal sedimentary layering or the contact with the detachment fault, 

are presented and their potential impact on the fluid circulation in the basins is analyzed and 

discussed. Different models are tested with homogeneous and layered basin-fill and with 

material transport properties corresponding to siltstones and sandstones. Thermally driven 

fluid flow is expected in supra-detachment setting as a transient process shortly after the 

exhumation of warmer footwalls and before the thermal relaxation of the isotherms in the 

area. The fluid flow may significantly affect the temperature distribution in the upper five 

kilometres of the basin where the rock permeability allows fluid circulation. The temperature 

anomaly induced by the flow may locally reach 80 °C. The presence of fluid pathways along 

the detachment contact has an important impact on the flow and allows an efficient drainage 

of the basin by channelizing fluids upward along the detachment.  
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Annex paper: Influence of ice sheet and glacial erosion on passive margins of Greenland 

This paper discusses the origin of the uplift of Mesozoic and Cenozoic marine sediments 

along Greenland’s margins by quantifying isostatic uplift caused by ice carving of the fjord 

systems. Combining digital elevation models and ice thickness data available from Greenland, 

the model estimates the amount of material eroded away from the fjords and balances the 

corresponding mass load onto an elastic plate model. Resulting vertical motions are estimated 

for the entire Greenland area. This work is a generalization of the previous study conducted in 

the Scoresby Sund fjord region by Medvedev et al. (2008). The numerical model developed in 

this study could be applied to other part of the world where erosion may locally incise the 

landscape. Western Norway, the main subject of the thesis, presents similar fjord system and 

was considered as potential study area.  
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3. Outlook 

During this PhD study, two distinct thermal solvers have been developed in order to quantify 

shear heating from active shear zones and thermally driven fluid flow in permeable aquifers. 

The models were applied to understand the thermal evolution of supra-detachment basins with 

a particular focus on the Devonian basins of western Norway. The methods and results, 

however, can be extended to other basins that present similar geological features such as basal 

shear zones and detachments. In the following, we give an example of possible future 

investigations where similar thermal processes as assessed in this study could play a role.  

Low-angle detachments associated with the formation of deep supra-detachment basins have 

been interpreted from geophysical surveys in several areas along the Mid-Norwegian shelf 

(Lundin and Doré, 1997; Osmundsen et al., 2005; Ren et al., 1998). These structures and 

accompanying basins have been the topic of several projects dealing with the details of the 

extensional geometries, the determination of the stretching, the link to magmatism, as well as 

thermo-kinematic modelling (Gernigon et al., 2006; Gernigon et al., 2004; Gernigon et al., 

2003). Upper Cretaceous fault complexes are well-imaged on seismic data in the outer Vøring 

Basin (Fig. 4), including the North and South Gjallar ridges and the Rån Ridge. These ridges 

are currently being explored by the petroleum industry and few wells have been drilled. The 

Gjallar well (6704/12-1) drilled in 1999 revealed a high temperature gradient (52 °C/km). 

Improved constraints on the thermal history of these basins may lead to reduced future 

exploration risks. 

 

 

Fig. 4.  Structural style of the North 

Gjallar Ridge on the outer Vøring Basin. 

Rollover deformation structures in 

sedimentary basins are observed above 

detachments in mobile shales (MS). 

Figure from Gernigon et al. (2003). 
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Abstract: 

We investigate the peak temperatures of the Devonian Hornelen, Kvamshesten and Solund 

basins in SW Norway in order to constrain their thermal history. These basins are the three 

largest Devonian units exposed in Norway and were formed as supra-detachment basins in the 

hangingwall of the Nordfjord Sogn Detachment Zone (NSDZ). The peak temperatures of the 

basins were obtained using a geothermometer based on Raman spectroscopy of carbonaceous 

material (RSCM) on detrital carbonaceous plant fossils. The data confirm an anchizone to low 

greenschist facies metamorphism with temperatures (± 30 oC) of 284 oC to 301 oC in the 

Hornelen and Solund basins and a significantly higher, 345 oC in the Kvamshesten basin. The 

temperature increases toward the detachment fault and cannot be explained by ordinary burial 

alone. In the Kvamshesten basin this temperature increase is close to 100 oC. The new data 

demonstrate that exhumation of high-grade rocks in the footwall in the NSDZ played an 

important role in controlling temperatures in the hangingwall. We conclude that the dynamic 

evolution along large-scale detachments may introduce heat at the base of the hangingwall 

and thereby control the thermal state of supra-detachment basins formed during extension. 
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1. Introduction 

Crustal extensional detachments are remarkable geological features that may produce vast 

metamorphic discontinuities between the hangingwall and the footwall rocks across high-

strain shear zones. Since the 1980-ies, low-angle normal faults have provided important 

conceptual and quantitative models of the dynamics and evolution of large-magnitude crustal 

extension (e.g. Wernicke 1985, 2009; Lister et al. 1986; Jolivet et al. 2010), but important 

questions remain regarding the thermal evolution of such systems. The classical approach to 

estimate geotherms above a uniformly stretched lithosphere (i.e. McKenzie 1978) cannot be 

employed in detachment areas that are characterised by strong localised deformation along 

shear zones with asymmetric geometries. Common features of metamorphic core complexes 

in detachment footwalls are rapid exhumation accompanied by quasi-isothermal 

decompressions (Jolivet et al. 1996; Labrousse et al. 2004). At these conditions, the thermal 

evolution of the system is likely to be influenced by a temperature contrast between the “hot” 

footwall and the “cold” hangingwall. Depending on the exhumation rate of the footwall and 

the sedimentation rate in the hangingwall, this asymmetry would affect the regional 

geotherms in the supra-detachment basins and their thermal history during burial. Recent 

studies have reported large variations in temperature across detachment shear zone toward 

deeper parts of the footwall (Mulch et al. 2006 ; Cottle et al. 2011; Gottardi et al. 2011). 

However, such temperature gradient in a hangingwall, and more specifically within supra-

detachment basins, has not yet been documented.  

A well-known example of post-orogenic extension producing a very large detachment is 

exposed in western Norway. The Nordfjord Sogn Detachment Zone (NSDZ) juxtaposes low-

grade Caledonian nappes in the hangingwall against high-grade eclogite facies rocks across a 

several kilometres thick mylonite zone (Andersen & Jamtveit 1990; Norton 1987; Osmundsen 

et al. 2000) (Fig. 1). The direct contact between the supra-detachment basins and the 

detachment mylonites provides an excellent study area to investigate the thermal state of the 

basins as a function of the distance to the detachment. In this study, we used a 

geothermometer based on Raman Spectroscopy of Carbonaceous Material (RSCM 

thermometry – Beyssac et al. 2002) and its extension to low-temperature (Lahfid et al. 2010).  
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2. Geological setting  

The Norwegian Devonian basins differ from other “Old Red” sediments deposited 

contemporaneously in northern Europe by their supra-detachment setting (i.e. Fossen 2010, 

Osmundsen et al. 2000; Seranne & Seguret 1987). They are located at the top of the 

hangingwall of the large-scale extensional NSDZ and other extensional shear zones near 

Røragen and along the Møre-Trøndelag Fault Complex (McClay et al. 1986; Osmundsen et 

al. 2005).  The detachments were initiated by the late- to post-orogenic extensional collapse in 

the Early Devonian, and the formation and filling of the basins were coeval with the main 

movement on the detachments (i.e. Fossen 2000; Norton 1987; Seranne et al. 1989; Seranne 

& Seguret 1987). The Hornelen, Kvamshesten, and Solund basins (north to south) of western 

Norway are preserved in synclines, bounded to the east by the NSDZ, and by depositional 

unconformities on the eroded Caledonian nappes in the west and north-west (Fig. 1). 

Sporadically preserved plant and fish fossils constrain their deposition from the Early 

Devonian (416 - 391 Ma) for the Solund basin to Middle Devonian (391-372 Ma) for the 

Kvamshesten and Hornelen basins respectively (Høegh 1945; Kolderup 1916, 1921, 1927). 

 In contrast to a large number of detailed sedimentological and tectono-stratigraphic studies 

(Osmundsen & Andersen 2001; Osmundsen et al. 1998, 2000; Steel et al. 1977), the thermal 

states of the basins have only been provisionally studied. Palaeomagnetic data suggest a 

thermo-chemical resetting of the remanent magnetism after deposition (e.g. Smethurst 1990; 

Torsvik et al. 1988). It has also been shown that minor reactivation of the NSDZ partially 

reset the palaeomagnetic remanence of breccias along the detachment in the Permian and 

locally in the Late Jurassic/Early Cretaceous (Eide et al. 1997; Torsvik et al. 1992). Braathen 

et al. (2004) described a complex structure including conglomerates with deformed pebbles in 

a phyllonitic matrix at the base of the hangingwall of the NSDZ underneath the Kvamshesten 

basin. Lower greenschist facies metamorphism accompanied by localised ductile deformation 

of conglomerates along the detachment was also reported from the Solund basin (Seranne & 

Seguret 1987). This basin has been interpreted to be the most deeply buried Devonian basin of 

western Norway. 

In addition, the mineralogy of authigenic minerals and fluid inclusion analysis of 

metamorphic veins found throughout the Hornelen, Kvamshesten and Solund basins 

document the incipient regional Devonian metamorphism (Svensen et al. 2001). These 

authors also suggest that the temperature and burial of the basins increases southward from 
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Fig. 1. Simplified geological map of western Norway showing the Solund, Kvamshesten, Håsteinen and 

Hornelen basins and the localities of the fossil-bearing sediments used in this study. 

 

Table 1. RSCM thermometry results 

Sample Origin Locality (unit) Number 
of spectra 

RA1Lahfid    ε R2Beyssac    ε T [oC]   ε 

1 Our sampling Lambholmen (Solund) 19    0.603 0.002    - -   284 ±2.1 

2 P000022* Skjerdingane (Hornelen) 17    0.612 0.002    - -   295 ±0.5 

3 Our sampling Lambholmen (Solund) 13    0.615 0.002    - -   300 ±1.9 

4 Our sampling Lambholmen (Solund) 12    0.616 0.003    - -   301 ±3.6 

5 PTO157.257** Bleia (Kvemshesten) 13    - -    0.666 0.004   345 ±0.5 

The parameters RA1Lahfid (c.f. Lahfid et al. 2010) and R2Beyssac (c.f.  Beyssac et al. 2002) are used to estimate 

temperatures respectively  < 320 oC and > 330 oC. RA1Lahfid, R2Beyssac, and T are expressed in term of mean 

values of all the data with a standard error ε (= 1σ standard deviation divided by the square root of the number of 

measurements) within each sample. *Natural History Collections, University Museum of Bergen. **Natural 

History Collections, University Museum of Oslo.  
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250 ± 20 oC at a depth of 9.1 ± 1.6 km in the Hornelen and Kvamshesten basins to 315 ± 15 
oC and a depth of 13.4 ± 0.6 km in the Solund basin. These data are taken to represent the 

regional metamorphism as a function of the burial of the basins. The new data presented here 

allow us to discuss the temperature of the basins not only as a function of burial depth, but 

also in relation to the distance from the NSDZ. 

3. Methods 

After sedimentation, the carbonaceous material (CM) trapped in the sedimentary protolith 

modifies its chemistry (carbonification during diagenesis), and then organises its internal 

structure (graphitization) under the effect of gradual heating during metamorphism (Beyssac 

et al. 2002). RSCM thermometry is based on the quantitative study of the degree of 

graphitization of CM, which is a reliable indicator of metamorphic temperature. Because of 

the irreversible character of graphitization, the CM structure is not sensitive to the retrograde 

overprint during exhumation of rocks and depends only on the maximum temperature reached 

during metamorphism (Beyssac et al. 2002). Temperature can be determined in the range 

330–650 oC with a calibration-attached accuracy initially estimated to ± 50 oC, but re-

estimated recently to ± 30 oC (Aoya et al. 2010). Relative uncertainties are, however, much 

smaller, in the range 10–15 oC (Beyssac et al. 2004; Negro et al. 2006). Recently, Lahfid et 

al. (2010) have demonstrated that the evolution of the Raman spectra of CM under low-grade 

metamorphism in the Glarus Alps (Switzerland) is highly correlated with the peak 

metamorphic temperature in the range of 200-330 oC. The results of this study is currently 

expanded and discussed for different tectonic settings allowing for testing and evaluating the 

respective roles of geothermal gradient(s), host rock lithologies or organic precursor as well 

as improving the temperature constraints. This detailed calibration shows that the correlation 

between the Raman spectra and temperature is systematic and that the RSCM thermometer 

may be extended to lower temperatures, in the range of 200-330 oC. In that purpose, the 

correlation obtained by Lahfid et al. (2010) in Glarus yields an excellent quantitative estimate 

of temperature. It is important to note that the fitting is different at low temperature compared 

to the original methodology by Beyssac et al. (2002), because the spectra are more complex 

with at least two more defect bands (Lahfid et al. 2010). Although elaboration of the 

definitive version of the quantitative calibration is still in progress, we used the qualitative 

evolution in Glarus based on the RA1 parameter (cf. Lahfid et al. 2010) as a first 
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approximation to determine temperature values in the low-grade rocks (T < 330 oC). In Table 

1 we provide a standard error on T, which is a proxy for the quality of the T data reflecting 

mostly the within-sample structural heterogeneity. The calibration-attached accuracy at low-T 

is similar to that at high-T around ± 30 oC. 

Raman spectra were obtained using a Renishaw InVIA Reflex microspectrometer (IMPMC 

Paris). We used a 514 nm Laser Physics argon laser in circular polarisation. The laser was 

focused on the sample by a DMLM Leica microscope with a 100x objective (NA=0.85), and 

the laser power at the sample surface was set around 1 mW. The Rayleigh diffusion was 

eliminated by edge filters, and to achieve nearly confocal configuration the entrance slit was 

closed down to 15 μm. The signal was finally dispersed using an 1800 grooves per mm 

grating and analysed by a Peltier cooled RENCAM CCD detector. Before each session, the 

spectrometer was calibrated with silicon standard. Because Raman spectroscopy of CM can 

be affected by several analytical mismatches, we followed closely the analytical and fitting 

procedures described by Beyssac et al. (2002, 2003). Measurements were done on polished 

thin sections and CM was systematically analysed below a transparent adjacent mineral, 

generally quartz. 10 - 20 spectra were recorded for each sample in the extended scanning 

mode (700-2000 cm-1) with acquisition times from 30 to 60 seconds. Spectra were then 

processed using the software Peakfit (Beyssac et al. 2003). Raman imaging was performed 

using the same configuration and the streamline mapping technology as described by Bernard 

et al. (2008). 

4. Results 

4.1. Presence of CM 

To investigate the temperature conditions in the study area, we sampled from the base to the 

top across the stratigraphy within the Solund, Kvamshesten and Hornelen basins. Because of 

the eastward dip of the bedding in the basins, their stratigraphic base is generally several 

kilometres away from the NSDZ, whereas the highest stratigraphic levels in their eastern parts 

are at or near the detachment. In spite of careful and extensive sampling, we have been 

confronted with a systematic absence of CM from most of the fine-grained sand-, and 

siltstones. Disordered CM was indeed only found as big patches (Fig. 2.a) preserved in the 

lithologies containing macro-fossils of Devonian plants (Fig. 1). This CM is derived from 

original biological material trapped in the sediment and has been progressively transformed 
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during burial. Presumably, such CM was originally present in most of the silt- and sandstones 

lithologies of the Devonian basins, and has later been removed by oxidation. Oxidation most 

likely occurred during the intense fluid circulation, which affected the basins after deposition 

(Svensen et al. 2001, Beinlich et al. 2010). Noticeably, we have observed the local presence 

of detrital graphite, which can be easily recognised through its flaky morphology and Raman 

signature (Fig. 2b, 2c, Fig. 4). Finding detrital graphite in such sediments is not a surprise as 

graphite may be massively recycled during erosion/deposition processes (Galy et al. 2008). 

This detrital graphite was observed either directly as flakes in the mineral matrix (Fig. 2b) or 

as inclusions within quartz grains (Fig. 2c). In some samples, detrital graphite was found in 

association with hematite (Fig. 4), which might set precise constraints on redox conditions 

that prevailed during the rock history. The redox conditions were oxidising enough to form 

hematite and to oxidise disordered CM, but not too oxidising to preserve detrital graphite. 

Graphite is by far less prone to oxidation than disordered CM because it has no chemical 

radicalisation and almost no nano-porosity allowing for fluid permeation (Galy et al. 2008). 

Despite the large number of samples analyzed for this study (~50), our new temperature data 

are limited only to the fossil localities. Representative spectra for each sample are depicted in 

figure 3 and all measurements are listed in Table 1. Noticeably, the temperature data for each 

sample show high-internal consistency, with small within-sample structural heterogeneity of 

CM. In sample 5 from Bleia locality in the Kvamshesten basin, the CM is more graphitized 

and we therefore used the original RSCM calibration by Beyssac et al. (2002).  

4.1. Temperature estimates 

Our analyses give temperatures (± 30 oC) ranging from 284 oC to 345 oC in the different 

localities. These results indicate higher temperature in the Hornelen (295 oC) and in the 

Kvamshesten (345 oC) basins compared to the previous estimate of 250 oC for these units 

(Svensen et al. 2001). The new temperatures found in the Solund basin are lower, ranging 

between 284 oC and 301 oC, compare to the previous estimate of 315 oC. The standard errors 

reported in Table 1 reflect the homogeneity of the measurements of each sample. Therefore, 

the relative temperature variation between the different data points is well constrained within 

few degrees.  
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Fig. 2. a) Optical micrograph depicting disordered 

carbonaceous material from the north-western parts 

of the Solund Devonian basin at Lambholmen. b) 

Optical micrograph showing hematite associated 

with graphite in the mineral matrix of silty sandstone 

from the Hornelen basin (sample HOR23). c) 

Optical micrograph depicting graphite inclusions in 

clastic quartz grain from the north-western parts of 

the Solund Devonian basin at Lambholmen. 

 

 

Fig. 3. a) Optical micrograph in reflected light showing hematite in association with a graphite flake in the 

mineral matrix of sample HOR23. The red box indicates the position of the Raman image presented in b). b) 

Right. Raman spectra of pristine graphite (measured below a transparent adjacent grain), polished graphite 

(measured at the surface of the thin section) and hematite. Note the strong effect of polishing which alters the 

structure of graphite and enhances the intensity of the main defect band. Left. Raman image obtained on image 

a) and evidencing the co-existence of graphite and hematite. 
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Fig. 4. Representative Raman spectra of disordered 

CM of the five samples containing plant fossil 

remains. The vertical axis corresponds to the signal 

intensity in an arbitrary unit.    

 

5. Discussion 

5.1. Comparison with previous work 

To better compare our results with the previous estimates, we have reproduced the P-T and 

fluid inclusion isochores diagram (Fig. 5) for the basins from Svensen et al. (2001, p.67, Fig. 

9). The new temperatures of our specific sample localities are shown and compared with the 

average metamorphic conditions given by this previous study. This diagram (Fig. 5) shows 

that our new data deviate from the regional metamorphic trend previously determined from 

the basins. In addition, it is noticed that the estimates of the average metamorphic conditions 

were based on analyses of veins found throughout the Solund and Hornelen basins, and in the 

central part of the Kvamshesten basin (cf. Svensen et al. 2001). Our samples are, in contrast, 

representative of specific localities in the basins: near the depositional unconformity for 

samples 1, 3 and 4, and close to the main detachment for the samples 2 and 5. 
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Fig. 5. P-T diagram from Svensen et al. 

(2001, p.67, Fig. 9). The solid lines are the 

fluid inclusion isochores from vein 

materials within the Kvamshesten, Hornelen 

(Kvam/Hor) and Solund (Sol) basins. The 

window shades represent the metamorphic 

conditions of the same respective units. The 

temperatures obtained in this study are 

plotted with the average pressure (av. P) of 

the different units (red/blue squares). A 

pressure-depth conversion scale is given on 

the right side of the diagram assuming 

overburden of constant rock density of 2600 

and 2800 kg/m3. 

 

Two hypotheses can be put forward to explain the variation in temperature from the new data 

presented here. 

1) The variation between the previous estimates of the regional metamorphic 

temperatures and those reported from individual localities in our study, may suggest a 

difference in the burial depth at the present erosion level of the basins. Using the result of 

345 oC found near Bleia (sample 5, Kvamshesten basin), we can infer a local burial depth > 

16 km for this locality. This estimate is obtained by projecting the temperature on the 

representative isochore (Kvam/Hor; see Fig. 5). This depth suggests a local burial of at least 6 

km deeper than the average burial depth of the Kvamshesten basin. Several syn-depositional 

faults have been described in the basin (Osmundsen et al. 1998, 2000), but these cannot 

explain a differential burial of several kilometres in the area. We therefore exclude this 

hypothesis. 

 2) The fast exhumation of the footwall of the NSDZ provided an additional heat 

source and thermally overprinted the basins during deposition and burial.  

The temperature within the basins may differ internally depending on the distance to the 

detachment fault. The NSDZ played a dominant role in the exhumation of high-grade Western 

Gneiss Region, crustal thinning as well as the formation of the Devonian basins in western 
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Norway. It is reasonable to assume that the juxtaposition of the warmer lower crustal rocks 

with the upper crust, including the basins, affected their respective thermal evolution. We 

consequently consider hypothesis 2 as the most appropriate to explain the variation of the data 

shown in figure 5. This interpretation is also supported by thermo-mechanical modelling of 

the geothermal field around large shear zones (Souche 2008).  

The coherence of this preferred hypothesis is also supported by comparing the distances 

between the studied fossil localities and the detachment. The Lambholmen samples (1, 2, 4) in 

the northern Solund basin were taken at a low stratigraphic level and approximately 8 km 

from the NSDZ (Fig. 1). Sections with an average regional dip (~25o) of the NSDZ (Hacker et 

al. 2003) suggest a vertical distance of approximately 3.5 km above the detachment for this 

locality (Fig. 6, profile A). Similar reconstructions show that the fossil localities at 

Skjerdingane at the uppermost stratigraphic level in the Hornelen basin (sample 3), and at 

Bleia near the detachment in Kvamshesten basin (sample 5) are at most 900 m above the 

detachment (Fig. 6, profile B and C). Therefore, the samples (3, 5) collected in the vicinity of 

the detachment may be warmer than the average regional metamorphism of the corresponding 

sedimentary rocks as indicated by the previous studies (Svensen et al. 2001). The samples (1, 

2, 4) collected away from the detachment show an inverse relationship: they are colder than 

the average metamorphism. Our attempts to further constrain these relationships by 

systematic sampling across the stratigraphy of the basins have unfortunately not been 

successful because of the systematic absence of CM. 

5.2. Heat from the NSDZ? 

The progressive evolution of the NSDZ with gradual exhumation of the lower crust in the 

footwall can create an asymmetry of temperatures in the basin with an increase toward the 

detachment (Fig. 6). Several studies discuss the relevance of shear heating during large 

magnitude lithospheric deformation (e.g. Brun and Cobbold 1980; Burg & Gerya 2005; 

Leloup et al. 1999). Additional heat could be generated by deformation in large-scale shear 

zones, but the relative importance of this process remains mostly unquantified. Migration of 

fluids may also play a role in the thermal state of the basins by advecting heat. Detachments 

have long been described as structural pathways for channelling meteoritic water through the 

crust (Famin et al. 2004; Gottardi et al. 2011; McCaig 1988). However, an increase of 

temperatures in the basins is only possible if the rising fluids were exposed to a significantly  
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Fig. 6. Cross-sections showing structural position of the fossil-bearing localities above the NSDZ with an 

average dip of 25o. Topography and bathymetry along the profiles A, B and C (cf. Fig. 1) obtained from the map 

database at the Norwegian Geological Survey (http://www.ngu.no).  The same legend as in Fig. 1 is used for the 

geological units. 

 

warmer host in the shear zone or migrating from a deeper level in the footwall of the 

detachment. 

5.3. Regional geotherm 

The temperatures determined for the three largest Devonian basins of western Norway are 

important for estimating the regional geotherm. Previous estimates of the metamorphic 

conditions of the Hornelen/Kvamshesten and Solund basins suggested linear geotherms of c. 

27 oC/km (250 oC at 9.1 km) and 23 oC/km (315 oC at 13.4 km), respectively (Svensen et al. 

2001). The new temperatures determined by RSCM indicate additional heating in the vicinity 

of the detachment so that geodynamic processes perturbed the regional geotherm. If the new 

temperature estimates close to the detachment were part of a linear, steady state geotherm, it 

would require an 38 oC/km (345 oC for ~ 9 km burial), which by comparison with non-

volcanic continental basins is considered too high. 

5.4. Implications  

The geology along the NSDZ records a setting where sediments were deposited near and 

partly in contact with a large-scale evolving detachment zone. The temperature in the north 
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eastern margin of the Kvamshesten basin (and also in the Hornelen basin) is approximately 

100 oC higher than the average temperature of the basins based on the estimates from vein-

mineralogy and the authigenic minerals described from the sediments (Svensen et al. 2001). 

We suggest that a contact metamorphism-like process between the NSDZ, its footwall and the 

basin can explain this temperature anomaly. If shear heating contributed to the increase in 

temperature, it is possible that significant temperature anomalies may exist also elsewhere in 

similar structural settings. Rapid deformation within large shear zones may therefore have 

potential implications for thermal maturation of the above sedimentary basins. 

6. Conclusion 

We have presented new peak temperature estimates from the three largest Devonian basins of 

western Norway. The temperatures are internally consistent from several estimates at each 

individual locality, but show a significant regional variation between the different basins. The 

lowest temperatures are found near low stratigraphic level, near the depositional unconformity 

at the northwest margin of the Solund basin. The highest temperatures are found at high 

stratigraphic levels near the detachment along the eastern and northeast margins of the 

Hornelen and Kvamshesten basins respectively. This is in accordance with previous 

descriptions pointing to localized ductile shearing of conglomerates adjacent to the 

detachment fault.  In order to explain the inverse temperature gradient with respect to the 

stratigraphy in the basin(s) we suggest that the very large and rapidly evolving NSDZ 

provided an additional heat source in the thermal budget of the basins. These lateral 

temperature variations cannot be explained by burial alone under a horizontally homogeneous 

geotherm. Our results illustrate the importance of considering the dynamic evolution of large-

magnitude extensional shear zones to access the thermal history of above hangingwalls and 

supra-detachment basins.  
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Abstract 

The presence of Mesozoic and Cenozoic marine sediments at an altitude of 1.2 km near 

Scoresby Sund (central East Greenland) and Nuusuaq peninsula (central West Greenland), 

and even up to 2 km in the Kangerdlugssuaq region (south central East Greenland), illustrate 

significant uplifts of Greenland’s margins. The magnitude of these uplifts contrast somewhat 

with the absence of major tectonic activity along Greenland margins during the Cenozoic. In 

this study we test how much these vertical motions can be explained by glacial processes. We 

analyze the influence of the ice sheet loading in the central part of Greenland and the carving 

of the fjord systems on the evolution of the topography by numerically modelling these 

processes backward in time. In our experiments we start with the actual topography and ice 

thickness and evaluate the pre-glacial topography calculating the flexural isostatic response to 

unloading the ice sheet. By restoring “erosion backward in time” and calculating the flexural 

isostasic effects we estimate the influence of glacial carving and evaluate the pre-erosional 

topography of Greenland. Our analyses show that: (1) The load of the ice sheet causes up to 

800 m subsidence of the bedrock topography of the central part of Greenland. (2) The 

peripheral bulging caused by this ice loading has a negligible effect on amplitude of the 

uplifted Greenland margins. (3) Glacial carving and corresponding development of the large 

fjord system has a significant influence on vertical motion of passive margins of central (east 

and west) Greenland and can explain up to kilometer scale vertical motions. (4) The models 

show, however, that much of Greenland’s topography is not caused by ice-related processes, 

and thus origin of these older mountain chains remains enigmatic. (4) Masses eroded from the 

regions of significant glacial erosion are larger than the recognized amount of sediments 
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within adjacent off-shore basins, meaning that either the topography of those margins formed 

before break-up of Greenland or that sediments can move far away by the ocean. We also 

illustrate that our estimations are conservative because of low resolution of DEM used for 

calculations. Higher DEM resolution may increase effects off glacial carving by up to 40%. 

1. Introduction 

The interplay between the thick ice sheet, glacial erosion and bedrock surface of Greenland is 

intriguing, simply because of the size of the affected area and volumes of ice and rock 

involved. Thus we can expect tectonic scale amplitude of response to such interaction. Figure 

1a illustrates the major masses of ice stored within the Greenland Ice Sheet now. We also can 

observe the traces of previous activity of ice shaping the margins of Greenland by carving out 

the fjord systems (Figure 1b). 

 

   
Figure 1. Map view on the study area (a) topography of the region with ice sheet thickness indicated by gray 

scale (the ice sheet of thickness more than 100 m is presented). Red lines present continent-ocean boundary, 

white line separates plates (after Muller et al., 2008). Note that some of the large sedimentary fans, building out 

from the mount of fjords, extend on to oceanic crust. (b) Bedrock topography. 
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Greenland displays a distinct topography with a central depression, surrounded by a near-

continuous mountain chain along its coast. The nature of these mountains is enigmatic, given 

that the Mid Paleozoic orogeny of East Greenland was the last major orogenic event in 

Greenland (Henriksen, 2008; Wilson, 1966). After that time the Caledonian mountains first 

eroded and the topography was first filled with continental deposits, and later in the Permian 

to Mesozoic the future margins of Greenland were mostly submerged, as recorded in well 

exposed marine deposits now uplifted to mountains (Haller, 1971; Henriksen, 2003; 

Henriksen, 2008; Japsen and Chalmers, 2000). Both the western and eastern margin of 

Greenland record continental rifting, particularly in the Late Jurassic to Early Cretaceous prior 

to the Paleogene break-up of the North Atlantic. The break up is generally marked by thick 

layers of basalt, well exposed in both central west and east Greenland. During the Early 

Cenozoic Northern Pangea broke up leaving Greenland as a huge microcontinent between 

North America and Eurasia (Figure 1a; Bullard et al., 1965; Mosar et al., 2002). During this 

event Greenland was displaced northwards relative to the adjacent plates (Tessensohn and 

Piepjohn, 2000), resulting in transpressional deformation (fold and thrust belts) both between 

NW Greenland (Oakey and Stephenson, 2008) and North America, and NE Greenland and 

Svalbard/Eurasia (Leever et al., 2011). Therefore North Greenland displays active margins in 

the Cenozoic, whereas the margins south of these northern corners are truly passive. In the 

mid Cenozoic opening west of Greenland ceased, about the same time that central East 

Greenland passed above the Iceland Hotspot, and the Jan Mayen microcontinent shifted plate 

from Greenland to Eurasia (Figure 1a; Gaina et al., 2009; Lawver and Muller, 1994). 

The modern landscapes of the peripheral part of Greenland are characterized by large fjord 

systems formed by glacial erosion (e.g., Odell, 1937), locally cutting more than 3 km down 

from the palaeo-surfaces. Figure 2 shows examples from the Scoresby Sund area in central 

east Greenland. Bonow et al. (2006) presents study of palaeo-plateau in the western 

Greenland, which was cut and tilted during Cenozoic. Erosion processes can be a major 

mechanism to enhance relief (Gilchrist and Summerfield, 1990, 1991; Molnar and England, 

1990). Combined effect of localized erosion and diffused action of flexural isostasy may 

result in non-uniform evolution of the topography. Series of recently developed models of 

flexural isostasy attempt to explain the importance of the surface denudation and resulting 

isostatic uplift for different geological structures (Champagnac et al., 2007; Champagnac et 

al., 2009; Medvedev et al., 2008; Pelletier, 2004; Stern et al., 2005). 
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In this study we expand the local model of Medvedev et al. (2008) onto the entire Greenland 

realm (Figure 1). Medvedev et al. (2008) demonstrated how the carving of fjords and valleys 

of central East Greenland explains up to 1.1 km of uplift, which also is the maximum 

elevation of marine Mesozoic sediments of the area. By similar modelling we test to what 

degree this process is applicable to the entire Greenland. Considering a region which is much 

larger than one discussed in Medvedev et al. (2008), we remove the influence of boundary 

effects and analyze the degree of ice influence on the different parts of Greenland within the 

same model. 

We first test how the loading of the ice sheet changes the topography of the region. Then we 

introduce the concept of erosion backward in time and present the results for the entire 

Greenland. A zoom of our results onto east and west margins of central Greenland gives 

numerical estimations of the influence of ice load and carving on the evolution of local 

topography. We also attempt to evaluate the balance of the erosional products outside the 

fjords with the topographic cavities inland, checking if one can find correlation in time and 

space between erosion and deposition. 

 

 

Figure 2.(a) Palaeo surface of East Greenland cut by glaciers/fjords. The darker ice is Vestfjord Glacier, whereas 

the lighter ice is the sea ice of Vestfjord (part of Scoresby Sund fjord system). (b) Mafic sill intrusions imbedded 

into marine Jurassic deposits on Southeastern Jameson Land. The two sills, dark layers on low central and top of 

the ca. 500 m cliff, make up approximately 10% of the rock volume. Locations of photographs are marked on 

Figure 9a. 
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Figure 3. Cartoon view on the effects caused by loading of ice sheet on Greenland topography. Combined effects 

of loading, isostasy and flexural rigidity of the lithosphere may result in significant central depression and 

peripheral bulging. 

 

 

  

Figure 4. Results of numerical experiment of removing the ice sheet load. (a) The elastic response indicates 

significant (0.8 km and higher) central uplift but insignificant (less than 20 m) peripheral bulging. (b) Bedrock 

topography of Greenland isostatically adjusted after removal of the ice sheet (cf. Figure 1b). The calculations 

were performed using EET=20 km and ETOPO1 topography and ice thickness. The variations of the parameters 

and DEM’s do not affect the conclusions. This configuration is used as initial position for calculations of next 

parts of the study. 
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2. Influence of load from Greenland ice sheet  

The Greenland Ice Sheet exceeds 3 km in thickness, and covers most of Greenland (Figure 

1a). The bedrock topography of Greenland (Figure 1b), resemble that of a typical response of 

an elastic plate subjected to a load in its central part (Figure 3). The significance of this effect 

is numerically investigated in the case of Greenland by removing the equivalent weight of the 

ice sheet and numerically calculating the flexure of the lithosphere due to the corresponding 

isostatic response. 

The numerical model utilizes Matlab-based numerical suite ProShell (Medvedev et al., 2008). 

The model uses two grids, one for the surface loads integration and another for calculation of 

the elastic response. Resolution of topographic grid is 1.5 km, whereas elastic calculations 

were mainly performed using 7.5 km grid resolution. We check different resolutions to ensure 

durability of modelling. We also checked the model results for a range of elastic thickness 

(EET) values, 15, 20, and 30 km. The ice density used 930 kg/m3 and mantle density is 3300 

kg/m3. 

The input topographic data used in this work are taken from three different digital elevation 

models, ETOPO2 (developed by the US National Geophysical Data Center), ETOPO1 

(Amante and Eakins, 2009), and SRTM30 (Becker et al., 2009), although we do not discuss 

results obtained using ETOPO2 as its resolution is too low. Results based on different DEM 

were compared for durability. All the global data sets are not exact, especially in the remote 

areas like one discussed here. Data on ice thickness is taken from ETOPO1 and from Bamber 

et al. (2001). In many places within our model domain the date sets show significant 

differences (with topography differences up to 600 m and ice thickness data of up to 200 m). 

We performed careful comparison of results to ensure that our conclusions do not depend on a 

particular choice of data set. 

The results of the calculations show that the central part of Greenland responses significantly 

(up to ~850 m) to the unloading of the ice cap, whereas the associated peripheral bulging is 

only of few meters (less than 20 m). Most of the peripheral bulging occurs offshore. The 

Scoresby Sund fjord system and the Disko island are the two regions where the peripheral 

bulging could potentially affect inland topography but the computed amplitude of the uplift is 

negligible. Thus, elastic bulging of the lithosphere due to the ice loading contributes too little 
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to be considered as one of the major mechanisms controlling the uplift of mountains around 

Greenland ice sheet. 

3. Influence of Glacial erosion: general results 

The topography obtained after removal of the ice sheet (Figure 4b) is used as input 

topography for the numerical experiments of this section. Here we attempt to estimate the 

influence of the erosional carving along the fjord systems. To this end, we model the erosion 

processes backward in time (Figure 5). 

Erosion, especially glacial carving, locally removes material from the surface and unloads 

lithosphere activating the buoyancy forces from the deeper Earth (Figure 5a-b). These forces, 

acting on the effectively elastic lithosphere, trigger isostatic elastic uplift of the lithosphere. 

The horizontal extend of such uplift is usually larger than the scale of the erosion localized, 

e.g., within fjords, and thus isostatic readjustment may result in topographic uplift of 

surrounding non-eroded areas (Figure 5c). Note that removing material by erosion will always 

reduce the average elevation of the subjected area, and uplift may be found only locally. 

Quantifying erosional processes is possible only if the initial landscape is known. In our 

experiments we assume that by numerically filling the eroded places with crustal material and 

adjusting it isostatically, we can estimate the elastic response and potential vertical 

movements of surface topography backwards in time (Figure 5d-f). 

The numerical filling of the fjords and corresponding isostatic readjustment (the erosion 

backward in time) go iteratively. The procedure affects on-shore regions between the main 

mountain chains and modern shoreline. On each iteration step we find concavities (simply the 

points within the rectangular mesh with elevation below the average of the four neighbors) 

and add slightly less material (with density of crustal rocks 2800 kg/m3) than required to 

equalize topography with neighbors’ average. While the redistribution of material is 

processed on the topographic mesh, the associated isostatic response is calculated on the 

elastic plate and is assumed to be immediate. We repeat this process until no more sensible 

changes happen to the landscape.  

To reduce the number of parameters in the model, we assume that the elastic property of the 

lithosphere is described by a thin elastic plate with uniform thickness for the entire model 

domain (Figure 1). We compare calculations based on EET ranging between 15 and 30 km.  
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Figure 5. Illustration of how erosion reshapes topography (a-c) and the model approach of this study, “erosion 

backward in time” (d-f). We consider a simple three-layer lithosphere (not to vertical scale) with an upper layer 

(yellow) passively sitting on top of an elastically strong part of lithosphere (orange) which in turn underlined by 

an inviscid asthenosphere (gray). The initial surface (a) is subjected to localized erosion (b) which unloads 

lithosphere and thus results in isostatic uplift (c). In the “erosion backward in time” the localized eroded areas 

are assumed as areas with concave shape (d) which we numerically fill with bedrock material (e) and then 

calculate the downward motion due to the additional load (f). We assume that absolute values of vertical motions 

on (c) and (f) are approximately equal. 

 

Even though the results in general do not vary significantly (only several tens of meters in the 

local uplift) and do not alter the main conclusions, some regional-scale observations match 

quantitatively better to model with EET=15 km (central west Greenland) and EET=20 km 

(central east Greenland). For the sake of simplicity we did not consider models with variable 

EET, which would introduce additional degree of uncertainty in the model and do not change 

first-order conclusion, but rather compare local observations with model results inferred from 

models of uniform plate property of corresponding EET. 

Figure 6 presents results of calculations for the case of effective elastic thickness of the 

lithosphere of 20 km. Significant amount of placed-in material (Figure 6a, up to 3.1 km) is 

observed mainly along the major fjords of Greenland and result in significant isostatic flexure 

of the lithosphere (Figure 6b, up to 1.2 km in amplitude). We can consider the resulting 

smooth landscape as the approximation to the pre-erosional landscape of Greenland generated 

by the model (Figure 6c).  



Annex paper: Influence of ice sheet and glacial erosion on passive margins of Greenland 

113 

  

 

Figure 6. Results of modelling erosion 

backward in time: (a) Amount of 

material used to smooth the topography 

and to fill concavities (“placed-in 

material”). (b) Amplitude of the elastic 

response to the additional loading 

(EET=20 km). Areas with elastic 

response smaller than 20 m are blanked 

(c) Resulting topography, which we treat 

as approximation to pre-erosional 

landscape.  
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Figure 7. Interpretation of model results: (a) Topography changes due to erosion [=pre-glacier topography 

(Figure 4b) – modelled pre-erosional topography (Figure 6c)]. (b) Ratio between elastic response and present-

day topography. Areas with topography below 200 m and with an elastic response smaller than 20 m are 

blanked. Black squares outline regions discussed in more detail in the remainder of this study. 

 

As discussed above (e.g., Figure 5), adding material to the upper surface not only elevate 

topography, but locally may result in decrease in elevation as shown by Figure 7a. The results 

also show that the erosional processes do not create the main mountain belt in Greenland, as 

the pre-erosional mountains are of the similar elevation. 

To assess the results we compare our Greenland-scale model with observations on a regional 

scale. Figure 7b presents ratio of modern topography (Figure 4b) to the elastic response due to 

erosion (Figure 6b). This ratio renders regions where isostatic movements are in the same 

order as the elevation of the topography. It highlights regions where uplift may potentially 

caused by glacial erosion and allows us to choose two areas to discuss in detail in the next 

sections (Figure 7b). Other areas also demonstrate the high ratio, but they are either of 

insignificant topography (areas south from western square and north from eastern square on 
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Figure 7b), or subjected to complex tectonic evolution during Cenozoic (northern Greenland, 

Oakey and Stephenson, 2008, Leever et al., 2011). Note that to ensure general approach and 

to avoid influence of unknown boundary conditions on the numerical models, we do not 

perform special regional modelling, but zoom in the results of the calculations of this section 

onto two chosen regions. 

Thus, by modelling the effect of glacial erosion of the entire Greenland, we have been able to 

estimate the topography and isostatic evolution and present the model for pre-erosion 

landscape. We also show that two particular regions are potentially more influenced by this 

mechanism than the rest of Greenland. 

4. Influence of ice sheet and glacial erosion: close up on Central West Greenland 

The topography and geology of central west Greenland displays a highly incised enveloping 

surface with basalts covering Mesozoic marine sediments elevated high above sea level 

(Japsen et al., 2010). We compare the results of our global model with the regional study 

published in Bonow et al. (2006) with particular interest in profile B-B’ of their study. This 

profile (Figure 8a) goes along the entire Nuussuaq peninsula. Bonow et al. (2006) point to the 

Mesozoic marine sediments at the elevation of more than 1 km and present the eastern part of 

profile as a remnant of a palaeo-plateau formed approximately at sea-level (Figure 8c). Why 

this plateau is now uplifted by almost 2 km and tilted westward by approximately 1.2 km 

remains enigmatic. 

The topographic sampling performed in the regional study of Bonow et al. (2006) is much 

more precise than the data set used in our model (SRTM30), but despite this resolution gap, 

the topographic signature of the palaeo-surface olong the Nuussuaq peninsula is easily 

mapped in our model (Figure 8c). 

Figure 8c shows that removing the ice sheet change elevation of the eastern part of the profile 

by approximately 100 m, as it is already discussed in Bonow et al. (2006). The erosion, 

however, have a much stronger influence on the topography evolution. The material added 

within our model restoring erosion backward in time is illustrated in figure 8c (blue fill). By 

restoring up to 1 km of erosion backwards in time, the profile is smoothed towards a plateau. 

However, the most significant downward motion of profile is caused by the regional isostatic 
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response to filling (backwards in time) the fjords adjacent to Nuussuaq peninsula, 

Uummannaq and Vaigat, where the amount of material adds up to 3 km (Figure 8a). 

Reversing the “backward in time” model we estimate the role of glacial erosion and ice 

loading within the evolution of landscapes of Nuussuaq peninsula and surrounding area. 

Significant glacial erosion results in carving the palaeo-plateau and uplifting it by up to 0.8 

km (out of total 2 km). Additionally, uneven glacial erosion and ice loading contribute to east-

ward tilt of the chosen profile by 0.5 km (out of total 1.2 km). 

 

     

 
Figure 8. General view on the region with white line indicating the position of the profile considered (a). (b) 

Amount of added material during the modelling of the erosion backward in time, with isolines indicating 

regional elastic response in km (black) and the position of the profile considered after Bonow et al. (2006) 

(white). (c) Initial data along the profile (data from Bonow et al. (2006) separated at the bottom part of the 

legend) and (d) model results projected on the profile. Geographical locations on (a): D=Disko island, V= Vaigat 

strait, N= Nuussuaq peninsula, U= Uummannaq fjord. 
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The western part of profile shows presence of marine sediments at high elevation (1.2 km, 

Figure 8b). The total erosion-related uplift in that area (difference between green and blue 

lines on Figure 8c) is only 200 m. However, in this particular area the global DEM (SRTM30) 

used in the global model for Greenland, is rather inaccurate, and of low resolution. Thus the 

low (200 m) rise of the peak with marine sediments probably reflect data resolution used in 

numerical simulations. All other dominating peaks in the area have risen by approximately 

700 m, which is more than half of the elevation of the marine deposits. 

The results of this section show that the ice loading and glacial erosion contribute significant 

to reshaping the landscapes of the central west Greenland. The results presented in this section 

are based on DEM SRTM30 and effective elastic thickness of 15 km. Variations of data 

(using ETOPO1 and/or different elastic thickness) give similar results with quantitative 

effects within 10% difference. 

5. Influence of glacial erosion on the evolution of Central East Greenland 

The topography of central east Greenland is dominated by enormous fjord systems: Scoresby 

Sound, Kong Oscar Fjord and Kejser Franz Joseph Fjord (Figure 9a). The largest, Scoresby 

Sound, is approximately 400 km long, up to 60 km wide and at some places cuts more than 2 

km high paleosurfaces (Figure 2a) to a depth of 1.5 km below sea level. Medvedev et al. 

(2008) pointed out that the mountains between fjords are almost as high as the adjacent main 

mountain chain, but are not supported by thickened roots (Schmidt-Aursch and Jokat, 2005) 

and that the high elevation of those mountains may be a result of significant erosion. The 

same mechanism was suggested to explain Mesozoic marine sediments uplifted up to 1.2 km 

in the ford area (Figure 2b, Henriksen, 2003).  

The erosional unloading of this region has resulted in up to 1.1 km isostatic uplift (Medvedev 

et al., 2008). In the present study we revisit the area considering mainly the evolution of upper 

surface using the results obtained while modelling the entire Greenland. The result of the 

global model zoomed to the area indeed show that the elastic isostatic response, 0.4-1 km, 

may indeed explain the amount of uplift in the areas of Mesozoic marine sediments (Figure 

9b). However, the model assumes filling up the concave shapes even on large scale and thus 

the pre-erosional landscape of the areas of marine sediments is well above sea level, even 

after applied isostatic readjustment. Although the pre-erosional elevation in those areas is not 
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Figure 9. Results zoomed to central East Greenland. (a) The modern day topography. (b) Model results with 

colorcoding of the pre-erosional topography with black isolines of elastic response in km. (c) Results for the 

model with the special treatment of the marine sediments with black isolines of elastic response in km. Note that 

most of the marine sediments are below sea-level on (c). (d) Elevation changes due to erosion within modified 

model. Yellow line outlines the locations of marine sediments along east coast of Greenland (Henriksen, 2003) 

and in Kangerdlugssuaq area (Myers et al., 1988). White square in (a) shows location for analysis presented on 

Figure 10, white stars indicate locations of photographs Figure 2. Geographical locations on (a): SS = Scoresby 

Sund, Jl = Jameson Land, KO = Kong Oscar fjord, KFJ= Kajser Franz Joseph fjord. 
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high (mainly below 0.5 km), we cannot expect that marine sediments would be accumulated 

in such areas. To explain the uplift of marine sediments within our simple model we have to 

find an alternative approach. 

The model presented in this study is based on elastic plate response to loading and unloading 

caused by glaciations and erosion. We also assume that the isostatic response is immediate 

(essentially assuming that asthenosphere underlying the lithosphere is inviscid). Thus, our 

model does not have explicit time-dependence. Moreover, the model is addictive in time and 

space: effects caused by loads separated by time and space can be calculated separately and 

the sum of responses is equal to response of summarized load. Thus we can suggest the model 

in which some parts of the Scoresby Sund area were eroded earlier than others. 

In the modified model (Figure 9c and d) we assume that the landscape of the central east 

margin covered by marine sediments was formed earlier than the surrounded regions. This 

assumption is supported partially by study of Swift et al. (2008), who show that portions of 

landscapes in the area were developed before break-up of Greenland and Eurasia. 

Figure 9 (c and d) present the results of the model in which the area characterized by 

Mesozoic marine sediments (within yellow line on the Figure 9) is subjected to erosion 

backward in time only if it is below sea level. The rest of the model (entire Greenland) is 

subjected to the same procedures as before (e.g., Figure 6). The elastic response in the area, 

even though still significant, becomes smaller (up to 0.7 km on Figure 9c vs. 1.2 km on 

Figure 9b). However, the resulting pre-erosional topography is almost entirely below sea level 

within area of marine sediments (with maximum topography of 0.5 km on Figure 9d vs. up to 

1 km on Figure 9c). The load from the fjords fill within adjacent areas is enough to bring the 

margin with marine sediments under water within our “erosion backward in time” model; and 

thus erosion (considering real time evolution) results in uplift of marine sediments up to 300-

600 m (Figure 9d). 

Results presented in this section show that erosion of the central east Greenland margin may 

result in the uplift of the Mesozoic marine sediments of the area well above sea level. The 

preferred model requires that the landscape of the most outer part of the margin was formed 

prior to the internal part. 
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6. Discussion 

In our calculations, based solely on geometrical definitions of concavities and immediate 

elastic response of the lithosphere, we cannot constrain the time of evolution. Post-processing 

of masses redistribution can give us time scale for the model. The model allows us to 

calculate the masses involved in the erosion process and compare it with amount of off-shore 

sediments, which we have attempted to average from published profiles of offshore Greenland 

(e.g., Berger and Jokat, 2009; Chalmers et al., 1993; Chalmers, 2000; Hamann et al., 2005; 

Japsen et al., 2006; Tsikalas et al., 2005). Even though the data on the amount of off-shore 

sediments is sparse, we may conclude that the masses eroded from the central east Greenland 

are much larger than amount of sediments accumulated in adjacent off-shore areas. Similar 

conclusion may be done for Western Greenland, but with less certainty, as the difference is 

not that great. Two obvious mechanisms may explain this inequality: (1) the eroded material 

travels long distance; and (2) the landscape was (partially) formed before break-up of 

surrounded oceans (Figure 1a). The latter mechanism is supported by geomorphological and 

stratigraphical studies of Swift et al. (2008) on the central east Greenland. However, exact 

quantitative analysis needs more data on the off-shore sediments. 

 

  

Figure 10. Examples of topography derived from two different data sets, (a) SRTM30 (resolution 30 arc seconds 

or 0.5-1 km) and (b) from Aster data set (resolution 1 arc second, approx. 30 m). We use SRTM30 and 

ETOPO1in our calculations because of lack of global data with high resolution (especially the lack of ice-

thickness data). Vertical exaggeration is 10 times. Location of this example area is outlined on Figure 9a. The 

color-scale of these figures is the same as on all other topographic figures. 
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The model presented in this study might be highly sensitive to the resolution of the mesh used 

to calculate the topographic changes and the DEM. In the model we use SRTM30 and 

ETOPO1 data sets (approx. 1 km resolution) and the mesh resolution of 1.5 km is dense 

enough to catch the features of DEM. However, higher resolution topographic data would 

record more dramatic topography, which then give the model more cavities to fill and amplify 

the effect of isostatic response. 

To test the sensitivity to topographic resolution we calculate the total volume trapped between 

the topography and the “convex envelope” in several sample localities in the Scoresby Sund 

area using different DEMs. Figure 10 demonstrates significant difference in topography of 

one sample area using SRTM30 and ASTER (Advanced Spaceborne Thermal Emission and 

Reflection Radiometer, a joining venture of METI and NASA) data (prepared by the NASA 

LP DAAC, USGS/EROS Center). In the areas of comparisons the high resolution data reveal 

30 to 49% more space between the DEM and the enveloping surface. Most significant 

contribution to that difference brings higher topography variations (peaks are higher and 

valleys are deeper) within the higher resolution DEM (sf. Figures 10a and b). Thus, the 

erosional-related (un-)loading performed in this study and based on global DEM (Figure 10a) 

maybe significantly smaller than in reality. 

We already discussed some specific problems of low resolution of our model when addressed 

marine sediments on the western part of the Nuussuaq peninsula profile (Figure 8b). Those 

marine sediments are located on the peak which simply does not exist in the DEM used here 

(SRTM30 in that case) and thus this significant uplift of marine sediments there cannot be 

discussed within the model. 

Simplifications of our model and absence of the high-resolution global DEM for Greenland 

(especially concerning thickness of the ice sheet and fjords depth) preclude us to use higher 

resolution. The local tests (Figure 10) nevertheless show that estimates of eroded masses and 

thus erosional uplift are conservative, due to the resolution of the data. 

In our numerical experiments we consider only the influence of ice load and erosion caused 

by ice. Even though we demonstrated that these mechanisms play a significant role in land 

forming processes along Greenland margins, there are other mechanisms that may contribute. 

One of that processes is a significant thickness of 55 Ma mafic intrusions recorded in the 

locations considered in our study (e.g., Henriksen, 2008; Figure 2b). Intrusions of 5-10% into 

several km thick marine sediments may result in uplift counted in hundreds of meters. The 
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concentration of intrusions corresponds roughly to the areas of sediments remaining above 

sea-level on Figure 9c. 

The results of our calculations (Figures 6 and 7) show that northern Greenland has a 

potentially high influence of the glacial erosion on the landscape forming. That part of 

Greenland, however, experienced collision with North America (Ellesmere island, west) and 

Eurasia (Svalbard, east) in the latest Mesozoic to Early Cenozoic when Greenland moves 

northward (Tessensohn and Piepjohn, 2000). Thus, the landscape of that non-passive margin 

of Greenland has subjected to active deformation and analysis presented in our study, based 

solely on the erosion process, may be misleading. 

The other part of Greenland margin which represents enigmatic uplift is the area south of 

Scoresby Sund (Kangerdlugssuaq region, Figure 9). Whereas the geology of Scoresby Sound 

and northwards is dominated by widespread sedimentary rocks covered by a thin layer of 

basalt, the area south of the fjord only a thin layer of Cretaceous to Paleogene marine 

sediments covered by a kilometer-thick basalt layer. It is remarkable that these southern 

marine deposits rest as much as one kilometer higher than the northern deposits (Myers et al., 

1988). This is enigmatic, partly because of the considerable load of overlying basalts, which 

should have loaded the marine deposits even deeper down, but also because the region is little 

incised, so that erosional uplift only amounts to 0.4 km for the region while the sediments 

rests at the elevation of up to 2 km (Figure 9 b or c). Clearly an alternative and dominant 

source of uplift is needed here.  These high altitude marine deposits sits directly on the 

Iceland hot spot track, where Kangerdlugssuaq passed above the present day position of the 

Iceland plume at 30 Ma (Lawver and Muller, 1994). The age fits roughly the apatite fission 

track ages of the region (Hansen, 1996), and it thus seems likely that this mid Cenozoic uplift 

is related hotspot interaction with Greenland lithosphere.  

7. Conclusion 

We quantified effects of ice-related processes on shaping margins and internal part of 

Greenland. Those effects include the influence of the load of massive ice sheet on the 

Greenland topography and influence of significant erosion caused mainly by glacial carving. 

Our results show: 
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(1) Whereas the isostatic response to the load of the Greenland ice sheet is significant, more 

than 800 m in some areas, within the central Greenland, peripheral flexural bulging is an 

inefficient mechanism in generating topography along Greenland’s margins.  

(2) Glacial carving may introduce major vertical motions on Greenland margin and be a major 

contributor to landscape forming. Our study allowed outlining the areas where this 

mechanism is potentially important. 

(3) We demonstrate how regional observations may be explained using the global model of 

the Greenland evolution and considering the erosion backward in time. In particular, we 

consider to which degree erosion may contribute to uplift and tilting of the Nuussuaq 

peninsula (central west Greenland) and how Mesozoic marine sediments can be uplifted in the 

central east Greenland margin. 

(4) Our numerical experiments with different resolution of topographic data show that the 

estimation of uplift is conservative.  

(5) We point out some regions with significant vertical motions that cannot (Kangerdlugssuaq 

region with Cretaceous marine sediments at ca. 2 km altitude and only 0.4 km erosional 

uplift) and should not (e.g., northern Greenland, which is subjected to rather recent tectonic 

deformations) be analyzed within our purely erosional model. 

(6) Our model allows considering the mass balancing processes within and around Greenland; 

however, this type of study requires more data on the off-shore sediment structure around 

Greenland. The first order observations show that the volume of offshore sediments in the 

mouth of the Scoresbysund fjord system is largely insufficient to balance the amount of 

eroded material inland. This could suggest either that the topography of the fjord is older than 

the removed Cenozoic offshore sediments and may be linked with other Mesozoic basins 

around the continental shelf, or that a large proportion of sediments were lost by drifting away 

from the shelf.  
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