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Introduction

Let X be a smooth complex projective variety of dimension d. We call X a
Calabi- Yau manifold if

1. H{(X,0Ox) =0 for every i, 0 < i < d, and
2. Ky := NIQL = Oy, i.e., the canonical bundle is trivial.

By the second condition and Serre duality we have

dimH°(X, Kx) = dimHY(X,0x) = 1

i.e., the geometric genus of X is 1.

Let Q% := APQY and let H?(Q%) be the (p, q)-th Hodge cohomology group
of X with Hodge number h*%(X) = dimcH?(Q%). The Hodge numbers
are important invariants of X. There are some symmetries on the Hodge
numbers. By complex conjugation we have H?(Q%) = H?(Q%) and by Serre
duality we have H?(Q%) = H*9(Q4 ). By the Hodge decomposition

Hk(X/ (C) = @p+q:k Hq(ng)
we have
k
RHX) = D RPUX) = RETHX)
o=k i=0

The topological Fuler characteristic of X is an important invariant. It is
defined as follows

2d

X(X) =) (-1 (X) .

k=0

The conditions for X to be Calabi-Yau assert that h%9(X) =0 for 0 <i < d
and that h%%(X) = h*0(X) = 1.



We consider Calabi-Yau manifolds of dimension 3 in this text, these are
simply called Calabi- Yau threefolds. In this case the relevant Hodge numbers
are often displayed as a Hodge diamond.

h0,0
hl,O hO,l
h2,0 hl,l hO,Q

h3’0 h2,1 h1,2 h0’3
h3,1 h2,2 h1,3
h3,2 h2,3
h3,3

By the properties mentioned above, the Hodge diamond reduce to

1
0 0
0 Attt 0
1 h2,1 hl,? 1
0 h%% 0
0 0
1

with the equalities A" = h*? and h'? = h%>! as explained above. In this
case, the Euler characteristic of X is

X(X) = 2(hH(X) = hH*(X))

Physicists have discovered a phenomenon for Calabi-Yau threefolds, known
as mirror symmetry. This is conjectured to be a correspondence between
families of Calabi-Yau threefolds X and X° with the isomorphisms

HY(X,\"Ox) = HY(X°, Q%)

and vice versa, where Ox is the tangent sheaf of X. Since APOx is isomorphic
to Q5 7, this gives the numerical equality h»9(X) = hP*~9(X°), and hence
X(X) = —x(X°), which we will verify for some examples in this thesis. These
symmetries correspond to reflecting the Hodge diamond along a diagonal.

For trivial reasons, the mirror symmetry conjecture, as stated above, fails
for the Calabi-Yau threefolds where h%!(X) = 0, since Calabi-Yau manifolds
are Kihler, so A" (X) > 0.

A nonlinear sigma model consists of a Calabi-Yau threefold X and a
complexified Kéhler class w = B 4 ¢J on X, where B and J are elements



of H*(X,R), with J a Kihler class. The moduli, i.e. how one can de-
form the complex structure and the complexified structure w, is governed by
H'(©x) and H'(Qy), respectively. The isomorphisms H'(Ox) = H'(Qx-)
and HY(Oy.) = H'(Qx) give a local isomorphism between the complex
moduli space of X and the Kéahler moduli space of w®, and between the
complex moduli space of X° and the K&hler moduli space of w. These local
isomorphisms are collectively called the mirror map. A general reference on
Calabi-Yau manifolds and mirror symmetry is the book by Cox and Katz [10].

In this thesis we study projective Stanley-Reisner schemes obtained from
triangulations of 3-spheres, i.e. Xy := Proj(Ak) for K a triangulation of
a 3-sphere and Ay its Stanley-Reisner ring. These schemes are embedded
in P™ for various n. We obtain Calabi-Yau 3-folds by smoothing (when a
smoothing exists) such Stanley-Reisner schemes.

The first mirror construction by Greene and Plesser for the general quintic
hypersurface in P* will be reviewed in Chapter 1.

In Chapter 2 we give a method for computing the Hodge number h'2(X)
of a small resolution X — X, where X is a deformation of a Stanley-Reisner
scheme X, with the only singularities of X being nodes. We use results
on cotangent cohomology, and a lemma by Kleppe [20], which in our case
states that Ty = T} ; for X = Proj(A), i.e. the module of embedded (in P")
deformations of X is isomorphic to the degree 0 part of the module of first
order deformations of the ring A. We compute the Hodge number hl’Q(f()
as the dimension of the kernel of the evaluation morphism T, — ®T} .
where A; is the local ring of a node P;. We use this method in the only non-
smoothable example in Chapter 3, where we construct a Calabi-Yau 3-fold
with h%2(X) = 86 from a small resolution of a variety with one node.

Griinbaum and Sreedharan [16] proved that there are 5 different combi-
natorial types of triangulations of the 3-sphere with 7 vertices. In Chapter
3 we compute the Stanley-Reisner schemes of these triangulations. They are
Gorenstein and of codimension 3, and we use a structure theorem by Buchs-
baum and Eisenbud [9] to describe the generators of the Stanley-Reisner
ideal as the principal Pfaffians of its skew-symmetric syzygy matrix. This
approach combined with results by Altmann and Christophersen [2] on de-
forming combinatorial manifolds, gives a method for computing the versal
deformation space of the Stanley-Reisner scheme of such a triangulation. As
we mentioned above, we get a non-smoothable Stanley-Reisner scheme in one
case. In the four smoothable cases, we compute the Hodge numbers of the
smooth fibers, following the exposition in [24]. We also compute the auto-
morphism groups of the triangulations, and consider subfamilies invariant
under this action.



Rgdland constructed in [24] a mirror of the 3-fold in PS of degree 14
generated by the principal pfaffians of a general 7 x 7 skew-symmetric matrix
with general linear entries, done by orbifolding. Béhm constructed in [8] a
mirror candidate of the 3-fold in P° of degree 13 generated by the principal
pfaffians of a 5 x5 skew-symmetric matrix with general quadratic forms in one
row (and column) and linear terms otherwise. This was done using tropical
geometry. In Chapter 4 we describe how the Rgdland and B6hm mirrors are
obtained from the triangulations in Chapter 3, and in Chapter 5 we verify
that the Euler characteristic of the B6hm mirror candidate is what it should
be.

In general, the mirror constructions we consider in this thesis are obtained
in the following way. We consider the automorphism group G := Aut(K)
of the simplicial complex K. The group G induces an action on T}(O, the
module of first order deformations of the Stanley-Reisner scheme Xy in the
following way. Since an element of T}(O is represented by a homomorphism
¢ € Hom(I/I?, A), an action of g € G can be defined by (9-¢)f = g-¢(g7'-f),
where f € I is a representative for a class in the quotient /12

There is also a natural action of the torus (C*)"*! on Xy C P" as follows.
An element A = (Xg,...,\,) € (C*)"*! sends a point (zg,...,z,) of P* to
(Moo, - - - s Any). The subgroup {(A,...,A)|A € C*} acts as the identity on
P, so we have an action of the quotient torus T;, := (C*)"*1/C*. Since Ix,
is generated by monomials it is clear that 7T, acts on Xj.

We compute the family of first order deformations of X,. When the
general fiber is smooth, we consider a subfamily, invariant under the action of
G, where the general fiber X; of this subfamily has only isolated singularities.
We compute the subgroup H C T, of the quotient torus which acts on this
chosen subfamily, and consider the singular quotient Y; = X;/H. The mirror
candidate of the smooth fiber is constructed as a crepant resolution of Y;. In
Chapter 4 we perform these computations in order to reproduce the Rgdland
and Bohm mirrors.

In Chapter 5 we verify that the Euler characteristic of the Bohm mirror
candidate is 120. This is as expected since the cohomology computations in
Chapter 3 give Euler characteristic -120 for the original manifold obtained
from smoothing the Stanley-Reisner scheme of the triangulation.

We compute the Euler characteristic of the Bohm mirror using toric ge-
ometry. A crepant resolution is constructed locally in 4 isolated Q12 singu-
larities. These 4 singularities and two other points are fixed under the action
of the group G, which is isomorphic to the dihedral group D;. The sub-
group H of the quotient torus acting on the chosen subfamily is isomorphic
to Z/13Z. Denote one of these singularities by V. The singularity is em-
bedded in C*/H, which is represented by a cone ¢ in a lattice N isomorphic



to Z*. A resolution Xy — C*/H corresponds to a regular subdivision of o.
This subdivision is computed using the Maple package convex [11], and it
has 53 maximal cones which are spanned by 18 rays. The following diagram
commutes, where V' is the strict transform of V.

Ve =Xy

Ve—~C/H

Each ray p in ¥, aside from the 4 generating the cone o, determines an
exceptional divisor D, in Xy, Hence there are 14 exceptional divisors in Xs.
For every ray p, the exceptional divisor D, is a smooth, complete toric 3-fold
and comes with a fan Star(p) in a lattice N(p) and a torus T}, corresponding
to these lattices. The subvariety will only intersect 10 of these exceptional
divisors D,. In 9 of these 10 cases the intersection is irreducible and in one
case the intersection has 4 components, but one of these is the intersection
with another exceptional divisor. All in all the exceptional divisor E in V.
has 12 components E1, ..., Fis.

To compute the type of the components Fj;, several different techniques
are needed depending upon the complexity of D,. In some cases the inter-
section V N 7T, is a torus. In some cases D(p) is a locally trivial P' bundle
over a smooth toric surface. In some cases F; is an orbit closure in Xy, corre-
sponding to a 2-dimensional cone in . In one case we construct a polytope
which has Star(p) as its normal fan.

The space E is a normal crossing divisor. We compute the intersection
complex by looking at the various intersections V N D, ND,, and vn D, N
D,,ND,,, and we compute the Euler characteristic of E. For the two other
quotient singularities we use the McKay correspondence by Batyrev [6] in
order to find the euler characteristic. We put all this together in order to get
the Euler characteristic of the resolved variety.

Computer algebra programs like Macaulay 2 [13], Singular [14] and Maple
[1] have been used extensively throughout my studies, partly for handling ex-
pressions with many parameters and getting overview, but also for proving
results. The code is not always included, but it is hoped that enough infor-
mation is provided in order for the computations to be verified by others.
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Chapter 0

Preliminaries

0.1 Simplicial Complexes and Stanley-Reisner
schemes

Throughout this thesis we will work over the field of complex numbers C.
We will first give some basic definitions. Let [n] = {0,...,n} be the set of all
positive integers from 0 to n, and let A,, denote the set of all subsets of [n].
We view a simplicial complex as a subset K of A, with the property that if
f € K, then all the subsets of f are also in K. The elements of K are called
faces of K. Let p € A,. In the polynomial ring R = Clay, ..., z,], let z, be
defined as the monomial ILc,z;. We define the set of “non-faces” of K to be
the complement of K in A,, i.e. Mx = A, \ K. The Stanley-Reisner ideal
I is defined as the ideal generated by the monomials corresponding to the
"non-faces" of K, i.e.

IK:<’IIPER|]7€]\/{K> .
The Stanley-Reisner ring is defined as the quotient ring Ax = R/Ix. The
projective scheme
P(K) := Proj (Ak)

is called the projective Stanley-Reisner scheme.

We will need the following definitions. For an face f € K, we define the
link of f in K as the set

link (f,K):={9geK|gNnf=0and gU f e K}.

We set [K] C [n] to be the vertex set [K] = {i € [n] : 4 € K}. The closure
of f is defined as f = {g € A, : g C f}. The boundary of f is defined as

13



14 CHAPTER 0. PRELIMINARIES

Of ={g € A, : g C f proper subset}. The join of two complexes X and YV
is defined by

X«Y={fug|feXgeY},

where the symbol U denotes disjoint union. The geometric realization of K,
denoted |K|, is defined as

|K|:={a:[n] = [0,1] : supp(a) € X and Xl:a(z) =1},

where supp(«) := {i : (i) # 0} is the support of the function a. The real
number «(7) is called the ith barycentric coordinate of «. One can define a
metric topology on K by defining the distance d(a, 8) between two elements

«a and [ as
Ao, ) = [> (i) = B(3))?

For a general reference on simplicial complexes, see the book by Spanier [26].

The schemes P(K) are singular. In fact, P(K) is the union of projective
spaces, one for each facet (maximal face) in the simplicial complex K, inter-
secting the same way as the facets intersect in K. The proof of this statement
is combinatorial: Let p € A, be a set with the property that pNq # (0 for all
g € Mk and suppose also that p # [n]. Then the complement p° := [n] — p
is a face of K, and p°® # (). Note that if p is a minimal set with the prop-
erty mentioned above, then p® is a facet. Recall that z, is defined as the
monomial x, := Il;c,x;, and that the Stanley-Reisner ideal of K is generated
by the monomials z, with ¢ € Mg. If x; = 0 for all ¢ € p, then all the
monomials x, are zero, since each z, contains a factor z; when p has the
property mentioned above and i € p. Hence the scheme P(K) is the union
of projective spaces which are defined by such p, i.e. given by x; = 0 for all
i € p. These projective spaces are of dimension |p¢| — 1, and they are in one
to one correspondence with the faces p°.

We will now mention some special triangulations of spheres which will
be of importance in this thesis. The most basic triangulation of the n — 1-
sphere is the boundary 94, of the n-simplex A, (more precisely, with the
definition of boundary of a face given above, it is the boundary of the unique
facet [n] = {0,...,n} of A,.) For n = 1 it is the union of two vertices.
For n = 2 it is the boundary of a triangle, denoted E3. All triangulations
of St are boundaries of n-gons, denoted E,, for n > 3. The boundary of
the 3-simplex 0Aj is the boundary of a regular pyramid. From now on,
we will for simplicity omit the word "boundary", and we will denote the
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triangulations of spheres as triangles, n-gons, pyramids etc. Other basic
triangulations of S? are the suspension of the triangle ¥ F3 (double pyramid)
and the octahedron Y E,; (double pyramid with quadrangle base). Let C}, be
the chain of k 1-simplices, i.e. {{0,1},{1,2},...,{k —1,k}}. Let A; be the
set of all subsets of {n —2,n — 1}. Then we define (the boundary of) the
cyclic polytope, 0C(n,3), as the union (Cj,_3 * 0A;) U J, where J is the join
Ay« {{0},{n — 3}} (see the book by Griinbaum [15] for details).

0.2 Deformation Theory

Given a scheme X over C, a family of deformations, or simply a deformation
of Xy is defined as a cartesian diagram of schemes

X, X

Spec(C)——=S

where 7 is a flat and surjective morphism and S is connected. The scheme
S is called the parameter space of the deformation, and X is called the total
space. When S = SpecB with B an artinian local C-algebra with residue
field C we have an infinitesimal deformation. If in addition the ring B is
the ring of dual numbers, B = Cle]/(¢?), the deformation is said to be of
first order. A smoothing is a deformation where the general fiber X} of 7 is
smooth. For a general reference on deformation theory, see e.g. the book by
Hartshorne [19] or the book by Sernesi [25].

For a construction of the cotangent cohomology groups in low dimen-
sions, see e.g. Hartshorne [19], where cotangent compler and the cotangent
cohomology groups T¢(A/S, M) are constructed for i = 0,1 and 2, where
S — A is a ring homomorphism and M is an A-module. This is part of the
cohomology theory of André and Quillen, see e.g. the book by André [4].

We will be interested in the case with M = A and S = C, and in this
case the cotangent modules will be denoted T%. We will consider the first
three of these. The module 79 describes the derivation module Derc(A, A).
The module T} describes the first order deformations, and the T3 describes
the obstructions for lifting the first order deformations.

Let R be a polynomial ring over C and let A be the quotient of R by an
ideal I. The module T is the cokernel of the map

Der(R, A) — Hompg(I, A) = Hom4(I /1%, A) ,
where a derivation ¢ : R — A is mapped to the restriction ¢|I : I — A. Let
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0—>Rel F2oR A

be an exact sequence presenting A as an R module with F free. Let Rely
be the submodule of Rel generated by the Koszul relations; i.e. those of the
form j(z)y — j(y)x. Then Rel/Rely is an A module and we have an induced
map

Hom (F/Rely @ A, A) — Homy(Rel/Rely, A) .

The module T3 is the cokernel of this map.
The 7" functors are compatible with localization, and thus define sheaves.

Definition 0.2.1. Let S be a sheaf of rings on a scheme X, A an S-algebra
and M an A-module. We define the sheaf 7:2/5(./\/1) as the sheaf associated
to the presheaf

U= TAU)/SU); MWU))

Let X be a scheme A = Ox, M = A and S = C, and denote by T3 the
sheaf %X/C. The modules T% are defined as the hyper-cohomology of the
cotangent complex on X.

For projective schemes, we will be interested in the deformations that are
embedded in P, and the following lemma will be useful.

Lemma 0.2.1. If A is the Stanley-Reisner ring of a triangulation of a 3-
sphere and X = Proj A, then there is an isomorphism

1 ~ 1l
TL=Th,

Proof. See the article by Kleppe [20], Theorem 3.9, which in the case u =0,
i = 1 and n > 1 (and in our notation) states that there is a canonical
morphism

1 1
TA,0 — Ty

which is a bijection if depth,, A > 3, where m is the ideal J],_,A;. Note
that the Stanley-Reisner ring corresponding to a triangulation of a sphere
is Gorenstein (see Corollary 5.2, Chapter II, in the book by Stanley [27]).
If A is the Stanley-Reisner ring of a triangulation of a 3-sphere a, we have
depth,,A = 4, hence the morphism above is a bijection. O
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When the simplicial complex K is a triangulation of the sphere, i.e. |K| =
S™, a smoothing of X yields an elliptic curve, a K3 surface or a Calabi-Yau
3-fold when n =1, 2 or 3, respectively. We will prove this in the n = 3 case.

Theorem 0.2.1. A smoothing, if it exists, of the Stanley-Reisner scheme of
a triangulation of the 3-sphere yields a Calabi- Yau 3-fold.

Proof. Sheaf cohomology of X{ is isomorphic to simplicial cohomology of
the complex K with coefficients in C, i.e. hi(Xy,Ox,) = h*(K,C). This is
proved in Theorem 2.2 in the article by Altmann and Christophersen [3]. The
semicontinuity theorem (see Chapter 111, Theorem 12.8 in [18]) implies that
hi(X¢, Ox,) = 0 for all ¢ when hi(Xo, Ox,) = 0. Third, the Stanley-Reisner
scheme X, of an oriented combinatorial manifold has trivial canonical bundle
wx,, hence wy, is trivial for all ¢. This is proved in the article by Bayer and
Eisenbud [7], Theorem 6.1. O

0.3 Results on deforming Combinatorial Man-
ifolds

A method for computing the 7% is given in the article by Altmann and
Christophersen [3]. If K is a simplicial complex on the set {0,...,n} and
A := Ak is the Stanley-Reisner ring associated to K, then the T} is Zm+!
graded. For a fixed ¢ € Z"*! write ¢ = a— b where a = (ay, ..., a,) and
b = (by,...b,) with a;,b; > 0 and a;b; = 0. Let z* be the monomial
xg’ -+ - x2 . We define the support of a to be a = {i € [n]|a; # 0}. Thus if
a € {0,1}"", then we have z, = 2. If a,b C {0,...,n} are the supporting
subsets corresponding to a and b, then a N b = (. The graded piece T}Lc
depends only on the supports a and b, and vanish unless a is a face in K,
b € {0,1}" and b C [link(a, K)].

The module Homg(fy, A)e sends each monomial z, in the generating set
of the Stanley-Reisner ideal I defining A = R/I to the monomial z;ia when
b C p, and 0 otherwise. This corresponds to perturbing the generator z, of
Iy to the generator z, + txgia of a deformed ideal I,.

If | K| = S®, then the link of every face f, |link(f)], is a sphere of dimension
2 — dim(f). We will need some results on how to compute the module T}
for these Stanley-Reisner schemes. We will list results from [2]. We write

TLy(X) for the sum of the graded pieces T} . with a =0, i.e. a = 0.
Theorem 0.3.1. If K is a manifold, then

Thi= Y Tiy(link(a, X))

ac Z" with a€ X
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\ Manifold \ K [ dim T, |

‘ two points ‘ 0A, ‘ 1 ‘
triangle Es 4
quadrangle Ey 2
tetraedron 003 11
suspension of triangle YFEs 5
octahedron YE, 3
suspension of n-gon YE,,n>5 1
cyclic polytope 0C(n,3),n>6 1

Table 1: T in low dimensions

where T, (link(a, X)) is the sum of the one dimensional T;_, (link(a, X)) over
all b C [link(a, X)] with |b| > 2 such that link(a, X) = L % 9b if b is not a
face of link(a, X), or link(a, X) = L+ 0bN AL *b if b is a face of link(a, X).
In the first case |L| is a (n — |b| + 1)-sphere, in the second case |L| is a
(n—|b] + 1)-ball

The following proposition lists the non trivial parts of 772 (link(a, X)).

Proposition 0.3.2. If K is a manifold, then the contributions to T, (link(a, X))
are the ones listed in Table 1. Here OC(n,3) is the cyclic polytope defined in
section 0.1, and E,, is an n-gon.

A non-geometric way of computing the degree zero part of the C-vector
space T3 is given in the Macaulay 2 code in Appendix A, when p is an ideal
and T is the polynomial ring over a finite field.

0.4 Crepant Resolutions and Orbifolds

In this thesis, we will construct Calabi-Yau manifolds by crepant resolutions
of singular varieties. In some cases these singular varieties are orbifolds. A
crepant resolution of a singularity does not affect the dualizing sheaf. In the
smooth case, the dualizing sheaf coincides the canonical sheaf, which is trivial
for Calabi Yau manifolds. An orbifold is a generalization of a manifold, and
it is specified by local conditions. We will give precise definitions below.

Definition 0.4.1. A d-dimensional variety X is an orbifold if every p € X
has a neighborhood analytically equivalent to 0 € U/G, where G C GL(n,C)
s a finite subgroup with no complex reflections other than the identity and
U C C% is a G-stable neighborhood of the origin.
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A complex reflection is an element of GL(n,C) of finite order such that
d — 1 of its eigenvalues are equal to 1. In this case the group G is called a
small subgroup of GL(n,C), and (U/G,0) is called a local chart of X at p.

Let X be a normal variety such that its canonical class Kx is Q-Cartier,
i.e., some multiple of it is a Cartier divisor, and let f: Y — X be a resolution
of the singularities of X. Then

Ky = f"(Kx)+ > aE;

where the sum is over the irreducible exceptional divisors, and the a; are
rational numbers, called the discrepancies.

Definition 0.4.2. If a; > 0 for all i, then the singularities of X are called
canonical singularities.

Definition 0.4.3. A birational projective morphism f:Y — X with Y
smooth and X with at worst Gorenstein canonical singularities is called a
crepant resolution of X if f*Kx = Ky (i.e. if the discrepancy Ky — f*Kx
is zero).

0.5 Small resolutions of nodes

Let X be a variety obtained from deforming a Stanley-Reisner scheme ob-
tained from a triangulation of the 3-sphere, where the only singularity of X is
a node. If there is a plane S passing through the node, contained in X, then
there exists a crepant resolution 7: X — X with X smooth. To see this,
consider a smooth point of X. As S is smooth, S is a complete intersection,
i.e., defined by only one equation. The blow-up along S will thus have no
effect as the blow-up will take place in X x P° outside the singular points.
The singularity will be replaced by PL. The resolution is small (in contrast
to the big resolution where the singularity is replaced by P! x P!), i.e.

codim{z € X | dimf~(z) >r} > 2r

for all » > 0, hence, the dualizing sheaf is left trivial. The resolved manifold
X is Calabi-Yau. This result can be generalized to the case with several
nodes, and S a smooth surface in X passing through the nodes. For details,
see the article by Werner [28], chapter XL
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Chapter 1

The Quintic Threefold

It is well known that a smooth quintic hypersurface X C P* is Calabi-Yau.
A smooth quintic hypersurface can be obtained by deforming the projective
Stanley-Reisner scheme of the boundary of the 4-simplex. Since the only
non-face of 9A, is {0,1,2,3,4}, the Stanley-Reisner ideal I is generated by
the monomial xgx 222324 and the Stanley-Reisner ring is

A= (C[I(h . I4}/(IOI1I2I3$4) .

The automorphism group Aut (K) of the simplicial complex is the symmetric
group Ss.

Following the outline described in section 0.3, we compute the family of
first order deformations. The deformations correspond to perturbations of
the monomial xgzixow324. Section 0.3 describes which choices of the vectors
a and b with support a and b give rise to a contribution to the module T%.

The link of a vertex a is the tetrahedron As. The only b with aNb = 0
and b not face is if |b] = 4. The case where b is a face and |b] = 3 gives 4
choices for each vertex a. The case where b is a face and |b| = 2 gives 6 choices
for each vertex a. All in all, the links of vertices give rise to 5 x 11 = 55
dimensions of the degree 0 part of T} (as a C vector space).

The link of an edge a is the triangle A,;. The only b with anb =
and b not face is if |b] = 3. In this case, there are two possible choices of
a with support a corresponding to a degree 0 element of Homg(ly, A). The
case where b is a face and |b] = 2 gives 3 choices for each edge a. All in all,
the links of edges give rise to 10 x 5 = 50 dimensions of the degree 0 part of
T,

We represent each orbit under the action of S5 by a representative a and
b, and all the orbits are listed in Table 1.1. Note that the monomials xixjka%
are derivations, hence give rise to trivial deformations.
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a b perturbation | # in Ss-orbit
{0} |{1,2,3,4} T 5
oy | {1.2,3} P 20
{0} {1,2} T334 30
0,17 | {2,3.4} 2327 20
{0,1} {2,3} r2riny 30

Table 1.1: Ty, is 105 dimensional for the quintic threefold X,

We now choose the one parameter Ss-invariant family corresponding to
a a vertex (i.e. support a = {j}) and b = [link(a, X)], i.e.

Xt:{(.I'Q,...I4)€P4|ft:0},

where f; = tad+ted+tad+tad+tal+zozwew3zy. To simplify computations,
we set

5 5 5 5 5
fe=og+ 2] + x5 + 25 + 2 — dtror10203T .

This can be viewed as a family X — P! with

P(A) = Xse = {(z0,...2) | TT, 21 = 0}
our original Stanley-Reisner scheme. The natural action of the torus (C*)5
on X,, C P%is as follows. An element A\ = (Ag,...,\s) € (C*)® sends a
point (zg,...,x4) of P* to (Moo, ..., \sxy). The subgroup {(},...,\)|\ €
C*} acts as the identity on P*, so we have an action of the quotient torus
Ty := (C*)3/C*. Since X, is generated by a monomial, it is clear that T}
acts on X.

We compute the subgroup H C Ty of the quotient torus acting on A}
as follows. Let the element A = (Ag,...,As) act by sending (zo,...,x4) to
(Moo, - -, Adazy). For A to act on X;, we must have

AN=X = =N =1\,
hence A; = &% where ¢ is a fixed fifth root of 1, and >, a; = 0(mod 5).
Hence H is the subgroup of (Z/5Z)°/(Z/5Z) given by

{((10,...7(14) | Zai = 0} .
This group acts on X; diagonally by multiplication by fifth roots of unity,
i.e. (ao,...a4) € (Z/5Z)° acts by

(x07 s 73:4) = (5110‘%,07 s ’£a4x4)
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where & is a fixed fifth root of unity. We would like to understand the
singularities of the space Y; := X;/H. For the Jacobian to vanish in a point
(o, . . . 24) we have to have ? = txgx 797374, and hence Tz? = t°Tlx?. Thus
either > = 1 or one of the z; is zero. But if one z; is zero, then they all are,
and thus (zo, ..., 74) does not represent a point in P4 If #> # 1, then X; is
nonsingular. If t5 = 1, then X; is singular in the points (£%, ..., £%) with
> a; = 0 modulo 5. Projectively, these points can be written

(17 €*a0+a17§*a0+a2’ é“*a(hLa:;’ 63(10*@*&2*@3) )

This consists of 125 distinct singular points.

From now on assume that |¢| < 1. The quotient X;/H is singular at each
point = where the stabilizer H, is nontrivial. A point in P* has nontrivial
stabilizer in H if at least two of the coordinates are zero. The points of the
curves

CZJ:{J}Z:.’I)]:O}th

have stabilizer of order 5. For example, the stabilizer of a point of the curve
Co is generated by (2,0,1,1,1). The points of the set

ij:{xi:l'j:xk:O}th

have stabilizer of order 25.
It follows from this that the singular locus of Y; consists of 10 such curves
Cy;/H. We have C;;/H = Proj(R™) where
R= (C[Im ey 14}/(1’“33]‘, ft) .

For example, for Cy; the ring R is

C[l’g,l’g,l’d/(l’é + Z'g + Ii) .

An element (ag, ...,a4) € H now acts on this ring by

($27 T3, :E4) = (§a2x27§a3$31 §a4$4) )

so we have an action of (Z/5Z)? on R. For a monomial zzz* to be invariant
under this group action, we have to have i = j = k = 0 mod 5, hence

R" = Clyo, y1,92)/ (o +v1 + v2)

where y; = 27,,, and Proj(R”) = P!. The curves C;; intersect in the points
Pyr/H.
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The singularity P,/ H locally looks like C?/(Z/5Z®Z/5Z), where the ele-
ment (a,b) € Z/5Z®7Z/5Z acts by sending (u, v, w) € C to (&%, v, £ w).
To see this, consider for example the set P := Fyo. This set consists of 5
points projecting down to the same point in Y;. A neighborhood U of one of
these 5 points projects down to U/H C Y;. By symmetry, the other singular-
ities Pj;;, are similar. The set P is defined by the equations o = 1 = 22 =0
and 23 + 25 = 0. We consider an affine neighborhood of P, so we can assume
xgy = 1. Set y; = %1 Then we have

f=v+yl+y5+y5+1—5tyoyiyays .

The points 2y = 1 = 2 = 23 + 25 = 0 now correspond to yo = y; = Yo =
y3+1=0. Now set 23 =y3 + 1 and 2; = y; for i = 0,1,2. Then we have

f= zg + Zf + zg + zg’u — Btzgz1290 .
where 4 = 5 — 1023 + 1022 — 523 + 2+ and v = 23 — 1 are units locally around
the origin. For a fixed z3 with (23 — 1)> = —1, the group H acts on the
coordinates zg, z1, z2 by 2z; — £%z; with ag 4+ a1 + aa = 0(mod 5), hence we
get the quotient C®/(Z/5Z)? with the desired action.
We can describe this situation by toric methods, i.e. we can find a cone
o with

(Cd/(Z/"aZ)2 = PI'Oj C[yla Y2, y3}H = Ugv

where U,v is the toric variety associated to o”. For a general reference on

toric varieties, see the book by Fulton [12]. A monomial yfygyg maps to

gootbi—(atb)yyar By hence the monomial is invariant under the action of H
if

aa+ b — (a+ b)y = 0 (mod 5) for all (a,b) ,
ie. = =r~(modb). Let M C Z3 be the lattice

M = {(a,8,7)le = B = (mod5)} .
The cone ¢” is the first octant in M ®z R = Z3 @4 R. A basis for M is

17 51 [o
1], lo], |5
1| |o| |o

We have

C[M N "] = Clu’,v°, w®, uvw] = Clz,y, 2, t] /(xyz — t°) .
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Figure 1.1: Regular subdivision of a neighborhood of the point Py

A basis for the dual lattice N = Hom(M,Z) is

1/5 0 0
0 ) 1/5 ) O )
—1/5| |-1/5] |1

and the cone o is the first octant in R®> = N ®g R. The semigroup ¢ N N
is spanned by the vectors 1/5 - (aq, a2, c3) with a; € Z and ) . a; = 5.
Figure 1.1 shows a regular subdivision X of ¢. The inclusion ¥ C o induces
a birational map Xy — U, on toric varieties. This gives a resolution of a
neighborhood of each point P;j;. In the local picture in figure 1.1 we have
introduced 18 exceptional divisors, where 6 of these blow down to Pjjz. In
addition 12 of the exceptional divisors blow down to the curves U, N Cjj,
U,NCy, and U, NCly, 4 for each of the three curves intersecting in P, This
gives 10 x 6 4+ 10 x 4 = 100 exceptional divisors.

By this sequence of crepant resolutions we get the desired mirror family
X?. We have hbH(X;) = 1, h12(X;) = 101, M (X7) = 101 and hY2(X7) = 1.
For additional details, see the book by Gross, Huybrechts and Joyce [17],
section 18.2. or the article by Morrison [22].
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THE QUINTIC THREEFOLD



Chapter 2

Hodge numbers of a small
resolution of a deformed
Stanley-Reisner scheme

Let X = Proj(A) be a singular fiber of the versal deformation space of
a Stanley-Reisner scheme, with the only singularities of X being a finite
number of nodes. Let X — X be a small resolution of the singularities.
Let A; be the local rings Ox p, where P, is a node. The Hodge number
h'2(X) is the dimension of the kernel of the map T}, — ®T} . We will
prove this in this chapter, and in the next chapter we will apply this result
to the non-smoothable case in Section 3.4.

We have dim H'(©¢) = h"?(X) since H*(X,Q') = HY(X, (') @ w) =
H'(X,0%)" where the first isomorphism is Serre duality and the second fol-
lows from the fact that wg is trivial. A general equation for the node is
f =1 7 Then we have

T},i = Clay, ..., xn)/(f,0f JOx1,...,0f/0x,) = C .
Recall that if S is a sheaf of rings on a scheme X, A an S-algebra and M
an A-module, we defined the sheaf 7:2/5(./\/1) as the sheaf associated to the
presheaf

U T'(A(U)/S(U); M(U))
In this section, let A = Ox, M = A and S = C, and denote by T3 the sheaf
7—('Z)X/(C(OX)'

Theorem 2.0.1. There is an exact sequence
0——=H'(Og)——Th —&Th, ,

27
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where the map on the right hand side consists of the evaluations of an element
of T},’O in the points P;, and is easy to compute.

Proof. There is a local-to-global spectral sequence with E5? = HP(X,T{)
converging to the cotangent cohomology T§+q. Since T? is the tangent sheaf
Ox, the beginning of the 5-term exact sequence of this spectral sequence is

0—=HYOx)—=Tr—=HT}) .
For a general reference on spectral sequences, see e.g. the book by McCleary
[21]. By Lemma 2.0.2 we have H%(Ty) = @7 . For a sheaf F on X, the

small resolution 7 : X — X gives a Leray spectral sequence H?(X, Rim,.F)
converging to H"(X,F). With F = O, the beginning of the 5-term exact
sequence is

0—=H'(X,7,05)—=H'(X,0;)—=H(X,R'7,0%) .
By Lemma 2.0.3 the last term is zero and 7.0 ¢ = Ox, hence we get the iso-
morphisms H'(X,0x) & HY(X,1.0%) = H'(X,0%). Lemma 0.2.1 states
that T% = T} . O

Lemma 2.0.2. If X has only isolated singularities, then T = EBT(lx,p).

Proof. The sheaf T3 is associated to the presheaf U — T}. Tf U contains no
singular points, then T3 = 0. O

Lemma 2.0.3. We have 1,0 3 = Ox and le@g =0.

Proof. R'7.©% has support in the nodes, so this computation can be done
locally. Take an affine neighborhood V' of a node, and take the locally small
resolution of the node. The node is given by the equation xy — zw = 0 in
C*, and V is the blow-up along the ideal (z,z). Hence, vV C {2U -Tz =
0} C C* x P!, where (U,T) are the coordinates on P!, We prove first that
HY(V, Oy ) = 0 using Cech-cohomology. Consider the two maps Uy and Us
given by T # 0 and U # 0 respectively. In U; we have z = zu, y = uw and

xy —zw =y —zuw = z(y —uw) =0,
where w is the coordinate U/T, so the strict transform is given by y—uw = 0.
Similarly, on the map U, we get x = tz, w = ty and

xy — 2w =tyz —zw = z(ty —w) =0,

where t is the coordinate T'/U, so the strict transform is given by ty —w = 0.
On the intersection U; N Uy we have t = %, y = uww, z = ux. The affine
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coordinate ring of Uy NUs is Clz, u, w, i] =~ Cla, t,w, %] The differentials 3%,

%, and % restricted to the intersection U; N Us can be computed as

g 190
dy  uow
0 10
9z udr
0 0 0 0
o (%H“’aw “m)
To see this, apply a%v % and % on x, w and u, and keep in mind that we

have the relations x = tz, w = ty and tu = 1.

We prove surjectivity of the map d : C°(V') — C(V) which sends (o, ) €
O(U;) x O(Us) to (a — 8)|U; N Us. The elements which do not intersect the
image of ©(U;) x {0} under d are of the form

fr(z,u,w) 0 gr(x,u,w) 9 hi(z,u,w) O
R

where fr, gr and h; have no term with degree higher than £—1 in the variable
u. The differential d maps

,tk—lﬁ ig
0z  ukox’
and hence

ey, 2ty 2 oy Tl w) O

0z ub o dx
where py, is given by pi(y, z,t) = — fx (tz, %, ty) tF=1. Similarly we have
0] gr(z,u,w) 0
t)— oy I D) T
a(y: 2, )8y ub Ow

where gy, is given by qi(y, z,t) = —gi (tz, +,ty) t*=1. For the last term, we
have

0 8) = hi(z,u,w) 0

0
iy, ,t) (y(9y+28z —l5 W ou

where 71 (y, 2, t) = hi(tz, %,ty)tk“. Hence d is surjective, and H'(V, Op) =
0.

We construct an isomorphism Oy — HO(V,0y) as follows. Consider the
map

o Oy — DGI‘((OV7 OUl) @ DEI‘(OV, OUQ)
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given by D — (¢1D, ¢2D), where ¢1 and ¢o are the inclusions of Oy into
Oy, and Oy,, respectively. On the generator set {z,y, z,w} they take the
following values

d1(z) =z, d1(y) = uw, ¢1(2) =uz, ¢1(w) =w
¢2('T) =1z, ¢2(y) =Y, ¢2(Z) =z, (b?(w) =ty

There is also a map

Der(OUl R OUl) D Der(OUQ, OUQ) — Der((’)v, OUl) D Der((’)v, OUQ) s

which is given by (D1, Da) = (D1¢1, Daga). The elements which come from
Oy can be lifted to &2 ,Der(Oyp,, Op,), and we get elements in H(V, Oy).
To see this, note that a generator set for the sheaf Oy is

E*xi—k Q—Q—zg—b—wi
T oz y@y 0z ow

0 0

y(')iy B lax
0 0

wa—y-i—x%
0 0

za—y+xa—w
0

y$+ ox
0

Yow * o

wl _ 9
Jw 0z
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(uwa + ua:g, yi + z)
ow Oz 7 0w Ox
g 0 0 0
(waw - uma, ty% - Z(‘?z)
These 7 elements can be lifted to the following elements in ®2_; Der(Oy,, O,).
0 o 0 0
(Iax T Vet a)
0 o 0 0
(uﬁu - 1%7 ya—y - t@t)
0 0 0 0
(vt (73 ~15))
0 0
(vau )
o 0
(#3272
<u <xa + wi - ua> 8)
Oz Ow du)’ ot
(wa — uﬁ,tg — 26>
ow ou’ Ot 0z
We can construct an inverse map g : H'(V,0;) — Oy by
g(D1, D) = %(D1¢1 + Dags)

Since 1.(0p) = R'm.(0p) = H(V,0p) and R'7.(0p) = HY(V,0y), we

get the desired result.
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Chapter 3

Stanley-Reisner Pfaffian
Calabi-Yau 3-folds in PY

3.1 Triangulations of the 3-sphere with 7 ver-
tices

In this chapter we look at the triangulations of the 3-sphere with 7 vertices.
Table 3.1 is copied from the article by Griinbaum and Sreedharan [16], where
all the combinatorial types of triangulations of the 3-sphere with 7 or 8 ver-
tices are listed. For each such combinatorial type (from now on referred to as
a triangulation) we compute the versal deformation space of the correspond-
ing Stanley-Reisner scheme, and we check if the general fiber is smooth. In
the smoothable cases, we compute the Hodge numbers of the general fiber.
We also compute the automorphism group of the triangulation, and we com-
pute the subfamily of the versal deformation space invariant under this group
action. In the non-smoothable case, we construct a small resolution of the
nodal singularity of the general fiber.

Let M = [myj] be a skew-symmetric d x d matrix (i.e., m;; = —my;) with
entries in a ring R. One can associate to M an element Pf(M) in R called
the Pfaffian of M: When d = 2n is even, we define the Pfaffian of M by the
closed formula

n

o Uez:szusgn(U)il;llma(zi—n,a(m)

PE(M) =

where Sy, is the symmetric group on 2n elements, and sgn(c) is the signature
of . When d is odd, we define Pf(M) = 0.

The Pfaffian of a skew-symmetric matrix has the property that the square
of the pfaffian equals the determinant of the matrix, i.e.

33
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Pf(M)? = det(M) .

In this chapter the ring R will be the polynomial ring C[z1,...,x7], and we
will study ideals generated by such Pfaffians. In this case, the sign of the
Pfaffian can be chosen arbitrarily, so it suffices to compute the Pfaffian as
one of the square roots of the determinant.

For a sequence i1, ...,%m, 1 < 4; < d, the matrix obtained from M by
omitting rows and columns with indices %1, ..., %, is again skew-symmetric;
we write Pf" (M) for its Pfaffian. The elements Pf"*" (M) are called
Pfaffians of order d — m. The Pfaffians of order d — 1 of a d x d matrix M
are called the principal Pfaffians of M.

3.2 Computing the versal family

The Stanley-Reisner rings obtained from the triangulations in Table 3.1 are
Gorenstein of codimension 3 (in fact, the Stanley-Reisner ring corresponding
to any triangulation of a sphere is Gorenstein, see Corollary 5.2, Chapter 11,
in the book by Stanley [27]). Buchsbaum and Eisenbud proved in Theorem
2.1 (and its proof) in their article [9] that Gorenstein codimension 3 ideals are
generated by the principal Pfaffians of their skew-symmetric syzygy matrix.

The Stanley-Reisner ideals obtained from the triangulations in Table 3.1
are generated by d = 3,5 or 7 monomials. In each case, the following resolu-
tion can be computed.

Lemma 3.2.1. For the Stanley-Reisner ideals Iy obtained from the trian-
gulations in Table 3.1, there is a free resolution of the Stanley-Reisner ring
A=R/I

f

a I7

0—=R—1-pi- M. p R—=A——>0 ,

where [ is a vector with entries the generators of Iy, M is an skew-symmetric
d x d syzygy matriz and Iy is generated by the principal pfaffians of M.

In the sections 3.4 - 3.8 we compute the degree zero part of the C-vector
space T} as described in Section 0.3. This gives us a new perturbed ideal I,
with k parameters, one for each choice of a and b that contribute to T of
degree zero. We get a perturbed vector f! with entries the generators of I,
and we get a new matrix M?! by perturbing the entries of the matrix M in such
a way that skew-symmetry is preserved, keeping the entries homogeneous in
T1,..., 27 such that M*' - f! = 0 mod t2, where ¢ is the ideal (¢i,..,#). This
gives the first order embedded (in P°) deformations.



3.2. COMPUTING THE VERSAL FAMILY

Polytope | Number of facets | List of facets

Py 11 A: 1256 H: 1367
B: 1245 J: 2367
C: 1234 K: 2345
D: 1237 L: 2356
E: 1345
F: 1356
G: 1267

Py 12 A: 1245 H: 2356
B: 1246 J: 2347
C: 1256 K: 2367
D: 1345 I.: 2467
E: 1346 M: 3467
F: 1356
G: 2345

P 12 A: 1246 H: 1347
B: 1256 J: 2346
C: 1257 K: 2356
D: 1247 L: 2357
E: 1346 M: 2347
F: 1356
G: 1357

P 13 A: 2467 H: 1456
B: 2367 J: 1247
C: 1367 K: 1237
D: 1467 L: 1345
E: 2456 M: 2345
F: 2356 N: 1234
G: 1356

P! 14 A: 1234 H: 1567
B: 1237 J: 2345
C: 1267 K: 2356
D: 1256 L: 2367
E: 1245 M: 3467
F: 1347 N: 3456
G: 1457 0O: 4567

Table 3.1: Polytopes P7,i=1,...,5

K3

35



36 CHAPTER 3. S-R PFAFFIAN CALABI-YAU 3-FOLDS IN P¢

It has not yet been possible for computers to deal with free resolutions
over rings with many parameters. Finding the matrix M' can however be
done manually, by considering the parameters one by one, perturbing the
entries of the matrix M keeping skew-symmetry preserved. The principal
pfaffians of the matrix M! give the versal family up to all orders. This
follows from Theorem 9.6 in the book by Hartshorne [19]. Versality follows
from the fact that the Kodaira-Spencer map is surjective, see Proposition
2.5.8 in the book by Sernesi [25].

We have computed this family explicitly for these five triangulations from
Table 3.1.

3.3 Properties of the general fiber

We will now compute the degrees of the varieties obtained from the triangu-
lations in Table 3.1.

Lemma 3.3.1. The number of maximal facets of a triangulation equals the
degree of the associated variety.

Proof. Let d be the dimension d = dimR/I. The Hilbert series is

d—1 i i+1 d—1 i .
Zi:_1 ({[_i:ﬁ = ﬁ Zi:_1(1 - t)d ! lfithLl

where f; is the number of facets of dimension ¢ and f_; = 1, see the book by
Stanley [27]. The maximal facets have dimension d — 1. Inserting ¢ = 1 in
the numerator yields the degree f;_i. O

The triangulations in Table 3.1 give rise to varieties of degree 11, 12, 13
and 14. The degree is invariant under deformation, so in the smoothable
cases we can construct Calabi-Yau 3-folds of degree 12, 13 and 14. The
following theorem will be proved in Sections 3.4 — 3.8.

Theorem 3.3.2. Some invariants of the general fiber of the versal deforma-
tion space of the Stanley-Reisner rings of the triangulations in Table 3.1 are
given in Table 3.2.

Note that the dimension of the versal base space equals h24-6 in the four
smoothable cases. Theorem 5.2 in [3] states that there is an exact sequence
0—C®*— HOx,) = H'(K,C) =0

Since the last term is zero, we have dim H°(Oy) = 6. One would expect that
Ty, = h'(Ox,) + h°(Ox,), where X, is a general fiber and X is the central
fiber of the versal deformation space.
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Polytope | Degree General fiber Hodge Dimension
in the versal numbers | of the versal
deformation space base space
Py 11 Isolated nodal non- 92
singularity with smoothable
small resolution
P 12 Complete intersection htt =1 79
type (2,2,3) h'? =173
P 12 Complete intersection =1 79
type (2,2,3) h? =73
P 13 Pfaffians of 5 x 5 =1 67
matrix with general ht? =61
quadratic terms in
first row/column
and general linear
terms otherwise
Py 14 Pfaffians of 7 x 7 htt =1 56
matrix with general h'? =50
linear terms

Table 3.2: Polytopes P, i =1,...,5, and their deformations
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After we have resolved the singularity in the non-smoothable case, we get
a Calabi-Yau manifold with h'?(X) = 86, and since 86 + 6 = 92, this fits
nicely also in the non-smoothable case.

3.4 The triangulation P/

In this section we consider P/, the first triangulation of S* from Table 3.1.
The Stanley-Reisner ideal of this triangulation is

Iy = (1359077964967,96415671719629631367171962963175)

in the polynomial ring R = C[z1,...,27]. Let A = R/I be the Stanley-
Reisner ring of Iy. In the minimal free resolution in Lemma 3.2.1, the vector
f and the matrix M are given by

T5X7
TyT7
[= TyTe
L1T2X3L6
L1T2T3T5
and
0 0 —X1X2T3 Xy 0
0 0 0 —Is Tg
M = T1T2T3 0 0 0 —I7
—T4 Ty 0 0 0
0 —Xg T 0 0

Using the results of section 0.3, we compute the module T%, i.e. the
first order embedded deformations, of the Stanley-Reisner scheme X of the
complex K := P/ by considering the links of the faces of the complex. Various
combinations of a,b € {1,...,7}, with b C [link(a, K)] a subset of the vertex
set and a a face of K, contribute to T%.

The geometric realization |link(1, K')| of the link of the vertex {1} in K is
the boundary of a cyclic polytope, and is illustrated in figure 3.1. The links
of the vertices {2} and {3} are similar.

Two vertices, {4} and {7}, give rise to a tetraedron (see figure 3.2), and
two vertices, {5} and {6}, give rise to a suspension of a triangle (see fig-
ure 3.3). We also consider links of one dimensional faces. In 9 cases, the
geometric realization is a triangle. The case of {1,4} € K is illustrated in
figure 3.4. In 6 cases, the link is a quadrangle. The case of {1,5} € K is
illustrated in figure 3.5.
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Figure 3.1: The link of the vertex {1} in P}

Figure 3.2: The link of the vertex {4} in P}

39
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Figure 3.3: The link of the vertex {5} in P}

In Proposition 0.3.2 the contributions to T} of these different links are
listed. In the case with a = 1, we get a contribution to T% if and only if
b = {2,3}. As in section 0.3, this gives a homogeneous perturbation the
monomial x1xer3T¢ to

a

xT
3
T1X2X3T¢ + tlxlxgxgxﬁ— = X1T2X3T¢g + tlxlxﬁ s
Ly

and a homogeneous perturbation of the monomial xjxs2375 to

a
T1T2T3T5 + t1x1x2x3x5x—b = T1T9X3T5 + tlx:fa:5 ,
with a = (2,0,0,0,0,0,0) and hence 22 = 22, and z;, = z923. The other three
monomials of the Stanley-Reisner ideal are unchanged. The cases a = {2}
and a = {3} give rise to similar perturbations, with parameters ty and ¢s,
respectively. In the case a = {4}, the tetrahedron gives rise to 11 dimensions
of T%, one for each b C {1,2,3,5} with |b] > 2. The case a = {7} is similar.
In each of the two cases a = {5} and a = {6}, the suspension of a triangle
gives 5 different choices of b contributing non-trivially to 7. In addition, the
9 triangles give rise to 9 X 4 permutations, and the 6 quadrangles give rise
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Figure 3.4: The link of the edge {1,4} in P}

Figure 3.5: The link of the edge {1,5} in P}

to 6 x 2 perturbations. Note that each triangle gives rise to 5 perturbations
and not 4 as stated in the table 0.3.2. To see this, note that since T is Z"
graded, e.g. the case with ¢ = {1,4} and b = {2,3,5} gives two different
choices of the vector a in order for the deformation to be embedded in IPS;
a=(2,0,0,1,0,0,0) or a = (1,0,0,2,0,0,0) both have support a = {1,4}.
Putting all this together, the dimension of T% is

IX1+2x11+2%x5+9%Xx54+6%x2=92.

This gives 92 parameters ty,...,te, and the first order deformed ideal I'.
The relations between the generators of Iy can be lifted to relations between
the generators of I!, and the matrix M lifts to the matrix
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0 9 g2 il
-g1 0 g3 Iz Uy
M' = g2 —gs 0 Is lg| ,
-, =3 =I5 0 0
—ly —ly —lg 0 O
where g1, go and g3 are cubics and [y, ..., ls are linear forms in the variables
Z1,...,x7. This matrix is computed explicitly, and is given in the appendix

on page 81. The principal pfaffians of M?! give the versal deformation up to
all orders.

After a coordinate change we can describe a general fiber X by

g3
rk [Il & $5] <1 and [xl 3 xs]. g2l =0
To Ty Tg Ta2 Ty Te g

1

The first group of equations define the projective cone over the Segre embed-
ding of P* x P2 in P°. Call this variety Y. There is one singular point on X,
the vertex of the cone Y; P =(0:---:0:1). The singularity is a node. In
fact it is locally isomorphic to z,24 — z2w3 = 0 in C*. Since X is the general
fiber in a smooth versal deformation space, Xy cannot be smoothed.

Using the techniques of Section 0.5, the intersection of X with the equa-
tions x3 = x4 = 0 gives a smooth surface S containing the point P. A crepant
resolution 7: X — X exists since the only singularity of X is a node, and
the plane S passing through the node. Let X be the manifold obtained by
blowing up along S.

The Macaulay 2 computation on page 79 gives dimT/ﬁ,0 = 86, and we can
compute the evaluation map T}w — Tép, which is 0, we have dimH'(©¢) =
86 by Theorem 2.0.1.

3.5 The triangulation P;

In this section we consider P, the second triangulation of S* in Table 3.1.
It has Stanley-Reisner ideal

Iy = (10596779011“77$4$5$67I1$2«’B3,I2I31’4IS)

and the matrix M in the free resolution is
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0 0 0 —mzyz6 21

0 0 Tols 0 —5
M = 0 —X9X3 0 XT7 0
T4Te 0 —X7 0 0

—x T 0 0 0

As in the previous section, we compute the module T4, i.e. the first order
embedded deformations, of the Stanley-Reisner scheme X of the complex
K := P] by considering the links of the faces of the complex. Various
combinations of a,b € {1,...,7}, with b C [link(a, K')] a subset of the vertex
set and a a face of K, contribute to T.

The geometric realization |link(i, K')| of the link link(é, K) of the vertex
{i} is the boundary of a cyclic polytope for ¢ = 2,3,4 and 6. For i = 1 and
5, the geometric realization [link(é, K)| is the suspension of a triangle, and
for i = 7, |link(¢, K)| is a tetrahedron.

The links of the edges give rise to 8 triangles, 7 quadrangles and 4 pen-
tagons. Hence, the dimension of Tk is 4 X 1+2x54+1Xx 11+8x5+7x2 = 79.

We compute the first order ideal I; perturbed by 79 parameters. The
matrix M lifts to the matrix

0 —9g q1 —G2 X1
g 0 @ —q@u -5

M'=|-q —g 0 z7 3| ,
@2 g —xr 0 —is
—x1 x5 —tss fzz 0
where g is a cubic and ¢y, ..., g4 are quadrics in the variables x1,...,x7. The

exact expressions for these quadrics are given in the appendix on page 82.
The versal deformation space up to all orders is given by the principal pfaf-
fians of the matrix above. Let X be a general fiber of this family.

Lemma 3.5.1. The variety X is a complete intersection.
Proof. The lower right corner of the matrix M1 is

0 k
el

where k is a constant. The matrix M' can be written on the form

=l I L
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Now, the ideal of principal pfaffians can be computed as the principal
pfaffians of the matrix at the right center above, hence two of the generators
are now zero. The remaining three pfaffians are the elements of the 3 x 3
matrix U’ = U + VW ='VT multiplied by a constant. Hence, the variety is a
complete intersection in IPS. O

The five principal pfaffians can be reduced to three, two quadrics and a
cubic. The smoothness of a general fiber can be checked for a good choice of
the ¢; using a computer algebra package like Macaulay 2 [13] or Singular [14].
We will compute the cohomology of the smooth fiber, following the exposition
in Rpdland’s thesis [24]. The following lemma will be useful.

Lemma 3.5.2. There is an exact sequence

0—>Ops(—7)—2=20ps (—5) & Opo(—4)—L>
2056 (—2) ® Ops(—3) L= Ops—=Ox —=0
where X is the general fiber and v is the column vector with entries the three
principal pfaffians of U'.
Since X is Calabi-Yau (see Theorem 0.2.1), we know that h'%(X) =

h?%(X) = 0. We now proceed to find the remaining Hodge numbers of X.
Let J := ker(i* : Ops — i,0x) denote the ideal sheaf.

Lemma 3.5.3. There is a free resolution

’U®2

0—>G-Lopy-2o g g2 o

where the sheaves G, H and IC are given by

G = Ops(—9) @ 20ps(—10)
H= 201@6(_6) &) 40]1)6(—7) D 20]}»6(—8)
K = 30ps(—4) @ 20ps(—5) & Ops(—6)

The elements of G, H and K are regarded as 5 X 5-matrices that are skew-
symmetric matrices, general matrices modulo the identity matriz (or with
zero trace), and symmetric matrices respectively. The three maps are

U-: A= UA—-1/3-trace(U'A)
®:Bw BU' + (U)'BT |
and
v®2 . C—=0TC0w .

If viewed modulo the identity, the last term of the map U’ may be dropped.



3.5. THE TRIANGULATION P] 45

Proof. All the compositions are clearly zero, hence it remains to prove that
the kernels are contained in the images. The last map, v®2, is surjective,
because J% is generated by the elements of v7v, i.e. the elements m;; = v;v;
for v < j.

The relations on the m;; are no other than m;; = mj; and m;;v, = m;,v;,
hence the sequence is exact at K. Next, consider the map ¢ : H — K. We
have

®(B) =BU' + (U)'B" = BU' - U'B"

and hence
®(B)=0
BU' =U'BT
UB™w=0 .

For some b we have (by Lemma 3.5.2)
BTy =t

(BT —Ib)v =0,

and for some matrix W we have (by Lemma 3.5.2 again)
BT — b =wWU’

B=-UW"+bI .

Since B = —U'WT 4 bl equals —U'W7T modulo I, we have proved that the
sequence is exact at H.

Consider the map U’- : G — H. The image of a skew-symmetric matrix
A is zero if and only if U’A = bl. However, skew-symmetry yields rank less
than 3. So for A to map to zero, we must have U’A = 0. However, using the
exact sequence of Lemma 3.5.2, we have that U'A =0 = A = vw” for some

vector w. However, A = —AT = —unT, so UA=0=Uw =0 = w =
gv = A = guv'. However, for A = guvT to be skew-symmetric, g must be
zero, making A = 0. Hence, the map is injective. O

Proposition 3.5.4. The Hodge numbers are

RYY(X) =1 and W (X) =173 |
where WY (X) :== dim H'(Qx) and h'*(X) := dim H*(Qx).
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Proof. First, we know that H*(Ops(—r)) = 0 for 0 < r < 7. Second, if we
have a resolution 0 — A, — --- = Ay — [ where H*(A;) = 0 for i < n,
then HP(I) = HP™"(A,), and third, h%(Ops(—r — 7)) = h°(Ops (1)) = ("5°).

Using these facts on the resolution of Ox(—1) (twist the entire sequence
of Lemma 3.5.2 by —1) we get h?(Ox(—1)) = h?3(Ops(—8)) which is 7 for
p = 3, otherwise zero. Using these results and the cohomology of Ox on the
long exact sequence of

0——=Qps| X——=T0x(—1)—=Ox——0
we find that hO(Qps|X) = R2(Qps|X) = 0, R} (Qps|X) = h°(Ox) = 1, and
h3(Qps| X) = B3(7T0x(=1)) — h*(Ox) = 48.
For the ideal sheaf [Jx, the above results and the resolution 3.5.2 give
h?(Jx) = hPT2(Ops(—T7)) which is 1 for p = 4, otherwise zero. For JZ, the
resolution splits into two short exact sequences

0—G-LH——Im(®)—0

and
»®2

0——=TIm(®)— =K"= 72— 0

From the second, we get hP(J%) = hPH(Im(®)). From the first, the only
non-zero part of the long exact sequence is

0— = H3(Im(®))—=H%(G)—=HS(H)—H*(Im(®))—0

This makes h*(J2) — h°(J2) = h°(Im(®)) — hS(Im(®)) = h%(G) — h®(H) =
210 (Ops (—9))+h8(Ops (—10))—2h5(Ops (—6)) —4h (Ops (—7)) —2h8 (Ops (—8)) =
2:28484—-2-0—4-1—-2-7=122. Since the variety is smooth, we have a
short exact sequence

0—>J2—>Jx—Ny—=0

and another sequence

0—=NY Qs | X —=Qx——=0

Note that MY is a sheaf on X, hence h?(NY) = 0 for p > 3 = dimX. Entering
this into the long exact sequences of the first of the two resolutions above,
we get h®(J2) = 0 as both h'(NY) = 0 and h5(Jx) = 0. Hence we have
R (JE) = 122. In addition, we get h?(Ny) = 0 and h*(NY) = 121. The
long exact sequence of the second resolution above yields h'(Q2x) = 1 and
h2(Qx) = 121 — 48 = 73. O
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Using Singular [14] (or any other programming language) we can compute
the group of automorphisms of the simplicial complexes. It is a subgroup of
S7 and is computed by checking which permutations preserve the maximal
facets. The automorphism group Aut(P]) = D, of the complex P is the
dihedral group on 8 elements, i.e. Z * Z modulo the relations a? = b? = 1,
(ab)* = 1. Tt is generated by the elements

(1234567
“=\1 236547

p_ (1234567
“\B462137)°

This group action on the versal family has 22 orbits. Hence, we have an
invariant family with 22 parameters, sq,..., Sa2.

N DN

and

3.6 The triangulation P

In this section we consider the third example, P37, from Table 3.1. It has
Stanley-Reisner ideal

Iy = ($6$7,$4$57$1$2$3) )

and the syzygy matrix is

0 —XL1X9T3 T4y
M = T1T2T3 0 — Ty 5
—X4T5 Telr 0

As in sections 3.4 and 3.5, we compute the module T%, i.e. the first order
embedded deformations, of the Stanley-Reisner scheme X of the complex
K := P] by considering the links of the faces of the complex. Various
combinations of a,b € {1,...,7}, with b C [link(a, K)] a subset of the vertex
set and a a face of K, contribute to T%.

The geometric realization |link(1, K)| of the link of the vertex {1} in K
is an octahedron, and is illustrated in figure 3.6. The links of the vertices
{2} and {3} are similar.

The links of the vertices {4}, {5}, {6} and {7} are the suspension of a
triangle. In addition, the links of the edges give rise to 15 quadrangles and
4 triangles. Putting all this together, the dimension of Tx is 3 x 3+4 X 5+
15 x24+4x5="79.

The perturbed ideal is generated by the elements of the vector
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Figure 3.6: The link of the vertex {1} in PJ

9

where the exact expressions for g, ¢; and g» are given in the appendix on
page 82. The syzygy matrix lifts to

0 -9 a
M' = g 0 —q
- q¢ 0

Thus the ideal generated by f! gives the versal family up to all orders. The
general fiber X is given by g = 0, ¢ = 0 and ¢ = 0, the intersection of 2
quadrics and a cubic in P8, a complete intersection. The smoothness can he
checked for a good choice of the t; using Singular [14]. The following lemma
will be useful.

Lemma 3.6.1. The sequence

0——>Ops (—T7)—L20p6(—5) ® Ops (—4)
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L 90s(—2) B Ops (—3) L Ops—=Ox —=0

is exact, where F and R' are given above, and values for the t;’s are chosen.

Since X is Calabi-Yau, we know that h'%(X) = h?°(X) = 0. The fol-
lowing Proposition can be proved in a similar manner as Proposition 3.5.4 in
the previous section.

Proposition 3.6.2. The Hodge numbers are

RUY(X) =1 and BY3(X) =73 ,
where b (X) := dim H'(Qx) and h'*(X) := dim H*(Qx).

Using Singular [14] (or any other programming language) we can compute
the group of automorphisms of the simplicial complexes. It is a subgroup of
S7 and is computed by checking which permutations preserve the maximal
facets. The automorphism group Aut(Py§) of the complex PJ is Dy x Ds,
where Dy is the dihedral group on 8 elements, i.e. Z*Z modulo the relations
a? =1v? =1, (ab)* = 1. The group Dj3 is the dihedral group on 6 elements,
i.e. Z % Z modulo the relations ¢ = 1, d> = 1 and cdc = d. The group
Aut(PY) is generated by the permutations

(1234567
“=\1 235 467
y_ (L 234567
1236745
(1234567
2314567
g_(1 234567
3214567

and it has order 48. If we consider the subfamily invariant under this group
action, the original 79 parameters reduce to 10.

3.7 The triangulation P/

In this section we consider P}, the fourth triangulation of S* from Table 3.1.
The Stanley-Reisner ideal of this triangulation is

Iy = (z527, £122T5, X1 T2T6, T3T4T6, T3T4TT) -
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in the polynomial ring R = Clzy,...,z7]. Let A = R/Iy be the Stanley-
Reisner ring of Iy. The minimal free resolution the Stanley-Reisner ring is

fT

0— >R M s R A0,

where f and M are given by

57
T1T2T5
f= |zimame|

L3L4Te

T3T47
0 0 3Ty —X1T9 0
0 0 0 it —Tg
M= |—x3xz4 O 0 0 Ts
T1Xo —X7 0 0 0
0 Tg —Ts5 0 0

Computing as in the previous sections, we find the module T%, i.e. the em-
bedded versal deformations, of the Stanley-Reisner scheme X of the complex
K := P] by considering the links of the faces of the complex. Various com-
binations of a,b € {1,...,7}, with b C [link(a, K)] a subset of the vertex set
and a a face of K, contribute to T%.

The geometric realization |link(é, K)| of the link of the vertex {i} in K
for i« = 1,2,3 and 4 is the boundary of the cyclic polytope. For i = 5
and 7, the link is the suspension of the triangle, and for ¢ = 6, the link
is a octahedron. In addition, the links of edges give rise to 4 pentagons, 8
quadrangles and 4 triangles. Putting all this together, the dimension of T
is4x14+2x54+1x34+6x5+10x2=067. A general fiber X will be given
by the principal pfaffians of the matrix

0O @ @ @ @

-q 0 Ly ly I3

M1 = [—q 7l1 0 l4 l5
—q3 —lp —ly 0

—q —l3 —ls —lg O

where qi,...,qs are general quadrics and [ly,...,ls are linear terms. The
exact expressions for the polynomials in this matrix is given in the appendix.
The smoothness of the general fiber can be checked using computer algebra
software.
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Lemma 3.7.1. The following sequence
0——=0p6(—7)—>0ps(—5) B 40ps(—4)
M Ops(—2) B 406 (—3) L Ops—=Ox —=0

is exact, where F is the vector with entries the pfaffians of the matriz M*
mod 2.

Since X is Calabi-Yau, we know that h'%(X) = h?%(X) = 0. The follow-
ing Proposition can be proved in a similar manner as Proposition 3.5.4.

Proposition 3.7.2. The Hodge numbers are

RYY(X) =1 and h**(X) =61 ,
where h(X) := dim HY(Qx) and h'*(X) = dim H?*(Qx).
The group Aut(P]) of automorphisms of the complex P is Dy, the dihe-
dral group of 8 elements. Tt is generated by the permutations

(1234567
“={2134567

p_ (1234567
“B3412765)

This group action on the versal family has 20 orbits. Hence, we have an
invariant family with 20 parameters, s, ..., Sa0.

and

3.8 The triangulation P’

In this section we consider the fifth example, P7, from Table 3.1. Tt has
Stanley-Reisner ideal

Iy = ($15039057901$35€67I1I4$67$2$4I67I2$4$7,I2I5$77$3I5$7) )

and the Syzygy matrix is

[ 0 0 0 XT7 —Tg 0 0 1
0 0 0 0 rs —x4 O

0 0 0 0 0 T3 )
M=|-z; 0 0 0 0 0 1
rge —x5 O 0 0 0 0
0 Ty —X3 0 0 0 0

0 0 i) —I 0 0 0 1
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Computing as in the previous sections, we find the module T%, i.e. the
first order embedded deformations, of the Stanley-Reisner scheme X of the
complex K := P7 by considering the links of the faces of the complex. Various
combinations of a,b € {1,...,7}, with b C [link(a, K)] a subset of the vertex
set and a a face of K, contribute to T.

The geometric realization |link(é, K')| of the link link (¢, K) of a vertex {i}
is the boundary of a cyclic polytope for i = 1,...,7. We also consider links of
one dimensional faces. In 7 cases the geometric realization is a triangle, and
in 7 cases the link is a quadrangle. Putting all this together, the dimension of
Tyis Tx14+7x54+7x2=>56. The full family is displayed in the appendix.

The matrix M lifts to the matrix

[ 0 11 12 X7 —Zg —13 —14_

*ll 0 l5 l6 Ty —T4 *l7

—l2 —l5 0 lg lg I3 )

M' = —z7 —lg —lg 0 l1o I Z1 s

zg —x5 —lo —lo 0 l12 li3
I3 vy —x3 —ln —lo 0 lis

L Iy l7 Ty —m1 —lhy —ly 0 i

where [q,...,l14 are linear forms, whose exact expressions are given in the

appendix on page 83. The general fiber X is a degree 14 Calabi-Yau 3-fold.
The following Proposition can be proved in a similar manner as Proposition
3.54.

Proposition 3.8.1. The Hodge numbers are

RYY(X) =1 and h**(X) =50,
where hHH(X) := dim H'(Qx) and h'*(X) = dim H*(Qx).
The automorphism group of the complex PY, is Aut(P!) & D;. It is
generated by the permutations

(1234567
“=\2 3456 71
y_(l 234567
“\765 4321

with relations a” = 1, b> = 1, aba = b. A calculation gives a 5 parameter
invariant deformations under the action of this group. We will consider a
one-parameter subfamily of this invariant family in Section 4.1.



Chapter 4

The Rodland and Bohm Mirrors

In this chapter we will describe how to obtain the Rgdland and B6hm mir-
rors from the triangulations we studied in the previous chapter. The Rgdland
mirror is obtained from the complex PJ, and the Béhm mirror is obtained
from the complex P]. They are given by a crepant resolution of a chosen
one-parameter subfamily of the invariant family under the action of the au-
tomorphism group of P

4.1 The Rodland Mirror Construction

Consider the case of PY which we studied in Section 3.8, and let X be the
Stanley-Reisner scheme associated to this complex. studied in Section 3.8. As
seen in the previous chapter, the automorphism group of the complex is Ds.
Recall from the introductory chapter that the automorphism group induces
an action on T}(O, and that the parameters of the versal family correspond
to faces and links contributing to T}(O. The D7 orbits of these are given in
table 4.1.

All the links of vertices are cyclic polytopes, and all these 7 cyclic poly-

a b Link # in Dz-orbit
{1} {2,7} | cyclic polytope 7
(1,37 [{2,4,7) | triangle 14
{1,3} | {2,7} triangle 14
{1,3} | {4,7} triangle 7
{3,5} | {2,4} quadrangle 14

Table 4.1: T, is 56 dimensional for the Stanley-Reisner scheme X, of P!
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topes are one orbit under the action of this automorphism group. In addition,
we have 7 cases where the link of an edge is a triangle, and we have 7 cases
where it is a quadrangle.

The invariant parameters sq,..., s5 are achieved by equating the parame-
ters t; corresponding to the same orbit under the action of the automorphism
group on T)1<0. Consider one of the invariant parameters corresponding to the
links of edges being triangles, S i=1g9y = t25 = t29 = t33 = t35 = t38 = t40, the
one with 7 elements in the orbit, and set the other ones to 0. In this case,
the matrix M! will reduce to

[0 0 0 T7 —xg 0 — 524
0 0 Sx7 0 s —y 0
0 —sx7 0 ST 0 T3 —T9
—x7 0 —5T5 0 ST3 0 T
Te — —s 0 —S8x3 0 ST 0
0 Ty —T3 0 —SsTq 0 ST
| 5T4 0 To —x 0 —STg 0 |

Let X be the variety generated by the principal pfaffians of this matrix. It
is defined by the ideal generated by the polynomials

P1 = —T1T3Ts5 + 52x6x52 + 523312957 — SToX3x4 + 53x3x6x7
_ 2,2 2,2 3
P2 = —T1TeX3 — ST1ToX7 + S T3 Ty + S T T5 + ST 1T524
_ 2 2
P3 = —T1Texg + S T3T4" — STeT5T7

Pa = S3$1$4$7 — ToXyTg — T3T55T4 + 82$7$62

2.2 2 2
D5 = —ToZaX7 + X4°S"Ts5 + STy
e 2.2 3
Pe = T5 S Ty — T7X2T5 — T7ST 1T + S x3x4T7
2.2
Pr = 2X778"T1 — X3T507 — STyX5T6

This variety has 56 nodes. Choosing the nonzero parameter as one of the
other two parameters corresponding to triangles, gives a smooth general fiber,
or a general fiber with singular locus of dimension 0 and degree 189, after a
Macaulay 2 computation [13].

There is also a natural action of the torus (C*)7 on X, C P% as follows.
An element A = (Ay,..., A7) € (C*)7 sends a point (z1,...,27) of P to
(M1, ..., 727). The subgroup {(A,...,A)|\ € C*} acts as the identity on
P°, so we have an action of the quotient torus Ty := (C*)7/C*. In order
to compute the subgroup H C T, of the quotient torus which acts on this
chosen subfamily, consider the diagonal scalar matrix
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coococoo >
coococoZro
coocoFoo
cocoocpZooco
coFoooo
Foococoo
coococoo

o
>
3

which acts on (z1,...,27)

o
>

A'(.Z'h.‘.,.’ll"r):(A1'$1,‘..,)\7'Z’7) .

The subgroup acting on X, is generated by the A\ with the property that
Api=g¢p;fori=1,...7, and ¢; a constant. From Ap; = ¢; - p1, we obtain
the equations

MAsAs = A2 = ATA7 = oz Ay = Azhe)s .

For convenience, we set A\; = 1, and we get the equations

Asds = A2 = Ar = Ao dshs = Asdghr (4.1)

Hence we have the following expression for A5, A\g and A;.

As = Aoy (4.2)
1
Ao = — 4.
6=, (4.3)
A7 = Aads )y (4.4)

From Apy = ¢ - po, we obtain the equations

Asde = Aody = A2y = AsAZ = Mg (4.5)
Inserting (4.2), (4.3) and (4.4) into (4.5) gives
Ao

1= XA = A2\ = i§4 = MA2 (4.6)

hence A3 = A2 and A, = A\;*. From (4.2), (4.3) and (4.4) we now obtain

As = Ay°
Ao = A2
A=At
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Inserting the expressions for As,..., A7 into the equation 4.1, we find that
D=1

We conclude that the subgroup H acting on X; is H = Z/7Z, which acts
as x; — &7y, where ¢ is a primitive 7th root of 1. This subfamily with the
action of H is used in Rgdland’s thesis [24] in order to construct a mirror of
the general fiber of the full versal family. This is done by orbifolding. The
variety X, has 56 nodes. These are the only singularities. A small resolution
of Y := X,/H is constructed, and this is the mirror manifold of the general
fiber.

4.2 The Bohm Mirror Construction

Consider the versal family we studied in Section 3.7, where the special fiber
Xy is the Stanley-Reisner scheme of the simplicial complex labeled P} in
Table 3.1. Proposition 3.7.2 states that the Hodge numbers are h'!(X) =1
and h'?(X) = 61 for the smooth general fiber X, hence we have y(X) =
2(h*H(X) — hM*(X)) = 2(1 — 61) = —120. In Chapter 5 we verify that the
Euler Characteristic of the Bohm mirror candidate is 120 as expected.

The automorphism group of the complex is isomorphic to D;. On the
versal family of deformations, there are 20 orbits under the action of this
group. The orbits are listed in table 4.2, and the number of parameters
in each orbit is listed. The invariant family is obtained by equating the
parameters contained in the same orbit.

Consider the three parameter family where sy is the invariant parameter
corresponding to the orbit represented by a = {5} and b = {3,4,6} (b is
the triangle and the link of a is the suspension of this triangle), sz is the
invariant parameter corresponding to a = {6} and b = {5,7}. This orbit
consists of this single element, the link of a is the octahedron (suspension of
a quadrangle), and b consists of two adjacent points of the quadrangle, and
sg is the parameter corresponding to the orbit represented by a = {1,2} and
b = {3,4,7}. Here the link of a is the triangle b. From the expressions on
page 83 in the Appendix, we have s; := t5 = t19, S7 := t17 and sg := t15 =
tig = tog = to5. We set the other ¢; to zero. Now the general fiber in this
three parameter family is defined by the 4 x 4 pfaffians of the matrix

0 S472 129 T —s412
—5402 0 ss(T3 + x4) s —Tg
—x1y  —8s(T3 + T4) 0 S7Tg Ty .47
T3Ty —Ts —S7Z¢ 0 Sg(iﬂl + l’g)

s442 Tg —27 —sg(x1 + 22) 0
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a b Link # in Ds-orbit
{1} {3,4} cyclic polytope 4
{5} {1,2} | suspension of triangle 2
{5 | 3.4} " 2
{5} |{3,4,6} " 2
{5 | {3,6} " 4
{6} {1,2} octahedron 2
{6y | {57 " 1

{1,2} | {3,4,7} triangle 4
{1,5} | {3,4,6} " 4
{1,5} | {3,4,6} " 4
{1,2} | {3,4} " 2
1.2y (3.7} I 1
(1.5} | {3.4} I 1
{1,5} | {3,6} " 8
{1,6} | {3,4} quadrangle 4
(1,6} | {5.7} I 1
(1,7y | {3.4) I 1
(1,7} | {2.6} I 1
(5,6} | {12} I 2
{5,6} | {3,4} " 2

Table 4.2: T' is 67 dimensional for the Stanley-Reisner scheme of P}
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If we construct a one-parameter family with parameter s := sy = s; = sg,
the matrix is

0 535% T1To — 3Ty fsxg
—sx2 0 s(z3 + x4) T5 —z
—x1xy  —s(x3+ 24) 0 ST T7 . (4.8)
T3Ta —x5 —574 0 s(xy + x9)
sx? T —z7 —s(x1 + 29) 0

Let X be the variety generated by the principal pfaffians of this matrix. It
is defined by the ideal generated by the polynomials

2 2

P = T5x7 + swg — (21 + x2)(v3 + T4)
_ 2,2

D2 = T3T4x7 + S(T1 + T2)x12T0 — STTET6
32 2
D3 = T3TaTe + ST; — S° (11 + T2) 27
3.2 2
Py = T1Z2x6 + STy — $7 (23 + x4)T5

_ 2. .2

D5 = T122%5 + ST3x4(T3 + T4) — S T6XF

By a Macaulay 2 [13] computation, the singular locus of this variety is 0-
dimensional, and the degree of the singular locus is 48. This fits nicely with
the computation we will perform in chapter 5, where we find that there are
4 isolated singularities of type Q1.

Other choices of 3 parameters give different results. In most cases, the
general fiber has singular locus of dimension greater than zero, but there are
several ways to construct families where the general fiber has 0-dimensional
singular locus. One is obtained if the nonzero parameters (which we equate)
are sy, s4 and sg or sy, S4 and s19, where s, and sg are as above, and s; is
the invariant parameter corresponding to the link being the cyclic polytope
and syp is corresponding to the link being a triangle and a = {1,2} and
b= {3,7}. In this case the degree of the singular locus is 79 dimensional. It
is expected that a similar computation as that in Chapter 5 would give the
same result also in these cases. In this case, the general fiber in the three
parameter family is defined by the 4 x 4 pfaffians of the matrix

0 sax?  fio —fa —saxd
7841’% 0 12 Ts —Zg
—fiz =l 0 0 Z7 ;
fsa —x5 0 0 h
S4I§ T —X7 *ll 0
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where fip = 2122 + s1(23 + @3), faa = 2324 + s1(2] + 23), and I} = ss(21 +
xa) + s10(x3 + x4) and Iy = sg(w3 + 4) + S10(21 + 22).

If we include all these four parameters, si, s4, sg and sy9, and equate the
first three, say s := s = s4 = sg and set t := sy, we still get dimension
0 and degree 79. If we equate all these four parameters, we no longer have
isolated singularities, since /1 = [ in the matrix above in this case.

As in the previous section, there is also a subgroup H C T of the quotient
torus acting on X,. Consider the diagonal scalar matrix

(A 0 0 0 0 0 O]
0 X% 0 0 0 0 O
0 0 A 0 0 0 O
A=10 0 0 X O 0 O
00 0 0 X 0 O
0 0 0 0 0 X O
00 0 0 0 0 A
which acts on (z1,...,27) by

A'(JJ17..A,.’L'7):(Al'.’L'l,.A.,)\7'$7) .

The subgroup acting on X, is generated by the A with the property that
A-p;i=c¢p; fori=1,...5, and ¢; a constant. From Ap; = ¢; - p1, we obtain
the equations

AsAr = A2 = Aths = Ahs = Aodg = Aoy

Hence Ay = A9, A3 = A4. For convenience, we set \; = 1, and we get the
equation

s = A2 =\ )\ (4.9)
From Apy = ¢o - pa, we obtain the equations
AsAdr = A2y = A\ A3 = A2)g
Inserting 7 = 1, Ay = Ay and Ay = A3, we get
A3 =M= AN (4.10)
Combining equation 4.9 and 4.10 we get
A=A =] (4.11)

From Ap3 = c3 - p3, we obtain the equations
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AsAade = A2 = A A7 = M2
Inserting A\ =1, Ao = A1, Ay = A3 and A5 = )\(25 we get
Mg = A=\ (4.12)
Combining equation 4.11 and 4.12 we get
At =1

and
M=

We conclude that the subgroup H is isomorphic to Z/13Z with generator

(@1 @0 T3 Ta: Ty Tt Ty) > (1,20, M w3, My, L5, g, 27)

where £ is a primitive 13th root of 1.

The mirror is constructed in Bohm’s thesis [8], using tropical geometry.
It can also be constructed by orbifolding, by a crepant resolution of X,/H.
In the next chapter we will verify that the euler characteristic of this mirror
candidate is actually 120, as it should be.



Chapter 5

The Euler Characteristic of the
Bohm Mirror

Let X be the smooth general fiber of the versal family we studied in 3.7.
Proposition 3.7.2 states that the Hodge numbers are h*'(X) = 1 and h'*(X) =
61, hence we have

X(X)=2-(h"*(X) - h*(X))=2-(1-61)=—-120.
In this chapter we verify that the Euler Characteristic of the Béhm mirror
candidate actually is 120 as it should be.

Recall from Section 4.2 that X is the (singular) general fiber of the given
one parameter subfamily of the full versal family, and that H is the group
Z/137Z which acts on X. Let Y; be the quotient space Y; := X,/H.

In this chapter, we construct a crepant resolution f : M, — Y, and prove
the following result, using toric geometry.

Theorem 5.0.1. The Euler characteristic of M is 120.

The variety X, has four isolated singular points at (1:0:0:0:0:0:0),
(0:1:0:0:0:0:0),0:0:1:0:0:0:0)and (0:0:0:1:0:0:0).
The group H acts freely on X, away from 6 fixed points: The four singular
points and the two smooth points (1: —=1:0:0:0:0:0)and (0:0:1:
—1:0:0:0). Locally at the latter points, the quotient space Yj is the germ
(C3/H,0) where the action is generated by the diagonal matrix with entries
(£,€,672). To see this, notice that if we set y; 1= x;/x1, the entry x129 = ¥
in matrix (4.8) is a unit locally around the point (—=1:0:0:0:0:0). Since
the matrix (4.8) is also the syzygy matrix of the ideal generating X, the five
pfaffians generating this ideal reduce to three:

Yols + sysya(ys + ya) — 323/6@/3

61
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Yoy + sy5 — 57 (ys + ya) s
ysyayr + sy (14 12) — Y2y -
Set v = yo. Then the second equation gives yg = —%y? + % (ys + ya) Y.

Inserting this in the first equation gives

[ = wys + svysya(ys + ya) + 539?

where w is the unit v? — st(ys + ya)ysy?, so locally at the fixed point
(1:=1:0:0:0:0:0), the quotient X,/H is

Spec (C[y3,y4,y5,y7]/(f)H) = Spec (C[Z/37y47y7]H) = (Cg/H-

The group H acts by

(y3, Y1, y7) = (Eys, Eya € %y7)

The situation is similar in the other fixed point (0:0:1:—=1:0:0:0).
Now consider the four singular points. One sees that D, gives isomor-
phisms of the germs at the singular points. Let P be one of these singular
points, by symmetry we can choose P = (1:0:0:0:0:0:0). To see what
(X, P) look like locally, we consider an affine neighborhood of P, so we can

assume x1 = 1 with P the origin in this affine neighborhood. Set y; = I=.
Now s(x1 + 22) = s(1+yo) is a unit around the origin, and the five pfaffians
again reduce to three:

Ysyr + sys” — 57 (1 + y2) (y3 + va)
Yayayr + sya(1 + y2) — $°Y5°Ys
Ysyays + sys° — s*(1+ yo)ys”

From the second equation we get y» = u(s%ys2ys — ysyays) where u is a unit
locally around the origin. The first and third equations are now

Ysyr + Sys” — v(ys + ya)

Ysyale + Sys° — vyr”

where v is the unit s2(1+ys). Set 21 = Y3+ ya, 22 = Y3 — Ya, 23 = Ys, 24 = Y
and z5 = y7. Then we have

2325 + szz — V21

(1% — 29%) 24 + 4523° — dvzs*
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Inserting 2z = %(2323 + 522) in the second equation gives

2 2.5 2

23224252 + 282324525 + s 2z — v 2922y + 4sv?23% — 4P2:? .

After a coordinate change, this polynomial is

g = z?, + zg’ + 2324 + zi + w123z§z5 + w2z§z4z§ .
where wy and wy are H invariant units (since yo = z2/x1 maps to y» under
the action of H). The polynomial g has Milnor number 12, and the corank
of the Hessian matrix of ¢ is 3. By Arnold’s classification of singularities [5]
the type of the singularity is @Q12. The normal form of this singularity is

2, .3, .2 5
f=z 4z +220+2 .

In order to show that f and g represent the same germ, we give an H invariant
coordinate change taking g to f locally around the origin.
We first perform the coordinate change

1 .
3
25 > 25 — 511)12324 R

which maps g to

1 . 1
2, .3, .2 5 2,26 2, .2 3,4 2, A7
25 + 25 + 2524 + 2 1142 + W25 zazy — W1Wa232, 25 + 1 w2Zsy

This expression may be written

2 3 2 5
U125 + U223 + 2524 + U3Z, -

where uq, us and ug are H invariant units locally around the origin. After a
coordinate change, we obtain the standard form f.

Since H now acts as (2, 23, 24, 25) = (€320, €223, E%24,€7325), the poly-
nomial f is semi-invariant in the sense that f(£82y,6 223, &%%y,67325) =
E7f (22, 23, 24, 25). In fact, it is also a quasi-homogeneous function of degree 1
and weight (aw, az, ay, a5) = (%, %, %, %), ie.

f‘()\OQZQ7 ceey /\a525) = )\f(ZQ, . ,2’5)

for any A > 0. We now use also Arnolds notation and set f = w? + 2 +
y® + y22. The singularity of Y; at 0 is a so called hyper quotient singularity
(hypersurface singularity divided by a group action). The group H acts on
7 =Z(f):={p| f(p) =0} C C* and we have Z/H = Proj(Ocs/(f))".
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The quotient (Z/H,0) is Gorenstein. This follows from the following
general observation. Let H be a finite subgroup of GL,(C) and (Z,0) C
(€C",0) a codimension r Gorenstein singularity with an induced H action.
Let F be a free Ocn resolution of Oy which is also an H module; i.e. F; =
Ocn ® V; as H modules with V; a representation of H. Let Vi be the
representation g +— det(g). If V;* = V,_p ® Vier as representations, then
(Z/H,0) is Gorenstein.

Let V be the singularity (Z/H,0) C (C*/H,0). It is defined by the ideal
()" in OF,. We wish to construct a crepant resolution V — V of this
singularity.

From now on we use freely the notation and results from the book by
Fulton [12]. We may find a cone ¢ and a lattice M such that

Clw, z,y, Z]H =Cle¥ N M]

3a—25+4’y+86wa 5

A monomial w®z%y7z® maps to £~ 28y72°. This monomial is
invariant under the action of H if —3a — 20 + 4y + 80 = 0(mod 13). This

equation can be written a+ 58+ 3y +60 = 0 (mod 13). Let M be the lattice

{(a, B,7,9)|a+ 56 + 37+ 60 = 0 (mod 13) }

and let ¥ be the first octant in Mg. Let N := Hom(M,Z) be the dual
lattice, i.e.

1
N=7"+ 1—3(1,57376)2 )
The dual cone o is the first octant in Ng. Let vq,...,v4 be the vectors

v = %(1,5,3,6), vy = (0,1,0,0), v3 = (0,0,1,0) and vy = (0,0,0,1). The
isomorphism @Zv; — N given by multiplication by the matrix

1/13 0 0 0

L. |3/18 100
T [3/13 01 0
6/13 0 0 1

takes the cone generated by (13, -5, -3, —6), (0, 1,0,0), (0,0, 1,0) and (0,0,0, 1)
to the cone o. The dual isomorphism M — @D Zuw; is given by multiplication
by the transpose AT .

We find a toric resolution Xy, — C*/H with

‘7C—>XZ

Ve ~C!/H
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0 ,07 71] [0,0,1,0] [0,1,0 0, [1,0,0,0], [3,—1,0,—1], [3,0,0, —1],
[5,—1,—1,-2], [5,— ] 6,-2,—1,-2], [7,—2,—1,-3], [8,—3,—1, -3,
[9, — —4], [11, —5], [11, -4, —2, —4], [12,—4, -2, —5),
[13,-5,—3, 6], [14, 5,—3,—6], [15, —5, 3, —6]

Table 5.1: The rays p of a regular subdivision X of the cone o.

where V is the strict transform of V. A toric resolution of C*/H corresponds
to a regular subdivision of o. This may be computed using the Maple package
convex [11]. The command regularsubdiv in convex does not give a resolution
with a smooth strict transform, so an additional manual subdivision is made.
Table 5 lists the rays in such a regular subdivision, in the basis vy,...,v;.
On page 80 in the Appendix, all the maximal cones of this subdivision X of
o are listed, and they are labeled 7, ..., 753. Each cone is represented by the
four rays spanning it.

The polynomial f is only semi-invariant, and the ideal (f)* has many
generators in Clo¥ N M]. Still, V is irreducible and codimension 1 in Xy,
and therefore defined by an irreducible polynomial ]?T in each C[rV N M] =
Cly1, y2, y3,ys) when 7 € . The y; correspond to the four rays of 7, in the
order in which they are listed on page 80. To compute ff, take the image of
any generator of (f) by the inclusion C[o¥VNM] C C[r¥NM] and remove all
factors which are powers of some ;. We can choose the generator 3®f € (f)*.
The weights of the monomials of 4®f are [2,0,8,0],[0,3,8,0],[0,0,13,0] and
[0,0,9,2].

We will compute ﬁ for a specific 7 to illustrate the idea. Let 7 := 71 be the
cone in ¥ generated by the vectors [13,—5, -3, —6], [0,0,1,0], [3,—1,0, —1]
and [8,—3,—1,—3] in ®Zv;. Let B be the matrix

13 0 3 8
-5 0 -1 -3
B = -3 1 0 -1
-6 0 -1 =3

The rays of 7V are generated by the columns of the matrix (B~1)T. Thus
in M, the rays of 7V are generated by the columns of (AT)~!. (B~1)T =
(BT AT)~L. The image of 3 f by the inclusion is a factor f; of the polynomial
yBTAT 2,0, 8 0 yBTA 10380 4 yBTA [0 0,13,0] 4 yBTAT [0,0,9,2] , where the multi
index notation ylt- means yi* - In this case fT = y4y% +1+yiysys +
y2ysy». In this way one checks that all f in fact define smooth hypersurfaces

in each chart, i.e. that V is smooth.
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Each ray p in X, aside from the 4 generating the cone o, determines an
exceptional divisor D, in Xy. Hence there are 14 exceptional divisors in
Xy For every ray p, the exceptional divisor D, is a smooth, complete toric
3-fold and comes with a fan Star(p) in a lattice N(p); we define N, to be the
sublattice of N generated (as a group) by p N N and

N(p) = N/N,, M(p)=Mnp*

The torus T, C D, corresponding to these lattices is

T, = Hom(M (), C*) = Spec(C[M(p)]) = N(p) @, C" .

The subvariety V will only intersect 10 of these exceptional divisors D,. To
check this, we compute the fan consisting of all the cones of ¥ containing
the ray p, realized as a fan in the quotient lattice N(p). The quotient map
C[rVNM] — C[rYNM(p)] sends y; to 0 if y; is the coordinate corresponding
to the ray p. The other three coordinates are unchanged. Let f, be the
image of f, under this projection map, i.e. fo= f7|(yi =0).

We consider the cone 7 = 71 studied above, and the ray p generated by
(3,—1,0,—1). In this case, the coordinate ys is zero, and the polynomial f_
is y4y? + 1. Hence the ray p intersects V in this chart. This computation
can be performed for all the 14 rays. If the strict transform is 1 on all
charts containing D;, then there is no intersection. The rays generated by
[3,0,0,—1],[5,—1,0,—2],[8, =3, —1, —3] and [11,—4, —2, —4] do not intersect
V, hence the subvariety V will intersect 10 of the exceptional divisors.

In 9 of these 10 cases the intersection is irreducible and in one case the
intersection has 4 components, but one of these is the intersection with an-
other exceptional divisor. All in all the exceptional divisor E in V has 12
components. We list the 12 components of F in Table 5.2.

We may check that the resolution is crepant using the following for-
mula for the discrepancies of hyperquotient singularities, see the article by
Reid [23]. Let @ € N be the primitive vector generating p. Any m € M de-
termines a rational monomial in the variables w,x,y, z and we write m € f
if the monomial is in {w? z3,y2%,4°}. Define a(f) = min{a(m) | m € f}.
The result is that components of v D, are crepant if and only if

a1, 1,1, ) =a(f)+1 .

This may easily be checked to be true for all p € ¥ with VN D, #0.
To compute the type of Ej, several different techniques were needed de-
pending upon the complexity of D, and/or f;, p C 7. For each p we compute
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Exo (1,0,070) Bl;P?
En  (9,-3,—-2,—4) BLF,
B (5,-1,—-1,-2) T,

Label « Type x
Ey (6,—2,—1,-2) P? 3
Es (3,-1,0,—1) BLFy 5
Es  (11,—-4,-2,-5) Tj 4
Ey (7,—2,—-1,-3) Fy 4
Es (9,-3,-2,—4) BlF, 6
Eg (9,-3,—-2,—4) BlFy 6
E; (15,-5,-3,—6) BI3Fy, 7
Es  (12,—4,-2,-5) BlF, 7
Ey (14,-5,-3,-6) T, 4

6

5

4

Table 5.2: Components of VNE.

uz

the polynomials f_. If for some 7, f. is on the form f_= y; y* + 1 with
(nj,ni) # (0,0), we use Method 1 described below.

Method 1. In some cases the intersection V N T, is a torus. This torus
may be described as N\(_P/) ®C*, where m is a rank 2 lattice. The inclusion
VN T, — T, may be computed to be induced by a linear map ¢ : ]/V_(p/) —
N(p). Now V N D, is the closure of VN T, in D,, so it is the toric variety
with fan ¢~!(Star(p)).

E). Consider the case where a primitive vector generating pis (6, —2, —1, —2).
Let 7 = 799 be the cone generated by (13, —5, =3, —6), (0,0,0,1), (6,—2, -1, —2)
and (14, —5, —3, —6). In this chart, Vis generated by f, = Yiys+1+yy3+ys.
Restricted to y3 = 0 (corresponding to the ray (6,—2,—1,—2)), this gives
?T = y2ys + 1. Hence the inclusion VN TNy — Tn(p) is induced by the
inclusion of the sublattice m ~ 72 of N(p) = Z? generated by +(1,0, —2)
and £(0,1,0). Hence the map ¢ : ]Tf\(;) — N(p) is

1 0

0 1

-2 0
and V N D, is ¢~'(Star(p)). The fan Star(p) consists of 10 maximal cones,
and ¢~!(Star(p)) is generated by the rays through (—1,0), (0,1) and (1, —1).

This fan is drawn in figure 5.1, and it represents P2. In fact, ¢~1(Star(p))
can be checked to generate P? for all the 10 maximal cones 7 with p a ray in
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Figure 5.1: A fan representing [P

Figure 5.2: A fan representing Bl;[Fy

7. In Table 5.2, this component of the exceptional divisor E is labeled Ej.

FE5. Now let p be generated by the primitive vector (3,—1,0,—1), and let
T = Tus. In this chart, V is generated by fT = Yo+ 14y +y3y2y3. Restricted
to y1 = 0 (corresponding to the ray (3,—1,0,—1)), this gives f. = 1292 + 1.
By a similar computation as the one above, the fan ¢~1(Star(p)) is generated
by the rays through the points (—1,—1), (0,1), (1,1), (1,2) and (2,1). This
fan is drawn in figure 5.2. Since (1,2) is the sum of (0,1) and (1, 1), the fan
represents the blow up of Fy in a point. On the other hand, (0,1) is the sum
of (=1,—1) and (1,2), and the fan represents the blow up of F3 in a point.
These two surfaces are isomorphic.

FEj. Let 7 = 745. In this case fT = yoy2 + 1+ y2y3y3 +y1. Restricted to yp = 0
(corresponding to the ray p, this gives f, = 1+ y;. The fan ¢~!(Star(p)) is
generated by the rays through the points (—5,—1), (—=1,0), (0,1) and (1,0),
and is drawn in figure 5.3. This fan represents Fs.
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Figure 5.3: A fan representing Fj

FEy. Let 7 = 736. In this case f, = y2 4+ yaudyiys +y2 + 1. Restricted to y3 = 0
(corresponding to the ray p, this gives f, = 1+ y,. The fan ¢~!(Star(p)) is
generated by the rays through the points (—1,2), (0,—1), (0,1) and (1,0),
which represents Fs.

Fs and Eg. In these two cases it is a component of V N D, that inter-
sects Tin(p) in a torus. To see this, consider the case with p generated by
the primitive vector (9, —3,—2,—4). The fan Star(p) consists of 18 maxi-
mal cones. Consider the cone 7 := 73. In this chart, Vs generated by
fr = ys+yys + 112 +ydy2y3. Restricted to y3 = 0 (corresponding to the ray
(9,3, —2,—4)), this gives the polynomial f_ = y95(1 + yty?). The com-
ponent y; = 0 corresponds to the ray (0,0,1,0) and the component yo = 0
corresponds to (1,0,0,0). These two components are labeled Ejg and Ejq,
and we take a closer look at these in Method 3. Both factors (14 iy?y,) and
(1 —iy?y,) of the polynomial f_ give rise to a linear map ¢ : N(p) — N(p)
represented by the matrix

1 0
0 1
-2 0

and ¢~ *(Star(p)) is generated by the rays through (—1,—2), (=1, 1), (—1,0),
(0,1), (1,2) and (2,3). Since (—1,0) = (—1,-1) + (0,1) and (—1,-1) =
(—1,—-2) 4+ (0,1), the fan represents BloF,.

Method 2. In 3 cases one sees from the fan Star(p) that D, is a locally
trivial P! bundle over a smooth toric surface.

FEy5. Consider first the case with p = (15, —5, -3, —6). Let M be the matrix

1 9 15
0 -3 =5
0 -2 -3
0 —4 -6

0
0
M_O
1
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Figure 5.4: A representation of the surface Bl;Fs

and let 7 be the cone generated by the columns of M, i.e. 7 = 745. The fan
Star(p) is the image of the 10 maximal cones in ¥ containing the ray p under
the projection map Pr: N — N(p) given by

1000 00 —21

Pr:=(0 1 0 0| xM'=|13 0 0

0010 03 =5 0
The fan Star(p) in N(p) is generated by the rays (—1,0,—3), (—1,0,—2),
(0,—1,0), (0,0,—1), (0,0,1), (0,1,0), (1,0,0). Let A" be the fan generated
by 1 and —1 in the lattice Z, and let A” be the fan generated by (—1,—3),
(—1,-2), (0,—1), (0,1) and (1,0) in the lattice Z2. There is an exact se-

quence of lattices

0—>Z— N(p)—=7Z*—=0

where the map Z — N(p) is the inclusion n +— (0,n,0) and the map N(p) —
Z? is the projection (x,y,z) + (z,2). This exact sequence gives rise to
mappings

"

X(A') = X(Star(p)) — X(A”)
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where X (A") is the blow up of Fy in a point, and X (A") is P'. Thus we have
a trivial P! bundle over Bl;Fs.

We can find out what V N D, is by a local look at the fibers of the map
VN D, — Bl Fy. Over the charts labeled 2, 3 and 4 in Figure 5.4, the map
is an isomorphism. Over the intersection of the charts 1 and 5, we have an
isomorphism except over two points in Bl;Fy, where the inverse image is a
line. Hence, V N D, is isomorphic to Blz[Fs.

Eg. In this case the fan Star(p) represents a locally trivial P! bundle over
BlLF,, and VN D, is isomorphic to Bls[Fs.
To see this, let p = (12, —4, —2,—5), and let M be the matrix

9 11 13 12

-3 —4 -5 —4
M=1_9 9 3 9
-4 -5 —6 -5

and let 7 be the cone generated by the columns of M, i.e. 7 = 747. The fan
Star(p) is the image of the 12 maximal cones in ¥ containing the ray p under
the projection map Pr: N — N(p) given by

1000 0 3 -1 -2
Pri=10 10 0l xM'=|-1 1 2 -4
0010 0 -2 -1 2
The fan Star(p) in N(p) is generated by the rays (—1,0,0), (—1,2,—1),
(0,-2,1), (0,—1,0), (0,—1,1), (0,0,1), (0,1,0) and (1,0,0). Let A" be the
fan generated by 1 and —1 in the lattice Z, and let A" be the fan generated
by (2,—1), (=2,1), (=1,0), (=1,1), (0,1) and (1,0) in the lattice Z>. There
is an exact sequence of lattices

07— N(p)—=2Z*—0

where the map Z — N(p) is the inclusion n +— (n,0,0) and the map N(p) —
7?2 is the projection (z,y,2) — (y,2). This exact sequence gives rise to
mappings

X(A) = X (Star(p)) — X (A")

where X (A") is the blow up of Fy in two points, and X (A") is P'. Thus we
have a locally trivial P! bundle over BloF,.

We can find out what V' N D, is by a local look at the fibers of the map
VﬂDp — BI1F5. By a similar computation as in Ejg, we find that the inverse
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image is a line in one point, and otherwise an isomorphism. Hence, V' N D,
is isomorphic to Bl3Fs.

Ey. Let p be generated by the primitive vector (14, —5,—3,—6), and let M
be the matrix

0 9 156 14
0 -3 -5 =5
M= 0 -2 -3 -3
1 -4 -6 —6

and let 7 be the cone generated by the columns of M, i.e. 7 = 759. The fan

Star(p) is the image of the 10 maximal cones in ¥ containing the ray p under
the projection map Pr: N — N(p) given by

1000 00 -2 1

Pr:=(0 1 0 0| xM'=103 =50

0010 11 3 0

The fan Star(p) in N(p) is generated by the rays (—1,-3,2), (=1, —-2,2),

(0,—1,1), (0,0,—1), (0,0,1), (0,1,0), and (1,0,0). Let A" be the fan gen-

erated by 1 and —1 in the lattice Z, and let A" be the fan generated by

(—1,-3), (=1,-2), (0,-1), (0,1) and (1,0) in the lattice Z>. There is an

exact sequence of lattices

0—=2Z—N(p)—=2Z>—0

where the map Z — N(p) is the inclusion n +— (0,0,7) and the map N(p) —
7?2 is the projection (x,y,2) — (z,y). This exact sequence gives rise to
mappings
X(A/) — X (Star(p)) — X(A”)

The image of Eg under this last projection is a rational curve on a toric
surface, and Fy is a P! bundle over this curve, but a local computation as in
E; does not tell us what VN D, looks like.

We look at the 10 charts of Xy, containing D,. Four of these cover f/ﬁDp.
A covering is given by the cones Tog, To4, Tso and 751. In these four maps,
the polynomial f, is of the form 1+ z + y?, hence VN D, is a union of four
copies of C2. They glue together to form Fs.

Method 3. In two cases E; is an orbit closure in Xy corresponding to a
2-dimensional cone in X.

FEig. This component is D,, N D,,, where p; is generated by (1,0,0,0) and
p2 is generated by (9, —3, —2, —4). To see this, consider the chart given by
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the cone 7 := 74. In this chart, Vis generated by f} = Youys + Y3 + U3y + v
Restricted to yp = 0 (corresponding to the ray (1,0,0,0)), this gives f. = y3
(corresponding to the ray (9,—3,—2,—4)). We now define N, ,, to be the
sublattice of N generated (as a group) by (p1 N N) X (p2 N N) and

N(Phﬂ?) = N/Nm,pw M(plv/)?) = ]\40/)1L meL

Let M be the matrix with columns the vectors generating 7, i.e.

0 15 9 1
0 -5 =30
0 -3 -2 0
1 -6 =4 0

and let Pr: N — N(p1, p2) be the projection map

_ftooo_ ., o0 —21
Pr'_{o1oo]XM _[0 -2 3 o}‘

The set of cones in X containing both p; and ps is defined by its set of images
in N(p1,p2) under Pr. There are 6 maximal cones in ¥ containing both
(1,0,0,0) and (9, —3,—2, —4), and they project down to the fan generated by
therays (—2,3), (—1,1), (—1,2), (0,—1), (0,1) and (1,0). This fan represents
BI3P,.

FEyy. This is the intersection of D, p generated by (9,—3,—2,—4), and the
non-exceptional divisor corresponding to the ray (0,0, 1,0). The computation
is similar as for Eyg, with

1 -10 3
Pr‘[o 4 0—3]

and the fan generated by the rays (—1,4), (0,—1), (0,1), (1,—1) and (1,0)
represents Bly(Fy).

Method 4. We need the following definitions. Let P be a polytope in R?.
For every nonempty face F' of P we define

Np:={c€ RN|F C {x € Plex > cy Vy € P}} .
We define the normal fan Np as

Np = {Ng|F is a face of P} .

E\2 is computed by finding a polytope A in M(p)r which has Star(p) as
normal fan. Now the ray p is generated by the vector (5,—1,—1,—2). Con-
sider the local chart given by the cone 7, where 7 is spanned by the vectors
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Figure 5.5: The polytope with Star(p) as a normal fan.

(0,1,0,0), (9, -3, —-2,—4), (7,—-2,-1,-3),(5,—1,—1,—2). Let M be the ma-
trix with columns the vectors generating 7, i.e.

60 9 7 5
1 -3 -2 -1
M= 0 -2 -1 -1
0 -4 -3 -2

The projection map Pr: N — N(p) is given by

1000 -1 1 0 -3
Pre=10 1 0 0| xM1'=|-10 -1 =2
0010 0 0 2 -1

The fan Star(p) in N(p) is generated by the rays (—3,—2,—1), (—1,—1,0),
(0,0,1), (0,1,0) and (1,0,0). Up to translation, the polytope with vertices

(0,0,0), (1,0,0), (0,1,0), (1,0,1), (0,0,4), (0,1,2)

has Star(p) as normal fan, see figure 5.5.

We let Sa be the graded C-algebra generated by monomials t*x™, where
m is an element of the Minkowski sum kA and x™ = x™y™22™3 for m =
(m1, ma, m3). The 10 lattice points contained in the polytope, the 6 vertices
above and 4 interior lattice points, give us the equations
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Z0 — t

21 =tx
Zo =1ty
z3 =1tz
z4 =txz
25 = t22
26 = 28
27 =t2*
zg = tyz
29 = ty2?

defining an embedding of D, in PY. Its equations are given by the 2 x 2
minors of the matrix

Z4

20 23 &5 %6 |~

23 &5 k6 27
Z2 28

28 29}

Now consider the vertex (1,0, 1), corresponding to the variable z4. Consider
the chart z4 # 0 with z; = z;/24. The remaining coordinates are x1, z7 and
xg, corresponding to the cone with vectors (—1,0,3), (—1,1,1) and (0,0, —1).
This is the dual of the cone in Star(p) with rays generated by the vectors
(=3, -2,—1), (=1,—1,0) and (0,1,0). In this chart, V N D, is given by the
equation 27 +x9 + 2227, In the torus coordinates, thisis z/z - (14+y+22). In
fact, in every chart VﬁDp is given by the equation u-(1+y+22), where u is an
invertible element in Clx,y, z,1/xz,1/y,1/z]. Since (14+y+2%) = 20+ 22+ 25,
the equations for VN D, reduce to the 2 x 2 minors of the matrix

24
21

This is a (4 : 1) rational scroll in this embedding; i.e. Ejy = Fj.

23 &5 ke <7
20 23 25 Z6

The space E is a normal crossing divisor. We may therefore describe the
intersections of components with a simplicial complex (the dual complex or
intersection complex). The vertices {i} correspond to the components FE;,
and {i1,...i} is a face if B;, N---NE;, # 0.

The intersection complex may be computed by looking at the various
VN D, ND,, and VN D, NnD,, ND,. We list here the facets of the
complex.



76 CHAPTER 5. THE EULER CHAR. OF THE BOHM MIRROR

{1,2,7},{2,7,8},{3,8, 11}, {4, 10, 11}, {4, 10,12}, {5, 7,9}, {5, 7,10},
{5,10,12},{6,7,9},{6,7,10}, {6, 10, 12}, {7, 8,9}, {7, 8,10}, {8, 10, 11}

We see that there are 14 facets, corresponding to 14 intersection points of 3
components and 25 edges corresponding to 25 projective lines which are the
intersections of 2 components.

Lemma 5.0.2. The FEuler characteristic of E is 25.

Proof. Using the inclusion-exclusion principle and the fact that E has normal
crossings, we may compute the Euler characteristic x(E) by

X(E) =3 x(E) = X x(BiNEj) + > x(EinE;jNE) .
i i<j i<j<k
Now from Table 5.2 we count Yx(E;) = 61. We have x(P') = 2. Thus from
the intersection complex, we compute x(E) =61 — 25 x 2+ 14 = 25. O

For the other 2 (quotient) singularities we may use the McKay correspon-
dence as conjectured by Miles Reid and proved by Batyrev in [6], Theorem
1.10. In a crepant resolution of C"/H, H a finite subgroup of SL,, the Eu-
ler characteristic of the exceptional divisor will be the number of conjugacy
classes in H. In our case this is 13. Denote these exceptional divisors FE’.

We have constructed a resolution My — Y;, where Y; is the quotient
X,/H. Let U be the complement of the 6 singular points in Y.

Lemma 5.0.3. The FEuler characteristic of U is —6.

Proof. The singular variety X smooths to the general degree 13 Calabi-
Yau 3-fold in P®. A Macaulay 2 computation shows that the total space
of a general one parameter smoothing is smooth. The smooth fiber has
Euler characteristic -120, see Proposition 3.7.2. The Milnor fiber of the 3-
dimensional Q15 singularity is a wedge sum of 12 3-spheres. Thus x(X;) =
—120 +4 x 12 = —72. Hence

_ X(Xy\ {6points}) —-T2-6
B 13 13

x(U) —6
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We can now put all this together to prove the main result of this section.

Proof of Theorem 5.0.1. Since the resolution M; — Y; is an isomorphism
away from the 6 points, four points with exceptional divisor E and two points
with exceptional divisor E’, we have x(M;) = x(U) + 4x(E) + 2x(E') =
—6+4-25+4+2-13 =120.
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Appendix A

Computer Calculations

The following is a Macaulay 2 code for computing T% of an variety
X = Proj(T/p), for an ideal p in a ring T

A = resolution(p, LengthLimit => 3)
rel — transpose(A.dd_2)

dp = transpose jacobian(A.dd 1)
R="T/p

Rel — substitute(rel,R)

Dp = substitute(dp,R)

Der = image Dp

N = kernel Rel

NO = image basis(0,N)

Der0 = image basis(0,Der)
isSubset(Der0,N0)

T1ltemp = NO/Der0

T1 = trim T1temp

Tlmat = gens T1

79
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APPENDIX A.
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Table A.1: The maximal cones of the subdivision X.



Appendix B

Explicit Expressions for the
Varieties in Chapter 3

In the P/ case, studied in Section 3.4, the linear entries of M* are

ll = T4

ly = tesw1 + ts7w2 + o173 + 3075
l3 = — XI5

l4 = T

ls = —t5571 — tsoT2 — te3T3 — 336
16 = —XI7

and the cubic terms are

_ 3 2 2 2
g1 = —t15x% — t17x3x; — tigWoy — t19X127 — Loolo3ly — t24 X1 X327
S 3 2, 2. 3 3 2.
—losT1Tox7 — t36x] — L3701T7 — Laowswy — ty3xy — lagy — ta7x327
2 2 2 2 2 2
—t67$1l‘3 — t681}1$2 — t76$2I3 — t77$11}2 — t82$2$3 — t83$1l‘3

gs = —tlx‘;’ — tgl’g — tgl'g — tg.%'i — tg.Tg.%'Z — tlo.%'gfL'Z — tn.’L'l.CL'?l

_tlﬁx% — tgol’gl‘% — t21$2I$ — tggIlSL’% — tggl’g — t27l’2$g — tzgl’g.ﬁg
*tggl’l.’rg — t31.’l‘2 — t321‘5$g — t34$1IZ — t35I2I§ — t481’4211'5 — t4gI4l’§
—t501‘§$6 — t51.’1/'5.%'% — t52.%'g.%'7 — t53.%'6.’L'$ — t54ZL'%7J6 — t56$§1‘5 — t581’%$6
—tﬁol'?;)l’;j — t@gl’%f@ — t64I%l’5 — t661’%1'7 — tng%Iﬁl — t72I%I4 — t75I§CE’7
—lrs3s — ta1 307 — tsalalals — tesTolals — tgeT1TaTs — lsrlalsTe
—lgs @256 — Lgg@125T6 — LooX3Tel7 — Lo1Xalelr — Lga®1T6X7 — T1T2T3

_ 3 2 2 2, 2 2 o

g3 = —taxy — tsx3x; — LeTaxy + texiTs — L7012 — T8y — T12T2T3%4
2 3 3 2 3

—1130103%4 — t14T1 T2y — 1387 Ty — t39T7] — baoTy — L410504 — tyqy

2 2 2 2 2 2 2
*t451’3$4 — t70I1I3 — t71I1I2 — t73I2{Z'3 — t7411x2 — t7gl‘2I3 — t80I1I3

81
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In the P} case, studied in Section 3.5, the cubic g is

g = tm.’l}% + tl()'l'ﬁl’% -+ t17.’l'4l'$ + tlg.ng.T% + tlgl'QCE'% + t21I3.T6$7 + t22I3$4$7
FtosToely + taaTalay + tsoTh + 10577 + tsow3ws + tsa3ws + o0
+t561'§$7 + t57I§l’6 + t58I§I4 =+ t65l'i + tGGIZI7 =+ tﬁgxgl'i + t@gxzxi
+t75l’2 -+ t76.’L'g.I'7 + t78$31'g + t79$2$g s

and the quadrics ¢y, ..., qq are

@1 = t10x2 + t1oT35 + ti3Toxs + t3a%3 + L3623 + teox] + te17aTs
+t62l’3$4 + t63I21’4 + t70.T5JI6 + t71$g + t72$3$6 + t73$2$6

@2 = TuTg + 0123 + tox] + t] + 11122 + tos T2 + bagk1T5 + 3oz + t35T0T5
+t37$3.’[5 + t43.1'1$2 -+ t48.’L'1.I'3 + t54$2.’L’7 + t59x3x7

@3 = ToTz + b2 + Laxd + b + 11422 + toox? + baeT1T4 + Log1T5 + t30T1T6
+t39$4.’1’6 + t64.%'4$5 -+ t67.’L'4.%'7 + t741‘5.’£6 + t77$6£6'7

qu = 52} + trx1x6 + Loz 1Ty + Loy @] + 3108 + taoT122 + t1 T3 + taaaTe
+t441'2.7}4 + t45.%'133'3 + t46.’IJ§ + t47.%'333'6 + t49.7)3$4 .

In the P case, studied in Section 3.6, the entries of the syzygy matrix M?!
are given by

g = T1T2T3 + tle + t4x§ + t7x§ + thi + t12x3xi + tlgl'zxi + t14x1;ri
+t15$g + t17.’E3.I'§ + tISmeg + tlgl'l.fg + tzofﬂg + tglei; + t23.’l?3$g + t24.’E2.27(23
+t25$1$% + t271’3$$ =+ tQSIQI% + t29x1x$ =+ t36I%I4 + t38I%I5 —+ t40$%$6
H4o23T7 + L4a0374 + tae3Ts + LagT3Te + LoTATy + LsaTiwy + tygrius
+t56$§$6 + t581'§$7 + t60m3$6 + t61$3$4l'6 + t62$21‘4$6 + t63$11‘41‘6
Flearirr + tesTsTatr + leeTala®r + ter12427 + tesTiTs + LeoTaT5T6
+t70$2$593’6 + t71$1£€5.’£6 + t72$§£€7 + t73(L'3$5.CL'7 + t74(112$5.%'7 + t75(L'1.’L'5.I'7
+t76$41’% =+ t77l'4I$ —+ t781’5$% + t7gI5I$

Q1 = 45 + tox] + t5x3 + tg1] + tooxf + tosTF + toL1 2o + L3o@1 T3 + t3aTaxs
4121206 + L3107 + tagXaxe + t512227 + L7036 + Lsow3Ly

Qo = Ty + tg.l'f + te.’L’% + t9x§ + tn.%'z + tmxg -+ t31x1$2 + t33£€11’3 + t35$2£€'3
Fta70124 + 302105 + Las oy + LasTa®s + Up32ala + LspT325



In the P] case, studied in Section 3.7, the quadrics are given by

q = tgofl)% + tgg.%’% + t35$1f6‘3 + t38$2$3 + t57$§ + t34.%'1$4 + t37132.%'4

Htorr] + to11T5 + baloTs + lsTas + trwas + tsa2

G2 = 123 + t30T1 T + Lok3 + 2374 + 33105 + LaTams + Lo + LisT1To

+t529T6 + tesTss + ti6Tg + tsoT1T7 + tasTamy + tesTery + t1aa?

_ 2 2 2
q3 = —x1xg — L33 — t3gx3xy — L4y — t56X3%5 — LeeTals — Loxs — sgT3Ts

2 2
—teoT4Te — teaTsTe — L15Tg — Lao3y — ty5X4%7 — lealely — t1127

_ 2 2 2
Ga = —t5177] — t5405 — 144103 — L4323 — togl3 — 470104 — L4eT2Ty

2 2
—togxy — t13w17 — 120227 — lorwsy — togXyX7 — L1027

and the linear forms are given by

l1 = tigxy + 19Ty + t3pxs + t311y

lg = T

13 = —Tg

ly = tygx1 + 53Ty + tsoxs + te114 + t176
l5 =I5

lo =ty 1 + taoTa + togws + tosxy .
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In the P7 case, studied in Section 3.8, the entries of the syzygy matrix M?!

are

ll = tg{El + t9{E3 + t24.’L‘2

2 = t121 + tag®s + logTe + taa®y + 4575
3 = U505 + T36X3 + Laor + tae®1 + Las
ly = tiw3 + t17ws + 3574

5 = t1o%1 + t11%e + to527

6 = teTe + tarX1 + L3924 + T5022 + 523
lr = t3x3 + taoxy + ta4s + t5106 + tsay
8 = t18%4 + t19%6 + t3s25

9 = 14Ty + t30%2 + L3706 + 4321 + tse27
1o = t12%a + ti3xy4 + 2973

l11 = towy + togy + 3107 + 4725 + t40T6
l1g = 1140 + ti527 + 3321

l13 = t7w7 + t3oa + L4105 + 533 + 5524
lia = t20T5 + torw7 + t4oT6 -

o~ e~

o~ =~

o~ =~
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APPENDIX B. EXPLICIT EXPRESSIONS
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