
UNIVERSITY OF OSLO
Department of Informatics

A JavaScript API
for accessing
Semantic Web
Master Thesis

Arne Hassel

Spring 2012

Acknowledgments

I want to thank Kjetil Kjernsmo and Martin Giese, my supervisors who are both part of the
research group Logic and Intelligent Data. They have contributed with invaluable advice along
my study, and with great enthusiasm for the research field.

I also want to thank my family, especially my parents, who have supported me all my life,
and patiently allowed me to take my time. I hope I make you proud.

And finally, I owe a great deal to my beloved Veronika, with whom I share love eternal.

1

Abstract

The thesis describes and discusses the development of the framework GraphiteJS (Graphite),
an implementation of a JavaScript (JS) Application Programming Interface (API) for accessing
Semantic Web (SW). It outlines the necessary background in terms of technology, standards
and tools, and how this becomes a part of the framework. Software Design Patterns (SDPs) are
a central tool to help its design, and emphasis is put on splitting the functionality into separate
modules that can be reused by other works within JS. I conclude that modularization is a
necessary feature to support in works that try to take on SW, as it requires a lot of components
that need to collaborate in a multitude of ways. As such, the prospect of a singular framework
being the de facto tool for JS developers wanting to access SW seems dim. A better approach
is to create modules that can be reused by several frameworks, the result being that developers
may pick and choose from a variety of approaches.

3

Contents

1 Introduction 1

I Foundations 3

2 Background 5
2.1 Semantic Web (SW) . 5

2.1.1 Resource Description Framework (RDF) 6
2.1.2 Resource Description Framework Scheme (RDFS) 7
2.1.3 Web Ontology Language (OWL) . 8
2.1.4 Linked Data (LD) . 9

2.1.4.1 Linked Open Data (LOD) 9
2.1.4.2 URL vs. URI vs. IRI . 10

2.1.5 Serializations . 11
2.1.5.1 RDF/XML . 11
2.1.5.2 Terse RDF Triple Language (Turtle) 12
2.1.5.3 Notation3 (N3) . 13
2.1.5.4 N-Triples . 13
2.1.5.5 RDF JSON . 14
2.1.5.6 JavaScript Object Notation for Linked Data (JSON-LD) . . . 15
2.1.5.7 Resource Description Framework in Attributes (RDFa) . . . 16

2.1.6 Querying . 17
2.1.6.1 SPARQL Protocol and RDF Query Language (SPARQL) . . 17
2.1.6.2 SPARQL Update Language 20

2.1.7 Entailment . 20
2.2 JavaScript (JS) . 20

2.2.1 Object-Oriented . 22
2.2.1.1 Prototypical Inheritance . 23
2.2.1.2 Dynamic Properties . 24
2.2.1.3 Functional Features . 24

2.2.2 Scope . 25
2.2.2.1 Closure . 26

2.2.3 Static functions . 27
2.2.4 JavaScript Object Notation (JSON) 27
2.2.5 Asynchronous Loading of Resources 27

5

6 CONTENTS

2.2.5.1 Same Origin Policy (SOP) 28
2.2.5.2 Content Security Policy (CSP) 28
2.2.5.3 XMLHttpRequest (XHR) 28

2.2.6 CommonJS (CJS) . 29
2.2.6.1 Promise Pattern . 29

2.2.7 Server-side implementations . 29
2.2.8 Module Patterns . 29

2.2.8.1 Contained Module . 30
2.2.8.2 Namespaces . 31
2.2.8.3 Asynchronous Module Definition (AMD) 31
2.2.8.4 CJS Module . 32
2.2.8.5 Harmony . 32

2.3 Software Design Pattern (SDP) . 32
2.3.1 Adapter . 34
2.3.2 Bridge . 35
2.3.3 Builder . 36
2.3.4 Composite . 37
2.3.5 Decorator . 37
2.3.6 Facade . 38
2.3.7 Interpreter . 39
2.3.8 Observer . 42
2.3.9 Prototype . 43
2.3.10 Proxy . 45
2.3.11 Strategy . 46

2.4 Test-Driven Development (TDD) . 47

3 Problem Description and Requirements 49
3.1 Problem . 49
3.2 What are the components required for the framework? 50
3.3 Which SDPs are applicable for the components? 50
3.4 Which features in JS are of use for the framework? 50
3.5 How should the API be designed? . 50

II Implementation 53

4 Tools 55
4.1 Buster.JS (Buster) . 55

4.1.1 Browsers . 56
4.1.2 Node.js (Node) . 56

4.2 RequireJS (Require) . 56
4.3 Git . 57

4.3.1 GitHub (GH) . 57
4.4 WebStorm (WS) . 58

CONTENTS 7

5 Used Libraries 59
5.1 Branches . 59
5.2 rdfQuery (RDFQuery) . 59
5.3 rdfstore-js (RDFStore) . 60
5.4 Underscore.JS (Underscore) . 61
5.5 when.js (When) . 61

6 The Graphite Framework 63
6.1 API . 63
6.2 CURIE . 65
6.3 Data-type . 65
6.4 Engine . 65

6.4.1 Abstract Query Tree . 66
6.4.2 Callbacks . 67
6.4.3 Query Filters . 67
6.4.4 Query Plan . 67
6.4.5 RDF JS Interface . 68

6.5 Graph . 68
6.5.1 Backend . 69
6.5.2 Lexicon . 69

6.6 Graphite . 70
6.7 Loader . 70

6.7.1 Proxy . 71
6.7.2 XHR . 71

6.8 Promise . 71
6.9 Query . 71
6.10 Query Parser . 72

6.10.1 SPARQL . 73
6.10.2 SPARQL Full . 73

6.11 RDF . 73
6.12 RDF Loader . 74
6.13 RDF Parser . 75

6.13.1 JSON-LD . 75
6.13.2 RDF JSON . 76
6.13.3 RDF/XML . 76
6.13.4 Turtle . 76

6.14 Tree Utils . 77
6.14.1 B-Tree . 77

6.15 URI . 77
6.16 Utils . 77

7 The Demo 79
7.1 Structure . 79

8 CONTENTS

III Discussion and Conclusion 81

8 Discussion 83
8.1 Semantic Web and JavaScript . 83

8.1.1 Representation of Data . 83
8.1.1.1 RDF . 84
8.1.1.2 SPARQL . 84

8.1.2 Modularity . 85
8.1.3 The Engine . 85

8.1.3.1 Entailment . 86
8.1.3.2 External Service . 86

8.1.4 Asynchronous Functionality . 86
8.1.4.1 XDomainRequest (XDR) 87

8.1.5 Server-side implementation . 87
8.1.6 Marketing of SW in JS communities 87

8.2 JavaScript and Software Design Pattern . 88
8.2.1 Third party libraries . 88

8.2.1.1 Absence of the Adapter pattern 89
8.2.2 Additional SDPs . 89
8.2.3 Architectural Styles . 89
8.2.4 Representational State Transfer (REST) 90

8.3 JavaScript and Test-Driven Development . 90
8.4 Software Design Pattern and Test-Driven Development 91
8.5 Semantic Web and Software Design Pattern 91
8.6 Semantic Web and Test-Driven Development 91
8.7 Related Work . 92

8.7.1 backplanejs (Backplane) . 92
8.7.2 Javascript RDF/Turtle Parser . 92
8.7.3 JS3 . 92
8.7.4 jsonld.js . 93
8.7.5 Jstle . 93
8.7.6 rdflib.js (RDFLib) . 93
8.7.7 RDFStore . 94
8.7.8 RDFQuery . 94
8.7.9 Sgvizler . 94
8.7.10 Simple JavaScript RDF parser and query thingy 95
8.7.11 SPARQL JavaScript Library . 95
8.7.12 Tabulator . 95

9 Conclusion 97
9.1 Further Work . 98

CONTENTS 9

IV Appendices 103

A Code Base 105

B Test Results 107

C Findings of Related Work 109

List of Figures

2.1 A simple directed graph . 6
2.2 A simple directed graph, with Internationalized Resource Identififiers (IRIs) . . 7
2.3 A graph containing a Blank Node (BN). 7
2.4 Linking Open Data cloud diagram . 10
2.5 XML and Semantic Web W3C Standards Timeline. 12
2.6 Object inheritance in JS . 24
2.7 Structure of Adapter . 34
2.8 Structure of Bridge . 35
2.9 Structure of Builder . 37
2.10 Structure of Composite . 37
2.11 Structure of Decorator . 40
2.12 Structure of Facade . 41
2.13 A tree-structure representing the equation “1+2-3”. 42
2.14 Structure of Interpreter . 42
2.15 Structure of Observer . 44
2.16 Structure of Prototype . 45
2.17 Structure of Proxy . 46
2.18 Structure of Strategy . 47
2.19 An illustration of the TDD-process. 48

6.1 Dependencies between the main modules of Graphite. 64
6.2 Dependencies in the submodules of the Engine module 66
6.3 Dependencies in the submodules of the Graph module 69
6.4 Dependencies in the submodules of the Loader module 70
6.5 Dependencies in the submodules of the Query Parser module 72
6.6 Dependencies in the submodules of the RDF Parser module 75

8.1 Intersections of the pillars of this thesis . 83

11

List of Tables

2.1 Result from a SELECT query . 18
2.2 Result from a SELECT query . 19
2.3 Categorization of SDPs . 34

5.1 Overview of branches and their modules. 60

B.1 Test results for tests part of Graphite. 108

C.1 List of projects examined as part of this thesis. 110
C.2 List of projects examined as part of this thesis, cont. 111
C.3 List of projects examined as part of this thesis, cont. 112

13

Listings

2.1 Serialization of figure 2.2 into RDF/XML. 12
2.2 Serialization of figure 2.2 into Turtle. 13
2.3 Serialization of figure 2.3 into Turtle. 13
2.4 Serialization of figure 2.2 into N3. 14
2.5 Serialization of figure 2.2 into N-Triples. 14
2.6 Serialization of figure 2.2 into RDF JSON. 14
2.7 Serialization of figure 2.2 into JSON-LD. 15
2.8 Serialization of figure 2.3 into JSON-LD. 15
2.9 Framing in JSON-LD. 16
2.10 Serialization of figure 2.2 in RDFa. 17
2.11 An example of the SELECT form in SPARQL 18
2.12 An example of the ASK form in SPARQL . 18
2.13 An example of the CONSTRUCT form in SPARQL 19
2.14 An example of the DESCRIBE form in SPARQL 19
2.15 A possible serialization of the result from the query in listing 2.14 19
2.16 Use of literals in JS . 22
2.17 Emulation of classes in JS . 23
2.18 Usage of prototype in JS . 23
2.19 Instantiating functions in JS . 25
2.20 A simple object in JS . 25
2.21 Examples of scope in JS . 26
2.22 A simple example of closure in JS . 26
2.23 An example of code gone wrong because of faulty handling of closure 27
2.24 An example of static functions in JS . 27
2.25 Examples of structures in JS that are valid and invalid JSON-objects 28
2.26 Examples of the Promise API . 30
2.27 Use of contained modules in JS . 30
2.28 Use of namespaces in JS . 31
2.29 Use of AMD in JS . 31
2.30 Use of CJS Module in JS . 32
2.31 Use of modules in Harmony . 32
2.32 An example of implementation of Adapter in JS 35
2.33 An example of implementation of Bridge in JS 36
2.34 Examples of the Builder pattern in jQuery . 36
2.35 An example of implementation of Builder in JS 38

15

16 LISTINGS

2.36 An example of implementation of Composite in JS 39
2.37 An example of implementation of Decorator in JS 40
2.38 An example of implementation of Facade in JS 41
2.39 An example of implementation of Interpreter in JS 43
2.40 An example of implementation of Observer in JS 44
2.41 Altering a functions behavior by extending its configuration with the parameter

named option . 45
2.42 An example of implementation of Prototype in JS 46
2.43 An example of implementation of Proxy in JS 47
2.44 An example of implementation of Strategy in JS 48
8.1 Testing for properties in JS . 91

Chapter 1

Introduction

The Semantic Web (SW) is a many-faced entity, a colossal structure of standards and resources.
It is also an idea shared by a multitude of communities, a concept of structured information,
and an abstraction of knowledge. It is a mixture of technologies, created over a decade of work
by professionals. Academia researches it, businesses try to create common ground with it, and
visionaries preach of its promises; A richer world, where computer-driven agents find, process,
and act upon information tailored for our need.

At the center of the SW we have the World Wide Web Consortium (W3C), led by Tim
Berners-Lee. Berners-Lee is perhaps more famous for his invention, the World Wide Web
(WWW), and he is also the one who coined the phrase Semantic Web. It is in his writings of
Design Issues we find the essence of SW, namely the sentence "The Semantic Web is a web of
data, in some ways like a global database" [5].

The web of data has been in the making since the late 1990s, but in terms of traction there
is still much to be done. Some complain it is still very much an academic affair, while others
complain of the lack of interest from the developing community.

This master thesis has taken the approach to look at the gap between SW and the developing
community by trying to construct a framework that offers tools to access SW. It has been written
in and for JavaScript (JS), as it is a programming language of the web, and the timing seems
right.

JS can relate to SWs struggles for traction. For long time it was ridiculed by developers,
saying it was a silly language that merely created fancy effects on web pages, but not doing
anything useful. Douglas Crockford, an evangelist of JS, has called JS the world’s most misun-
derstood language [15]. And if the name and its syntax was not confusing enough, the browsers
with their differing implementations were not making it any easier.

There were, and still are, many reasons to why people get confused by JS. But in the mid-
2000s, efforts were made to make JS more accessible to developers. Prototype, MooTools,
and jQuery are all frameworks that promises Application Programming Interfaces (APIs) for
easier, cross-browser access to the power within JS. And it worked! Readily manipulation of
the Document Object Model (DOM), asynchronous fetching of resources with Asynchronous
JavaScript and XML (AJAX), and the increasing efforts of making JS into a full-fledged server-
side programming language, are making JS a powerful and fun tool for developers to work
with.

It is this fertile ground the work of this master thesis is trying to tap into. This work presents

1

2 CHAPTER 1. INTRODUCTION

GraphiteJS (Graphite), which is the authors main contribution. It is an Asynchronous Mod-
ule Definition (AMD)-based framework (described in section 2.2.8.3) written in JS that sports
a modularized API to fetch resources in the SW, process it and output in useful way for JS-
developers. Frameworks typically serve to implement (larger-scale) components, and are im-
plemented using (smaller-scale) classes [31]. This description of frameworks suits my imple-
mentation well, as the work in large part will consist of defining smaller components and have
them collaborate effectively for a higher-level purpose.

This master thesis will describe the work and choices made during the implementation of
Graphite. It is divided into three parts. The first consists of the underlying theory and constraints
in technology (chapter 2), and how this fits into the scope of this thesis (chapter 3). The second
part describes the implementation, and starts by explaining which tools and third party libraries
I made use of (chapter 4 and 5 respectively). It continues with an extensive presentation of the
framework itself (chapter 6) and a demo I constructed to demonstrate some of the frameworks’
capabilities (chapter 7). Finally, in the third part I offer a discussion of the work (chapter 8),
and a conclusion of the matter (chapter 9).

I hope to contribute to the developing community of SW and JS in two ways; through the
thesis, to showcase what is already available and present some research and thoughts of my
own, and through the framework, in the hopes that it contributes to the evolution of handling
SW in JS.

Part I

Foundations

3

Chapter 2

Background

This chapter will describe the technologies, standards, and theories that Graphite has been build
upon.

2.1 Semantic Web (SW)

SW represents a multitude of standards and technologies, and seeing the whole picture may not
be so easy to grasp. A perhaps fitting metaphor is the story of the elephant and the blind men. It
is a story made famous by the poet John Godfrey Saxe, and tells the story of how six men tried
to describe an elephant. Depending on which part they touched, each described the elephant
differently. One approached its side, and called it a wall. Another touched the tusk, and surely
it had to be a spear. The third took hold of the trunk, and spoke of how it resembled a snake.
The fourth reached out for its knee, and stated it had to be like a tree. The fifth touched the ear,
and meant it had to be like a fan. Finally, the last one had grabbed its tail, and stated how it had
to be like a rope [34].

In comparison, here are some of the descriptions we have of SW:

• A web of data [5].

• An extension of WWW [25].

• A killer app [9].

• W3C’s vision of the Web of linked data [50].

The list above are some of the descriptions in literature, and they are all true. Other aspects
of SW is the set of standards it sports (e.g. Resource Description Framework (RDF), Resource
Description Framework Scheme (RDFS), Web Ontology Language (OWL), and SPARQL Pro-
tocol and RDF Query Language (SPARQL)), technological foundations (e.g. Linked Data
(LD)), applicabilities (e.g. use of Linked Open Data (LOD) amongst governments), social
consequences (democratizing data), limitations (e.g. Anyone can say Anything about Anything
(AAA)), and more.

5

6 CHAPTER 2. BACKGROUND

2.1.1 Resource Description Framework (RDF)

At the heart of SW lies RDF. It is a formalized data model that asserts information with state-
ments that together naturally form a directed graph. Each statement consists of one subject, one
predicate, and one object, and are hence often called a triple. The three elements have meanings
that are analogous to their meaning in normal English grammar [24, p. 68-69], i.e. the subject
in a statement is the entity which that statement states something about.

As an example of statements, take the following:

• Arne knows Kjetil.

• Arne has last name Hassel.

This statements are represented as a graph in figure 2.1. It illustrates that the subject
"Arne" is related to the object "Kjetil" by the predicate "knows", and to the object
"Hassel" by the predicate "familyName".

Arne

Kjetil

Hassel

knows

familyName

Figure 2.1: A directed graph.

You might have noticed that the two objects have different shapes, one being a circle (like the
subject), and the other being a rectangle. That is to show that "Hassel" is a literal. Literals
are concrete data values, like numbers and strings, and cannot be the subjects of statements,
only the objects [24, p. 69].

The circles on the other hand, are known as resources, and can represent anything that can be
named. As RDF is optimized for distribution of data on WWW, the resources are represented
with Internationalized Resource Identififiers (IRIs) (IRI is an extension of Unified Resource
Identifier (URI), and is explained in section 2.1.4.2).

IRIs are usually declared into namespaces, to make terms more human-readable (e.g. re-
sources in the namespace http://example.org/ could be prefixed ex). If we look at
figure 2.1, we have two resources, namely Arne and Kjetil. To make these available as
LD, we could assign them into the namespace ex, writing them respectively as ex:Arne and
ex:Kjetil.

The basic syntax in RDF has a relatively minimal set of terms. It enables typing, reification,
various types of containers (bags, sequences, and alternatives), and assigning of language or
data type to a literal [2]. Its power lies in its extensibility by URI-based vocabularies [26]. By
sharing vocabularies as standards between software applications, you can easier exchange data.

With this in mind, we see that figure 2.1 is faulty, and we turn to figure 2.2 to see a cor-
rect representation (using the vocabulary Friend of a Friend (FOAF), prefixed foaf, for the
properties).

Not all resources are given IRIs though. The exception to the rule are Blank Nodes (BNs),
which represent resources that have no separate form of identification [26], either because they

http://example.org/

2.1. Semantic Web (SW) 7

ex:Arne

ex:Kjetil

Hassel

foaf:knows

foaf:familyName

Figure 2.2: Statements from figure 2.1 correctly represented with IRIs.

cannot be named, or it is neither possible nor necessary at the time of modeling. These resources
are not designed to link data, but to model relations of resources that are given IRIs.

An example of modeling BN is given in figure 2.3, where I have modeled that ex:Arne
has a friend, who we do not know anything about except his nicknames, Bjarne and Buddy.

ex:Arne

Bjarne

Buddy

foaf:knows
foaf:nick

foaf:nick

Figure 2.3: A graph containing a BN.

The figures 2.2 and 2.3 are examples of the form of visualization we will have of graphs in
RDF.

2.1.2 Resource Description Framework Scheme (RDFS)

RDFS is an extension in form of vocabulary that extends the semantic expressiveness of RDF.
But RDFS is not a vocabulary in the traditional sense that it covers any topic-specific domain
[25, p. 46]. It is designed to extend the semantic capabilities of RDF, and in that sense it can be
regarded as a meta-vocabulary.

The perhaps most important feature of RDFS is its ability to support taxonomies. It empow-
ers the use of rdf:type by introducing rdfs:Class, in effect enabling classification. The
properties rdfs:range, rdfs:domain, rdfs:subClassOf, and rdfs:subPropertyOf
further extends this feature.

It also builds on the reification-properties of RDF, by instantiating rdf:Statement as a
rdfs:Class. It continues by clarifying the semantics of rdf:subject, rdf:predicate,
and rdf:object by instantiating them as rdf:Property, and in terms of entailment (ex-
plained in section 2.1.7) ties together with rdfs:range and rdfs:domain.

Another extension is the clarification of containers by introducing the class rdfs:Container
and the property rdfs:containerMembershipProperty, which is an rdfs:subPropertyOf
of the rdfs:member [13].

Finally, it introduces the utility properties rdfs:seeAlso and rdfs:isDefinedBy.
The former represents resources that might provide additional information about the subject
resource, while the latter gives the resource which defines a given subject. It also clarifies the
use of rdf:value, to encourage its use in common idioms [13].

8 CHAPTER 2. BACKGROUND

2.1.3 Web Ontology Language (OWL)

In the same way RDFS is an extension to RDF in order to express richer semantics, OWL is an
extension to RDFS to express even richer semantics. It does so by introducing vocabularies that
are based on formal logic, and aims to describe relations between classes (e.g. disjointness),
cardinality (e.g. “exactly one”), equality, richer type of properties, characteristics of properties
(e.g. symmetry), and enumerated classes [44, sec. 1.2].

As of this writing, OWL exists in two versions: The version recommended by W3C in
2004 (often known as OWL 1), and The OWL 2 Web Ontology Language (OWL 2), which
became recommended in 2009. OWL 2 is an extension and revision of OWL 1, and is backward
compatible for all intents and purposes [46].

OWL 1 features three sublanguages/profiles1. These are, with complexity in increasing
order (all quoted from OWL Features [44]):

1. OWL Lite: Supports classification hierarchy and simple constraints (e.g. only cardinality
values of 0 and 1).

2. OWL Description Logics (OWL DL): Maximum expressiveness while retaining compu-
tational completeness and decidability.

3. OWL Full: Maximum expressiveness and the full syntactic freedom of RDF, but with no
computational guarantees.

OWL 2 also make a distinction with DL and Full. It does not list a Lite profile, but all
OWL Lite ontologies are OWL 2 ontologies, so OWL Lite can be viewed as a profile of OWL
2 [47]. In addition, DL has three sublanguages that are not disjunct, and also does not cover the
complete OWL 2 DL. These sublanguages are (all quoted from OWL 2 Profiles [47]):

1. OWL Existential Language (OWL EL): Designed to be used with ontologies that contain
very large numbers of either properties or classes.

2. OWL Query Language (OWL QL): Aimed at applications that use very large volumes of
instance data, and where query answering is the most important reasoning task.

3. OWL Rule Language (OWL RL): Aimed at applications that require scalable reasoning
without sacrificing too much expressive power.

To go through all differences between OWL 1 and OWL 2 would be beyond the scope of
this thesis, but suffice to say is that OWL 2 is designed to be backward compatible with OWL
1, and the sublanguages OWL provides as a whole increases the reasoning capabilities of SW.

1This might be wrong: http://www.w3.org/TR/2004/REC-owl-features-20040210/
#s1.3 states that OWL 1 has three sublanguages, while http://www.w3.org/TR/2009/
REC-owl2-new-features-20091027/#Backward_Compatibility claims that it only has one. But
for the purposes of this thesis, I work with three sublanguages.

http://www.w3.org/TR/2004/REC-owl-features-20040210/#s1.3
http://www.w3.org/TR/2004/REC-owl-features-20040210/#s1.3
http://www.w3.org/TR/2009/REC-owl2-new-features-20091027/#Backward_Compatibility
http://www.w3.org/TR/2009/REC-owl2-new-features-20091027/#Backward_Compatibility

2.1. Semantic Web (SW) 9

2.1.4 Linked Data (LD)

A cornerstone of RDF is that all identifications (that is, except BNs) are IRIs. In this way,
machines can browse the web for relevant resources, much like you browse the web through
hyperlinks. This design feature makes RDF adhere to LD, which is a term that refers to a set of
best practices for publishing and connecting structured data on the web [12].

Tim Berners-Lee have in his article about LD2 outlined four “rules” for publishing data on
WWW [7]:

1. Use URIs as names for things.

2. Use HTTP URIs so that people can look up those names.

3. When someone looks up a URI, provide useful information, using the standards (RDF,
SPARQL).

4. Include links to other URIs, so that they can discover more things.

These have become known as the “Linked Data principles”, and provide a basic recipe
for publishing and connecting data using the infrastructure of the WWW while adhering to its
architecture and standards [12].

LD are reliant on two web-technologies, namely IRIs and Hypertext Transfer Protocol
(HTTP). Using the two of them you can fetch any resource addressed by an IRI that uses
the HTTP-scheme. When combining this with RDF, LD builds on the general architecture of
the Web [43].

The Web of Data can therefore be seen as an additional layer that is tightly interwoven with
the classic document Web and has many of the same properties [12]:

• The Web of Data is generic and can contain any type of data.

• Anyone can publish data to the Web of Data.

• Data publishers are not constrained in choice of vocabularies with which to represent
data.

• Entities are connected by RDF links, creating a global data graph that spans data sources
and enables the discovery of new data sources.

2.1.4.1 Linked Open Data (LOD)

Based on the notion of LD, there is a movement to publish data on WWW as LOD. Especially
toward governmental institutions there is now an increasing trend of opening data3.

To encourage this trend, Tim Berners-Lee published a star rating system. On a scale from
one to five stars, it rates how well the given dataset is in becoming open. It is incremental,

2http://www.w3.org/DesignIssues/LinkedData.html
3Examples of this are platforms such as the UK initiative to open governmental data (http://data.

gov.uk/), US’ approach of the same (http://www.data.gov/), and Norway’s parliament opening of
its databases through Stortingets datatjeneste (http://data.stortinget.no/). You also have other non-
governmental organizations, such as Parliamentary Monitoring Organizations (PMOs).

http://www.w3.org/DesignIssues/LinkedData.html
http://data.gov.uk/
http://data.gov.uk/
http://www.data.gov/
http://data.stortinget.no/

10 CHAPTER 2. BACKGROUND

meaning that the dataset needs to be have one star before it can be given two. One star is given
if your data is available on WWW with an open license. Two stars means that your data is
available in machine-readable structure, and is valid for another star if the structure is a non-
proprietary format (e.g. Comma-Separated Values (CSV) instead of Excel). Four stars are given
if your the data is identified by using open standards from W3C (e.g. RDF and SPARQL). The
last star means that your data also link to other people’s data, in order to provide context [7].

Figure 2.4 shows the linking open data cloud diagram. It illustrates to some extent the
magnitude of data that are linked as of yet4.

Figure 2.4: Linking Open Data cloud diagram, by Richard Cyganiak and Anja Jentzsch. http:
//lod-cloud.net/

2.1.4.2 URL vs. URI vs. IRI

Throughout this thesis you will read the terms Unified Resource Locators (URLs), URIs, and
IRIs being used interchangeably. I strive to use IRI as it is the term fronted in the newest specs
by W3C, but in some cases it is more appropriate to use the others because of the texts they
reference.

URLs and URIs are the most commonly used terms. The former denotes dereferenceable
resources on WWW, while the latter is a generalization that can denote anything that can be
identified, even resources not on WWW. But URIs are limited to the character-encoding scheme
American Standard Code for Information Interchange (ASCII), and as such IRI has been intro-

4Well, as of 19th of September 2011, when the diagram was last updated.

http://lod-cloud.net/
http://lod-cloud.net/

2.1. Semantic Web (SW) 11

duced to solve this problem5.
URI have the form scheme:[//authority]path[?query][#fragment], where

the parts in brackets are optional. The list below explains the different terms (shortened versions
of the ones offered by Hitzler et.al. [25, p. 23]. The explanations are equally valid for URL and
IRI.

• scheme: The scheme classify the type of URI, and may also provide additional infor-
mation on how to handle URIs in applications.

• authority: An authority is the provider of content, and may provide user and port
details (e.g. arne@semanticweb.com, semanticweb.com:80).

• path: The path is the main part of many URIs, though it is possible to use empty paths,
e.g., in email addresses. Paths can be organized hierarchically using / as separator.

• query: The query can be recognized with the preceding ?, and are typically used for
providing parameters.

• fragment: Fragments provide an additional level of identifying resources, and are rec-
ognized by the preceding #.

2.1.5 Serializations

RDF in itself offers no serialization of the graph it represents. But there are many serializations
available, and more are coming as of this writing.

There are some considerations to take when choosing a serialization for a given project.
One consideration is the ease for humans to read the syntax, which is very useful if you want to
verify how your data is related. Another is the availability of tools to process the serialization.
RDF/XML, for example, is based on Extensible Markup Language (XML), and as such there
are many tools that can deserialize it. Terse RDF Triple Language (Turtle) on the other hand is
specific for RDF, and may not be as easy to deserialize. But most will agree that the latter is
much easier to read and understand than the former.

2.1.5.1 RDF/XML

RDF/XML has been recommended by W3C to represent RDF since the beginning of SW [26,
sec. 2.2.4]. As the name suggests, RDF/XML is based on the markup language XML. XML
may not be as humanly accessible as some of the other serializations, but it is the most com-
monly used, probably because of the readily available software to process XML-documents.

XML is tree-based, which means some considerations need to be taken when we serialize
graphs. Each statement will have the subject as the root, followed by the predicate, and then the
object. As an example of this we have listing 2.1, which shows a serialization of figure 2.2.

Another reason for XML being chosen as the default serialization was that it was readily
available at the time RDF was being standardized. Figure 2.5 shows a timeline of the develop-
ment of XML and SW.

5Therefore, strictly speaking, it does not matter whether I use URIs or IRIs in this thesis, as I do not use any
non-ASCII signs in any of the IRI I present.

12 CHAPTER 2. BACKGROUND

Listing 2.1: Serialization of figure 2.2 into RDF/XML.

1 <? xml v e r s i o n =" 1 . 0 " e n c o d i n g =" u t f −8" ?>
2 <rdf:RDF x m l n s : r d f =" h t t p : / /www. w3 . org /1999/02 /22− r d f−syn t ax−ns # "
3 x m l n s : f o a f =" h t t p : / / xmlns . com / f o a f / 0 . 1 / ">
4

5 < r d f : D e s c r i p t i o n r d f : a b o u t =" h t t p : / / example . o rg / Arne ">
6 < f o a f : k n o w s >
7 < r d f : D e s c r i p t i o n r d f : a b o u t =" h t t p : / / example . o rg / K j e t i l ">
8 < / r d f : D e s c r i p t i o n >
9 < / f o a f : k n o w s >

10 < f o a f : f a m i l y N a m e > H a s s e l < / f o a f : f a m i l y N a m e >
11 < / r d f : D e s c r i p t i o n >
12

13 < / rdf :RDF>

1998 2000 2008 201220102002 2004 20061996

RDF Schema

RDF

OWL
Feb. 2004

OWL 2

Oct. 2009

SPARQL

Jun. 2008

XML 1.0

XML 1.1
Aug./Sept. 2006

XQuery 1.0

 XSLT 2.0

XPath 2.0
Jan. 2007

 XSLT 1.0

XPath 1.0
Nov. 1999

XQuery & XPath
Full-Text

March 2011

XML Schema 1.0
May 2001

XML 1.0
Nov. 1996 XSLT 2.0

XPath 2.0
XML 1.1
Dec. 2001

XQuery 3.0

XPath 3.0
Dec. 2010

XPath 1.0
Jul. 1999

XSLT 1.0
Aug. 1998

XQuery 1.0
Feb. 2001

XQuery 1.1
Jul. 2008

XML Schema 1.1

XQuery &
XPath Full-Text

Jul. 2004

XML Schema 1.0
Feb. 2000

St
an

d
ar

d
iz

e
dX

M
L

W
o

rl
d

Se
m

an
ti

c
W

e
b

In
tr

o
d

u
ce

d
In

tr
o

d
u

ce
d

St
an

d
ar

d
iz

e
d

RDF Schema
March 1999

SPARQL
Oct. 2004

RDF
March 2002

OWL
Jul. 2002

OWL 2
March 2009

SPARQL 1.1
Oct. 2009

This work is available under a CC BY-SA license. This means you can use/modify/extend it under the condition that you give proper attribution.
 Please cite as: Bikakis N., Tsinaraki C., Gioldasis N., Stavrakantonakis I., Christodoulakis S.:

"The XML and Semantic Web Worlds: Technologies, Interoperability and Integration. A survey of the State of the Art"
In Semantic Hyper/Multi-media Adaptation: Schemes and Applications, Springer 2012 (to appear).

(c) SPARQL2XQuery

Figure 2.5: XML and Semantic Web W3C Standards Timeline.

Listing 2.1 shows that we have namespaces in XML through the attribute rdf:xmlns. But we
cannot use namespaces in values given to attributes (i.e. we have to write rdf:about="http:
//example.org/Arne" instead of rdf:about="ex:Arne"). This adds to the notion
that XML-documents are bigger than what we need to serialize RDF.

2.1.5.2 Terse RDF Triple Language (Turtle)

Turtle defines a textual syntax for RDF that allows RDF graphs to be completely written in
compact and natural text form [3]. The latest version was submitted as a W3C Team Submission
28th of March 2011. Listing 2.2 shows the serialized form of figure 2.2.

We see from the example that IRIs are written with angular brackets, literals with quotation
marks, and statements ends with either a semicolon or a period. The usage of semicolon is a
syntactic sugar, and enables writing the following triples without their subject, as they reuse the
subject in the first statement. We can also reuse the subject and the predicate in a statement by

http://example.org/Arne
http://example.org/Arne

2.1. Semantic Web (SW) 13

Listing 2.2: Serialization of figure 2.2 into Turtle.

1 @p r e f i x ex : < h t t p : / / example . o rg / > .
2 @p r e f i x f o a f : < h t t p : / / xmlns . com / f o a f / 0 . 1 / > .
3

4 ex : Arne f o a f : knows ex : K j e t i l ;
5 f o a f : familyName " H a s s e l " .

using the comma, in essence writing a list.
The syntax @prefix is also used in the listing. This allows us to introduce namespaces,

and abbreviate IRIs by prefixing them (e.g. http://example.org/Arne→ ex:Arne).
We also have the term @base, which also enables us to abbreviate IRIs, by writing the suffix
in angular brackets (e.g. @base <http://example.org/>→ <Arne>).

Turtle also supports BNs by wrapping the statements in square brackets. Listing 2.3 shows
all of these syntaxes in use by serializing figure 2.3.

Listing 2.3: Serialization of figure 2.3 into Turtle.

1 @base < h t t p : / / example . o rg / > .
2 @p r e f i x f o a f : < h t t p : / / xmlns . com / f o a f / 0 . 1 / > .
3

4 <Arne > f o a f : knows [
5 f o a f : n i c k " B j a r n e " , " Buddy " .
6]

There is also syntactic sugar for writing collections. This is done by enveloping the re-
sources as a comma-separated list in parentheses. Lastly, Turtle abbreviates common data
types, e.g. the number forty two can be written 42, instead of "42"^^<http://www.w3.
org/2001/XMLSchema#integer>, and the boolean true can be written true instead of
"true"^^<http://www.w3.org/2001/XMLSchema#boolean>.

Turtle has become popular amongst the academic circles of SW, as it is a valuable educa-
tional tool because of its simplicity and readability.

2.1.5.3 Notation3 (N3)

N3 is often presented as a compact and readable alternative to RDF/XML [8], but the syntax
supports greater flexibility than the confinements of RDF (e.g. support for calculated entailment
with “built-in” functions [6]).

It dates back to 1998 [25, p. 25], and currently holds status as a Team Submission at W3C,
last updated 28th of March 2011. Figure 2.2 is serialized as N3 in listing 2.4.

N3 shares a lot of the syntax of Turtle, but is an extension in the regard that it has extra
syntax (e.g. @keywords, @forAll, @forSome) [3, sec. 9].

2.1.5.4 N-Triples

N-Triples was designed to be a fixed subset of N3 [45, sec. 3]. It is also a subset of Turtle, in
that Turtle adds syntax to N-Triples [3, sec. 8]. Serialization of figure 2.2 is given in listing 2.5.

http://example.org/Arne
<http://example.org/>
http://www.w3.org/2001/XMLSchema#integer
http://www.w3.org/2001/XMLSchema#integer
http://www.w3.org/2001/XMLSchema#boolean

14 CHAPTER 2. BACKGROUND

Listing 2.4: Serialization of figure 2.2 into N3.

1 @p r e f i x ex : < h t t p : / / example . o rg / > .
2 @p r e f i x f o a f : < h t t p : / / xmlns . com / f o a f / 0 . 1 / > .
3

4 ex : Arne f o a f : knows ex : K j e t i l ;
5 f o a f : familyName " H a s s e l " .

Listing 2.5: Serialization of figure 2.2 into N-Triples.

1 < h t t p : / / example . o rg / Arne > < h t t p : / / xmlns . com / f o a f / 0 . 1 / knows > < h t t p : / / example
. o rg / K j e t i l > .

2 < h t t p : / / example . o rg / Arne > < h t t p : / / xmlns . com / f o a f / 0 . 1 / familyName > " H a s s e l " .

One way of looking at N-Triples is to see it as Turtle without the syntactic sugar.

2.1.5.5 RDF JSON

RDF JSON was one of the earliest attempts to make a serialization of RDF in JavaScript Object
Notation (JSON). It is designed as part of the Talis Platform6, and is a simple serialization of
RDF into JSON. Figure 2.2 is serialized into RDF JSON in listing 2.6.

Listing 2.6: Serialization of figure 2.2 into RDF JSON.

1 {
2 "http://example.org/Arne" : {
3 "http://xmlns.com/foaf/0.1/knows" : [{
4 "value" : "http://example.org/Kjetil" ,
5 "type" : "uri"
6 } ,
7 "http://xmlns.com/foaf/0.1/familyName" : [{
8 "value" : "Hassel" ,
9 "type" : "literal"

10 }
11 }
12 }

RDF JSON uses the syntax provided by JSON (explained in section 2.2.4). All triples have
the form { "S": { "P": [O] } }, where "S" is the subject, "P" is the predicate,
and O is a JSON object with the following keys:

• type, required: either "uri", "literal" or "bnode".

• value, required: the lexical value of the object.

• lang, optional: the language of the literal.

• datatype, optional: the data type of the literal.

6http://docs.api.talis.com/platform-api/output-types/rdf-json

http://docs.api.talis.com/platform-api/output-types/rdf-json

2.1. Semantic Web (SW) 15

2.1.5.6 JavaScript Object Notation for Linked Data (JSON-LD)

JSON-LD is another JSON based serialization of RDF, and is the newest serialization to be
included by W3C. It became a working draft on 12th of July 20127, after being in the works for
about a year by the JSON for Linking Data Community Group (JSON-LD CG)8. It has been
included in the work of the RDF Working Group (RDF WG) in hope that it will become a W3C
Recommendation that will be useful to the broader developer community9.

JSON-LD CG has from the start worked with the concern that RDF may be to complex for
the JSON-community10, and as such has embraced LD rather than RDF. That being said, it is
a goal that JSON-LD will serialize a RDF graph, if that is what the developer want to do. This
is reflected in the current working draft, in that subjects, predicates and objects “SHOULD be
labeled with an IRI”. This does introduce the problem that valid JSON-LD documents may not
be valid RDF serializations.

Another design goal of JSON-LD is simplicity, meaning that developers only need to know
JSON and two keywords (i.e. @context and @id) to use the basic functionality of JSON-
LD [49, sec. 2]. So how do we use these keywords? Lets look at two examples in listings 2.7
and 2.8, which serialize figures 2.2 and 2.3 respectively.

Listing 2.7: Serialization of figure 2.2 into JSON-LD.

1 {
2 "@context" : {
3 "ex" : "http://example.org/" ,
4 "foaf" : "http://xmlns.com/foaf/0.1/"
5 } ,
6 "@id" : "ex:Arne" ,
7 "foaf:knows" : "ex:Kjetil" ,
8 "foaf:familyName" : "Hassel"
9 }

Listing 2.8: Serialization of figure 2.3 into JSON-LD.

1 {
2 "@context" : {
3 "ex" : "http://example.org/" ,
4 "foaf" : "http://xmlns.com/foaf/0.1/"
5 } ,
6 "@id" : "ex:Arne" ,
7 "foaf:knows" : {
8 "foaf:nick" : ["Bjarne" , "Buddy"]
9 }

10 }

In listing 2.7 we see that prefixing namespaces are featured in line 3 and 4. We also see that

7http://www.w3.org/TR/json-ld-syntax/
8http://json-ld.org/, http://www.w3.org/community/json-ld/
9http://www.w3.org/blog/SW/2011/09/13/the-state-of-rdf-and-json/

10Topic: Formal Definition of Linked Data at http://json-ld.org/minutes/2011-07-04/

http://www.w3.org/TR/json-ld-syntax/
http://json-ld.org/
http://www.w3.org/community/json-ld/
http://www.w3.org/blog/SW/2011/09/13/the-state-of-rdf-and-json/
http://json-ld.org/minutes/2011-07-04/

16 CHAPTER 2. BACKGROUND

the subject are defined by using the proprety @id. The absence of @id creates a blank node, as
shown in listing 2.8.

Another design goal of JSON-LD is to provide a mechanism that allow developers to specify
context in a way that is out-of-band. The rationale behind this is to allow organizations that al-
ready have deployed large JSON-based infrastructure to add meaning to their JSON documents
that is not disruptive to their day-to-day operations [49]. In practice this will work by having
two JSON documents, one being the original JSON document, which is not linked, and another
that provide rules as to how terms should be transformed into IRIs. Listing 2.9 shows how a
serialization of figure 2.1 could be transformed into the serialization of figure 2.2.

Listing 2.9: Framing in JSON-LD.

1 // A non-LD JSON object
2 {
3 "Arne" : {
4 "knows" : "Kjetil" ,
5 "lastname" : "Hassel"
6 }
7 }
8 // A JSON-LD object designed to transform the object above into a JSON-LD

compliant object
9 {

10 "@context" : {
11 "ex" : "http://example.org/" ,
12 "foaf" : "http://xmlns.com/foaf/0.1/" ,
13 "Arne" : {
14 "@id" : "ex:Arne"
15 } ,
16 "Kjetil" : {
17 "@id" : "ex:Kjetil"
18 } ,
19 "knows" : "foaf:knows" ,
20 "lastname" : "foaf:familyName"
21 }
22 }

2.1.5.7 Resource Description Framework in Attributes (RDFa)

RDFa is another serialization that recently got promoted in the W3C-system. As of 7th of June
2012 it is a W3C Recommendation, and offers a range of documents (the RDFa Primer11, RDFa
Core12, RDFa Lite13, XHTML+RDFa 1.114, and HTML5+RDFa 1.115).

RDFa makes it possible to embed metadata in markup languages (e.g. Hypertext Markup
Language (HTML)), so as to make it easier for computers to extract important information. This
is in response to the fact that some semantics may not be specific enough. Take the title-tags
in HTML, H1-H6. Good practices suggest only using H1 one time, so that it only specifies the

11http://www.w3.org/TR/rdfa-primer/
12http://www.w3.org/TR/rdfa-core/
13http://www.w3.org/TR/rdfa-lite/
14http://www.w3.org/TR/xhtml-rdfa/
15http://www.w3.org/TR/rdfa-in-html/

http://www.w3.org/TR/rdfa-primer/
http://www.w3.org/TR/rdfa-core/
http://www.w3.org/TR/rdfa-lite/
http://www.w3.org/TR/xhtml-rdfa/
http://www.w3.org/TR/rdfa-in-html/

2.1. Semantic Web (SW) 17

most important title for the page. But even so, what does the H1-tag specify title for? Is it the
page as a whole, or is it the specific article on that page. With RDFa you can specify this.

The reasoning is that by making use of independently created vocabularies, the quality of
metadata will increase. And by tying it into RDF, you can increase the overall knowledge of
WWW.

RDFa has a syntax much to big to describe in detail here, but lets look at an example, by
serializing figure 2.2 into a fracture of HTML, given in listing 2.10.

Listing 2.10: Serialization of figure 2.2 in RDFa.

1 < div
2 vocab=" h t t p : / / example . o rg / "
3 p r e f i x =" f o a f : h t t p : / / xmlns . com / f o a f / 0 . 1 / "
4 a b o u t =" Arne ">Arne knows
5 <span
6 p r o p e r t y =" f o a f : knows "
7 r e s o u r c e =" K j e t i l "> K j e t i l < / span>
8 and has l a s t name

10 H a s s e l < / span> . < / div >

Listing 2.10 shows us the use of the attributes vocab, prefix, about, property, and
resource:

• vocab defines the usage of a single vocabulary for the nested terms.

• prefix allows us to introduce prefixes in case we want to mix in more vocabularies.

• about defines the subject in a triple.

• property defines the predicate in a triple.

• resource may define the object and the subject, depending on context.

2.1.6 Querying

An important feature of structured data is the possibility of querying it. You could have the
users scour model in tools like a SW or RDF browser, but this can be a tedious task, and very
inefficient for a machine. To query RDF we need a query language that recognizes RDF as the
fundamental syntax [24, p. 192] (or rather, as the fundamental model).

2.1.6.1 SPARQL Protocol and RDF Query Language (SPARQL)

SPARQL is the answer to the need for a query language. It exists as version 1.0, which became
a W3C Recommendation 15th of January 2008, and as version 1.1, which is a working draft,
last updated 5th of January 2012. Version 1.1 builds upon version 1.0, and sports features such
as (all fetched from the document SPARQL 1.1 Query Language [48]):

• The query forms SELECT, ASK, CONSTRUCT, and DESCRIBE,

18 CHAPTER 2. BACKGROUND

• Grouping, ordering, and limitation of results fetched,

• Several shortened query forms,

• Aggregation,

• Subqueries,

• Negation,

• Expressions in the SELECT clause and Property Paths,

• Assignment, and

• A large list of functions and operators.

As the most powerful version, I will use version 1.1 as the basis for this thesis, and it will
be the version I refer to when referring to SPARQL.

There are four fundamental forms of read-queries in SPARQL, namely SELECT, ASK,
CONSTRUCT, and DESCRIBE. The two latter returns new graphs, that can be used as basis
for additional queries and manipulations (e.g. merging with other graphs).

The SELECT form enables us to query for variables, and return them in tabular form. We
can project a specific list of variables we want returned, or just select all variables by using the
asterisk sign.

Listing 2.11 shows a very simple example of a SELECT query. If we use that query against
the model in figure 2.2, we will get the table 2.1 as a result.

Listing 2.11: An example of the SELECT form in SPARQL

1 SELECT *
2 WHERE { ? s u b j e c t ? p r e d i c a t e ? o b j e c t }

?subject ?predicate ?object
http://example.org/Arne http://xmlns.com/foaf/0.1/knows http://example.org/Kjetil
http://example.org/Arne http://xmlns.com/foaf/0.1/familyName “Hassel”

Table 2.1: Result from using query in listing 2.11 on the model in figure 2.2

As we see from table 2.1, the query lists all triples we know in the model.
The ASK form enables us to verify whether or not certain query pattern are true or not. We

could use it to ask if we know from the model in figure 2.2 whether or not there are an entity
which has a given name "Arne". Listing 2.12 shows how this is done.

Listing 2.12: An example of the ASK form in SPARQL

1 @pref ix f o a f : < h t t p : / / xmlns . com / f o a f / 0 . 1 / >
2 ASK { ? x f o a f : givenName " Arne " }

2.1. Semantic Web (SW) 19

In our case the result would be false.
The CONSTRUCT form enables us to derive a graph derived from other graphs. Lets look at

another example in listing 2.13.

Listing 2.13: An example of the CONSTRUCT form in SPARQL

1 @pref ix f o a f : < h t t p : / / xmlns . com / f o a f / 0 . 1 / >
2 CONSTRUCT { ? x f o a f : givenName " Arne " }
3 WHERE { ? x f o a f : familyName " H a s s e l " }

Now, if we were to run the ASK query in listing 2.12 against the new graph, we would get
the result true. And if we ran the SELECT query in listing 2.11, we would get the result in
table 2.2.

?subject ?predicate ?object
http://example.org/Arne http://xmlns.com/foaf/0.1/givenName “Arne”

Table 2.2: Result from using query in listing 2.11 on the graph resulting from the query in
listing 2.13 begin executed on the model in figure 2.2.

The DESCRIBE form results in a single RDF graph. It differs from the CONSTRUCT form
in that we do not specify which triples we want the new graph to consist of, but rather that
the SPARQL query processor determines which triples that are relevant. The relevant triples
depend on the data available in the graph(s) queried, but takes basis in the resource(s) identified
in the query pattern.

Lets look at the query in listing 2.14, which we apply to the models in figures 2.2 and 2.3,
which we have assigned to IRIs http://example.org/GraphA and http://example.
org/GraphB respectively. The result could be something like the serialization shown in list-
ing 2.15.

Listing 2.14: An example of the DESCRIBE form in SPARQL

1 @pref ix f o a f : < h t t p : / / xmlns . com / f o a f / 0 . 1 / >
2 @pref ix ex : < h t t p : / / example . o rg / >
3 CONSTRUCT ? y
4 FROM < h t t p : / / example . o rg / GraphA>
5 FROM NAMED < h t t p : / / example . o rg / GraphB >
6 WHERE { ? x f o a f : knows ? y }

Listing 2.15: A possible serialization of the result from the query in listing 2.14

1 @p r e f i x f o a f : < h t t p : / / xmlns . com / f o a f / 0 . 1 / > .
2 [f o a f : n i c k " B j a r n e " , " Buddy " .]

The resulting graph has two triples, namely the one concerning the entity which we known
has the nicks "Bjarne" and "Buddy". As there are no triples where http://example.
org/Kjetil acts as the subject, we can not describe anything.

http://example.org/GraphA
http://example.org/GraphB
http://example.org/GraphB
http://example.org/Kjetil
http://example.org/Kjetil

20 CHAPTER 2. BACKGROUND

I have introduced the token FROM in the query. This syntax allows us to specify which RDF
Datasets we wish to query. This syntax is optional, as the query processor will use the default
graph if nothing is specified. There can be one default graph, whose IRI we override if we
specify FROM without NAMED. A query can take any number (or none) of named graphs, but do
not need a default graph if we have one or more named graphs.

SPARQL has a great number of features, and I can not describe them all here16. But suffice
to say, SPARQL is a powerful language that enables us to ask a variety of questions regarding
our data.

2.1.6.2 SPARQL Update Language

The SPARQL 1.1 specification is part of a set of documents, which comprises ten documents.
One of these is the document regarding SPARQL Update Language. It introduces an extension
of the SPARQL syntax that allow us to update RDF datasets. The tokens are divided into
two groups, Graph Update and Graph Management. The former consists of INSERT DATA,
DELETE DATA, DELETE/INSERT (with the shortcut form DELETE WHERE), LOAD, and
CLEAR. The latter consists of CREATE, DROP, COPY, MOVE, and ADD.

I will not go into detail, but SPARQL Update Language delivers a great variety of terms that
allows us to manipulate our graphs with SPARQL.

2.1.7 Entailment

An important feature of RDF is the ability to infer knowledge from the existing knowledge,
i.e. form or entail new conclusions. This is referred to as entailment. There are multiple
forms of entailments in RDF, and it supports one form “out-of-the-box”. The document “RDF
Semantics”17 gives details about entailment for RDF, RDFS, and D-entailment.

Other regimes are the OWL Direct Semantics18, which covers OWL DL, OWL EL, and
OWL QL. There is also Rule Interchange Format (RIF), which outlines a core syntax for ex-
changing rules. The idea is to support multiple rule language, instead of the specific entailment
regimes.

As entailment did not become a part of the framework implemented as part of this thesis, I
will not go into greater detail at this point. I will return to entailment in section 8.1.3.1, as part
of the discussion.

2.2 JavaScript (JS)

JS begins its life in 1995, then named Mocha, created by Brendan Eich at Netscape [17, 27].
It then got rebranded as LiveScript, and later on JavaScript when Netscape and Sun got to-
gether. When the standard was written, it was named ECMAScript, but everyone knows it
as JavaScript. It quickly gained traction for its easy inclusion into web pages, but was long
ridiculed by developers [15].

16The SPARQL 1.1 specification numbers almost 100 pages as of this writing
17http://www.w3.org/TR/rdf-mt/
18http://www.w3.org/TR/owl2-direct-semantics/

http://www.w3.org/TR/rdf-mt/
http://www.w3.org/TR/owl2-direct-semantics/

2.2. JavaScript (JS) 21

Douglas Crockford states in his article “JavaScript: The World’s Most Misunderstood Pro-
gramming Language”19 ten reasons for the confusion centering JS:

1. The Name,

2. Lisp in C’s clothing,

3. Typecasting,

4. Moving Target,

5. Design Errors,

6. Lousy Implementations,

7. Bad Books,

8. Substandard Standard,

9. Amateurs, and

10. Object-Oriented.

Luckily there has been some changes to the list since its conception in 2001.
Point 1-5 is quite valid yet20, but can be remedied by good and educational resources for

learning JS21.
Point 6 is (mostly22) not valid anymore. If the community learned anything from the browser

wars, it was to work with the community through the process of standards. Ecma Internationals
effort to create a specification based on the de facto standard amongst the browsers has been
successful, and groups such as W3Cs HTML Working Group (HTMLWG) and The Web Hyper-
text Application Technology Working Group (WHATWG) drives the production of standards,
and great efforts are made to increase efficiency amongst JS-engines. Another testimony to the
fact that implementations are increasingly popular are the efforts to use JS as a programming
language outside the browser (described in section 2.2.7).

Point 7 depends on your view of good books, and although there is much left to desire,
there are some good books out there23. But more importantly, there are several efforts to de-
liver resources of high quality to educate developers in JS. These resources are increasingly -

19http://www.crockford.com/javascript/javascript.html
20Design issues in JS has given rise to many frustrating moments, creating momentum for websites such as

http://wtfjs.com/, which delivers examples of “weird code”.
21In this regard, http://dailyjs.com/ offers a variety of good resources for learning JS, specifically its

articles tagged with #beginner (http://dailyjs.com/tags.html#beginner).
22Despite the slow pace of browser-update in some communities, e.g. usage of Internet Explorer version 6 (IE6)

in China, lousy implementations is a thing that is becoming a thing of the past.
23Which include, in the authors view:

• JavaScript: The Definitive Guide, 6th edition, by David Flanagan (O’Reilly Media).

• JavaScript: The Good Parts, by Douglas Crockford (O’Reilly Media).

http://www.crockford.com/javascript/javascript.html
http://wtfjs.com/
http://dailyjs.com/
http://dailyjs.com/tags.html#beginner

22 CHAPTER 2. BACKGROUND

perhaps fittingly - web-based. There is also an increase of interest on conferences that target
developers24.

Point 8 is left to be discussed (I have not read and analyzed the 440 pages that ECMAScript
version 3 and 5 consists off), but the implementation of the standards seem to suggest that this
point is not so valid anymore.

JS is increasingly becoming part of the professional world, adaptations into conferences
being one of the arguments suggesting this trend. You also have examples of major companies
either supporting or developing JS-libraries25. This would suggest that point 9 is not the case
anymore26.

Point 10 is still valid, as it can be difficult for developers trained in conventional object-
oriented languages like Java and C#. Again, as with point 1-5, this is remedied by proper,
educational resources, that developers can turn to when puzzled by the intricacies of JS.

JS may be a greatly misunderstood language even today, but it seems to have a lot going
for it. The fact that it is the de facto programming language for the web puts it into a position
worthy of respect, and should be regarded as a resource which can be used for many great
things.

2.2.1 Object-Oriented

JS is fundamentally Object-Oriented (OO) as objects are its fundamental datatype [19, p. 115].
It treats objects different than many other programming languages though, as it does not have
classes and class-oriented inheritance. There are fundamentally two ways of building up object
systems, namely by prototypical inheritance (explained in section 2.2.1.1) and by aggregation
(explained in section 2.2.1.2) [15].

Another design feature is its support of the functional programming style, by treating func-
tions as first-class objects. This feature is explained thoroughly in section 2.2.1.3.

The level of object-orientation in JS is shown in that even literals (i.e. all primitive values
except undefined and null) can be treated as objects. They are, however, immutable, and does
not share the dynamic properties that “normal” objects in JS do. JS handles this by wrapping
the values into their respectively object-type (e.g. String, Number, and Boolean). An example
showing this is shown in listing 2.16.

Listing 2.16: Use of literals in JS

1 var s t r i n g O b j e c t = new S t r i n g (’foo’) ;
2 c o n s o l e . l o g (s t r i n g O b j e c t . l e n g t h) ; // logs 3
3 var s t r i n g L i t e r a l = ’foo’ ;
4 c o n s o l e . l o g (s t r i n g L i t e r a l . l e n g t h) ; // logs 3

24Notably, in Norway you have Web Rebels (http://webrebels.org/), and JS has its own session on
Norwegian Developers Conference (NDC), with somewhat above 10% of the talks concerning JS.

25One example being jQuery, which is shipped with Microsoft’s Visual Studio, another being AngularJS, which
is an MIT-licensed Model-view-controller (MVC) framework developed by Google.

26That being said, percentage-wise it is probable that JS is still written by more amateurs than professional
developers. This is not a bad thing though, as it expresses the power of adaptation that JS features, and may be a
gateway for developers-to-be. Also, lets not forget that the word amateur means “lover of”, and love of computer
technologies is something to be embraced.

http://webrebels.org/

2.2. JavaScript (JS) 23

Other objects that are somewhat different from the norm is the Array- and Math-object, the
former representing a list of values and the latter sporting a set of static methods.

Objects in JS do not need classes to be instantiated. But it is possible to emulate classes in JS
though, as it helps us use class-depended features (e.g. some Software Design Patterns (SDPs)),
and an example is shown in listing 2.17.

Listing 2.17: Emulation of classes in JS

1 var MyClass = f u n c t i o n () {
2 t h i s . myProper ty = 4 2 ;
3 t h i s . myMethod = f u n c t i o n (v a l u e) {
4 re turn v a l u e + t h i s . myProper ty ;
5 } ;
6 } ;
7

8 var myObject = new MyClass () ;
9 c o n s o l e . l o g (myObject . myMethod (1 2 9 5)) ; // logs 1337

2.2.1.1 Prototypical Inheritance

At the heart of all object-handling in JS is Object. All objects inherit this object if nothing
else is specified, and it is there we find the default properties and methods that are shared by all
objects. We can manipulate which object we want our objects to inherit, and as such can create
a hierarchy of objects. Listing 2.18 show some examples of inheritance. In it we see how we
can initiate objects, and how we can assign them to inherit other objects.

Listing 2.18: Usage of prototype in JS

1 var o b j e c t A = {} ,
2 o b j e c t B = new O b j e c t () ,
3 o b j e c t C = O b j e c t . c r e a t e (o b j e c t B)
4 o b j e c t B . _ _ p r o t o _ _ = o b j e c t A ;
5 O b j e c t . propA = 4 2 ;
6 o b j e c t B . propA = 1337 ;
7 c o n s o l e . l o g (o b j e c t A . propA , o b j e c t C . propA) ; // logs 42, 1337

The simple secret behind prototypical inheritance is that all objects have the property __proto__.
When a property or method is called, JS will search for the called element by traversing the ob-
jects’ properties, and if not found, it will continue with the prototype. We can visualize the
structure in listing 2.18 as a tree, and have done so in figure 2.6.

So when we call objectA.propA, JS will check if objectA has the property propA.
As it has not it will continue to its prototype, which is Object. Now, as Object has the prop-
erty propA, JS will return its value, which is 42 in our case. But if we call objectC.prop, it
will not have to go longer than objectB to see that there is a property that matches its search.

A last note is that Object also have the property __proto__. This can also be manipu-
lated, but JS will take care so that we do not run into an infinite loop when looking for properties
that does not exist (it is also considered a bad practice (i.e. an anti-pattern) to manipulate the
prototype of Object).

24 CHAPTER 2. BACKGROUND

objectC

__proto__

objectB

propA __proto__

objectA

__proto__

Object

propA __proto__

Figure 2.6: Object inheritance created in listing 2.18 visualized as a tree.

2.2.1.2 Dynamic Properties

All mutable objects in JS can be manipulated at run-time. This we also see in listing 2.18, as we
add the property propA in line 5 and 6. Objects are basically containers for key-value entities,
where the key is a string. In this regard, objects in JS can be regarded as maps, or dictionaries.

We can at any time manipulate existing properties by replacing its values or delete the key
altogether. We can also manipulate objects that are prototyped, and the objects that inherit will
also be affected. The internal works of this is that JS creates a reference in memory for variables
that are set as objects. If those variables where to be set to other variables, the reference would
be copied, not the values contained within.

A note on mutability and immutability: JS differentiate between primitive values and ob-
ject. The former are immutable, while the latter is mutable. ECMA-262 5.1 Edition (ECMA5)
offers three new functions that alter this behavior, namely the properties seal, freeze,
and preventExtensions in Object (with the responding isSealed, isFrozen, and
isExtensible to test whether or not these are set) [17, p. 114-115]. Explaining how these
functions are outside the scope of this thesis, but suffice to say is that ECMA5 adds some spice
to the mutable properties of JS-objects.

2.2.1.3 Functional Features

All functions are treated as first-class objects, and as such can be manipulated as any other
object. It can also be passed around as variables, and this opens for some nifty features. By
passing a function as a parameter, we can call that function whenever we want, e.g. after we
have loaded a set of resource. This asynchronous feature is explained in depth in section 2.2.5.

Functions can be instantiated in many ways, as shown in listing 2.19. A function consists of
three elements [19, p. 164]:

1. Name: An identifier that names the function (optional in function definition expressions).

2.2. JavaScript (JS) 25

2. Parameter(s): A pair of parentheses around a comma-separated list of zero or more iden-
tifiers.

3. Body: A pair of curly braces with zero or more JS-statements inside.

Listing 2.19: Instantiating functions in JS

1 f u n c t i o n f u n c t i o n A (x) { re turn x ; } ;
2 var f u n c t i o n B = f u n c t i o n (x) { re turn x ; } ,
3 f u n c t i o n C = f u n c t i o n f u n c t i o n D (x) { re turn x ; } ,
4 f u n c t i o n E = new Funct ion ("x" , "return x;") ;
5

6 c o n s o l e . l o g (f u n c t i o n A (4 2) , // logs 42
7 f u n c t i o n B (4 2) , // logs 42
8 f u n c t i o n C (4 2) , // logs 42
9 f u n c t i o n D (4 2) , // throws ReferenceError: functionD is not

defined
10 f u n c t i o n E (4 2)) ; // logs 42

All types in listing 2.19 support these requirements, albeit a little differently. Line 1 shows a
named function, while the other two are anonymous. Anonymous functions are called through
their reference, i.e. the variables they are set to. Named functions is referable by their names,
if not they are set to a variable, in which case it will be referable by the variable (line 9 shows
what happens if you call the function by its name when its set to a variable).

Functions of the types listed in line 1-3 can be used as constructors for new objects, while
the one in line 4 can be used as a prototype. A simple example of this is shown in listing 2.20.
It introduces the use of this, which will be explained in section 2.2.2.

Listing 2.20: A simple object in JS

1 f u n c t i o n ObjectA (x) {
2 t h i s . x = x ;
3 t h i s . methodA = f u n c t i o n (y) {
4 re turn t h i s . x + y ;
5 } ;
6 }
7

8 var A = new ObjectA (1 3 0 0) ;
9 c o n s o l e . l o g (A. methodA (3 7)) ; // logs 1337

2.2.2 Scope

The way JS handles the scope may be confusing to developers coming from class-oriented
programming languages. JS does not contain syntax such as private of protected for use with
variables, but it supports private variables for objects. It does so in the way it handles the context
functions are part of (e.g. the scope).

26 CHAPTER 2. BACKGROUND

Functions in JS can be nested within other functions, and they have access to any variables
that are in scope where they are defined. This means that JS-functions are closures, and it
enables important and powerful programming techniques [19].

If a variable is not set as a property in an object, it will be a part of the global object.
The global object in JS depends on which environment it is run in, but in most browsers it is
represented by the object window. This has some consequences, like the fact that usage of the
syntax-element var is optional; it will become a key-value entity in the scope in which it is
declared, which is the global object if nothing else is specified. This is exemplified in listing
2.21.

Listing 2.21: Examples of scope in JS

1 var x = 4 2 ;
2 y = 4 2 ;
3 window . z = 4 2 ;
4

5 c o n s o l e . l o g (x , y , z) ; // logs 42 42 42

2.2.2.1 Closure

Lets review a simple example of closure, given in listing 2.22. In this example we have two
functions, one which works as a constructor, and another that merely calls a function it has been
given as parameter. When we pass a.getValue to functionA, JS also include the context
which that method runs in, in effect creating a closure.

Listing 2.22: A simple example of closure in JS

1 var ObjectA = f u n c t i o n (v a l) {
2 t h i s . v a l = v a l ;
3 t h i s . g e t V a l u e = f u n c t i o n () {
4 re turn t h i s . v a l ;
5 }
6 } ,
7 f u n c t i o n A = f u n c t i o n (ge tFunc) {
8 re turn ge tFunc () ;
9 } ;

10

11 var a = new ObjectA (4 2) ;
12 c o n s o l e . l o g (f u n c t i o n A (a . g e t V a l u e)) ; // logs 42

This feature is increasingly used in JS-libraries, and is getting a lot of appraise from the
community. But it is also a headache for many aspiring JS-developers, as it may be a bit difficult
to wrap your head around (and use correctly). Lets look another example of what may go wrong,
given in listing 2.23. In this example we try to access this.val inside functionAA. But
as functionAA is not part of the scope of functionA, and thereby not being a part of the
closure given to functionB, we fall back to calling on the global object. Since the global
object does not have a property named val, it will return undefined.

2.2. JavaScript (JS) 27

Listing 2.23: An example of code gone wrong because of faulty handling of closure

1 var f u n c t i o n A = f u n c t i o n (va l , f unc) {
2 t h i s . v a l = v a l ;
3 f u n c t i o n func t ionAA () {
4 re turn t h i s . v a l ;
5 }
6 re turn f unc (func t ionAA) ;
7 } ,
8 f u n c t i o n B = f u n c t i o n (f unc) {
9 re turn f unc () ;

10 } ;
11

12 c o n s o l e . l o g (f u n c t i o n A (4 2 , f u n c t i o n B)) ; //logs undefined

2.2.3 Static functions

JS supports static functions in that all functions are treated as objects, and by extension can be
extended with methods. Listing 2.24 illustrates an example of this.

Listing 2.24: An example of static functions in JS

1 var funcA = f u n c t i o n (v a l) { t h i s . v a l = v a l ; } ,
2 objA = new funcA (1 3 3 7) ;
3 funcA . funcB = f u n c t i o n () { re turn 4 2 ; }
4 funcA . funcC = f u n c t i o n () { re turn t h i s . v a l ; }
5 c o n s o l e . l o g (funcA . funcB ()) ; // logs 42
6 c o n s o l e . l o g (objA . funcC ()) ; // throws TypeError
7 c o n s o l e . l o g (funcA . funcC . c a l l (objA) ; // logs 1337

Note that static functions are not accessible as methods in objects constructed with the
parenting functions as constructor. But we can manipulate the scope of the functions by over-
loading this (with call) to be the object we wish to refer to, as shown on line 7.

2.2.4 JavaScript Object Notation (JSON)

JSON is a lightweight, text-based data interchange format. It is originally based on JS, but is
language-independent [16]. It was specified by Douglas Crockford in RFC 4627, and enjoys
support in most major programming languages.

JSON consists of literals that are either false, null, true, an object (i.e. collections
of key-value pairs), an array (i.e. lists), a number, or a string [16]. Listing 2.25 shows some
examples of valid JSON-objects, as well as some structures that are not valid JSON.

JS supports JSON by default (given in ECMAScript Language Definition [17]).

2.2.5 Asynchronous Loading of Resources

Asynchronous loading or resources are common in browsers. Normal HTML documents nor-
mally externalize much of its Cascading Style Sheets (CSS) and JS functionality, as dictated by
good practices. Those resources are loaded by the browser by default, without too much hassle.

28 CHAPTER 2. BACKGROUND

Listing 2.25: Examples of structures in JS that are valid and invalid JSON-objects

1 // valid, can all be parsed by JSON.parse
2 var goodA = ’42’ ,
3 goodB = ’{ "a": 42 }’ ,
4 goodC = ’[1337, { "a": 42 }]’ ;
5 // invalid, will all make JSON.parse throw a SyntaxError
6 var badA = ’’ , // unexpected end of input
7 badB = ’function (x) { return x; }’ , // unexpected token u
8 badC = ’{ "a": new Object() }’ ; // unexpected token e

But when it comes to making use of the browsers API (i.e. the ones available to JS) to load
resources asynchronously, it becomes another game entirely.

2.2.5.1 Same Origin Policy (SOP)

As with many issues, handling external resources are difficult in JS because of security issues.
And justifiable so, as JS becomes an increasingly powerful programming language, so are the
possibilities to abuse it. Users of WWW are increasingly used to insert personal information,
and if we cannot trust owners of web pages to control what is being run on their site, then there
would be a lot of issues with trust on the web27.

Perhaps the most important security concept within modern browsers is the idea of SOP28.
Although there is no single SOP governing how browsers implement it, the idea is that re-
sources that do not share the same origin (i.e. having the same scheme, host, and port in the IRI
(concepts explained in section 2.1.4.2)) are isolated from each other.

It is possible to circumvent SOP in JS by inserting a script-tag referring to an external file.
This technique is used by JSON with padding (JSONP), which allows JSON residing in external
files to be loaded during run-time.

2.2.5.2 Content Security Policy (CSP)

Another way of handling security concerning external resources is CSP. CSP is in the works
(Working Draft at W3C29), and as an incomplete standard it may be prone to changes. But the
basic idea is to let developers whitelist external resources. The policy is first and foremost being
designed to be part of the HTTP response header, but there is also work on letting it be a part of
HEAD in a HTML document, as a META tag.

2.2.5.3 XMLHttpRequest (XHR)

XHR has been part of the world of browsers for a while. It was conceived by Microsoft in their
work on Microsoft Exchange Server 2000, and was later ported by Mozilla. It was overlooked
for quite a while, until AJAX became a trend, as developers understood the power it had to load
resources asynchronously (and synchronously, if needed).

27A lot can be said about trust on the web, but that is not the purpose of this thesis.
28http://code.google.com/p/browsersec/wiki/Part2#Same-origin_policy
29http://www.w3.org/TR/CSP/

http://code.google.com/p/browsersec/wiki/Part2#Same-origin_policy
http://www.w3.org/TR/CSP/

2.2. JavaScript (JS) 29

XMLHttpRequest Level 2 (XHR2) is a Working Draft as of this writing, but introduces
several features requested by the community, allowing cross-domain fetching of resources be-
ing one of them. To allow this, it makes use of another standard which is in the making,
namely Cross-Origin Resource Sharing (CORS)30. This technology is already available in some
browsers. But its inherit problem is that it requires domain-owners to add information to their
HTTP headers.

Another technology developed to fetch resources across domains are XDomainRequest
(XDR). But as it was not included in the framework, I have let it be a part of the discussion in
section 8.1.4.1.

2.2.6 CommonJS (CJS)

CJS is a volunteer-driven project31 aiming to standardize and implement specifications that
expand the functionality of JS. Specifications include handling of modules, unit testing, pack-
aging, Input/Output (I/O), handling of binary data, and much more. We have included details
concerning three of these specifications (the promise pattern, section 2.2.6.1 and the module
patterns AMD and CJS Modules, sections 2.2.8.3 and 2.2.8.4), as they have been included in
the framework.

2.2.6.1 Promise Pattern

The promise pattern is titled Promises/A by CJS32. It is also referred to as Deferred, and works
by having an object represent a promise. The promise consists of a result that will be returned
at some time in the future, and in the meantime, the run-time will continue evaluating the rest of
the sourcecode. This can be set up so that when the result is ready, a function is called with the
result sent as parameter. This allows for some proper handling of asynchronous functionality.

Listing 2.26 shows some examples of the API. A central point of these examples are that
the functions passed as parameters to the then-function are called as soon as the promise are
resolved, i.e. detached from the order in which they were called in the code.

2.2.7 Server-side implementations

As JS has become an increasingly popular programming language, so has its use outside of the
browser. One of these branches is the use of JS for server-side web-applications. As part of this
thesis I have only used one such implementation as a run-time environment for my Test-Driven
Development (TDD). A more in-length discussion of the matter can be found in section 8.1.5.

2.2.8 Module Patterns

JS is a flexible language, and one area in which this is very clear is when it comes to module
handling. This is not a surprise, as handling variables and ensuring they are not compromised
by code elsewhere in the application is harder than you might think. As such, “modules are an

30http://www.w3.org/TR/cors/
31http://www.commonjs.org/
32http://wiki.commonjs.org/wiki/Promises/A

http://www.w3.org/TR/cors/
http://www.commonjs.org/
http://wiki.commonjs.org/wiki/Promises/A

30 CHAPTER 2. BACKGROUND

Listing 2.26: Examples of the Promise API

1 // When is available as a global variable
2 var promiseA = When . d e f e r () ,
3 promiseB = When . d e f e r () ;
4 s e t T i m e o u t (f u n c t i o n () { promiseA . r e s o l v e (4 2) ; } , 2000)) ;
5 s e t T i m e o u t (f u n c t i o n () { promiseB . r e s o l v e (1 3 3 7) ; } , 1000)) ;
6

7 // Preparing single promises
8 promiseA . t h e n (f u n c t i o n (r e s u l t) {
9 c o n s o l e . l o g (r e s u l t) ; // logs 42 after 2000 milliseconds

10 }) ;
11 promiseB . t h e n (f u n c t i o n (r e s u l t) {
12 c o n s o l e . l o g (r e s u l t) ; // logs 1337 after 1000 milliseconds
13 }) ;
14

15 // Preparing multiples promises
16 When . a l l ([promiseA , promiseB] , f u n c t i o n (r e s u l t s) {
17 c o n s o l e . l o g (r e s u l t s) ; // logs [42, 1337] after 2000 milliseconds
18 }) ;

integral piece of any robust application’s architecture and typically help in keeping the units of
code for a project both cleanly separated and organized” [29].

This section will describe some of the patterns of module handling I have found during my
research.

2.2.8.1 Contained Module

The Contained Module pattern is designed to encapsulate private variables and return an explicit
object with public methods that can work with the private variables. It was made popular by
Douglas Crockford, and is used extensively in smaller libraries. Listing 2.27 shows an example
using this pattern.

Listing 2.27: Use of contained modules in JS

1 var myModule = (f u n c t i o n () {
2 var m y P r i v a t e V a r i a b l e = 4 2 ;
3 f u n c t i o n myFunct ion () {
4 re turn m y P r i v a t e V a r i a b l e ;
5 }
6 re turn {
7 m y P u b l i c F u n c t i o n : myFunct ion
8 } ;
9 }) () ;

10 c o n s o l e . l o g (myModule . m y P u b l i c F u n c t i o n) ; // logs 42

The problem with this pattern is that it does not really address how to combine several
modules. For that we turn to the other patterns.

2.2. JavaScript (JS) 31

2.2.8.2 Namespaces

The simplest way structure several modules is to follow the Namespaces pattern. An example
of it can be seen in listing 2.28.

Listing 2.28: Use of namespaces in JS

1 var OurNamespace = { } ;
2 // in another file, called after the above code has been evaluated
3 (f u n c t i o n (ns) {
4 ns . a n o t h e r L e v e l = { } ;
5 }) (OurNamespace) ;
6 // another file yet again, called after the above code
7 (f u n c t i o n (ns) {
8 ns . a n o t h e r L e v e l . o u r F u n c t i o n a l M o d u l e = f u n c t i o n () { /* ... */ } ;
9 }) (OurNamespace) ;

It requires the developer to include the modules in correct order, which can be troublesome.
The one single argument to use this is that it is supported out-of-the box, as it does not depend
on any extra functionality than the one inherent in browsers.

2.2.8.3 Asynchronous Module Definition (AMD)

The AMD pattern is titled Modules/Async/A by CJS33. Its overall goal is to provide a solution
for modular JS that developers can use today [29]. Essentially it makes use of the functions
define and require. The former defines a module, while the latter enables us to load
dependencies that the module requires. Listing 2.29 shows an example.

Listing 2.29: Use of AMD in JS

1 d e f i n e ([
2 "dependentModuleA" ,
3 "dependentModuleB"
4] , f u n c t i o n (depModA , depModB) {
5 f u n c t i o n p r i v a t e F u n c t i o n () {
6 /* This function is not publicly available by other modules */
7 }
8 re turn { /* This object becomes available to other modules */
9 m y P u b l i c F u n c t i o n : f u n c t i o n () { /* ... */ }

10 } ;
11 }) ;

AMD allows us to split our functionality into modules and easily load components as they
are needed, in run-time. This in turn leads do a more decoupled code base, making it easier
to make modules reusable. But it may also increase the loading time required, as each module
requested fires a HTTP request. Which consequences this has for the framework is further
discussed in section 8.1.2.

33http://wiki.commonjs.org/wiki/Modules/Async/A

http://wiki.commonjs.org/wiki/Modules/Async/A

32 CHAPTER 2. BACKGROUND

2.2.8.4 CJS Module

Another pattern to emerge from the CJS community the CJS Module pattern. It makes use of
the functions require and exports. An example is given in listing 2.30.

Listing 2.30: Use of CJS Module in JS

1 var moduleDependency = r e q u i r e ("moduleWeAreDependentOn") ;
2

3 f u n c t i o n p r i v a t e F u n c t i o n () {
4 /* This function is not publicly available by other modules */
5 }
6

7 e x p o r t s . myModule = { // this object is available to other modules
8 m y P u b l i c F u n c t i o n : f u n c t i o n () { /* ... */ }
9 } ;

CJS also allow modules to be loaded asynchronously34, and in many regards resembles
AMD a lot. AMD and CJS Module differ in which environment they cater to. AMD is mostly
being used by client-side projects, while CommonJS Modules is used by server-side projects.
That said, both types can be used on either sides, and it becomes merely a question of taste.

2.2.8.5 Harmony

Last, we have the modular pattern that is to be part of the sixth edition of EcmaScript, a.k.a.
ES.next, a.k.a. Harmony. This pattern makes use of new syntax, and an example can be seen in
listing 2.31.

Listing 2.31: Use of modules in Harmony

1 module moduleA {
2 export var f u n c t i o n A = f u n c t i o n () { /* ... */ }
3 export var o b j e c t A = { /* ... */ }
4 export var p r o p e r t y A = 4 2 ;
5 }
6 module moduleB {
7 import func t ionA , ob jec tA , p r o p e r t y A from moduleA ;
8 // equivalent to the above: import * from moduleA;
9 }

This syntax is not available in standard browsers yet, as it is still subject to change, however
it is available for experimentation through tools such as traceur-compiler35 and esprima36.

2.3 Software Design Pattern (SDP)

Patterns were originally conceptualized as an architectural concept by Christopher Alexander,
who wrote:

34Although some environments, such as Node.js (Node), loads the dependencies synchronously.
35http://code.google.com/p/traceur-compiler/
36https://code.google.com/p/esprima/

http://code.google.com/p/traceur-compiler/
https://code.google.com/p/esprima/

2.3. Software Design Pattern (SDP) 33

Each pattern describes a problem which occurs over and over again in our environ-
ment, and then describes the core of the solution to that problem, in such a way that
you can use this solution a million times over, without ever doing it the same way
twice [1, p. x].

Alexander’s work inspired amongst others Kent Beck and Ward Cunningham, who in 1987
presented the report “Using Pattern Languages for Object-Oriented Programs”37 on OOPSLA-
87. They outlined the adaptation from Pattern Language to object-oriented programming, and
summarized a system of five patterns that they had successfully used for designing window-
based user interfaces.

SDPs did not become popular before the publication of Design Patterns by Erich Gamma,
Richard Helm, Ralph Johnson, and John Vlissides (often known as Gang of Four (GoF)) in
1994. They generalized patterns to have four essential elements (all quoted in shortened from
Design Patterns [22, p. 3]):

1. Pattern name: A handle which we can use to describe a design problem, its solutions,
and consequences in a word or two. A pattern name is useful as a higher level of abstrac-
tion, increases our pattern vocabulary, and eases communication in social contexts.

2. Problem: Each pattern is designed to handle a specific problem, and this part tells us
when it is appropriate to use a specific SDP.

3. Solution: This part explains in detail how to solve the given problem by explaining the
elements that make up the design, their relationships, responsibilities, and collaborations.

4. Consequences: All implementations have consequences, and this part tells us what re-
sults and trade-offs we may expect from applying the pattern. Consequences may be how
the pattern affects a system’s flexibility, extensibility, or portability.

In their book they also design a classification scheme that aims to enable developers to refer
to families of SDPs. One categorization is by purpose, which can be either creational, structural,
or behavioral. The second categorization is by scope, which can be classes or objects. SDPs
that are related to this thesis have been classified in table 2.3.

At this point I need to make two points clear. The first is that as JS is a class-less program-
ming language, the categorization class might be a bit off. But remember that we can emulate
classes in JS, and this allows us to make use of the class-categorized patterns. The other point
is that JS does not support interfaces. Interfaces can be emulated (at the cost of complexity),
but is not anything more than a construct that checks whether or not a list of properties is set at
run-time. It is on the base of this that I have excluded the use of interfaces in this thesis, falling
back to merely describing the abstractions of participants, and how they are represented in the
code samples38.

GoF continues to describe a consistent format for describing SDPs, which including Pattern
Name and and Classification, Intent, Also Known As, Motivation, Applicability, Structure,
Participants, Collaborations, Consequences, Implementation, Sample Code, Known Uses, and

37http://c2.com/doc/oopsla87.html
38That being said, I have described how you could implement a function that tests properties in section 8.4.

http://c2.com/doc/oopsla87.html

34 CHAPTER 2. BACKGROUND

Purpose
Creational Structural Behavioral

Scope

Class Adapter Interpreter

Object

Builder Adapter Observer
Prototype Bridge Strategy

Composite
Decorator
Facade
Proxy

Table 2.3: Categorization of SDPs relevant to this thesis, given in the classification scheme
proposed by Erich Gamme, et.al. [22, p. 10].

Related Patterns. Using all of these labels takes a lot of pages, and in this thesis I have limited
myself to a description of the pattern along with a figure and an example in JS.

2.3.1 Adapter

The Adapter pattern “convert the interface of a class into another interface clients expect” [22].
This pattern is useful when one wishes to make use of third party libraries without modifying
them. In its classic form, the Adapter pattern are both a class and an object pattern, where the
former makes of subclassing, while the latter forms a reference to the components it adapts,
thereby routing requests.

In listing 2.32 I have shown examples of both. Line 4 shows subclassing through Ob-
ject.create, which enables derivatives of AdapterClass to make use of the methods in the Origi-
nal object. Line 5 shows the constructor function that returns an object that refers to the Original
object, and thereby allows routing of calls.

I have not made use of the Adapter pattern in Graphite, a point I return to in section 8.2.1.1
in the discussion.

Figure 2.7: Structure of Adapter

2.3. Software Design Pattern (SDP) 35

Listing 2.32: An example of implementation of Adapter in JS

1 var O r i g i n a l = {
2 o r i g i n a l M e t h o d : f u n c t i o n (o p t i o n s) { /* ... */ }
3 } ,
4 A d a p t e r C l a s s = O b j e c t . c r e a t e (O r i g i n a l) .
5 A d a p t e r O b j e c t = f u n c t i o n () {
6 re turn O b j e c t . c r e a t e ({
7 adap t e rMe thod : f u n c t i o n (paramA , paramB) {
8 re turn t h i s . t a r g e t . o r i g i n a l M e t h o d ({ a : paramA , b : paramB }) ;
9 }

10 } , {
11 t a r g e t : { value : O b j e c t . c r e a t e (O r i g i n a l) ; }
12 }) ;
13 } ;

2.3.2 Bridge

The Bridge pattern “decouple an abstraction from its implementation so that the two can vary
independently” [22]. The pattern is actually often used in JS in terms of event handling, using
code such as the one in listing 2.33. In that case, the abstraction is that a function is to be
called when a specific button is called, the refined abstraction is the actual functions. The
implementor on the other hand is a function that takes the id to the button to be handled, and the
abstraction that is to be coupled. The concrete implementor is the function handleClick,
which configures the setup needed.

We could have implemented another abstraction, namely making sure that whatever was
passed as handleClick’s first parameter was an object that supported the onclick prop-
erty. This way, I could have removed the limitation of sending just strings of ids, e.g. passing
the object returned from document.getElementByClass("buttons").

Figure 2.8: Structure of Bridge

36 CHAPTER 2. BACKGROUND

Listing 2.33: An example of implementation of Bridge in JS

1 var c a n c e l F u n c t i o n = f u n c t i o n () {
2 c o n s o l e . l o g ("Cancel was clicked") ;
3 } ,
4 s u b m i t F u n c t i o n = f u n c t i o n () {
5 c o n s o l e . l o g ("Submit was clicked") ;
6 } ,
7 h a n d l e C l i c k = f u n c t i o n (b u t t o n I d , func) {
8 document . ge tE lemen tById (b u t t o n I d) . o n c l i c k = f u n c t i o n () {
9 f unc () ;

10 re turn f a l s e ;
11 } ;
12 } ;
13 h a n d l e C l i c k ("CancelButton" , c a n c e l F u n c t i o n) ; // When clicked, will log "

Cancel was clicked"
14 h a n d l e C l i c k ("SubmitButton" , s u b m i t F u n c t i o n) ; // When clicked, will log "

Submit was clicked"

2.3.3 Builder

The Builder pattern “separate the construction of a complex object from its representation so
that the same construction process can create different representations” [22]. A good example
of this is the way jQuery allows us to construct DOM elements (listing 2.34).

Listing 2.34: Examples of the Builder pattern in jQuery

1 var p a r a g r a p h = $ ("<p>") ,
2 t i t l e W i t h T e x t = $ ("<h1>Our title</h1>") ,
3 i n p u t W i t h A t t r = $ (’<input type="password" />’) ;

These lines should be very easy to read for developers familiar with HTML, and handles a
lot of logic that is run behind the scene (e.g. the use document.createElement, adding
attributes, and text).

Now, lets look at listing 2.35 for my own version of a DOM-builder (a very limited version,
i.e. it only support one level of element). I have removed parts of the code, as they unneces-
sary to understand how the pattern works. The participants are DOMCreator (the Director),
DOMBuilder (ConcreteBuilder), and DOMElement (the Product). The code works in fol-
lowing steps:

1. We pass to DOMCreator the string we want parsed.

2. DOMCreator creates an instance of DOMBuilder, and passes along the tag.

3. DOMBuilder creates an instance of DOMElement, and sets the tag.

4. DOMCreator parses attributes, if any, and passes them to DOMBuilder.

5. DOMBuilder adds attributes to the DOMElement.

6. DOMCreator parses text, if any, and passes it to DOMBuilder.

2.3. Software Design Pattern (SDP) 37

7. DOMBuilder adds text.

After these steps, the client can fetch the element by calling getElement on DOMCreator.

Figure 2.9: Structure of Builder

2.3.4 Composite

The Composite pattern “compose objects into tree structures to represent part-whole hierar-
chies.” [22]. This is a method of abstracting the types of a complex structure, and streamlining
certain procedures. In listing 2.36 I have continued with the DOM, and created a structure that
represents DOM elements that can be used to generate HTML.

In this example we have two Composites (DOMComposite, DOMElement) and one Leaf
(DOMText). The client gets the HTML by calling the method getHtml on any of the elements
desired, and they will take care of producing the result from all nested, if any, elements.

Figure 2.10: Structure of Composite

2.3.5 Decorator

The Decorator pattern “attach additional responsibilities to an object dynamically” [22]. As
JS is dynamic in its nature, this is not a very difficult pattern to implement. In listing 2.37,

38 CHAPTER 2. BACKGROUND

Listing 2.35: An example of implementation of Builder in JS

1 var DOMElement = {
2 a t t r i b u t e s = {} ,
3 t a g = nul l ,
4 t e x t = ""
5 } ,
6 DOMBuilder = f u n c t i o n (t a g) {
7 t h i s . e l e m e n t = O b j e c t . c r e a t e (DOMElement) ;
8 t h i s . e l e m e n t . t a g = t a g ;
9 t h i s . a d d A t t r i b u t e = f u n c t i o n (key , v a l u e) {

10 t h i s . e l e m e n t . a t t r i b u t e s [key] = v a l u e ;
11 } :
12 t h i s . addTex t = f u n c t i o n (t e x t) { t h i s . e l e m e n t . t e x t = t e x t ; } ;
13 } ,
14 t o k e n s = {} , // a map of tokens to parse
15 f e t c h = f u n c t i o n (s t r , t o k e n) {} , // returns specified type of token
16 remove = f u n c t i o n (s t r , t o k e n) {} , // removes token, returns modified

string
17 t e s t = f u n c t i o n (s t r , t o k e n) {} , // tests for specific token, return

boolean
18 DOMCreator = f u n c t i o n (s t r) {
19 var key , t ag , t e x t , v a l u e ;
20 // fetches the tag
21 t h i s . b u i l d e r = new DOMBuilder (t a g) ;
22 whi le (t e s t (s t r , t o k e n s . w h i t e s p a c e)) {
23 // fetches key-value pair of attributes, if any
24 t h i s . b u i l d e r . a d d A t t r i b u t e (key , v a l u e) ;
25 }
26 i f (! t e s t (s t r , t o k e n s . s l a s h)) {
27 // fetches text, if any
28 t h i s . b u i l d e r . addText (t e x t) ;
29 }
30 // We have what we need
31 } ;
32 DOMCreator . p r o t o t y p e . g e t E l e m e n t = f u n c t i o n () {
33 re turn t h i s . b u i l d e r . e l e m e n t ;
34 }
35 var e l e m e n t = new DOMCreator ("<p>42</p>") ;
36 c o n s o l e . l o g (e l e m e n t . g e t E l e m e n t ()) ; // logs { attributes: {}, tag: "p", text

: "42" }

I have simplified the example used by Addy Osmani in his book Learning JavaScript Design
Patterns39.

To use the participants in figure 2.11, we have PC as ConcreteComponent, and addMemory,
addScreen, and addKeyboard as the ConcreteDecorators.

2.3.6 Facade

The Facade pattern “provide a unified interface to a set of interfaces in a subsystem” [22].
Again, jQuery shows us an example of design pattern, as the constructor of the jQuery-object

39http://addyosmani.com/resources/essentialjsdesignpatterns/book/
#decoratorpatternjavascript

http://addyosmani.com/resources/essentialjsdesignpatterns/book/#decoratorpatternjavascript
http://addyosmani.com/resources/essentialjsdesignpatterns/book/#decoratorpatternjavascript

2.3. Software Design Pattern (SDP) 39

Listing 2.36: An example of implementation of Composite in JS

1 var DOMComposite = f u n c t i o n (c h i l d r e n) {
2 t h i s . c h i l d r e n = c h i l d r e n ;
3 } ,
4 DOMElement = f u n c t i o n (t ag , c o n t e n t) {
5 t h i s . t a g = t a g ;
6 t h i s . c o n t e n t = c o n t e n t ;
7 } ,
8 DOMText = f u n c t i o n (t e x t) {
9 t h i s . t e x t = t e x t ;

10 } ;
11 DOMComposite . p r o t o t y p e = {
12 a d d C h i l d : f u n c t i o n (e l e m e n t) {
13 t h i s . c h i l d r e n . push (e l e m e n t) ;
14 } ,
15 ge tHtml : f u n c t i o n () {
16 var c h i l d , h tml = "" ;
17 f o r (c h i l d in t h i s . c h i l d r e n) {
18 html += c h i l d . getHTML () ;
19 }
20 re turn html ;
21 }
22 }
23 DOMElement . p r o t o t y p e . ge tHtml = f u n c t i o n () {
24 var t e x t = "<" + t h i s . t a g ;
25 i f (t h i s . c o n t e n t) {
26 re turn t e x t + ">" + t h i s . c o n t e n t . ge tHtml () + "</" + t h i s . t a g + ">" ;
27 }
28 re turn t e x t + " />" ;
29 } ;
30 DOMText . p r o t o t y p e . ge tHtml = f u n c t i o n () {
31 re turn t h i s . t e x t ;
32 }
33 var t e x t 1 = new DOMText ("42") ,
34 t e x t 2 = new DOMText ("1337") ,
35 c o m p o s i t e 1 = new DOMComposite ([t e x t 1]) ,
36 e l e m e n t 1 = new DOMElement ("span" , t e x t 2) ,
37 c o m p o s i t e 2 = new DOMComposite ([compos i t e1 , e l e m e n t 1]) ;
38 c o n s o l e . l o g (c o m p o s i t e 2 . ge tHtml ()) ; // logs "421337"

applies the Facade pattern. It is usually used to simplify the API the user have to concern
himself/herself with, by delivering a subset of methods from underlying modules.

In listing 2.38, I have designed an object that takes the libraries jQuery and when.js (When),
and delivers a new interface that taps into some of their functionality. The facade in the ex-
ample have one method, namely load, and promises to load the callback functions in the
order they are used (i.e. http://example.org/1337 will not be loaded before http:
//example.org/42 has completed).

2.3.7 Interpreter

The Interpreter pattern takes a given language and “define a representation for its grammar along
with an interpreter that uses the representation to interpret sentences in the language” [22].

http://example.org/1337
http://example.org/42
http://example.org/42

40 CHAPTER 2. BACKGROUND

Figure 2.11: Structure of Decorator

Listing 2.37: An example of implementation of Decorator in JS

1 var PC = { c o s t : f u n c t i o n () { re turn 1000 ; } } ,
2 addMemory = f u n c t i o n (PC) {
3 re turn PC . c o s t : f u n c t i o n () { PC . c o s t () + 300 ; } ;
4 } ,
5 addSc reen = f u n c t i o n (PC) {
6 re turn PC . c o s t : f u n c t i o n () { PC . c o s t () + 3 0 ; } ;
7 } ,
8 addKeyboard = f u n c t i o n (PC) {
9 re turn PC . c o s t : f u n c t i o n () { PC . c o s t () + 7 ; } ;

10 } ,
11 myPC = O b j e c t . c r e a t e (PC) ;
12 addMemory (myPC) ;
13 addSc reen (myPC) ;
14 addKeyboard (myPC) ;
15 c o n s o l e . l o g (myPC . c o s t ()) ; // logs 1337

In my simple example I want to be able to parse simple equations, using the following rules:

• Legal tokens are plus, minus and numbers, and these tokens are represented as expres-
sions.

• It reads the equation from left to right.

• No whitespace allowed.

• The plus and minus expression take the its left expression as parameter, and expects a
number to come after it (e.g. “1+44-3” and “-2+3” are both allowed, but “2++3” is not).

2.3. Software Design Pattern (SDP) 41

Figure 2.12: Structure of Facade

Listing 2.38: An example of implementation of Facade in JS

1 // assumes $ and When are global variables
2 var f a c a d e = (f u n c t i o n (jQuery , When) {
3 var promise = n u l l ;
4 f u n c t i o n l o a d (u r i , c a l l b a c k) {
5 promise = When . d e f e r () ;
6 jQuery . g e t (u r i , {} , f u n c t i o n () {
7 promise . r e s o l v e (a rgumen t s) ;
8 c a l l b a c k . a p p l y (t h i s , a rgumen t s) ;
9 }) ;

10 }
11 re turn {
12 l o a d : f u n c t i o n (u r i , c a l l b a c k) {
13 i f (p romise) {
14 promise . t h e n (f u n c t i o n () {
15 l o a d (u r i , c a l l b a c k) ;
16 }) ;
17 } e l s e {
18 l o a d (u r i , c a l l b a c k) ;
19 }
20 }
21 } ;
22 } ($, When)) ;
23 f a c a d e . l o a d ("http://example.org/42" , f u n c t i o n () {
24 c o n s o l e . l o g (4 2) ;
25 }) ;
26 f a c a d e . l o a d ("http://example.org/1337" , f u n c t i o n () {
27 c o n s o l e . l o g (1 3 3 7) ;
28 }) ;
29 // Console will always log 42 first, 1337 second

42 CHAPTER 2. BACKGROUND

The result is an object with a tree-structure consisting of my grammar. E.g. the equation
“1+2-3” would look like figure 2.13.

token:’minus’

token:’plus’

token:’number’_number:1 token:’number’_number:2

token:’number’_number:3

Figure 2.13: A tree-structure representing the equation “1+2-3”.

Figure 2.14: Structure of Interpreter

2.3.8 Observer

The Observer pattern “define a one-to-many dependency between objects so that when one
object changes state, all its dependents are notified and updated automatically” [22]. This is
useful when objects are dependent to know when a dependency changes state, as they will be
notified when change happen.

I have included a simple example in listing 2.40. This can be evolved into context-aware
notifies, so that observers only are notified when certain things happen. Note that I have made
use of closure (section 2.2.2.1) in this example, as the object called upon in line 22 actually is
the object first passed in the obsObject construct-function (line 19).

2.3. Software Design Pattern (SDP) 43

Listing 2.39: An example of implementation of Interpreter in JS

1 f u n c t i o n p a r s e E q u a t i o n = f u n c t i o n (e q u a t i o n) {
2 var grammar = {
3 minus : f u n c t i o n (l e f t , r i g h t) { re turn { t o k e n : ’minus’ , l e f t : l e f t ,

r i g h t : r i g h t } ; } ,
4 number : f u n c t i o n (number) { re turn { token : ’number’ , number :

number } ; }
5 minus : f u n c t i o n (l e f t , r i g h t) { re turn { t o k e n : ’plus’ , l e f t : l e f t ,

r i g h t : r i g h t } ; } ,
6 } ,
7 t o k e n s = {
8 minus = {
9 e x p r e s s i o n : /^ − / ,

10 e v a l u a t e : f u n c t i o n (ba se) {
11 var r i g h t = t o k e n s . number (ba se) ;
12 base . eq = base . eq . s u b s t r i n g (1) ;
13 re turn grammar . minus (base . l e f t , r i g h t) ;
14 }
15 } ,
16 number = {
17 e x p r e s s i o n : / [0 −9] + / ,
18 e v a l u a t e : f u n c t i o n (ba se) {
19 var v a l u e = t h i s . e x p r e s s i o n . exec (ba se . eq) [0] ;
20 base . eq = base . eq . s u b s t r i n g (v a l u e . l e n g t h) ;
21 re turn grammar . number (v a l u e) ;
22 }
23 } ,
24 p l u s = {
25 e x p r e s s i o n : / ^ + / ,
26 e v a l u a t e : f u n c t i o n (ba se) {
27 var r i g h t = t o k e n s . number (ba se) ;
28 base . eq = base . eq . s u b s t r i n g (1) ;
29 re turn grammar . p l u s (base . l e f t , r i g h t) ;
30 }
31 }
32 } ;
33 t h i s . l e f t = grammar . number (0) ;
34 t h i s . eq = e q u a t i o n ;
35 whi le (t h i s . eq !== "") {
36 i f (t o k e n s . minus . e x p r e s s i o n . t e s t (t h i s . eq)) t h i s . l e f t = t o k e n s . minus .

e v a l u a t e (t h i s) ;
37 e l s e i f (t o k e n s . number . e x p r e s s i o n (t h i s . eq)) t h i s . l e f t = t o k e n s . number .

e v a l u a t e (t h i s) ;
38 e l s e i f (t o k e n s . p l u s . e x p r e s s i o n . t e s t (t h i s . eq)) t h i s . l e f t = t o k e n s . p l u s .

e v a l u e (t h i s) ;
39 e l s e throw new E r r o r ("No valid expression") ;
40 }
41 re turn t h i s . l e f t ;
42 }

2.3.9 Prototype

The Prototype pattern “specify the kinds of objects to create using a prototypical instane, and
create new objects by copying this prototype” [22]. The variation from how JS handles proto-

44 CHAPTER 2. BACKGROUND

Figure 2.15: Structure of Observer

Listing 2.40: An example of implementation of Observer in JS

1 var o b s S u b j e c t = f u n c t i o n () {
2 t h i s . o b s e r v e r s = [] ;
3 t h i s . v a l u e ;
4 t h i s . addObse rve r = f u n c t i o n (o b s e r v e r) {
5 t h i s . o b s e r v e r s . push (o b s e r v e r) ;
6 } ;
7 t h i s . n o t i f y = f u n c t i o n () {
8 var o b s e r v e r ;
9 f o r (o b s e r v e r in t h i s . o b s e r v e r s) {

10 o b s e r v e r . u p d a t e () ;
11 }
12 } ;
13 t h i s . g e t V a l u e = f u n c t i o n () { re turn t h i s . v a l u e ; } ;
14 t h i s . s e t V a l u e = f u n c t i o n (v a l) {
15 t h i s . v a l u e = v a l ;
16 t h i s . n o t i f y () ;
17 } ;
18 } ,
19 o b s O b j e c t = f u n c t i o n (s u b j e c t) {
20 s u b j e c t . addObse rve r (t h i s) ;
21 t h i s . u p d a t e = f u n c t i o n () {
22 c o n s o l e . l o g ("New value: " + s u b j e c t . g e t V a l u e ()) ;
23 }
24 } ,
25 mySubjec t = new o b s S u b j e c t () ,
26 myObj1 = new o b s O b j e c t (mySubjec t) ,
27 myObj2 = new o b s O b j e c t (mySubjec t) ;
28 mySubjec t . s e t V a l u e (4 2) ; // logs "New value: 42" two times

2.3. Software Design Pattern (SDP) 45

typical inheritance (section 2.2.1.1) is slight, as JS handles prototyping by copying the reference
to the prototype object, while the pattern copies the whole thing.

The example given in listing 2.42 shows this in action. Line 18 shows what happens if you
compare the prototype object of two objects that have been created using Object.create in
JS, compared to what happens if you compare the cloned objects. The references are different.

The pattern is not specified in the description of the modules in Graphite, but is included
here to show how it differs from prototypical inheritance. It has been used throughout the
framework, although as the function named extend (that resides in the Utils module). Most
often it is used in pair with the parameter option given to functions that offer slight variations
from its default behavior. An example is given in listing 2.41.

Listing 2.41: Altering a functions behavior by extending its configuration with the parameter
named option

1 // assumes a global function extend that functions like the Prototype
pattern

2 var m y C o n f i g u r a b l e F u n c t i o n = f u n c t i o n (o p t i o n s) {
3 var d e f a u l t C o n f i g = e x t e n d ({
4 c o n f i g u r a t i o n A : true ,
5 c o n f i g u r a t i o n B : 42
6 } , o p t i o n s) ;
7 /* Rest of the functions body */
8 } ;
9 m y C o n f i g u r a b l e F u n c t i o n ({ c o n f i g u r a t i o n B : 1337 }) ; // overwriting the

default value 42

Figure 2.16: Structure of Prototype

2.3.10 Proxy

The Proxy pattern “provide a surrogate or placeholder for another object to control access to
it” [22]. There are several kinds of proxies, like the virtual proxy (works like a lazy instantiator,

46 CHAPTER 2. BACKGROUND

Listing 2.42: An example of implementation of Prototype in JS

1 var P r o t o t y p e = {
2 methodA : f u n c t i o n () { /* ... */ } ,
3 o b j e c t A : { /* ... */ } ,
4 propA : { /* ... */ }
5 } ;
6 f u n c t i o n c l o n e (o b j) {
7 var o = {} , key ;
8 f o r (key in o b j) {
9 i f (t y p e o f o b j === "Object") o . _ _ p r o t o _ _ [key] = c l o n e (o b j [key]) ;

10 e l s e o . _ _ p r o t o _ _ [key] = o b j [key] ;
11 }
12 re turn o ;
13 }
14 var a = O b j e c t . c r e a t e (P r o t o t y p e) ,
15 b = O b j e c t . c r e a t e (P r o t o t y p e) ,
16 c = c l o n e (P r o t o t y p e) ,
17 d = c l o n e (P r o t o t y p e) ;
18 c o n s o l e . l o g (a . _ _ p r o t o _ _ === b . _ _ p r o t o _ _) ; // logs true
19 c o n s o l e . l o g (c . _ _ p r o t o _ _ === d . _ _ p r o t o _ _) ; // logs false

i.e. only creating the proxied object when you need it), remote proxies (proxies an object on a
remote destination), and controlling proxies (to handle access), and they may be combined.

In listing 2.43 I have constructed a remote proxy. The object it proxies has one single
purpose, which is to fetch the resource located at a given IRI. This may be one way of circum-
venting SOP (section 2.2.5.1).

Figure 2.17: Structure of Proxy

2.3.11 Strategy

The Strategy pattern “define a family of algorithms, encapsulate each one, and make them in-
terchangeable” [22]. It relies on a shared interface of properties among objects, and an example

2.4. Test-Driven Development (TDD) 47

Listing 2.43: An example of implementation of Proxy in JS

1 // assumes function ajax, that acts like $.ajax
2 var proxy = f u n c t i o n (i r i , c a l l b a c k) {
3 a j a x (/ l o c a l p r o x y / , {
4 d a t a : {
5 i r i : i r i
6 } ,
7 method : ge t ,
8 s u c c e s s : c a l l b a c k
9 }) ;

10 } ;
11

12 proxy ("http://another.domain.com/42" , f u n c t i o n (d a t a) {
13 c o n s o l e . l o g (d a t a) ; // logs whatever was fetched from http://another.

domain.com/42
14 }) ;

is shown in listing 2.4440.
This pattern streamlines the functionality by eliminating conditional statements.

Figure 2.18: Structure of Strategy

2.4 Test-Driven Development (TDD)

TDD is a development process of software that details how to build your code base. It relies on
an iterative cycle of steps that are summarized in figure 2.19. The process start with writing a test
that asserts the functionality we wish to implement. It should raise a red flag when first tested

40Inspired by the example given by Mike Pennisi in his blog post at http://weblog.bocoup.com/
the-strategy-pattern-in-javascript/

http://weblog.bocoup.com/the-strategy-pattern-in-javascript/
http://weblog.bocoup.com/the-strategy-pattern-in-javascript/

48 CHAPTER 2. BACKGROUND

Listing 2.44: An example of implementation of Strategy in JS

1 var b u t t o n s = [{
2 i d : "Button42" ,
3 o n c l i c k : f u n c t i o n () {
4 c o n s o l e . l o g (4 2) ;
5 re turn f a l s e ;
6 }
7 } , {
8 i d : "Button1337" ,
9 o n c l i c k : f u n c t i o n () {

10 c o n s o l e . l o g (1 3 3 7) ;
11 re turn f a l s e ;
12 }
13 }] ,
14 b u t t o n ;
15 f o r (b u t t o n in b u t t o n s) {
16 document . ge tE lemen tById (b u t t o n . i d) . o n c l i c k (b u t t o n . o n c l i c k) ;
17 }

(meaning that the functionality is not implemented yet), which in turn leads us to implement
the requested feature. When we manage to get a green flag (meaning that the functionality now
exists), we can continue to either write a new test for a new functionality, or we can refactor the
existing code by making sure it does not raise any red flags (break any tests).

Figure 2.19: An illustration of the TDD-process.

Chapter 3

Problem Description and Requirements

The notion of RDF as a standard for exchanging structured data on WWW is becoming increas-
ingly popular. The technologies of SW are actively developed, and new features, as well as
stabilizing old ones, are in the works.

JS has also gotten a lot of attention as an increasingly powerful programming language for
WWW. First and foremost as a client-side scripting language, but now also as server-side imple-
mentations. Large companies like Google, Microsoft, Mozilla, Apple, and Opera are all putting
a lot of effort into increasing the effectiveness of their JS-engines, through implementations and
cooperating in evolving the standards.

In this environment, you would think that many developers would try to access SW with a
library written in and for JS. While there are projects trying to create frameworks for accessing,
query, and manipulating SW, none of them are the defining prototype of a JS-framework for
SW as of yet.

3.1 Problem

This thesis seeks to define what is needed in order to have a powerful framework in JS that can
access SW. This goal is divided into four subgoals:

1. The first subgoal is to identify the features that a framework accessing SW needs to sup-
port. Which technologies needs to be involved, what obstacles do they introduce, and
what are the consequences of implementing them?

2. Next, I need to identify the participants and how they should collaborate. I will try using
the knowledge of SDP to describe the components in known and widely utilized language.
While doing this, I need to explore how JS conform to the patterns of the various SDPs.

3. My third subgoal is to implement a functional framework in JS. In doing this, I need to
identify what features JS offers that are relevant for my framework.

4. My final goal is to develop APIs that exposes the functionality of the framework in a way
that is easy for developers to get into.

49

50 CHAPTER 3. PROBLEM DESCRIPTION AND REQUIREMENTS

3.2 What are the components required for the framework?

I have identified a lot of the technologies regarding SW in section 2.1. RDF and its serializations
need to be a part of the framework. As documents containing RDFS, OWL, and other vocabu-
laries, are subsets of RDF, a representation of RDF should be enough in terms of representing
the model.

After I have implemented a model of RDF, I need to implement some way of letting devel-
opers browse, or query, the data. SPARQL is a powerful language that handles this purpose, but
does it raise the bar for using the framework unnecessarily high? Will developers new to SW
want to tackle SPARQL in addition to all the other technologies they need to learn?

Another important feature of the framework will be the APIs. How should I expose the
functionality to developers? Should it be available as one monolithic object, or is there a need
to divert it into several smaller objects? This problem is further investigated in section 3.5.

3.3 Which SDPs are applicable for the components?

I have decided to use SDP to help me decide how I should model the components. This will
hopefully help me in identifying participants, collaborations between the participants, and the
consequences of implementing them.

Section 2.3 explained in detail the SDPs I think are appropriate for the framework. But
these patterns were originally developed for class-oriented programming languages (e.g. C++,
which was used to write the sample code used in Design Patterns). Is it appropriate to apply
these patterns to a class-less programming language like JS? And if not fully compatible, are
there ways to “tweak” the premises, so that we may use the amassed knowledge of patterns to
our advantage?

3.4 Which features in JS are of use for the framework?

What are the challenges the framework will have to deal with when implementing the required
components? And how does JS align with these problems? I have described JS in section 2.2
and featured some of the functionality that are relevant for my framework.

Serializations will most likely need to be loaded asynchronously. This is handled by the
asynchronous loading capacities described in section 2.2.5. I also need certain functions to be
called in correct order in response to the asynchronous functionality. By making use of the
functional features of JS (section 2.2.1.3), in combination with the promise pattern (section
2.2.6.1), I believe this to be achievable.

3.5 How should the API be designed?

Although SDPs gives a lot of hints as how to design the components, most of the signature of
the objects are still up to grab. What are the possibilities we have within the restrains of SW and
JS. What is the most effective API to expose to JS-developers that wish to harness the structural
data in SW?

3.5. HOW SHOULD THE API BE DESIGNED? 51

How big should it be? How much of the API should be public, i.e. how granular should the
functions be? Should it be modularized, or just offer one monolithic API?

These are questions I hope to offer an answer to in my implementation of an actual, working
framework.

Part II

Implementation

53

Chapter 4

Tools

This chapter will describe the software and services I have used in this thesis.

4.1 Buster.JS (Buster)

Buster is a “JavaScript test framework for node and browsers” [36]. It has been in beta for a
couple of years, and shows promising results. The lead developers hope to have it ready by the
end of this summer.

Some important features of Buster are:

• Supports tests for Node and browsers: You can use the same test cases for both envi-
ronments, but also create dependencies by the use of feature detection.

• Test utilities: Assertions, refutations, stubs and spies, expectations, events, properties,
and supporting utilities and objects; There are a lot of possible ways to test your code.

• Flexibility: There is a lot of public APIs, which can be used to write specific code as
needed.

• Extensibility: There are already several extensions available, such as buster-amd and
buster-lint.

• Asynchronous testing: Buster can test resources that only are available in asynchronous
functions.

• Structuring: Nested test cases, setup, and teardown helps you structure and reuse code
easier.

• Deferred tests: Easy seclusion of tests that clutters your reports, e.g. while refactoring.

• Measuring time: It reports in milliseconds the duration of each test run.

Graphite has used Buster extensible throughout its development, and now sports 29 test
cases, with 430 tests, with a total of 1 413 assertions. It is all being run in about 8 seconds.

Buster is available at GitHub (GH)1, and is being led by August Lilleaas and Christian
Johansen.

1https://github.com/busterjs/buster

55

https://github.com/busterjs/buster

56 CHAPTER 4. TOOLS

4.1.1 Browsers

Throughout the testing with Buster I have used Chrome for Linux. The last run with Firefox
shows that 4 tests fail in Firefox. I have not tried testing on browsers on other platforms recently,
because:

1. Buster is not available for Windows yet (and I have not been able to access a Mac for
setting up my tests), and

2. Many of the tests require resources to be loaded with XHR, which makes using Busters
test-server to run tests on other computers somewhat hazy.

4.1.2 Node.js (Node)

Buster is dependent on Node, and as such has used it throughout the development. Node is
“a platform built on Chrome’s JavaScript runtime for easily building fast, scalable network
applications” [38].

Node supports a great list of features, amongst them:

• Modules: A simple module loading system.

• Networking utilities: Setting up servers (e.g. with HTTP, Hypertext Transfer Protocol
Secure (HTTPS) and net), creating sockets (e.g. with net and User Datagram Protocol
(UDP)), lookup Domain Name System (DNS), handling URLs and queries.

• File System utilities: File I/O are simplified with modules such as File System, path, and
os.

• Binary Data utilities: APIs for handling streams and buffers, easing the handling of
transmitting binary data on WWW.

• Much, much more.

Node is available at http://nodejs.org and latest versions at GH2. Originally created
by Ryan Dahl in 2009, it is now sponsored by Joyent, his employer, and enjoys contributions of
many, many developers.

4.2 RequireJS (Require)

Require is ”a JavaScript file and module loader“ [39]. It allows modularization of JS by de-
ploying functionality throughout several files, or modules. It ties it all together by supporting
technologies such as AMD (explained in section 2.2.8.3).

Below are some of the features of Require:

• Loading of modules through AMD for browsers, Rhino (an implementation of JS written
in Java3), and Node.

2https://github.com/joyent/node
3http://www.mozilla.org/rhino/

http://nodejs.org
https://github.com/joyent/node
http://www.mozilla.org/rhino/

4.3. GIT 57

• Code optimizing.

• Threading by utilizing Web Workers.

Graphite has used Require to include the vast list of modules as they are needed.

4.3 Git

Git is a free and open source Distributed Version Control System (DVCS), originally created by
Linus Torvalds as a response to existing Version Control Systems (VCSs) and Source Control
Managements (SCMs). It is fast, reliant, and relatively easy to use. It offers a variety of features,
such as (quoted from the documentation [37]):

• Setup, configuring, getting and creating projects.

• Branching and merging, sharing and updating.

• Inspect and compare code.

• Much, much more4.

Graphite has used Git to share its code base, making it available for all to use and contribute
to.

4.3.1 GitHub (GH)

GH is a service that lets you share and collaborate with developers5, be they friends or strangers.
It is a social network that uses Git as its technological foundation, making it easier to connect
with other developers. It supports features such as:

• User and organization-accounts.

• Free git-repositories (as long as they are open source).

• Secure transmissions.

• Utilities for presentation of text and code, such as pages, wikis, gists (usually to present
snippets of code), issues management, and graphs (visual presentations of data, such as
contributors, commit activity, etc).

Graphite has used GH as a central repository for its code base, which is available at https:
//github.com/megoth/graphitejs.

4For complete list, see the documentation at http://git-scm.com/docs
5https://github.com/about/

https://github.com/megoth/graphitejs
https://github.com/megoth/graphitejs
http://git-scm.com/docs
https://github.com/about/

58 CHAPTER 4. TOOLS

4.4 WebStorm (WS)

WS is a JS Integrated Development Environment (IDE) that is available for Windows, Mac OS,
and Linux. It offers a wide array of tools for developing with JS, such as:

• Refactoring.

• Structuring code consistently.

• Integration with GH, Node, and JsTestDriver (test framework for JS, developed by Google).

• Smart duplicated code detector.

• Much, much more6.

The development of Graphite has been done primarily in WS.
WS is being developed by JetBrains, is primarily licensed, but offers free licenses for ed-

ucational and open source purposes. It is available at http://www.jetbrains.com/
webstorm/.

6http://www.jetbrains.com/webstorm/features/index.html

http://www.jetbrains.com/webstorm/
http://www.jetbrains.com/webstorm/
http://www.jetbrains.com/webstorm/features/index.html

Chapter 5

Used Libraries

Don’t Repeat Yourself (DRY) is a well-known Three-Letter Acronym (TLA) amongst devel-
opers. Another similiar but not so known TLA is Don’t Repeat Others (DRO). In designing
Graphite I have tried sticking to these principles (amongst others), which have resulted in mak-
ing use of some third party libraries.

AMD introduced some restrictions to how I could modularize the components I wanted to
reuse, and as such there has been some rewriting across the board. The level of rewriting have
varied, but unless otherwise noted in the descriptions of the modules in chapter 6, it limits itself
to the necessary steps to make it compatible with the AMD pattern.

5.1 Branches

In order to make it clearer where the code in Graphite origins, I have divided all modules
into branches. The modules within the Graphite branch represent original code or compo-
nents which are modified in a degree that makes them differ significantly from their origi-
nal counterpart. The four other branches are rdfQuery (RDFQuery), rdfstore-js (RDFStore),
Underscore.JS (Underscore) and When, and table 5.1 shows the distribution. The code in the
modules listed under these four branches are similar to their original counterpart, and is there-
fore not considered to be part of my original contributions to Graphite. The branches are ex-
plained in the remaining sections of this chapter.

5.2 rdfQuery (RDFQuery)

RDFQuery describes itself as “an easy-to-use JavaScript library for RDF-related processing”
[42]. It depends on jQuery, and is distributed in three versions:

1. Core RDFQuery: Creates and queries triplestores.

2. RDFQuery with RDFa: Parses RDFa.

3. RDFQuery with rules: Enables reasoning with rules.

59

60 CHAPTER 5. USED LIBRARIES

Graphite RDFQuery RDFStore
API CURIE Abstract Query Tree
Graph Data-type B-Tree
Graphite RDF/XML Backend
JSON-LD Turtle Callbacks
Loader URI Engine
Proxy Lexicon
Query Underscore Query Filters
Query Parser Utils Query Plan
RDF RDF JS Interface
RDF JSON When SPARQL Full
RDF Loader Promise Tree Utils
RDF Parser
SPARQL
XHR

Table 5.1: Overview of branches and their modules.

RDFQuery has several contributors to its official project-page1, which is led by Jeni Ten-
nison, Rene Kapusta, and Haymo Meran. After a long time of development seemingly going
dead, it now has a repository on GH2, which seems to be led by Sebastian Germesin. The repos-
itory is a mirror of the original project, and all contribution to the GH-project are contributed
back to the official project-page.

5.3 rdfstore-js (RDFStore)

RDFStore describes itself as “a pure JavaScript implementation of a RDF graph store with
support for the SPARQL query and data manipulation language” [23]. It supports a range of
features:

• Works in browsers as well as server-side.

• Full support of SPARQL 1.0 and SPARQL Update Language, and partially SPARQL 1.1
(including partial support for property paths).

• Parsers for JSON-LD, Turtle, and N3.

• Implemented W3C RDF Interfaces API3.

• Have an experimental implementation of RDF graph evens API.

• Custom filter functions.

• Threaded API if WebWorkers are supported.

1http://code.google.com/p/rdfquery/
2https://github.com/alohaeditor/rdfQuery
3http://www.w3.org/TR/rdf-interfaces/

http://code.google.com/p/rdfquery/
https://github.com/alohaeditor/rdfQuery

5.4. Underscore.JS (Underscore) 61

• Persistent storage with HTML5 LocalStorage (for browsers) or MongoDB (for Node).

• Implementation of the SPARQL Protocol for RDF4 on the server-side.

RDFStore is available as a repository at GH5, and has a nice pace of development. Its author,
Antonio Garrote, also lists Christian Langanke as contributor.

5.4 Underscore.JS (Underscore)

Underscore is a ”utility-belt library for JavaScript [which] provides about 80 functions“ [41].
Although JS brings a lot to the table in terms of flexibility and a growing set of APIs (both client-
side and server-side), it still lacks somewhat when it comes to utility functions. Underscore is
a response to this, and provides handy functions that either functions as shivs (e.g. for older
browsers that do not support forEach yet) or new altogether. Underscore is available on
http://underscorejs.org/.

Further explanation of the usage of Underscore is in section 6.16.

5.5 when.js (When)

When is a ”lightweight CommonJS Promises/A and when() implementation“ [14]. It allows
usage of the Promises pattern (section 2.2.6.1), and also provides several other useful Promise-
related concepts. It is being developed by Brian Cavalier, and is available at GH6.

The module named Promise is an integration of When into Graphite, and further explanation
of the module is in section 6.8.

4http://www.w3.org/TR/rdf-sparql-protocol/
5https://github.com/antoniogarrote/rdfstore-js/
6https://github.com/cujojs/when

http://underscorejs.org/
http://www.w3.org/TR/rdf-sparql-protocol/
https://github.com/antoniogarrote/rdfstore-js/
https://github.com/cujojs/when

Chapter 6

The Graphite Framework

This chapter will list all the modules that have been implemented. They are listed alphabetically,
but some are nested within others. The first level of modules are named main modules, while
those nested within them are submodules. I have nested a module if its dependent only by a
certain group of modules, with the main module being dependent by other modules.

The names should reflect their purpose, and as such should give an intuitive hint of what
they can do. Apart from their names, all modules have a list of features that are presented in the
beginning of their section. The list contains the following attributes:

1. Branch: The branch in which they reside (explained in section 5.1).

2. Location: The address to which they are located in the src-folder.

3. Dependencies: Lists which modules, if any, that the module are dependent on.

4. Design Pattern: The design pattern(s) that have been used as a starting point for this
module, if any (not applicable for third party derived modules).

5. Test result: Most modules have tests written as part of their development, and their results
are listed here. A complete overview of the test results can be found in appendix B.

After the initial block detailing the attributes, a description explains the module in de-
tail. Considerations taken along the development will be noted, and variations/possibilities
explained.

Dependencies between the main modules have been visualized in figure 6.1. The dependen-
cies within each subdomain of modules are listed in their designated main module.

The source can be forked at https://github.com/megoth/graphitejs.

6.1 API
Branch Graphite
Location graphite/api.js

Dependencies Graph, Promise, Query, RDF, Utils
Design Pattern Bridge, Facade
Test result 10 tests, 11 assertions; Total average: 1 493, Average/assertion: 149

63

https://github.com/megoth/graphitejs
graphite/api.js

64 CHAPTER 6. THE GRAPHITE FRAMEWORK

API

CURIE

Datatype

Engine
Graph

Graphite

Loader

Promise

Query

Query Parser

RDF

RDF Loader
RDF Parser

Tree Utils

URI

Utils

Figure 6.1: Dependencies between the main modules of Graphite.

The API module tries to combine the most powerful modules of Graphite into one module,
for easier access to developers new to the framework. The idea is to lower the barrier by
combining several modules into one, and built upon their functionality to create new ways
of handling the data.

This module differs from the Graphite module in that it acts as a Facade-object for the
underlying modules, instead of a simple connection to them. Its signature mirrors in many
ways it underlying modules, but adds some methods of its own. In most of the cases though, the
mapping are one-to-one, which should make a transition from the API module to the Graph- or
Query module easy.

At the heart of the module are the properties g and q, which respectively are instantiations
of the Graph- and Query module. These core properties enables the user to cache data from the
SW, and query it. The query can be built piece by piece, until it are executed with the execute
method.

This module partakes in the Bridge pattern as the Implementor, where the Graphite module
works as the Abstraction. It is designed to be easily switched if a system architect wishes to
customize the API he wants to serve his team of developers.

6.2. CURIE 65

6.2 CURIE
Branch RDFQuery
Location rdfquery/curie.js

Dependencies URI, Utils
Design Pattern None
Test result 13 tests, 13 assertions; Total average: 60, Average/assertion: 5

The CURIE module handles functions regarding Compact URIs (CURIEs)1, which are quite
common when working with SW, as it eases the task of remembering IRIs, in turn helping to
reduce typing errors. The functions are split into creating IRIs from CURIEs or vice versa.

CURIE is not written with a SDP in mind, as it is taken from a third party library. It could
be argued it is a utilization the Builder pattern, but the strings it returns can hardly be called
complex objects.

6.3 Data-type

Branch RDFQuery
Location rdfquery/datatype.js

Dependencies URI
Design Pattern Strategy
Test result 12 tests, 22 assertions; Total average: 41, Average/assertion: 2

The Data-type module returns a simple function that returns an object representing a data-
type. It is used by the RDF module when handling literals. In addition to the callable function
there is also a static function valid available, that enables testing whether or not a given value
is valid according to a given data-type.

The module uses the Strategy pattern within itself (i.e. no collaboration with other modules).
This is done by giving the different data types each a representation with an object containing
the properties regex, strip, and value, and in some cases validate. The Context is in
this case either the constructor-function, or the static function valid.

6.4 Engine

Branch RDFStore
Location rdfstore/query-engine/query_engine.js

Dependencies Abstract Query Tree, Callbacks, Query Filters, Query Plan, RDF JS In-
terface, RDF Loader, Tree Utils, Utils

Design Pattern Builder, Facade
Test result 53 tests, 312 assertions; Total average: 739, Average/assertion: 2

The Engine module is a complex module that brings together several submodules, in effect
being an implementation of the Facade pattern. Its purpose is to execute queries, and does so by
iterations of compiling data, that results in either a formula (as specified in the RDF module), a

1http://www.w3.org/TR/curie/

rdfquery/curie.js
rdfquery/datatype.js
rdfstore/query-engine/query_engine.js
http://www.w3.org/TR/curie/

66 CHAPTER 6. THE GRAPHITE FRAMEWORK

list of objects with projected variables, or a boolean (depending on the query form, as explained
in section 2.1.6.1).

The Builder pattern can be used to understand this module, although it is somewhat hazy.
The engine participates as the Director, and RDF JS Interface, Query Filter, and Query Plan all
collaborate as Builders. The Product in this case is the result of a query, and it is here it becomes
clear that the implementation is not complete, as it is the engine itself that serves the means of
getting the Product.

Figure 6.2 shows the dependencies amongst the submodules of the Engine module. Some
of the main modules are also represented (i.e. Query Parser, RDF loader, Tree Utils, and Utils),
as they have been used by the submodules.

Abstract Query Tree

Callbacks

EngineQuery Filters

Query Parser

Query Plan

RDF JS Interface

Store Utils Tree Utils

Utils

Figure 6.2: Dependencies in the submodules of the Engine module

6.4.1 Abstract Query Tree

Branch RDFStore
Location rdfstore/query-engine/abstract_query_tree.js

Dependencies Query Parser, Tree Utils, Utils
Design Pattern None
Test result 18 tests, 90 assertions; Total average: 182, Average/assertion: 2

The Abstract Query Tree module is based on the draft of The SPARQL Algebra2, and does
not apply any SDPs as I can see. Again, the code align closely to the Builder pattern, and it
should not be to hard to refactor the module. Another pattern that could easily be applied is the
Strategy pattern. I will return to this point in the discussion (section 8.1.1.2).

2http://www.w3.org/2001/sw/DataAccess/rq23/rq24-algebra.html

rdfstore/query-engine/abstract_query_tree.js
http://www.w3.org/2001/sw/DataAccess/rq23/rq24-algebra.html

6.4. ENGINE 67

6.4.2 Callbacks

Branch RDFStore
Location rdfstore/query-engine/callbacks.js

Dependencies Abstract Query Tree, RDF JS Interface, Tree Utils
Design Pattern Builder
Test result 7 tests, 25 assertions; Total average: 101, Average/assertion: 4

The Callbacks module is a submodule of the Engine module, and handles the order in which
queries should be fired. The module participates in the Builder pattern in collaboration with the
RDF JS Interface module, where Callbacks works as the Director, and Interface works as the
Builder. It does it with a twist though, as explained in section 6.4.2.

It could also make use of the Observer pattern, which is discussed in section 2.3.8.

6.4.3 Query Filters

Branch RDFStore
Location rdfstore/query-engine/query_filters.js

Dependencies Tree Utils, Utils
Design Pattern Builder
Test result 15 tests, 29 assertions; Total average: 161, Average/assertion: 6

The Query Filters are utility functions for handling queries. It handles aggregation, function
calls, and other filter expressions as part of a SPARQL abstract tree. As such, the module acts
as a Builder for the engine, which acts as a Director, meaning that the module partakes in the
Builder pattern.

The module could also benefit from the use of the Strategy pattern, as many of the filter
expressions could be handled as interchangeable objects.

6.4.4 Query Plan

Branch RDFStore
Location rdfstore/query-engine/query_plan_sync_dpsize.js

Dependencies None
Design Pattern Builder
Test result 1 tests, 12 assertions; Total average: 12, Average/assertion: 1

The Query Plan module handles the different ways you can consolidate the different parts
of a SPARQL abstract tree. It takes part of the Builder pattern in collaboration with the Engine,
Query Filter, and RDF JS Interface, as previously explained.

An adoption of the Strategy pattern would probably clean up the structure, as well as the
Composite pattern.

rdfstore/query-engine/callbacks.js
rdfstore/query-engine/query_filters.js
rdfstore/query-engine/query_plan_sync_dpsize.js

68 CHAPTER 6. THE GRAPHITE FRAMEWORK

6.4.5 RDF JS Interface
Branch RDFStore
Location rdfstore/query-engine/rdf_js_interface.js

Dependencies None
Design Pattern Builder
Test result 5 tests, 20 assertions; Total average: 68, Average/assertion: 3

The RDF JS Interface module implements the API defined in the document RDF Interfaces3.
It outlines many common RDF terms and sports some functions to help creating them. In this
we see what resembles an implementation of the Builder pattern (as mentioned in the Engine
and Callbacks module).

6.5 Graph

Branch Graphite
Location graphite/graph.js

Dependencies Backend, Engine, Lexicon, Promise, RDF, Utils
Design Pattern Strategy
Test result 4 tests, 8 assertions; Total average: 954, Average/assertion: 119

The Graph module is the cornerstone of Graphite. It is the abstraction of quadstores, and
serves as an access point for all the data processed by the framework. Its signature is somewhat
small, but what it powers is the execution of SPARQL-queries. By calling its method execute
with a query (be it an instantiation of the module Query, or a plain String) you can add and
retrieve data.

To limit the scope of the thesis, I decided to only support a subset of the SPARQL Query
Language and SPARQL Update. The subset are:

• Query Forms: ASK, CONSTRUCT, INSERT, LOAD, and SELECT.

• Solution Sequences and Modifiers: ORDER BY.

• Aggregates: GROUP BY.

• Aggregate Algebra: Count, Sum, Avg, Min, and Max.

This means Graphite will only support adding data to the graph, not delete, clear, or update
it. Also, subqueries are not supported. This limitation was made to avoid some common prob-
lems when dealing with logics in quadstores, as well as limitation imposed by underlying third
party code.

The Strategy pattern has been implemented in order to handle the supported forms of
queries. It is handled internally, with the function execute fetching a concrete strategy from
a map of functions (e.g. executes["select"] contains the function that handles results
from SELECT queries).

3http://www.w3.org/TR/rdf-interfaces/

rdfstore/query-engine/rdf_js_interface.js
graphite/graph.js
http://www.w3.org/TR/rdf-interfaces/

6.5. GRAPH 69

An important feature of the Graph module is lazy loading, which secures that the order in
which we call resources are handled correctly. This works by making use of the Functional
Feature (section 2.2.1.3) combined with the Promise Pattern (section 2.2.6.1). Lazy loading as
a design pattern is discussed in section 8.2.2.

The Graphs’ and submodules’ dependencies are listed in figure 6.3 (Tree Utils are present
to show external dependencies).

Backend

Graph

Lexicon

Tree Utils

Figure 6.3: Dependencies in the submodules of the Graph module

6.5.1 Backend

Branch RDFStore
Location rdfstore/persistence/quad_backend.js

Dependencies Tree Utils
Design Pattern None
Test result 2 tests, 57 assertions; Total average: 22, Average/assertion: <1

The Backend module handles the storage of RDF-related data in one graph. It makes use of
no SDPs.

6.5.2 Lexicon

Branch RDFStore
Location rdfstore/persistence/lexicon.js

Dependencies None
Design Pattern None
Test result 2 tests, 9 assertions; Total average: 16, Average/assertion: 2

The Lexicon module handles all the graphs that are in play, and resolves terms across graphs.
It makes no use of SDPs.

rdfstore/persistence/quad_backend.js
rdfstore/persistence/lexicon.js

70 CHAPTER 6. THE GRAPHITE FRAMEWORK

6.6 Graphite

Branch Graphite
Location graphite.js

Dependencies API
Design Pattern Bridge
Test result 1 tests, 2 assertions; Total average: 6, Average/assertion: 3

The Graphite module is designed to be the main entry point for beginners. It sits at the
forefront of the framework (all other modules resides in the folders that are its siblings), and
is designed to be easily included into a larger context with an AMD-library. Developers can
include this module without knowing anything about it, and start going through tutorials, the
documentation, or just play around.

For now it merely returns the API module, but it can be easily extended. One way of doing
this is to include the Utils module, which gives the extend-method for objects. By instantiat-
ing the different modules whose interface you wish to make highlight, you can combine them
into one single object. This could be useful to a system architect who wishes to modify the
framework for his project, minimizing the amount of time his developers need to spend to learn
the framework. With his alteration he could simply present them with a modified API, that is
scissored to their use.

6.7 Loader
Branch Graphite
Location graphite/loader.js

Dependencies Proxy, Utils, XHR
Design Pattern Strategy
Test result 1 tests, 1 assertions; Total average: 12, Average/assertion: 12

The Loader module fetches resources, and does so depending on what functionality the
system supports. All dependent modules prefixed Loader participates in the Strategy Pattern as
a ConcreteStrategy.

The dependencies within the submodules of Loader is shown in figure 6.4.

Loader

Proxy

Utils

XHR

Figure 6.4: Dependencies in the submodules of the Loader module

graphite.js
graphite/loader.js

6.8. PROMISE 71

6.7.1 Proxy
Branch Graphite
Location graphite/loader/proxy.js

Dependencies Utils, XHR
Design Pattern Bridge, Proxy, Strategy
Test result 2 tests, 4 assertions; Total average: 33, Average/assertion: 8

The Proxy module is a participant in the Strategy Pattern as ConcreteStrategy. It was created
to bypass the Same Origin Policy (section 2.2.5.1) by using a proxy-server on the same domain.
It uses the XHR module to make this connection, and if successful, the service would return the
data the framework would otherwise be denied.

This does require a service to be set up on the server, which accepts the formatted query
which the Proxy sends. Basically it split the IRI to be loaded into separate parts (as explained
in section 2.1.4.2). As part of the framework, this service has been created as an application
driven by Node.

6.7.2 XHR
Branch Graphite
Location graphite/loader/xhr.js

Dependencies Utils
Design Pattern Bridge, Strategy
Test result 4 tests, 10 assertions; Total average: 68, Average/assertion: 7

The XHR module makes use of the XHR2-object available in most modern browsers. It
makes use of the Strategy Pattern by participating as a ConcreteStrategy to the Loader module.

6.8 Promise
Branch When
Location graphite/promise.js

Dependencies None
Design Pattern None
Test result Not available

The Promise module is an integration of the When library. It implements the Promise pattern
(section 2.2.6.1), which gives us additional tools to handle asynchronous calls.

6.9 Query

Branch Graphite
Location graphite/query.js

Dependencies Loader, Promise, Query Parser, Utils
Design Pattern Builder, Bridge
Test result 51 tests, 52 assertions; Total average: 474, Average/assertion: 9

graphite/loader/proxy.js
graphite/loader/xhr.js
graphite/promise.js
graphite/query.js

72 CHAPTER 6. THE GRAPHITE FRAMEWORK

The Query module builds a complex structure that aligns the SPARQL abstract tree, which is
used in the Engine module. It partakes in the Builder pattern by being the Director-participant,
whereas the Query Parser module (and its submodules) is the Builder-participant.

It also shares another collaboration with the Query Parser module, namely through the
Bridge pattern. It serves as an API that can be changed independently of the Query Parser.

6.10 Query Parser

Branch Graphite
Location graphite/queryparser.js

Dependencies SPARQL
Design Pattern Builder, Bridge, Strategy
Test result 2 tests, 4 assertions; Total average: 16, Average/assertion: 4

The Query Parser module is designed to be extensible, i.e. if there are other ways of seri-
alizing the abstraction of a SPARQL query, than it can be extended with this module (e.g. to
differ between SPARQL 1.0 and SPARQL 1.1).

The module is designed with the Builder pattern in mind, by participating as the Builder.
The Query module is Director, and decides in which order parts of the SPARQL abstract tree is
to be added. It further delegates this responsibility to the chosen strategy, e.g. the module that
participates as ConcreteStrategy (while the module itself participates as Context).

Figure 6.5 display the dependencies between the modules partaking in the works of the
Query Parser.

Query Parser

SPARQL

SPARQL Full

Figure 6.5: Dependencies in the submodules of the Query Parser module

graphite/queryparser.js

6.11. RDF 73

6.10.1 SPARQL
Branch Graphite
Location graphite/queryparser/sparql.js

Dependencies SPARQL Full
Design Pattern Builder, Strategy
Test result 36 tests, 56 assertions; Total average: 153, Average/assertion: 3

The SPARQL module sports an array of methods that allows building parts of the SPARQL
abstract tree. The tree has some constraints concerning how it can be structured, and the module
takes care of this.

The module partakes in the Strategy pattern as a concrete strategy. As of now it is the only
strategy available, which may make the use of the pattern unnecessary.

The module also participates as a Builder in the Builder pattern. This responsibility is
delegated from the Query Parser, which is also the same that acts as Context in the Strategy
pattern.

As the module does not support parsing of all the elements in the SPARQL abstract tree, it
also imports the use of SPARQL Full module.

6.10.2 SPARQL Full
Branch RDFStore
Location rdfstore/sparql-parser/sparql_parser.js

Dependencies None
Design Pattern Interpreter
Test result Not available

The SPARQL Full module is by far the biggest component in Graphite. It is generated
by PEG.js, which is a parser generator for JS4. That is also why it is much bigger and more
complex than it needs to be. But it does parse a complete SPARQL query, and as I have not
been able to create a complete one myself, I have implemented it as part of my framework.

The pattern resembles the Interpreter pattern, as there is a representation of the SPARQL
grammar, and I use the module to evaluate its representation into a structured tree of terms from
that grammar.

It works as a starting point for manipulating queries, by feeding it with a complete query,
and then modify its parts as necessary through the Query module.

6.11 RDF
Branch Graphite
Location graphite/rdf.js

Dependencies CURIE, RDF, URI, Utils
Design Pattern Composite, Strategy
Test result 8 tests, 22 assertions; Total average: 44, Average/assertion: 2

4http://pegjs.majda.cz/

graphite/queryparser/sparql.js
rdfstore/sparql-parser/sparql_parser.js
graphite/rdf.js
http://pegjs.majda.cz/

74 CHAPTER 6. THE GRAPHITE FRAMEWORK

The RDF module offers a wide arsenal of methods, and creates a common ground for pro-
ducing objects pertaining to terms in RDF. Many of the methods origins from the N3-parser
in RDFStore, but has been restructured to promote a consistent API. As such, the method
toNT is represented in all objects retrieved from RDF, and it presents the different terms in
N3-compliant syntax (e.g. IRI = <(IRI)>).

The module is used by all the parsers, and the Engine is dependent on the toQuads method
it appends on all its objects. The objects available through RDF are:

• BlankNode,

• Collection (e.g. a list),

• Empty (i.e. rdfs:nil),

• Formula (i.e. a set of statements),

• Literal,

• Statement, and

• Symbol (e.g. an IRI).

RDF makes use of the Strategy pattern, as all objects listed above have methods toNT and
toQuads, meaning there is no need to test for type or feature to know whether or not they can
be called.

RDF also makes use of the Composite pattern, as Collection and Formula will call on their
leafs when toNT and toQuads are called.

6.12 RDF Loader
Branch Graphite
Location graphite/rdfloader.js

Dependencies Loader, RDF Parser, Utils
Design Pattern Facade
Test result Not available

The RDF Loader module is a very simple module, and does in fact only consist of a single
function. The function takes an IRI that can be dereferenced as a graph, the name of that graph,
and a function to call when it is loaded. What it passes along is the graph that is been fetched,
ready for further processing.

The module acts as facade for the underlying modules that sports a much greater API, and
delivers a single, easy-to-use function.

graphite/rdfloader.js

6.13. RDF PARSER 75

6.13 RDF Parser
Branch Graphite
Location graphite/parser.js

Dependencies JSON-LD, RDF JSON, RDF/XML, Turtle, Utils
Design Pattern Strategy
Test result 5 tests, 12 assertions; Total average: 177, Average/assertion: 15

The RDF Parser module enables parsing RDF independent of its serialization. For now it
needs to be configured by the user to let it know which parser to use, but the goal is to make it
detect the serialization on its own.

The module has been designed with the Strategy pattern in mind. By treating all parsers as
different strategies to parse RDF, it enables adding and removal additional parsers quite easily
(e.g. if we want to be able to parse RDFa). All submodules participates as a ConcreteStrategy.

Another pattern that all submodules use is the Interpreter pattern. The RDF module defines
a unified grammar, which they make use of as they evaluate the different serializations.

Figure 6.6 show the dependencies within the RDF Parser modules (RDF, Loader, Promise,
URI, and Utils being included to show external dependencies).

RDF

JSON-LD

LoaderPromise

RDF JSON

RDF Parser

RDF/XML

Turtle URI

Utils

Figure 6.6: Dependencies in the submodules of the RDF Parser module

6.13.1 JSON-LD

Branch Graphite
Location graphite/parser/jsonld.js

Dependencies Loader, Promise, RDF, Utils
Design Pattern Interpreter, Strategy
Test result 22 tests, 63 assertions; Total average: 272, Average/assertion: 4

graphite/parser.js
graphite/parser/jsonld.js

76 CHAPTER 6. THE GRAPHITE FRAMEWORK

The JSON-LD module parses JSON-LD into RDF. It also makes use of the Loader and
Promise modules as it supports dereferencing URLs that are used in @context.

I decided to implement my own JSON-LD parser instead of reusing the one made available
by JSON-LD CG5. I wanted to get a good understanding of JSON-LD, and though creating my
own processor could be a good exercise for doing this. When it was complete, it worked well as
part of Graphite, it did the work needed, and as such I deemed it unnecessary to integrate even
more third party software into the framework.

But as the specification of JSON-LD continue to evolve, my parser will undoubtedly fall
behind, and not be able to parse every possible variation. At this point it would probably be
preferable to integrate a specialized library, perhaps using the Adapter pattern.

6.13.2 RDF JSON

Branch Graphite
Location graphite/parser/rdfjson.js

Dependencies RDF, Utils
Design Pattern Interpreter, Strategy
Test result 8 tests, 9 assertions; Total average: 802, Average/assertion: 89

The RDF JSON module parses RDF JSON.

6.13.3 RDF/XML
Branch RDFQuery
Location rdfquery/parser/rdfxml.js

Dependencies RDF, URI, Utils
Design Pattern Interpreter, Strategy
Test result 29 tests, 136 assertions; Total average: 1 861, Average/assertion: 14

The RDF/XML module is taken from the library RDFQuery, and supports about 60% of the
tests given in the official RDF/XML test suite6.

6.13.4 Turtle
Branch RDFQuery
Location rdfquery/parser/turtle.js

Dependencies RDF, URI
Design Pattern Interpreter, Strategy
Test result 4 tests, 31 assertions; Total average: 272, Average/assertion: 9

The Turtle module originates from RDFQuery, and supports all of the tests given by the
Turtle Test Suite7.

5https://github.com/digitalbazaar/jsonld.js
6http://www.w3.org/TR/rdf-testcases/
7http://www.w3.org/TeamSubmission/turtle/tests/

graphite/parser/rdfjson.js
rdfquery/parser/rdfxml.js
rdfquery/parser/turtle.js
https://github.com/digitalbazaar/jsonld.js
http://www.w3.org/TR/rdf-testcases/
http://www.w3.org/TeamSubmission/turtle/tests/

6.14. TREE UTILS 77

6.14 Tree Utils
Branch RDFStore
Location rdfstore/utils.js

Dependencies B-Tree
Design Pattern None
Test result 5 tests, 35 assertions; Total average: 38, Average/assertion: 1

The Tree Utils sports several handy functions used by many of the components originating
from RDFStore. It also contains an implementation of a B+ tree, which is used by the Engine.

6.14.1 B-Tree
Branch RDFStore
Location rdfstore/rdf-persistence/in_memory_b_tree.js

Dependencies None
Design Pattern None
Test result 4 tests, 152 assertions; Total average: 53, Average/assertion: <1

The B-Tree module is an implementation of a generic B-tree, more specifically an adaptation
of one made for C8. It does not make use of any SDPs.

The module could have been integrated into the Tree Utils module, as it is the only making
use of B-tree. But as the purpose of this module is so simple and clear, and it may be that I wish
to reuse its function, I have decided to let it stay as an independent module.

6.15 URI
Branch RDFQuery
Location rdfquery/uri.js

Dependencies Utils
Design Pattern None
Test result 74 tests, 99 assertions; Total average: 267, Average/assertion: 3

The URI module originates from the RDFQuery project, and handles many utility-functions
used when working with IRI. It applies no SDPs as I can see.

6.16 Utils
Branch Underscore
Location graphite/utils.js

Dependencies None
Design Pattern None
Test result 33 tests, 118 assertions; Total average: 142, Average/assertion: 1

8http://www.gossamer-threads.com/lists/linux/kernel/667935

rdfstore/utils.js
rdfstore/rdf-persistence/in_memory_b_tree.js
rdfquery/uri.js
graphite/utils.js
http://www.gossamer-threads.com/lists/linux/kernel/667935

78 CHAPTER 6. THE GRAPHITE FRAMEWORK

The Utils module is a collection of utility functions used throughout the framework. Almost
all of the functions originate from the Underscore project (section 5.4), and as such it does not
apply any SDPs.

When I started integrating code from Underscore to the Utils module (section 6.16), the
plan was to keep it at the minimum, only importing what I needed. But throughout the devel-
opment, more and more code got included (and tests accompanying them), until about 40 of
them had become a part of the module. They differ from the original code that they do not
implement themselves as shivs, meaning that the function Array.each is implemented as
Utils.each, which take a collection as the first parameter.

Chapter 7

The Demo

As part of the development of Graphite my supervisors wanted me to implement an application
that showed some of the capabilities of Graphite. I created a music application, that loaded
data in different serializations, and that enabled the user to browse this data by search and filter-
ing. It is available as part of the code base1, and on http://folk.uio.no/arnehass/
music/.

The demo exists in two versions. Version 1 is built by using the API-module, which works
like a facade-object, tying the two most important modules together, namely the Graph- and
Query-module. In version 2 the facade is discarded, and the application uses the modules
Graph, Query, and Loader directly.

7.1 Structure

The application’s data is structured using Turtle and JSON-LD. It uses several vocabularies, as
listed below:

• Dublin Core Metadata Initiative (dc: http://purl.org/dc/elements/1.1/),

• Friend of a Friend (foaf: http://xmlns.com/foaf/0.1/), and

• Music Ontology Specification (mo: http://purl.org/ontology/mo/).

In addition, I created my own vocabulary, specific to the demo, prefixed ma and localized as
http://example.org/music/v1#. The terms introduced were:

• ma:listensTo: a property stating the relation between a user and a track.

• ma:spotify: a property stating the URI a track has to its instance in Spotify, if any.

• ma:User: a class, used to state a given resource as a user of the application.

The application uses jQuery to manipulate the DOM, and the jQuery plug-in jQuery.template()
to handle the templates.

1https://github.com/megoth/graphitejs/tree/master/demo-music

79

http://folk.uio.no/arnehass/music/
http://folk.uio.no/arnehass/music/
http://purl.org/dc/elements/1.1/
http://xmlns.com/foaf/0.1/
http://purl.org/ontology/mo/
http://example.org/music/v1#
https://github.com/megoth/graphitejs/tree/master/demo-music

Part III

Discussion and Conclusion

81

Chapter 8

Discussion

Chapter 2 describes the pillars which I have built Graphite upon, namely SW (section 2.1, JS
(section 2.2), SDP (section 2.3), and TDD (section 2.4). What I have learned while designing
the framework can be categorized within the intersections of these pillars (as visualized in figure
8.1), and I have structured the discussion based on those intersections. Finally, at the end of the
discussion, I discuss related work.

JavaScript

Software Design Pattern

Semantic Web

Test-Driven Development

8.2

8.1
8.3

8.5

8.4

8.6

Figure 8.1: Intersections of the pillars of this thesis, as described in chapter 2. The number
given is the corresponding section.

8.1 Semantic Web and JavaScript

Graphite has been a great challenge to implement, many obstacles have been put down, only to
face even more. This section describes the challenges regarding the intersection of SW and JS.

8.1.1 Representation of Data

The greatest challenge when working with Graphite have been how to structure the data inter-
nally. It was not that I had difficulties representing graphs with tree-based structures, but the

83

84 CHAPTER 8. DISCUSSION

fact that different components had different requirements from the structures, making reusabil-
ity more difficult to achieve.

8.1.1.1 RDF

One problem that seemed to pop up again and again were the different representations of RDF.
As I included code from third party libraries, I got at least one representation per library. This is
not an unusual problem when using code from other projects, but care should be taken to create
a component that can be reused easily by other components.

The document RDF Interfaces addresses this problem by defining ”a set of standardized
interfaces for working with RDF data in a programming environment“ [33]. RDFStore actually
implements this standard (in the RDF JS Interface module), and the engine uses this as its
representation of RDF. As of now, Graphite uses one additional representation, situated in the
RDF module. The plan is to integrate this module with the aforementioned implementation of
RDF Interfaces.

So how should I implement the functionality concerning representations of terms in RDF?
I believe the Decorator pattern (section 2.3.5) is a fitting design for this problem. The reason-
ing goes that there is an implementation of RDF Interfaces acting as the ConcreteComponent,
defining a set of terms suitable when working with RDF. This terms can then be dynamically
altered by the ConcreteDecorators, that would be modules altering functionality to meet the
ones expected by processors.

8.1.1.2 SPARQL

Representing SPARQL has been easier to work with than RDF, as it has been handled by the
components that are all part of the RDFStore project. RDFStore makes use of the standards
defined by W3C, such as the SPARQL Algebra1. The grammar in the algebra maps mostly to
the grammar in the SPARQL 1.1 Query Language, and each grammar token is easily represented
in JS. This led to the following components:

1. The Query module: A bridge to the Query parser, so that we could change/alter the
behavior of the Query module independently of the Query Parser.

2. The Query Parser module: A simple implementation of the Strategy pattern, allowing me
to insert other parsers if needed. As of this writing, it only makes use of the SPARQL
parser, but another possibility is to parse jSPARQL, a serialization introduced by the
backplanejs (Backplane) project (section 8.7.1).

3. The SPARQL module: A SPARQL parser with a set of public functions that may parse
parts of a query. As I did not have time to create a complete parser, I made use of the
parser from RDFStore, which is used when there is need to parse a complete query.

This meant that implementing the Query module would simply mean reuse the various rep-
resentations of tokens, and inserting them wherever appropriate. However, this endeavor proved

1http://www.w3.org/2001/sw/DataAccess/rq23/rq24-algebra.html

http://www.w3.org/2001/sw/DataAccess/rq23/rq24-algebra.html

8.1. Semantic Web AND JavaScript 85

harder than anticipated, when I discovered that the SPARQL parser produced two distinct struc-
tures of patterns.

This forced me to implement logic that tested which of the trees were used as base for
the query, and implement different behavior accordingly. This differences probably also has an
effect on the engine (as it support both kinds), and I believe the completion of a SPARQL parser
independent of the one from RDFStore will allow easier creation of reusable components.

8.1.2 Modularity

A feature I surprisingly spent a lot of time on was modularity. One issue was that I needed to
support flexibility, since I wanted to return the modules as either:

• A map of functions (i.e. an object without any intrinsic data),

• An instantiated object (i.e. an object with intrinsic data), or

• A function (be it a constructor or not).

In the process I identified five patterns of modular JavaScript patterns, which are explained
in section 2.2.8. I decided to go for the AMD pattern, as this was the first pattern supported
by the test framework, Buster. This was in spite the fact that neither RDFStore nor RDFQuery
used this pattern (they use CommonJS Modules and namespaces respectively). That being said,
it was not very hard to convert either.

This has led to some consequences though, that I want to highlight here. The first is that
the sheer number of modules are not necessarily a good match with asynchronous loading.
When I have tested the demo (chapter 7), loading modules takes about one second. This can be
remedied, as Require (amongst others) features a code optimizer. In addition to minifying the
code (removing whitespace, shortening names, etc) it also throws all modules into one file (by
using it on Graphite it turn about 1.8 MB into approximately 350 kB). The optimizer is not to
happy about the uses of regular expressions though, and as of yet I cannot use the optimized
code. So I do not know how the framework would have fared if being optimized.

A complication of choosing AMD as the module pattern is that most server-side runtime
environments do not support it out of the box. This was considered when I chose to go with
AMD, as I focused on creating a framework for the web first and foremost. Luckily, there are
tools that enable us to run AMD based modules on server-side (e.g. Require has a module for
Node2). But that does add complexity and increases the overhead of the framework.

8.1.3 The Engine

The Engine module is probably the most powerful module of all the modules implemented in
Graphite, and it is one of the cornerstones of the framework. It is also the most complex and
difficult to understand module, and requires further work.

In addition, how it works should be more transparent. I believe one way of doing this to
use proven design patterns. I have already mentioned its shaky implementation of the Builder

2http://requirejs.org/docs/node.html

http://requirejs.org/docs/node.html

86 CHAPTER 8. DISCUSSION

pattern, and how it acts a facade (i.e. using the Facade pattern). But this is probably not
a conscious choice, but rather a result of me trying to understand the inner working. I also
identified parts of an Observer-pattern, which could be leveraged further.

8.1.3.1 Entailment

Graphite does not support inferring data in any way. When querying, the engine merely looks
for patterns, and does no attempt of backward of forward reasoning. I believe that this could
be made possible through a plug-in system for the engine. The developer could configure the
engine with a specific entailment regime (falling back to simple or no entailment by default),
in essence using the Strategy pattern (or maybe the Decorator pattern). This requires a more
rigid structure of the engine, i.e. a standard set of functions that plug-in developers could use as
hooks.

I believe this task might be too tedious for a web-based application, but could be useful if
one were to port the framework to the server-side (further discussed in section 8.1.5), making
applications such as SPARQL end-points more powerful.

8.1.3.2 External Service

As of now Graphite only supports working with an internal engine. In case developers want to
make use of external processing power, such as to make use of federated queries in SPARQL,
a module should be interchangeable with the engine, and as such they should offer the same
interface.

8.1.4 Asynchronous Functionality

One important feature I have made use of is the possibility to load resources asynchronously.
I have also made it so that the sequence in which queries are inserted are ordered, so querying
INSERT DATA before SELECT will ensure that the data is loaded into the graph before the
results for the SELECT query are prepared.

In the progress of ensuring this I have been somewhat over-zealous, as I ended up not dif-
fering between multiple use of LOAD queries. This means that loading data using the LOAD
query will result in a halt in asynchronous loading, i.e. it will in effect be synchronous (waiting
for one resource to have been loaded and processed before starting the other). This should be
differentiated, so that the framework can load and deserialize representations so that the data is
ready for processing when the engine is available.

Another take on this is to make use of the Observer pattern, and implement the result from
SPARQL queries as objects that can be notified when there are changes to the dataset. To
give an idea of how this might worked, we can see how the framework AngularJS handles
data-binding3. They alleviate the need for DOM manipulation on web pages by maintaining
a connection between the data presented and the model they are based on. Whenever there is
change in the model, that will be reflected in the view. This effect could be useful when working
with RDF as well, and would probably be appreciated by developers.

3This pattern are also available at other frameworks, such as Backbone (http://backbonejs.org/)

http://backbonejs.org/

8.1. Semantic Web AND JavaScript 87

8.1.4.1 XDomainRequest (XDR)

As a warning, I have included this bit on using the XDR object that is available in some of
Internet Explorer (IE) browsers. It was designed to handle data-transfer across domains, to
overcome SOP (section 2.2.5.1). This is a design it shares with XHR2, but they differ in some
important ways.

Most importantly, the developer is not allowed to customize the header sent, i.e. he cannot
specify in which format he wishes the data to be replied. Also, GET and POST are the only
allowed verbs, and no authentication or cookies are allowed to be sent, meaning modifying
through a SPARQL end-point is very difficult. There are other caveats of using XDR4, but
these should be enough to get the message: Stay clear of using XDR to request cross-domain
resources.

8.1.5 Server-side implementation

I have restrained myself to limit Graphite to support browser environment first and foremost.
But I have not let the prospect of supporting server-side environment go completely. By us-
ing feature detection we can test which implementation to use (i.e. we have implemented the
modules in question using the Strategy pattern), reusing a lot of the code.

The reason I think a server-side implementation should not be thrown off the table is that
I think some functionality are best handled server-side, given challenges such as security, re-
source allocation, data storage, and many more. I believe that supporting both environments
would increase the usefulness of the library, as developers would not need to use two different
frameworks in case they want to implement an application on both client-side and server-side.

8.1.6 Marketing of SW in JS communities

I have mentioned briefly (in section 2.1.5.6) that JSON-LD CG is skeptical to promote JSON-
LD as a serialization of RDF, and by extension promoting as part of the SW standards. This is
a legitimate skepticism, as SW has its fair share of skeptics.

One skeptic is Luciano Floridi, who in his publication ”Web 2.0 vs. the Semantic Web: A
Philosophical Assessment“ writes ”Regarding the Semantic Web, I argue that it is a clear and
well-defined project, which, despite some authoritative views to the contrary, is not a promising
reality and will probably fail in the same way AI has failed in the past“ [20].

Mike Bergman has another view, making the observation that ”the structured Web [...] is
a transition phase from the initial document-centric Web to the eventual semantic Web“ [4].
He uses the term Structured Web, which I find interesting. I view it as a subpart of what SW
is, but much more neutral and applicable in terms of attracting interest from both SW and JS
communities.

I tend to agree with JSON-LD CG that SW might be a bit to much to heave upon newcomers.
And especially if newcomers come from the JS community, they might not be interested in all
the baggage SW offers. They want something that allows them to plug into the increasingly
richness of data on WWW. But is also needs to be easy to use, and promote good practices.

4A good list is available at http://blogs.msdn.com/b/ieinternals/archive/2010/05/13/
xdomainrequest-restrictions-limitations-and-workarounds.aspx.

http://blogs.msdn.com/b/ieinternals/archive/2010/05/13/xdomainrequest-restrictions-limitations-and-workarounds.aspx
http://blogs.msdn.com/b/ieinternals/archive/2010/05/13/xdomainrequest-restrictions-limitations-and-workarounds.aspx

88 CHAPTER 8. DISCUSSION

SW has a lot going on it for the latter part (being part of W3C, having a good process of
standardizing), but still have much to desire on the former.

Now, this thesis is not a philosophical study, nor have I any data in social research of JS
communities to make any claim of what is the ”best way™“ to go. I simply offer my thought
that SW as a whole might be a bit too much for newcomers that are used to working with JS. I
believe that emphasis should be put on what your work do, what problems it solves, and maybe
tone down the promises SW offers to solve. Keep it simple and pragmatic. That, at least, is my
two cents.

8.2 JavaScript and Software Design Pattern

Applying SDPs in JS can be problematic because of the trivial fact that most design patterns are
not designed with JS in mind. And this is the way it should be, as truly good, reusable SDPs can
be used independently of any programming language. But one feature that many SDPs assume
is contracts, i.e. interfaces. JS does not support this, and the closest emulations are objects that
tests the presence of properties.

The absence of interfaces leaves us with a choice: do we want to use emulations or drop
them altogether. In this thesis I have chosen to go with the latter, as I already test for a modules’
properties with unit tests. The fact that I have implemented this framework on my own is also a
factor, as there have been no need for a contracted API in order to collaborate easier with other
developers. That is a factor that could change though, and preparations should be made.

I believe that documentation is a viable alternative for communicating a contracted API.
Documentation could be spread across multiple documents, depending on the flexibility and
social functions needed (e.g. a comment field, to invite others to pitch their ideas). But the
continuing life of Graphite is outside the scope of this thesis, and I will not dwell on it further
in this text.

8.2.1 Third party libraries

Third party libraries are mentioned in this context as it has been a recurring theme that none of
the code I have implemented from third party libraries have been structured with SDPs in mind
(or so it seems). Although I am not qualified to offer any in-depth analyzes of why this is the
case, I do have some hypotheses that may be of interest.

One reason is the simple fact that design patterns do not seem to be very popular in JS.
Reasons for this are entirely speculations on my part, but I believe design patterns are rooted
in communities that have not opened their eyes for JS yet. I think this will change though, as
JS becomes more popular in the professional communities, especially those that have a degree
in Computer Science (CS) (i.e. I believe that people having a degree in CS in general are more
attuned to the abstract level of solution described by SDPs).

As with many of the topics discussed in this thesis, I also believe SDPs have a case of the
egg and the chicken in JS. It is not that popular because there are no great examples of it, and
no great examples of it are being developed because it is not popular.

Another reason is the fact that many libraries are very small, and very specific to certain
tasks. Especially in the Node community there seems to be a widespread philosophy to keep

8.2. JavaScript AND Software Design Pattern 89

it simple. In those libraries, there are probably no need for SDP. But in order to alleviate the
functions of those libraries, SDP can be a helpful guide in how to structure their collaboration
(I hope that Graphite can be a good example of this).

8.2.1.1 Absence of the Adapter pattern

I decided to go head on with the third party code implemented in Graphite, i.e. port the whole
code instead of creating modules applying the Adapter pattern. The reasons for this was mani-
folded:

1. Full control of I/O: When implementing the RDF/XML and Turtle parser from RDFQuery,
they did not output the data in a way I could easily insert it into the engine.

2. Fewer modules: Applying the Adapter pattern would mean implementing an intermediary
module, and increase the number of modules. As discussed in section 8.1.2, this may
increase the time it takes to load the framework into the application.

3. Little to no documentation: Both RDFQuery and RDFStore have bad documentation, i.e.
either difficult to read and understand or simple missing at all. As such, it felt better to
dive into the code, and learn the functionality by porting tests and iteratively adjust it.

8.2.2 Additional SDPs

During the development of Graphite I have stumbled across SDPs beside the ones given in the
book Design Patterns. I have restricted myself to referring to this book only, but will mention
some of the patterns here, as they have interesting qualities.

Lazy Loading is described by Martin Fowler et.al. as a pattern that ”interrupts [the] loading
process for a moment, leaving a marker in the object structure so that if the data is needed it can
be loaded only when it is used“ [21]. It may be implemented as lazy initialization, virtual proxy
(used by the Proxy pattern), value holder, and ghost.

Lazy initialization has in fact been used in Graphite, in the Graphite module to be exact. As
it handles the manipulation offered by the Query module, it can be described as lazy initializa-
tion, first triggered when the method execute is called.

Addy Osmani structures two additional patterns for JS (besides the ones he has adopted from
Design Patterns), namely the Constructor pattern and the Module pattern [29]. I have made use
of the AMD implementation, which is described as one of multiple implementations available
of the latter. But when it comes to the former, I have trouble calling it a design pattern, as they
simple describe the different ways to initialize objects in JS. A useful educational pattern for
newcomers to JS, but not really helpful when describing the collaboration between multiple
components.

8.2.3 Architectural Styles

Roy Fielding has in his dissertation5 a ”survey of common architectural styles for network-based
application software within a classification framework that evaluates each style according to the

5Freely available at http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm.

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

90 CHAPTER 8. DISCUSSION

architectural properties it would induce if applied to an architecture for a prototypical network-
based hypermedia system“ [18]. He has evaluated these styles with into 13 properties (Network
Performance, User-perceived Performance, Network Efficiency, Scalability, Simplicity, Evolv-
ability, Extensibility, Customizability, Configurability, Reusability, Visibility, Portability, and
Reliability) and describes five categories of style (Data-flow, Replication, Hierarchical, Mobile
Code, and Peer-to-Peer).

Graphite is network-based, and it could have been interesting to see if any of the styles de-
scribed by Fielding could have helped communicating the purpose and work of the components.
But analyzing them in the context of Fielding’s work is outside the scope of this thesis, and I
have included this discussion to highlight alternatives to describe the functionalities of the API.

8.2.4 Representational State Transfer (REST)

The scope of this thesis being mentioned, a style described by Fielding that is interesting to take
an extra look upon is REST. The reason for this is that REST is becoming increasingly popular,
also within the JS community6. There is also work done on REST with RDF7.

It could be interesting to either extend or use Graphite as part of an application that imple-
ments REST. This could become a platform for automating interaction with data structured in
RDF, and leverage is usability to something more than a framework.

8.3 JavaScript and Test-Driven Development

Buster has been a delight to work with, and been a valuable asset to the development of
Graphite. I will recommend all to use TDD as a tool to produce good and solid code, and
Buster is a good alternative to use. If the syntax is not your cup of tea, there are other viable
options, such as JsTestDriver (backed by Google8) and Jasmine (behavior-driven9).

The definitive gain in using TDD when writing your code is the ease you profit when refac-
toring code. developing Graphite has involved several rewrites, and failing tests have shown
the way to patch things up when something goes wrong. This will also help other developers,
if any should join in to collaborate, as they can test that their additions/revisions will not break
existing functionality.

There is also the possibility to use test for code coverage (a value that describe to which
degree the source code has been tested), with tools such JSCoverage10. There is a project to run
code coverage in Buster (buster-coverage11), but I have not been able to apply it.

6There are several successful frameworks implementing a RESTful architecture, such as AngularJS (http:
//angularjs.org/), Ext JS (http://docs.sencha.com/ext-js/4-1/#!/api/Ext.data.
proxy.Rest), and qooxdoo (http://manual.qooxdoo.org/current/pages/communication/
rest.html).

7My own supervisor, Kjetil Kjernsmo, has contributed to this with his paper ”The necessity of hypermedia RDF
and an approach to achieve it“ (available at http://folk.uio.no/kjekje/2012/hypermedia-rdf.
pdf).

8http://code.google.com/p/js-test-driver/
9http://pivotal.github.com/jasmine/

10http://siliconforks.com/jscoverage/
11http://gitorious.org/buster-coverage

http://angularjs.org/
http://angularjs.org/
http://docs.sencha.com/ext-js/4-1/#!/api/Ext.data.proxy.Rest
http://docs.sencha.com/ext-js/4-1/#!/api/Ext.data.proxy.Rest
http://manual.qooxdoo.org/current/pages/communication/rest.html
http://manual.qooxdoo.org/current/pages/communication/rest.html
http://folk.uio.no/kjekje/2012/hypermedia-rdf.pdf
http://folk.uio.no/kjekje/2012/hypermedia-rdf.pdf
http://code.google.com/p/js-test-driver/
http://pivotal.github.com/jasmine/
http://siliconforks.com/jscoverage/
http://gitorious.org/buster-coverage

8.4. Software Design Pattern AND Test-Driven Development 91

8.4 Software Design Pattern and Test-Driven Development

As already mentioned in section 8.2, applying SDPs in JS projects may prove difficult since JS
do not offer contracts to objects. Use of TDD may remedy this fact, as we can test for properties.
One way of implementing this is shown in listing 8.1.

Listing 8.1: Testing for properties in JS

1 f u n c t i o n t e s t P r o p e r t i e s (obj , p r o p e r t i e s) {
2 var prop ;
3 f o r (prop in p r o p e r t i e s) {
4 i f (! o b j . hasOwnProper ty (prop)) throw new E r r o r ("Haven’t implemented

property " + prop) ;
5 }
6 }
7 // using the Buster framework
8 b u s t e r . t e s t C a s e ("Testing contract" , {
9 "A test that passes" : f u n c t i o n () {

10 var myObj = { propA : 42 } ;
11 r e f u t e . e x c e p t i o n (f u n c t i o n () {
12 t e s t P r o p e r t i e s (myObj , ["propA"]) ;
13 }) ;
14 } ,
15 "A test that fails" : f u n c t i o n () {
16 var myObj = { } ;
17 r e f u t e . e x c e p t i o n (f u n c t i o n () {
18 t e s t P r o p e r t i e s (myObj , ["propA"]) ;
19 }) ;
20 }
21 }) ;

The example could be further elaborated, e.g. by automatically check modules that partici-
pates as ConcreteStrategy in the Strategy pattern.

8.5 Semantic Web and Software Design Pattern

Some parts of SW may not gain much by involving SDPs, but I believe they can be effectively
used by implementors that wish to create reusable components. The specifications do not say
to much of how to implement the collaboration across the standard they propose, and it is this
gap that SDP may be used as social contracts.

8.6 Semantic Web and Test-Driven Development

Many of the specifications that take part of SW contains test suites, and TDD is perfectly suited
to test the development of implementations trying to support these. In many cases it can help
identifying problems within implementations, becoming a common, objective ground for de-
velopers to discuss solutions.

92 CHAPTER 8. DISCUSSION

8.7 Related Work

During my work on this thesis, I have yet to find academic work that tread the same path
as I have outlined. But I have found several libraries that tries to solve the same problem
Graphite has undertaken, and that may offer interesting features. Two of them, RDFQuery and
RDFStore, as I have mentioned several times throughout this thesis, have offered me several
reusable components. In this section I will elaborate on their success, independent of their
implementation in Graphite.

I have also listed additional libraries of interest, and all in all there are 12 of them. For a
complete list of projects I researched in search of related work, see appendix C.

8.7.1 Backplane

Backplane ”provides a range of open source components [...] that work together to deliver a
fresh approach to web application building“ [10]. The owner of this project is Mark Birbeck,
who also is the author of the Ubiquity RDFa parser project12, which has been absorbed into
Backplane as the RDFa module13.

The project introduces jSPARQL, which sets out to be ”an object-based serialization of
SPARQL queries“ [11]. Although jSPARQL seems to have some interesting properties, I have
not had the time to analyze it thoroughly to see its compatibility with full SPARQL. If it is a
match, it could be interesting to evolve it further, and make it a part of Graphite.

Backplane is an interesting project in and of itself, but does not seem to have an active
development anymore. The last commit was 27th of February 2011, and seems to mark the end
of almost one and a half year of development.

8.7.2 Javascript RDF/Turtle Parser

The JavaScript RDF/Turtle Parser is one of many RDF related projects/experiments that Masahide
Kanzaki have developed14. It parses Turtle into JSON, is quite compact (547 lines), and may do
the job good enough. It has some issues, but should be easy to fix if one would like to take this
approach.

8.7.3 JS3

JS3 was first committed 19th of November, 2010 and last updated three days later. It describes
itself as ”An insane integration of RDF in ECMAScript-262 V5“ [32]. It sports an API for ma-
nipulating RDF values and to some extent graphs. But it has no parsing, reasoning or querying
capacities.

12https://code.google.com/p/ubiquity-rdfa/
13http://code.google.com/p/backplanejs/wiki/RdfaModule
14http://www.kanzaki.com/works/

https://code.google.com/p/ubiquity-rdfa/
http://code.google.com/p/backplanejs/wiki/RdfaModule
http://www.kanzaki.com/works/

8.7. RELATED WORK 93

8.7.4 jsonld.js

JSON-LD CG has developed, as part of the work on JSON-LD, several implementations of
JSON-LD processors. One of these is jsonld.js, which is available on GH15. Chances are that
this processor will feature good code that could be reused in other JS projects.

8.7.5 Jstle

Jstle was first committed 21st of April 2010, and last updated three days later. It describes
itself as ”Jstle is a terse JavaScript RDF serialization language“ [28]. It is a proof of concept,
and seems to provide a Turtle-like representation of RDF in JS. But no support for parsing,
reasoning or querying.

8.7.6 rdflib.js (RDFLib)

RDFLib seems to be more of a collection of RDF related functionality at the moment than a
complete framework for working with RDF with JS. In some cases it also seems like a contin-
uation of RDFQuery, as much of its code resembles a lot (e.g. the use of $rdf as namespace, its
dependency on jQuery, and that its structured as a namespace at all). At the moment it features
(quoted from the projects webpage [30]):

• Parses RDF/XML, Turtle, N3, and RDFa.

• Serializes RDF/XML, Turtle, and N3.

• Partial SPARQL support.

• Read/Write Linked Data client, using Web Distributed Authoring and Versioning (WebDav)
or SPARQL Update.

• Local API for querying store.

• Can be run server-side with Node.

As mentioned, RDFLib uses namespaces to structure its code, and this makes it somewhat
hard to decouple, not to say reuse. But it does seem to have an active development, and having
Tim Berners-Lee contributing is not hurting. Also, although I have not found any source that
confirms it, I suspect RDFLib to be a continuation of the Tabulator project. Read more in section
8.7.12.

RDFLib is available at GH16.

15https://github.com/digitalbazaar/jsonld.js
16https://github.com/linkeddata/rdflib.js

https://github.com/digitalbazaar/jsonld.js
https://github.com/linkeddata/rdflib.js

94 CHAPTER 8. DISCUSSION

8.7.7 RDFStore

RDFStore seems to me to be the most complete project in terms of API and expressive power. It
features partial SPARQL support, some parsers, and it uses some standards (full list of features
can be read at section 5.3).

The project has some following17, but is mostly a one-man project (Antonio Garrote). This
may contribute to the fact that the project has a complete API, and has a overall good architec-
ture. It has a steady development since the first commit was made in 17th of February 2011,
and nothing implies this to change anytime soon.

The module pattern implemented is CJS modules (section 8.1.2), which makes it a perfect
fit for Node, but may also be run in browsers. The project do contain quite messy code at times,
which is quite clear in the tests. Also, I suspect the coverage is quite low, as some modules do
not have tests at all.

RDFStore is, as it declare in its description, ”still at the beginning of its development“ [23],
but I believe this project to have a lot of potential.

8.7.8 RDFQuery

RDFQuery do seem to suffer from inactive development. It has two code bases, one at Google
Code18 and one at GitHub19 (the latter mirrors the former, and promises to commit its changes
to the original code base). The last change to Google Code was 3rd of September 2011, while
the last to GitHub was 21st of June 2011. So it seems that the development has gone somewhat
stale.

RDFQuery do seem to be mentioned more often than RDFStore, which may be because the
fact that its older (the first commit was 17th of October 2008), and may have been the first JS
based project that actually got implemented a big code base. That is at least what seems to be
the case during my research into this.

The module pattern implemented is namespaces, which makes it somewhat hard to decou-
ple. It also is dependent on jQuery, i.e. increasing the code overhead, which may be of distaste
for some developers.

Although RDFQuery do not have an active development any longer, it still has a lot of good
code, and some of it is very reusable (as proven in Graphite). And it will probably be useful as
a reference for other projects, but it does not seem to have any traction of its own anymore.

8.7.9 Sgvizler

Sgvizler20 is a library in JS ”which renders the result of SPARQL SELECT queries into charts or
HTML elements“ [35]. It is a cool display of how data fetched with SPARQL can be presented
on web pages. During the development of Graphite, I wanted to include a demo that made use
of Sgvizler, but in the end I did not have time for it.

17At the time of this writing, it had been forked 12 times, and had 126 watchers.
18http://code.google.com/p/rdfquery/
19https://github.com/alohaeditor/rdfQuery
20Available at http://code.google.com/p/sgvizler/.

http://code.google.com/p/rdfquery/
https://github.com/alohaeditor/rdfQuery
http://code.google.com/p/sgvizler/

8.7. RELATED WORK 95

It is important to note that Sgvizler is not a framework for handling data structured with
RDF, but rather a presentation tool. Its scope may be narrow, but it does what it does good.

8.7.10 Simple JavaScript RDF parser and query thingy

The development of the Simple JavaScript RDF parser and query thingy seems to be around 5th
of November 2005. Its latest version came out 25th of May 2006, and it does not seem to have
any big usage. It supports loading and parsing of RDF/XML-documents, and a crude API for
querying.

8.7.11 SPARQL JavaScript Library

The SPARQL JavaScript Library is presented as part of a demonstration of a SPARQL cal-
endar21. It offers some simple handling of SPARQL, which ultimately can be used against a
SPARQL endpoint. The code is fairly simple (490 Source lines of code (SLOC)), have some
dependencies, but should be easy to integrate into your own project.

8.7.12 Tabulator

The Tabulator project is a ”generic data browser and editor“ [40]. It is offered in two ways, as
a Firefox extension and as a web application. It does not seem to be developed any further, but
its code base (whole 120 files of JS) offers a lot of functionality, and it seems that some of it is
continued in RDFLib (such as the files jquery.uri.js and jquery.xmlns.js). Tim Berners-Lee was
also involved in the Tabulator project, so this may not come as a big surprise.

21http://www.thefigtrees.net/lee/blog/2006/04/sparql_calendar_demo_a_
sparql.html

http://www.thefigtrees.net/lee/blog/2006/04/sparql_calendar_demo_a_sparql.html
http://www.thefigtrees.net/lee/blog/2006/04/sparql_calendar_demo_a_sparql.html

Chapter 9

Conclusion

As part of this thesis I implemented Graphite, a framework that offers an API in JS for accessing
SW. I used parts of other projects and sewed it all together to one, functional prototype. It is
not complete, further work is required, but it stands as an example of how a framework could
look and behave.

Creating a framework offers many challenges. How should the code be structured? If you
wish to modularize your functionality, how should you divide it? Is the increased overhead of
modularity justifiable? What are the appropriate ways to make your components collaborate?
All these questions, and more, have found their answers in Graphite.

Graphite is an example of how a framework could look like. This time I emphasize could,
because this is merely one of many possible implementations that can be made. Implemen-
tations that have other answers to the challenges they faced. And this fact reveals one of the
conclusions this thesis offers: Components should be created with reusability in mind. This is
definitely the case with framework configured to handle resources in SW.

SW is like a big cake of standards. Each slice contains a mixture of its ingredients, and even
if you were to split them into separate parts, like glaze, it is still best consumed together. The
metaphor can also be used to explain why we need multiple parts to make it all work (i.e. to
make the cake taste good); some parts (e.g. sodium and flour), is just not good by itself.

SW consists of many standards, and to mix them all together takes some planning. In this
thesis I have used SDPs as guides to map participants and collaborations. This proved to be
somewhat complex, as there were two factors working against us: One is that JS does not
support interfaces, which is used thoroughly in the classic descriptions. Another is that none
of the third party code I implemented seemed to have SDPs in mind when implemented, which
meant that I had to restructure some code to fit my purpose.

Restructuring is a cumbersome process, which introduces many opportunities to break ex-
isting functionality. I used TDD throughout the development to prevent this, which proved
effective. It also allowed me to move code across modules, to restructure the very purpose of
modules. Patterns have guided me in this process, and I believe it to be an effective route.

The construction of Graphite has been an important part of the realizations revealed in this
thesis. If anything, it has shown that the magnitude of SW requires many components to col-
laborate. It also shows that one framework probably will not ”get“ it all. So to ease the work
of developers, both those constructing the frameworks and those using them, care should be
made to make components reusable. And to guide how those components should function and

97

98 CHAPTER 9. CONCLUSION

be structured, we use standards, to tap into the work of many, bright people before us.

9.1 Further Work

Work that may be derived from this thesis is naturally concentrated on improving the code of
Graphite. I have mentioned aspects that could be interesting to look into, such as using the
architectural styles introduced by Roy Fielding to analyze frameworks in JS.

But the most interesting work would probably involve improvement of the implementation.
Some suggestions of aspects to look into are:

• The engine needs to be decoupled and structured more clearly with SDPs in mind. This
would open the code for other developers, and enable them to introduce other algorithms
that are more effective. This is particularly important if we want to introduce inferring
capabilities.

• The SPARQL parser needs to be complete, and the engine needs to be able to process all
possible variances. Until that is complete, the framework can not make full use of the
querying possibilities of SW.

• A module parsing RDFa would be useful, especially if browsers should loosen up on SOP.
Also, the RDF/XML parser needs to be completed, and the JSON-LD parser probably
needs to be updated (or replaced with another altogether) as the specification becomes a
recommendation by W3C.

• Storage in browsers could be an interesting functionality to look into, as off-line capacities
may become a trend. This could be used as part of caches, and thereby increase the speed
of applications that are used multiple times and which do not need to fetch data from an
external resource every time.

• The engine module should be one alternative of many; The developer should be able to
configure the system to use an external SPARQL endpoint as query processor. Graphite
supports this to some degree, but as of now it would be more like a hack.

• Graphite should be able to be run server-side. As part of this, serializers should be imple-
mented, so that the service can serve RDF in any format requested.

• Are there alternatives to representing RDF internally? Both RDF JSON and JSON-LD
are JSON-based serializations of RDF, maybe they are viable alternatives.

• Serializes: If you want to make your code available for server-side implementations, than
you should probably support a couple of serializers, as developers setting up a server
probably want to serve serialized RDF from your store.

Bibliography

[1] Christopher Alexander, Sara Ishikawa, Murray Silverstein, Max Jacobsen, Ingrid
Fiksdahl-King, and Shlomo Angel. A Pattern Language. Oxford University Press, 1977.

[2] Dave Beckett. RDF/XML Syntax Specification (Revised). http://www.w3.org/

TR/rdf-syntax-grammar/, February 2004. [Online, retrieved 11-July-2012].

[3] David Beckett and Tim Berners-Lee. Turtle - Terse RDF Triple Language. http:

//www.w3.org/TeamSubmission/turtle/, March 2011. [Online, retrieved 15-
July-2012].

[4] Mike Bergman. More Structure, More Terminology and (hopefully) More Clar-
ity »AI3:::Adaptive Information. http://www.mkbergman.com/391/

more-structure-more-terminology-and-hopefully-more-clarity/.
[Online, retrieved 7-Aug-2012].

[5] Tim Berners-Lee. Semantic Web Road map. http://www.w3.org/

DesignIssues/Semantic.html, November 1998. [Online, retrieved 10-
July-2012].

[6] Tim Berners-Lee. Notation 3 Logic. http://www.w3.org/DesignIssues/

Notation3.html, August 2005. [Online: Accessed 20-July-2012].

[7] Tim Berners-Lee. Linked Data. http://www.w3.org/DesignIssues/

LinkedData.html, June 2009. [Online, retrieved 14-July-2012].

[8] Tim Berners-Lee and Dan Connolly. Notation3 (N3): A readable RDF syntax. http:

//www.w3.org/TeamSubmission/n3/, 2011. [Online, retrieved 15-July-2012].

[9] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web. Scientific American,
284(5):34–43, May 2001.

[10] Mark Birbeck. backplanejs - A JavaScript library that provides cross-browser XForms,
RDFa, and SMIL support. - Google Project Hosting. https://code.google.com/
p/backplanejs/. [Online, retrieved 7-Aug-2012].

[11] Mark Birbeck. TutorialUsingJsparql - ubiquity-rdfa - This tutorial shows how to use
jSPARQL, a JSON serialisation of SPARQL. - The Ubiquity RDFa parser project
- Google Project Hosting. http://code.google.com/p/ubiquity-rdfa/

wiki/TutorialUsingJsparql. [Online, retrieved 7-Aug-2012].

99

http://www.w3.org/TR/rdf-syntax-grammar/
http://www.w3.org/TR/rdf-syntax-grammar/
http://www.w3.org/TeamSubmission/turtle/
http://www.w3.org/TeamSubmission/turtle/
http://www.mkbergman.com/391/more-structure-more-terminology-and-hopefully-more-clarity/
http://www.mkbergman.com/391/more-structure-more-terminology-and-hopefully-more-clarity/
http://www.w3.org/DesignIssues/Semantic.html
http://www.w3.org/DesignIssues/Semantic.html
http://www.w3.org/DesignIssues/Notation3.html
http://www.w3.org/DesignIssues/Notation3.html
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/TeamSubmission/n3/
http://www.w3.org/TeamSubmission/n3/
https://code.google.com/p/backplanejs/
https://code.google.com/p/backplanejs/
http://code.google.com/p/ubiquity-rdfa/wiki/TutorialUsingJsparql
http://code.google.com/p/ubiquity-rdfa/wiki/TutorialUsingJsparql

100 BIBLIOGRAPHY

[12] Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked
Data - The Story So Far. http://tomheath.com/papers/

bizer-heath-berners-lee-ijswis-linked-data.pdf. [Online, re-
trieved 14-July-2012].

[13] Dan Brickley and R.V. Guha. RDF Vocabulary Description Language 1.0: RDF Schema.
http://www.w3.org/TR/rdf-schema/, February 2004. [Online, retrieved 11-
July-2012].

[14] Brian Cavalier. cujojs/when. https://github.com/cujojs/when. [Online, re-
trieved 7-Aug-2012].

[15] Douglas Crockford. JavaScript: The World’s Most Misunderstood Programming Lan-
guage. http://www.crockford.com/javascript/javascript.html, Jan-
uary 2001. [Online, retrieved 10-July-2012].

[16] Douglas Crockford. The application/json Media Type for JavaScript Object Notation
(JSON). http://www.ietf.org/rfc/rfc4627.txt, July 2006. [Online, re-
trieved 19-July-2012].

[17] Ecma International. ECMAScript Language Specification, 2011. [Online, retrieved 13-
July-2012].

[18] Roy Thomas Fielding. Architectural Styles and the Design of Network-based
Software Architectures. PhD thesis, University of California, 2000. [Available
online http://www.ics.uci.edu/~fielding/pubs/dissertation/net_
arch_styles.htm, retrieved 27-July-2012].

[19] David Flanagan. JavaScript: The Definitive Guide, Sixth Edition. O’Reilly Media, Inc.,
2011.

[20] Luciano Floridi. Web 2.0 vs. the semantic web: A philosophical assessment. Episteme,
6(1):25–37, 2009.

[21] Martin Fowler, David Rice, Matthew Foemmel, Edward Hieatt, Robert Mee, and Randy
Stafford. Patterns of Enterprise Application Architecture. Addison Wesley, 2002.

[22] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns -
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1994.

[23] Antonio Garrote. antoniogarrote/rdfstore-js. https://github.com/

antoniogarrote/rdfstore-js/. [Online, retrieved 7-Aug-2012].

[24] John Hebeler, Matthew Fisher, Ryan Blace, and Andrew Perez-Lopez. Semantic Web
Programming. Wiley Publishing, Inc., 2009.

[25] Pascal Hitzler, Markus Krötsch, and Sebastian Rudolph. Foundations of Semantic Web.
Chapman & Hall/CRC, 2010.

http://tomheath.com/papers/bizer-heath-berners-lee-ijswis-linked-data.pdf
http://tomheath.com/papers/bizer-heath-berners-lee-ijswis-linked-data.pdf
http://www.w3.org/TR/rdf-schema/
https://github.com/cujojs/when
http://www.crockford.com/javascript/javascript.html
http://www.ietf.org/rfc/rfc4627.txt
http://www.ics.uci.edu/~fielding/pubs/dissertation/net_arch_styles.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/net_arch_styles.htm
https://github.com/antoniogarrote/rdfstore-js/
https://github.com/antoniogarrote/rdfstore-js/

BIBLIOGRAPHY 101

[26] Graham Klyne and Jeremy J. Carroll. Resource Description Framework (RDF): Concepts
and Abstract Syntax. http://www.w3.org/TR/rdf-concepts/, February 2004.
[Online, retrieved 11-July-2012].

[27] Paul Krill. JavaScript creator ponders past, future. http://www.infoworld.com/
print/39704, June 2008. [Online, retrieved 10-July-2012].

[28] Dan Newcome. dnewcome/jstle - GitHub. https://github.com/dnewcome/

jstle, April 2010. [Online, retreieved 7-Aug-2012].

[29] Addy Osmani. Learning JavaScript Design Patterns. O’Reilly Media, Inc., 2012. [Online,
retrieved 19-July-2012; Available as free e-book].

[30] rdflib.js Team. linkeddata/rdflib.js. https://github.com/linkeddata/

rdflib.js. [Online, retreieved 7-Aug-2012].

[31] Dirk Riehle. Framework Design: A Role Modeling Approach. PhD thesis, Eidgenössische
Technische Hochschule Zürich, 2000. [Available online http://dirkriehle.com/
computer-science/research/dissertation/, retrieved 30-July-2012].

[32] Nathan Rixham. webr3/js3 - GitHub. https://github.com/webr3/js3, Novem-
ber 2010. [Online, retreieved 7-Aug-2012].

[33] Nathan Rixham, Manu Sporny, Mark Birbeck, Ivan Herman, and Ben-
jamin Adrian. RDF Interfaces 1.0. http://www.w3.org/TR/2011/

WD-rdf-interfaces-20110510/, May 2011. [Online, retreieved 7-Aug-2012].

[34] John Godfrey Saxe. The Poems of John Godfrey Saxe. Houghton, Mifflin and Company,
1881.

[35] Martin G. Skjæveland. Sgvizler: A javascript wrapper for easy visualization of sparql
result sets. ESWC 2012, 2012. Is yet to be published, but is to be a demo paper in the
workshop/poster/demo proceedings of ESCW 2012.

[36] Buster Team. Buster.JS overview. http://busterjs.org/docs/overview/.
[Online, retrieved 7-Aug-2012].

[37] Git Team. Git - Reference. http://git-scm.com/docs. [Online, retrieved 7-Aug-
2012].

[38] Node Team. node.js. http://nodejs.org/. [Online, retrieved 7-Aug-2012].

[39] RequireJS Team. RequireJS. http://requirejs.org/. [Online, retrieved 7-Aug-
2012].

[40] Tabulator Team. Tabulator: Generic data browser. http://www.w3.org/2005/

ajar/tab. [Online, retrieved 7-Aug-2012].

[41] Underscore Team. Underscore.js. http://underscorejs.org/. [Online, retrieved
7-Aug-2012].

http://www.w3.org/TR/rdf-concepts/
http://www.infoworld.com/print/39704
http://www.infoworld.com/print/39704
https://github.com/dnewcome/jstle
https://github.com/dnewcome/jstle
https://github.com/linkeddata/rdflib.js
https://github.com/linkeddata/rdflib.js
http://dirkriehle.com/computer-science/research/dissertation/
http://dirkriehle.com/computer-science/research/dissertation/
https://github.com/webr3/js3
http://www.w3.org/TR/2011/WD-rdf-interfaces-20110510/
http://www.w3.org/TR/2011/WD-rdf-interfaces-20110510/
http://busterjs.org/docs/overview/
http://git-scm.com/docs
http://nodejs.org/
http://requirejs.org/
http://www.w3.org/2005/ajar/tab
http://www.w3.org/2005/ajar/tab
http://underscorejs.org/

102 BIBLIOGRAPHY

[42] Jeni Tennison. rdfquery - RDF processing in your browser - Google Project Hosting.
http://code.google.com/p/rdfquery/, June 2011. [Online, retrieved 7-Aug-
2012].

[43] Architecture of the World Wide Web, Volume One. http://www.w3.org/TR/

webarch/, 2004. [Online, retrieved 14-July-2012].

[44] World Wide Web Consortium (W3C). OWL Web Ontology Language Overview, 2004.
[Online, retrieved 13-July-2012].

[45] RDF Test Cases. http://www.w3.org/TR/rdf-testcases/, February 2004.
[Online, retrieved 15-July-2012].

[46] World Wide Web Consortium (W3C). OWL 2 Web Ontology Language Document
Overview, 2009. [Online, retrieved 14-July-2012].

[47] World Wide Web Consortium (W3C). OWL 2 Web Ontology Language Profiles, 2009.
[Online, retrieved 14-July-2012].

[48] World Wide Web Consortium (W3C). SPARQL 1.1 Query Language, May 2011. [Online,
retrieved 16-July-2012].

[49] World Wide Web Consortium (W3C). JSON-LD Syntax 1.0, 2012. [Online, retrieved
15-July-2012].

[50] Semantic Web - W3C. http://www.w3.org/standards/semanticweb/, July
2012. [Online, retrieved 10-July-2012].

http://code.google.com/p/rdfquery/
http://www.w3.org/TR/webarch/
http://www.w3.org/TR/webarch/
http://www.w3.org/TR/rdf-testcases/
http://www.w3.org/standards/semanticweb/

Part IV

Appendices

103

Appendix A

Code Base

As the code base for Graphite is rather large (approximately 36 000 SLOC, or between 500
and 1 000 pages, depending on the format you print it in), I have decided to just refer to the
repository at GH.

The complete framework, with all tests and demos, is available at https://github.
com/megoth/graphitejs.

105

https://github.com/megoth/graphitejs
https://github.com/megoth/graphitejs

Appendix B

Test Results

Table B.1 shows the latest results from running test runs on all the modules included in Graphite.
There are 430 tests altogether, with a total of 1 413 assertions. The numbers given for Average
per testruns and Average per assertion are in milliseconds. The former gives the average of ten
sequent runs, while the latter gives the average time per assertion.

107

108 APPENDIX B. TEST RESULTS

Module Tests # assertions Avg/assertion Avg/testrun
API 9 10 149 1493
CURIE 13 13 5 60
Data-type 12 22 2 41
Engine 53 312 2 739

Abstract Query Tree 18 90 2 182
Callbacks 7 25 4 101
Query Filters 15 29 6 161
Query Plan 1 12 1 12
RDF JS Interface 5 20 3 68

Graph 4 8 119 954
Backend 2 57 0 22
Lexicon 2 9 2 16

Graphite 1 2 3 6
Loader 1 1 12 12

Proxy 2 4 8 33
XHR 4 10 7 68

Query 51 52 9 474
Query Parser 2 4 4 16

SPARQL 36 56 3 153
RDF 8 22 2 44
RDF Parser 5 12 15 177

JSON-LD 22 63 4 272
RDF JSON 8 9 89 802
RDF/XML 29 136 14 1861
Turtle 4 31 9 272

Tree Utils 5 35 1 38
B-Tree 4 152 <1 53

URI 74 99 3 267
Utils 33 118 1 142

Table B.1: Test results for tests part of Graphite.

Appendix C

Findings of Related Work

Table C.1 shows a list of projects I have examined as part of this thesis. A total of 114 projects
were found, mostly through the service AI3 Sweet Tools1, which has a comprehensive listing of
Semantic Web related tools (the search returned 94 results when querying ”javascript“). I have
also included projects listed at W3Cs wiki page on Javascript2, while the last few are the result
of Google search and friendly tips.

The projects are analyzed with four categories: Available (Av), Semantic Web (SW), JavaScript
(JS), and Easy Reusable (ER). The projects are either true or false to each of the categories
(represented by 1 or 0 in the table, respectively). Also, the categories are sorted, from left to
right, and one category that results in false on one category, will not be analyzed into the fol-
lowing category. If a project is analyzed as true to all categories, it is labeled as interesting,
and was taken into further analyzing. Section 8.7 lists all these projects.

The category Available regards a project as true if the code of that project is dereference-
able and open source.

The category Semantic Web regards whether a project actually had any technologies related
to SW. Many of the tools listed by AI3 were annotation tools, and did not have anything to do
with the semantic technologies curated by W3C.

The category JavaScript checked whether the project had any code of interest in JS.
Finally, the category Easy Reusable checks whether or not the JS included in the project

are easily reusable for the purpose of this thesis. It is more informal than the other categories, in
that it was - in the end - my gut feeling of a projects code that regarded it as easy to reuse or not.
Factors considered were purpose, flexible, overall structure, handling of data, and originality.

1http://www.mkbergman.com/sweet-tools/
2http://www.w3.org/2001/sw/wiki/Javascript

109

http://www.mkbergman.com/sweet-tools/
http://www.w3.org/2001/sw/wiki/Javascript

110 APPENDIX C. FINDINGS OF RELATED WORK

Name Av SW JS ER
Acre 1 0
ALOE 0
Annozilla 1 0
Anzo Suite 0
backplanejs 1 1 1 1
blueorganizer 0
Callimachus 1 1 0
chickenfoot 1 0
Chimaera 0
Clipmarks 0
Clustybar 0
Code Mirror 1 0
Collex 0
Crowbar 1 0
Cuebee 0
DataMashups 0
DBpedia Spotlight 1 1 0
Disco 1 1 0
Dojo.data 1 0
Dublin Core Viewer 0
ED (Entity Describer) 0
Euler 0
EulerMOZ 1 1 0
Exhibit 1 0
Exparql 0
Finnish Ontology Library Service ONKI 1 1 1 0
Flint SPARQL Editor 1 1 1 0
FOAF-o-matic 1 1 0
Fuzz 0
GeoURL 0
Grazr 0
GrOWL 0
Hercules 0
Hunter Gatherer 0
HyperBK 0
HyperScope 0
iServe Browser 1 1 0
JavaScript RDF/Turtle parser 1 1 1 1
Jiqs4OWL 0
jOWL 1 1 1 0
JS3 1 1 1 1
jsonld.js 1 1 1 1
JSTLE 1 1 1 1
LAPIS 1 0
Linked Data Mapper 1 0
Live Clipboard 0
Marmite 0
MOAW 0

Table C.1: List of projects examined as part of this thesis.

111

Name Av SW JS ER
mSpace 1 0
Nokia Semantic Web Server 1 1 0
OAI Repository Explorer 0
Ocelot 0
One Click Annotator 1 1 0
Open Anzo 1 1 0
OpenLink AJAX Toolkit (OAT) 1 1 1 0
OpenLink Data Explorer (ODE) 1 1 1 0
OpenLink Virtuoso 1 1 0
OpenRecord 1 0
Operator 0
OPML Reader 0
OPML Support 0
OwlSight 0
Piggy Bank 1 1 0
Pipes 0
PoolParty 0
Potluck 0
pushback 1 1 1 0
rCache 0
RDF Viewer 0
RDFa Developer 1 1 0
RDFaCE 1 1 1 0
RDFAPI-JS 1 1 1 0
rdflib.js 1 1 1 1
rdfQuery 1 1 1 1
rdfstore-js 1 1 1 1
Rhizomer 1 1 1 0
Sage 0
Sahi 0
Scaffold 0
Scooner 0
ScrapBook 1 0
Semantic Radar 0
Semantic Turkey 1 1 0
Semantic Web Pipes 1 1 0
semanticgraph 1 1 1 0
SemanticSTEP Viewer 0
SemClip 0
sgvizler 1 1 1 1
Sifter 1 1 0
Sig.ma 1 1 0
Simple javascript RDF Parser and query thingy 1 1 1 1
SKOS_WS 0
Solvent 1 1 0
Sparallax 0
Spark 1 1 0
SPARQL JavaScript Library 1 1 1 1

Table C.2: List of projects examined as part of this thesis, cont.

112 APPENDIX C. FINDINGS OF RELATED WORK

Name Av SW JS ER
sparqlPuSH 1 1 0
Strata 0
structOntology 1 1 0
sw-widgets 0
Sweet Tools 0
Swipe 0
Sztakipedia 0
Tabulator 1 1 1 1
Timeline 1 1 1 0
Twarql: Twitter feeds through SPARQL 0
Ubiquity-RDFa 0
Visualisations for the CS AKTive Portal 0
VIVID 0
Web Clipboard 0
Wikimeta 0
Wrangler 0
WSO2 Mashup Server 0
Zotero 0

Table C.3: List of projects examined as part of this thesis, cont.

	Introduction
	I Foundations
	Background
	Semantic Web (SW)
	Resource Description Framework (RDF)
	Resource Description Framework Scheme (RDFS)
	Web Ontology Language (OWL)
	Linked Data (LD)
	Linked Open Data (LOD)
	URL vs. URI vs. IRI

	Serializations
	RDF/XML
	Terse RDF Triple Language (Turtle)
	Notation3 (N3)
	N-Triples
	RDF JSON
	JavaScript Object Notation for Linked Data (JSON-LD)
	Resource Description Framework in Attributes (RDFa)

	Querying
	SPARQL Protocol and RDF Query Language (SPARQL)
	SPARQL Update Language

	Entailment

	JavaScript (JS)
	Object-Oriented
	Prototypical Inheritance
	Dynamic Properties
	Functional Features

	Scope
	Closure

	Static functions
	JavaScript Object Notation (JSON)
	Asynchronous Loading of Resources
	Same Origin Policy (SOP)
	Content Security Policy (CSP)
	XMLHttpRequest (XHR)

	CommonJS (CJS)
	Promise Pattern

	Server-side implementations
	Module Patterns
	Contained Module
	Namespaces
	Asynchronous Module Definition (AMD)
	CJS Module
	Harmony

	Software Design Pattern (SDP)
	Adapter
	Bridge
	Builder
	Composite
	Decorator
	Facade
	Interpreter
	Observer
	Prototype
	Proxy
	Strategy

	Test-Driven Development (TDD)

	Problem Description and Requirements
	Problem
	What are the components required for the framework?
	Which SDPs are applicable for the components?
	Which features in JS are of use for the framework?
	How should the API be designed?

	II Implementation
	Tools
	Buster.JS (Buster)
	Browsers
	Node.js (Node)

	RequireJS (Require)
	Git
	GitHub (GH)

	WebStorm (WS)

	Used Libraries
	Branches
	rdfQuery (RDFQuery)
	rdfstore-js (RDFStore)
	Underscore.JS (Underscore)
	when.js (When)

	The Graphite Framework
	API
	CURIE
	Data-type
	Engine
	Abstract Query Tree
	Callbacks
	Query Filters
	Query Plan
	RDF JS Interface

	Graph
	Backend
	Lexicon

	Graphite
	Loader
	Proxy
	XHR

	Promise
	Query
	Query Parser
	SPARQL
	SPARQL Full

	RDF
	RDF Loader
	RDF Parser
	JSON-LD
	RDF JSON
	RDF/XML
	Turtle

	Tree Utils
	B-Tree

	URI
	Utils

	The Demo
	Structure

	III Discussion and Conclusion
	Discussion
	Semantic Web and JavaScript
	Representation of Data
	RDF
	SPARQL

	Modularity
	The Engine
	Entailment
	External Service

	Asynchronous Functionality
	XDomainRequest (XDR)

	Server-side implementation
	Marketing of SW in JS communities

	JavaScript and Software Design Pattern
	Third party libraries
	Absence of the Adapter pattern

	Additional SDPs
	Architectural Styles
	Representational State Transfer (REST)

	JavaScript and Test-Driven Development
	Software Design Pattern and Test-Driven Development
	Semantic Web and Software Design Pattern
	Semantic Web and Test-Driven Development
	Related Work
	Backplane
	Javascript RDF/Turtle Parser
	JS3
	jsonld.js
	Jstle
	RDFLib
	RDFStore
	RDFQuery
	Sgvizler
	Simple JavaScript RDF parser and query thingy
	SPARQL JavaScript Library
	Tabulator

	Conclusion
	Further Work

	IV Appendices
	Code Base
	Test Results
	Findings of Related Work

