
UNIVERSITY OF OSLO
Department of Informatics

Wordnet
Semantics From
Dictionaries
Semi-automatic
Extraction of Semantic
Relations Between Verbs
From a Dictionary

Master thesis

Rune Lain Knudsen

Autumn 2012

Acknowledgements

I am indebted to a number of people that, directly and indirectly, contributed to the
creation, development and finalizing of this thesis. Erik Velldal, for being my patient and
understanding supervisor for most of my time as a master’s student, for providing me with
a substantial amount of input on all aspects of my thesis, and for bringing me down to earth
whenever I got too unrealistic as to what one can achieve during a well-defined timespan. I
seem to miscalculate such things frequently. Ruth E. Vatvedt Fjeld, for being my co-supervisor
throughout my master’s programme, my vast knowledgebase for everything related to the field
of lexicography, and for leading me onto the path of wordnets in the first place. Lilja Øvrelid,
for being my co-supervisor for the first parts of my thesis, and for the last semester bravely
stepping in as my main supervisor when Velldal was on child leave. A special thanks goes
to Julie Matilde Torjusen and Lilja Øvrelid for being central participants in the annotation
study. A very important part of this thesis relies on the post-processing work done by Torjusen
and Øvrelid. The Language Technology Group at IFI, UiO, for a friendly and motivational
environment, inspirational seminars and an important source of knowledge for everything
related to the field of NLP. The Text Laboratory, UiO, for their work on the excellent OBT+Stat
tagger.

I would also like to thank my fellow students and friends Emanuele Lapponi and Lars-Erik
Bruce, for providing me with inspiration, help and companionship whenever I was around. I
apologize for my absence at times.

Last but not least, I would like to thank my family and all my friends for constantly
reminding me that there is in fact a world outside of my desktop computer.

i

ii

Contents

I Introduction 1
1 Motivation and Goals . 3
2 Thesis Structure . 3
3 Clarifications and Caveats . 4

II Background 5

1 Central Concepts for Wordnets and Dictionaries 7
1 Wordnets . 7

1.1 Synsets . 7
1.2 Semantic Relations . 8
1.3 Ontology . 8
1.4 Gloss . 9

2 Four Wordnets and Their Properties . 9
2.1 Princeton WordNet . 9
2.2 EuroWordNet . 10
2.3 DanNet . 11
2.4 NorNet . 12

3 Dictionary Concepts . 12
3.1 Overview of Dictionary Structure . 12

2 Previous Work 15
1 Building a Wordnet . 15

1.1 The Expand Approach . 15
1.2 The Merge Approach . 16

2 Automatic Extraction from Definitions in Bokmålsordboka 17
3 Automatic Extraction from Definitions in DDO . 18
4 Concluding Remarks . 19

III The Method: Dict2WN 21

3 Method Overview 23
1 Overview . 23

4 Extraction and Preprocessing 25
1 Extraction . 25

1.1 Extraction From BOB . 25
2 Preprocessing . 26

iii

2.1 Preprocessing the Extracted Data from BOB 28

5 Transducer Generation 33
1 PoS Pattern Classes . 33

1.1 Non-explanatory PoS Pattern Classes . 35
2 Finite-state Transducers . 35
3 1-to-n Target Ambiguity . 37
4 Manual Transducer Generation . 37

4.1 Initial Transducer Generation for BOB . 38
5 Operator Word Generation . 39

5.1 Operator Word Definition and Example . 40
5.2 Candidate Operator Words . 41
5.3 Second Transducer Generation for BOB . 43

6 Semi-automatic Transducer Expansion . 44
6.1 Observations . 44
6.2 The Smith-Waterman Algorithm . 45
6.3 Augmenting the Similarity Scores: Bag-of-Words 46
6.4 Example: Expansion of Transducer 2 . 46

7 Summary . 49

6 Graph Generation 51
1 Graph Types . 51

1.1 Sense Graph . 51
1.2 Lemma Graph . 52
1.3 Synset Graph . 53

2 Cleanup and Merge . 53
3 Graph Manipulation . 55

3.1 Disambiguation by PoS Tags . 55
3.2 Disambiguation by Cycles . 55
3.3 Inferring Synsets from HAS_SYNONYM Relations 56

7 Manual Post-Processing 59
1 Description of the Post-processing Step . 59
2 The Post-Processing Application: DICT2WNPP 60
3 Annotation Study . 61

3.1 Using Fleiss’ Kappa for Agreement Measures 62
3.2 Relation Frequency Distributions . 65
3.3 Disambiguation Agreement Measure . 66
3.4 Measuring Average Annotation Intervals 67
3.5 Concluding Remarks . 67

8 Evaluation of Dict2WN 69
1 Finding the recall of a semantic network . 69
2 Transducer Evaluation . 69

2.1 Transducer Coverage . 72
2.2 Transducer Overlap . 72
2.3 Transducer Score Summary . 72

9 Conclusion and Further Work 75

iv

A Dict2WN Program Description and Database 79
0.4 Database EER Schema . 79

B Dict2WNPP Program Description and Database 81
0.5 Database EER Schema . 81
0.6 Manual for Dict2WNPP . 81
1.7 Objectives, Motivation and General Remarks 81
1.8 Download and Installation . 82
1.9 The User Interface . 83
1.10 Relation Overview . 86
1.11 Exporting The Data . 88

C Detailed Operator Word Data 89

D Detailed Transducer Data 93

E Detailed Data for the Post-Processing Evaluation 101
0.12 List of Post-processed Relations Grouped by Agreement 101
0.13 Frequency List of PoS Patterns Grouped by Agreement 121

v

vi

List of Figures

1.1 Simplified visual example of a dictionary macro/microstructure 13

5.1 Graphical representation of the definiendum-definiens relation 37
5.2 General data for transducer 1 . 38
5.3 General data for transducer 2 . 43

6.1 An example of a sense graph. 52
6.2 An example of a lemma graph . 52
6.3 An example of a synset graph . 53
6.4 General data for transducer merged . 54
6.5 Example of disambiguation by synonym cycle . 56

7.1 Screenshot of the post-processing application for Dict2WN 60

B.1 Full screenshot of the Dict2WNPP user interface 83
B.2 Screenshot of the area for unprocessed relations 84
B.3 Screenshot of a relation about to be disambiguated. 85
B.4 Screenshot of a processed relation about to be undone 86
B.5 Screenshot of the export dialog popping up when you choose Export Data from

the File menu. 88

vii

viii

List of Tables

1 Abbreviations for semantic relations. 4

1.1 Examples of some synsets linked to synsets in the ILI. 10

2.1 Examples of rules used by the algorithms developed by Nygaard. 18
2.2 Examples of rules used in the DanNet pilot study 19

4.1 Example of the result of a query for slette . 26
4.2 A list over the most relevant coarse PoS tags used by OBT+Stat 29
4.3 Examples of erroneously tagged definitions . 30
4.4 Conversion from grammatical codes to equivalent PoS tags 31
4.5 Statistics for the extracted data from BOB. 31

5.1 Frequency list for the largest PoS pattern classes 34
5.2 Examples of non-explanatory PoS pattern classes 35
5.3 Some examples of members of PoS pattern classes captured by transducer 1 . . . 39
5.4 Example of relation sequence transformation using operator words. 43
5.5 Some examples of members of PoS pattern classes captured by transducer 2 . . . 44
5.6 The result of an alignment of VERB PREP and VERB PRON PREP KOMMA VERB along with

the aligned relation sequence. 46
5.7 5-best PoS pattern alignments for the PoS pattern class VERB ADJ 47
5.8 Expansion columns generated from the 5-best transducer expansion of trans-

ducer 2 . 47
5.9 Collapsed columns and new input-output regex pairs from transducer expansion 48
5.10 Relation frequency for all expansions of transducer 2 49
5.11 Relation frequency for transducer 3 and its expansion 3.1 49
5.12 Summary of initial measures for all transducers. 50

6.1 Relation count after removing non-semantic relations. 54
6.2 Results from cleanup and partial disambiguation the final sense graph. 56

7.1 Overview of the possible actions that can be performed by the user of the post-
processing application made for Dict2WN. 61

7.2 Individual results for each annotator participating in the post-processing. 61
7.3 Per-action agreement ratios (pj) for the two post-processing sets. 62
7.4 An excerpt of the per-relation agreement table Pi generated using Equation (7.3) 63
7.5 Agreement ratio summary created from the list of per-relation agreements. . . . 63
7.6 Overview of the general measures for the Fleiss’ Kappa Statistics 64
7.7 Overview of agreement measures for each individual action. 65

ix

7.8 Frequency lists over relations found in the 3-annotator data set, according to
agreement. 65

7.9 pj measurements for the two post-processing sets (disambiguation). 66
7.10 Pi measurements for the two post-processing sets (disambiguation). 66
7.11 Overview of the general measures for the Fleiss’ Kappa Statistics for the

disambiguation stage. 67
7.12 Annotation intervals for the post-processing step. 67

8.1 Transducer precision rates. 70
8.2 List over the initial transducers. 72
8.3 Average overlap measures for all transducers. 73
8.4 List over the initial transducers. 73

C.1 Complete list of operator words defined for Dict2WN. 90

D.1 List of PoS Pattern classes captured by initial transducers. 93
D.2 List of PoS Pattern classes captured by transducer 2.1. 94
D.3 List of PoS Pattern classes captured by transducer 2.2. 95
D.4 List of PoS Pattern classes captured by transducer 2.3. 97
D.5 List of PoS Pattern classes captured by transducer 3.1. 98

E.1 3-Judge Dataset: List of relations accepted by all three judges, lemma level. . . . 101
E.2 3-Judge Dataset: List over relations accepted by two of three judges, lemma level. 103
E.3 3-Judge Dataset: List over relations invalidated by all three judges, lemma level. 106
E.4 3-Judge Dataset: List over relations invalidated by the majority of three judges,

lemma level. 106
E.5 3-Judge Dataset: List over relations fully disagreed by all three judges, lemma

level. 107
E.6 2-Judge Dataset: List of relations accepted by both judges, lemma level. 108
E.7 2-judge Dataset: List over relations invalidated by both judges, lemma level. . . . 115
E.8 2-Judge Dataset: List over relations disagreed by both judges, lemma level. . . . 117
E.9 3-Judge Dataset: Frequency list of PoS patterns found in fully agreed disam-

biguations. 121
E.10 3-Judge Dataset: Frequency list of PoS patterns found in majority agreed

disambiguations. 122
E.11 3-Judge Dataset: Frequency list of PoS patterns found in fully agreed invalidations.123
E.12 3-Judge Dataset: Frequency list of PoS patterns found in majority agreed

invalidations. 124
E.13 3-Judge Dataset: Frequency list of PoS patterns found for no agreement. 124
E.14 2-Judge Dataset: Frequency list of PoS patterns found in agreed disambiguations. 125
E.15 2-Judge Dataset: Frequency list of PoS patterns found in agreed invalidations. . . 126
E.16 2-Judge Dataset: Frequency list of PoS patterns found for no agreement. 127

x

Part I

Introduction

1

Wordnets are used as components in a wide range of applications, especially ones related
to the many different tasks of natural-language processing. Information retrieval (Voorhees,
1998), machine translation, intelligent spell checking (Hirst and St-Onge, 1998), word-
sense disambiguation (Banerjee and Pedersen, 2003), automatic text analysis, common-sense
reasoning (Harabagiu and Moldovan, 1998) etc. are some examples of fields that benefit from
wordnets. Princeton WordNet, a project that started its development under the direction
of George A. Miller in 1985, is widely in use today and constantly undergoing further
development. Several wordnets for other languages have followed since the incubation of
Princeton WordNet (Lindén and Carlson, 2010; Pedersen et al., 2011; Åke Viberg et al., 2002),
along with efforts to unify wordnets into even more complex structures that model inter-lingual
relationships between different wordnets(Vossen, 2002; Tufiş et al., 2004).

1 Motivation and Goals

The motivation for this master thesis originates from Lars Nygaard’s cand. philol. thesis from
2006 (Nygaard, 2006), from which a prototype for a Norwegian wordnet was generated by
analyzing definitions for nouns in Bokmålsordboka (BOB)1. BOB is a dictionary for Norwegian
Bokmål which is available both in book format and as an on-line resource.

This thesis will propose a set of components for a method that is in some respects
an extension of Nygaard’s method, in other respects a different approach altogether. An
investigation will be done for every stage of the process, including the extraction and analysis
of the dictionary data, the generation of a semantic network and the evaluation phase of such a
semantic network. The proposed method will be tested on a dictionary for Norwegian Bokmål,
and a thorough annotation study will be presented in order to clarify the terms for evaluating
a semi-automatically generated semantic network.

The main focus of study is on the task of generating wordnet data from verb definitions.
This is an area not covered by Nygaard’s method, and is generally a subject of study not as
frequently covered as nouns. Verbs exhibit different behavior than nouns in many respects,
therefore they should present a somewhat different set of challenges.

The goal is to investigate to which extent a method for the described purpose can be
automated, and to which extent it can be said to be general.

The observations made throughout the thesis will be analyzed in the attempt to gain
insights into lexical semantics as well as verbs, both with regard to semantic properties and
the challenges one encounters when modeling verbs in a wordnet.

2 Thesis Structure

The thesis is structured as follows:

Chapter 1 introduces some terminology and gives a general overview of wordnets and
dictionaries that supplies us with some of the theoretical foundations needed for the rest of
the thesis.

Chapter 2 presents two of the earlier attempts of semi-automatic generation of wordnets from
dictionary information and remarks on those.

1Nygaard’s method is covered in Section 2

3

Chapter 3 describes the proposed method through a series of steps, all of which are covered
in the following chapters up to Chapter 8.

Chapter 8 presents a series of evaluations based on our observations from the earlier chapters.

Chapter 9 presents some concluding remarks about the method, the evaluation process and
further work.

3 Clarifications and Caveats

There are some definitions and assumptions that must be stated before moving on to the rest
of the thesis. The reader may consider the definitions and clarifications in this section to hold
for the rest of the thesis unless specifically stated otherwise.

Definiendum and Definiens The terms definiendum (plural definienda) and definiens (plural
definientia) need to be clarified. We define them as follows:

Definiendum That which is to be defined. Represented as the lemma form of some word.

Definiens That which defines. We restrict the notion of a definiens to the explanatory part of
a definition for some definiendum.

Notation for Semantic Relations The notation for a semantic relation is presented with the
example springe (run) HAS_SYNONYM løpe (run). The left hand side of the relation is referred
to as the LHS , while RHS refers to the right hand side of the relation. The LHS and RHS are
always represented in lemma form.

To enhance the readability of tables and figures throughout the thesis, semantic relations
are often abbreviated to three-letter representations. These abbreviations are listed in Table 1.

Full Abbreviated

HAS_SYNONYM SYN
HAS_HYPERONYM HYP
INVOLVED INV
CAUSES CAU
ENTAILS ENT
ANTONYM ANT

Table 1: Abbreviations for semantic relations.

Using the previous example of the notation for a semantic relation, the abbreviated version
of this relation is springe SYN løpe. The set of relation symbols corresponds to the instances listed
in Table 1. The term relation symbol refers to a member of the set of relation symbols, both the
full version and the abbreviated version.

4

Part II

Background

5

Chapter 1

Central Concepts for Wordnets and
Dictionaries

This chapter provides background information and terminology on wordnets and dictionaries
in general that is needed in order for the rest of the thesis to make sense. Section 1
describes wordnet terminology and presents some wordnets that are deemed relevant to this
thesis. Section 3 presents lexicographic terminology and some general background information
regarding dictionaries.

1 Wordnets

A wordnet is a lexical database whose structure was originally inspired by theories on how
knowledge about words and concepts might be organized in the human mind (Fellbaum,
1998c, p. 29-34). The fundamental structure of a wordnet is modeled as a network of semantic
relations, mostly between lexicalized concepts. A lexicalized concept is a concept that can be
expressed by a word or phrase. Lexical items are single words, or chains of words, that make
up the basic elements of a lexicon. Several lexical items may refer to the same lexical concept,
which in turn can be referred to by an expression acting as a common word for the collection
of lexical items in question.

1.1 Synsets

In a wordnet, a lexicalized concept is modeled as a set of words (usually represented by their
lemma forms) that are considered to have loose synonymy. , e.g. { help, assist, aid }. Loose
synonymy holds for words that can be interchanged in some contexts (Miller, 1998, p. 23-24),
hence the notion of synonym sets, or synsets. Strict synonymy is regarded as too restrictive
a definition to be used for this purpose. To claim that two concepts are strictly synonymous
is to imply that the two concepts can replace eachother in all contexts without changing the
meaning of the context. This will exclude a very large set of concepts that intuitively have a
synonymous relationship, and it is therefore not a practical definition for this field of study.

One lemma can be part of several synsets as polysemous lemmas are split into their different
meanings. As an example, the verb “call” has 28 senses in Princeton WordNet, three of which
are { call, telephone, call up, phone, ring }, { shout, shout out, cry, call, yell, scream, holler, hollo, squall
} and { name, call }.

7

1.2 Semantic Relations

To connect synsets in a meaningful way, a set of semantic relations are used that describe how
two concepts increase and/or specialize eachothers meanings. Below is a list of some of the
most common semantic relations used in wordnets (Saeed, 1997; Fellbaum, 1998c; Alonge et al.,
1998). The examples for each relation are gathered from searches performed in the WordNet3.0
command line application available from http://wordnet.princeton.edu/wordnet/download/.
Most words are part of larger synsets but are represented as one word only for the sake of
clarity.

Synonymy Relates two concepts using the definition of synonymy as defined in Section 1.1.
This is a symmetric and reflexive relation. Example: kind is a synonym of benign.

Hyperonymy Describes a typical is-a relationship, indicating that one concept subsumes
another. Example: interact is a hyperonym of communicate, which is a hyperonym of utter.
This is a transitive relation, meaning that interact also is a hyperonym of utter.

Hyponymy The opposite of hyperonymy. Example: utter is a hyponym of communicate.

Troponomy A relation between verbs that corresponds to the hyponymy relation, with some
differences (see Section 2.1 for details.)

Antonomy Relates two lexical opposites. Example: evil is an antonym of good.

Meronymy Used to describe a part-whole relationship. Example: pad is a meronym of paw,
which is a meronym of feline.

Holonomy The opposite of meronymy. Example: feline is a holonym of paw.

Entailment Denotes one concept as a prerequisite for another. Resembles logical entailment
but with looser restrictions. Example: To snore entails to sleep.

Cause Implies a causal relationship between two concepts. Example: to kill causes something
to die.

1.3 Ontology

The synsets and their relations give rise to an ontology describing world knowledge as a
hierarchy of concepts, entities and ideas. In many wordnets a top ontology, or upper ontology,
is explicitly defined in an attempt to enforce interoperability between the lower levels of the
semantic network. The set of concepts that make up the top ontology are very general and in
many cases quite abstract. Concepts like physical, abstract, quantity, agent and relation1tend to
be a part of a top ontology in one way or another. Choosing an appropriate upper ontology
is not trivial and has been subject to much debate. Part of the problem lies in the fact that
there is no consentual, objective definition for what an ontology is, hence the expectations
and requirements tend to differ between institutions and research areas. Princeton WordNet
operate with 11 synsets that are defined as unique beginners for nouns; synsets that have
no hyperonyms themselves and under which all other synsets are organized into hyponym
hierarchies (Miller, 1998, p. 28-29). EuroWordNet, which is presented in Section 2.2, has only
three, very abstract, unique beginners (1stOrderEntity, 2ndOrderEntity and 3rdOrderEntity).

1The examples are taken from the Suggested Upper Merged Ontology (SUMO) and can be explored in more
detail at http://www.ontologyportal.org/. This is the largest public formal ontology available, it is owned by the
IEEE and it is mapped to the whole of WordNet3.0.

8

http://wordnet.princeton.edu/wordnet/download/
http://www.ontologyportal.org/

1.4 Gloss

A gloss is usually attached to each concept, briefly explaining the meaning of the concept using
natural language. This resembles the definition text for an entry in a conventional dictionary
but does not contain the lexicographic notations usually found with it. In addition, one synset
can have only one gloss, reflecting the fact that each synset refers to exactly one lexicalized or
non-lexicalized concept (unlike a dictionary, where one lemma often has multiple definitions
in the same lexical entry). As an example, the gloss for one of the meanings of the noun car
in Princeton WordNet is “a motor vehicle with four wheels; usually propelled by an internal
combustion engine”.

2 Four Wordnets and Their Properties

Wordnets are being developed for a multitude of languages all over the world. The Global
Wordnet Association (Glo) (GWA) maintains a list of wordnets that conform to their standards
on http://www.globalwordnet.org/gwa/wordnet_table.htm. Currently 64 wordnets are on this
list but the actual number is probably higher if related semantic networks and projects that
have not been in contact with GWA is included. I will focus on the four wordnets mentioned
in the introduction and a selection of their properties and methodology that I find relevant
for the purpose of this essay and my thesis. Princeton WordNet is presented since it is the
first wordnet ever made, and as thus has been a major influence for all subsequent wordnet
projects. EuroWordNet is a major effort in the task of unifying wordnets for different languages,
and has a substantial extension of relation types. DanNet is presented as it represents the
Danish language, a language that is closely related to Norwegian Bokmål. In addition, it is
one of the wordnets that are modeled in close relationship to an existing dictionary, in this case
Den Danske Ordbog(Den). NorNet is the prototype for a Norwegian wordnet and has been
generated from Nygaard’s method, and as such is highly relevant.

2.1 Princeton WordNet

Princeton WordNet (PWN) has been under continuous development since its birth in 1985. It
has served as the foundation for the development of the theory, architecture and methodology
for later wordnet projects (Fellbaum, 1998b).

Verbs in PWN

The main relation for verbs in PWN is the troponymy relation, which is defined as the verb
equivalent of the hyponymy relation. The reason for distinguishing between hyponymy and
troponymy is discussed in (Fellbaum and Miller, 1990), and specifically related to PWN in
(Fellbaum, 1998a). The troponymy relation holds if the sentence to V1 is to V2 in some particular
manner is true (e.g. shout HAS_TROPONYM bawl implies that to bawl is to shout in some
particular manner), creating the foundation for a hierarchy of more and more specific verbs
much in the same fashion as for noun hyponyms. The troponymy relation also represents a
special form of entailment from V1 to V2 as can be seen in e.g. the relation talk HAS_TROPONYM
whisper where whisper entails talk. Lastly, a troponomy relation also should satisfy a condition
of temporal coextensivity, meaning that the troponym of a word should occupy the same
timespan as its hyperonym (e.g. walk HAS_TROPONYM march).

9

http://www.globalwordnet.org/gwa/wordnet_table.htm

Unique Beginners Finding appropriate unique beginners is arguably even more difficult for
verbs than for nouns. Likely candidates tend to have a high degree of polysemy and makes
it difficult to determine which sense should be the unique beginner and which should be put
below it in the hierarchy. PWN has partially solved this problem by separating lexicalized verb
concepts into different domains, effectively creating several hierarchies for verbs according to
top-level concepts like possession, social interaction, movement and so forth.

2.2 EuroWordNet

EuroWordNet (EWN) is a project which aim is to construct a multilingual database containing
wordnets for European languages. EWN currently consists of language-specific wordnets
representing the Dutch, Spanish, Italian, English, French, German, Czech and Estonian
languages. The language-specific wordnets are linked to an inter-lingual index (ILI), an
unstructured list of concepts initially based on Princeton WordNet1.5 (Vossen, 2002). Each
synset in the language-specific wordnets is mapped to one or more concepts in the inter-lingual
index according to sense equality.

In addition to the ILI, a domain ontology, a set of common base concepts and a top concept
ontology has been developed. The Domain Ontology is a hierarchical model of topics grouping
concepts under terms like traffic, hospital and so forth. The Common Base Concepts are concepts
that are derived from base concepts found in the various wordnets that make up EWN. The
Base Concepts are synsets that are selected locally in every wordnet based on a high number of
relations to other concepts in the same wordnet and a high position in the ontological hierarchy.
These synsets are compared to the base concepts found in the other wordnets. Base concepts
that are found in two or more wordnets and that are regarded to have a sufficiently equivalent
meaning make up a collection of synsets called the common base concepts. According to the
EWN General Document (Vossen, 2002, p. 55) there are 1310 common base concepts in total.
The top concept ontology organizes the common base concepts into a hierarchy. By linking
the language-dependent wordnets to the ILI, the ILI to the Common Base Concepts and the
Common Base Concepts to the Top Concept Ontology, a framework for a common structure
for several languages is formed. This framework is also easily extended with other language-
neutral ontologies (e.g. expert systems, knowledge bases, common sense repositories etc.)
which in turn extend the individual wordnets since they can access this information through
their links to the ILI.

Some examples of synsets linked to the inter-lingual index are given in Table 1.1. The
original table can be found in Vossen (2002, p. 41). As shown in the second example for the
Dutch synset mapping, many-to-many relations are possible.

ILI Dutch Spanish Italian

{ office } { kantoor; werkkamer;
werkruimte }

{ oficina } { ufficio; studio }

{ role; part; office; func-
tion }

{ functie; rol }, { emplooi
}

{ funciòn; papel; officio } { ufficio; mansione; car-
ica }

Table 1.1: Examples of some synsets linked to synsets in the ILI.

10

Verbs in EuroWordNet

EWN has some interesting additions to the set of verb relations. One of these is a relation
INVOLVED which can be said to govern a set of relations specifying the type of involvement
being described. It describes a relationship between two concepts where one concept is directly
involved in some way with the other. Some subtypes of this relation are listed below:

INVOLVED_AGENT E.g. undervise (teach) INVOLVED_AGENT lærer (teacher)

INVOLVED_PATIENT E.g. undervise (teach) INVOLVED_PATIENT student (student)

INVOLVED_INSTRUMENT E.g. male () paint INVOLVED_INSTRUMENT pensel (paintbrush)

INVOLVED_LOCATION E.g. undervise (teach) INVOLVED_LOCATION skole (school)

INVOLVED_RESULT True if the RHS can be seen as something that is the result of the LHS .
E.g. fryse (freeze) INVOLVED_RESULT is (ice)

INVOLVED_MANNER Is true if the RHS says something about the manner of which the LHS
is performed. E.g. skrike (scream) INVOLVED_MANNER høy (loud)

2.3 DanNet

DanNet is a fully operational wordnet for the Danish language. The latest version, DanNet 2.1,
is released under an open source licence and can be downloaded from http://www.wordnet.
dk/. This version contains 62.000 synsets. Approximately 2000 of these synsets are mapped
to equivalent synsets found in Princeton WordNet. Some additional relations are defined
in addition to the relations found in Princeton WordNet and EuroWordNet, like CONCERNS,
USED_FOR and MADE_BY. A set of descriptive features are also defined to enrich synsets and
relations. Some examples are connotation (positive or negative), sex (male or female) and the
domain for which a synset is considered to belong to (e.g. archaeology, electronics, geography
etc.), along with possible links to equivalent base concepts in EuroWordNet. For relations,
possible features are disjunction, negation, orthogonality and restriction2.

According to the specifications for DanNet (Pedersen et al., 2011), about 30% of the material
in DanNet is produced in a semi-automatic way. Around 2% of this material has been validated,
indicating a high level of consistency in hyperonym relations but varying levels in other types
of relations.

The source for the semi-automatic aquisition of semantic information was “Den Danske
Ordbog” (DDO), a corpus-based dictionary describing the modern Danish vocabulary from
about 1955 up until today. About half of the vocabulary in DDO is represented in DanNet. The
subset is selected according to word frequency and with a preference for concrete objects over
abstract concepts.

DDO was intended from the start to be a machine-readable resource. A lot of information
for definitions was explicitly encoded with this in mind, contributing to the process of building
a wordnet. This information included, among other things, subject or domain (e.g. art being the
domain for painting), synonyms, near-synonyms and antonyms, collocational information and
citations/example sentences. In addition, an explicit distinction between the genus proximum
and differentia specifica of a definition is encoded.

This is a way to define a concept inspired by the teachings of Aristoteles. The genus
proximum assigns an entry to a general class while the differentia specifica specifies properties

2for more information, consult the table in (Pedersen et al., 2011, p. 7-8)

11

http://www.wordnet.dk/
http://www.wordnet.dk/

that separates/differentiates it from other instances of the same class. E.g. to explain what a
triangle is, one can say that it is a geometrical shape (genus) with three sides (differentia).

The genus proximum for each sense were directly transferred into the DanNet encoding
tool and subsequently adjusted where needed. The adjustments took form of e.g. disambiguat-
ing the sense for a genus expression (not specifically encoded in DDO), or changing a general
hyperonym to a more specific hyperonym (or a synonym).

2.4 NorNet

NorNet is a prototype for a wordnet for Norwegian Bokmål initially based on Nygaard’s
experiments in his thesis from 2006 (Nygaard, 2006). The results have subsequently been
subject to post-processing and editing(Fjeld et al., 2012).

In 2010 further development of NorNet was initiated under the direction of Ruth Vatvedt
Fjeld, professor of lexicography in the Department of Linguistics and Scandinavian Studies.

NorNet in its current state is limited to nouns with synonym and hyponym/hyperonym
relations binding them together. Synsets are inferred based on the synonym relations.

3 Dictionary Concepts

Dictionaries generally have a well-defined structure that conforms to certain standards. This
section explains concepts that are central for the discussion in the various parts of the
method directly related to dictionaries. This is based on a survey made by Hausmann
and Wiegand (Hausmann and Wiegand, 1989) as well as the introduction in the Norwegian
monolingual dictionary Nordisk Leksikografisk Ordbok (Bergenholtz et al., 1997).

3.1 Overview of Dictionary Structure

Lemma Signs The items in a dictionary that act as the search keys. They have many of the
same properties as the definition of a lemma in linguistics. The lemma signs are usually
basic uninflected forms of a word, and are ordered in some way by the macrostructure
and outer access structures.

Macrostructure The structure that maps all lemmas to their lexical items according to some
ordering paradigm. The ordering paradigm is often based on alphabetical information,
and/or some thematic or conceptual hierarchy.

Article A lemma, with all information regarding that lemma presented with it.

Outer Access Structure One or more structures that specify how to make the reader
find the information that is sought after. The outer access structure and the
macrostructure tend to coincide if there is only one specified way to order the lexical
items.

Inner Access Structure The structure that specifies how to find information within a
lexical item.

12

.

.

.

Lemma X

Lemma Y

Lemma Z

.

.

.

.

.

.

Information on X

Information on Y

Information on Z

.

.

.

Figure 1.1: A simplified visual example of the macrostructure and microstructure of a dictionary, taken from
(Hausmann and Wiegand, 1989, p. 329). The vertical box represents the macrostructure, the horizontal box
represents an article and the ellipse represents the microstructure.

The Lexical Article

The lexical article is the most relevant part of the dictionary for this thesis. It is structured
according to the notion of microstructures. A microstructure is a linear set of information types
ordered according to to the inner access structure as specified by the dictionary. Some common
information type classes are listed below, each with an explanation of the information one can
expect to find within.

Synchronic Information Contains information about spelling, pronounciation and accentua-
tion, part of speech, inflection and aspect.

Diachronic Information Etymological information.

Diasystematic Labelling Temporal labels, regional labels, borrowing labels, style labels, as
well as technical field and group labels, attitude/connotation labels and usage labels.

Explanatory Information A short description of the item to be described, written in condensed
natural language (the definition). May also contain linguistic or encyclopedic descrip-
tions.

Syntagmatic Information Constructions, collocations, examples and quotations.

Paradigmatic Information Information about synonyms, antonyms, analogues, homonyms
and paronyms.

Semantic Information Information types that point the reader to the specific sense of the
lemma that is defined.

Usage Notes Snippets of texts examplifying the use of the lexical item in question.

Ordering devices represented as symbols such as numbers, letters and special characters
often visualize the ordering and separation of the kinds of information types encountered in the

13

article, as well as acting as references (to information outside of the dictionary), cross-references
(to other lexical items in the dictionary) and placeholders for the lemma (e.g. h˜ for hunt).

The core of the lexical article tends to be focused on the explanatory, syntagmatic and
paradigmatic information, and in many dictionaries the microstructure is reduced even further,
sometimes to the point where the only well-defined information category is the explanatory
one (Hausmann and Wiegand, 1989, p. 342).

14

Chapter 2

Previous Work

This chapter presents some earlier and related work on the task of building a wordnet. Section 1
describes the two main approaches that are used - the merge approach and the expand
approach. Sections 2 and 3 investigates two projects that makes use of a semi-automatic
approach to extract semantic relations from a dictionary. The main focus in this chapter will be
on the merge approach, as it is the approach taken by the method developed for this thesis.

1 Building a Wordnet

Various methods have been applied in the creation of wordnets. Princeton WordNet was
created manually from scratch, much because of the fact that it was a pioneering project and as
such could not rely on prior resources. This is probably the method that is the most demanding
in terms of time and resources, but it does have some advantages: It reflects the properties of
the target language right from the start and it allows one to sculpt the contents in any form and
direction as one sees fit for the project in question. As a lot of ground has been covered in the
last three decades this is normally not the approach used today. Aside from this approach, the
methods are generally grouped into two classes (Vossen, 2002, p. 52):

Expand An already existing wordnet such as Princeton WordNet is used as the source material.
The concepts are translated into the language for the new wordnet. Large parts of the
semantic structure is inherited from the original network and the new wordnet is expanded
with relations and concepts that differ from the original language.

Merge A wordnet is created based on local resources such as corpora or dictionaries. The
resulting network is subsequently adapted to, or merged with, other wordnets (often
Princeton WordNet) in order to ensure interoperability.

1.1 The Expand Approach

Creating a wordnet by the expand approach reduces the time and resources spent on creating
a new semantic network as the existing relations and taxonomies are gained from the original.
The disadvantage of this approach is that the new wordnet will be biased towards the original
wordnet’s representation of semantic knowledge. This may lead to problems such as:

• Missing concepts and relations occuring in the target language but lacking in the original
language.

15

• Concepts and relations that are unnecessary or outright wrong as the result of concepts
and relations that are only meaningful in the original language.

• Skewed ontologies and relational errors resulting from differences in the two languages
regarding political, cultural and social structures.

• Differences in polysemous lemmas that mean the same in some contexts but not in all.

As a consequence, a substantial amount of post-processing and/or editorial work is
usually required. FinnWordNet1 has been created by translating Princeton WordNet 3.0. The
translation was done manually by professional translators, increasing the labour during the
creation of the wordnet but in turn decreasing the amount of post-editorial work needed.

Translating from a closely related language will probably reduce the problem area
substantially. This is part of the motivation for a second wordnet for Norwegian Bokmål and
Nynorsk which is under development by Lars Nygaard at Kaldera2 for Språkbanken, a project
held by The National Library of Norway3. This wordnet will be created semi-automatically by
translating the resources in DanNet. Since the Danish language and Norwegian Bokmål is very
closely related, the assumption is that the problems normally appearing in an expand approach
will be minimized. The resulting wordnet for Norwegian Bokmål will then act as a source for
an additional wordnet for Norwegian Nynorsk.

1.2 The Merge Approach

The merge approach tends to be based on dictionaries or corpora as resources. Wordnets
created this way closely reflect the structure and quality of the source material. This section
is mostly concerned with dictionary-based approaches since it is the most relevant one for this
thesis.

Dictionary-based Approaches

The tasks of analyzing dictionary definitions and automatically extracting information from
dictionaries have both been frequent subjects of study (Briscoe, 1989; Pedersen et al., 2009).

Research on extracting lexical and semantic information from conventional dictionaries
have showed varying results. The conclusions were based on the observation of some
properties of dictionaries that complicated the process, mainly:

• Inconsistent information within the dictionary.

• Mismatch between sense distinctions in a dictionary and sense distinctions in the natural
language the dictionary describes.

• Implicit world/common-sense knowledge omitted in the dictionary.

A lot of the information needed for a wordnet is nonexistent in conventional dictionaries
as commonsense knowledge is assumed to be known by the user. According to Pedersen et al.
(2009, p. 272), definitions in monolingual dictionaries are usually phrased according to the
substitution principle, which states that a lemma should be replaceable by its definition in

1http://www.ling.helsinki.fi/en/lt/research/finnwordnet/
2http://kaldera.no/
3http://www.nb.no/spraakbanken/

16

http://www.ling.helsinki.fi/en/lt/research/finnwordnet/
http://kaldera.no/
http://www.nb.no/spraakbanken/

a given text. Because of this definitions tend to be short and incomplete, albeit usable in a
sentence where the lemma occurs.

More encouraging results have been encountered from 2000 and onwards. DanNet was
created initially by utilizing information using a Danish dictionary although about half of the
total material has been created using other methods. Nygaard’s experiments in his thesis
(Nygaard, 2006) resulted in a large number of synonym and hyperonym relations between
nouns and serves as the foundation for NorNet (see Section 2 for details).

A pilot study conducted during the creation of DanNet analyzed the definitions in Den
Danske Ordbog (DDO) in an attempt to create more relations. The results from this pilot study
was not used in DanNet however; translating and analyzing the semantic information encoded
in the internal structure of the DDO database gave far better results (see Section 3 for details).

Corpus-based Approaches

The use of corpora as a source for extracting semantic data from natural language has been
a popular approach when creating, enhancing and disambiguating semantic networks. Both
rule-based and statistical methods have been used in this respect. The advantages of using
corpora as a resource is that a huge amount of concepts and relations can be generated fairly
quickly, resulting in a bigger semantic network than one could ever hope to create manually.
On the other hand, this sometimes makes it harder to validate a large enough portion of it
so to be certain of its consistency, unless a prior resource fit for this purpose can be used
automatically. The need for a well-balanced corpus is apparent since the resulting network
reflects the text it was extracted from, potentially biasing it towards the contexts found in the
corpus. In any case, many interesting techniques has been developed. Some examples follow:

• Topic signatures (sets of topically related words) have been linked to WordNet synsets by
using sense-tagged corpora and mining the web through queries built from concepts in
WordNet (Agirre et al., 2001).

• BabelNet4 treats Wikipedia as a kind of corpus by associating WordNet senses with
Wikepedia pages utilizing hyperlink structure and information embedded in the pages
in more or less natural language (Navigli and Ponzetto, 2010). Word similarity has been
inferred using distributional methods (Pantel, 2005), which gives rise to e.g. automatic
generation of synsets.

• A distributional method for automatically generating a thesaurus from text corpora
was examined by Dekang Lin in 1998 (Lin, 1998). The source was a 64-million-word
corpus containing text from newspapers. The resulting thesaurus was evaluated by
comparing words with high frequencies to the equivalent words in WordNet1.5 and
Roget’s Thesaurus. The results indicated a strong agreement with WordNet1.5 synsets.

2 Automatic Extraction from Definitions in Bokmålsordboka

A semi-automatic extraction of hyperonym and synonym relations was explored by Nygaard
in his cand. philol. thesis (Nygaard, 2006). Since his method serves as the inspiration for the
method described in this thesis and shares the same goal (i.e. generating semantic relations for
NorNet), it is examined and evaluated.

Nygaard’s approach was to analyze the lexical entries in Bokmålsordboka (BOB)5 in order
4http://lcl.uniroma1.it/babelnet/
5Both Bokmålsordboka and Nynorskordboka can be found at http://www.nob-ordbok.uio.no/

17

http://lcl.uniroma1.it/babelnet/
http://www.nob-ordbok.uio.no/

to create a set of rules for extracting semantic data useable for the generation of a wordnet. His
method consisted of 3 steps (Nygaard, 2006, p. 45):

Preprocessing Handling and filtering of metainformation, alternative definitions indicated by
parentheses and multiple definitions separated by a semicolon or comma.

PoS tagging Using the Oslo-Bergen tagger6 for adding part-of-speech information to each
definition entry.

Extraction Extraction of hyperonymy and synonymy relations based on POS tags and
morphological features generated by the Oslo-Bergen tagger.

The ruleset consisted of heuristic lexicosyntactic rules of the forms shown in Table 2.1. The
rules are taken from Nygaard’s thesis (Nygaard, 2006, p. 51-53) and freely translated to English.

Rule If a definition consist of a single noun, or several nouns separated
by a comma, those nouns are synonyms for the definiendum

Example vidde [. . .] område, areal
Result vidde (plateau) HAS_SYNONYM område (area)

vidde (plateau) HAS_SYNONYM areal (area)

Rule If a definition contains other elements than single nouns, then the
first noun in lemma form is a hyperonym of the definiendum, unless
this noun is part of a list of stop words.

Example bistro m1 (fr ’vertshus(holder)’) liten resturant
Result bistro (bistro) HAS_HYPERONYM resturant (restaurant)

Table 2.1: Examples of rules used by the algorithms developed by Nygaard. Bold words mark headwords;
underlined words are the words that are selected by the corresponding rule.

To avoid erroneous extractions some filtering of the more problematic definitions were
performed. A stop list of expressions was compiled and used to filter out definitions whose
patterns failed to conform to the ruleset. These definitions were not considered by the
algorithm. Some observations were made for erroneous decisions made by the morphological
tagger. Based on these observations, definitions where the genus word was found at position 4
or higher in the sentences were excluded.

3 Automatic Extraction from Definitions in DDO

Another example of an attempt at developing an automatic extraction of semantic relations
from a dictionary is an informal pilot study presented in Pedersen et al. (2009, p. 287-291), as
part of the DanNet project. It presents a somewhat different approach to the Nygaard method,
with its own set of challenges. The motivation for this study was to investigate whether a fully
automated method could be developed for extracting semantic data from the definitions in
DDO. DDO is structured in a way that strongly encourages forming definitions that conform to
the principles of the genus proximum / differentia specifica. Specifically, the genus expressions
are explicitly marked as such, giving a concrete distinction between that and the rest of the
definition, which in turn should conform to the differentia as much as possible. Because of
this, the assumption was that an automatic extraction of relations from the definitions would
prove to be efficient and accurate.

6http://tekstlab.uio.no/obt-ny/

18

http://tekstlab.uio.no/obt-ny/

All definitions were transformed into a special type of corpus, each token tagged with the
lemma form. A set of hypotheses serving as the foundation for lexicosyntactic rules were made
after analyzing the definition structure in a fashion similar to the Nygaard approach (Pedersen
et al., 2009, p. 288) as exemplified below:

• Adjectives preceeding the genus denote general (physical) properties of the definiendum.

• VPs in a relative clause which are headed by kan ’can’ specify the function or use of the
definiendum, i.e. the USED_FOR relation.

These rules were generalized into patterns that tried to capture as many definitions as
possible and extract semantic relations from the definitions that matched the rule. Some
examples are given in Table 2.2.

Rule genus expression til at VP-inf med/på/i
Example apparat til at afspille cd’er med

Rule genus expression der/som VP-fin
Example apparat der måler og viser et køretøjs hastighed

Rule genus expression til NP
Example apparat til optagelse og afspilning av lyd

Table 2.2: Examples of rules used in the DanNet pilot study

This method queries explicitly for lemmas and can thus target constituents of a definition
in a very specific way, but it relies on the assumption that a given lemma form belongs to a
certain type of grammatical class, and that its surrounding context is more or less unambiguous
when it comes to the grammatical categories of the tokens. Each rule targets a small number of
definitions, which gives a good precision rate. They are however generated by time consuming
inspection of lists of definitions at the lemma level. This means that in order to cover a
substantial amount of the dictionary, a substantial amount of rules must be made.

The overall conclusion made in this study was that an automatic extraction from a given
dictionary will be successful only if the definitions conform to a vocabulary and syntactic
structure that is formal and predictable to the extent that it would be deemed unacceptable by
most lexicographers. No relations other than hyperonymy was extracted using this approach.
Seeing as these relations were directly available from the explicitly marked genus expressions,
the lemma-based analysis of the definitions does not prove to be adequate.

4 Concluding Remarks

The main difference between the DDO approach and Nygaard’s method is the kind of data
used for pattern matching. Where Nygaard used PoS tags as the foundation for discovering
patterns, DDO’s method made use of lemma forms of the tokens found in a definition.
Nygaard’s method does not consider many types of information stored in a word other than
the grammatical class it belongs to, along with stop-words. The DDO approach is not aware
of anything else than the explicitly marked genus expression and the lemma forms of the
differentia specifica, and as such it has to make many assumptions that will only hold for a
small set of instances.

The Nygaard method and the method applied to DDO both suffer from the fact that the
source material gives incomplete information to the analysis tools. In the case of DDO, this

19

results in the lack of ability to generalize the ruleset, thus giving little advantage over manual
approaches. The Nygaard method takes the opposite direction by creating a small set of rules
that account for a large number of definitions. It is however unable to specialize and vulnerable
to corner cases, and as such it is forced to ignore much of the data that would otherwise lead
to valuable parts of the semantic network.

20

Part III

The Method: Dict2WN

21

Chapter 3

Method Overview

This chapter describes DICT2WN, a proposed method for semi-automatic extraction of
semantic relations based on definitions in a dictionary. As stated in the introduction, the goal
is to find a method that is as general as possible, so that it can be used for any dictionary,
creating a wordnet or other semantic network efficiently and with an acceptable error rate.
This method bases itself on of the merge approach, using a dictionary as the source material.
It attempts to remedy the shortcomings of the two methods described in Sections 2 and 3 by
looking at both lexical and morphosyntactic information, as well as employing a more flexible
set of algorithms.

A detailed explanation for all the steps involved in the process is presented, all the way
from the extraction from the dictionary to the final semantic network. For each step, the
implementation of the method is presented as well, together with observations and preliminary
results that are examined further in the evaluation chapter (Chapter 8).

1 Overview

Chapter 4 presents the extraction and preprocessing step, along with details on the
application of these steps to BOB.

Chapter 9 presents the concepts of transducers, operator words and transducer expansion,
the three main aspects of the proposed method.

Chapter 6 presents the types of graphs generated by the method and describes some
techniques that might increase the quality of said graphs before the final export.

Chapter 7 gives an overview of the manual post-processing/annotation done on the data
exported from DICT2WN as well as an annotation study.

Chapter 8 presents an evaluation of the process based on the previous chapters, particularly
Chapter 7.

Chapter 9 makes some concluding remarks based on the observations made throughout the
thesis along with propositions for further work.

23

24

Chapter 4

Extraction and Preprocessing

The first task of the method is to extract the required data from the source material and
preprocess it so that it is ready for the next stage. Section 1 presents the extraction, while
Section 2 explains the preprocessing task.

1 Extraction

The extraction process depends on the format of the dictionary. The most likely candidates
for the method explored in this thesis are machine-readable dictionaries where one has access
to the back-end (i.e. the electronic database). The possibility for extracting data from other
formats (e.g. physical dictionaries or ones where access to the underlying architecture is
limited) could however in theory be a viable option, since each definition part is distinguished
from the others visually, with differing typefaces. Certain keywords and tokens may also act
as separators (e.g. slash, tilde, ’jf.’, etc.). This means that the output of a dictionary query will
contain some kind of markup (e.g. HTML) that allows one to split the definition up into its
constituents. Even if this should turn out not to be the case for a dictionary, or if the dictionary
in question is a physical human-readable one, OCR techniques might be applied to identify
the parts. This is outside of the scope for this thesis, but worth mentioning for the sake of
emphasizing the goal of finding an approach that is as general as possible.

The data from the dictionary is extracted and converted into an XML file acting as the source
data for the rest of the method. During this xml-file generation, each article and definition
should be given a unique identifier. The preferred way of generatig these unique identificators
is to transfer it directly from the dictionary, provided that the dictionary actually contains
such information. If this is not the case it must be generated or inferred, in which case some
interconnectivity between the dictionary and the resulting semantic network might be lost.

1.1 Extraction From BOB

BOB is stored in a relational database; its articles organized into different tables where each
constituent of a given article is structured separately. Upon a query, these constituents are
joined together and presented to the user in a readable format (see Table 4.1 for an example).
Extracting the different parts of the definition was therefore a matter of extracting relevant table
data, and thus fairly trivial.

In BOB’s database, each article, definition and lemma have a unique identifier in the form
of an integer. These were transferred as they were defined in BOB to ensure as high a degree of
interconnectivity as possible between BOB and the resulting wordnet. Listing 4.1 gives some

25

Original Translated
slette I slette sletta el. -n sludd sleet I slette sletta or -n sleet
slette II slette f1 el. m1 (norr slétta) plain/ II slette f1 or m1 (norr slétta)

1 større flat landstrekning byen er
omgitt av vide s-r

clearing 1 larger flat area the town is sur-
rounded by wide p-s

2 flatt, avgrenset parti en liten s- i
skogen / skihopperen svingte på sletta

2 flat, bounded lot a small c- in the
forest / the ski jumper turned on the
clearing

slette III slette v1 (norr slétta) smooth/ III slette v1 (norr slétta)
1 gjøre slett, jevne s- duken / s- over
også: gjøre godt igjen / s- til, ut

erase 1 make smooth s- the cloth / s- over
also: do well again / s- to, out

2 fjerne, stryke regnet s-t (ut) alle spor
/ s- et lydbåndopptak / gjelden ble s-t

2 remove, erase the rain e- (out) all
traces / e- an audio recording / the debt
was e-

Table 4.1: Example of the result of a query for slette (Eng. sleet (noun), plain / clearing (noun), smooth / erase (verb))

examples of the extracted data. Line 1, 5, 9, shows examples of the article id’s extracted from
BOB. Line 2, 5, 10, 13 and 38 shows examples of extracted definition id’s, while line 19 and 44
shows examples of extracted lemma id’s.

2 Preprocessing

For each definition with a definiens, the definiens is tagged with an appropriate Part-of-Speech
(PoS) tagger. This is a crucial step, and as will be shown, somewhat of a non-trivial step.
Getting correct PoS-tag sequences for the explanatory parts of definitions is important, but a
certain error rate must be expected.

Natural language is ambigious. Every PoS tagger constructed so far gives an error rate, and
it is unlikely that a perfect PoS tagger will be constructed in the near future, as even humans
find it hard to disambiguate properly in difficult cases. We must also assume that the error rate
for a tagger designed for a given natural language will be higher when used for definitions in a
dictionary than the error rate being reported from tagging natural texts. This is a consequence
of the way the definiens is written in most dictionaries. The language used in dictionary
entries tend to be not entirely formed as natural sentences, and this complicates the tagging
step (see the definientia in Table 4.1 for some examples). Dictionaries are traditionally released
in physical book formats and need to compress every definition as much as possible to save
space. This is not a problem for human readers, since they can ’uncompress’ the information by
applying their knowledge about how dictionaries are written, and by using general common-
sense knowledge to infer the missing parts. It is unrealistic to expect a tagger designed for
natural languages to be able to do this - the contextual information needed to make correct
morphological inferences may simply not be there.

An on-line dictionary such as the English Cobuild dictionary (http://dictionary.reverso.
net/english-cobuild) is an example of a dictionary that most probably will not cause this
problem. This type of dictionary gives complete, detailed definitions without making use of
any type of text condending. As more and more dictionaries are designed with on-line user
interfaces, one can expect text condensing to be less of a problem in the future, but as of now,
such dictionaries are a minority.

There are however at least two ways to improve the tagging process. Given a set of
rules specialized for condenced text and the keywords used in dictionaries one might avoid
this problem. This is an interesting subject which in my opinion deserves of a thorough

26

http://dictionary.reverso.net/english-cobuild
http://dictionary.reverso.net/english-cobuild

Listing 4.1: A small exerpt of the XML file generated from BOB. The content of some of the definitions are removed
and marked with “...”. The definitions used as examples in the text are shown with full content.

1 < a r t i c l e a r t _ i d =" 54418 ">
2 < d e f i n i t i o n def_id=" 66087 ">
3 . . .
4 </ d e f i n i t i o n >
5 < d e f i n i t i o n def_id=" 66088 ">
6 . . .
7 </ d e f i n i t i o n >
8 </ a r t i c l e >
9 < a r t i c l e a r t _ i d =" 54419 ">

10 < d e f i n i t i o n def_id=" 1066335 ">
11 . . .
12 </ d e f i n i t i o n >
13 < d e f i n i t i o n def_id=" 66089 ">
14 <lookup> s l e t t e </lookup>
15 <etymology>
16 <etymology> n o r r s l’e t t a </etymology>
17 </etymology>
18 <lemmas>
19 <lemma lemma_id=" 58163 " pos=" V01 " form=" s l e t t e "></lemma>
20 </lemmas>
21 < g l o s s e s >
22 <g l o s s>
23 < t e x t > g j ø re s l e t t , jevne</ t e x t >
24 <tagged>
25 <word p o s i t i o n =" 0 " lexeme=" g j ø re " lemma=" g j ø re ">verb i n f t r 1 r l 9 pr3</word>
26 <word p o s i t i o n =" 1 " lexeme=" s l e t t " lemma=" s l e t t ">adj nø yt ub ent pos</word>
27 <word p o s i t i o n =" 2 " lexeme=" , " lemma=" $, ">komma</word>
28 <word p o s i t i o n =" 3 " lexeme=" jevne " lemma=" jevne ">verb i n f pa1 pa2 pa1/ t i l

pa2/ t i l </word>
29 </tagged>
30 </g l o s s>
31 </ g l o s s e s >
32 <examples>
33 <example> ’ s− t i l , ut ’</example>
34 <example> ’ s− over ’ også : g j ø re godt i g j e n </example>
35 <example> ’ s− duken ’</example>
36 </examples>
37 </ d e f i n i t i o n >
38 < d e f i n i t i o n def_id=" 66090 ">
39 <lookup> s l e t t e </lookup>
40 <etymology>
41 <etymology> n o r r s l’e t t a </etymology>
42 </etymology>
43 <lemmas>
44 <lemma lemma_id=" 58163 " pos=" V01 " form=" s l e t t e "></lemma>
45 </lemmas>
46 < g l o s s e s >
47 <g l o s s>
48 < t e x t > f j e r n e , s t ryke</ t e x t >
49 <tagged>
50 <word p o s i t i o n =" 0 " lexeme=" f j e r n e " lemma=" f j e r n e ">verb i n f t r 1 r l 4 d5 r l 9 </word>
51 <word p o s i t i o n =" 1 " lexeme=" , " lemma=" $, ">komma</word>
52 <word p o s i t i o n =" 2 " lexeme=" s t ryke " lemma=" s t ryke ">verb i n f t r 1 t r 1 1 a11 r l 1 4

r l 1 5 </word>
53 </tagged>
54 </g l o s s>
55 </ g l o s s e s >
56 <examples>
57 <example> ’ s− e t lydb åndopptak ’</example>
58 <example> ’ regnet s−t (ut) a l l e spor ’</example>
59 <example> ’ g je lden ble s−t ’</example>
60 </examples>
61 </ d e f i n i t i o n >
62 </ a r t i c l e >

27

investigation, but it is unfortunately outside the scope of this thesis.
A simpler and somewhat less rigorous method is to add some extra information to the

sentences before the tagging step, making incomplete sentences more syntactically coherent.
This was done for the extracted data from BOB and is explained in detail in Section 2.1.

The XML data is subsequently preprocessed and inserted into an appropriate database
format for further analysis and wordnet generation.

2.1 Preprocessing the Extracted Data from BOB

To aquire PoS tag sequences for the explanatory part of each extracted definition, OBT+Stat (Jo-
hannessen et al., 2011) was used. OBT+Stat is a morphological and syntactic tagger for Nor-
wegian Bokmål and Nynorsk. It is based on the Constraint Grammar formalism, employing
a CG3 ruleset developed at the Text Laboratory1 at UiO, as well as making use of the HunPos
Hidden Markov Model tagger (Halácsy et al., 2007) in order to remove any ambiguity left by
the constraint-based tagger. OBT+Stat is available at http://tekstlab.uio.no/obt-ny.

Listing 4.2: An example of the output from OBT+Stat.

"< g j øre >"
" g j ø re " verb i n f t r 1 r l 9 pr3

"< s l e t t >"
" s l e t t " ad j nø yt ub ent pos

" < , >"
"\$, " <komma>

"< jevne >"
" jevne " verb i n f pa1 pa2 pa1/ t i l pa2/ t i l

Each explanatory part was sent to OBT+Stat. An example of the output from OBT+Stat
when given the sentence “gjøre slett, jevne” (“make smooth, smooth”) for the explanatory
part from one of the definitions for slette (smooth) can be seen in Listing 4.2. The output from
OBT+Stat was processed and added to the extracted data, as can be seen on lines 25-28 and
50-52 in Listing 4.1.

DICT2WN currently makes use of the coarse PoS tags and lemma forms only, but all
information from the tagger is included in the source material to ensure that the information
will be available for any future improvement of the method. A list over the most relevant
coarse PoS tags used by OBT+Stat can be seen in Table 4.2

Increasing Tagger Performance by Adding Context

OBT+Stat generally performs very well for Norwegian Bokmål (Johannessen et al., 2011, p. 29-
31). Even so, due to the problem of the condensed form definientia it makes a number of
erroneous decisions on the material extracted from BOB. By looking at the most frequent PoS
pattern classes, a high degree of consistency in the types of errors made by the tagger was
discovered. The most common tagging errors were located in the first token of some definitions
where a verb was erroneously tagged as SUBST or ADJ , as well as in verb tokens occurring after
commas. Special dictionary keywords like overf (eng. fig.) were mostly interpreted as nouns,
cluttering the PoS patterns. In addition, incorrect PoS tag decisions sometimes propagated
into the lemma inferences made by the tagger, giving incorrect lemma-forms for a number of
tokens.

Based on the observed consistency in the erroneous decisions made by the tagger, an
experiment was performed to see if the tagger performance could be increased. The infinitival

1http://www.hf.uio.no/iln/om/organisasjon/tekstlab

28

http://tekstlab.uio.no/obt-ny
http://www.hf.uio.no/iln/om/organisasjon/tekstlab

ADJ adjective
ADV adverb
DET determiner
INF-MERKE infinitival mark
INTERJ interjection
INTERJ conjunction
PREP preposition
PRON pronoun
SBU subjunction
SUBST noun
UKJ unknown
VERB verb
CLB sentence boundary

Table 4.2: A list over the most relevant coarse PoS tags used by OBT+Stat. Short explanations in English for each
tag is given in the second column

marker ’å’ (equivalent to the English infinitival marker ’to’) was prepended to every definiens
for a definiendum that was assigned a grammatical code equivalent to a verb (see Table 4.4).
The infinitival marker was removed from the tagged PoS sequence before inserting it into the
XML-file by specifying an offset equivalent to the number of tokens added (in this case, one).

Two versions of the XML-file were generated, one that utilized the prepended infinitival
marker and one that didn’t. By examining the differing PoS tag sequences, the conclusion
was that the experiment did in fact cause a substantial change in the decisions made by the
tagger. 5060 PoS tag sequences for verb definitions were tagged differently when prepending
the infinitival marker. Of these, 3593 changes were for the coarse PoS tags.

In order to evaluate the changes, 100 PoS tag sequences were investigated, selected at
random from the set of the 3593 changes in coarse PoS tag sequences. The results were very
encouraging. A total of 89 sequences went from partially incorrect to completely correct, 7
sequences were improved but still contained errors, while 4 were still incorrect. None were
given a sequence that could be considered to be more incorrect than the original.

The most significant changes were from tokens incorrectly tagged as nouns or adjectives to
tokens correctly tagged as verbs. This happened most often in the beginning of the definitions,
but the added context also influenced tokens appearing e.g. after commas further out in the
sentence. Incorrectly inferred lemma forms of the tokens were also changed into correct lemma
forms in many cases upon being assigned the correct PoS tag. This even happened in cases
where the PoS tag was correctly tagged but incorrectly lemmatized.

We interpret the amount of sequences that were correctly tagged when the infinitival
marker was prepended as the proportion of success in a bernoulli trial process. By this
interpretation, we can use a confidence interval equation for binomial proportions to estimate
how much of the whole data set will be tagged correctly with added context:

p̂± z1−α/2

√
p̂(1− p̂)

n
(4.1)

where p̂ is the success ratio of the bernoulli trial process, z1−α/2 gives the percentile rank for
our confidence level and n is the sample population size.

With a success rate of 0.89, a population size of 100, using a confidence level at 95%, we

29

calculate

0.89± 1.96

√
0.89(1− 0.89)

100
(4.2)

which gives us the confidence interval 0.89± 0.0613. We can thus assume with 95% confidence
that between 82.87% and 95.13% of incorrect PoS tag sequences will be tagged correctly with
added context. This contributes substantially to the consistency of the source data. Table 4.3
gives some examples of erroneously tagged definitions and the improvement gained from
prepending the infinitival marker.

def. late som , hykle
trans. pretend to , act hypocritical
lemmas lat late som $, hykle
PoS adj VERB PREP KOMMA VERB

def. innebære , by på
trans. involve , present
lemmas innebære $, by på
PoS VERB KOMMA subst VERB PREP

def. lage , forme
trans. create , shape (VERB)
lemmas lage $, forme
PoS(err) subst VERB KOMMA VERB

def. blande i hop , røre sammen
trans. mix together , stir together
lemmas blande i_hop $, røre sammen
PoS subst VERB ADV KOMMA subst VERB ADV

Table 4.3: Some examples of erroneously tagged definitions that were correctly tagged when prepending an
infinitival marker. An English translation of the definition is given in the trans. rows. Erroneous decisions by
the tagger are represented by crossed-out lemmas or PoS tags while the correct decisions proceed it.

Based on the results of the tagger experiment, the data containing the improved tagger
decisions was decided upon as the best data source for the rest of the method. This data was
subsequently inserted into DICT2WN’s own database.

Conversion of Grammatical Codes

After inserting all the information from the XML file from the previous step into Dict2WN’s
database, a set of regular expressions were defined, converting the grammatical codes found
for definitions in the dictionary to equivalent PoS tags used by the Oslo-Bergen tagger (see
Table 4.4 for the regular expressions and corresponding PoS tags). This was done to simplify
some of the later inference steps.

Not every definition within an article is assigned a lemma with a grammatical code, but
since every article contains definitions for the various senses of a wordform for a particular
grammatical class, one can safely infer the appropriate coarse-grained PoS tag for all the
definitions the article contains - given that one or more of them are assigned a lemma with
a grammatical code.

A statistical summary of all the data extracted from BOB is presented in Table 4.5. We can
see that of all the extracted articles from BOB, verbs articles constitute about 10.6%. A total of
26235 definitions belong to these articles; out of these, 11414 have an explanatory part. These
11414 definitions are our main targets for extraction of semantic relations.

30

Regex PoS

[vV][S|\d]+ verb
[FMmN]\d+ subst
[aA].+ adj
P[p|P] prep
I interj
symb symb
T tall
pn pron
vr vr
X prefix
f ork fork

ˆ$ none

Table 4.4: Conversion from grammatical codes to equivalent PoS tags compatible with the Oslo-Bergen tagger.

Total Verbs Expl

Article ID’s 66086 7005 6904
Definition ID’s 219169 26235 11414
Lemmas 60949 6689 6600

Table 4.5: Statistics for the extracted data from BOB regarding Article ID’s, Definition ID’s and Lemmas. The
column Total lists the total amount of unique identifiers extracted from the dictionary, Verbs restricts the amount to
the number of unique identifiers describing some verb (Verbs), while Expl further restricts the amount to the ones
actually having some explanatory information attached.

31

32

Chapter 5

Transducer Generation

The preprocessing step supplies us with sequences of PoS tags and lemma forms for each
definiens we have imported into DICT2WN. In this section we start making use of this
information. We begin by introducing the term PoS pattern class in Section 1. We then move
on to a general description and our application of finite state transducers in Section 2, as
they are one of the main components of DICT2WN. Section 4 describes the observations and
assumptions leading to the manual creation of the initial transducer. Section 5 describes
an augmentation of the transducer output that increases the flexibility of the method and a
description of the second manually created transducer. Section 6 describes how the manually
created transducers are automatically expanded in order to catch more of the source material.
?? describes the rationale for the third and final manually created transducer. Finally, gives an
overview of all transducers along with some statistics.

1 PoS Pattern Classes

The PoS tag sequences for our definientia are used to create a set of PoS pattern classes. A PoS
pattern class is defined by a unique sequence of PoS tags. A member of a PoS pattern class is a
definition whose definiens has a PoS tag sequence identical to that of the PoS pattern class. We
define the size of a PoS pattern class in terms of the number of members. A frequency list for
the largest PoS pattern classes is presented in Table 5.1.

A total of 4007 PoS pattern classes from verb definientia were generated. We can see from
the frequency list in Table 5.1 that the largest PoS pattern class contains approximately 7.1%
of the extracted definentia, while the second largest contains about 5.7%. After the first few
classes the size of PoS pattern classes drops quickly. There is a long tail of very small PoS
pattern classes, 3395 of which have a size of one.

Much of the initial phase of the development of DICT2WN was spent on inspecting the
members of the largest PoS pattern classes. The observations done during this work backed
up the assumption that similar definientia exhibit similar behaviour to the extent that it was
deemed appropriate to continue the development of the method. This could be seen as an
initial step to determine if the dictionary in question is consistent enough for this method.
BOB is created for human readers and is not targeted towards machine-readability to the
extent that e.g. DDO is. Thus, if an adequate set of relations can be created based on the
data extracted from BOB, a similar treatment of dictionaries with an equal or bigger focus on
machine-readability should be considered useful.

33

PoS Pattern Size Perc Transducer Match

VERB KOMMA VERB 809 7.0878 1, 3.1
VERB 650 5.6948 1, 2, 2.1, 2.1.1, 2.2, 2.2.1, 2.3, 2.3.1
VERB PREP SUBST 295 2.5845 2, 2.1, 2.1.1, 2.2.1, 2.3, 2.3.1

VERB SUBST 258 2.2604 2, 2.1, 2.1.1, 2.2, 2.2.1, 2.3, 2.3.1
SUBST PREP UKJ UKJ CLB 244 2.1377
ADJ CLB 241 2.1114

VERB ADJ 232 2.0326 2, 2.1, 2.1.1, 2.2, 2.2.1, 2.3, 2.3.1
SUBST PREP PREP UKJ CLB 221 1.9362
UKJ CLB 206 1.8048

VERB PREP 129 1.1302 2, 2.1, 2.1.1, 2.2, 2.2.1, 2.3, 2.3.1
VERB KOMMA VERB KOMMA VERB 125 1.0952 1
VERB ADJ KOMMA VERB 112 0.9813

VERB SUBST PREP 94 0.8236 2, 2.1, 2.1.1, 2.2, 2.2.1, 2.3, 2.3.1
VERB KOMMA VERB PREP 76 0.6658 3.1
VERB KOMMA VERB PREP SUBST 75 0.6571 3.1

FORK 73 0.6396
VERB PREP KOMMA VERB 71 0.6220
VERB KOMMA VERB ADJ 70 0.6133 3, 3.1

VERB SUBST KOMMA VERB 63 0.5520
VERB PREP SUBST KOMMA VERB 49 0.4293
VERB SUBST PREP KOMMA VERB 46 0.4030

VERB ADJ INTERJ ADJ 45 0.3943
VERB SUBST PREP SUBST 43 0.3767 2.1.1, 2.2.1, 2.3.1
PREP SUBST 43 0.3767

VERB KOMMA VERB SUBST 42 0.3680 2.1.1, 3.1
PREP UKJ 41 0.3592
VERB PREP PREP SUBST 36 0.3154 2.1.1, 2.2.1, 2.3.1

PREP SUBST CLB 34 0.2979
SUBST CLB 34 0.2979
VERB ADV 33 0.2891 2, 2.1, 2.2, 2.3 2.1.1, 2.2.1, 2.3.1

VERB PREP ADJ SUBST 31 0.2716 2.1.1, 2.2.1, 2.3.1
VERB VERB 30 0.2628 2, 2.1, 2.1.1, 2.2.1, 2.3.1
VERB KOMMA VERB SUBST PREP 29 0.2541 3.1

PREP PREP UKJ CLB 26 0.2278
VERB ADJ KOMMA ADJ 26 0.2278
VERB SUBST PARST DET PAREN 25 0.2190

VERB ADV KOMMA VERB 24 0.2103
VERB PREP KOMMA VERB PREP 24 0.2103
VERB PREP SUBST PARST DET PAREN 23 0.2015

VERB SUBST PAREN 22 0.1928 2, 2.1.1, 2.2, 2.2.1, 2.3.1

Table 5.1: Frequency list for the largest PoS pattern classes. The columns show the actual PoS pattern (PoS Pattern),
the membership frequency (Size), the percentage of all verb definienda that are members of the class (Perc), and the
subset of the transducers that matched the class (Transducer Match). Non-explanatory PoS patterns (see Section 1.1)
are marked using gray text.

34

1.1 Non-explanatory PoS Pattern Classes

Upon inspection of the largest PoS pattern classes, some turn out to show different properties
from the others in terms of how their definientia are formed. They are not condensed
sentences of natural language; instead they belong to a class that contain sequences of
tokens that describe their definiendum either as being a morphosyntactic variation of another
definiendum, referring to the syntagmatic part of the definition; or definientia that consistently
refer to the domain that the definiendum belongs to.

We refer to such PoS pattern classes as non-explanatory PoS pattern classes, and their members
as non-explanatory definientia. Table 6.1 gives some examples of non-explanatory definientia.
The reader can assume that unless explicitly referred to as non-explanatory, PoS pattern
classes and definientia will refer to the set of explanatory PoS pattern classes and explanatory
definientia.

SUBST PREP UKJ UKJ CLB
SUBST PREP PREP UKJ CLB

adj i pf pt :
subst i pf pt :
adj i pr pt :

ADJ CLB
UKJ CLB

refl :
mat. :
bot. :
overf :
idr :

Table 5.2: Examples of non-explanatory PoS pattern classes. The first non-explanatory PoS pattern classes show
examples where the definienda refer to the syntagmatic parts of the definition. The third and fourth contain special
keywords used in dictionaries to denote domain, metaphor, etc.

These classes should in theory provide access to information about e.g. domain and
relationships between verbs and adverbs. However, the strategy for extracting this information
should be different from that of explanatory definentia. Since this study is focused on the task
of processing condensed text from explanatory definientia, they are not being treated in any
way in this study.

2 Finite-state Transducers

A finite-state transducer is a type of finite automaton that can, in addition to recognizing
some set of sequences of strings or symbols, compute relations between two sets of strings
or symbols and generate a corresponding output sequence based on these relations and the
input sequence(Jurafsky and Martin, 2008, p. 91-94). Since we want to find relation between
PoS tag sequences and relation symbols, this should be an appropriate choice. To simplify
some later steps in the method, sequential finite-state transducers as defined in Mohri (1997)
are used. This type of transducer is deterministic on its input and linear in terms of time
complexity. Although the output of such transducers are not guaranteed to be unambiguous,
no ambiguity was observed when developing and testing transducers for this method. It is
therefore considered adequate for this particular study.

35

Definition: Let P be the finite set of all PoS tags generated by the tagger,
and R the finite set of relation symbols.
Our transducer for DICT2WN is a sequential symbol-to-symbol transducer
where:

• Q is a finite set of N states {q0, q1, . . . , qn},

• i ∈ Q is the initial state,

• F ⊆ Q is the set of final states,

• P′ ⊆ P is the input alphabet,

• R′ ⊆ R is the output alphabet,

• δ(q, p) is the state transition function Q× P′ → Q, and

• σ(q, p) is the output function Q× P′ → R
′∗

From now on, term transducer is restricted to this definition unless explicitly stated
otherwise. Using our transducer definition, we can analyze PoS pattern classes and assign
relations between a definiendum and tokens in its corresponding definiens by creating
transducers that accept some set of PoS pattern classes. We specify both accepted input
sequences and resulting output sequences using regular expressions (regexes). The notation
used for representing this way of specifying a transducer is introduced with the following
example:

I: VERB (KOMMA VERB)*
O: SYN (NIL SYN)*

The first row is the specification of input sequences accepted by the transducer, while the
second row shows the resulting output. This is one of the actual transducers that will be
described further in Section 4.1. For now, suffice to say that the transducer will accept one
VERB symbol followed by k ≥ 0 instances of a KOMMA VERB sequence; giving as its output a
corresponding sequence of one SYN symbol followed by sequences of NIL SYN symbols of
length equal to k. From the PoS tagging step we have the lemma sequence of the definiens
for any member of an accepted PoS pattern class. This gives us three aligned sequences for
a definiens accepted by some transducer which will be referred to as a triple sequence. The
notation for a triple sequence resulting from an accepting transducer and the corresponding
PoS tag sequence and lemma sequence is as follows:

L: l1 l2 . . . ln
P: p1 p2 . . . pn
R: r1 r2 . . . rn

where n is the token length of the definiens in question, l1 l2 . . . ln are members of the set
of lemmas generated by the tagger, p1 p2 . . . pn are members of the set of PoS tags in use, and
r1 r2 . . . rn are members of our set of relation symbols. The combination of a lemma, PoS tag
and relation symbol at any index in the triple sequence will be referred to as a triple. We refer
to tokens in the lemma sequence using the term target words, implying that they are potential
targets of a relation assignment from their corresponding definiendum to themselves.

36

3 1-to-n Target Ambiguity

Before moving on the task of creating transducers, we define the term sense as the specific
meaning of a lemma assigned explicitly by a definition ID as extracted from BOB. For each
relation created from a definiendum to a target word, the sense for the definiendum is
unambigious since it is attached to one and only definition ID in the preprocessing step.

This is not the case for target words in the definiens since the only information available
from the original data is the PoS tagging done in the preprocessing step. There is no
information in the extracted data from the dictionary that point to the correct sense for any
target word of any definiens.

We thus end up with lists of possible definition IDs for each target word in the definiens,
as can be seen in Figure 5.1. This type of sense-ambiguity is defined in this thesis as 1-to-n
target ambiguity (where 1 stands for the unambiguous definiendum sense and n stands for the
n possible senses for a target word in the definiens).

244 slette
gjøre
389
390

slett
16
17
18

, jevne
977
978
979
980

245 slette
fjerne

56
57
58

, stryke
101
101

Figure 5.1: Graphical representation of the definiendum-definiens relation. The definienda are in boldface, with
edges to possible target words. Definition IDs for both definienda and target words are emphasized (the actual id’s
are simplified for the sake of readability and do not correspond to the actual IDs used). This examplifies the 1-to-n
target ambiguity - the sense for the definiendum is disambiguated by the definition id, while the possible senses for
each target word is the set of possible definition id’s shown as a list beneath each token in the definentia.

4 Manual Transducer Generation

After excluding the non-explanatory PoS pattern classes, we start looking for the simplest
PoS pattern classes with the highest number of members. By ordering the list of PoS pattern
classes in descending order based on their number of members, the most common patterns are
discovered. These are short, simple sequences of PoS tags that act as the foundation for the
initial round of transducer generation.

At this point it is important to identify the basic formal guidelines that the dictionary
follows. If no such thing is explicitly defined for the dictionary, one can assume a general genus
proximum / differentia specifica guideline, along with basic comma separated definientia
describing their definiendum in terms of synonyms. Adhering to these guidelines, regular
expressions for transducer inputs (accepted PoS patterns) and outputs (relations) are created.

37

4.1 Initial Transducer Generation for BOB

One of the rules in Nygaard’s thesis performs the task of assigning synonym relations to all
nouns encountered in single-noun and comma-separated single-noun definientia (Nygaard,
2006, p. 51-53). Upon manual inspection of similar PoS pattern classes for verbs, it turns out
that one can make the same general assumption when similar patterns are encountered.

We thus create a transducer that captures single-verb and comma-separated single-verb
PoS pattern classes. This transducer accepts four distinct PoS pattern classes, assigning
HAS_SYNONYM relations between a definiendum and all verbs found in its definiens. We
specify this by applying the regex ’ VERB (KOMMA VERB)*’ for the transducer input, and the regex ’
SYN (NIL ssyn)*’ for the transducer output. The NIL symbol means that no attempt of relation
assignment will be done at that position. The SYN symbol specifies that a HAS_SYNONYM
relation should be assigned between the definiendum and the lemma found at that position in
the lemma sequence. As an example, consider the definition:

forbause: forbløffe, forundre, overraske
astonish: baffle, puzzle, suprise

The specified transducer will generate a triple sequence of the form:

L: forbause , forundre , overraske
P: VERB KOMMA VERB KOMMA VERB

R: SYN NIL SYN NIL SYN

We subsequently iterate through each triple in this sequence and generate relations from the
sense id found for the definiendum and the sense id(s) found for the lemmas at each position -
unless the relation symbol is NIL . The results for transducer 1 can be seen in Figure 5.2.

Transducer 1: Assignment of HAS_SYNONYM relations for all
definitions consisting of single verbs and comma-
separated verbs

Regex:

I: VERB (KOMMA VERB)*
O: SYN (NIL SYN)*

Statistics
Hits

PoS 4
Def 1866
Lem 2852
Sen 9642

1-to-n Ambiguity

Min 3
Max 32

Mean 6.8138
StdDev 4.8238

Rel Freq

HAS_SYNONYM 20864

Figure 5.2: General data for transducer 1

As we can see, we generate a fairly high number of HAS_SYNONYM relations in this first
step since some the captured PoS pattern classes are among the largest ones. These relations
will act as the foundation for generating synsets, which is explained in Chapter 6.

There are 1866 members in total in these four PoS pattern classes. The total amount of
distinct lemmas found in both definienda and definentia are 2852. These lemmas are tied
to 9642 distinct senses. Due to the 1-to-n target ambiguity, the total number of generated

38

HAS_SYNONYM relations must be taken with a grain of salt. As we can see from the statistics
for the 1-to-n target ambiguity, the average ambiguity is at 6.8 possible senses for a target word.
The maximum number of possible senses for a lemma is at 32, and we can see that no lemma
is completely unambiguous. If we assume that one relation is correct for each target word in
the definiens, we can assume that the minimal amount of unambiguous relations is at least
proportional to the sum of all target words for the captured definientia.

PoS Pattern Class Matches

VERB KOMMA VERB KOMMA VERB KOMMA VERB
more muntre , oppmuntre , underholde , glede
’amuse’ ’cheer’ , ’encourage’ , ’entertain’ , ’delight’

VERB KOMMA VERB KOMMA VERB
kompensere utjevne , godtgjøre , erstatte
’compensate’ ’equalize’ , ’indemnify’ , ’compensate’

VERB KOMMA VERB
støte fornærme , krenke
’offend’ ’insult’ , ’violate’

VERB
respondere svare
’respond’ ’answer’

Table 5.3: Some examples of members of PoS pattern classes captured by transducer 1. Definienda are shown in the
first column.English translations for every example are shown in quotes.

5 Operator Word Generation

During the initial phase of the development of DICT2WN, a lot of time was spent compiling
lists of definitions, looking for patterns and indications of some special behaviour in the
definientia. One of the things that became evindent was that tokens in a definiens could be
designated to three different classes of words, each with differing properties and behaviour.
These three classes of constituents for definientia are defined below and used throughout the
rest of this thesis. The term target word was introduced in Section 2 and is now restricted further.

Target Word A token in some definiens that contains semantic information about the
definiendum it belongs to, represented by its lemma. The set of lemmas belonging to
this class, as well as the set of lemma signs found in definienda, are the sets of words that
we want to generate semantic relations between.

Operator Word A token in the definiens that contains little or no semantic information about
its definiendum, but that instead tends to change the meaning of one or more tokens in its
surrounding context. An operator word is represented by its word-form just like target
words.

Structural Token A token that provides additional structure to the definiens (e.g. commas,
semicolons, parentheses etc.), but that neither adds semantic information to the
definiendum nor changes the meaning of any surrounding tokens in any significant way.

As an example, consider the definition “intensivere: forsterke, gjøre mer effektiv” (en.
“reinforce: make more effective”). The tokens forsterke and effektiv are definitely target words

39

according to our definition, while gjøre is more of a candidate for the class of operator words.
The comma belongs to the class of structural tokens. The last token, mer, is a trickier case which,
as we shall see later, is a general case for a lot of adjectives and adverbs.

It is clear that gjøre affects the semantic value of effektiv by specializing it, implicating that
the definiendum has a causal relationship to something, effective being part of the outcome in
some way. If we remove gjøre, we no longer know if effective is e.g. an inherent property of
that something, or the effect of some cause.

The set of words belonging to these three classes are not neccesarily mutually exclusive.
Very general verbs can sometimes act as both target words and operator words. The
class of operator words generally contain prepositions, verbs that appear near the top of a
hyperonym/troponym hierarchy and what is commonly referred to as light verbs (Butt, 2003).

It seems that we cannot always know the true semantic value of every token in some
definiens. We must therefore assume that there might be tokens elsewhere that must be taken
into consideration. To account for this in DICT2WN, the notion of operator words is formalized
and an algorithm created based on the formalization.

5.1 Operator Word Definition and Example

Definition: Let L be the finite set of all lemmas in use, P the finite set of all
PoS tags in use, R the finite set of all relation types in use, and T a finite set
T = {sel f , le f t, right}.
An operator word is a function λ : T × P→ R.
For some set O of operator words O = {o1, o2, . . . , on}, we define a function
Λ : L → O that maps a lemma to a certain operator word. We refer to a
specific operator word function returned by Λ as o.λ.

Based on this definition, we define an algorithm that makes use of operator words in order
to transform the output from some transducer. This algorithm is described in pseudocode in
Algorithm 1.

The algorithm takes the output from a transducer and searches for an OPER symbol in
the relation sequence, starting at the end of the relation sequence and proceeding towards the
operator word. If such a symbol is found, the Λ function is called with the lemma in the same
position as the OPER symbol as the argument (line 2-4). If Λ returns an operator word, the
algorithm proceeds by searching for an ARG symbol to the right of the operator word; then
to the left of the operator word. In the case that an ARG symbol is found, the operator word
function o.λ is called and the relation symbol at the argument position is replaced with the
symbol returned from o.λ. If there is no defined mapping from the PoS tag/lemma pair found
at the argument position, the ARG relation is kept as it is. Finally, o.λ is called on the operator
word itself according to the same criteria.

Example

We start by definining a very limited set of two operator words. We define an operator word
function o1.λ:

01.λ(t, p) =


NIL if (t, p) = (self, VERB)
CAUSES if (t, p) = (right, ADJ)
INVOLVED if (t, p) = (right, SUBST)

(5.1)

40

We then define another operator word function o2.λ:

02.λ(t, p) =


NIL if (t, p) = (self, PREP)
INVOLVED if (t, p) = (left, SUBST)
HAS_HYPERONYM if (t, p) = (left, VERB)
ENTAILS if (t, p) = (right, ADJ)
CAUSES if (t, p) = (right, SUBST)

(5.2)

Finally, we define the function Λ:

Λ(l) =
{

o1 if l = gjøre
o2 if l = til (5.3)

Consider the following definition:

likerette: gjøre vekselstrøm om til likestrøm
rectify: make alternating current into direct current

We assume that the definiens has been tagged with the PoS tag sequence VERB SUBST PREP PREP

SUBST , which is matched by a transducer of the form:

I: VERB SUBST PREP PREP SUBST

O: OPER ARG OPER OPER ARG

Our resulting triple sequence from the definiens thus becomes:

L: gjøre vekselstrøm om til likestrøm
P: VERB SUBST PREP PREP SUBST

R: OPER ARG OPER OPER ARG

We now have what we need to run Algorithm 1 on our definiens, transforming the relation
sequence in our triple according to our set of operator words. This is shown in Table 5.4.

5.2 Candidate Operator Words

Candidate operator words are found by making a frequency list over all lemma forms of the
words found for verb definitions. The most frequent lemmas tend to either belong to a class
of very general concepts close to the top of a hyperonym hierarchy (e.g. person, country, do,
become, etc.), or the class of words that should be treated as operator words. There is a fuzzy
limit between some lemmas that could belong to both classes. The best way to handle these is
to give them a status of an operator word.

One important question materializing from this step is whether the operator words and
their arguments can be found with similar patterns in natural language. If this is the case,
this step can be generalized further by employing linguistic knowledge instead of manually
searching for patterns in a slightly ad-hoc way.

Lacking some concrete evidence to suggest a significant correlation between general
linguistic theory and my definition of operator words, my choice of strategy fell upon simply
compiling lists of the most frequent contexts for the most frequent lemmas in my data. The
context for some lemma was defined as the n PoS tags to the left and right of the lemma, i.e. a
PoS tag window of size n.

41

Algorithm 1 Relation Sequence Transformation

Require: lem . A sequence of lemma strings
Require: pos . A sequence of PoS tag symbols
Require: rel . A sequence of relation symbols

1: function TRANSFORM(lem, pos, rel)
2: for i← |l|, 0 do
3: if rel[i] = OPER then
4: o ← Λ(lem[i])
5: if o then
6: iRight← FINDARGPOS(i + 1, |l|)
7: iLe f t← FINDARGPOS(i− 1, 0)
8: if iRight then
9: UPDATEREL(iRight, o, right)

10: end if
11: if iLe f t then
12: UPDATEREL(iLe f t, o, le f t)
13: end if
14: UPDATEREL(i, o, sel f)
15: end if
16: end if
17: end for
18: end function
19: function UPDATEREL(i, o, t)
20: rel[i]← o.λ(t, pos[i])
21: end function
22: function FINDARGPOS(start, end)
23: for i← start, end do
24: if rel[i] = ARG then return i
25: end if
26: end for
27: end function

42

gjøre vekselstrøm om til likestrøm Initial input lemma sequence
VERB SUBST PREP PREP SUBST Initial input PoS tag sequence
OPER ARG OPER OPER ARG Initial input relation sequence

OPER ARG OPER OPER ARG Search for OPER symbol
gjøre vekselstrøm om o2 likestrøm Apply Λ(til) = o2
OPER ARG OPER o2 ARG Search for ARG symbol to the right
VERB SUBST PREP o2 CAU Apply o2.λ(right,SUBST) = CAU
OPER ARG OPER o2 CAU Search for ARG symbol to the left
VERB INV PREP o2 CAU Apply o2.λ(le f t,SUBST) = INV
VERB INV PREP NIL CAU Apply o2.λ(sel f ,PREP) = NIL
OPER ARG OPER NIL CAU Search for OPER symbol
gjøre vekselstrøm soper til likestrøm Apply Λ(om) = unde f ined
OPER INV OPER NIL CAU Search for OPER symbol
OPER INV OPER NIL CAU Apply Λ(til) = o1.

o1 INV OPER NIL CAU Search for ARG symbol to the right
o1 INV OPER NIL CAU Search for ARG symbol to the left
NIL INV OPER NIL CAU Apply o1.λ(sel f ,VERB) = NIL .

NIL INV OPER NIL CAU Final output relation sequence

Table 5.4: Example of relation sequence transformation using operator words.

5.3 Second Transducer Generation for BOB

After defining a set of operator words, a second transducer is manually created, targeting
simple two-word definientia consisting of a verb followed by either a noun, adjective or
preposition. The output is now assigned assigned operator words and arguments, instead
of explicit relations. The general data for transducer 1 can be seen in Figure 5.3.

Transducer 2: Assignment of operator words and arguments for
definitions consisting of a verb, followed by either a
noun, adjective or preposition.

Regex:

I: VERB (SUBST | ADJ | PREP)
O: OPER (ARG | ARG | OPER)

Statistics

Hits

PoS 3
Def 701
Lem 1177
Sen 4257

1-to-n Ambiguity

Min 3
Max 40

Mean 7.8643
StdDev 5.7572

Rel Freq

OPER 2105
ARG 1657
HAS_HYPERONYM 575
INVOLVED 353
CAUSES 936
ENTAILS 343

Figure 5.3: General data for transducer 2

When looking at the statistics for generated relations, we see that the largest classes are
OPER and ARG . These are symbols in the transducer output sequence that have not been
transformed. A high number of OPER relations is interpreted as an indication of an incomplete
set of operator words. A high number of ARG relations is interpreted as an indication of an
incomplete set of operations performed by the operator words.

By this interpretation, we have an incomplete set of operator words and argument support.

43

This was to be expected since our method for operator word assignment is somewhat trivial
as of now. A number of other semantic relations are generated however; in addition, the set
of OPER and ARG relations can be turned into a dataset for a further analysis of candidate
operator words and arguments. Such an analysis is not considered in this study.

Some examples of definientia captured by transducer 2 can be seen in Table 5.5.

PoS Pattern Class Matches

VERB SUBST
regne utføre talloperasjon
’calculate’ ’perform’ ’numeric operation’
dekontaminere fjerne smittestoff
’decontaminate’ ’remove’ ’infectious agent’

VERB ADJ
fortjene være verdig
’deserve’ ’be’ ’worthy’
skjerpe gjøre skarp
’sharpen’ ’make’ ’sharp’

VERB PREP
donere gi bort
’donate’ ’give’ ’away’
søke lete etter
’seek’ ’look’ ’after’

Table 5.5: Some examples of members of PoS pattern classes captured by transducer 2. Definienda are shown in the
first column. English translations for every example are shown in quotes.

6 Semi-automatic Transducer Expansion

Using simple transducer patterns along with operator words, we manage to generate a
substantial amount of relations. Still, this only accounts for a very limited subset of the
dictionary, the size of which depends on the variety the of ways that the explanatory parts of
the definitions are formed. PoS pattern classes are not analyzed unless they directly match one
of the regexes devised in the initial step. As we recall from tbl:pos-pattern-list-01 in Section 1,
we have a large number of small PoS pattern classes. To manually create transducers catching
most of these reduces the usability of this method to the point where similar conclusions to the
ones made in the DDO pilot study should be done.

We must therefore find a way to give our algorithm some kind of fuzzy matching of PoS
pattern classes. Section 6.1 presents some observations that lead up to the devised strategy for
transducer expansion explained in Section 6.2 and Section 6.3.

6.1 Observations

We have collected a set of PoS pattern classes P, each representing a unique sequence of PoS
tags. Assuming that similar PoS patterns exhibit similar semantic traits, we want for every PoS
pattern class p ∈ P a set of other PoS pattern classes {q1, q2, . . . , qn} ⊆ P that can be said to
have the most similar sequence to that of p. To get a measure for this kind of similarity, a local
alignment algorithm is applied which is explained in detail in Section 6.2.

We also have a set of operator words O ⊂ V where V is the vocabulary of our data set, that
operate on their surrounding context in a fairly consistent manner. Due to this consistency, one

44

can assume that sentences that share an operator word behave similarly in some way, at least in
the vincinity of that operator word. We can further assume that the degree of similar behaviour
will increase as the number of shared operator words between two sentences increase. Since
the sentences we are concerned with are grouped into PoS pattern classes based on identical
PoS sequences, we should be able to generalize this assumption, transferring these properties
of sentences according to operator word occurrence to the class of sentences sharing a PoS
sequence. In other words, we can compare PoS pattern classes much in the same way we
compare sentences, using the operator words as the members of a bag-of-words vector and
comparing the relative frequencies found for each class. The choice of measurement for this
kind of similarity is explained in detail in Section 6.3.

After attaining a combined similarity metric, we can expand the initial transducers
automatically by analyzing the n most similar PoS pattern classes, creating new input/output
regexes that capture more PoS pattern classes.

6.2 The Smith-Waterman Algorithm

The Smith-Waterman algorithm is a local alignment algorithm originally developed to identify
similar regions between two nucleotide or protein sequences of different lengths. It has also
been applied to similar problems in the NLP fiels (Katrenko et al., 2010). The algorithm takes
two sequences A and B as its input and outputs two aligned sequences A′ and B′ along with
an alignment score s defined by the number of operations that was needed to get the optimal
local alignment. The algorithm is described in detail in Smith and Waterman (1981).

The algorithm starts by filling a n-by-m matrix M where n = |A|+ 1 and m = |B|+ 1. The
matrix is initialized by filling the first row and column with 0:

M(0, j) = 0 where 0 < j < n
M(i, 0) = 0 where 0 < i < m

The cells are then traversed row by row and given a score according to the function shown
in Equation (5.4). This function makes use of a scoring function w that returns a value based
on the operation performed at this point (either match, mismatch, insertion or deletion). In
this case, the values returned are as defined in Equation (5.5). The motivation for choosing this
particular scoring function is based on the fact that we usually start defining transducers for
very short sequences. There is thus little value in looking for shorter sequences. A mismatch
is given a lower score than an insertion for the same reason, making sure that the expansion
looks for sequences increasing in size and tries to match PoS tags as often as possible.

Additionally, information about the cell with the highest score from the choices in
Equation (5.4) is stored in order to create a path for the subsequent traceback.

M(i, j) = max


0
M(i− 1, j− 1) +w(ai, bj) Match/Mismatch
M(i− 1, j) +w(ai,−) Deletion
M(i, j− 1) +w(−, bj) Insertion

 , 1 ≤ i ≤ m, 1 ≤ j ≤ m

(5.4)

w(ai, bj) =


Match = 1
Mismatch = −2
Insertion = −1
Deletion = −3

(5.5)

45

When the matrix is completely filled, a traceback through the matrix is performed starting
from the cell with the highest score. The traceback follows the path according to the
direction stored in the cell (i.e. the cell that was found to have the highest score according
to Equation (5.4)), and terminates either when it encounters a score of 0, or when the cell at
position (0, 0) is reached. The traceback gathers the coordinates found for every cell reached,
inferring insertions, deletions and match/mistmach operations on the original sequences based
on the path taken. In addition, the scores for each cell that was traversed in the traceback
procedure are accumulated, giving an overall alignment score.

Alignment

VERB —— PREP —— ——
VERB PRON PREP KOMMA VERB
OPER NIL OPER NIL NIL

Table 5.6: The result of an alignment of VERB PREP and VERB PRON PREP KOMMA VERB along with the aligned
relation sequence.

Some modifications are done to the algorithm in order to use its output for transducer
expansion. The returned score is normalized and interpreted as a distance measure between the
two original sequences. In addition, the relations defined in the transducer output is aligned
using the same traceback coordinates as was found for sequence A, giving a third sequence
C′. An example is shown in Table 5.6. By displacing the relation symbols the same way as
the aligned sequence of PoS tags, the assumption is that patterns containing similar semantic
content will be discovered, while parts of the definientia that might cause trouble or demand
additional specifications of transducer and/or operator words are ignored.

6.3 Augmenting the Similarity Scores: Bag-of-Words

The scores acquired from the alignment have a low resolution, meaning that a lot of PoS pattern
classes will have the exact same score. To add some more nuance to the scores, an additional
similarity metric is used. This metric is based on the Jensen-Shannon divergence (Lin, 1991),
also known as Information Radius.

A vector is created for each PoS pattern class, acting as a bag-of-words. The vector is
constructed from the list of operator words made in the prior step. For each PoS pattern
class, the lemma forms of the definientia belonging to that class are counted; given that they
also exist in the list of operator words. The PoS pattern classes are then compared using the
Jensen-Shannon divergence formula, and the resulting similarity scores are stored alongside
the alignment scores. To get the n-best PoS pattern classes for a given PoS pattern class, its
potential n-best matches are sorted in descending order using both the alignment score and the
similarity score before picking the n PoS pattern classes at the top.

6.4 Example: Expansion of Transducer 2

To show how the algorithm behaves, a 5-best expansion transducer 2 is presented below. A
second iteration of expansions is performed, but only the results of the second iteration is
shown together with the first iteration in Table 5.10.

The transducer initially matches three PoS pattern classes: “ VERB PREP ”, “ VERB SUBST ” and “
VERB ADJ ”. For each of these classes, the 5 best PoS pattern classes, i.e. the 5 top scoring classes
according to the alignment score and Jensen-Shannon divergence are collected and aligned.

46

The 5 best PoS pattern classes, their alignment with the original PoS pattern class and the
scores are shown in Table 5.7.

Alignments for VERB ADJ ScrAl ScrSim

VERB ADJ —–
VERB ADJ PREP 0.75 5,602 797 3 · 10−5

VERB ADJ —–
VERB ADJ SUBST 0.75 5,401 988 · 10−5

VERB ADJ —–
VERB ADJ CLB 0.75 5,376 750 8 · 10−5

VERB —– ADJ
VERB ADJ ADJ 0.75 4,668 838 · 10−5

VERB ADJ
VERB UKJ 0.67 2,758 744 2 · 10−4

Table 5.7: 5-best PoS pattern alignments for the PoS pattern class VERB ADJ , along with alignment scores (ScrAl)
and bag-of-words similarity scores (ScrSim) for each alignment.

Inference of New Regexes After aligning all sequences, matrices are constructed based on
the results. For each position in the aligned PoS pattern sequences, a column is made, and
all variations of input and output symbols for that position are collected. Table 5.8 shows the
columns constructed from the previous 5-best alignment step.

Expansion Columns for VERB PREP)

VERB VERB OPER PREP PREP OPER —— SUBST ——
VERB VERB OPER PREP PREP OPER —— ADJ ——
VERB VERB OPER PREP PREP OPER —— PRON ——
VERB VERB OPER —— PREP —— PREP PREP OPER
VERB VERB OPER PREP PREP OPER —— ADV ——

Expansion Columns for VERB SUBST)

VERB VERB OPER SUBST SUBST ARG —— CLB ——
VERB VERB OPER SUBST SUBST ARG —— PREP ——
VERB VERB OPER SUBST SUBST ARG —— PAREN ——
VERB VERB OPER SUBST SUBST ARG —— ADV ——
VERB VERB OPER SUBST UKJ ARG

Expansion Columns for VERB ADJ)

VERB VERB OPER ADJ ADJ ARG —— PREP ——
VERB VERB OPER ADJ ADJ ARG —— SUBST ——
VERB VERB OPER ADJ ADJ ARG —— CLB ——
VERB VERB OPER —— ADJ —— ADJ ADJ ARG
VERB VERB OPER ADJ UKJ ARG

Table 5.8: Expansion columns generated from the 5-best transducer expansion of transducer 2

The columns are subsequently collapsed into sub-regexes using some simple heuristics:

1. All identical input-output pairs in a column are condensed into one input-output pair.

47

2. If there are input pairs with matching inputs and one or more of these pairs have NIL as
the output, the pairs with NIL as output are discarded, hence prioritizing occurences of
input matches that actually produce some output.

3. All unique input-output pairs (if they are more than one) are interpreted as disjunctions.

4. If a column contains an input-output pair where both the input and output is NIL, a
zero-or-one operator “?” is added.

Collapsed Columns for VERB PREP

VERB OPER PREP NIL ADV NIL
NIL NIL PREP OPER
PREP OPER PRON NIL

ADJ NIL
SUBST NIL
NIL NIL

New input/output regexes inferred from the collapsed columns

VERB PREP ? (ADV | PREP | PRON | ADJ | SUBST) ?
OPER OPER ? (NIL | OPER | NIL | NIL | NIL) ?

Collapsed Columns for VERB SUBST

VERB OPER UKJ ARG ADV NIL
SUBST ARG PARENTES-SLUTT NIL

PREP NIL
CLB NIL
NIL NIL

New input/output regexes inferred from the collapsed columns

VERB (UKJ | SUBST) (ADV | PAREN | PREP | CLB) ?
OPER (ARG | ARG) (NIL | NIL | NIL | NIL) ?

Collapsed Columns for VERB ADJ

VERB OPER UKJ ARG ADJ ARG
ADJ NIL CLB NIL
NIL NIL SUBST NIL
ADJ ARG PREP NIL

New input/output regexes inferred from the collapsed columns

VERB (UKJ | ADJ) ? (ADJ | CLB | SUBST | PREP)
OPER (ARG | ARG) ? (ARG | NIL | NIL | NIL)

Table 5.9: Collapsed columns and new input-output regex pairs generated from the results from Table 5.8.

Finally, the sub-regexes are concatenated, resulting in new input-output strings for a new
set of transducers. Table 5.9 shows how the columns from Table 5.8 are collapsed and regexes
for three new transducers are made.These new transducers will match a higher number of PoS
pattern classes. The amount of matched PoS pattern classes has gone from three PoS pattern
classes in the initial transducer to 25 PoS pattern classes in the three inferred transducers.
Due to the nature of the alignment algorithm and the operator word functionality, the new
transducers generally add relations only to similar structures within the definientia while
ignoring previously unseen combinations.

48

The expansion procedure decreases the amount of work required to discover patterns that
occur throughout the dictionary. The scrutinization of lists over PoS patterns and glosses are
mostly transferred from the user to the program, enabling the user to concentrate on the general
properties of operator words. The process can be repeated on the generated transducers,
enabling an iterative pseudo-bootstrapping over the source material.

After the first expansion of transducer 2, we perform a second iteration of transducer
expansion, meaning that the inferred transducers are expanded in the same way that the
original manually created transducer was expanded.

Rel 2.1 2.1.1 2.2 2.2.1 2.3 2.3.1

OPER 18087 29043 0 554 0 554
ARG 0 0 2263 5800 7972 14872
ENTAILS 501 694 370 441 133 416
INVOLVED 47 85 777 900 0 751
HAS_HYPERONYM 189 1684 1315 1792 1564 1787
CAUSES 0 0 942 1050 997 1050

Table 5.10: Relation frequency for all expansions of transducer 2. The relation type is shown in the leftmost column.

The third and final transducer generated manually was devised by looking at the largest
PoS pattern classes not captured by any transducer. We remember from Section 1.1 that some
PoS pattern classes contain only non-explanatory glosses. Taking these out of the consideration,
the choice fell upon the pattern VERB KOMMA VERB ADJ . The transducer was specified match only
this PoS pattern class and subsequently put through a 10-best expansion.

Rel 3 3.1

ARG 283 1141
ENTAILS 108 232
INVOLVED 0 259
HAS_HYPERONYM 721 11248
CAUSES 115 145

Table 5.11: Relation frequency for transducer 3 and its expansion 3.1. The relation type is shown in the leftmost
column.

7 Summary

All transducers, both manually created and the expansions, are listed in Table D.1. A summary
of the measurements done in the previous sections is shown in Table 5.12.

49

General Stats 1-to-n Ambiguity

Id PoS Def Lem Sen Rel Min Max Mean StdDev

1 4 1866 2850 8381 17683 3 31 5.7788 3.8326
2 3 701 1168 3656 4970 3 36 6.8837 5.2342
2.1 28 2147 1760 4633 16054 3 33 10.6530 7.0458
2.1.1 65 2480 2178 5700 26195 3 58 11.8315 7.7909
2.2 24 1764 1166 3298 4653 3 36 6.3740 4.6827
2.2.1 67 2463 1506 4309 7253 3 36 7.3411 5.3609
2.3 29 2115 919 2099 8197 3 36 10.8858 5.8813
2.3.1 63 2432 1827 4565 19430 3 36 9.8185 5.9721
3 1 71 188 856 1065 3 36 7.5532 5.8083
3.1 19 1360 2090 6364 10711 3 36 6.7577 5.2073

Table 5.12: Summary of initial measures for all transducers. The columns show the transducer id (Id), the number
of captured PoS patterns, definitions, lemmas and senses (PoS, Def, Lem and Sen, respectively). Sen gives the
number of semantic relations generated (OPER and ARG relations omitted). The last four columns give the 1-to-n
ambiguity measures. Min and Max gives the minimum and maximum 1-to-n ambiguity encountered, while Mean
and StdDev gives the mean and standard deviation.

50

Chapter 6

Graph Generation

So far, we have devised three transducers, two of which have been subject to transducer
expansion. We now move on to the task of processing the resulting set of relations generated by
these transducers. We start by defining three types of graphs in Section 1 in order to establish
the formal components we need for this stage. We then proceed to the removal of non-semantic
relations and the merging of the relation data generated by all transducers in Section 2. After
this step, some graph manipulation steps done for the purpose of reducing the 1-to-n target
ambiguity. This is described in Section 3, ?? and Section 3.2. Finally, an attempt at automatic
synset inferrence is described in Section 3.3.

1 Graph Types

We define three types of graphs that we need: the sense graph, lemma graph and synset graph
There are three types of graphs with slightly different characteristics available. Formal

descriptions of the graphs as well as examples follow:

1.1 Sense Graph

The sense graph is the initial graph created by the transducers. Each node is identified by an
integer corresponding to a definition ID in BOB. The graph corresponds to the 1-to-n ambiguity
in the form of one or more edges from one source lemma to the possible target lemmas. If there
is only one edge, the relation is unambiguous. This is the most detailed of the three graphs,
and it serves as the foundation for the other two graphs.

Definition: A sense graph is a directed graph represented as a 4-tuple
(N, L, λ, R) where:

N is a finite set of nodes identified by a sense ID

L is a finite set of strings that represent the lemmas occurring in the graph

λ is function N → L, mapping a sense ID to a lemma

R is a set of labeled edges (relations) {r1, r2, ...rn} where r = {(x, y)|r(x, y)}
and x, y ∈ N × N.

A visual representation of a small sense graph is shown in Figure 6.1.

51

Figure 6.1: An example of a sense graph.

1.2 Lemma Graph

The lemma graph gives an overview over the concepts and is used for N things. It is used for
generating lists showing the general relation between two lemmas, omitting information about
sense. Each node is represented by a string. Every node also contains a list of integers, each
integer representing a possible sense for the lemma in question.

Definition: A lemma graph is a directed graph represented as a 4-tuple
(N, I, λ, R) where:

N is a finite set of nodes identified by a string (i.e. the lemma)

I is a finite set of integers that represent sense IDs

λ is function N → I, mapping a lemma to a sense ID.

R is a set of labeled edges (relations) {r1, r2, ...rn} where r = {(x, y)|r(x, y)}
and x, y ∈ N × N.

A visual representation of a lemma graph is shown in Figure 6.2. Observe the difference
between the unique identificator for the nodes in this graph as compared to the unique
identificator in the sense graph.

Figure 6.2: An example of a lemma graph

52

1.3 Synset Graph

The synset graph represents the final graph, ready to be translated into a wordnet. It is an
abstraction of the sense graph. Every node contains a list of integers representing senses that
are considered to be synonyms. As in the sense graph, each integer is mapped to a lemma,
corresponding to the definition id’s in BOB.

Definition: A synset graph is a directed graph represented as a 6-tuple
(S, L, I, λ, γ, R) where:

S is a finite set of nodes identified by an integer (synset ID)

L is a finite set of strings that represent lemmas

I is a finite set of integers that represent sense IDs.

λ is function I → S, mapping a sense ID to a synset.

γ is function I → L, mapping a sense ID to a lemma.

R is a set of labeled edges (relations) {r1, r2, ...rn} where r = {(x, y)|xry}
and x, y ∈ S× S.

Figure 6.3: An example of a synset graph

2 Cleanup and Merge

We start by removing the non-semantic relations OPER and ARG in order to focus our
measurements on the relations that are actual candidates for the final wordnet data. As we
remember from the observations done in Chapter 9, a large number of relations were not
transformed due to an incomplete set of operator words and arguments. As can be seen in
Table 6.1, the reduction is substantial but we still have a number of relations to work with.

After this clean-up, the relation data from all transducers are merged into one single sense
graph by taking the union of all sets of relations. This will reduce the number of relations
further because of overlapping transducer results. The resulting sense graph statistics can be
seen in ??

A summary is in order to recap what we have done so far. We have created three
transducers manually. Transducer 1 has been assigned HAS_SYNONYM relations directly and
has not been subject to transducer expansion. Transducer 2 used an input/output regex that
originally matched three PoS pattern classes. This transducer was subject to two iterations
of transducer expansion, the first iteration performing a 5-best expansion while the second
iteration performed a 10-best expansion. The third transducer targeted one specific PoS pattern

53

Id Before After

1 20864 20864
2 5969 2207
2.1 18824 737
2.1.1 31506 2463
2.2 5667 3404
2.2.1 10537 4183
2.3 10666 2694
2.3.1 19430 4004
3 1227 944
3.1 13025 11884

Table 6.1: Relation count after removing non-semantic relations.

Transducer merged: The sense graph resulting from the merging of all
transducers

Regex:

Statistics

Hits

PoS 103
Def 4033
Lem 5414
Sen 16829

1-to-n Ambiguity

Min 3
Max 64

Mean 9.0227
StdDev 7.5911

Rel Freq

HAS_SYNONYM 20864
HAS_HYPERONYM 13063
INVOLVED 1244
ENTAILS 1430
CAUSES 1195

Figure 6.4: General data for transducer merged

54

class and was subject to a single 10-best expansion. This has resulted in the targeting of
103 PoS pattern classes in total. The total sum of members for these PoS classes amounts to
4033 definientia. 5414 unique lemmas have been encountered in the targeted definienda and
definientia, pointing to a total of 16829 possible senses. We will now attempt to reduce the
1-to-n ambiguity.

3 Graph Manipulation

Statistics on the resulting sense graph are compiled to give an overview of the structure and
quality, as well as to provide a foundation for graph manipulation in order to improve its
quality before being subject to manual post-processing. A number of properties are interesting
in this respect, and are presented in the following section.

3.1 Disambiguation by PoS Tags

The first disambiguation step is to reduce the number of potential senses for target words
according to their PoS tag. As described in Chapter 4, each definition is part of an article
with a defined grammatical code which is converted to an equivalent PoS symbol compatible
with OBT+Stat. Each word in the definiens is tagged with a PoS tag. We now assume that a
target word with a certain PoS tag should point to articles describing definienda with identical
lemmas, and an identical grammatical class. For example, a target word like finne ’(to) find’
tagged as a verb is much more likely to point to definitions for finne that describe a verb, rather
than a noun - it makes no sense that the verb finne would have a candidate sense belonging to
the noun finne, describing a person from Finland.

By finding the translated PoS tag for articles containing the senses pointed to by a target
word, we can exclude the ones that are unlikely to be sense candidates for that particular target
word.

3.2 Disambiguation by Cycles

Cycles that occur in HAS_HYPERONYM and HAS_SYNONYM relations are interesting
phenomena. They do not occur very often, but when they do, they should be investigated. To
discover such cycles, a depth-first search was executed on the sense graph. When a previously
visited node is revisited, we know that a cycle has been discovered.

Finding cycles in HAS_SYNONYM chains is not suprising when the source material is taken
into consideration. When making lists of synonyms for a definition, the closest synonyms will
spring to mind. Given two closely synonymous words, the probability of them appearing in
each others definiens should be significant.

Cycles occuring in HAS_HYPERONYM chains are more interesting. This can be interpreted
in two ways. Either, the dictionary definition is inconsistently formed; it should rather be
formed according to the way synonyms are represented. Or, we have encountered two verbs
whose relation is hard to decide upon. Given that the wordnet hierarchy for verbs tends to be
shallow and bushy rather than treelike, we assume that in both cases a HAS_SYNONYM relation
should be preferred.

The final graph contains 218 HAS_SYNONYM cycles and 31 HAS_HYPERONYM cycles. This
does not amount to much, but as we are working on an incomplete sense graph we can assume
that these numbers will increase with a more complete set of operator words and a larger
transducer coverage of the dictionary.

55

Cycles discovered in HAS_SYNONYM chains contribute to the disambiguation of the 1-to-n
target ambiguities for the involved nodes. In a HAS_SYNONYM cycle, the relation that closes the
loop from the last node in the cycle to the first one gives rise to an unambigious path, as can be
seen in ??. This is due to the 1-to-n ambiguity and the symmetric property of HAS_SYNONYM
relations. The relations that make up such a path are kept while the others are discarded.

20207 (forstå)

20208 (forstå)

20209 (forstå)

997390 (forstå)

997391 (forstå)

51158 (oppfatte)

1043474 (oppfatte)

51159 (oppfatte)

51160 (oppfatte)

1043475 (oppfatte)

5301 (begripe)

975973 (begripe)

975972 (begripe)

5302 (begripe)

5300 (begripe) 16508 (fatte)

16509 (fatte)

992087 (fatte)

992086 (fatte)

16507 (fatte)

16505 (fatte)

16506 (fatte)

Figure 6.5: Example of disambiguation by synonym cycle

Cycles discovered in HAS_HYPERONYM chains indicate inconsistencies in the dictionary
and/or concepts that are difficult to define hierarchically. In most of these cases, it is relatively
safe to assume that a HAS_SYNONYM relation should replace the HAS_HYPERONYM relation.
We thus change the HAS_HYPERONYM relations making up the cycle into HAS_SYNONYM
relations and disambiguate these paths in the same way as for HAS_SYNONYM paths, reducing
the 1-to-n target disambiguation. Table 6.2

Cleanup DPoS DHypCyc DSynCyc

Rel 37796 32135 31817 29965
AMin 3 3 3 1
AMax 64 62 62 58
AAvg 9.0227 7.7081 7.6318 7.2379
AStd 7.5911 6.3011 6.1934 6.0339

Table 6.2: Results from cleanup and partial disambiguation the final sense graph.

3.3 Inferring Synsets from HAS_SYNONYM Relations

Transducer 1 was created for the purpose of generating a large sum of HAS_SYNONYM
relations. The assumption was that this would provide a solid ground for synset creation.
Since the HAS_SYNONYM relation is both symmetric and reflexive, the assumption was that the
inference of synsets would consist of iterating through each HAS_SYNONYM relation, adding

56

both the LHS and RHS to a synset if one of them was found to be a member of some synset,
or to create a new synset if no such membership was discovered.

It turns out that this strategy is too agressive. When applied to the resulting sense graph
where the majority of the HAS_SYNONYM relations have a high degree of 1-to-n target
ambiguity, the inferred synsets start out with an acceptable size. But as the synsets grow
bigger, so does the probability of merging two separate synsets by a single invalid relation.
After processing all relations, most senses have been merged into one enormous synset. To
make sure that the conversion of HAS_HYPERONYM cycles to HAS_SYNONYM cycles was not
the cause, the synset inference was done for both versions. The same phenomenon occurred in
both graphs.

The inevitable conclusion thus seems to be that the proposed method of synset inference
must be applied to the resulting data from a graph that has a much lower 1-to-n target
ambiguity and a low rate of invalid relations. The automatic reduction of 1-to-n target
ambiguity done in was not sufficient to prevent this from happening.

57

58

Chapter 7

Manual Post-Processing

Evaluating a wordnet when there is no previous project to compare it with is not a trivial task.
In the event that an existing wordnet is available, it may be used as a near-gold standard.
This will however not give much information about any new relations gained from the new
wordnet as it will be difficult to determine whether the new relation is a false positive or a
missing relation in the near-gold standard. Besides, if there is an already existing wordnet
available, the motivation for creating a new one comparable to the existing one is obviously
not as big.

The best evaluation approach will in most cases be to establish an upper-bound measure
based on a set of human annotators, evaluating either all the generated relations or a randomly
selected subset. In the latter case, an approximate measure of the quality of the wordnet
can be given with a confidence level depending on the size of the subset. Furthermore, by
combining the results from the annotators and using some agreement measure, one can attempt
to identify difficult areas for both the method and the source material. Finally, the manual word
sense disambiguation can also be incorporated in this step, reducing the total amount of post-
processing work somewhat. Section 1 gives a general description of the post-processing and
annotation task. Section 2 presents the application developed for the annotators. The post-
processing done by the annotators for this study is investigated in Section 3.

One important requirement for such an evaluation approach is that it should be efficient
to the point where it is clearly beneficial in comparison to building a wordnet manually.
Measurements of the time spent on post-processing relations are presented in Section 3.4.

1 Description of the Post-processing Step

The goal of the post-processing step in this study is to mark relations as either correct
or incorrect the final output of DICT2WN, and to disambiguate relations considered to be
correct. A lemma graph created from the final sense graph is used. Each relation between
an unambiguous definiendum and a possibly ambiguous target word in its corresponding
definiens is defined either to be valid or invalid. If it is valid, a disambiguation is done where
one or more of the senses contained in the node representing the target word is chosen to be
correct.

In addition, a timestamp for every operation on the evaluated relation set is registered in
order to get an approximate measure for the time spent on the manual labor.

59

2 The Post-Processing Application: DICT2WNPP

DICT2WN contains functionality for exporting its generated graphs to a separate SQLite
database for further processing. An application was developed to make the manual post-
processing as efficient and easy as possible. The application is written in Java, presenting
the user with a graphical user interface showing one relation at a time, along with a list of
one or more possible nodes that the relation can point to. Since each relation has a 1-to-n
ambiguity, the possible choices of nodes presented to the user is restricted to the right-hand side
of the relation. The user thus has the possibility of either disambiguation (thereby accepting
the relation) or invalidation. A set of possible actions that the user can perform are explicitly
defined, and triggered based on the users actions on the interface.

Figure 7.1: Screenshot of the post-processing application for Dict2WN

Whenever the user performs one of the defined actions, the action type and a timestamp
corresponding to the point in time when the user performed the action is stored. This list of
actions and corresponding timestamps serves as the foundation for the workload evaluation.
By examining the amount of time that has passed between each event, one can get an average
measure of the time spent post-processing a relation. The actions defined for the post-
processing is defined in Table 7.1.

To prevent coffee breaks etc. from affecting the workload statistics, intervals at 5 minutes
and higher were ignored. This was considered a safe threshold based on tests during the
creation of Dict2WNPP, measuring the amount of time it takes to select between the possible
actions, including a search for the lemmas in question on the web and in BOB itself.

It was deemed unrealistic to expect the participants to completely post-process all the
relations. Because of this, the list of relations is ordered in a way that corresponds to the
frequency distribution of PoS pattern classes captured by the method. The same list of relations
is sent to each participant. The post-processing result with the smallest amount of relations
defines the number of relations to use for the main agreement statistics. Higher numbers of
relations are treated the same way, but with fewer annotators. Due to the ordering of the
relations, this will nonetheless ensure that the agreement rate is based on a set of random trials
that roughly correspond to the overall distribution of the result as a whole.

60

Name Description

DISAMBIGUATE Registered when a user is done selecting
one or more possible relations for an
ambiguous relation.

INVALIDATE Registered when a user requests the next
relation without selecting any of the pos-
sible relations for the current relation.

UNDO_DISAMBIGUATION Registered when a user selects a relation
from the list of disambiguated relations.

UNDO_INVALIDITATION Registered when a user selects a relation
from the list of invalid relations.

SKIP Registered when a user skips a relation
without invalidating or disambiguating it.

Table 7.1: Overview of the possible actions that can be performed by the user of the post-processing application
made for Dict2WN.

3 Annotation Study

A total of three participants took part in the post-processing step, deciding upon correct and
incorrect relations and annotating correct relations with the appropriate target senses. All three
annotators have experience with lexical semantics, and are given guidelines as specified in
the manual for DICT2WNPP (see Appendix B). Table 7.2 gives an overview over the post-
processing done by the three annotators. The total number of post-processed relations can
be seen in the Total column, while the columns Disambiguate, Invalidate and Skip show the
individual distribution of actions for each annotator.

Annotator Disambiguate Invalidate Skip Total

1 402 (0.703%) 168 (0.294%) 2 (0.003%) 572
2 176 (0.680%) 65 (0.251%) 18 (0.069%) 259
3 460 (0.755%) 149 (0.245%) 0 (0.000%) 609

Table 7.2: Individual results for each annotator participating in the post-processing. The last column (Total)
represents the total number of relations post-processed by each individual annotator.

Initially, the results seem to be somewhat positive, although the disambiguation ratio
could of course have been even higher. It should be noted that the one annotator with the
highest disambiguation ratio happens to be the author of this thesis, something that shows the
importance of having more than one annotator when trying to evaluate the outcome of such
a project. In addition, the two annotators with the highest disambiguation ratio have both
worked together on lexicographic projects before, and have both been working on NorNet
specifically. The annotator with the lowest disambiguation ratio is the one that could said to
be the least biased, having worked on entirely different projects than the two other annotators.
The importance of a diverse set of annotators is thus shown quite clearly here.

To investigate how often the annotators agree upon the possible actions to perform per
relation, we need to dive into the details of the results. The individual results attained from the
three annotators were combined into two data sets, referred to as the 3-annotator and 2-annotator

61

data set from now on. The 3-annotator data set contains 259 relations that were post-processed
by all three judges. The 2-annotator data set contains the 259 relations from the 3-annotator
set, plus 313 relations that were post-processed by two annotators. The results from the third
annotator contributing to the 3-annotator data set is only considered when analyzing the 3-
annotator data set.

3.1 Using Fleiss’ Kappa for Agreement Measures

There are a number of ways to measure agreement between a set of annotators (e.g. annotators,
psychologists, etc.), the more popular ones making use of the Kappa coefficient as defined in
Equation (7.1) (Carletta, 1996):

κ =
P(A)− P(E)

1− P(E)
(7.1)

where P(A) is the relative observed agreement among a set of annotators and P(E) is the
proportion of times one would expected the annotators to agree by chance.

In many cases, Cohen’s Kappa measure is used for measuring pairwise agreement between
two annotators. In our case however, we are dealing with more than two annotators. I thus
have the choice of either making some comparison matrix of Cohen’s Kappa measures for all
three annotators, finding an adequate average measure for the matrix as a whole, or using an
agreement measure generalized to two or more judges. I have decided to make use of the latter.

Fleiss’ kappa is such a generalization, giving a measure for the agreement between a fixed
number of annotators for some number of categorical ratings. It is defined through a number
of steps (Fleiss et al., 1971), all of which are described in the context of the annotation process
explained earlier. Measurements from both the three-annotator dataset and the two-annotator
dataset are also provided at each step.

Using the same notation as Fleiss, we let the subscript i = 1, . . . , N represent the relations (N
represents the total number of relations in the dataset), and the subscript j = 1, . . . k represent
the categories. In our case, k = 3 for the ordered set of categories {Disambiguate, Invalidate,
Skip}.

We first find the proportions pj of all assignments that were assigned to the jth category .

pj =
1

Nn

N

∑
i=1

nij (7.2)

where n is the number of actions taken per relation (which in our case is equal to the number
of annotators) and nij is the number of raters who assigned the ith subject to the jth action. The
resulting distribution of category assignments for our two datasets are shown in Table 7.3.

Dataset Disambiguate Invalidate Skip

3-Annotator 0.667 0.310 0.023
2-Annotator 0.726 0.272 0.000

Table 7.3: Per-action agreement ratios (pj) for the two post-processing sets, calculated with Equation (7.2).

The number of skipped relations turned out to be quite low and is therefore not considered
to be very usable for any general remarks, other than as a part of the general Kappa measure.
They are however included for the sake of completeness wherever neccessary. We can see that

62

these numbers seem to stand in proportion to the ones given in the individual annotator results
shown in Table 7.2.

After finding proportions of the assignments, we move on to measuring the extent of
agreement for each relation, denoted by Pi where i is the relation number:

Pi =
1

n(n− 1)

(
k

∑
j=1

n2
ij − n

)
(7.3)

As before, n is the number of actions taken per relation. i iterates through each relation,
while n2

ij represents the number of annotators deciding upon the j’th action for the i’th relation.
An excerpt of the agreement list for all relations (Pi’s) is shown in Table 7.4. The complete

lists of Pi agreements are not included as they are not very informative.

3-ANNOTATOR

Id Relation Dis Inv Skip Pi

54 oversende HAS_HYPERONYM sende 3 0 0 1.00
55 undres ENTAILS over 0 3 0 1.00
56 klappe HAS_HYPERONYM legge 3 0 0 1.00
57 rokere HAS_HYPERONYM utføre 2 1 0 0.33
58 urbanisere CAUSES bymessig 3 0 0 1.00

2-ANNOTATOR

Id Relation Dis Inv Skip Pi

114 tolke ENTAILS uttrykk 1 1 0 0.0
115 telefonere HAS_HYPERONYM ringe 0 2 0 1.0
116 skeivle HAS_HYPERONYM bringe 2 0 0 1.0
117 trimme HAS_HYPERONYM mosjonere 1 1 0 0.0
118 vringle ENTAILS vrang 2 0 0 1.0

Table 7.4: An excerpt of the per-relation agreement table Pi generated using Equation (7.3). Each row represents one
relation, each identified by a number (the Id column). The Relation column shows the actual relation, presented
at lemma level. The Dis, Inv and Skip columns show the number of annotators that performed a disambiguate,
invalidate or skip action respectively, for the relation. The Pi shows the agreement score, with 0 n̄o agreement and
1 f̄ull agreement.

A summary of the information from the Pi agreement tables is presented in Table 7.5, listing
the ratio of fully agreed, partially agreed and completely disagreed decisions for the post-
processed relations. Partially agreed decicions are not applicable to the two-annotator data
set since two annotators will always wholly agree or disagree.

Dataset Full Agreement Partial Agreement No Agreement

Count Perc Count Perc Count Perc
Three-Annotator 127 49.03% 126 48.65% 6 2.32%
Two-Annotator 384 67.13% N/A N/A 188 32.87%

Table 7.5: Agreement ratio summary created from the list of per-relation agreements (calculated using Equation (7.3)
and subsequently summed up).

The results show that out of 259 post-processed relations, only about half are fully agreed
upon by all annotators in the three-annotator set. The ratio for full agreement in the two-

63

annotator set is higher, but since there is no possibility for partial agreement between two
annotators, these two measures should probably not be trivially compared. We will thus focus
mostly on the three-annotator data set.
We find the overall agreement measure P̄ by taking the mean of the Pis:

P̄ =
1
N

N

∑
i=1

Pi (7.4)

This gives us the probability of some relation being given the same category by two different
annotators. The results for our two datasets can be found in the P̄ column in Table 7.6. The
values for the two datasets are close together indicating that one can apply the conclusions
drawn on the smaller three-judge dataset to the bigger two-judge dataset.
Going further, we form a null hypothesis H0 that the annotators select categories for each
subject randomly:

P̄e =
k

∑
j=1

p2
j (7.5)

where once again, j iterates over the categories 1 . . . k and p2
j is the squared proportion of all

assignments that were assigned to the j’th category. The results of this is given in the P̂e column
in Table 7.6.
By now we have enough measures to arrive at our definition of the general Kappa statistic:

κ =
P̄− P̄e

1− P̄e
(7.6)

The resulting κ measurements for our two datasets along with their variance and standard
error are shown in the κ, Var(κ) and SE(κ) columns respectively in Table 7.6.

Dataset P̄ P̄e κ Var(κ) SE(κ) κ/SE(κ) Confidence Interval

3-Annotator 0.6525 0.5412 0.2426 0.0019 0.0439 5.5304 (0.15664437 0.32862565)
2-Annotator 0.6713 0.6016 0.1751 0.0026 0.0514 3.4082 (0.07440292 0.27579758)

Table 7.6: Overview of the general measures for the Fleiss’ Kappa Statistics. The columns show the overall
agreement measure (P̄), the overall probability for a random decision (P̄e), the Kappa measure for the dataset as a
whole (κ), the variance (Var(κ)), standard error (SE(κ)) and final z score (κ/SE(κ)) for the Kappa measure.

The overall Kappa measures for the two datasets are not very encouraging, the 3-annotator
dataset being the only one falling within the bottom end of what is generally considered to
be fair agreement (0.20 - 0.39). However, the confidence intervals (κ ± 1.96SE(κ)) do not cross
0, which indicates that there is in fact at least a small statistic significance in the agreement
rates. Still, the overall impression so far is that there is a general problem deciding upon which
relations are correct and which are not.

Kappa Measures for Individual Actions

Fleiss describes a way to generate kappa values for each individual category. In our case, the
categories are the possible actions to take for some relation, i.e. Disambiguate, Invalidate and
Skip. The results for these measurements for both data sets are shown in Table 7.7.

64

3-ANNOTATOR

Action ∑i n2
ij pj P̄j κj Var(κj) SE(κj) κj/SE(κj)

Disambiguate 1292 0.6667 0.7471 0.2413 0.0208 0.1441 1.6751
Invalidate 481 0.3102 0.4979 0.2722 0.0088 0.0940 2.8954
Skip 18 0.0232 0.0000 -0.0237 0.0183 0.1351 -0.1755

2-ANNOTATOR

Action ∑i n2
ij pj P̄j κj Var(κj) SE(κj) κj/SE(κj)

Disambiguate 1475 0.7264 0.7750 0.1775 0.0282 0.1680 1.0570
Invalidate 435 0.2719 0.3987 0.1742 0.0123 0.1108 1.5727
Skip 2 0.0017 0.0000 -0.0018 0.5061 0.7114 -0.0025

Table 7.7: Overview of agreement measures for each individual action. The columns show the squared sum of
decisions for each action (∑i n2

ij), the per-action agreement ratio as (pj), the overall agreement measure for the
action, (P̄j), the Kappa measure for the action (κj) along with the variance (Var(κj)), standard error (SE(κj)) and
final z score κj/SE(κj).

It seems that Invalidate is the action that is the most agreed upon. The overall ratio of
invalidations in the three-annotator data set are at approximately 31% with a Kappa measure
of 0.2722 and a low standard error. This is perhaps the best estimate we can do for the results
of DICT2WN.

3.2 Relation Frequency Distributions

Frequency distributions over relations found in the annotator datasets were compiled in order
to gain some insight into why the agreement ratios turn out the way they do. First, statistics for
the relations found in the sets of full, partial and no agreement were calculated; disregarding
the type of action being done on each. The results are shown in Table 7.8.

3-ANNOTATOR

Full Agreement Partial Agreement No Agreement
Relation Type Freq Perc Relation Type Freq Perc Relation Type Freq Perc

HYP 54 42.52% HYP 78 61.90% HYP 4 66.67%
SYN 28 22.05% ENTAILS 18 14.29% INVOLVED 1 16.67%
INVOLVED 16 12.60% SYN 18 14.29% SYN 1 16.67%
ENTAILS 16 12.60% INVOLVED 9 7.14%
CAUSES 13 10.24% CAUSES 3 2.38%

2-ANNOTATOR

Full Agreement Partial Agreement No Agreement
Relation Type Freq Perc Relation Type Freq Perc Relation Type Freq Perc

HYP 160 41.67% N/A HYP 128 68.09%
SYN 109 28.39% N/A ENTAILS 24 12.77%
INVOLVED 50 13.02% N/A SYN 24 12.77%
ENTAILS 36 9.38% N/A INVOLVED 10 5.32%
CAUSES 29 7.55% N/A CAUSES 2 1.06%

Table 7.8: Frequency lists over relations found in the 3-annotator data set, according to agreement.

65

Decisions for hyperonym relations seem to be difficult to agree upon. For the 3-annotator
data set, the ratio of partially agreed decisions on HAS_HYPERONYM relations surpass the ratio
of fully agreed ones by almost 20%. The ENTAILS relations also seem to have a high probability
of disagreement. The results for the other relations imply that the annotators tend to agree more
often than they disagree. Similar observations can be made for the 2-judge dataset. Although
there is a lower number for no agreement regarding decisions for hyperonym relations, it still
occupies the vast majority of relations with no agreement.

3.3 Disambiguation Agreement Measure

The second use of Fleiss’ Kappa measure is for the agreement on the disambiguation done
for all the relations marked as disambiguated by all participants, i.e. fully agreed validated
relations.

Using the measure much in the same way as in the previous section, N is the total number of
possible disambiguations (i.e. each possible sense-pair for a pair of lemmas), n is the number
of decisions made per sense-pair, and k is the number of categories. For our purpose, the
categories are valid (a disambiguated relation) and invalid. The number of fully agreed relations
are 127 and 384, for the three-annotator dataset and two-annotator dataset respectively.

The number of possible sense-pairs are quite high (971 and 2778 for the three-annotator
and two-annotator datasets respectively) and do not add much relevant information at this
point, thus tables for each individual result are not included. A summary for the pj measure is
presented in Table 7.9.

Dataset Valid Invalid

Three-Annotator 0.478 0.522
Two-Annotator 0.387 0.613

Table 7.9: pj measurements for the two post-processing sets (disambiguation).

It is important to note that the high ratio for the Invalid category is to be expected. Since
most relations have 1-to-n target ambiguity (except for the ones disambiguated automatically),
one would actually prefer a high Invalid ratio and a low Valid ratio as this means that the
relations have been disambiguated as much as possible.

Moving on as before onto the extent of agreement Pi for the ith subject, we find the amount
of fully agreed disambiguations, partially agreed disambiguations and disambiguations with
no agreement (presented in Table 7.10).

Dataset Full Partial None
Freq Perc Freq Perc Freq Perc

Three-Annotator 900 92.69% 71 7.31% 0 0.00%
Two-Annotator 2646 95.25% N/A N/A 132 4.75%

Table 7.10: Pi measurements for the two post-processing sets (disambiguation).

The overall agreement measures P̄ for the two datasets are shown in the P̄ column in
Table 7.11, and turn out to be almost identical. The final kappa statistic is also very close.
The only noticeable difference between the two datasets in this respect is the probability for for

66

random assignments of categories (the column P̂e), which is 0.50 for the three-annotator dataset
and 0.53 for the two-annotator dataset.

Dataset P̄ P̂e κ Var(κ) SE(κ) κ
SE(κ)

3-Annotator 0.951 0.501 0.902 0.001 0.036 25.076
2-Annotator 0.953 0.526 0.900 0.00009 0.001 94.978

Table 7.11: Overview of the general measures for the Fleiss’ Kappa Statistics for the disambiguation stage.

This shows that in the event that annotators agree fully on a valid relation, they will in
almost all cases agree on the choice of target sense(s). One reason for this might be that the
dictionary data will give the annotators some bias, pointing them towards the right sense by
the choices they are given for the possible target senses. This could be interpreted as a proof
that the quality of the post-processing will rely just as much on the quality of the dictionary as
the rest of the method. If there is no suitable target sense based on the definitions presented to
the annotator, there is a danger of losing an otherwise acceptable relation. On the other hand,
this will ensure an even closer relationship between the dictionary and the resulting wordnet,
which in turn ensures that the wordnet should reflect the represented language to a high extent
- given that the dictionary does so.

3.4 Measuring Average Annotation Intervals

This part of the evaluation gives an approximate measure of the time spent post-processing the
relations generated from Dict2WN. A timestamp representing the time of which an action was
performed was stored for every action performed by a participant. When analyzing the results
of the post-processing, a list of intervals (the amount of milliseconds between every timestamp)
was compiled for every participant. Intervals larger than 5 minutes were omitted in order to
prevent lunch/coffee breaks and similar events from affecting the statistics. The minimum
interval, the maximum interval, the mean and the standard deviation was calculated for every
participant as well as the combined lists of all participants. The results are shown in Table 7.12.

Annotator Min Max Mean StdDev

1 4.65 215.63 16.62 19.52
2 0.11 151.75 15.85 15.95
3 1.50 204.90 20.29 19.32

Table 7.12: Annotation intervals for the post-processing step.

The results for each annotator indicate that the time spent on each relation varies highly.
Even so, given the mean and the standard deviation for each annotator, one can make a general
assumption that the average time spent making a decision for a relation will be 30-90 seconds,
increasing to 2-4 minutes when a difficult relation is encountered.

3.5 Concluding Remarks

It is difficult to make any strong claims about the output of DICT2WN based on the results of
the annotation study. We could perhaps make some general conclusion based on the annotators
individual results, but then we would ignore the low agreement rate. As seen in the kappa

67

measures for individual actions, the most reliable measure is probably the Invalidate actions
with a 31% ratio, which gives us a very rough impression of the error rate of DICT2WN.

The agreement increases in the 2-annotator set; this could either be interpreted as an
indication of bias, or as an indication of a tendency for semantic relations to mean different
things for different scientific fields. This should be investigated further in a larger study.

The annotation intervals seem to indicate that the post-processing job is feasible in terms of
the amount of manual labor it requires.

68

Chapter 8

Evaluation of Dict2WN

A final evaluation of the process is presented in this chapter, making use of the evaluated results
from the manual post-processing step. A detailed study of the annotation itself is presented and
gives some insights into the difficulties encountered. Section 3.4 investigates the time spent on
the post-processing work and gives a rough prediction for a large-scale post-processing step.

1 Finding the recall of a semantic network

Recall is defined as TP
TP+FN , but finding the true number of false negatives in these types of

graphs depend on a number of things. The central problem of figuring out the false negatives in
semantic networks must be considered to rely on an open world assumption. The open world
assumption is the assumption that the truth-value of a statement is independent of whether or
not it is known by any single observer or agent to be true. In other words, for any statement
about a concept that is not explicitly represented in the graph, it is either a possibility that the
statement is false, or that the missing relation is a false negative; but the missing relation is not
a sufficient condition to make such conclusions. A wordnet is supposed to model knowledge
about concepts in a given language, and given the complexity and size of any natural language,
any claim of a wordnet being complete with regards to both concept and relation coverage
should be met with suspicion.

Because of this, it is difficult to give a definitive measure of the completeness of a wordnet
or to get an exact number of false negatives; trying to decide whether a missing relation should
be labeled as a false negative or simply as unknown is not always trivial.

2 Transducer Evaluation

To attempt an evaluation of the individual transducers, frequency lists showing how often
the different transducers were responsible for a certain action with a certain agreement
were compiled. By interpreting disambiguations as true positives and invalidations as false
positives, we can attain measures of precision using the formula P = TP

TP+FP . Furthermore, for
the 3-annotator data set, we can get two sets of precision rates by either considering only the
fully agreed disambiguations and invalidations, or the combined number of fully and partially
agreed disambiguations and invalidations.

The results are shown in Table 8.1. The PAgr column shows the precision rates based on
fully agreed decisions. The PMaj shows the precision rates based on both fully and partially
agreed decisions.

69

3-ANNOTATOR

Id DAgr DMaj TP IAgr IMaj FP PAgr PMaj

1 23 15 38 2 1 3 0.92 0.927
2 5 5 10 1 2 3 0.833 0.769
2.1 1 2 3 4 4 8 0.2 0.273
2.1.1 8 7 15 0 14 14 1.0 0.517
2.2 21 15 36 3 7 10 0.875 0.783
2.2.1 39 29 68 11 14 25 0.78 0.731
2.3 17 12 29 4 10 14 0.81 0.674
2.3.1 27 27 54 10 0 10 0.73 0.844
3 5 1 6 0 0 0 1.0 1.0
3.1 36 41 77 7 16 23 0.837 0.77

2-ANNOTATOR

Id DAgr DMaj TP IAgr IMaj FP Pagr PMaj

1 95 N/A 95 19 N/A 19 0.833 N/A

2 26 N/A 26 5 N/A 5 0.839 N/A

2.1 3 N/A 3 1 N/A 1 0.75 N/A

2.1.1 26 N/A 26 6 N/A 6 0.813 N/A

2.2 60 N/A 60 12 N/A 12 0.833 N/A

2.2.1 97 N/A 97 20 N/A 20 0.829 N/A

2.3 44 N/A 44 6 N/A 6 0.88 N/A

2.3.1 77 N/A 77 19 N/A 19 0.802 N/A

3 18 N/A 18 3 N/A 3 0.857 N/A

3.1 125 N/A 125 27 N/A 27 0.822 N/A

Table 8.1: Transducer precision rates. The columns show fully agreed disambiguations (DAgr), partially agreed
disambiguations (DMaj) along with fully and partially agreed invalidations (IAgr and IMaj, respectively). PAgr
gives the precision rate for the fully agreed decisions, treating DAgr as true positives and IAgr as false positives.
PMaj shows the precision rate when the combined number of fully agreed and partially agreed decisions are
interpreted as true positives and false positives (shown in TP and FP respectively). Both precision rate columns
are calculated according to the formula P = TP

TP+FP .

70

There are a number of interesting observations to be done at this point. With a few
exceptions, the majority of the transducers seem to perform fairly well.

Transducer 1 performs very well, with a precision at 0.927 in the 3-annotator data set and
0.833 in the 2-annotator dataset. This transducer is the first one created manually, with a trivial
assignment of HAS_SYNONYM relations for all definientia consisting of single verbs or comma-
separated verbs. From this we can infer that this transducer is mostly correct in its assigments,
and that the dictionary is consistently defining verbs in terms of sets of synonyms whenever a
comma-separated/single-verb definition is used.

Transducer 2 drops in precision in the 3-annotator data set, but keeps up with transducer 1
in the 2-annotator data set. This transducer was the second one that was created manually,
being targeted towards definitions consisting of one verb followed by either a noun, adjective
or a preposition. Instead of having hard-coded relations for each PoS tag encountered, it made
use of operator words to infer the relations. Even though the precision drops, it is still high
enough for the transducer to be considered successful. However, since no expansion has been
done on this transducer, there is a small possibility that either some of the operator words
should be investigated, or the consistency of the definentia catched by this transducer should
be investigated.

Transducer 2.1 is the first 5-best expansion of transducer 2. The amount of post-processed
relations are however so low that it is difficult to make any conclusions on this one.

Transducer 2.1.1 is the 5-best expansion of transducer 2.1, in other words it is part of the
second iteration of the 5-best expansion of transducer 2. One very interesting phenomenon
occurs in the invalidation data for this transducer: there are 14 false positives but none are fully
agreed upon. One interpretation of this is that this transducer has hit upon a set of definitions
that are inconsistently formed. Another interpretation is that it has found a set of definitions
within which the words are difficult to decide the right relation upon.

Transducer 2.3.1 shows another interesting phenomenon: There are 10 false positives, all of
which have full agreement. This indicates either that we should revise this transducer, or that
we should revise some of the operator words. Since this is one of the transducers resulting
from the second 5-best expansion of transducer 2, it might also imply some threshold for how
deep one should go when expanding.

Transducer 3 was the last one to be manually created, targeting a single large PoS pattern
class (VERB KOMMA VERB ADJ) not catched by any of the other transducers. It has perfect
precision in the 3-annotator set and is the highest scoring transducer for the 2-annotator set,
indicating both a high level of consistency in the dictionary definitions and good operator
words. It is however also one of the transducers that catch the smallest number of definitions.
Were it not for the additional data in the 2-annotator set, it would be difficult to make any valid
conclusion since only 6 relations were post-processed by all three annotators.

Transducer 3.1 is the most liberal expansion experiment, performing a 10-best expansion on
transducer 3. This transducer has a high coverage, but still an adequate precision.

71

One final observation to be made is the comparison of the results attained from the 3-
annotator and 2-annotator data sets. The 2-annontator data set is approximately twice the
size of the 3-annotator data set. There seems to be a convergence of the precision rates. The
precision rates gained from the 3-annotator data set has a mean of 0.7288, with a standard
deviation of 0.6229. The precision rates found in the 2-annotator set gives a mean of 0.8258,
with a standard deviance of 0.3237. I am tempted to infer from this that the true precision rate
lies closer to the values found in the 2-annotator data set, but some care has to be taken in this
respect. Since there is no possibility of a majority decision for two annotators, one could assume
that the precision will approach the mean of the 3-judge dataset if there are more judges.

2.1 Transducer Coverage

Coverage ratios list the amount of the dictionary data that is covered by the transducer when
looking at either the definition id’s, PoS pattern classes or lemmas. The definition id’s are
considered to be the most relevant in this case as it shows how many definientia are catched.

Id CDef ORel Precision

1 0.0226 0.0306 0.927
2 0.0085 0.1810 0.769
2.1 0.0260 0.1284 0.273
2.1.1 0.0521 0.1398 0.517
2.2 0.0214 0.2139 0.783
2.2.1 0.0397 0.2177 0.731
2.3 0.0256 0.1548 0.674
2.3.1 0.0477 0.2150 0.844
3 0.0009 0.0088 1.0
3.1 0.0165 0.0235 0.77

Table 8.2: List over the initial transducers. asdf

A high coverage ratio for the definition id is the most general measurement and tells us
directly how much of the dictionary data is covered. The coverage ratio for PoS patterns show
us how much the regular expression for each transducer catches.

2.2 Transducer Overlap

Unless one is very restrictive when defining transducers and their expansion, they will overlap
on a number of occasions in terms of which PoS pattern classes, definitions, relations and
lemmas they capture. This can be measured by measuring the size of the intersection of the
relations and captured PoS patterns. Table 8.4 gives an overview over the overlap ratios for
PoS patterns, definition ID’s and the actually generated relations.

The measure for relation overlap (seen in the column named ORel) tells us something about
the level of redundancy of each transducer. A low score tells us that the transducer generates a
high number of unique relations that the other transducers fail to generate.

2.3 Transducer Score Summary

A summary of the scores for all generated transducers is presented in Table 8.4

72

Id OPoS ODef OLem ORel

1 2.1066 21.0113 25.7387 3.0594
2 4.8349 20.0000 24.1529 18.1027
2.1 27.0160 53.2545 56.0606 12.8355
2.1.1 31.6819 52.7554 55.5978 13.9824
2.2 24.2982 46.8529 49.8911 21.3903
2.2.1 31.2151 52.8839 55.9195 21.7690
2.3 29.4247 52.9994 55.7480 15.4834
2.3.1 32.7908 53.4562 56.2291 21.4971
3 0.5195 0.5818 1.2743 0.8814
3.1 2.4550 6.7575 13.9937 2.3462

Table 8.3: Average overlap measures for all transducers. The columns show the transducer id (Id), PoS pattern
overlap (OPoS, definition overlap (Def)), lemma overlap (OLem) and relations (ORel).

Id CDef CPoS CLem Overlap Precision

1 0.0226 0.0001 0.2827 0.0306 0.927
2 0.0085 0.0001 0.1062 0.1810 0.769
2.1 0.0260 0.0009 0.3253 0.1284 0.273
2.1.1 0.0521 0.0021 0.6517 0.1398 0.517
2.2 0.0214 0.0008 0.2673 0.2139 0.783
2.2.1 0.0397 0.0021 0.4965 0.2177 0.731
2.3 0.0256 0.0009 0.3205 0.1548 0.674
2.3.1 0.0477 0.0020 0.5970 0.2150 0.844
3 0.0009 0.00003 0.0108 0.0088 1.0
3.1 0.0165 0.0006 0.2061 0.0235 0.77

Table 8.4: List over the initial transducers. asdf

73

These are used for the final evaluation measure. The Precision score is retrieved from the
PMaj column for the 3-annotator dataset in Table 8.1. The reasoning behind choosing this
precision rate set out of the three possible was made as follows:

There are three different sets of precision scores to choose from in Table 8.1 - PAgr and PMaj
in the 3-annotator data set and PAgr in the 2-annotator data set. The choice of annotator data
set fell upon the 3-annotator one because this is the data set that contains annotators with the
most diverse background. Since the 2-annotator data set consists solely of people who have
worked together previously on both NorNet and other lexicographical work, there is a higher
danger of bias for this set. This reduces the choice of precision rates down to PAgr and PMaj
in the 3-annotator set. PMaj was finally chosen as it was considered to be the set of precision
rates that are the most descriptive.

The CDef column gives the definition Id coverage, which is taken from Table 8.4. The ORel
gives the overlap ratio of generated relations, which is taken from Table 8.3.

74

Chapter 9

Conclusion and Further Work

A general method for semi-automatic generation of semantic networks based on information
in a dictionary has been proposed in this thesis. A detailed study has been presented,
investigating potential components for a framework that covers much of the process of
extracting explanatory information from dictionary definitions in order to create a semantic
network. Every step, from aquiring the source material to the final post processing stage have
been investigated.

An implementation of the method has been developed and tested on Bokmålsordboka,
a dictionary for Norwegian Bokmål. The resulting data has been the subject of a detailed
analysis, both through automatic means and manual post-processing. A number of
observations have been made during this development merits further investigation, and that
could serve as the basis for further analysis and improvement of the method.

A thorough evaluation of the annotation process has been documented through the
development of the post-processing application and an analysis of the results from three
annotators. The results of this evaluation indicate some points of concern regarding agreement
on verb relations, some of which might be generalized to remarks on annotation processes for
semantic networks, or maybe annotation processes in general.

The use of PoS pattern classes and transducers cover much of what is needed for the
application of Nygaard’s method. By adding operator word functionality, we get hold of
the lexical information that we need in order to handle changes in semantic content that is
not accounted for by PoS tags alone. The transducer expansion lets us spend less time on
discovering patterns in the source material manualle, thus we can to a certain extent claim to
remedy some of the problems encountered in the DanNet pilot study.

A number of definientia belong to a class which we have called non-explanatory definentia.
These were not considered in this study. Due to the high degree of consistency in such
definientia, extracting information about domain and syntactic relations

The 1-to-n target ambiguity combined with the problems encountered in the process of
automatic synset inference implies that a fully automatic method will be extremely difficult to
develop. However, as we can see from the measurements done on the annotation intervals, the
post-processing step is considered to be affordable in terms of the time spent on it.

The amount of generated relations is not close to covering all relations for all verb
definitions extracted from BOB. Considering the number of post-processed relations done
by all three annotators, and that this seems to be the best way we have of measuring the
quality of the method as of now, creating/expanding transducers further would probably
not add much information. The randomly selected subset constituting the 259 relations post-
processed by all three annotators is enough to make some general remarks about the small set

75

of transducers. A larger set of relations generated by a larger amount of transducers would
increase the possibility of the post-processed relations being spread out too thinly across the
different transducers, making it difficult to say something about each one.

The lack of a well-defined gold standard makes the evaluation of the method difficult. In
addition, the lack of agreement seen in the annotation study implies that a well-defined gold
standard might be difficult to attain altogether. We have seen in Chapter 8 that in the cases
when human annotators agree fully upon a relation being valid, the precision rates of the
transducers seem to be quite high. It is however difficult to generalize this because of the
annotation study.

Once a large enough graph of semantic relations is post-processed and fully disambiguated,
more sophisticated analyses can be done for the various components of the proposed method.
There are many possible configurations for the different parts of DICT2WN, but a full
exploration of these is difficult to do unless the generated semantic networks can be compared
to one that is deemed correct. Since we are dealing with a kind of source material that can
be considered to be fairly static, we can assume that claims made based on a comparison of
generated semantic networks with fully post-processed material will increase in strengh as the
size of the post-processed material increases.

The set of relations that can be extracted by an analysis of explanatory parts of definitions
has been extended with the proposed method. There are however a number of relations that
are not considered. Antonomy for verbs would probably be a likely candidate, as well as the
various subtypes of the INVOLVED relation.

A number of INVOLVED relations were extracted from the targeted verb definentia. No
further specification of this relation was attempted. One could either assign the labor of
specification to the manual post-processing stage, or try to find more sophisticated ways
of distinguishing between the various possible types of INVOLVED relations by employing
increased operator word functionality. It is also possible that more nuances could be discovered
by making use of the fine-grained PoS tags.

The choice of transducers fell upon sequential finite-state transducers, as explained in .
There was no ambiguity to deal with when applying these to the patterns devised for any
transducer in this study, but no stronger claim can be made until a larger study is done on
more complex patterns.

The operator word functionality seems to work adequately, but there are still a lot of things
to investigate. First of all, the frequency list made during this master’s thesis is probably not
of the best. One should be able to get a better overview by applying techniques for generating
collocation statistics and n-gram frequency lists.

Operator words and arguments that are unchanged by the transformation result in a set of
relations of the forms LHS OPER RHS and LHS ARG RHS . These are discarded in the
graph generation process. To improve the set of operator words, these should be compiled into
lists and investigated.

As of now, there is no explicit way of modeling operator word precedence, apart from
the fact the the operator words to the right implicitly have a precedence over operator words
to their left because of the right-to-left iteration over relation sequences. By augmenting the
operator words with some more sophisicated precedence assignment, they might become even
more useful.

Another important thing to consider is that the amount of time spent deciding upon what
kinds of relation sequence transformations should be done for each operator word is justifiable
only if the rules apply on a general basis. If this work has to be redone for every dictionary, the
efficiency of this method will not be as impressive. My intuition is that much of what is done
for the operator words can be reused for other dictionaries, but I cannot make a strong claim

76

for this before more experiments are done.
There are probably a number of things that can be done to improve the alignment algorithm

used for DICT2WN. Experiments with different parameters for the scoring function should be
performed. The Smith-Waterman algorithm as defined and implemented in this thesis is also
one of the simpler ways to perform a local sequence alignment. It would be very interesting
to see if more advanced methods will improve the dynamicity of DICT2WN. Improving the
scoring system by adding functionality for gap scores and using substitution matrices for PoS
tags are examples of augmentations of the alignment method that could lead to a more versatile
fuzzy matching of PoS pattern classes.

77

78

Appendix A

Dict2WN Program Description and
Database

0.4 Database EER Schema

79

80

Appendix B

Dict2WNPP Program Description and
Database

0.5 Database EER Schema

0.6 Manual for Dict2WNPP

User Manual for Dict2WNPP
1.7 Objectives, Motivation and General Remarks

This program is part of the post-processing/evaulation step for the method I am working on
in my master thesis. It is designed with two objectives in mind: to identify invalid relations
(i.e. relations that are outright wrong) and to disambiguate correct relations (i.e. finding one
or more correct senses for a valid relation). This is a very specific process and does not include
the possibility to add non-existing relations or to change relation types. For the purpose of

81

evaluating the generated data in my thesis, I consider the functionality in this program to be
sufficient.

Every participant will work on the same sequence of generated relations, disambiguat-
ing, invalidating or skipping them as one sees fit (detailed instructions for this is in subsec-
tion [subsubappendix][9][21474836472,1]1.9). The results from this will be analyzed in my the-
sis. It will serve as the foundation for the evaluation of my method, both to find ways to refine
it and to get an approximate measure of its quality. The data from the results will not be tied
to any specific participant, but every one who choose to help me with this will have my eternal
gratitude and an honorable mention in my thesis.

The user interface might seem a little stringent - it does not give you much choice as to
which relations you can work with. This is done on purpose in order to try to get all participants
to process as many of the same relations as possible. By doing it this way, I get the best
possible data for an agreement measure. You do have the option of skipping a relation. I
encourage everyone to try to make a decision for as many relations as possible. However, if
many participants skip many of the same relations some interesting remarks might be made
about a general uncertainty for certain types of verbs. In other words, even skipped relations
is useful data for me.

Example: Say we have four participants, and each participant has processed 300,
500, 800 and 1200 relations respectively, By “forcing” everyone to go through the
same sequence of relations, I have the possibility to do a thorough comparison of
the participants choices for the first 300 relations. The next 200 relations (301 - 500)
will be a comparison of three participants, while the next 300 (501 - 800) will be a
comparison of two paricipants. The remaining results (801 - 1200) will not be used
for any agreement analysis but will still be useful.

There is no lower limit on the amount of relations to process, although I of course hope that
this work will be interesting enough to get a nice chunk of results from each participant. There
are quite a lot of relations and I don’t expect anyone to go through all of them. I will go through
as many relations as I can, but unbiased results from people not directly involved in my thesis
is of incredible value to me. I have to assume that I personally have some bias, and that this
bias might be subconsciously reflected in the choices I make for the relations (I of course want
this method to be a good one).

I have tried to make the user interface as streamlined and straightforward as possible, but
I appreciate any kind of feedback on the user experience as this program might serve as the
foundation for a more advanced tool for NorNet in the future.

1.8 Download and Installation

Dict2WNPP can be found at the webpage http://folk.uio.no/runelk/dict2wnpp. The
program is self-contained and does not rely on anything except Java 6. If you’re in doubt as to
which java version you have you can go to http://www.java.com/en/download/installed.jsp
and click Verify Java Version to see what version you have on your computer. As long as Your
Java version is shown as version 6 or more you should be ok, otherwise follow the instructions
on the webpage to install a newer version. Given an adequate Java version, the installation
process should be fairly simple:

1. Go to the webpage mentioned above.

82

http://folk.uio.no/runelk/dict2wnpp
http://www.java.com/en/download/installed.jsp

2. Click on the URL on the webpage. You will be asked to open or save a file called
dict2wnpp.zip. This is an archive containing the program. Most computers should know
how to handle this type of files automatically. Either choose to open it right away, or
download it to some appropriate place and open the file there. Either way, a program
will open the zip file and display a folder dict2wnpp. This folder contains the program.

3. Put this folder in an appropriate location (your desktop or another place you can find
easily). Inside of this folder you will find a couple of files that will run the program,
depending on the operation system you are using:

Windows Double-click dict2wnpp.bat.

Linux Either double-click dict2wnpp.sh and choose run, or run dict2wnpp.sh from the
command-line with the command ’sh dict2wnpp.sh’.

Mac OSX Same as Linux.

1.9 The User Interface

A window looking like the one below should appear shortly after starting the program. If
nothing happens, or if you get some kind of error message, contact me at runelk@ifi.uio.no.

Figure B.1: Full screenshot of the Dict2WNPP user interface

This is the Dict2WN Post Processing application. The user interface is divided into two
main areas: Unprocessed Relations and Processed Relations. A description of these two areas
follow.

Note: For the remainder of this manual, a relation will be defined as a lemma
on the left hand side of a relation type (written as LHS), the relation type (e.g.
HAS_SYNONYM), and a lemma on the right hand side of the relation (written as
RHS).

83

mailto:runelk@ifi.uio.no

Unprocessed Relations

Figure B.2: Screenshot of the area for unprocessed relations

This area of the user interface presents the relations one by one. The upper part shows the
lemma that occupies the LHS of the relation, along with its gloss. Below this is the actual
relation (marked as LHS, Relation Type and RHS) along with two buttons for either invalidating
or skipping the current relation. Below this is a list of possible targets for the RHS of the
relation. The targets are equivalent with senses, corresponding to the various definitions from
articles in Bokmålsordboka. You can also check the definitions at http://www.nob-ordbok.
uio.no/perl/ordbok.cgi?OPP=&bokmaal=+&ordbok=bokmaal. You will see that the definitions
are mostly similar to the definitions that show up in the user interface. Some senses have empty
definition fields. These are included for the sake of completeness elsewhere in my method and
you can disregard them when you decide what to do with a relation.

Each possible target is presented with its ID, lemma and definition. The leftmost column
(Valid) contains one checkbox for each possible target. If you decide that the current relation is
a valid one, you can select one or more targets by clicking the corresponding checkboxes. This
will activate the Disambiguate and move to next relation button at the bottom, enabling you to
store the choices you have made.

84

http://www.nob-ordbok.uio.no/perl/ordbok.cgi?OPP=&bokmaal=+&ordbok=bokmaal
http://www.nob-ordbok.uio.no/perl/ordbok.cgi?OPP=&bokmaal=+&ordbok=bokmaal

Figure B.3: Screenshot of a relation about to be disambiguated.

In other words, you have three choices for every relation: Disambiguate, Invalidate or Skip.
Upon doing one of these three actions, the relation will be processed accordingly, the Processed
Relation section will be updated reflecting the choice you just made, and the next relation will
be presented to you. You are encouraged to either disambiguate or invalidate the relations.
You can choose to skip a relation (at a later point, you can go to the list of processed relations
as described in the next section and retrieve it), but this should be a last resort. If the relation is
wrong, invalidate it. If there is absolutely no way to decide if the relation in question is a valid
one or not, skip it and preferably review it later.

One important thing to remember here is that there are multiple definitions (senses) for
most lemmas. This means that one must take care to decide if the relation is valid given the gloss
shown for the LHS. You will find that the same LHS will appear many times, but its gloss will
change.

85

Processed Relations

Figure B.4: Screenshot of a processed relation about to be undone

This part of the user interface presents an overview of the relations you have gone through so
far. There are three different lists that correspond to the three types of actions you can perform
in the Unprocessed Relations section - Disambiguated, Invalidated and Skipped. Every relation you
process will be added to the appropriate list, ordered in such a way that the last processed
relation will be at the top. You can switch between the lists by clicking on the appropriate flag
near the top.

If you want to undo a previously processed relation, you can select the desired relation by
clicking on it. This will activate a button near the bottom; by clicking this button the selected
relation will be added back to the list of unprocessed relations. The Unprocessed Relations area
will then update, enabling you to make a new choice for the relation you chose to undo.

1.10 Relation Overview

The following list is a description of the various relations you will encounter. The conditions
for determining if a relation is valid is presented next to the name of the relation type. This list,
along with the gloss/definitions for the lemmas are the guidelines for the decisions you make
for each relation.

HAS_HYPERONYM True if the lemma on the left-hand side can be seen as a specialized form of
the lemma on the right-hand side (e.g. produsere HAS_HYPERONYM skape).

HAS_SYNONYM True if the lemma on the left-hand side can be substituted for the lemma on
the right-hand side without changing the meaning of a sentence in some context (e.g.
spise HAS_SYNONYM ete).

86

CAUSES True if the lemma on the left-hand side is a sufficient cause for the lemma on the
right-hand side (e.g. drepe CAUSES dø).

INVOLVED This is a supertype of a set of relations, and it is true if the RHS is that which is
directly involved in the LHS. More specific descriptions for each subtype of this relation
follow below. Note that none of the subtypes will occur in the material you are given. At
the moment only INVOLVED occurs as I need to isolate the valid relations from the invalid
relations and look for reoccurring patterns for the subtypes at a later point. Basically, if
one or more of the criteria for the subtypes hold, the supertype should be considered
valid.

INVOLVED_AGENT True if the RHS is the cause or initiator (i.e. grammatical agent) of
the left hand side. (e.g. undervise INVOLVED_AGENT lærer)

INVOLVED_PATIENT True if the RHS is not an agent but directly involved with or
affected by the left hand side (e.g. undervise INVOLVED_PATIENT student)

INVOLVED_INSTRUMENT True if the RHS is an object used in some way when the LHS
is performed (e.g. male INVOLVED_INSTRUMENT pensel)

INVOLVED_LOCATION (e.g. undervise INVOLVED_LOCATION skole)

INVOLVED_RESULT True if the RHS can be seen as something that is the result of the
LHS (e.g. fryse INVOLVED_RESULT is)

INVOLVED_MANNER Is true if the RHS says something about the manner of which the
LHS is performed (e.g. skrike INVOLVED_MANNER høy)

ENTAILS A relaxed form of logical entailment. True if the RHS is a likely criteria for doing
what is described by the LHS (e.g. snorke ENTAILS sove).

Some Remarks About Difficult Decisions

It is not always easy to determine if a relation is valid or not. Some things worth remembering
are presented in this section. In general, try not to think about other possible relations between
the lemmas presented to you. As stated in the beginning of this manual, this program does not
allow for editing of missing relations.

The Synonymy/Hyperonymy Dilemma The distinction between synonymy and hyper-
onymy for verbs are somewhat fuzzy. The method I am developing tends to prefer synonym
relations over hyperonym relations as synonym relations usually seem to conform more to the
intuition for many verbs.

You will however encounter many relations where the only difference is the relation type
(e.g. slå HAS_SYNONYM banke and slå HAS_HYPERONYM banke). This is because my method
combines several rounds of generating relations where some rules lead to one relation type,
and other rules lead to another. This reflects the synonymy/hyperonymy dilemma to a certain
extent. I do some automatic decisions that reduce the number of these dilemmas, but there are
still a lot of them left.

I don’t want to say much about how you should decide upon which relation type is the most
appropriate one. Just remember to treat every relation on its own. The results are valuable
no matter what; either for the assessment the quality of the method (if participants tend to
agree), or to the discussion on the synonymy/hyperonymy dilemma (if participants tend to
disagree). In other words: make the choice that feels right at the time. Don’t worry if you feel

87

that you might have been inconsistent from one processing session to another - this might also
say something about the difficulty of assigning such relations consistently to verbs.

Involved As a supertype for a set of relations, this relation needs to be treated by me in a
slightly different way than the other relations. The identification of valid INVOLVED relations
will contribute to the discussion of whether or not my method can be improved to the point
where it classifies the various relation subtypes to a satisfactory degree of accuracy. Because
of this, there are no subtypes of INVOLVED in this dataset - as described in the list of relations,
consider INVOLVED relations valid if one of their subtypes are valid.

1.11 Exporting The Data

When you are fed up with processing relations, it is time to send the results to me. To do this,
open the File menu and choose Export Data. A file chooser dialog will pop up, prompting you
to select a file name and location for the exported data. A default filename (d2wnpp-export) is
supplied, but you can use whatever you feel like. Upon pressing OK, a .zip file (e.g. d2wnpp-
export.zip) will be saved to the location you specified, containing all the data I need from you.
All you have to do now is to send me a mail with this zip file attached and I’ll respond happily.

Figure B.5: Screenshot of the export dialog popping up when you choose Export Data from the File menu.

There is no need to save anything before you send the final result to me. All decisions you
make with the user interface is stored as you go along. This means that you can start and stop
the program without worrying if your work has been registered or not.

However, should you at any point download the program from the webpage and put it in
the same destination as the last time, you will overwrite all data, losing any work you have
done. You probably won’t get into this situation, but if you’re in doubt or have to reinstall the
program for some reason, don’t hesitate to send me a mail.

Thank you, and have fun!

88

Appendix C

Detailed Operator Word Data

89

Table C.1: Complete list of operator words defined for Dict2WN. Relation types abbreviated for the sake of readability.

[I [SELF SUBST → NIL , SYMB → NIL] [LEFT NIL] [RIGHT NIL]]
[at [SELF ADJ → NIL] [LEFT NIL] [RIGHT NIL]]
[av [SELF PREP → NIL] [LEFT NIL] [RIGHT SUBST → INV]]
[bevege [SELF VERB → HYP] [LEFT NIL] [RIGHT NIL]]
[bli [SELF VERB → NIL] [LEFT NIL] [RIGHT ADJ → CAU , SUBST → NIL , VERB → NIL]]
[bort [SELF ADJ → NIL] [LEFT NIL] [RIGHT NIL]]
[bringe [SELF SUBST → NIL , VERB → HYP] [LEFT NIL] [RIGHT SUBST → INV]]
[bruke [SELF VERB → HYP] [LEFT NIL] [RIGHT SUBST → INV]]
[danne [SELF VERB → HYP] [LEFT NIL] [RIGHT NIL]]
[drive [SELF SUBST → NIL , VERB → NIL] [LEFT NIL] [RIGHT NIL]]
[e.l. [SELF FORK → NIL] [LEFT NIL] [RIGHT NIL]]
[el. [SELF FORK → NIL] [LEFT NIL] [RIGHT NIL]]
[en [SELF TALL → NIL , ADJ → NIL] [LEFT NIL] [RIGHT NIL]]
[etter [SELF PREP → NIL] [LEFT NIL] [RIGHT NIL]]
[falle [SELF SUBST → NIL , VERB → HYP] [LEFT NIL] [RIGHT NIL]]
[fast [SELF ADJ → ENT] [LEFT NIL] [RIGHT NIL]]
[for [SELF PREP → NIL] [LEFT NIL] [RIGHT NIL]]
[fra [SELF PREP → NIL] [LEFT SUBST → INV , VERB → HYP] [RIGHT NIL]]
[fram [SELF ADJ → NIL] [LEFT NIL] [RIGHT NIL]]
[få [SELF ADJ → ENT , VERB → NIL] [LEFT NIL] [RIGHT NIL]]
[føre [SELF SUBST → NIL , ADJ → ENT , VERB → HYP] [LEFT NIL] [RIGHT NIL]]
[gi [SELF VERB → NIL] [LEFT NIL] [RIGHT SUBST → ENT]]
[gjøre [SELF VERB → NIL] [LEFT NIL] [RIGHT ADJ → CAU , SUBST → INV]]
[gå [SELF VERB → HYP] [LEFT NIL] [RIGHT NIL]]
[ha [SELF SYMB → NIL , VERB → NIL , INTERJ → NIL] [LEFT NIL] [RIGHT ADJ → ENT , SUBST → INV]]
[holde [SELF VERB → HYP] [LEFT NIL] [RIGHT ADJ → ENT , SUBST → INV]]
[i [SELF PREP → NIL] [LEFT VERB → HYP] [RIGHT ADJ → ENT , SUBST → INV]]
[ikke [SELF SUBST → NIL , ADJ → NIL] [LEFT SUBST → INV] [RIGHT ADJ → ANT , VERB → ANT]]
[inn [SELF ADJ → NIL] [LEFT VERB → HYP] [RIGHT SUBST → INV]]

90

[jf. [SELF FORK → NIL] [LEFT NIL] [RIGHT ADJ → ENT , SUBST → INV , VERB → SYN]]
[komme [SELF SUBST → NIL , VERB → HYP] [LEFT NIL] [RIGHT ADJ → ENT , SUBST → ENT]]
[l [SELF SYMB → NIL] [LEFT NIL] [RIGHT NIL]]
[la [SELF SUBST → NIL , VERB → NIL] [LEFT NIL] [RIGHT ADJ → ENT , SUBST → INV , VERB → HYP]]
[lage [SELF VERB → HYP] [LEFT NIL] [RIGHT ADJ → ENT , ADV → CAU , SUBST → INV]]
[legge [SELF VERB → HYP] [LEFT NIL] [RIGHT ADJ → ENT , SUBST → INV]]
[liten [SELF ADJ → ENT] [LEFT NIL] [RIGHT NIL]]
[lyd [SELF SUBST → INV] [LEFT ADJ → ENT] [RIGHT ADJ → ENT , SUBJ → INV]]
[med [SELF SUBST → NIL , PREP → NIL] [LEFT ADJ → ENT , VERB → HYP] [RIGHT ADJ → ENT , SUBST → INV]]
[mot [SELF SUBST → NIL , PREP → NIL] [LEFT VERB → HYP] [RIGHT SUBST → INV]]
[mye [SELF ADJ → ENT] [LEFT NIL] [RIGHT NIL]]
[ned [SELF ADJ → NIL] [LEFT VERB → HYP] [RIGHT NIL]]
[ny [SELF SUBST → NIL , ADJ → ENT] [LEFT NIL] [RIGHT NIL]]
[o [SELF] [LEFT NIL] [RIGHT NIL]]
[om [SELF SUBST → NIL , PREP → NIL] [LEFT NIL] [RIGHT ADJ → ENT , SUBST → DOMAIN]]
[opp [SELF ADJ → NIL] [LEFT VERB → HYP] [RIGHT SUBST → INV]]
[ordne [SELF VERB → HYP] [LEFT NIL] [RIGHT NIL]]
[over [SELF PREP → ENT] [LEFT SUBST → INV] [RIGHT SUBST → INV]]
[pr. [SELF FORK → NIL] [LEFT NIL] [RIGHT NIL]]
[på [SELF PREP → NIL] [LEFT SUBST → INV , VERB → HYP] [RIGHT SUBST → INV , ADJ → ENT]]
[sammen [SELF ADJ → ENT] [LEFT SUBST → INV , VERB → HYP] [RIGHT ADJ → ENT , SUBST → INV]]
[se [SELF VERB → NIL] [LEFT NIL] [RIGHT NIL]]
[sende [SELF VERB → HYP] [LEFT NIL] [RIGHT SUBST → INV]]
[sette [SELF VERB → NIL] [LEFT NIL] [RIGHT SUBST → INV]]
[si [SELF SUBST → NIL , VERB → HYP] [LEFT NIL] [RIGHT NIL]]
[sin [SELF FORK → NIL] [LEFT VERB → HYP] [RIGHT SUBST → INV]]
[skille [SELF SUBST → INV , VERB → HYP] [LEFT NIL] [RIGHT NIL]]
[skjære [SELF SUBST → NIL , VERB → HYP] [LEFT NIL] [RIGHT NIL]]
[slå [SELF SUBST → NIL , VERB → HYP] [LEFT NIL] [RIGHT NIL]]
[snakke [SELF VERB → HYP] [LEFT NIL] [RIGHT ADJ → ENT]]
[sterk [SELF ADJ → ENT] [LEFT VERB → HYP] [RIGHT SUBST → INV]]
[stille [SELF SUBST → NIL , VERB → NIL] [LEFT NIL] [RIGHT NIL]]

91

[stoff [SELF SUBST → INV] [LEFT NIL] [RIGHT NIL]]
[stor [SELF ADJ → ENT] [LEFT NIL] [RIGHT NIL]]
[støte [SELF VERB → HYP] [LEFT NIL] [RIGHT NIL]]
[særlig [SELF ADJ → NIL] [LEFT NIL] [RIGHT NIL]]
[ta [SELF VERB → NIL] [LEFT NIL] [RIGHT SUBST → INV]]
[til [SELF PREP → NIL] [LEFT SUBST → INV , VERB → HYP] [RIGHT ADJ → ENT , SUBST → CAU]]
[tilbake [SELF ADJ → NIL] [LEFT NIL] [RIGHT NIL]]
[under [SELF SUBST → NIL , PREP → ENT] [LEFT VERB → HYP] [RIGHT SUBST → INV]]
[ut [SELF ADJ → NIL] [LEFT VERB → HYP] [RIGHT SUBST → INV]]
[utføre [SELF VERB → HYP] [LEFT NIL] [RIGHT ADJ → ENT , SUBST → INV]]
[vann [SELF ADJ → NIL , SUBST → INV] [LEFT VERB → HYP] [RIGHT SUBST → INV]]
[ved [SELF SUBST → NIL , PREP → NIL] [LEFT VERB → HYP] [RIGHT ADJ → ENT , VERB → HYP , SUBST → ENT]]
[vise [SELF SUBST → INV , VERB → HYP] [LEFT NIL] [RIGHT ADJ → ENT , SUBST → ENT]]
[viss [SELF ADJ → NIL] [LEFT NIL] [RIGHT SUBST → INV]]
[være [SELF SUBST → NIL , VERB → NIL] [LEFT NIL] [RIGHT ADJ → ENT , SUBST → INV]]
[å [SELF SUBST → NIL , INTERJ → NIL , PREFIX → NIL] [LEFT NIL] [RIGHT NIL]]
[ødelegge [SELF VERB → HYP] [LEFT NIL] [RIGHT NIL]]

92

Appendix D

Detailed Transducer Data

PoS Patterns Captured by the Initial Transducers

Transducer 1

Input VERB KOMMA VERB KOMMA VERB KOMMA VERB
Output SYN NIL SYN NIL SYN NIL SYN

Input VERB KOMMA VERB KOMMA VERB
Output SYN NIL SYN NIL SYN

Input VERB KOMMA VERB
Output SYN NIL SYN

Input VERB
Output SYN

Transducer 2

Input VERB PREP
Output OPER OPER

Input VERB SUBST
Output OPER ARG

Input VERB ADJ
Output OPER ARG

Transducer 4

Input VERB KOMMA VERB ADJ
Output HYP NIL OPER ARG

Table D.1: List of PoS Pattern classes captured by initial transducers. Some relation types are abbreviated for the
sake of readability. The abbreviations are HAS_SYNONYM → SYN ; HAS_HYPERONYM → HYP

PoS Patterns Captured by Transducer Expansions

The PoS pattern classes captured by the expanded transducers are listed in Table D.2, Table D.3,
Table D.4 and Table D.5.

93

Table D.2: List of PoS Pattern classes captured by initial transducers. Some relation types are abbreviated for the
sake of readability. The abbreviations are HAS_SYNONYM → SYN ; HAS_HYPERONYM → HYP

Transducer 2.1

Input VERB SUBST ADJ
Output OPER OPER NIL

Input VERB UKJENT PREP
Output OPER OPER OPER

Input VERB UKJENT SUBST
Output OPER OPER NIL

Input VERB ADV ADJ
Output OPER NIL NIL

Input VERB ADV PREP
Output OPER NIL OPER

Input VERB SUBST SUBST
Output OPER OPER NIL

Input VERB ADV SUBST
Output OPER NIL NIL

Input VERB PREP PRON
Output OPER OPER NIL

Input VERB PREP ADV
Output OPER OPER NIL

Input VERB PREP PREP
Output OPER OPER OPER

Input VERB VERB SUBST
Output OPER OPER NIL

Input VERB SUBST ADV
Output OPER OPER NIL

Input VERB ADJ ADV
Output OPER OPER NIL

Input VERB PREP ADJ
Output OPER OPER NIL

Input VERB VERB PREP
Output OPER OPER OPER

Input VERB ADJ PREP
Output OPER OPER OPER

Input VERB PRON
Output OPER NIL

Input VERB ADJ ADJ
Output OPER OPER NIL

Continued on next page.

94

Table D.2: List of PoS Pattern classes captured by transducer 2.1. (Continued from last page)

Transducer 2.1

Input VERB ADV
Output OPER NIL

Input VERB SUBST PREP
Output OPER OPER OPER

Input VERB ADJ SUBST
Output OPER OPER NIL

Input VERB PREP
Output OPER OPER

Input VERB PREP SUBST
Output OPER OPER NIL

Input VERB UKJENT
Output OPER OPER

Input VERB SUBST
Output OPER OPER

Input VERB VERB
Output OPER OPER

Input VERB ADJ
Output OPER OPER

Input VERB
Output OPER

Table D.3: List of PoS Pattern classes captured by transducer 2.2. Some relation types are abbreviated for the sake
of readability. The abbreviations are HAS_SYNONYM → SYN ; HAS_HYPERONYM → HYP

Transducer 2.2

Input VERB UKJENT PREP
Output OPER ARG NIL

Input VERB ADV PREP
Output OPER ARG NIL

Input VERB UKJENT CLB
Output OPER ARG NIL

Input VERB UKJENT PARENTES-SLUTT
Output OPER ARG NIL

Input VERB PREP ADV
Output OPER NIL NIL

Input VERB PREP PREP
Output OPER NIL NIL

Continued on next page.

95

Table D.3: List of PoS Pattern classes captured by transducer 2.2. (Continued from last page)

Transducer 2.2

Input VERB PRON PREP
Output OPER ARG NIL

Input VERB CLB
Output OPER NIL

Input VERB SUBST ADV
Output OPER ARG NIL

Input VERB ADJ ADV
Output OPER ARG NIL

Input VERB PRON ADV
Output OPER ARG NIL

Input VERB PREP CLB
Output OPER NIL NIL

Input VERB ADJ PREP
Output OPER ARG NIL

Input VERB ADJ CLB
Output OPER ARG NIL

Input VERB PRON
Output OPER ARG

Input VERB SUBST PARENTES-SLUTT
Output OPER ARG NIL

Input VERB SUBST CLB
Output OPER ARG NIL

Input VERB ADV
Output OPER ARG

Input VERB SUBST PREP
Output OPER ARG NIL

Input VERB PREP
Output OPER NIL

Input VERB UKJENT
Output OPER ARG

Input VERB SUBST
Output OPER ARG

Input VERB ADJ
Output OPER ARG

Input VERB
Output OPER

96

Table D.4: List of PoS Pattern classes captured by transducer 2.3. Some relation types are abbreviated for the sake
of readability. The abbreviations are HAS_SYNONYM → SYN ; HAS_HYPERONYM → HYP

Transducer 2.3

Input VERB SUBST ADJ
Output OPER NIL ARG

Input VERB UKJENT PREP
Output OPER ARG NIL

Input VERB UKJENT SUBST
Output OPER ARG NIL

Input VERB ADV ADJ
Output OPER ARG ARG

Input VERB ADV PREP
Output OPER ARG NIL

Input VERB UKJENT CLB
Output OPER ARG NIL

Input VERB SUBST SUBST
Output OPER NIL NIL

Input VERB ADV SUBST
Output OPER ARG NIL

Input VERB PRON ADJ
Output OPER ARG ARG

Input VERB PREP PREP
Output OPER ARG NIL

Input VERB PRON PREP
Output OPER ARG NIL

Input VERB CLB
Output OPER NIL

Input VERB PRON SUBST
Output OPER ARG NIL

Input VERB PREP ADJ
Output OPER ARG ARG

Input VERB PREP CLB
Output OPER ARG NIL

Input VERB ADJ PREP
Output OPER ARG NIL

Input VERB ADJ CLB
Output OPER ARG NIL

Input VERB PRON
Output OPER ARG

Continued on next page.

97

Table D.4: List of PoS Pattern classes captured by transducer 2.3. (Continued from last page)

Transducer 2.3

Input VERB ADJ ADJ
Output OPER ARG ARG

Input VERB SUBST CLB
Output OPER NIL NIL

Input VERB ADV
Output OPER ARG

Input VERB SUBST PREP
Output OPER NIL NIL

Input VERB ADJ SUBST
Output OPER ARG NIL

Input VERB PREP
Output OPER NIL

Input VERB PREP SUBST
Output OPER ARG NIL

Input VERB UKJENT
Output OPER ARG

Input VERB SUBST
Output OPER NIL

Input VERB ADJ
Output OPER ARG

Input VERB
Output OPER

Table D.5: List of PoS Pattern classes captured by transducer 3.1. Some relation types are abbreviated for the sake
of readability. The abbreviations are HAS_SYNONYM → SYN ; HAS_HYPERONYM → HYP

Transducer 3.1

Input VERB KOMMA VERB ADJ ADJ
Output HYP NIL OPER ARG ARG

Input VERB KOMMA VERB ADV PREP
Output HYP NIL OPER ARG NIL

Input VERB KOMMA VERB PREP PREP
Output HYP NIL OPER NIL NIL

Input VERB KOMMA VERB VERB PREP
Output HYP NIL OPER ARG NIL

Input VERB KOMMA VERB PREP ADJ
Output HYP NIL OPER NIL ARG

Continued on next page.

98

Table D.5: List of PoS Pattern classes captured by transducer 3.1. (Continued from last page)

Transducer 3.1

Input VERB KOMMA VERB ADV
Output HYP NIL OPER ARG

Input VERB KOMMA VERB PRON SUBST
Output HYP NIL OPER ARG NIL

Input VERB KOMMA VERB ADJ SUBST
Output HYP NIL OPER ARG NIL

Input VERB KOMMA VERB PRON
Output HYP NIL OPER ARG

Input VERB KOMMA VERB VERB
Output HYP NIL OPER ARG

Input VERB KOMMA VERB PRON ADJ
Output HYP NIL OPER ARG ARG

Input VERB KOMMA VERB SUBST
Output HYP NIL OPER ARG

Input VERB KOMMA VERB SUBST PREP
Output HYP NIL OPER ARG NIL

Input VERB KOMMA VERB PRON PREP
Output HYP NIL OPER ARG NIL

Input VERB KOMMA VERB ADJ PREP
Output HYP NIL OPER ARG NIL

Input VERB KOMMA VERB ADJ
Output HYP NIL OPER ARG

Input VERB KOMMA VERB PREP SUBST
Output HYP NIL OPER NIL NIL

Input VERB KOMMA VERB PREP
Output HYP NIL OPER NIL

Input VERB KOMMA VERB
Output HYP NIL OPER

99

100

Appendix E

Detailed Data for the Post-Processing
Evaluation

0.12 List of Post-processed Relations Grouped by Agreement

3 Judge Dataset

Table E.1: 3-Judge Dataset: List of relations accepted by all three judges, lemma level.

Lemma 1 Relation Lemma 2

adherere HAS_HYPERONYM holde
anføre HAS_HYPERONYM nevne
anrope INVOLVED anrop
anta HAS_SYNONYM formode
antaste ENTAILS påtrengende
anvise ENTAILS ordre
artikulere HAS_HYPERONYM forme
avta INVOLVED kjøper
avtjene HAS_HYPERONYM utføre
bale HAS_HYPERONYM streve
behandle HAS_SYNONYM bearbeide
beta HAS_SYNONYM frata
bløtlegge HAS_HYPERONYM legge
eksponere INVOLVED lys
ekstemporere HAS_HYPERONYM lese
enes CAUSES enig
etikettere INVOLVED etikett
fare HAS_SYNONYM ferdes
fare HAS_SYNONYM reise
fastholde HAS_HYPERONYM holde
fatte HAS_HYPERONYM gripe
fikle HAS_SYNONYM plukke
fikle HAS_SYNONYM pusle
fikle HAS_SYNONYM tukle
filtrere HAS_HYPERONYM sile

Continued on next page

101

Table E.1: 3-Judge Dataset: List of relations accepted by all three judges, lemma level. (Continued from last page)

Lemma 1 Relation Lemma 2

finne HAS_SYNONYM vurdere
fly HAS_SYNONYM flakse
fløte INVOLVED vann
forevise HAS_HYPERONYM vise
forta HAS_HYPERONYM forsvinne
fratre HAS_HYPERONYM slutte
fuske CAUSES dårlig
gjelde HAS_HYPERONYM angå
gjenbruke HAS_HYPERONYM bruke
helligholde ENTAILS hellig
henge HAS_HYPERONYM holde
henvise HAS_HYPERONYM vise
himle INVOLVED himling
hvitne CAUSES hvit
innbringe HAS_HYPERONYM bringe
inngi HAS_HYPERONYM sende
innskipe HAS_HYPERONYM bringe
instituere HAS_HYPERONYM stifte
instruere ENTAILS opplæring
instruere HAS_HYPERONYM veilede
intensivere HAS_HYPERONYM forsterke
kaue HAS_SYNONYM hauke
kaue HAS_SYNONYM lokke
klappe HAS_HYPERONYM legge
klargjøre CAUSES klar
klinge HAS_SYNONYM høres
klinge HAS_SYNONYM lyde
knuge HAS_HYPERONYM klemme
komprimere HAS_HYPERONYM presse
krikle HAS_HYPERONYM lage
krinse HAS_SYNONYM kretse
krysse HAS_HYPERONYM gå
kultivere HAS_HYPERONYM dyrke
kåle HAS_HYPERONYM ødelegge
landsforvise HAS_HYPERONYM vise
mane HAS_SYNONYM egge
modne CAUSES moden
more HAS_SYNONYM muntre
nedbygge HAS_HYPERONYM redusere
nyte HAS_HYPERONYM fortære
oppirre HAS_HYPERONYM ergre
oppta HAS_SYNONYM besette
organisere HAS_HYPERONYM ordne
orientere HAS_HYPERONYM opplyse

Continued on next page

102

Table E.1: 3-Judge Dataset: List of relations accepted by all three judges, lemma level. (Continued from last page)

Lemma 1 Relation Lemma 2

oversende HAS_HYPERONYM sende
parfymere CAUSES velluktende
pigge INVOLVED pigg
plaske HAS_SYNONYM skvette
plaske HAS_SYNONYM skvalpe
plire HAS_SYNONYM myse
plissere HAS_HYPERONYM legge
puffe HAS_SYNONYM dampe
rafte INVOLVED raft
reduplisere HAS_SYNONYM fordoble
respektere INVOLVED aktelse
romme HAS_SYNONYM inneholde
røpe CAUSES kjent
sikle INVOLVED lyst
skjefte INVOLVED skaft
snike HAS_SYNONYM liste
snike HAS_SYNONYM lure
sone INVOLVED bot
sortere HAS_HYPERONYM inndele
strippe INVOLVED striptease
summe HAS_HYPERONYM surre
tagge INVOLVED tagg
tilsnakke HAS_HYPERONYM irettesette
trasse ENTAILS trassig
ugge ENTAILS redd
urbanisere CAUSES bymessig
utlyse HAS_HYPERONYM kunngjøre
vite ENTAILS sikker
vringle ENTAILS vrang
yte HAS_HYPERONYM gi
åpne CAUSES synlig

Accepted Relations by All 3 Judges (Full Agreement)

Table E.2: 3-Judge Dataset: List over relations accepted by two of three judges, lemma level.

Lemma 1 Relation Lemma 2

adherere ENTAILS fast
adherere HAS_HYPERONYM henge
aksentuere HAS_HYPERONYM framheve
aksentuere INVOLVED vekt
anrope HAS_HYPERONYM sende
anta HAS_HYPERONYM formode

Continued on next page

103

Table E.2: 3-Judge Dataset: List over relations accepted by two of three judges, lemma level. (Continued from last
page)

Lemma 1 Relation Lemma 2

antaste HAS_HYPERONYM tilsnakke
avfette CAUSES fri
besette INVOLVED beslag
besette HAS_SYNONYM oppta
besette HAS_HYPERONYM oppta
dimittere HAS_HYPERONYM sende
divertere HAS_SYNONYM more
divertere HAS_HYPERONYM more
fare HAS_SYNONYM gå
fastholde ENTAILS fast
figurere HAS_HYPERONYM stå
finne HAS_SYNONYM få
finne HAS_SYNONYM oppnå
finne HAS_SYNONYM synes
finne HAS_SYNONYM vinne
flagge ENTAILS tegn
flanere HAS_HYPERONYM slentre
fly HAS_SYNONYM farte
fly HAS_SYNONYM springe
forakte HAS_HYPERONYM ringeakte
forfjamse HAS_HYPERONYM bringe
fuske HAS_HYPERONYM slurve
gåre INVOLVED bølge
gåre HAS_HYPERONYM lage
halse HAS_HYPERONYM fare
hevde HAS_HYPERONYM vinne
hoppe ENTAILS urolig
inngi HAS_HYPERONYM gi
inngi HAS_HYPERONYM levere
innløpe HAS_HYPERONYM komme
insistere HAS_HYPERONYM holde
kannelere INVOLVED kannelyre
kannelere HAS_HYPERONYM lage
kase HAS_HYPERONYM legge
kaue HAS_SYNONYM rope
klinge HAS_HYPERONYM lyde
klore HAS_HYPERONYM hogge
kontrollere INVOLVED herredømme
kopulere HAS_HYPERONYM føye
krølle HAS_HYPERONYM legge
kursivere HAS_HYPERONYM sette
lugne HAS_HYPERONYM roe
løse HAS_HYPERONYM ordne

Continued on next page

104

Table E.2: 3-Judge Dataset: List over relations accepted by two of three judges, lemma level. (Continued from last
page)

Lemma 1 Relation Lemma 2

more HAS_SYNONYM glede
more HAS_SYNONYM oppmuntre
more HAS_SYNONYM underholde
nå HAS_HYPERONYM komme
nå HAS_HYPERONYM komme
omgås ENTAILS selskapelig
oppnorske HAS_HYPERONYM fornorske
oppta INVOLVED beslag
permittere ENTAILS permisjon
plastre HAS_HYPERONYM legge
rafte HAS_HYPERONYM legge
reduplisere HAS_SYNONYM gjenta
renne HAS_HYPERONYM gli
rokere HAS_HYPERONYM utføre
romme HAS_HYPERONYM inneholde
ryke HAS_HYPERONYM tape
røpe HAS_HYPERONYM avsløre
sifrere ENTAILS siffer
skade ENTAILS uheldig
skeivle HAS_HYPERONYM bringe
skje HAS_HYPERONYM hende
skjene HAS_HYPERONYM fare
smashe HAS_HYPERONYM utføre
sprike HAS_HYPERONYM spile
sprike HAS_HYPERONYM vise
streke HAS_HYPERONYM lage
strippe HAS_HYPERONYM utføre
stryke HAS_HYPERONYM sløyfe
stryke HAS_HYPERONYM utgå
synkverve HAS_HYPERONYM forvirre
tagge HAS_HYPERONYM lage
terrassere ENTAILS form
tolke ENTAILS uttrykk
trimme HAS_HYPERONYM mosjonere
trinse HAS_SYNONYM rulle
trinse HAS_SYNONYM trille
vake HAS_HYPERONYM flyte
virke INVOLVED virkning

Accepted Relations for 2 of 3 Judges (Partial Agreement)

105

Table E.3: 3-Judge Dataset: List over relations invalidated by all three judges, lemma level.

Lemma 1 Relation Lemma 2

aksentuere HAS_HYPERONYM legge
avdramatisere CAUSES liten
avsky ENTAILS sterk
beundre ENTAILS over
effektivisere CAUSES mye
finne HAS_SYNONYM kjenne
forurense INVOLVED ur
forutskikke HAS_HYPERONYM komme
intensivere CAUSES mye
kontrollere ENTAILS over
korse HAS_HYPERONYM legge
motorisere HAS_HYPERONYM legge
oppnorske CAUSES mye
oversende ENTAILS over
plaske HAS_SYNONYM slå
plastre INVOLVED plast
prioritere ENTAILS fortrinn
renne HAS_HYPERONYM helle
renne HAS_HYPERONYM helle
seigpine ENTAILS over
sjenere HAS_HYPERONYM være
sluke HAS_HYPERONYM legge
sluke ENTAILS under
spare HAS_HYPERONYM bruke
spraye HAS_HYPERONYM bruke
undres ENTAILS over
virke HAS_HYPERONYM ha

Invalidated Relations by All 3 Judges (Full Agreement)

Table E.4: 3-Judge Dataset: List over relations invalidated by the majority of three judges, lemma level.

Lemma 1 Relation Lemma 2

besette HAS_HYPERONYM legge
besette HAS_HYPERONYM oppta
etse HAS_SYNONYM gravere
formalisere HAS_HYPERONYM bringe
framlegge HAS_HYPERONYM legge
glemme HAS_HYPERONYM legge
helligholde HAS_HYPERONYM holde
heroisere HAS_HYPERONYM betrakte
himle HAS_HYPERONYM legge

Continued on next page

106

Table E.4: 3-Judge Dataset: List over relations invalidated by the majority of three judges, lemma level. (Continued
from last page)

Lemma 1 Relation Lemma 2

kave CAUSES ubehjelpelig
knuge ENTAILS over
koke ENTAILS sterk
kunne ENTAILS trygg
lugne HAS_HYPERONYM bringe
nå HAS_HYPERONYM komme
nå HAS_HYPERONYM oppnå
oppmyke CAUSES liten
oppta HAS_HYPERONYM besette
oppta HAS_HYPERONYM besette
oppta HAS_HYPERONYM legge
overanstrenge ENTAILS sterk
overbelaste ENTAILS sterk
reduplisere HAS_HYPERONYM fordoble
renne HAS_SYNONYM helle
ryke HAS_HYPERONYM sende
samstave HAS_HYPERONYM komme
se HAS_HYPERONYM oppdage
servere HAS_HYPERONYM framføre
sjokkåpne ENTAILS sterk
skrinlegge HAS_HYPERONYM legge
snike HAS_HYPERONYM lure
snyte HAS_HYPERONYM pusse
telefonere HAS_HYPERONYM ringe
tilkjennegi ENTAILS uttrykk
underkaste INVOLVED gjenstand
underlegge INVOLVED gjenstand
unnsleppe HAS_HYPERONYM komme
vake HAS_HYPERONYM holde
velsigne ENTAILS over

Invalidated Relations by 2 of 3 Judges (Partial Agreement)

Table E.5: 3-Judge Dataset: List over relations fully disagreed by all three judges, lemma level.

Lemma 1 Relation Lemma 2

kjørne INVOLVED merke
krusle HAS_HYPERONYM kreke
sælde HAS_HYPERONYM sikte
trinse HAS_SYNONYM tumle
ulke HAS_HYPERONYM gulpe
uteske HAS_HYPERONYM utfordre

107

Relations With No Agreement Between 3 Judges

2 Judge Dataset

Table E.6: 2-Judge Dataset: List of relations accepted by both judges, lemma level.

Lemma 1 Relation Lemma 2

adherere ENTAILS fast
adherere HAS_HYPERONYM holde
anfalle HAS_HYPERONYM angripe
anfekte HAS_HYPERONYM bringe
anføre HAS_HYPERONYM nevne
anke HAS_HYPERONYM klage
anrope INVOLVED anrop
anta HAS_SYNONYM formode
antaste ENTAILS påtrengende
antenne INVOLVED fyr
anvise ENTAILS ordre
applisere HAS_SYNONYM anvende
applisere HAS_HYPERONYM anvende
artikulere HAS_HYPERONYM forme
avfette CAUSES fri
avgrense INVOLVED grense
avskipe HAS_HYPERONYM sende
avta INVOLVED kjøper
avtjene HAS_HYPERONYM utføre
avtrappe HAS_HYPERONYM minske
bale HAS_HYPERONYM streve
barbere INVOLVED skjegg
behandle HAS_SYNONYM bearbeide
bekrefte HAS_SYNONYM befeste
bekrefte HAS_SYNONYM styrke
bekrefte HAS_SYNONYM stadfeste
besette HAS_HYPERONYM oppta
bestille HAS_SYNONYM tinge
bestri HAS_SYNONYM betale
bestri HAS_HYPERONYM betale
bestri HAS_SYNONYM utrede
beta HAS_SYNONYM frata
betale HAS_HYPERONYM lønne
bevokte INVOLVED vakt
bite INVOLVED tann
bløtlegge HAS_HYPERONYM legge
bolte HAS_HYPERONYM feste
brodde HAS_SYNONYM brydde
brodde HAS_SYNONYM spire
brotsje INVOLVED brotsj

Continued on next page

108

Table E.6: 2-Judge Dataset: List of relations accepted by both judges, lemma level. (Continued from last page)

Lemma 1 Relation Lemma 2

deise HAS_SYNONYM dumpe
deise HAS_HYPERONYM falle
dimittere HAS_HYPERONYM sende
drikke HAS_HYPERONYM nyte
drømme INVOLVED drøm
dyrke HAS_HYPERONYM ære
dølge ENTAILS hemmelig
dølge HAS_SYNONYM skjule
dølge HAS_HYPERONYM skjule
effektuere HAS_HYPERONYM utføre
egge HAS_SYNONYM inspirere
egge HAS_SYNONYM oppildne
egge HAS_SYNONYM utfordre
eksponere INVOLVED lys
ekstemporere HAS_HYPERONYM lese
enes CAUSES enig
eskapere HAS_HYPERONYM flykte
estimere HAS_HYPERONYM verdsette
etikettere INVOLVED etikett
evaporere INVOLVED ferskvann
fare HAS_SYNONYM ferdes
fare HAS_SYNONYM reise
fastholde HAS_HYPERONYM holde
fatte HAS_HYPERONYM gripe
fikle HAS_SYNONYM plukke
fikle HAS_SYNONYM pusle
fikle HAS_SYNONYM tukle
filtrere HAS_HYPERONYM sile
fininnstille HAS_HYPERONYM justere
finne HAS_SYNONYM få
finne HAS_SYNONYM oppnå
finne HAS_SYNONYM vurdere
finne HAS_SYNONYM vinne
flagge ENTAILS tegn
floragrafere INVOLVED floragram
floragrafere HAS_HYPERONYM sende
fly HAS_SYNONYM flakse
flæ INVOLVED flytholt
fløte INVOLVED vann
forevise HAS_HYPERONYM vise
forfølge HAS_HYPERONYM bringe
forgripe HAS_HYPERONYM stjele
forkjetre INVOLVED avstand
forkjetre HAS_HYPERONYM forvrenge

Continued on next page

109

Table E.6: 2-Judge Dataset: List of relations accepted by both judges, lemma level. (Continued from last page)

Lemma 1 Relation Lemma 2

forkludre INVOLVED uorden
forkorte CAUSES kort
formode HAS_SYNONYM anta
forspille HAS_HYPERONYM ødelegge
forta HAS_HYPERONYM forsvinne
fortjene ENTAILS verdig
forutsette HAS_HYPERONYM anta
fratre HAS_HYPERONYM slutte
friliste INVOLVED vare
fukte CAUSES fuktig
fukte HAS_HYPERONYM væte
fuske CAUSES dårlig
generere HAS_SYNONYM danne
generere HAS_SYNONYM frambringe
gildre HAS_HYPERONYM stille
gjelde HAS_HYPERONYM angå
gjenbruke HAS_HYPERONYM bruke
gjete HAS_HYPERONYM vokte
gjøne HAS_SYNONYM ape
gjøne HAS_SYNONYM fjase
gjøne HAS_SYNONYM narre
gjøne HAS_SYNONYM skjemte
glime HAS_HYPERONYM lyse
gramse HAS_SYNONYM famle
gramse HAS_SYNONYM grafse
gåre INVOLVED bølge
gåre HAS_HYPERONYM lage
halle HAS_SYNONYM helle
halle HAS_SYNONYM skråne
hele HAS_SYNONYM lege
hele HAS_HYPERONYM utbedre
helligholde ENTAILS hellig
henge HAS_HYPERONYM holde
hensette HAS_SYNONYM anbringe
hensette HAS_SYNONYM flytte
hensette HAS_SYNONYM sette
henvise HAS_HYPERONYM vise
hevde HAS_HYPERONYM vinne
himle INVOLVED himling
hogge HAS_SYNONYM bite
hogge HAS_SYNONYM gripe
hogge HAS_SYNONYM slå
hvitne CAUSES hvit
innbringe HAS_HYPERONYM bringe

Continued on next page

110

Table E.6: 2-Judge Dataset: List of relations accepted by both judges, lemma level. (Continued from last page)

Lemma 1 Relation Lemma 2

inngi HAS_HYPERONYM sende
innkomme HAS_HYPERONYM komme
innskipe HAS_HYPERONYM bringe
instituere HAS_HYPERONYM stifte
instruere ENTAILS opplæring
instruere HAS_HYPERONYM veilede
intensivere HAS_HYPERONYM forsterke
isne CAUSES iskald
jodisere HAS_SYNONYM jodere
justere HAS_SYNONYM innstille
justere HAS_SYNONYM regulere
kalle ENTAILS navn
kannelere INVOLVED kannelyre
kannelere HAS_HYPERONYM lage
kante HAS_HYPERONYM velte
kase HAS_HYPERONYM legge
kaue HAS_SYNONYM hauke
kaue HAS_SYNONYM lokke
kitte HAS_HYPERONYM feste
kjøve HAS_HYPERONYM kvele
kjøve INVOLVED pust
klappe HAS_HYPERONYM legge
klargjøre CAUSES klar
klinge HAS_SYNONYM høres
klinge HAS_SYNONYM lyde
klusse HAS_SYNONYM fikle
klusse HAS_HYPERONYM fikle
klusse HAS_SYNONYM tukle
knuge HAS_HYPERONYM klemme
kommandere INVOLVED kommando
kompensere HAS_SYNONYM erstatte
kompensere HAS_SYNONYM godtgjøre
komplettere CAUSES fullstendig
komplettere HAS_HYPERONYM utfylle
komprimere HAS_HYPERONYM presse
konvoluttere HAS_HYPERONYM legge
krikle HAS_HYPERONYM lage
krinse HAS_SYNONYM kretse
krysse HAS_HYPERONYM gå
krølle INVOLVED krølle
kultivere HAS_HYPERONYM dyrke
kvare HAS_HYPERONYM bringe
kvittere INVOLVED gjengjeld
kåle HAS_HYPERONYM ødelegge

Continued on next page

111

Table E.6: 2-Judge Dataset: List of relations accepted by both judges, lemma level. (Continued from last page)

Lemma 1 Relation Lemma 2

landsforvise HAS_HYPERONYM vise
lure HAS_HYPERONYM spekulere
lysne CAUSES lys
mane HAS_SYNONYM egge
mane HAS_SYNONYM formane
mane HAS_SYNONYM oppfordre
modne CAUSES moden
more HAS_SYNONYM muntre
mørke CAUSES mørk
mørne CAUSES mør
nedbygge HAS_HYPERONYM redusere
nitte HAS_SYNONYM klinke
nyte HAS_HYPERONYM fortære
okkupere INVOLVED beslag
omgjøre HAS_HYPERONYM lage
omtale HAS_SYNONYM anmelde
oppirre HAS_HYPERONYM ergre
oppskrive HAS_SYNONYM revaluere
oppta INVOLVED beslag
oppta HAS_SYNONYM besette
organisere HAS_HYPERONYM ordne
orientere HAS_HYPERONYM opplyse
overlate HAS_HYPERONYM utlevere
oversende HAS_HYPERONYM sende
overstige ENTAILS stor
parfymere CAUSES velluktende
perfeksjonere CAUSES fullkommen
perse HAS_HYPERONYM trykke
pigge INVOLVED pigg
plante INVOLVED plante
plaske HAS_SYNONYM skvette
plaske HAS_SYNONYM skvalpe
plire HAS_SYNONYM myse
plissere HAS_HYPERONYM legge
poppe INVOLVED popkorn
presentere HAS_SYNONYM framføre
prøve HAS_SYNONYM granske
prøve HAS_SYNONYM kontrollere
prøve HAS_SYNONYM teste
prøve HAS_SYNONYM undersøke
pudre HAS_HYPERONYM drysse
pudre INVOLVED pudder
puffe HAS_SYNONYM dampe
purre HAS_HYPERONYM varsle

Continued on next page

112

Table E.6: 2-Judge Dataset: List of relations accepted by both judges, lemma level. (Continued from last page)

Lemma 1 Relation Lemma 2

rafte HAS_HYPERONYM legge
rafte INVOLVED raft
rakle HAS_SYNONYM drive
rakle HAS_SYNONYM flakke
rakle HAS_SYNONYM farte
rakle HAS_SYNONYM slenge
rape HAS_HYPERONYM gli
rape ENTAILS hørbar
ratte HAS_HYPERONYM styre
reduplisere HAS_SYNONYM fordoble
regjere INVOLVED makt
regjere HAS_HYPERONYM styre
reke HAS_SYNONYM drive
reke HAS_SYNONYM farte
reke HAS_SYNONYM slenge
renne HAS_SYNONYM støte
renne HAS_SYNONYM stikke
reprodusere HAS_HYPERONYM frambringe
respektere INVOLVED aktelse
respektere INVOLVED hensyn
returnere HAS_HYPERONYM sende
rive HAS_HYPERONYM rasere
rokere HAS_HYPERONYM utføre
romme HAS_SYNONYM inneholde
runge ENTAILS gjenlyd
ryke HAS_HYPERONYM tape
røpe CAUSES kjent
saktne CAUSES langsom
saluttere HAS_HYPERONYM skyte
sannsynliggjøre CAUSES sannsynlig
separere HAS_SYNONYM skille
sikle INVOLVED lyst
sive HAS_SYNONYM trenge
sjaue INVOLVED spetakkel
skeivle HAS_HYPERONYM bringe
skjefte INVOLVED skaft
skjule HAS_SYNONYM dølge
skjule ENTAILS hemmelig
skrike HAS_SYNONYM rope
skvette HAS_SYNONYM drive
skvette HAS_SYNONYM sprøyte
skvette HAS_SYNONYM sprute
skåle HAS_HYPERONYM drikke
slepe HAS_SYNONYM drasse

Continued on next page

113

Table E.6: 2-Judge Dataset: List of relations accepted by both judges, lemma level. (Continued from last page)

Lemma 1 Relation Lemma 2

slepe HAS_SYNONYM hale
slodde HAS_HYPERONYM harve
smergle HAS_HYPERONYM slipe
smerte CAUSES vond
snike HAS_SYNONYM liste
snike HAS_SYNONYM lure
snuppe HAS_HYPERONYM skjære
sone INVOLVED bot
sortere HAS_HYPERONYM inndele
spante INVOLVED spant
spore ENTAILS hest
stable HAS_HYPERONYM legge
stanse HAS_HYPERONYM bringe
stille HAS_HYPERONYM møte
stjele HAS_HYPERONYM ta
strekke HAS_SYNONYM forstrekke
strenge INVOLVED streng
strigle HAS_HYPERONYM kjemme
strippe INVOLVED striptease
stryke HAS_HYPERONYM utgå
subordinere HAS_HYPERONYM underordne
subsidiere HAS_HYPERONYM hjelpe
summe HAS_HYPERONYM surre
sutenere HAS_HYPERONYM underholde
synkverve HAS_HYPERONYM forvirre
særmerke HAS_SYNONYM kjennetegne
særmerke HAS_SYNONYM særprege
tagge INVOLVED tagg
tette CAUSES tett
tilføye HAS_HYPERONYM føye
tilsløre HAS_HYPERONYM tåkelegge
tilsnakke HAS_HYPERONYM irettesette
tore HAS_SYNONYM våge
trasse ENTAILS trassig
tretne CAUSES trett
trinse HAS_SYNONYM rulle
trinse HAS_SYNONYM trille
tryte INVOLVED slutt
tåte HAS_SYNONYM patte
tåte HAS_SYNONYM sutte
ugge ENTAILS redd
urbanisere CAUSES bymessig
utbringe HAS_HYPERONYM bringe
utbygge HAS_HYPERONYM utforme

Continued on next page

114

Table E.6: 2-Judge Dataset: List of relations accepted by both judges, lemma level. (Continued from last page)

Lemma 1 Relation Lemma 2

utlyse HAS_HYPERONYM kunngjøre
utstå HAS_HYPERONYM vente
vafle HAS_HYPERONYM slå
vanne HAS_HYPERONYM helle
vanne INVOLVED vann
vanne INVOLVED vann
vanne ENTAILS vann
varsle ENTAILS beskjed
vinne ENTAILS god
virke INVOLVED innvirkning
vite ENTAILS sikker
votere INVOLVED avstemning
votere HAS_HYPERONYM stemme
vringle ENTAILS vrang
ynde ENTAILS glad
ynde HAS_HYPERONYM like
yte HAS_HYPERONYM gi
åpne CAUSES synlig

Accepted Relations by Both Judges

Table E.7: 2-judge Dataset: List over relations invalidated by both judges, lemma level.

Lemma 1 Relation Lemma 2

aksentuere HAS_HYPERONYM legge
applisere HAS_SYNONYM tilpasse
avdramatisere CAUSES liten
avsky ENTAILS sterk
besette HAS_HYPERONYM oppta
bestille HAS_HYPERONYM tinge
bestryke HAS_HYPERONYM holde
beundre ENTAILS over
dovne CAUSES midlertidig
dulle HAS_HYPERONYM vise
dølge HAS_HYPERONYM skjule
effektivisere CAUSES mye
etse HAS_SYNONYM gravere
finne HAS_SYNONYM kjenne
formode HAS_HYPERONYM anta
forurense INVOLVED ur
forutskikke HAS_HYPERONYM komme
framlegge HAS_HYPERONYM legge
halle HAS_HYPERONYM helle

Continued on next page

115

Table E.7: 2-judge Dataset: List over relations invalidated by both judges, lemma level. (Continued from last page)

Lemma 1 Relation Lemma 2

harve ENTAILS over
henge HAS_HYPERONYM holde
henge HAS_HYPERONYM være
heroisere HAS_HYPERONYM betrakte
hoppe HAS_HYPERONYM sprette
innlosjere ENTAILS få
innrømme ENTAILS få
intensivere CAUSES mye
kontrollere ENTAILS over
korse HAS_HYPERONYM legge
kunne ENTAILS trygg
motorisere HAS_HYPERONYM legge
oppnorske CAUSES mye
oppta HAS_HYPERONYM besette
oversende ENTAILS over
overstige HAS_HYPERONYM overskride
plaske HAS_SYNONYM slå
plastre INVOLVED plast
presentere HAS_SYNONYM spille
prioritere ENTAILS fortrinn
reduplisere HAS_HYPERONYM fordoble
renne HAS_HYPERONYM helle
renne HAS_HYPERONYM helle
renne HAS_HYPERONYM stikke
samstave HAS_HYPERONYM komme
seigpine ENTAILS over
sjenere HAS_HYPERONYM være
skjule HAS_HYPERONYM dølge
sluke HAS_HYPERONYM legge
sluke ENTAILS under
slutte HAS_HYPERONYM holde
snike HAS_HYPERONYM lure
snyte HAS_HYPERONYM pusse
spare HAS_HYPERONYM bruke
spraye HAS_HYPERONYM bruke
stjele HAS_HYPERONYM legge
særmerke HAS_HYPERONYM kjennetegne
tabloidisere ENTAILS over
telefonere HAS_HYPERONYM ringe
undres ENTAILS over
utbasunere CAUSES alminnelig
velsigne ENTAILS over
virke HAS_HYPERONYM ha

Invalidated Relations by Both Judges

116

Table E.8: 2-Judge Dataset: List over relations disagreed by both judges, lemma level.

Lemma 1 Relation Lemma 2

adherere HAS_HYPERONYM henge
aksentuere HAS_HYPERONYM framheve
aksentuere INVOLVED vekt
anrope HAS_HYPERONYM sende
anta HAS_HYPERONYM formode
antaste HAS_HYPERONYM tilsnakke
barbere HAS_HYPERONYM rake
besette INVOLVED beslag
besette HAS_HYPERONYM legge
besette HAS_SYNONYM oppta
bestille INVOLVED avtale
bestryke ENTAILS under
bevokte HAS_HYPERONYM holde
bevokte ENTAILS over
bilegge HAS_HYPERONYM legge
bo HAS_HYPERONYM finnes
borge HAS_HYPERONYM garantere
bre ENTAILS over
brodde HAS_HYPERONYM brydde
brotsje HAS_HYPERONYM bruke
deise HAS_SYNONYM falle
dimittere HAS_HYPERONYM sende
divertere HAS_HYPERONYM more
divertere HAS_SYNONYM more
dukke HAS_HYPERONYM komme
dølge HAS_HYPERONYM holde
eskapere HAS_HYPERONYM komme
evaporere HAS_HYPERONYM lage
fare HAS_SYNONYM gå
fastholde ENTAILS fast
figurere HAS_HYPERONYM stå
file HAS_HYPERONYM lage
finne HAS_SYNONYM synes
flanere HAS_HYPERONYM slentre
fly HAS_SYNONYM farte
fly HAS_SYNONYM springe
forakte HAS_HYPERONYM ringeakte
forfjamse HAS_HYPERONYM bringe
forkludre HAS_HYPERONYM bringe
forkludre HAS_HYPERONYM forkvakle
formalisere HAS_HYPERONYM bringe
formode HAS_HYPERONYM holde
formode ENTAILS sannsynlig
forutsette ENTAILS avhengig

Continued on next page

117

Table E.8: 2-Judge Dataset: List over relations disagreed by both judges, lemma level. (Continued from last page)

Lemma 1 Relation Lemma 2

fri ENTAILS tilbud
fuske HAS_HYPERONYM slurve
generere HAS_SYNONYM avle
glemme HAS_HYPERONYM legge
gli HAS_HYPERONYM skli
gramse HAS_SYNONYM beføle
halse HAS_HYPERONYM fare
hele HAS_SYNONYM utbedre
helligholde HAS_HYPERONYM holde
himle HAS_HYPERONYM legge
hogge HAS_SYNONYM sette
holde HAS_HYPERONYM anse
hoppe ENTAILS urolig
hospitalisere HAS_HYPERONYM legge
implisere HAS_HYPERONYM medføre
inngi HAS_HYPERONYM gi
inngi HAS_HYPERONYM levere
innløpe HAS_HYPERONYM komme
innrømme HAS_HYPERONYM gi
insistere HAS_HYPERONYM holde
ise HAS_HYPERONYM legge
justere HAS_SYNONYM tilpasse
kapsle HAS_HYPERONYM omgi
kaue HAS_SYNONYM rope
kave CAUSES ubehjelpelig
kjørne INVOLVED merke
klinge HAS_HYPERONYM lyde
klore HAS_HYPERONYM hogge
knepre HAS_HYPERONYM lage
knuge ENTAILS over
koke ENTAILS sterk
kommandere ENTAILS over
komme HAS_HYPERONYM ankomme
kontrollere INVOLVED herredømme
kopulere HAS_HYPERONYM føye
krusle HAS_HYPERONYM kreke
krølle HAS_HYPERONYM lage
krølle HAS_HYPERONYM legge
kursivere HAS_HYPERONYM sette
kveike HAS_HYPERONYM styrke
lake HAS_HYPERONYM legge
leve HAS_HYPERONYM livnære
lugge HAS_HYPERONYM rykke
lugne HAS_HYPERONYM bringe

Continued on next page

118

Table E.8: 2-Judge Dataset: List over relations disagreed by both judges, lemma level. (Continued from last page)

Lemma 1 Relation Lemma 2

lugne HAS_HYPERONYM roe
lære HAS_HYPERONYM forkynne
løpe HAS_HYPERONYM springe
løse HAS_HYPERONYM ordne
mane HAS_SYNONYM påvirke
more HAS_SYNONYM glede
more HAS_SYNONYM oppmuntre
more HAS_SYNONYM underholde
notere HAS_HYPERONYM opptegne
nå HAS_HYPERONYM komme
nå HAS_HYPERONYM komme
nå HAS_HYPERONYM komme
nå HAS_HYPERONYM oppnå
nøytralisere HAS_HYPERONYM motvirke
okkupere HAS_HYPERONYM legge
okkupere HAS_HYPERONYM oppta
omgås ENTAILS selskapelig
oppmyke CAUSES liten
oppnorske HAS_HYPERONYM fornorske
opprettholde ENTAILS fast
opprettholde HAS_HYPERONYM holde
oppta HAS_HYPERONYM besette
oppta HAS_HYPERONYM legge
overanstrenge ENTAILS sterk
overbelaste ENTAILS sterk
perfeksjonere HAS_HYPERONYM utdanne
permittere ENTAILS permisjon
plastre HAS_HYPERONYM legge
poppe HAS_HYPERONYM lage
presentere HAS_HYPERONYM framføre
prille HAS_HYPERONYM fingre
prøve HAS_HYPERONYM innøve
pudre HAS_HYPERONYM legge
pulse HAS_HYPERONYM pulsere
reduplisere HAS_SYNONYM gjenta
regne HAS_HYPERONYM utføre
renne HAS_HYPERONYM gli
renne HAS_SYNONYM helle
romme HAS_HYPERONYM inneholde
runge HAS_HYPERONYM dundre
ryke HAS_HYPERONYM sende
rå HAS_HYPERONYM herske
røpe HAS_HYPERONYM avsløre
saktne HAS_HYPERONYM bli

Continued on next page

119

Table E.8: 2-Judge Dataset: List over relations disagreed by both judges, lemma level. (Continued from last page)

Lemma 1 Relation Lemma 2

se HAS_HYPERONYM oppdage
servere HAS_HYPERONYM framføre
sifrere ENTAILS siffer
sjaue HAS_HYPERONYM holde
sjaue HAS_HYPERONYM larme
sjokkåpne ENTAILS sterk
skade ENTAILS uheldig
skille HAS_HYPERONYM sprekke
skje HAS_HYPERONYM hende
skjene HAS_HYPERONYM fare
skjule HAS_HYPERONYM holde
skjære HAS_HYPERONYM gå
skrinlegge HAS_HYPERONYM legge
slepe HAS_SYNONYM dra
sluke HAS_SYNONYM kreve
slå HAS_SYNONYM gå
smashe HAS_HYPERONYM utføre
sneise INVOLVED korn
spenne HAS_SYNONYM sparke
spjære HAS_HYPERONYM flenge
sprike HAS_HYPERONYM spile
sprike HAS_HYPERONYM vise
sprute HAS_HYPERONYM sende
stjele INVOLVED beslag
streke HAS_HYPERONYM lage
strippe HAS_HYPERONYM utføre
stryke HAS_HYPERONYM sløyfe
sulle HAS_HYPERONYM nynne
svare ENTAILS gjenlyd
sveipe ENTAILS over
sælde HAS_HYPERONYM sikte
ta HAS_HYPERONYM skaffe
tagge HAS_HYPERONYM lage
terrassere ENTAILS form
tilføye HAS_HYPERONYM legge
tilkjennegi ENTAILS uttrykk
tilsløre HAS_HYPERONYM holde
tolke ENTAILS uttrykk
trimme HAS_HYPERONYM mosjonere
trinse HAS_SYNONYM tumle
ulke HAS_HYPERONYM gulpe
underkaste INVOLVED gjenstand
underlegge INVOLVED gjenstand
undertrykke HAS_HYPERONYM hemme

Continued on next page

120

Table E.8: 2-Judge Dataset: List over relations disagreed by both judges, lemma level. (Continued from last page)

Lemma 1 Relation Lemma 2

undertrykke HAS_HYPERONYM holde
unnsleppe HAS_HYPERONYM komme
uteske HAS_HYPERONYM utfordre
vake HAS_HYPERONYM flyte
vake HAS_HYPERONYM holde
vanne HAS_HYPERONYM legge
vedlegge HAS_HYPERONYM legge
vinne HAS_HYPERONYM greie
virke INVOLVED virkning
votere HAS_HYPERONYM holde
være HAS_HYPERONYM snuse
vørde HAS_HYPERONYM ense

Relations With No Agreement Between the 2 Judges

0.13 Frequency List of PoS Patterns Grouped by Agreement

3 Judge Dataset

Table E.9: 3-Judge Dataset: Frequency list of PoS patterns found in fully agreed disambiguations.

Freq PoS Pattern

5 VERB KOMMA VERB ADJ
4 VERB
4 VERB KOMMA VERB KOMMA VERB KOMMA VERB
4 VERB KOMMA VERB PRON PREP
4 VERB KOMMA VERB KOMMA VERB
4 VERB ADJ
4 VERB KOMMA VERB PREP
4 VERB KOMMA VERB ADV
4 VERB KOMMA VERB
3 VERB KOMMA VERB PRON
3 VERB ADJ PREP
3 VERB SUBST PREP
3 VERB ADJ PREP SUBST
2 VERB KOMMA VERB ADJ PREP
2 VERB SUBST CLB VERB PREP
2 VERB KOMMA VERB PREP PREP
2 VERB SUBST PREP SUBST
2 VERB KOMMA VERB PRON SUBST
2 VERB ADJ SUBST
2 VERB KOMMA VERB ADJ SUBST
2 VERB PREP

Continued on next page

121

Table E.9: 3-Judge Dataset: Frequency list of PoS patterns found in fully agreed disambiguations. (Continued from
last page)

Freq PoS Pattern

2 VERB PARENTES-BEG PREP PARENTES-SLUTT
2 VERB PREP PREP SUBST
2 VERB SUBST PREP DET
2 VERB SUBST ADV
2 VERB ADJ CLB
1 VERB ADV
1 VERB SUBST VERB PREP
1 VERB KOMMA VERB PREP SUBST
1 VERB PREP SUBST
1 VERB PREP ADJ
1 VERB PRON ADJ
1 VERB SUBST
1 VERB KOMMA VERB SUBST
1 VERB KOMMA VERB ADJ ADJ
1 VERB KOMMA VERB ADV PREP
1 VERB KOMMA VERB SUBST PREP
1 VERB PREP PREP
1 VERB PREP ADJ SUBST
1 VERB KOMMA VERB VERB PREP
1 VERB KOMMA VERB PREP ADJ
1 VERB SUBST CLB
1 VERB ADJ ADV

Table E.10: 3-Judge Dataset: Frequency list of PoS patterns found in majority agreed disambiguations.

Freq PoS Pattern

5 VERB KOMMA VERB ADJ PREP
4 VERB KOMMA VERB KOMMA VERB KOMMA VERB
4 VERB KOMMA VERB VERB
3 VERB KOMMA VERB SUBST PREP
3 VERB KOMMA VERB PREP PREP
3 VERB KOMMA VERB
3 VERB KOMMA VERB KOMMA VERB
3 VERB SUBST PREP SUBST
3 VERB KOMMA VERB ADJ SUBST
3 VERB SUBST
3 VERB KOMMA VERB SUBST
3 VERB KOMMA VERB PREP SUBST
2 VERB SUBST CLB VERB PREP
2 VERB PREP PREP SUBST
2 VERB KOMMA VERB PRON ADJ
2 VERB KOMMA VERB PREP

Continued on next page

122

Table E.10: 3-Judge Dataset: Frequency list of PoS patterns found in majority agreed disambiguations. (Continued
from last page)

Freq PoS Pattern

2 VERB PREP PREP
2 VERB ADJ SUBST PREP
2 VERB SUBST PREP DET
2 VERB PRON SUBST
1 VERB ADJ PREP SUBST
1 VERB ADJ PREP
1 VERB ADJ
1 VERB KOMMA VERB PRON PREP
1 VERB PREP
1 VERB PREP SUBST
1 VERB SUBST PREP
1 VERB KOMMA VERB ADV
1 VERB KOMMA VERB VERB PREP
1 VERB KOMMA VERB ADJ
1 VERB ADV
1 VERB KOMMA VERB PREP ADJ
1 VERB PRON
1 VERB UKJENT PARENTES-SLUTT
1 VERB SUBST CLB
1 VERB KOMMA VERB PRON SUBST
1 VERB SUBST ADV

Table E.11: 3-Judge Dataset: Frequency list of PoS patterns found in fully agreed invalidations .

Freq PoS Pattern

3 VERB ADJ ADJ
2 VERB VERB PREP
2 VERB SUBST PREP DET
1 VERB KOMMA VERB SUBST PREP
1 VERB ADJ SUBST PREP
1 VERB KOMMA VERB KOMMA VERB KOMMA VERB
1 VERB SUBST
1 VERB PREP ADV
1 VERB KOMMA VERB ADJ ADJ
1 VERB SUBST PREP
1 VERB PREP SUBST
1 VERB PREP PREP SUBST
1 VERB KOMMA VERB ADJ SUBST
1 VERB PREP PREP
1 VERB KOMMA VERB KOMMA VERB
1 VERB KOMMA VERB VERB
1 VERB PREP ADJ SUBST

Continued on next page

123

Table E.11: 3-Judge Dataset: Frequency list of PoS patterns found in fully agreed invalidations. (Continued from
last page)

Freq PoS Pattern

1 VERB KOMMA VERB PRON ADJ
1 VERB PREP PRON
1 VERB SUBST PARENTES-SLUTT
1 VERB KOMMA VERB SUBST

Table E.12: 3-Judge Dataset: Frequency list of PoS patterns found in majority agreed invalidations .

Freq PoS Pattern

3 VERB KOMMA VERB SUBST PREP
2 VERB PREP ADJ SUBST
2 VERB PREP
2 VERB ADV
2 VERB KOMMA VERB PREP ADJ
2 VERB ADJ SUBST
2 VERB PREP ADJ
2 VERB KOMMA VERB
2 VERB PREP SUBST
2 VERB PREP SUBST ADV
1 VERB
1 VERB ADJ
1 VERB SUBST
1 VERB ADJ PREP
1 VERB ADJ SUBST PREP
1 VERB KOMMA VERB PREP SUBST
1 VERB PREP SUBST PREP
1 VERB KOMMA VERB PRON
1 VERB KOMMA VERB VERB
1 VERB ADJ ADJ
1 VERB KOMMA VERB SUBST
1 VERB KOMMA VERB PRON SUBST
1 VERB SUBST ADV
1 VERB KOMMA VERB PRON ADJ
1 VERB SUBST PREP

Table E.13: 3-Judge Dataset: Frequency list of PoS patterns found for no agreement.

Freq PoS Pattern

1 VERB SUBST PREP SUBST
1 VERB KOMMA VERB PRON ADJ
1 VERB KOMMA VERB PREP SUBST

Continued on next page

124

Table E.13: 3-Judge Dataset: Frequency list of PoS patterns found for no agreement. (Continued from last page)

Freq PoS Pattern

1 VERB KOMMA VERB KOMMA VERB
1 VERB KOMMA VERB PRON
1 VERB KOMMA VERB SUBST PREP

2 Judge Dataset

Table E.14: 2-Judge Dataset: Frequency list of PoS patterns found in agreed disambiguations.

Freq PoS Pattern

16 VERB KOMMA VERB KOMMA VERB
15 VERB KOMMA VERB
14 VERB ADJ
13 VERB SUBST PREP
13 VERB KOMMA VERB ADJ
12 VERB
11 VERB KOMMA VERB PREP
10 VERB KOMMA VERB SUBST PREP
10 VERB SUBST
9 VERB PREP SUBST
9 VERB KOMMA VERB ADV
9 VERB KOMMA VERB SUBST
9 VERB KOMMA VERB PREP SUBST
9 VERB KOMMA VERB KOMMA VERB KOMMA VERB
7 VERB KOMMA VERB ADJ PREP
7 VERB SUBST PREP SUBST
7 VERB PREP
7 VERB KOMMA VERB PRON PREP
6 VERB KOMMA VERB PRON
5 VERB KOMMA VERB VERB
4 VERB KOMMA VERB PREP PREP
4 VERB KOMMA VERB PRON SUBST
4 VERB ADJ PREP SUBST
4 VERB SUBST ADV
4 VERB KOMMA VERB PREP ADJ
3 VERB PREP PREP SUBST
3 VERB SUBST CLB VERB PREP
3 VERB ADJ SUBST
3 VERB KOMMA VERB ADJ SUBST
3 VERB ADJ PREP
2 VERB ADV
2 VERB PARENTES-BEG PREP PARENTES-SLUTT
2 VERB SUBST PREP DET
2 VERB ADJ CLB

Continued on next page

125

Table E.14: 2-Judge Dataset: Frequency list of PoS patterns found in agreed disambiguations. (Continued from last
page)

Freq PoS Pattern

1 VERB SUBST VERB PREP
1 VERB KOMMA VERB PRON ADJ
1 VERB PREP ADJ
1 VERB PRON ADJ
1 VERB KOMMA VERB ADJ ADJ
1 VERB KOMMA VERB ADV PREP
1 VERB PREP PREP
1 VERB PREP ADJ SUBST
1 VERB PRON SUBST
1 VERB KOMMA VERB VERB PREP
1 VERB SUBST CLB
1 VERB ADJ ADV

Table E.15: 2-Judge Dataset: Frequency list of PoS patterns found in agreed invalidations.

Freq PoS Pattern

7 VERB KOMMA VERB
5 VERB KOMMA VERB SUBST PREP
5 VERB ADJ ADJ
3 VERB KOMMA VERB ADJ
3 VERB PREP PREP SUBST
3 VERB KOMMA VERB SUBST
2 VERB ADJ SUBST PREP
2 VERB PREP SUBST
2 VERB VERB PREP
2 VERB ADJ SUBST
2 VERB KOMMA VERB PREP ADJ
2 VERB PREP
2 VERB KOMMA VERB PRON ADJ
2 VERB SUBST PREP
2 VERB SUBST PREP DET
1 VERB
1 VERB KOMMA VERB KOMMA VERB KOMMA VERB
1 VERB SUBST
1 VERB PREP ADV
1 VERB KOMMA VERB ADJ ADJ
1 VERB KOMMA VERB ADJ SUBST
1 VERB PREP PREP
1 VERB KOMMA VERB ADJ PREP
1 VERB KOMMA VERB KOMMA VERB
1 VERB KOMMA VERB VERB
1 VERB ADV

Continued on next page

126

Table E.15: 2-Judge Dataset: Frequency list of PoS patterns found in agreed invalidations. (Continued from last
page)

Freq PoS Pattern

1 VERB PREP ADJ SUBST
1 VERB PREP PRON
1 VERB SUBST PARENTES-SLUTT
1 VERB KOMMA VERB PRON SUBST

Table E.16: 2-Judge Dataset: Frequency list of PoS patterns found for no agreement.

Freq PoS Pattern

12 VERB KOMMA VERB SUBST PREP
8 VERB KOMMA VERB SUBST
8 VERB KOMMA VERB PRON
8 VERB SUBST
7 VERB KOMMA VERB
7 VERB KOMMA VERB ADJ
7 VERB KOMMA VERB KOMMA VERB
6 VERB PREP SUBST
6 VERB PREP
6 VERB KOMMA VERB ADV
6 VERB KOMMA VERB VERB
6 VERB KOMMA VERB PREP
6 VERB KOMMA VERB PREP SUBST
5 VERB KOMMA VERB ADJ PREP
5 VERB SUBST PREP SUBST
5 VERB KOMMA VERB KOMMA VERB KOMMA VERB
5 VERB ADJ PREP
4 VERB KOMMA VERB PREP PREP
4 VERB PREP PREP SUBST
4 VERB KOMMA VERB PREP ADJ
4 VERB KOMMA VERB PRON ADJ
3 VERB SUBST PREP
3 VERB KOMMA VERB PRON PREP
3 VERB KOMMA VERB ADJ SUBST
3 VERB ADJ SUBST
3 VERB
2 VERB ADV
2 VERB PREP ADJ SUBST
2 VERB ADJ
2 VERB PREP PREP
2 VERB ADJ SUBST PREP
2 VERB PREP ADJ
2 VERB SUBST PREP DET
2 VERB SUBST ADV

Continued on next page

127

Table E.16: 2-Judge Dataset: Frequency list of PoS patterns found for no agreement. (Continued from last page)

Freq PoS Pattern

2 VERB PREP SUBST ADV
1 VERB SUBST CLB VERB PREP
1 VERB PREP SUBST PREP
1 VERB KOMMA VERB VERB PREP
1 VERB ADJ ADJ
1 VERB PRON SUBST
1 VERB PRON
1 VERB UKJENT PARENTES-SLUTT
1 VERB SUBST CLB

128

Bibliography

Den Danske Ordbog. http://ordnet.dk/ddo.

The Global Wordnet Association. http://www.globalwordnet.org/.

Eneko Agirre, Olatz Ansa, David Martinez, and Hovy E. Enriching wordnet concepts with
topic signatures. In Procceedings of the SIGLEX workshop on "WordNet and Other Lexical
Resources: Applications, Extensions and Customizations". In conjunction with NAACL.", 2001.

Antonietta Alonge, Nicoletta Calzolari, Piek Vossen, Laura Bloksma, Irene Castellón, Maria An-
tònia Martí, and Wim Peters. The linguistic design of the eurowordnet database. Computers
and the Humanities, 32(2-3):91–115, 1998. URL http://dx.doi.org/10.1023/A:1001117508293.

Satanjeev Banerjee and Ted Pedersen. Extended gloss overlaps as a measure of semantic
relatedness. In In Proceedings of the Eighteenth International Joint Conference on Artificial
Intelligence, pages 805–810, 2003.

Henning Bergenholtz, Ilse Cantell, Ruth Vatvedt Fjeld, Dag Gundersen, Jon Hilmar Jónsson,
and Bo Svensén. Nordisk Leksikografisk Ordbok. Universitetsforlaget, 1997.

Ted Briscoe. Computational lexicography for natural language processing. Longman Publishing
Group, White Plains, NY, USA, 1989.

Miriam Butt. The Light Verb Jungle. In Harvard Working Papers in Linguistics, volume 9, pages
1–49. Harvard, 2003.

Jean Carletta. Assessing agreement on classification tasks: The kappa statistic. Computational
Linguistics, 22:249–254, 1996.

Christiane Fellbaum. Semantic network of english verbs. In WordNet: An Electronic Lexical
Database, pages 69–104. MIT Press, 1998a.

Christiane Fellbaum. A semantic network of english: The mother of all WordNets. In Computers
and the Humanities, volume 32, pages 209–220. Kluwer Academic Publishers, 1998b.

Christiane Fellbaum, editor. WordNet: An Electronic Lexical Database. The MIT Press, 1998c.

Christiane Fellbaum and George A. Miller. Folk psychology or semantic entailment? a reply to
rips and conrad (1989). In Psychological Review 97, page 565–570, 1990.

Ruth Vatvedt Fjeld, Julie Matilde Torjusen, and Rune Lain Knudsen. Fra alfabet til begrep:
Bokmålsordboka og NorNet. In Nordiska Studier i Lexikografi 11. Rapport från Konferensen om
leksikografi i Norden, Lund 24 - 27 mai 2011., 2012. Submitted for publication.

129

http://ordnet.dk/ddo
http://www.globalwordnet.org/
http://dx.doi.org/10.1023/A:1001117508293

J.L. Fleiss et al. Measuring nominal scale agreement among many raters. Psychological Bulletin,
76(5):378–382, 1971.

Péter Halácsy, András Kornai, and Csaba Oravecz. HunPos – an open source trigram tagger. In
Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics Companion
Volume Proceedings of the Demo and Poster Sessions, pages 209–212, Prague, Czech Republic,
June 2007. Association for Computational Linguistics.

Sanda M. Harabagiu and Dan I. Moldovan. Knowledge processing on an extended wordnet.
In WordNet: An Electronic Lexical Database. MIT Press, 1998.

Franz Josef Hausmann and Herbert Ernst Wiegand. Component parts and structures of
general monolingual dictionaries: A survey. In Franz Josef Hausmann, Oskar Reichmann,
Herbert Ernst Wiegand, and Ladislav Zgusta, editors, Wörterbücher: ein internationales
Handbuch zur Lexicographie, chapter 36, pages 328–360. Walter de Gruyter, 1989.

Graeme Hirst and David St-Onge. Lexical chains as representations of context for the detection
and correction of malapropisms. In WordNet: An Electronic Lexical Database. MIT Press, 1998.

Janne Bondi Johannessen, Kristin Hagen, Anders Nøklestad, and André Lynum. OBT+Stat:
Evaluation of a Combined CG and Statistical Tagger. In Eckhard Bick, Kristin Hagen, Kaili
Müürisep, and Trond Trosterud, editors, NEALT Proceedings Series, volume 14, pages 26–34.
NEALT, 2011.

Daniel Jurafsky and James H. Martin. Speech and Language Processing (2nd Edition) (Prentice Hall
Series in Artificial Intelligence). Prentice Hall, 2 edition, 2008.

Sophia Katrenko, Pieter W. Adriaans, and Maarten van Someren. Using local alignments for
relation recognition. J. Artif. Intell. Res. (JAIR), 38:1–48, 2010.

Dekang Lin. Automatic retrieval and clustering of similar words. 1998.

J. Lin. Divergence measures based on the shannon entropy. In IEEE Transactions on Information
Theory, pages 145–151. IEEE Information Theory Society, January 1991.

Krister Lindén and Lauri Carlson. FinnWordNet - WordNet på finska via översättning. In
LexicoNordica, volume 17, pages 119–140. Nordisk Forening for Leksikografi, 2010.

George A. Miller. Nouns in wordnet. In WordNet: An Electronic Lexical Database. MIT Press,
1998.

Mehryar Mohri. Finite-state transducers in language and speech processing. Computational
Linguistics, 23:269–311, 1997.

Roberto Navigli and Simone Paolo Ponzetto. BabelNet: Building a very large multilingual
semantic network. In Proceedings of the 48th Annual Meeting of the Association for Computational
Linguistics, Uppsala, Sweden, 11–16 July 2010, pages 216–225, 2010.

Lars Nygaard. Frå ordbok til ordnett. UiO, 2006. Cand. Philol. Thesis.

Patrick Pantel. Inducing ontological co-occurrence vectors. In Proceedings of the 43rd Annual
Meeting on Association for Computational Linguistics, ACL ’05, pages 125–132, Stroudsburg,
PA, USA, 2005. Association for Computational Linguistics. doi: http://dx.doi.org/10.3115/
1219840.1219856. URL http://dx.doi.org/10.3115/1219840.1219856.

130

http://dx.doi.org/10.3115/1219840.1219856

Bolette Sandford Pedersen, Sanni Nimb, Jørg Asmussen, Nicolai Hartvig Sørensen, Lars Trap-
Jensen, and Henrik Lorentzen. Dannet: the challenge of compiling a wordnet for danish by
reusing a monolingual dictionary. Language Resources and Evaluation, 2009.

Bollette S. Pedersen, Anna Braasch, Sanni Nimb, Jørg Asmussen, Nicolai Sørensen, Henrik
Lorentzen, and Lars Trap-Jensen. Lingvistiske specifikationer for dannet version 2. Technical
report, Center for Sprogteknologi, Københavns Universitet and Det Danske Sprog- og
Litteraturselskab, 2011.

John I. Saeed. Semantics. Blackwell Publishers Ltd, 1997.

T. F Smith and M. S. Waterman. Identification of common molecular subsequences. Journal of
Molecular Biology, 147, 1981.

Dan Tufiş, Dan Cristea, and Sofia Stamou. Balkanet: Aims, Methods, Results and Perspectives.
A General Overview. Romanian Joural of Information Science and Technology, 7(1-2):9–43, 2004.

Ellen M. Voorhees. Using wordnet for text retrieval. In Wordnet: An Electronic Lexical Database.
MIT Press, 1998.

Piek Vossen. EuroWordNet general document. Technical report, University of Amsterdam,
2002.

Åke Viberg, Kerstin Lindmark, Ann Lindvall, and Ingmarie Mellenius. The Swedish WordNet
Project. In Proceedings of Euralex, pages 407–412. Copenhagen University, 2002.

131

	I Introduction
	Motivation and Goals
	Thesis Structure
	Clarifications and Caveats

	II Background
	Central Concepts for Wordnets and Dictionaries
	Wordnets
	Synsets
	Semantic Relations
	Ontology
	Gloss

	Four Wordnets and Their Properties
	Princeton WordNet
	EuroWordNet
	DanNet
	NorNet

	Dictionary Concepts
	Overview of Dictionary Structure

	Previous Work
	Building a Wordnet
	The Expand Approach
	The Merge Approach

	Automatic Extraction from Definitions in Bokmålsordboka
	Automatic Extraction from Definitions in DDO
	Concluding Remarks

	III The Method: Dict2WN
	Method Overview
	Overview

	Extraction and Preprocessing
	Extraction
	Extraction From BOB

	Preprocessing
	Preprocessing the Extracted Data from BOB

	Transducer Generation
	PoS Pattern Classes
	Non-explanatory PoS Pattern Classes

	Finite-state Transducers
	1-to-n Target Ambiguity
	Manual Transducer Generation
	Initial Transducer Generation for BOB

	Operator Word Generation
	Operator Word Definition and Example
	Candidate Operator Words
	Second Transducer Generation for BOB

	Semi-automatic Transducer Expansion
	Observations
	The Smith-Waterman Algorithm
	Augmenting the Similarity Scores: Bag-of-Words
	Example: Expansion of Transducer 2

	Summary

	Graph Generation
	Graph Types
	Sense Graph
	Lemma Graph
	Synset Graph

	Cleanup and Merge
	Graph Manipulation
	Disambiguation by PoS Tags
	Disambiguation by Cycles
	Inferring Synsets from has_synonym Relations

	Manual Post-Processing
	Description of the Post-processing Step
	The Post-Processing Application: Dict2WNPP
	Annotation Study
	Using Fleiss' Kappa for Agreement Measures
	Relation Frequency Distributions
	Disambiguation Agreement Measure
	Measuring Average Annotation Intervals
	Concluding Remarks

	Evaluation of Dict2WN
	Finding the recall of a semantic network
	Transducer Evaluation
	Transducer Coverage
	Transducer Overlap
	Transducer Score Summary

	Conclusion and Further Work
	Dict2WN Program Description and Database
	Database EER Schema

	Dict2WNPP Program Description and Database
	Database EER Schema
	Manual for Dict2WNPP
	Objectives, Motivation and General Remarks
	Download and Installation
	The User Interface
	Relation Overview
	Exporting The Data

	Detailed Operator Word Data
	Detailed Transducer Data
	Detailed Data for the Post-Processing Evaluation
	List of Post-processed Relations Grouped by Agreement
	Frequency List of PoS Patterns Grouped by Agreement

