
UNIVERSITY OF OSLO
Department of Informatics

SQSI - Search
Queries for
Sysadmin
Information

Eirik Caspari

Network and System
Administration

Oslo University College

May 21, 2012

SQSI - Search Queries for Sysadmin
Information

Eirik Caspari

Network and System Administration
Oslo University College

May 21, 2012

Abstract

In this master thesis the modular architecture SQSI (Search Queries for Sysadmin
Information) aimed at facilitating efficient information retrieval, unification and
personalization, for system administrators is designed. The architecture allows
users to search for information related to servers and services, and receive search
results ranked by personal preferences, from diverse and distributed information
sources at a single point. Based on the architecture, a prototype is also developed
as a proof of concept.

Acknowledgements

First and foremost I would like to thank Kyrre Begnum who suggested the topic
for this master thesis. His support, enthusiasm and contributions through several
discussions has helped shape this project.

Next I would like to thank Tore M. Jonassen for helping with practical matters
related to my thesis, and for being so quick to respond whenever something went
wrong.

I would also like to thank the people at Norske Systemarkitekter AS for giving me
access to their facilities, providing me with a place to work during my thesis, and
giving me helpful insight into how their information sources are organized, which
in turn helped me in the design of SQSI.

Lastly, I would like to thank my parents for their continued support, and taking
interest in my work.

Contents

1 Introduction 6
1.1 Problem statement . 8

2 Background 10
2.1 System Administration and Automation 10
2.2 Information Classification . 12
2.3 Information Retrieval . 12
2.4 Information Filtering . 15
2.5 Systems Monitoring . 15
2.6 Presenting Information . 16
2.7 Message-oriented Middleware 17

3 Approach 19
3.1 Designing the Architecture . 19

3.1.1 Classification . 20
3.1.2 Developing a Prioritization Scheme 21
3.1.3 Data Aggregation and Module Design 21
3.1.4 The Presentation Layer 21

3.2 The Prototype . 22
3.2.1 The Core System . 22
3.2.2 Modules . 22
3.2.3 Presentation Layer Implementation 23
3.2.4 Verification . 23

3.3 Task Summary . 23

4 Results: Architecture 25
4.1 Domain Classification . 28
4.2 Prioritization Scheme and Preference Profiles 28
4.3 Module Design, The Query Broker and Data Aggregation 32

4.3.1 Communication and Data Transportation 33

2

4.4 Presentation Layer Design . 37
4.5 The Meta Model . 38
4.6 Extensibility . 39

5 Results: Prototype 43
5.1 Overview . 43
5.2 Development Environment and Technologies 44
5.3 Data Transfer Formats . 47
5.4 Queue Naming Scheme . 50
5.5 Query Broker . 50

5.5.1 Query Distribution . 51
5.5.2 Handling Incoming Results 52

5.6 SQSI-CLI: The Client . 54
5.7 The Modules . 55

5.7.1 Munin Module . 55
5.7.2 Request Tracker Module 58
5.7.3 DokuWiki Module . 60

5.8 Functionality Testing . 62

6 Discussion 68
6.1 The Prototype . 68

6.1.1 Changes to the Data Transfer Formats 69
6.1.2 Functionality Testing . 69

6.2 Architecture . 70
6.2.1 Caching . 71
6.2.2 Prioritization . 71
6.2.3 Generating Preference Profiles 75
6.2.4 Presentation Layer . 76
6.2.5 Error Handling . 77
6.2.6 Expanding Search Possibilities 78
6.2.7 Scalability . 78

6.3 In The Server Room . 79
6.4 Problem Statement Revisited . 79
6.5 Source Code . 80

7 Conclusion 81
7.1 Future Work . 82

8 Appendix 83
8.1 Preference Profiles . 83

8.1.1 Alice . 83

3

8.1.2 Bob . 84
8.2 Query Broker . 85

8.2.1 querybroker.pl . 85
8.2.2 QueryResult.pm . 95
8.2.3 Result.pm . 97
8.2.4 modules.dat . 99

8.3 SQSI-CLI . 99
8.4 Munin Module . 103

8.4.1 munin-module.pl . 103
8.4.2 classifications.dat . 112
8.4.3 services.dat . 113

8.5 Request Tracker Module . 114
8.5.1 rt-module.pl . 114
8.5.2 queue_classifications.dat 120

8.6 DokuWiki Module . 120
8.6.1 dokuwiki-module.pl . 120
8.6.2 classifications.dat . 127

4

Chapter 1

Introduction

One of the key parts of system administration is to make sure systems and ser-
vices perform according to their necessary service levels and specifications. The
enterprises that utilize these systems, as well as their employees and customers
depend on the systems in their daily work. It is therefore essential that these sys-
tems are reliable. In addition to that, any errors occurring needs be dealt with in an
efficient manner. Furthermore, there may also be formal requirements specified
by customers in service level agreements that impose even stricter demands on
the systems and their administrators. This thesis concerns itself with helping sys-
tem administrators reach the goal of keeping their systems and services running
according to plan.

The complex and dynamic environment of systems administration:
Upholding the requirements of reliability, quick error resolution and other addi-
tional specifications is a challenge due to the great number of complex systems
that can be part of the responsibilities of the system administrator, e.g. ticketing
systems, monitoring, backup systems, managing web-servers, e-mail and so on.
For example, in the case where a service is not behaving as it should, the admin-
istrator will often need different types of information from multiple systems like,
a monitoring system that may have information about the state of the service, a
configuration management system to look at the configuration of the service, a
documentation system, a ticketing system to see any relevant support cases, an
inventory management system to get information about the hardware and other
services running on the same server.

Some of the systems that system administrators are responsible for display dy-
namic behaviour. For instance, when utilizing infrastructure in the cloud, where
the number of servers you have at any one time may differ. Monitoring informa-

6

tion and alerts therefore needs to be carefully correlated with the current produc-
tion state in order to avoid misunderstandings. The same issue also arises when
virtualization technology is used. In this case multiple virtual machines may be
run on the same server. This type of dynamic behaviour induces further complex-
ity when it comes to keeping track of the systems and their behaviour.

Information diversity and stakeholders:
An important aspect is the fact that there are different stakeholders involved with
the systems that the system administrators maintain, that have different needs and
demands. The fact that the structure of the information that these systems and
services produce is not sensitive to the different needs of the stakeholders, can po-
tentially introduce disorganization and inefficiency. Examples of relevant stake-
holders are system administrators, service level managers, customers and the users
of the systems. Being that system administrators have different areas of responsi-
bility, the feedback they need from the systems will differ. Again, the customers
have needs different from that of the system administrators, they may for instance
be more interested in cost and the amount of resources they have used.

In search of control:
Observing the complex environment in which the system administrator works,
with the large number of different systems and services and the wealth of infor-
mation they produce, the need for control can easily be discerned.

The first step in regaining control, is to identify the reasons that may lead to a
lack of control. First of all, the sheer number of systems and the amount of in-
formation generated by the systems that an enterprise is responsible for, can be
overwhelming. Also, since system administrators deal with different systems, the
information they generate is distributed, meaning that the output from these sys-
tems is not tied together in any way. In larger organisations and enterprises the
duty of maintaining the systems and the information they produce is performed
by teams of system administrators. Each of the teams will have their specific area
of responsibility e.g. networking, storage, security and so on. Generally, the in-
formation generated by the systems is not sorted or adapted to individual roles,
which means it can be difficult to get the complete picture of a situation within a
sensible amount of time. Another issue arise in large datacenters with large num-
bers of servers. How does the system administrator know which services run on a
particular server, and more importantly, how does the system administrator know
which services are running on a particular server, that are important him or her.

Control cannot be achieved unless the wealth of information is sorted, correlated
and organized, as well as presented to the system administrator in a manner which
is not only sensitive to the context, but also to the individual system administrator.
Also, aggregation alone will only lead to an overflow of information with a pos-

7

1.1. PROBLEM STATEMENT

sibly high level of redundant or irrelevant information. The information will need
to be classified, sorted and prioritized in order to eliminate noise and information
overload.

1.1 Problem statement

The fact that system administrators already have systems in place that both they
and their enterprises depend on, can not be ignored. Therefore, a sensible ap-
proach is to utilize a modular architecture, and to employ a strategy in which the
already existing systems can contribute with their information. A modular archi-
tecture in this sense, is an architecture where separate modules are responsible for
each subsystem. Such an approach should ensure minimal intrusion in the already
existing systems, as well as minimize overhead.

The goal of this thesis is to facilitate efficient information retrieval for system
administrators by designing a modular architecture which

1. aggregates and correlates information from a variety of sources

2. can classify, sort and prioritize information according to the user and sys-
tems

3. is capable of presenting information in an efficient manner

An architecture is a blueprint which encompasses the design and specifications of
an implementation, the collaboration and interconnection between system parts,
as well as the extensibility of the system.

Aggregation and correlation of information refers to the act of gathering data and
linking related data together. Establishing relations between data from different
sources will allow a unified view of information relevant to a particular area of
responsibility or situation. These data could be collected from different sources
such as a monitoring system, a ticketing system or a documentation management
system.

To be able to correlate information a classification system is needed; a meta de-
scription, a categorization and classification of the information. The development
of a classification enables not only correlation of information, but also gives the
ability to prioritize information. Prioritization can be seen as the utilization of
rules on a classified set of data. Prioritization of information is a crucial tool
when dealing with large quantities of data. When prioritization is done based on
user preferences or job responsibilities, it ensures that the user of the system is

8

1.1. PROBLEM STATEMENT

presented with information that is considered important to the user. This keeps
the user from being overloaded with noise.

Presenting information in an efficient manner naturally entails presenting only the
information that is useful to the user, but also how the information is presented.
Using HTML (Hypertext Markup Language) to present information will ensure
that the information can be viewed on any device as long as it has a web browser.
This enables viewing the information on devices like tablets and smartphones, as
well as computers without the need for developing specialized platform dependent
applications. Also, having a system that supports many different types of clients to
connect to it, receive information from it, and display that information in various
ways is a great advantage. A system possessing such flexibility allows for great
diversity and customizability.

9

Chapter 2

Background

This thesis encompasses multiple topics; how one deals with complex systems
and large amounts of data, how data can be classified, information retrieval, in-
formation filtering, systems monitoring as well as presentation of information. In
this chapter these topics will be explained and some of the relevant research in
these fields will be presented.

2.1 System Administration and Automation

As mentioned in the introduction chapter the task of system administration in-
volves dealing with complex systems and services, and making sure they are reli-
able and perform well. An important factor in the context of complex systems is
how we, as humans, interact with such systems.

Mica R. Endsly [7] talks in her article "Automation and Situation Awareness"
about the changing role of the human operator from direct system control towards
the role of a monitor of automated systems. She points to the fact that humans
play a critical part of automated systems, specifically to monitor for failures of the
systems and conditions that the systems are not designed to handle. She stresses
the importance of having an accurate mental model of a system in order to perform
well. She specifically emphasizes the importance of situation awareness when
monitoring complex systems. Situation awareness was defined by Endsley as "the
perception of the elements in the environment within a volume of time and space,
the comprehension of their meaning and the projection of their status in the near
future"[8].

When designing systems for any profession it is naturally essential to have a good

10

2.1. SYSTEM ADMINISTRATION AND AUTOMATION

understanding of how the users of the system work, and how the system will fit in
with the workflow of those users. Haber and Bailey [12] investigated how system
administrators work by conducting a series of ethnographic field studies. The goal
for these studies was to better understand the reasons behind management domi-
nating the cost of IT systems [14]. Haber and Bailey found in their observations
that the tools used by system administrators were often not well aligned with their
work practices. They emphasize that system administration tools may often be
developed without a sufficient understanding of the full context of system admin-
istration work. Haber and Bailey stress that sysadmins are different from other
computer users, specifically with respect to collaboration between each other and
the size and complexities of the systems they deal with. Furthermore, they main-
tain that given the serious consequences related to failure in the system adminis-
tration profession, it is essential for system administrators to maintain situational
awareness. Also, given the heterogeneous nature of many systems, their exist no
single tool to monitor everything. They observed many instances where sysad-
mins created their own tools in order to enhance situational awareness. Haber and
Bailey designed a set of design guidelines for system administration tools, in or-
der to better support how system administrators work. However, they emphasize
that not all of the guidelines are relevant to every situation or tool. One of the
guidelines that is applicable in the context of an information gathering system, is
to enable integration of the system into system-wide monitoring and management
tools. Another applicable guideline is to allow sharing of system views or system
state.

Woods [32] explains in his article "Decomposing automation: Apparent simplic-
ity, real complexity" about how changes in level of automation transform systems,
and that understanding these transformations "allows one to identify and treat
the many post-conditions necessary for skillful use of technological possibilities"
[32]. He emphasizes that when designing new automated systems we are not just
concerned with a software or hardware object, but we are also designing a dy-
namic visualization that shows the current state of activities and what may happen
in the system, a tool that helps the user adaptively respond to changes, and a team
of people and machine agents that coordinate their activities according a situation.

This illustrates how automation of tasks introduce new complexities, and as more
and more systems get automated, there is a need for systems that can help in the
task of keeping the automated systems operating as they should.

11

2.2. INFORMATION CLASSIFICATION

2.2 Information Classification

When faced with large amounts of information of various types, the need to sort
this information quickly arise. In order to sort information it is necessary to have
some basic criteria for how the information is going to be sorted. So, to be able
to do this, having a way of classifying the data is crucial. Furthermore, having a
unified way of classifying data will allow for a uniform way of interpreting data
from different sources. An ontology is such a classification.

A key feature of an ontology is the concept of shared understanding. Having a
shared understanding of a domain enables inter-operability, and a potential for
re-use and sharing. It also reduces conceptual and terminological confusion by
providing a unified way of interpreting and describing information. An ontology
entails a world view with respect to a particular domain. This world view consists
of a set of concepts, their definitions and the relationships between these concepts.
[29] According to S. Staab and R. Studer [26] the nowadays most frequently seen
definition of an ontology is that "An ontology is a formal, explicit specification of
a shared conceptualization" [28].

Ontologies can be used to solve the interoperability problem, which is the problem
of bringing together heterogeneous and distributed computer systems. This is
accomplished through their ability to describe semantics of information sources
and to make content explicit, which is turn can be used in the context of integrating
systems. [30]

2.3 Information Retrieval

Information Retrieval is an area of study concerned with retrieval of unstructured
data, often in the form of textual documents. The retrieval is based on a query or
topic, which may be either structured or unstructured. [11]

In the article "A vector space model for automatic indexing", Salton et. al [23] de-
scribes how vector space models can be used in the context of document retrieval,
where documents are compared with incoming patterns (queries). We define a
document space consisting of documents Di, with each of them consisting of one
or more index terms Tj . The terms may be weighted according to importance, or
they may be restricted to 0 and 1. Now each document can be represented by a
t-dimensional vector:

Di = di1, di2, ..., dit

dij represents the weight of the jth term.

12

2.3. INFORMATION RETRIEVAL

Salton et. al then explains how it is now possible to compute a similarity coef-
ficient between two documents Di, Dj . That is, s(Di, DJ) shows the degree of
similarity in the corresponding terms and term weights. A similarity measure that
can be used is the inner product of the two vectors, or an inverse function of the
angle between corresponding pairs.

According to Greengrass, [11] their are multiple different ways to compute the
similarity between two vectors used in information retrieval, in the context of the
vector space model. Some of these are the inner product, cosine similarity and a
family of distance metrics. The inner product and cosine similarity are the most
widely used.

The inner product of a query vector QT and a document vector DT is computed
by multiplying each component (term weight) in the query vector by the corre-
sponding component in the document vector and summing these products:

ΣN
i=1QTi ·DTi (2.1)

The cosine similarity represents the cosine of the angle between the two vectors.
Cosine similarity is a way of normalizing document length.

cos(θ) =
QT ·DT
||QT ||||DT ||

=
ΣN

i=1QTi ×DTi√
ΣN

i=1(QTi)
2 ×

√
ΣN

i=1(DTi)
2

(2.2)

The distance metrics are given by the following equation:

Lp(QT,DT) = [Σi|qti − dti|p]1/p (2.3)

The distance metrics compute the distance in vector space between the vectors
QT and DT . The different metrics are chosen by the parameter p. If p = 1,
the formulae calculates the Manhattan Distance or city block distance, that is the
distance in number of city blocks from one street intersection to another, if the
layout of the streets is a rectangular grid. If p = 2, then the formulae calculate
the Euclidean distance, which is the straight line distance in the vector space. If
p =∞, the formulae calculates the maximal direction distance.

The importance of context and personalization in information retrieval has already
been established, especially in relation to web search [Lawrence [16], Finkelstein
[9], Haveliwala [13]].

According to Myaeng and Korfhage [19] it is widely recognised that different
users expects different sets of data from the same query, and that they make dif-

13

2.3. INFORMATION RETRIEVAL

ferent relevance judgements based on the same retrieved items. Myaeng and Ko-
rfhage state that in order to take into account the various preferences of users in
the context of an information retrieval system, it is obvious that some form of user
models needs to be developed. Myaeng and Korfhage performed a study aimed at
demonstrating the superiority of information retrieval systems with user profiles,
to those without user profiles, and investigating what they call the query/profile
"model space". This "model space" consisted of the existing query/profile models
and extensions of them.

They explain that there are three distinct ways that user profiles can be used, de-
pending on when and how the profiles are applied to the retrieval process:

1. The profile can be used to pre-process a query to produce a modified query.

2. The profile and query can be considered as one entity to direct the retrieval
process.

3. The profile can be used as a filter to post-process the results of a query.

Myaeng and Korfhage focused on the first two methods. They identified 396
different models in the model space. These models where organized along three
dimensions:

1. modes of query/profile interaction

2. parameters embedded in the interaction modes

3. metrics used to discriminate among documents

They chose a vector model as the representational scheme, were documents, queries
and profiles can be regarded as points in an n-dimensional space, where n is the
number of terms describing the information object.

A system called PBS (profile-based system) was developed for the purpose of the
research. It could accept queries, search a database, retrieve documents, handle
profiles and evaluate different models based on the query and profile. The database
consisted of 3703 different documents.

They conducted a series of experiments in a laboratory setting. The following
sequence was followed in the experiments. For each of the models, retrieve a
document set and select the top 25. Then merge the documents into a final set.
Finally randomize the order of the documents in the final set. There were a total of
11 subjects, and a total of 30 queries were made. Each of the experimental subjects
had to review at least 60 documents from the final set. Each of the subjects had
to construct a user profile. The subjects had to evaluate the quality of each of the
documents with respect to relevance, pertinence and usefulness.

14

2.4. INFORMATION FILTERING

Myaeng and Korfhage found in the results of their experiments that there were
always some models which outperformed the model that consisted of a query
alone. This indicates the usefulness of integrating user profiles into information
retrieval systems.

2.4 Information Filtering

Information filtering and information retrieval are closely related. However, in
contrast to information retrieval, information filtering is often concerned with re-
peated uses of a system, by persons with specific goals and interests. This means
that user profiles are an integral part of an information filtering system. Infor-
mation filtering systems are used as mediators between the user and the informa-
tion sources, and they typically deal with streams of incoming data from multiple
sources. [24][3]

Albayrak et al. [1] developed a situation aware agent-based personal information
system called PIA. The system is aimed at collecting and filtering information,
integrating the information at a common point, as well as presenting the informa-
tion to the user. PIA uses push and pull techniques in order to allow the user to
both explicitly search for information, and automatically inform the user of rel-
evant information. The PIA system incorporates multiple information-extracting
agents that continuously gather data from a variety of different sources (internet,
databases, web-services, files etc.). Each user of the system has a personal agent
that manages information provisioning tailored to the user, by knowing the user
profile, the situation and learning from feedback.

2.5 Systems Monitoring

The field of system monitoring is about presenting the state of a system in a form
that is comprehensible to humans. Furthermore, it involves collecting information
from diverse and possibly distributed components, and displaying this compound
information in suitable manner. The data should be displayed in such a way that
it occupies a suitable portion of the operator’s attention based on the operator’s
interests and the state of the system. [2]

15

2.6. PRESENTING INFORMATION

2.6 Presenting Information

When presenting information in an information seeking context, there are several
aspects that needs to be considered. The perhaps most important question to ask, is
what type of presentation will help the users achieve their goals in the information
seeking process. Also, assuming some knowledge of the user, how can the way
information is presented impact the usefulness of the system in a broader context.

Mica R. Endsly [7] stresses that in order to have an accurate mental model of a
system or situation, it is crucial that all relevant information is at hand, and that
the amount of information is not overwhelming. Therefore, regarding the design
of interfaces she emphasizes that it’s important that all information that is needed
is always present. Also, she expresses that at the same time one needs to avoid
displaying volumes of low-level data.

When presenting information to a user there is naturally a limit to how long the
user is willing to wait for that information to appear. It is therefore important to
take this into account in the design of information retrieval systems. Nah [20]
performed a study of tolerable waiting times in relation to web users and their
willingness to wait for web pages to appear. The two main questions posed by
Nah was "How long are users willing to wait for downloading a web page be-
fore abandoning it?" and "Does providing feedback during the wait prolong web
users’ tolerable waiting time?". They conducted an exploratory experiment in or-
der to determine the tolerable waiting time for web users, both with and without
feedback. In this study seventy undergraduate students participated as subjects.
The subjects had to visit 10 specific web pages in order to answer a set of ques-
tions, where only 7 of the websites were working. The other websites would not
load which would result in the subjects eventually having to click the stop button
in the browser. The time from accessing a non-working page to clicking the stop
button would then be measured. The subjects were divided into two groups. One
that was provided with a feedback bar signifying that the system was carrying
out their requests, and one that was provided no such feedback. The results of
the study showed that the inclusion of a feedback bar significantly prolonged how
long a user would wait before abandoning the web page. This is in line with other
research on the subject [15]. Furthermore, they found that overall their results
suggest that web users tolerable waiting time peaks at about 2 seconds.

16

2.7. MESSAGE-ORIENTED MIDDLEWARE

2.7 Message-oriented Middleware

When designing a modular architecture where functionality is distributed to dif-
ferent components, perhaps written in different languages and running in separate
locations, there is need for a way to communicate between the different modules.
As mentioned earlier, having a shared understanding of the domain in question,
facilitates communication by providing a common language. However, in addi-
tion to that, a communication channel is needed. Such a communication channel
can be provided by Message-Oriented Middleware (MOM).

The job of a MOM is to provide message-based communication between dis-
tributed applications. A MOM acts as a message mediator between senders and
receivers. Messages are sent and received via the MOM and what is known as
destinations. The messages are addressed to receivers, and they are received by
subscribing to destinations. [25] An illustration of the communication flow be-
tween sender, MOM and receiver can be seen in figure 2.1.

Figure 2.1: Message-oriented Middleware communication

1. Application 1 sends a message to a destination/queue on the MOM server.

2. The message is stored on the MOM server.

3. Application 2 which subscribes to the destination, collects the message from
the queue and acknowledges it to the MOM.

4. When the MOM has received the acknowledgement, the message can be
removed from the queue.

Having the MOM as a mediator means that the sender and receiver does not need
to know about each other. The advantages of using a MOM is that it provides the
opportunity for asynchronous communication between the different applications,
and it facilitates loose coupling. "Coupling refers to the interdependence of two or
more applications or systems" [25]. Coupling can be thought of as how changes
in one application necessitates changes in other applications. If no changes are

17

2.7. MESSAGE-ORIENTED MIDDLEWARE

required in the other applications involved, then the applications can be said to be
loosely coupled, otherwise they are tightly coupled.

An alternative form of communication in distributed systems is the use of Remote
Procedure Calls (RPC). RPCs are procedure calls that operate across a network.
When a remote procedure call is issued, the caller will send parameters across
the network and wait. When the procedure has been run on the remote system
the result is sent back to the callee and execution resumes. [4] The major disad-
vantage of RPC compared to MOM is that it is tightly coupled. It also does not
provide asynchronous communication. [25] Asynchronous communication en-
ables components in a distributed system to operate in an autonomous manner, in
the sense that the components does not have to wait for each other to communi-
cate. Each component can independently decide when to initiate communication.
This means that each component can go about its own business, and only initiate
communication when it is needed by the component itself.

18

Chapter 3

Approach

In order to fulfil the goals stated in the problem statement, an architecture must
be designed. This architecture can be said to be satisfactory when it facilitates
fulfilling the three requirements in the problem statement. Secondly, a prototype
based on the architecture in question should be developed as a proof of concept.
Such a prototype will show that the architecture can be applied to a real life sit-
uation, and that it can in fact facilitate efficient information retrieval for system
administrators. The functionality of the prototype will need to be verified through
functionality testing.

3.1 Designing the Architecture

In order for the architecture to provide a successful solution to the problem, it
should include the following features:

• A classification of the domain

• A prioritization scheme

• A data aggregation strategy

• An approach to the design of modules

• A design for the presentation layer

Additionally, a meta model describing the entities involved, where data is pro-
cessed, and how the information flows, should be designed.

19

3.1. DESIGNING THE ARCHITECTURE

3.1.1 Classification

As a basis for further data manipulation, the different types of relevant informa-
tion needs to be classified. As explained in the background chapter, an ontology
is such a classification. However, an ontology is something more than just a clas-
sification. Even if there are multiple definitions of an ontology [31], the common
elements in the definitions is that an ontology is a formal description of a domain,
intended for sharing among different applications, and expressed in a language
that can be used to reason[21]. Ontologies also deals with the relations between
the concepts defined in the ontology. However, if one instead limits the classi-
fication to consist of a set of well defined concepts, it allows the application of
traditional Information Retrieval methods in prioritization of classified informa-
tion. Therefore, an ontology will not be developed, but rather a classification that
entails a categorization and their descriptions. However, the concept of shared un-
derstanding related to ontologies, as explained in the background chapter, is still
very much valid in relation to this classification. This is because a shared under-
standing of the domain is what will allow the modules in the architecture to be
decoupled from the core system.

The domain that the classification is being based, on is that of system administra-
tion. Classifying an entire domain, and especially an evolving domain, is a task
that can likely never be finished. That means that the classification developed has
to be extensible. This also means that the classification developed will not cover
all possible terms within the domain, but it should cover the most important ones,
and be considered a good starting point. In order get started on the classification,
looking at what types of information that a system administrator is after can be
a sensible approach. Looking at the problem from an even more general level
one can ask the question of what it is that the system administrator wants infor-
mation about. On a general level, information that helps system administrators
perform their job of managing complex systems can be tied to two terms; services
and servers. For example, an alert from a monitoring system can be related to a
service that is not performing normally, or problems with a server, e.g. hardware
related. This means that a query sent to a system designed to give relevant in-
formation could be based on the two terms service and server, and furthermore,
the classification should be geared towards categories related to these two terms.
That is, the classification should cover terms related to services and servers, the
information they produce, and information about them.

20

3.1. DESIGNING THE ARCHITECTURE

3.1.2 Developing a Prioritization Scheme

Prioritization can, as mentioned in the introduction chapter, be seen as utilizing
rules on a classified set of data. Developing a set of rules that ensures that infor-
mation is sorted and filtered according to some preference is therefore essential.
For the purpose of this architecture, a ranking policy that ranks the information
based on a set of preferences should suffice. It is therefore necessary to find a
way to calculate some form of rank, as well as a way of collecting and storing the
preferences that the prioritization is based on. Furthermore, a way to generate the
preference profiles needs to be designed. The ranking policy can be considered a
good policy when it enables prioritizing the data.

3.1.3 Data Aggregation and Module Design

The intention of the architecture is that the information gathered will be aggre-
gated from multiple different systems and services. In order to be able collect
the data, a system based on the architecture needs a way to communicate with
the different services. Being that access to the data from these services will be
granted in different ways, and that communication will likely involve different
languages and commands, developing individual modules is the only feasible so-
lution. Therefore, a module design, detailing the functionality and requirements
of modules will be designed. Also, a strategy for collecting data from the modules
needs to be developed. Furthermore, a model of the component that will commu-
nicate with the modules and presentation layer will be designed. This component
will be referred to as the core system. The way modules can be included into the
system also needs to be considered.

3.1.4 The Presentation Layer

To ensure separation of presentation and content, a separate presentation layer will
be designed. The presentation layer should be separated from the business logic
in such a way that adding new modules to the system should not impose changes
to the presentation layer.

21

3.2. THE PROTOTYPE

3.2 The Prototype

Based on the architecture a prototype will be developed. This prototype should
include an implementation of the core system, a different set of service modules
as well as a presentation layer implementation. The prototype will be based on
freely available technologies and open source software.

3.2.1 The Core System

Developing the core system involves implementing the system according to the
architecture, as well as choosing technologies that allows the implementation to
follow the ideas and concepts described in the architecture.

3.2.2 Modules

To demonstrate the functionality of the modular design, modules for three differ-
ent services will be developed. These services should be different with respect to
the type of content they provide, such that the architectures independence from
content type can be demonstrated. However, due to the time frame of this thesis,
these modules will not cover all functionality related to their services. They will
instead cover a subset as a proof of concept. Also, it can be argued that develop-
ing full functionality for these modules will not lend any additional validity to the
architecture.

Modules will be developed for the following services:

• Munin: an open source networked resource monitoring tool
Munin is an open source resource monitoring tool providing trend informa-
tion in the form of graphs through a web interface. Munin has a master/node
architecture, and the master gathers data from all of the nodes. This means
that the munin-node software needs to be installed on any computer that is
to be monitored. By default Munin provides a lot of graphs about the sys-
tem that is monitored. Also, it relatively easy to write plugins for Munin to
generate graphs for virtually any resource. [18]

• Request Tracker: A widely used open source issue tracking system
Request tracker is used for bug tracking, help desk ticketing, customer ser-
vice, workflow processes, change management and more. It provides ac-
cess through a web interface which allows creating tickets, managing tick-
ets, managing users and groups, and much more. Additionally it provides

22

3.3. TASK SUMMARY

a command line client which allows other programs to communicate with
RT, and provides integration with other systems. [17]

• DokuWiki: an open source Wiki
DokuWiki is a wiki targeted at developer teams, work groups and small
companies. It allows creation of documents using a simple syntax. DokuWiki
stores all of its documents as plain text files, which means there is no need
for a database. [10]

3.2.3 Presentation Layer Implementation

The presentation layer (client) will be implemented as a Command Line Interface
(CLI) script. The CLI script will adhere to the requirements of the architecture,
and communicate with the system in the same manner that any client would, for
example an HTML/JavaScript client. This will demonstrate how clients can be
developed by third parties as long as they adhere to the architecture.

3.2.4 Verification

In order to verify the correct functioning of the prototype, the functionality of the
prototype developed should be tested. Performing the functionality testing will
involve specifying the functionality expected of the prototype, creating test data
to allow the functionality to be properly tested, executing the tests and comparing
the results of the tests with the expected functionality.

3.3 Task Summary

Table 3.1 summarizes the tasks defined in the approach for the architecture, the
prototype and the verification of the prototype.

23

3.3. TASK SUMMARY

Table 3.1: Task Summary

Category Task Comments

Architecture

A.1: Define a classification based
on the domain of system adminis-
tration, geared towards categories
related to services and servers
A.2: Define a ranking mecha-
nism capable of ranking informa-
tion based on a set of preferences
(preference profiles).

The preference profiles should be
based on the classification from
A.1

A.3: Design a way to generate
preference profiles.

The preference profiles should be
based on the classification from
A.1

A.4: Define a design for the core
system.
A.5: Define a module design, de-
tailing the functionality and re-
quirements.
A.6: Define a communication
protocol for communication be-
tween the different components.
A.7: Design the presentation
layer
A.8: Define how the architecture,
and systems based on the archi-
tecture can be expanded

Prototype

P.1: Develop an implementation
of the core system.

Based on the requirements from
A.2, A.3, A.4 and A.6.

P.2: Develop a module for Munin Based on the requirements from
A.5 and A.6

P.3: Develop a module for Re-
quest Tracker

Based on the requirements from
A.5 and A.6

P.4: Develop a module for
DokuWiki

Based on the requirements from
A.5 and A.6

P.5: Develop CLI client imple-
mentation

Based on the requirements from
A.6 and A.7

Verfication

V.1: Specify the expected func-
tionality
V.2: Create test data
V.3: Execute tests and compare
the results with the expected func-
tionality

24

Chapter 4

Results: Architecture

The architecture presented in this chapter is aimed at providing a way for system
administrators to get relevant personalized information from multiple sources, at
a single entry point. Furthermore, the architecture is focused on being flexible,
extensible, and allowing for easy inclusion of information sources.

A system based on this architecture will allow users to search for information re-
lated to servers and services. Searches are performed through a client which sends
queries with the search information to a query broker. The job of the query broker
is to distribute queries to the modules responsible for the different information
sources. The query broker is also responsible for prioritizing the results to the
queries coming from the modules, based on the preferences of the user that issued
the query, and sending the results back to the client. The query broker was refer-
eed to as the core system in the approach chapter. Figure 4.1 on page 26 shows the
key components and concepts in the architecture, how they relate to each other,
and their basic interaction pattern.

The following list gives a short explanation of the different components and their
role in the architecture:

• Classification

The classification is used to describe important concepts in the domain of
system administration. It enables a common language which facilitates the
creation of preference profiles, classifying search results, and performing
prioritization of results.

• Prioritization

Prioritization is done with the help of the preference profiles, and the clas-

25

Figure 4.1: Key components and concepts in the architecture

26

sification applied to the search results.

• Preference Profiles

The preference profiles are used to store the preferences of the users of the
system, and is the basis for prioritizing search results.

• Presentation Layer

The presentation layer is where searches for information are issued, and
where the results from the searches are presented to the user. Searches are
issued by sending queries to the query broker containing the search param-
eters.

• Query Broker

The query broker is responsible for handling queries from the presentation
layer, distributing the queries to the modules, gathering results from the
modules, performing the prioritization according to the preference profiles,
and sending the ranked results to the presentation layer.

• Modules

Modules provide the search results, and classifies the results they provide.
A module is a component responsible for a contributor. That is, a module
is considered the expert in the workings and information of its contributor.
Modules gather search results by communicating with their contributors.

• Contributors

Contributors are services that provide data to be used in the system. Ex-
amples of possible contributors are monitoring systems, ticketing systems,
documentation systems and so on.

• Queries

Queries are the entities which contain all information related to a specific
search.

• Results

The results are entities which contain the data relevant to a specific query.

The next four sections are focused on explaining the different components in de-
tail. Then a meta model of the architecture is presented, giving an overview of
the interaction of the components involved. The last section explains how the
architecture and systems based on the architecture can be expanded.

27

4.1. DOMAIN CLASSIFICATION

4.1 Domain Classification

The purpose of the classification is to enable a shared understanding of the prob-
lem domain, and give a foundation for prioritizing data. In order for the classifi-
cation to facilitate a shared understanding it is imperative that the terms are inter-
preted in the same way by all users of the classification. Therefore, all terms in
the classification should have a corresponding explanation, stating what is specif-
ically meant by the term and in what context it should be used, unless it is clearly
evident. This should ensure that the terms will be used in a uniform way, and the
way they were intended.

The terms in the classification were determined by investigating the terms used
in different types of monitoring software, ticketing systems and documentation
systems, as well as through discussions with professional system administrators.
The classification is divided among two tables. It can be found in table 4.1 on
page 29, and continues in table 4.2 on page 30.

4.2 Prioritization Scheme and Preference Profiles

The prioritization of the results gathered from the modules, is based on the clas-
sification and preference profiles. Being that the classification consists of a set of
terms, creating a preference profile amounts to applying priorities (weights) to all
the different terms in the classification. In the case of weights, a higher number
indicates a higher priority of the related term. The preference profiles can then be
stored in a key value type format, and be identified by the name of the user.

Preference profiles can be generated by having the users apply weights to all the
terms in the classification, for instance through a user interface. The specific num-
ber range allowed for the weights is not essential, but it should be large enough
to allow the user to differentiate between the different terms. For instance, the
weights could be in the range between 0 and 1, and allow decimal numbers. The
following figure shows an example preference profile based on a small classifica-
tion:

Example preference profile

1 1.0 Alert
2 0.3 Hardware
3 0.1 Network
4 0.6 Ticket
5 0.0 Trend

28

4.2. PRIORITIZATION SCHEME AND PREFERENCE PROFILES

Alert A term used to classify alerts. For example an alert coming
from a monitoring system.

Backup A term used to classify any type of backup related informa-
tion.

Configuration A term used to classify any type of configuration information.

Customer A term used to classify any type of customer related informa-
tion.

Database A term used to classify any type of database related informa-
tion.

Firewall A term used to classify any type of firewall related informa-
tion.

Hard Drive A term used to classify any type of information related to hard
drives.

Hardware A term used to classify any type of hardware related informa-
tion.

Documentation A term used to classify any type of documentation.

Guarantee/Licence A term used to classify any type of information related to guar-
antees or licences.

Hostname A term used to classify hostname information

Installed Software A term used to classify information describing what software
is installed on a computer.

Intrusion Detection A term used to classify any type of information related to in-
trusion detection.

Linux A term that can be used to classify information related to any
flavours of Linux based operating systems.

Mail A term used to classify any type of information related to e-
mail.

Mac OS X A term that can be used to classify information related to any
flavours of the Mac OS X operating systems.

Middleware A term used to classify any type of information related to soft-
ware that provides services to software applications.

Monitoring A term used to classify monitoring information that is not
trend information. See term Trend.

Network A term that can be used to classify any network related infor-
mation.

Network Interface A term that can be used to classify any information regarding
network interfaces.

Table 4.1: Classification part 1

29

4.2. PRIORITIZATION SCHEME AND PREFERENCE PROFILES

Order A term used to classify orders. An order is a commission or instruction to
produce or supply something in return for payment.

OS A term used to classify operating system related information.

Process A term that can be used to classify any information related to processes.
A process is a running instance of a computer program.

SLA A term used to classify service level agreement information.

Support A term that can be used to classify any information related to support.

System A general term that can be linked to any system related information.

Ticket A term used to classify a case supplied by a ticketing system.

Trend A term used to classify monitoring information related to tracking
changes occurring over time.

Uptime A term used to classify any kind of uptime related information.

Vendor A term used to classify any kind of vendor related information.

Web A term used to classify any type of web related information.

Windows A term that can be used to classify information related to any flavours of
Microsoft Windows operating systems.

Table 4.2: Classification part 2

The results arriving from the modules will include a classification vector. The
classification vector consists of 0’s and 1’s indicating which terms in the classi-
fication the result is related to. This means that a single result can be related to
multiple terms. For instance a ticket from a ticketing system about a server that
has gone down, can be related to both the "Ticket" term and the "Alert" term. Al-
lowing multiple terms to be applied a specific result allows a more fine grained
and precise description of results in comparison to sticking with singular terms.

A classification vector for a result related to the terms "Ticket" and "Alert", with
the same classification as in the preference profile example, would look like this:

C = (1, 0, 0, 1, 0)

Each result will be dealt a rank based on the preference profile and the classifica-
tion vector. The system reads the preference profile of a user and stores that in a
vector as well; from now on referred to as a profile vector.

The idea is to apply an approach used in Information Retrieval (IR) to calculate the
similarity between the two vectors. This approach is the vector space approach
explained in the background chapter. However, what is compared is not docu-
ments and queries as in the case of the vector space approach for IR, rather the

30

4.2. PRIORITIZATION SCHEME AND PREFERENCE PROFILES

profile vector and the classification vector of a result is what is being compared.

Three types of similarity measures where explained in the background chapter
in relation to the vector space approach. These where inner product (equation
2.1), cosine similarity (equation 2.2) and the distance metrics (equation 2.3). The
choice of which similarity measure to use fell on inner product. This was based
on the fact that it is one of the two most widely used according to Greengrass [11]
(the other one being cosine similarity), their is no need to normalize document
length (which is what cosine similarity does), and it is the least computationally
demanding. The following formula shows the calculation of rank (priority) with
a classification vector C, a profile vector P , and N being the number of terms in
the vectors:

R = s(C,P) = C · P = ΣN
i=1Ci × Pi (4.1)

Suppose there exists a classification consisting of the following 5 terms:

Example classification

1 Alert
2 Hardware
3 Network
4 Ticket
5 Trend

Let P1 and P2 be two profile vectors:

P1 = (1.0, 0.3, 0.1, 0.6, 0.0) (4.2)

P2 = (0.2, 0.8, 0.7, 0.0, 1.0) (4.3)

As can be seen, P1 is mostly concerned with information dealing with Alert and
Ticket, where as P2 is mostly concerned with Hardware, Network and Trend in-
formation. Let C1 and C2 be the classification vectors belonging to two different
results:

C1 = (1, 0, 0, 1, 0) (4.4)

C2 = (0, 0, 1, 0, 1) (4.5)

31

4.3. MODULE DESIGN, THE QUERY BROKER AND DATA
AGGREGATION

C1 could be a classification vector belonging to an alert from a ticketing system,
where as C2 could be a result containing network related trend information. Now
calculating the ranking for both profile vectors and both classification vectors ac-
cording to formula 4.1, yields the following results:

R1,1 = C1 · P1 = 1.6 (4.6)

R2,1 = C2 · P1 = 0.1 (4.7)

R1,2 = C1 · P2 = 0.2 (4.8)

R2,2 = C2 · P2 = 1.7 (4.9)

As can be seen for P1, C1 yields a higher rank than C2, which corresponds with
the weights assigned in P1. As for P2, C2 yields a higher rank than C1, which
again corresponds with the weights assigned in P2. The result of the ranking
means that if performing the same search (query) with the two different profiles
P1 and P2, then for P1 the result with classification vector C1 would be priori-
tized higher than the result with classification vector C2. On the other hand, for
P2, the result with classification vector C2 would be prioritized higher than the
result with classification vector C1.

4.3 Module Design, The Query Broker and Data Ag-
gregation

A key feature of the modular architecture is that responsibility for the contributors
is delegated to the different modules. The idea behind delegating responsibility in
this way, is that each module should be considered the expert in its field, or more
precise its service. Dividing responsibility in this way will ensure that the query
broker can treat all modules in the same way. So, each module is responsible for
knowing how to communicate with and acquire data from its related service. The
module also has to be able to deliver that data back to the query broker.

The way data is aggregated is closely related to the module design. Since each
module is responsible for knowing how to acquire data from its related service,
it means that a single message asking for data can be sent to all modules. This

32

4.3. MODULE DESIGN, THE QUERY BROKER AND DATA
AGGREGATION

message will be in the form of a single identical query. It is therefore necessary
that all modules understand this query, and are able to translate the meaning of the
query into commands that their respective services can understand. It is, however,
important to mention that such a query may not be relevant for a particular module.
In this case the module should simply return an empty result indicating that it has
no relevant data for that particular query. Figure 4.2 on page 34 illustrates the
interaction between the query broker, modules and contributors.

4.3.1 Communication and Data Transportation

As explained in the background chapter, Message-oriented Middleware or MOM
enables asynchronous message based communication among distributed software
components. Utilizing MOM as the communication medium allows each module
to run as a separate process with its own query queue and its own result queue.
This allows a complete decoupling of the modules from the query broker. The
query broker will also have its own query queue to which the clients will send
their queries.

Queries
In order for the query broker to be able to distinguish among different queries it
needs some way of identifying them. Firstly, it is obvious that a query needs to
be linked to the user issuing it. This will enable a query to be associated with the
correct preference profile. Also, since dealing with queues as means of communi-
cation, there is a need to know which result queue to send the results to. Secondly,
adding a device specification to the query enables a single user to perform differ-
ent searches from different devices at the same time. Such devices can be different
physical devices, or simply different tabs in a web browser. This means that each
user and device combination will get a result queue, to which the results from a
query are delivered. As mentioned earlier, the actual search is performed per ser-
vice, server or both, so that has to be part of the query as well. Based on these
observations a query from a client could look like this, using XML type notation
to identify the different components:

Example XML-formated query sent from the client to the query brokers query queue

1 <query>
2 <user>Bob</user>
3 <device>Device01</device>
4 <service>Apache2</service>
5 <server>Webserver01</server>
6 </query>

In addition to the above mentioned requirements for a query, the query broker

33

4.3. MODULE DESIGN, THE QUERY BROKER AND DATA
AGGREGATION

Figure 4.2: Query Broker, Modules and Contributors interaction pattern

34

4.3. MODULE DESIGN, THE QUERY BROKER AND DATA
AGGREGATION

needs a way of differentiating between different queries from the same user on
the same device. This is important in the case where a user performs multiple
searches in rapid sequence. Doing this could result in the query broker having
multiple queries to handle from the same user on the same device at the same
time, and only the newest query will be relevant. This can be solved by adding a
query number to the queries sent to the modules. In this way the query broker can
keep track of query numbers, and discard any results coming from the modules
related to outdated queries. The following figure shows how such a query could
look, again using XML type notation:

Example XML-formated query sent from the query broker to the modules query queues

1 <query>
2 <query-number>1</query-number>
3 <user>Bob</user>
4 <device>Device01</device>
5 <service>Apache2</service>
6 <server>Webserver01</server>
7 </query>

Results
Each module providing data to the query broker, is responsible for tagging the data
gathered from their respective services with classification vectors before returning
it to the query broker. This has to be done to enable the query broker to prioritize
the data.

A sensible way to keep the amount of data being transferred low, is to not actually
transfer the contents of the data, but rather information about where that data can
be found. Being that many information systems provide access through web inter-
faces, passing urls in the results is a good way to provide access to the resource.
In cases where this is not possible, actual data could be transferred instead.

A result needs to include some sort of description, enabling the user to distinguish
among different search results. Therefore, each result will include a title clearly
describing the contents of the result.

Summing up the requirements for a result, it is clear that each individual result
needs a title, a classification vector and a url or data tag. The following figure
shows how a result could be tagged using XML notation:

Example XML-formated single result

1 <result>
2 <title>My Title</title>
3 <classification>00000000000000000000001000010000</classification>
4 <url>http://someurl.html</url>
5 </result>

35

4.3. MODULE DESIGN, THE QUERY BROKER AND DATA
AGGREGATION

The modules will have to provide some meta data in the results sent back to the
query broker. This is to enable the query broker to recognize which query the
result belongs to. Being that a query often will result in multiple results from the
same module, encapsulating the results in a meta data container is a good idea.
This will ensure that the meta data is only sent once for each set of results as a
response to a query, instead of introducing redundancy by tagging each individ-
ual result with the same meta data. The necessary meta data needed, includes of
course the meta data sent in the query, which is the query number, user name and
device name. In addition to that the source of the data will be the same for all
results, and should also be included. Passing the data source, that is the name of
the service providing the data, should enable the user to more easily distinguish
among different types of data. Also, providing a timeout which tells how long a
result should remain in the clients result queue, will ensure that in the case where
data retrieval is aborted at the client side, results already delivered to the queue
will not linger forever and disrupt new searches. This of course means that the
underlying MOM has to support this as a feature. The following figure shows two
results encapsulated in a module result using XML notation:

Example XML-formated module result as sent from the modules to the module result queue

1 <module-result user="Bob" device="Device01" query-number="1" source="Some Service" expiry="20000">
2 <result>
3 <title>Title 01</title>
4 <classification>00000000000000000000001000010000</classification>
5 <url>http://someurl.html</url>
6 </result>
7 <result>
8 <title>Title 02</title>
9 <classification>00000000000000000000000000010000</classification>

10 <url>http://someotherurl.html</url>
11 </result>
12 </module-result>

When a module-result has been processed by the query broker and the priorities
calculated for the individual results, the results are sent to the result queue of the
client identified by user and device. The result has to contain the priority of the
result, so that it can be sorted, in addition to the other information contained the
result delivered from the module. The following figure shows what a result deliv-
ered to the client result queue could look like, using XML notation:

Example XML-formated individual result sent to the client

1 <result>
2 <priority>1.0</priority>
3 <title>Webserver01 is down</title>
4 <url>http://some.url.org</url>
5 <source>Request Tracker</source>
6 </result>

36

4.4. PRESENTATION LAYER DESIGN

Finishing a search
Letting the user issuing a query know when the search is finished, and all results
are received, prevents the user from waiting in vain thinking more results may
arrive. For instance, if a query produces no results, then the user should be made
aware of this as soon as possible. Therefore, the query broker needs to keep track
of which modules that have delivered their results for a particular query. When
all modules have delivered their results, the query broker should send a message
to the result queue of the client, indicating that no more results will arrive. The
following figure shows an example of an XML tagged message letting the client
know that the search is finished:

Example XML-formated search finished message

1 <search-finished></search-finished>

Module Integration
Making the query broker communicate with a new module will be a simple matter
of providing the name of the module in question. Due to the decoupled nature of
the architecture via MOM, the query broker simply needs to know the names of
the query and result queue for the module. By following a naming scheme for the
queues based on module names, the name of the module will be all that is needed
for the query broker to communicate with the module.

4.4 Presentation Layer Design

A key aspect of the presentation layer is to make sure that the information is dis-
played in a user friendly manner. This also includes how long it takes for the
system to display that information. Being that in this architecture data is gath-
ered from multiple sources, it is only natural that the data will arrive at different
times. The presentation layer should therefore be able to display partial results.
That is, the results from the different sources should be displayed as they arrive,
and reordered according to the prioritization. This will ensure that the user will
not have to wait until all the information is gathered before seeing results, which
should help alleviate user impatience. This is in line with the research by Nah [20]
explained in the background chapter, where it was found that feedback prolonged
the time a user would wait before abandoning a webpage.

The next issue to address is how information should be displayed. As mentioned
in the approach, using web technology will allow for platform independence. The
use of a web interface means that queries can be stored as urls and integrated into
other systems. For instance several monitoring systems send out emails notifying

37

4.5. THE META MODEL

system administrators of alerts. Being that queries can be stored as urls, these urls
can be included into the alert emails providing a fast way of getting information
relevant to the alert. The decoupled nature of the architecture enables different
types of clients to be developed, so clients can be developed to cater to different
needs.

How the information should be displayed is of course dependent of what kind
of information is available, and the amount of information that is available. As
described earlier, the following information is available to the presentation layer.

Type of information:

• Priority

• Title

• Url

• Source

The priority ranking number is likely of little value to the user, and should there-
fore not be displayed, but rather used to sort the results. The url, also does not
necessarily need to be displayed to the user. The title could be made into a link,
linking to the url, depending on the client. The title and source on the other hand
should be shown. As the results are to be sorted, the results should be displayed
as a list.

Being that the query broker will send all results relevant to the specified query,
the amount of results received by the presentation layer can be large. Therefore,
a mechanism limiting the amount of results shown to the user could be imple-
mented. For example, in the case of a web client, one could limit the number of
results to 20 per page.

Finally, the user interface should give the user some form of feedback when all the
results from the search has arrived, meaning that the search is finished. This can
be accomplished with the help of the special search-finished message explained
earlier.

4.5 The Meta Model

In this section the meta model is presented. The model shows the components
involved in the architecture, and the flow of data between them.

38

4.6. EXTENSIBILITY

Figure 4.3 on page 40 shows the different components in the architecture and
how they are related to each other. Also, the basic flow of information between
the different components is depicted. The information flow follows the following
pattern:

1. A user performs a search for information. User, device, service and/or
server information is sent to the Query Broker in the form of a query.

2. In the Query Broker a query is generated based on the information from the
Presentation Layer, given a query-number, and sent to all Modules.

3. The Modules translates the query into something the Contributors under-
stand, and requests data from them.

4. Data is returned from the Contributors to the Modules.

5. The Modules tags the data according to the Classification and sends the
results to the Query Broker.

6. The Query Broker utilizes the Preference Profiles to prioritize the results
from the modules, and then sends the prioritized results to the Presentation
Layer.

What figure 4.3 does not show is how information is transferred between the dif-
ferent components. This is as explained earlier solved with the introduction of
MOM as the data transportation method. The result of introducing MOM into the
architecture can be seen in figure 4.4 on page 41. This involves:

• Having a query queue for the Query Broker, to which all queries from the
clients are sent.

• Having a query queue for each Module, to which the Query Broker dis-
tributes queries.

• Having a result queue for each Module, to which each Module sends their
results, and the Query Broker collects results from.

• Having separate result queues for each user and device combination, to
which the Query Broker sends the ranked results for the queries.

4.6 Extensibility

The extensibility of a system based on the architecture is handled through the
development of modules. The fact that modules can be developed for virtually

39

4.6. EXTENSIBILITY

Figure 4.3: Meta Model

40

4.6. EXTENSIBILITY

Figure 4.4: Meta Model including MOM

41

4.6. EXTENSIBILITY

any service providing data, allows the system to be extended and adapted to the
needs of the organization using it. However, with new modules, it is likely that
new terms may need to be included in the classification. Hence, the extensibility
of the classification also impacts extensibility through new modules.

One key issue to look at, is how extending the system impacts the already existing
components in the system. Adding new modules will not impact the system in any
other way than that there will be more data to handle by the Query Broker. How-
ever, changes made to the classification, if not done correctly can cause the other
modules classification schemes to fail. Therefore, adding to the classification has
to be done in the following way:

Any new term must be added to the end of the classification. This will ensure that
there will be no shifting of indexes in the classification vectors causing existing
modules classification schemes to fail. Furthermore, the Query Broker needs to
check whether the length of the classification vectors received in the results from
the modules, matches the length of the classification rules. If not, trailing 0’s
should be added to the classification vectors of the results. This is to ensure that
the prioritization rank can be calculated, and it will also remove the need to update
all other modules to adhere to the updated classification rules.

As with the classification vectors, when the classification has been extended, the
query broker needs to take into account the fact that previously created preference
profiles will not contain the new terms. In this case trailing 0’s can be added to
the profile vectors by the query broker as a temporary solution until the preference
profiles are updated.

42

Chapter 5

Results: Prototype

This chapter explains how the prototype was developed, the technologies used
to build it, and how it relates to the architecture. The last section of the chapter
details the functionality testing of the prototype.

It is worth noting that this being a prototype, robustness and security has not
been a priority. Therefore, the provided code is not production ready. However,
all provided scripts are fully functional as long as they are used correctly. Also,
direct data transfer from the modules is not supported by the prototype. That is,
the data tag in the results and related functionality has not been implemented.
This choice was made due to time constraints, and the fact that it is not essential
in demonstrating the validity of the architecture.

5.1 Overview

The prototype addresses the five tasks specified in the prototype section of the task
summary table (table 3.1 on page 24). The prototype includes implementations
of:

• The Query Broker (referred to as the core system in the task summary table).

• A CLI client based on the presentation layer design

• A module for Munin

• A module for Request Tracker

• A module for DokuWiki

43

5.2. DEVELOPMENT ENVIRONMENT AND TECHNOLOGIES

Figure 5.1 on page 45 illustrates how all the components in the prototype interact
in order to get from a query being sent from a client, to relevant information being
returned.

1. In the first step Client 1 sends a query containing the search parameters and
meta information to the query queue of the Query Broker.

2. Next Client 2 also sends a query to the Query Broker.

3. When the Query Broker is ready it fetches a query from its query queue; in
this case the query from Client 1.

4. The query broker adds a query number to the query, and sends this query to
the Munin Module, Request Tracker Module and DokuWiki Module. The
query broker is then free to fetch another query from its query queue.

5. The modules will when they are ready, each fetch their copy of the query
from Client 1 from their respective query queues.

6. When the query has been handled by a module, and data extracted from
their contributors and classified, the results are sent as a module result to
the module’s result queue.

7. When the Query Broker is ready, it will fetch a module result from one of
the module’s result queues. The individual results are then extracted from
module result and given a rank according to the preference profile of the
user and classification of the results.

8. Then the results are sent to the result queue matching the user and device
that issued the query.

9. The client will continuously check for results arriving in its result queue,
and fetch them as they arrive. When results arrive the will be sorted accord-
ing to their rank, and presented to the user.

5.2 Development Environment and Technologies

This section explains the various technologies involved in the prototype, as well
as the infrastructure used in the development, and how the different components
in the system (modules and query broker) where distributed.

Message-oriented Middleware (MOM)
The choice of Message-oriented Middleware for the prototype fell on Apache Ac-
tiveMQ. ActiveMQ is an open source MOM from the Apache Software Founda-

44

5.2. DEVELOPMENT ENVIRONMENT AND TECHNOLOGIES

Figure 5.1: Prototype Information Flow

45

5.2. DEVELOPMENT ENVIRONMENT AND TECHNOLOGIES

tion. It provides client APIs for multiple programming languages including Java,
C/C++, .NET, Perl, PHP, Python, Ruby and more. This allows for applications/-
modules that are to communicate via the MOM to be written in many different
languages. [25]

Simple Text Oriented Messaging Protocol (STOMP)
The STOMP protocol is a simple text oriented protocol that is designed for asyn-
chronous messaging between clients via a mediating server. [27] Using STOMP
in conjunction with ActiveMQ simplifies writing clients for ActiveMQ in multi-
ple different languages. ActiveMQ can easily be configured to use the STOMP
protocol.

Programming Language
The query broker, the client (sqsi-cli) and all modules were written in the Perl
programming language. Perl provides easy integration with ActiveMQ and use of
the STOMP protocol through the Net::Stomp library.

Non-standard Perl libraries needed to run the prototype:

• Query Broker

– Net::Stomp

– XML::Simple

• Munin Module

– Net::Telnet

– Net::Stomp

– XML::Simple

• Request Tracker Module

– Net::Stomp

– XML::Simple

– Scalar::Util

• DokuWiki Module

– Net::Stomp

– XML::Simple

• Client

46

5.3. DATA TRANSFER FORMATS

– Net::Stomp

– JSON

Testing environment
The prototype query broker, and the three modules were distributed among 4 Dell
Optiplex 745 machines, running Debian "squeeze" 6.0.4.

5.3 Data Transfer Formats

This section explains the various ways that data are represented and tagged before
passing between the different components in the system; be that the Query Broker,
the Modules or clients. Two different ways of tagging data have been used in the
prototype. These are XML (Extensible Markup Language) and JSON (JavaScript
Object Notation).

XML: is a widely used markup language for structured information. The markup
of information is done through the use of tags, with start tags <some-tag> and
end tags </some-tag>. The tags can have child elements, which allows arranging
information in an hierachical fashion. [5]

JSON: is a text-based format for serialization of structured data that can represent
strings, numbers, booleans, null, objects and arrays. [6]

The first data transfer format that will be explained, is that of the query sent from
the client to the queue containing queries for the Query Broker. It is tagged using
XML. The root element of the query is <query>. The <query> element has 4 child
elements:

• <user>: the name of the user issuing the query

• <device>: the name of the device the query is issued from

• <service>: the name of the service to search for (can be empty)

• <server>: the name of the server to search for (can be empty)

Here follows an example of such a query:

XML-formated query as sent from the client to the Query Broker

1 <query>
2 <user>Bob</user>
3 <device>Device01</device>
4 <service>Apache2</service>
5 <server>Webserver01</server>
6 </query>

47

5.3. DATA TRANSFER FORMATS

The query that is sent from the client to the Query Broker needs to be distributed
to all modules. As explained in the architecture chapter, the Query Broker needs
to differentiate between different queries from the same user on the same device.
This is to avoid old outdated results from being sent to the client. Therefore, in ad-
dition to the elements described for the query above, an element <query-number>
is added to be able to uniquely identify a query. This is shown in the following
example:

XML-formated query sent from the query broker to the modules query queues

1 <query>
2 <query-number>1</query-number>
3 <user>Bob</user>
4 <device>Device01</device>
5 <service>Apache2</service>
6 <server>Webserver01</server>
7 </query>

The results sent from the modules are also tagged as XML. The individual re-
sults are encapsulated in a <module-result> root element. The <module-result>
element has the following parameters:

• user: the name of the user that issued the query

• device: the name of the device the query was issued from

• query-number: the number identifying the query

• source: the source that provides the data (e.g Munin)

• expiry: the number of milliseconds a single result should remain in the result
queue of the client, before being removed from the queue.

Each <module-result> can contain an arbitrary amount of results. These results
are identified by the <result> element. The <result> element has 3 child elements:

• <title>: a title describing the result

• <classification>: the classification string consisting of 0’s and 1’s

• <url>: the link to the result content

The following example shows a module-result containing two results:

48

5.3. DATA TRANSFER FORMATS

XML-formated module result as sent from the modules to the module result queue

1 <module-result user="Bob" device="Device01" query-number="1" source="Munin" expiry="20000">
2 <result>
3 <title>Trend: apache_processes - webserver01</title>
4 <classification>00000000000000000000001000010000</classification>
5 <url>http://sysadmin15.iu.hio.no/munin/iu.hio.no/webserver01/apache_processes.html</url>
6 </result>
7 <result>
8 <title>Trend: apache_accesses - webserver01</title>
9 <classification>00000000000000000000000000010000</classification>

10 <url>http://sysadmin15.iu.hio.no/munin/iu.hio.no/webserver01/apache_accesses.html</url>
11 </result>
12 </module-result>

The next data transfer format represents a single result as received by the client.
This format is tagged using JSON. The reason for using JSON when sending
results to the client, is its limited overhead, as well as its close connection to
JavaScript which is a standard scripting language for displaying dynamic content
on the web. The result contains the following elements:

• priority: gives the importance of the result, and is used by the client to sort
the results

• url: the link to the result content

• title: a title describing the result

• source: the source that provided the data (e.g. Munin)

The following example shows how a such a result would be tagged:

JSON-formated result as sent from the query broker to the client result queue

1 {
2 "priority": "1",
3 "url": "http://sysadmin15.iu.hio.no/munin/iu.hio.no/webserver01/apache_accesses.html",
4 "title": "Trend: apache_accesses - webserver01",
5 "source": "Munin"
6 }

The last of the data transfer format is used to let the client know that the search
is finished, and that their will be no more incoming results. This format is also
tagged using JSON for the same reasons are described earlier. It contains only
one element search-finished. This element will always contain the value true as
the message containing this data transfer format will only be sent when the search
is finished. The following figure shows the data transfer format:

JSON-formated result as sent from the query broker to the client result queue

1 { "search-finished": "true" }

49

5.4. QUEUE NAMING SCHEME

5.4 Queue Naming Scheme

In order to minimize the configuration needed to allow the components in the
prototype to communicate with each other, it is important to have a pre-defined
way of naming queues. This ensures that all the components involved will be
able to deliver data to each other as long as they follow the naming scheme. The
following naming scheme has been employed:

• The queue containing queries from the clients is named queryQueue.

• For the modules all queues containing queries for the modules are named
queryQueue followed by the module name. E.g. for the Munin module the
name of its query queue is queryQueueMunin-Module.

• Likewise the result queues for the modules are named resultQueue followed
by the module name. E.g. resultQueueMunin-Module.

• The result queues for the clients are named resultQueue followed by user
name and device name. E.g. the result queue for user "Bob" on device
"Device01", would be named resultQueueBobDevice01.

5.5 Query Broker

This section explains the implementation of the query broker. The source code
and related files can be found in the Query Broker section of the appendix.

The query broker is started by running the file "querybroker.pl". It takes three
options:

• -h Prints a help menu explaining how to run the script

• -v Enables verbose mode, which makes the script print some extra informa-
tion

• -d Enables debug mode, which makes the script print debug messages

When the script is started the names of the modules that the system should com-
municate with are read from the file "modules.dat". This file contains a list of
module names separated by new-lines. The following figure shows the content of
"modules.dat":

modules.dat

1 DokuWiki-Module
2 Munin-Module
3 Request-Tracker-Module

50

5.5. QUERY BROKER

Next two connections are made to the ActiveMQ server. One for the incoming
queries, sending queries to modules and results to clients, and one for the in-
coming module results. Then the script subscribes to the queryQueue, and all
the result queues of the modules. In the context of ActiveMQ, subscribing to a
queue/destination entails that the subscriber can get messages from that queue.

At this point the script enters a loop performing the following two tasks until the
script is terminated:

• Check if there is a message in the queryQueue.

If this is the case, the message is taken from the queue, decoded, and put in
to a hash which is passed to a function that handles query distribution.

• Check if there is a message in one of the result queues.

If this is the case, a function dealing with incoming results will be called.

5.5.1 Query Distribution

When a query is received from a client, it needs to be distributed to all modules.
This is handled by the "send_query" function. However, as specified in the archi-
tecture a query-number has to be added to the query before passing it on.

The first thing "send_query()" does is checking whether the their exists a QueryRe-
sult object for the user and device combination specified in the query. The QueryRe-
sult is responsible for keeping track of the the query-number for the user and de-
vice combination, as well as the number of modules that have sent their results for
the query (moduleResReceived). If a QueryResult does not already exist for the
user and device combination, one is created and given a query number. However,
if there already exists a QueryResult its query number is increased by 1, and the
moduleResReceived is set to 0. The reason for the query-number is as explained
in the architecture, to be able to distinguish among new and outdated module re-
sults. The number keeping track of how many modules have sent their results
(moduleResReceived), is used to determine when all results for a query have been
received. This enables the query broker to know when to send the special search-
finished message to the client.

Next the query is tagged according to the XML data transfer format, and sent to
all modules.

51

5.5. QUERY BROKER

5.5.2 Handling Incoming Results

When a message can be read from one of the result queues. The module result is
taken out of the queue and converted into a hash. Next the query-number in the
module result is checked against the query number stored in the QueryResult ob-
ject for the same user and device combination. If the query number in the module
result is lower than that stored in the QueryResult, it means that the module result
is outdated, and it is simply discarded. Otherwise, if the query numbers match,
moduleResReceived is increased by 1 and the module result is processed further.

Next all the results contained in the module result are converted into Result ob-
jects. The Result object stores all the information contained in the XML tagged
result, and can also hold priority information. Then a profile vector is set based
on the user name included in the module result. If the profile vector has been used
before it will be stored in a hash, mapping users to profile vectors. Otherwise, the
profile vector is created from file, and stored for later use.

All preference profiles are stored in ".profile" files. E.g. the profile of user "Bob"
will be stored in a file named "Bob.profile". The profile files consist of lines of
term names and their weights. The following figure shows an example ".profile"
file:

52

5.5. QUERY BROKER

An example .profile file

1 Alert 1.0
2 Backup 0.0
3 Configuration 0.8
4 Customer 0.2
5 Database 0.0
6 Firewall 0.0
7 Hard Drive 0.1
8 Hardware 0.0
9 Documentation 1.0

10 Guarantee 0.0
11 Hostname 0.0
12 Installed Software 0.8
13 Intrusion Detection 0.0
14 Linux 0.5
15 Mail 0.0
16 Mac OS X 0.0
17 Middleware 0.0
18 Monitoring 0.3
19 Network 0.0
20 Network Interface 0.3
21 Order 0.0
22 OS 0.4
23 Process 0.0
24 SLA 0.5
25 Support 1.0
26 System 0.2
27 Ticket 1.0
28 Trend 0.0
29 Uptime 0.0
30 Vendor0.5
31 Web 0.4
32 Windows 0.0

Next priorities are calculated and added to all the Result objects.

The priorities are, as specified in the architecture, found by calculating the inner
product of the classification vector of each result, and the profile vector matching
the name of the user.

Finally the results are tagged according to the JSON data transfer format, and sent
to the result queue matching the user and device combination. If results for the
query have been received from all the modules, the search-finished message will
be sent as well. The expiry time provided in the module result is used to calculate
the time when the result should expire. The result of the calculation is sent as a
parameter when sending the results, this ensures that the results will remain in the
result queue for the specified time.

53

5.6. SQSI-CLI: THE CLIENT

5.6 SQSI-CLI: The Client

As announced in the approach chapter, the client was developed as a CLI script.
This section explains the implementation of the the CLI client named SQSI-CLI.
The source code can be found in the SQSI-CLI section of the appendix.

Implementation and functionality

The script is started by running the file "sqsi-cli". It takes eight options:

• -h Prints a help menu explaining how to run the script

• -v Enables verbose mode, which makes the script print some extra informa-
tion

• -d Enables debug mode, which makes the script print debug messages

• -u <username> the name used to find the preference profile

• -s <server name> the server to search for

• -c <service name> the service to search for

• -i <device name> the name of the device

• -r Toggles including the result ranks as part of the output

As an example, searching for the service apache, at server webserver01, as user
Bob, on device iPad01 will require running the script in the following way:

Running the client

1 ./sqsi-cli -c "apache" -s "webserver01" -u "Bob" -i "iPad01"

The client starts by connecting to the ActiveMQ server and subscribing to its result
queue. Next a query message is sent to the query queue of the query broker with
data taken from the parameters supplied by the user. Then the script enters a loop
continuously checking whether there are any messages in the result queue.

When there is a message available to read from the result queue, the script takes
the message out of the queue, converts the JSON coded message to a hash, inserts
the result hash into an array, sorts the array based on the priorities of the results,
and finally prints all results contained in the array. In the case that the message
is not a result, but rather a search-finished message, a SEARCH_FINISHED flag
is set, and the process of collecting messages from the result queue is continued
until no more messages can be read from the result queue.

54

5.7. THE MODULES

The following examples shows the resulting output from running the sqsi-cli script
searching for the service apache at server sysadmin14.iu.hio.no. The -r option has
been set to include the result ranks in the output.

Example output from sqsi-cli

1 1.7 Documentation: apache-sysadmin14.iu.hio.no http://someurl01.com DokuWiki
2 0.7 Trend: apache_processes - sysadmin14.iu.hio.no http://someurl02.com Munin
3 0.5 Trend: apache_accesses - sysadmin14.iu.hio.no http://someurl03.com Munin
4 0.5 Trend: apache_volume - sysadmin14.iu.hio.no http://someurl04.com Munin
5 0.1 Support: Apache poor performance sysadmin14.iu.hio.no http://someurl05.com Request Tracker

The first column displays the rank for the individual results. The second column
displays the title. The third column the url (the urls have been exchanged in the
example in order to fit the page). The fourth column shows the source from which
the data originates.

5.7 The Modules

This section features detailed explanations of the three modules that were devel-
oped for the prototype. That is, how they work, how they gather information from
their respective service/contributor, how they match information with queries, and
how they classify that information.

All the modules need to fulfil the requirements of the architecture. That is, they
need to be able to perform the following tasks:

• Get a query from their query queue

• Interpret the query

• Gather information from the their service/contributor

• Find relevant information according to the query

• Classify the results

• Tag the results according to the specified format

• Send the set of results to their result queue

5.7.1 Munin Module

As explained in the Approach chapter, Munin is a networked resource monitoring
tool. It has a master/node architecture, which means that the master gathers data

55

5.7. THE MODULES

from all nodes. The job of the Munin module is to provide functionality that
allows users to search for and get information from a Munin master and its nodes.
The source code and related files can be found in the Munin Module section of
the appendix.

Module Implementation and Functionality

The module is started by running the file "munin-module.pl". It takes three op-
tions:

• -h Prints a help menu explaining how to run the module

• -v Enables verbose mode, which makes the module print some extra infor-
mation

• -d Enables debug mode, which makes the module print debug messages

When the module is started, it first reads the file "classifications.dat" which con-
tains a list of plugin names and classification strings. The following is an excerpt
from classifications.dat:

Excerpt of classfications.dat

1 if_err_eth0 00000000000000000001000000010000
2 if_eth0 00000000000000000001000000010000
3 interrupts 00000000000000000000000001010000
4 iostat 00000100000000000000000000010000
5 iostat_ios 00000100000000000000000000010000
6 irqstats 00000000000000000000000001010000
7 load 00000000000000000000000001010000
8 memory 00000000000000000000000001010000
9 munin_stats 00000000000000000000000000010000

10 mysql_bin_relay_log 00001000000000000000000000010000

Each of the plugins corresponds to a web page with graphs in the Munin web
interface at the Munin server. The contents of the file is then stored in a hash map
in order to later allow looking up plugin names and finding the corresponding
classification string.

In order to find which nodes the Munin master is responsible for, the "munin.conf"
file is read. This file contains descriptions of the Munin nodes, among other things.

Being that different Munin nodes will run different plugins depending on the ser-
vices they run, the module need to check which plugins are running on each of the
nodes. This is accomplished through telnet communication with the nodes. The
munin-node software installed on each of the nodes, allows telnet connections to
be made to them, and has a set of commands that can be run to get information

56

5.7. THE MODULES

about them. One of these commands allows listing which plugins are running. In
combinations with the node information from "munin.conf", this allows creating
a map of node names and their plugins.

Next, in order to allow the module to respond to searches for services the file "ser-
vices.dat" was made. This file contains a list of service names and their related
plugins. Here follows an excerpt of "services.dat":

Excerpt of services.dat

1 apache,apache_accesses,apache_processes,apache_volume
2 munin,munin_stats
3 exim,exim_mailstats,exim_mailqueue

The "services.dat" file is read and a hash map allowing looking up services and
finding their related plugins is created.

Next a connection is made to the server running ActiveMQ and the module sub-
scribes to the queue containing its queries.

From this point on the module performs the following tasks in a loop until the
module is stopped:

1. Gets a query from the query queue and converts it into a hash

2. Creates the <module-result> meta data container based on data from the
query and module specific data.

3. Finds the plugins relevant to the query, generates urls based on plugin names,
gets the classification vectors by plugin name, and tags each result accord-
ing to the data transfer format.

4. Sends the results encapsulated in the <module-result> container to the result
queue.

Finding relevant plugins:

The way that the relevant plugins for a query are found, needs further explanation.
A query can have 4 different states:

1. The query asks for both a server and a service that the module has relevant
data for.

In this case the module checks which of the plugins for the service that are
available at the specified server. This is done by cross checking the hash
containing the service to plugins mapping, with the hash containing the

57

5.7. THE MODULES

server to plugins mapping. The result of this cross check is a set of plugins
which should be tagged as results.

2. The query asks for just a server, and the module has relevant data.

In this case the hash containing the server to plugins mapping contains the
name of all the plugins which should be tagged as results.

3. The query asks for just a service, and the module has relevant data.

In this case the hash containing the service to plugins mapping contains the
name of all the plugins which should be tagged as results.

4. The query asks for unknown server and service, or has not specified any
server and service.

In this case the module will not have any results to tag.

5.7.2 Request Tracker Module

The Request Tracker Module provides the functionality to allow searching for
and accessing the tickets on a Request Tracker installation. The source code and
related files can be found in the Request Tracker Module section of the appendix.

Module Implementation and functionality

The module is started by running the file "rt-module.pl". It takes three options:

• -h Prints a help menu explaining how to run the module

• -v Enables verbose mode, which makes the module print some extra infor-
mation

• -d Enables debug mode, which makes the module print debug messages

In order to allow the module to classify different types of tickets, different queues
can be created in the Request Tracker installation. Request Tracker has its own
queues that can be used to place different types of tickets into different categories.
For instance, a Request Tracker queue dedicated to alerts may be created, and all
tickets that are alerts can be inserted into this queue. Therefore, when the module
is started it first reads the file "queue_classifications.dat". This file contains the
names of the Request Tracker queues and their classification vectors. The data in
the file is stored in a hash, mapping Request Tracker queues to their classification

58

5.7. THE MODULES

vectors. The following figure shows the contents of "queue_classifications.dat":

queue_classifications.dat

1 Alert 10000000000000000000000000100000
2 General 00000000000000000000000000100000
3 Order 00000000000000000000100000100000
4 Support 00000000000000000000000010100000

Next the module connects to the ActiveMQ server and subscribes to its query
queue. From this point on the module performs the following tasks in a loop until
the module is stopped:

1. Gets a query from the query queue and converts it into a hash

2. Creates the <module-result> meta data container based on data from the
query and module specific data.

3. Finds the tickets relevant to the query, generates urls based on ticket ids,
gets the classification vectors by Request Tracker queue name, and tags
each result according to the data transfer format.

4. Sends the results encapsulated in the <module-result> container to the result
queue.

Communicating with Request Tracker:

Communication with Request Tracker is handled through the Request Tracker
Command Line Interface (CLI). The user running the module needs to set up a
.rtrc file in order to allow running the CLI. This .rtrc file has to contain the url to
the Request Tracker web interface, and the Request Tracker username and pass-
word. The following shows an example .rtrc file:

example .rtrc file

1 server http://sysadmin16.iu.hio.no/rt
2 user root
3 passwd thepassword

The CLI allows queries to be made to the Request Tracker database. The module
issues the following command in order to get a list of all tickets, and show their
ticket ids, subjects and queue names:

CLI command

1 rt ls -f queue,subject

59

5.7. THE MODULES

Finding relevant tickets:

When the ticket information has been collected from Request Tracker, the tickets
matching the query are found by searching the subject fields of the tickets for
matching words. Extending the search to include the ticket bodies could easily be
done, however it would slow the search down and is therefore not implemented.

5.7.3 DokuWiki Module

The DokuWiki module provides access to, and classification of the documents
stored in a DokuWiki installation. The source code and related files can be found
in the DokuWiki Module section of the appendix.

Module Implementation and functionality

The module is started by running the file "dokuwiki-module.pl". It takes three
options:

• -h Prints a help menu explaining how to run the module

• -v Enables verbose mode, which makes the module print some extra infor-
mation

• -d Enables debug mode, which makes the module print debug messages

The module starts by reading the file "classifications.dat". This file contains a set
of terms and their classification vectors. The following figure shows the contents
of "classifications.dat":

classifications.dat

1 hardware 00000001100000000000000000000000
2 software 00000000100100000000000000000000
3 mysql 00001000100000000000000000000000
4 apache 00000000100000000000000000000010

The terms in "classifications.dat" are used in slightly different ways. The hard-
ware and software terms are general purpose terms used to describe hardware and
software related documentation respectively. The last two terms mysql and apache
are used to describe documentation related to their respective services. For each
service that the DokuWiki server has stored information about, a corresponding
term and its classification vector should be added to "classifications.dat".

60

5.7. THE MODULES

Next the module connects to the ActiveMQ server and subscribes to its query
queue. From this point on the module performs the following tasks in a loop until
the module is stopped:

1. Gets a query from the query queue and converts it into a hash

2. Creates the <module-result> meta data container based on data from the
query and module specific data.

3. Finds the documents relevant to the query, generates urls based on document
names, gets the classification vectors based on document names, and tags
each result according to the data transfer format.

4. Sends the results encapsulated in the <module-result> container to the result
queue.

Finding relevant documents:

As explained earlier, DokuWiki stores its files as text files, without the use of a
database. When a new document is created through the DokuWiki web interface,
it is stored as a ".txt" file in a folder on the DokuWiki server. This allows the
module to check for the existence of a document by checking if a ".txt" file with
a corresponding name exists in the document folder. This means that as long as
documents follow a strict naming scheme, the module is able to find documents
relevant to a query. The naming scheme chosen for the module and DokuWiki is
as follows:

• General information documents about a service are simply given the name
of the service in lower case letters. E.g. apache.

• Documents regarding a specific service running on a specific server, are
given names in lower case letters by service name followed by a "-" fol-
lowed by the server name. E.g. apache-webserver01.

• Documents regarding hardware for a server, are given names in lower case
letters starting with hardware followed bye a "-" followed by the server
name. E.g. hardware-webserver01.

• Documents regarding the software installed on a server, are given names in
lower case letters starting with software followed bye a "-" followed by the
server name. E.g. software-webserver01.

If both server and service is specified by the query. The module checks for the
existence of a document with a name composed of the server name and service

61

5.8. FUNCTIONALITY TESTING

names in line with the naming scheme. If just the server is specified the module
will check for any document containing the server name. Lastly if only the service
name is specified, the module will check for a document matching the service
name.

5.8 Functionality Testing

In order to verify the correct functioning of the prototype, functionality testing
was performed. The functionality testing was done from the perspective of the
client (sqsi-cli). The following list details the required functionality:

• Users should be able to search for information related to a service, a server
or both, and receive relevant information from all modules that have infor-
mation relevant to the search.

• The results should be prioritized in accordance with the preference profile
of the user.

• The results should be presented to the user according to rank of the results,
and give access to the information via urls.

To allow the functionality of the prototype to be tested, test data was created in the
three information source installations: Munin, Request Tracker, and DokuWiki.

To be able to observe how the system is able to prioritize information according
to different user preferences, two fictional users, Bob and Alice were created.

The preference profile for Bob was designed for a person working with support
cases and responding to alerts. The following terms were given high priorities
(0.8 - 1.0):

• Alert

• Configuration

• Documentation

• Installed Software

• Support

• Ticket

The other terms were given weights of 0.5 or lower. Bob’s entire preference profile
can be found in the appendix.

62

5.8. FUNCTIONALITY TESTING

The preference profile for Alice was designed for a person mainly interested in
trend, hardware, and system related information. The following terms were given
high priorities (0.8 - 1.0):

• Hardware

• Documentation

• Guarantee/Licence

• Process

• System

• Trend

The other terms were given weights of 0.5 or lower. Alice’s entire preference
profile can be found in the appendix.

The Query Broker and the modules where all run on different servers, similar to
the layout seen in figure 5.1 on page 45.

The following searches were performed for both users:

• S.1 A search for the service "apache"

1 .\sqsi-cli -u Username -s "" -c "apache" -i Device01 -r

• S.2 A search for the service "apache" and the server "sysadmin14.iu.hio.no".

1 .\sqsi-cli -u Username -s "sysadmin14.iu.hio.no" -c "apache" -i Device01 -r

• S.3 A search for the server "sysadmin14.iu.hio.no"

1 .\sqsi-cli -u Username -s "sysadmin14.iu.hio.no" -c "" -i Device01 -r

The output from sqsi-cli for S.1 is displayed below. All urls have been replaced
by "http://url" in order for the output to fit the page.

63

5.8. FUNCTIONALITY TESTING

S.1 Bob

1 2 Support: Apache poor performance sysadmin14.iu.hio.no http://url Request Tracker
2 2 Support: Please update the apache documentation: sysadmin17.iu.hio.no http://url Request Tracker
3 2 Alert: sysadmin15.iu.hio.no running apache is down! http://url Request Tracker
4 1.8 Documentation: apache http://url DokuWiki
5 1 Order: Server running apache http://url Request Tracker
6 0 Trend: apache_accesses - sysadmin15.iu.hio.no http://url Munin
7 0 Trend: apache_processes - sysadmin15.iu.hio.no http://url Munin
8 0 Trend: apache_volume - sysadmin15.iu.hio.no http://url Munin
9 0 Trend: apache_accesses - sysadmin14.iu.hio.no http://url Munin

10 0 Trend: apache_processes - sysadmin14.iu.hio.no http://url Munin
11 0 Trend: apache_volume - sysadmin14.iu.hio.no http://url Munin
12 0 Trend: apache_accesses - sysadmin16.iu.hio.no http://url Munin
13 0 Trend: apache_processes - sysadmin16.iu.hio.no http://url Munin
14 0 Trend: apache_volume - sysadmin16.iu.hio.no http://url Munin
15 0 Trend: apache_accesses - sysadmin17.iu.hio.no http://url Munin
16 0 Trend: apache_processes - sysadmin17.iu.hio.no http://url Munin
17 0 Trend: apache_volume - sysadmin17.iu.hio.no http://url Munin

S.1 Alice

1 8 Trend: apache_processes - sysadmin15.iu.hio.no http://url Munin
2 8 Trend: apache_processes - sysadmin14.iu.hio.no http:/url Munin
3 8 Trend: apache_processes - sysadmin16.iu.hio.no url Munin
4 8 Trend: apache_processes - sysadmin17.iu.hio.no http://url Munin
5 1 Documentation: apache http://sysadmin17.iu.hio.no/dokuwiki/doku.php?id=apache DokuWiki
6 1 Trend: apache_accesses - sysadmin15.iu.hio.no http://url Munin
7 1 Trend: apache_volume - sysadmin15.iu.hio.no http://url Munin
8 1 Trend: apache_accesses - sysadmin14.iu.hio.no http://url Munin
9 1 Trend: apache_volume - sysadmin14.iu.hio.no http://url Munin

10 1 Trend: apache_accesses - sysadmin16.iu.hio.no http://url Munin
11 1 Trend: apache_volume - sysadmin16.iu.hio.no http://url Munin
12 1 Trend: apache_accesses - sysadmin17.iu.hio.no http://url Munin
13 1 Trend: apache_volume - sysadmin17.iu.hio.no http://url Munin
14 0.5 Alert: sysadmin15.iu.hio.no running apache is down! http://url Request Tracker
15 0 Support: Apache poor performance sysadmin14.iu.hio.no http://url Request Tracker
16 0 Order: Server running apache http://url Request Tracker
17 0 Support: Please update the apache documentation: sysadmin17.iu.hio.no http:/url Request Tracker

From the output from S.1 it can be seen that results where received from all mod-
ules (Munin, DokuWiki and Request Tracker), and that all results are related to
the service "apache". Furthermore, the results are sorted by rank, as can be seen
in the leftmost column of the output.

Comparing the output of S.1 for Bob and Alice it can clearly be seen that while
Bob gets the results related to support and alerts highest, Alice have these same re-
sults at the bottom, while trend and process related results get the highest priority
in her case. This is in line with the preference profiles of both Bob and Alice.

The output from sqsi-cli for S.2 is displayed below. All urls have been replaced
by "http://url" in order for the output to fit the page.

64

5.8. FUNCTIONALITY TESTING

S.2 Bob

1 2 Support: Apache poor performance sysadmin14.iu.hio.no http://url Request Tracker
2 1.8 Documentation: apache-sysadmin14.iu.hio.no http://url DokuWiki
3 0 Trend: apache_accesses - sysadmin14.iu.hio.no http://url Munin
4 0 Trend: apache_processes - sysadmin14.iu.hio.no http://url Munin
5 0 Trend: apache_volume - sysadmin14.iu.hio.no http://url Munin

S.2 Alice

1 8 Trend: apache_processes - sysadmin14.iu.hio.no http://url Munin
2 1 Documentation: apache-sysadmin14.iu.hio.no http://url DokuWiki
3 1 Trend: apache_accesses - sysadmin14.iu.hio.no http://url Munin
4 1 Trend: apache_volume - sysadmin14.iu.hio.no http://url Munin
5 0 Support: Apache poor performance sysadmin14.iu.hio.no http://url Request Tracker

As with the output from S.1, from the output of S.2 it can be seen that results where
received from all modules. Also, all results are related to the service "apache" and
the server "sysadmin14.iu.hio.no".

Comparing the output of S.2 for Bob and Alice the same ranking as in S.1 can be
observed. This is due to the fact that the results in S.2 are a subset of the results
from S.1.

The output from sqsi-cli for S.3 is displayed below. All urls have been replaced
by "http://url" in order for the output to fit the page.

65

5.8. FUNCTIONALITY TESTING

S.3 Bob

1 2 Alert: Server down: sysadmin14.iu.hio.no http://url Request Tracker
2 2 Support: Apache poor performance sysadmin14.iu.hio.no http://url Request Tracker
3 1.8 Documentation: software-sysadmin14.iu.hio.no http://url DokuWiki
4 1.8 Documentation: apache-sysadmin14.iu.hio.no http://url DokuWiki
5 1 Documentation: hardware-sysadmin14.iu.hio.no http://url DokuWiki
6 0.8 Trend: open_inodes - sysadmin14.iu.hio.no http://url Munin
7 0.8 Trend: irqstats - sysadmin14.iu.hio.no http://url Munin
8 0.8 Trend: if_eth0 - sysadmin14.iu.hio.no http://url Munin
9 0.8 Trend: swap - sysadmin14.iu.hio.no http://url Munin

10 0.8 Trend: uptime - sysadmin14.iu.hio.no http://url Munin
11 0.8 Trend: load - sysadmin14.iu.hio.no http://url Munin
12 0.8 Trend: cpu - sysadmin14.iu.hio.no http://url Munin
13 0.8 Trend: open_files - sysadmin14.iu.hio.no http://url Munin
14 0.8 Trend: memory - sysadmin14.iu.hio.no http://url Munin
15 0.8 Trend: if_err_eth0 - sysadmin14.iu.hio.no http://url Munin
16 0.8 Trend: entropy - sysadmin14.iu.hio.no http://url Munin
17 0.8 Trend: users - sysadmin14.iu.hio.no http://url Munin
18 0.8 Trend: interrupts - sysadmin14.iu.hio.no http://url Munin
19 0.8 Trend: proc_pri - sysadmin14.iu.hio.no http://url Munin
20 0 Trend: http_loadtime - sysadmin14.iu.hio.no http://url Munin
21 0 Trend: apache_accesses - sysadmin14.iu.hio.no http://url Munin
22 0 Trend: df - sysadmin14.iu.hio.no http://url Munin
23 0 Trend: df_inode - sysadmin14.iu.hio.no http://url Munin
24 0 Trend: iostat - sysadmin14.iu.hio.no http://url Munin
25 0 Trend: forks - sysadmin14.iu.hio.no http://url Munin
26 0 Trend: exim_mailqueue - sysadmin14.iu.hio.no http://url Munin
27 0 Trend: vmstat - sysadmin14.iu.hio.no http://url Munin
28 0 Trend: fw_packets - sysadmin14.iu.hio.no http://url Munin
29 0 Trend: apache_processes - sysadmin14.iu.hio.no http://url Munin
30 0 Trend: processes - sysadmin14.iu.hio.no http://url Munin
31 0 Trend: apache_volume - sysadmin14.iu.hio.no http://url Munin
32 0 Trend: iostat_ios - sysadmin14.iu.hio.no http://url Munin
33 0 Trend: threads - sysadmin14.iu.hio.no http://url Munin
34 0 Trend: exim_mailstats - sysadmin14.iu.hio.no http://url Munin

66

5.8. FUNCTIONALITY TESTING

S.3 Alice

1 8.8 Trend: proc_pri - sysadmin14.iu.hio.no http://url Munin
2 8 Trend: forks - sysadmin14.iu.hio.no http://url Munin
3 8 Trend: vmstat - sysadmin14.iu.hio.no http://url Munin
4 8 Trend: apache_processes - sysadmin14.iu.hio.no http://url Munin
5 8 Trend: processes - sysadmin14.iu.hio.no http://url Munin
6 8 Trend: threads - sysadmin14.iu.hio.no http://url Munin
7 2 Documentation: hardware-sysadmin14.iu.hio.no http://url DokuWiki
8 2 Trend: uptime - sysadmin14.iu.hio.no http://url Munin
9 1.8 Trend: open_inodes - sysadmin14.iu.hio.no http://url Munin

10 1.8 Trend: irqstats - sysadmin14.iu.hio.no http://url Munin
11 1.8 Trend: if_eth0 - sysadmin14.iu.hio.no http://url Munin
12 1.8 Trend: swap - sysadmin14.iu.hio.no http://url Munin
13 1.8 Trend: load - sysadmin14.iu.hio.no http://url Munin
14 1.8 Trend: cpu - sysadmin14.iu.hio.no http://url Munin
15 1.8 Trend: open_files - sysadmin14.iu.hio.no http://url Munin
16 1.8 Trend: memory - sysadmin14.iu.hio.no http://url Munin
17 1.8 Trend: if_err_eth0 - sysadmin14.iu.hio.no http://url Munin
18 1.8 Trend: entropy - sysadmin14.iu.hio.no http://url Munin
19 1.8 Trend: users - sysadmin14.iu.hio.no http://url Munin
20 1.8 Trend: interrupts - sysadmin14.iu.hio.no http://url Munin
21 1.1 Documentation: software-sysadmin14.iu.hio.no http://url DokuWiki
22 1 Documentation: apache-sysadmin14.iu.hio.no http://url DokuWiki
23 1 Trend: http_loadtime - sysadmin14.iu.hio.no http://url Munin
24 1 Trend: apache_accesses - sysadmin14.iu.hio.no http://url Munin
25 1 Trend: df - sysadmin14.iu.hio.no http://url Munin
26 1 Trend: df_inode - sysadmin14.iu.hio.no http://url Munin
27 1 Trend: iostat - sysadmin14.iu.hio.no http://url Munin
28 1 Trend: exim_mailqueue - sysadmin14.iu.hio.no http://url Munin
29 1 Trend: fw_packets - sysadmin14.iu.hio.no http://url Munin
30 1 Trend: apache_volume - sysadmin14.iu.hio.no http://url Munin
31 1 Trend: iostat_ios - sysadmin14.iu.hio.no http://url Munin
32 1 Trend: exim_mailstats - sysadmin14.iu.hio.no http://url Munin
33 0.5 Alert: Server down: sysadmin14.iu.hio.no http://url Request Tracker
34 0 Support: Apache poor performance sysadmin14.iu.hio.no http://url Request Tracker

From the output from S.3 it can be seen that all the results are related to the server
"sysadmin14.iu.hio.no", and that all modules have contributed with results. Again,
as with S.1 and S.2 it can be observed that the ranking of the results for Bob and
Alice are in accordance with their preference profiles.

It should be mentioned that all urls for all results were functional, and linked to
the correct resources.

67

Chapter 6

Discussion

In this chapter the resulting architecture, prototype and results from the function-
ality testing are discussed. Possible modifications to the architecture and future
work is suggested, and some of the choices made in the architecture are discussed
in relation to the research introduced in the background chapter.

6.1 The Prototype

In the approach chapter of this thesis, a set of tasks (seen in figure 3.1 on page
24) were defined that needed to be completed in order for the architecture to fulfil
its purpose. The results of these tasks constitute the architecture, which forms the
basis for the prototype. The purpose of developing the prototype was to demon-
strate the validity of the architecture, that it can be applied in a real environment,
and that it facilitates efficient information retrieval for system administrators.

The results from developing the prototype showed that the different elements in
the architecture can be implemented to create a working system. Furthermore,
it demonstrated how modules can be developed for services used by system ad-
ministrators. It also showed the ease of which modules can be included into the
system when following the requirements of the architecture. This was made pos-
sible by the use of Message-oriented Middleware, which enables asynchronous
communication, and the loose coupling between the client, the query broker and
the modules. The loose coupling does not only facilitate easy integration of mod-
ules, it also allows different types of clients to communicate with the system.

68

6.1. THE PROTOTYPE

6.1.1 Changes to the Data Transfer Formats

In retrospect, when looking at the different xml data transfer formats suggested
in the architecture and those implemented in the prototype, it becomes clear that
some of the names applied to the different elements might not be ideal. That is,
some of the names may introduce confusion as to the meaning of the elements.
Therefore, the following changes are proposed:

For the queries:

• <user> should be changed into a parameter for the <query> tag.

• <device> should be renamed to client-device, and changed to a parameter
for the <query> tag.

• <query-number> should be changed to a parameter for the <query> tag.

• <service> should be renamed to <target-service>

• <server> should be renamed to <target-server>

These changes should make the role of the different elements more obvious, and
help distinguish between meta data and content.

Revised query format

1 <query user="Bob" client-device="Device01" query-number="1" >
2 <target-service>Apache2</target-service>
3 <target-server>Webserver01</target-server>
4 </query>

These same changes also apply to the query sent from the client. The only differ-
ence being that query-number is not part of that query. For the module-result data
transfer format, the parameter device should be renamed to client-device.

6.1.2 Functionality Testing

Looking at the results from the functionality testing of the prototype, it is evident
that the prototype is able to gather information from multiple sources, prioritize
the information according to preference profiles, and present the results to the
user. This gives a clear indication of the validity of the architecture designed in
this thesis, and shows how it can be used to help system administrators gather
information in an efficient manner. However, what has not been addressed is how
well the prioritization relates to user preferences. This was not investigated due to
time constraints. In the future, this would be a valuable aspect to investigate. This

69

6.2. ARCHITECTURE

could for instance be done with the help of user testing, where users create their
own preference profiles, perform a series of searches, and report of the relevance
of the results in accordance with the ranking.

6.2 Architecture

The architecture designed in this thesis, is aimed at facilitating efficient informa-
tion retrieval for system administrators. One of the key features of the architecture
utilized to achieve this, is the ability to gather information from the multitude of
information sources that system administrators are reliant on, and allowing access
to and presenting this information at a single point. Secondly, personalizing in-
formation is achieved through ranking search results based on user preferences.
In order to design an architecture which allows for easy expansion and integration
of information sources, a modular design was chosen. This was done to allow for
reuse of the information already available in existing systems, rather than devel-
oping an all encompassing system.

PIA
The idea of collecting data from multiple sources and presenting the information
at a common point is not new. As explained in the background chapter, Albayrak
et al. [1] developed an agent-based personal information system called PIA. Their
system uses agents to collect data from different sources. However, as opposed
to the architecture designed in this thesis, PIA deals with documents, and the
documents collected by PIA extraction agents is constantly collected and stored
in a database. The database is then accessed by filtering agents, which filter the
documents. Personal agents which manages individual information provisioning,
communicates with the filtering agents and the presentation layer.

The PIA approach to information retrieval does not translate directly to the do-
main of system administration. This is partly due to the fact that the systems
that deliver information to system administrators, do not necessarily provide that
information in the form of documents. Also, the dynamic nature of the field of
system administration entails that information can change rapidly. Therefore, it
is imperative that the information available to the retrieval system is always up
to date, and that the system is able to keep up with changes in the information
space. For instance, alerts from monitoring systems and tickets can be of critical
importance, and it is therefore a necessity that they are included in the information
provided by the retrieval system within a relatively short period of time. There-
fore, the base approach in the architecture designed in this thesis, is to directly
access the information sources each time a query is issued. However, to alleviate

70

6.2. ARCHITECTURE

the demands on the modules and query broker, caching can be implemented in the
system, as long as care is taken with regards to keeping information up to date.

6.2.1 Caching

The use of caching is not an inherent part of the architecture itself, however the
way the architecture is designed enables caching to be implemented in an imple-
mentation based on the architecture. Being that prioritization is done after a set
of results have been returned by a module, caching can be done independently
of preference profiles. This means that results can be cached and indexed by the
queries that produced them. That is, a set of search results would be indexed
by a service, a server or a combination of the two. For example: "Apache2-
Webserver01". This will allow reuse of results, which should increase search
speed, and decrease the use of resources in modules and their related services.
This is because the only thing that needs to be recomputed is the actual prioritiza-
tion. The query broker should be responsible for handling caching functionality
being that it can keep track of the results from all modules. However, to make
caching work in favour of the system, it is imperative that results are updated
relatively often to avoid getting outdated results, and to make sure new informa-
tion is included in the results. This can be achieved by adding timestamps to the
cached results, and removing them from the cache after a certain period of time
has elapsed. The inclusion of caching functionality in the query broker is illus-
trated in figure 6.1 on page 72.

6.2.2 Prioritization

What has not been mentioned previously regarding the prioritization scheme in
the architecture, is the underlying assumption that the more terms a result is re-
lated to, the more important the result is considered to be. Put another way, the
more terms a result is related to, the higher is the likelihood that it will be ranked
high, simply due to the fact that it covers more of the classification, and hence
more of the preference profiles. While the assumption may be true in a lot of
cases, it is important to note that there may be results which can not naturally be
linked to many terms, but still are inherently important, and may therefore get an
unfair chance. This could possibly be alleviated through the introduction of local
importance.

71

6.2. ARCHITECTURE

Figure 6.1: Caching functionality in the Query Broker

72

6.2. ARCHITECTURE

Introducing local importance

The way the architecture is designed, the modules have very limited power when
it comes to adjusting importance of results. The modules are limited to classifying
the results according the relevant terms. An interesting prospect to explore is to
allow modules to signify the local importance of results. That is, the importance
of a result compared to the importance of other results provided by a module, in-
dependent of user preferences. This could give the potential of for instance newly
updated documentation or a specifically important alert to stand out. One way this
could be implemented, is to allow modules to flag results as important. The query
broker could then add a small weight to the rank of the results that are flagged as
important. This should give the opportunity of differentiating between otherwise
equally classified results. Another possibility is to apply a weight instead of a flag
to allow more differentiation. However, giving the modules much power in deter-
mining the importance of results, may introduce an imbalance between the results
from the different modules. Investigating different strategies for introducing local
importance, their value and impact is an interesting topic for future research.

Prioritization on different layers

The architecture designed in this thesis can be viewed as a three tier architecture.
With a presentation layer, a Business Logic Layer (BLL) (the query broker), and
a Data Access Layer (DAL) (the modules). In practice the prioritization of results
could be performed in any of these layers.

Performing the prioritization in the presentation layer would mean that the pre-
sentation layer would need to have information about the user (preference pro-
files), and contain the logic needed to perform the prioritization. This would lead
to a thick client, where presentation and logic is not separated, and developing
different types of clients would be much more complex. Prioritization does not
necessarily need to be performed after results have arrived however. Some prior-
itization can be done beforehand by having knowledge of the user, and more ad-
vanced queries. These queries can then contain more detailed information about
the preferences of the users, and be used to limit what information is sent back to
the user. However, this form of query modification can also be performed in the
business logic layer, so there is no real advantage to performing prioritization in
the presentation layer.

In the architecture prioritization is performed in the BLL. This entails that only
the query broker needs to have knowledge of the users. Query modification could
be implemented here. The advantage of query modification is that potentially,

73

6.2. ARCHITECTURE

less data may be transferred between the modules and the query broker since the
modules can eliminate data that is of no interest to the user. However, this means
that the user does not have access to all data for a search, as opposed to having
the data available but ranked low and presented last in a list. Also, implementing
query modification renders caching independent of preference profiles impossible,
which means caching results looses its benefits. In addition to that, it increases
the complexity of module development.

Lastly prioritization can be done in the DAL. In the architecture the DAL consists
of the modules. Performing the prioritization in the modules has the same benefit
as query modification of leading to less data being sent to the query broker, but
also the same drawbacks. It also means that every module needs access to the
preference profiles. Most importantly, having the prioritization in the modules
leads to higher complexity in module development.

With this knowledge in mind, it becomes quite evident that performing the priori-
tization in the query broker is a good choice.

User feedback and additional importance vectors

With the current design of the architecture user preferences are static, meaning
that they do not change unless explicitly modified in the preference profiles. It
is however possible to let the system learn from user behaviour, either through
explicit or implicit feedback. Explicit feedback could be implemented by allowing
users to rate the results they get from searching. For instance by having a simple
+/- button for each result, allowing the user to indicate that the result is either
ranked to low or to high. Implicit feedback could be implemented by recording
which result links a user clicks on.

Salton et al. [22] explains how relevance feedback has been used in information
retrieval for query reformulation of vector queries. With vector queries, queries
consist of sets of weighted search terms. The weight of the terms in the queries
can then be modified by feedback from the user in order to better the search.

In the architecture the queries are limited to servers and services, so query re-
formulation is not applicable. However, if the results sent to the clients were to
contain the classification vectors, the preferences of a user could be modified by
changing the weights of the terms corresponding to those in the classification vec-
tor of the results. These changes could be applied directly to a preference profile.
However, this may lead to the preference profiles being imbalanced until enough
searches have been performed by the user for the feedback to be representational
of the average usage pattern of the user. An alternative to directly modifying the

74

6.2. ARCHITECTURE

preference profiles is to introduce a new vector; a learning vector. So instead of
modifying the preference profile the learning vector could be modified by rele-
vance feedback, and when enough data has been collected about the usage pattern
of the user, the learning vector can be applied in the prioritization process. The
inclusion of relevance feedback is a topic that could be explored in future research.

The possibility to include a learning vector, illustrates how the prioritization scheme
implemented in the architecture can be extended to take into account multiple di-
mensions of importance by representing them as vectors.

6.2.3 Generating Preference Profiles

Generating preference profiles is a subject that has not been explored to its full
extent in this thesis. As described in the architecture, preference profiles can be
generated by allowing the users to directly assign weights to the different terms
in the classification. This process could potentially be made to require less effort
from the user, by providing profile templates for different user types or job re-
sponsibilities. Then a user could start out with a profile template, and modify that
if needed.

An alternate way of generating preference profiles is to devise a profile generation
game. Such a game could be based on recognition of terms, and comparing terms
for importance. One possible approach is to create a knock-out tournament game.
In such a game two and two terms will be set up against each other, and it will be
up to the user to determine which of the terms are most important. The ’winning’
terms will go on to a winners round, and the losers to a losers round with the
same structure of setting two and two terms up against each other. This will then
continue until all winners and losers have been determined. This allows all terms
to be ranked from first to last, and weights can then be assigned accordingly.
However, the knock-out tournament approach has some drawbacks. Firstly the
number of terms has to be a power of 2, which means the classification has to be
adjusted to fit the profile generation game, which is by no means optimal. Also,
there’s the issue of which terms to match against each other. If chosen randomly,
one runs the risk of matching two terms that very important to the user against
each other early in the game. If this happens in the first round of the game, then
the looser of the match will instantly be ranked lower than half of the terms in
the classification. If the competing terms are to be predetermined, then there’s the
challenge of choosing the correct terms. This very difficult, since it will depend
on the preferences of the user.

A game which does not have the drawbacks of the knock-out tournament, is the

75

6.2. ARCHITECTURE

round-robin tournament. In this type of tournament all terms will be matched
against each other. However, the major drawback of this approach is that it is
likely that profile generation will take a long time. Therefore, it is not a user
friendly approach.

Looking into alternative ways of generating preference profiles to make the pro-
cess both accurate and user friendly, is an interesting topic for future research.

6.2.4 Presentation Layer

In the architecture, it is always the case that all results related to a search are
returned to the presentation layer, meaning that no results are removed on the
basis of user preferences. This means that all the information is available to the
user, it is ranked, and low ranked information will be displayed last. This is in
line with Endsly [7] stating that all information that is needed should always be
present in order to allow the user to form an accurate mental model of a system
or situation. However, Endsly also emphasizes that the amount of information
should not be overwhelming. This can be handled by not presenting all results
from a search, but instead allow the user to choose whether or not to display more
results.

As explained in the background chapter Nah [20] performed a study of tolerable
waiting times in relation to web users and their willingness to wait for web pages
to appear. Nah found that providing feedback to the user could prolong the time
a user is willing to wait. In the architecture feedback is provided by allowing the
results from the different modules to be processed and sent to the user indepen-
dently of each other. This means that possibly slow modules does not impact the
time a user has to wait to see some results. As soon as some results are available,
they will be presented to the user, which should help alleviate user impatience.
Nah also found that their results indicated that web users tolerable waiting time
peaks at about 2 seconds. During the functionality testing, waiting time was not
an issue, being that results appeared almost instantaneously. However, this does
not mean that waiting time may not be an issue. Rigorous testing in a represen-
tative environment with multiple concurrent users is required before one can say
anything definitive regarding waiting times.

Part of the presentation layer design is that the presented results should be sorted
when new results arrive. An issue that has not been explored is the impact this live
sorting has on the user. For instance, it may be frustrating for the user, when a user
wants to click a link, and then the results are rearranged, and possibly the result
being that the wrong link is clicked. How big an issue this is, is likely dependent

76

6.2. ARCHITECTURE

on how often results arrive, and how often the displayed results are updated. It
may be valuable to investigate this through user testing.

One of the guidelines that Haber and Bailey [12] proposed, as explained in the
background chapter, is that the tools that system administrators use should have
the possibility to be integrated into system-wide monitoring and management
tools. With the architecture, it is possible to design a client that could be inte-
grated into such systems. Haber and Bailey also stress the importance of allowing
sharing of system views. A client can be developed that support queries being em-
bedded entirely in urls, which means that urls can be passed between sysadmins
to get the same view. However, the ranking of the results will of course depend
on the user. Also, since the search results are mainly based on urls, these urls
can easily be shared among users. Haber and Bailey mentions that there exists no
single system to monitor everything, due to the heterogeneous nature of many sys-
tems. Even though the architecture does not provide a single place to monitor all
activities, it does provide a single entry point for getting information on demand,
which may help enhance situational awareness.

An aspect that has not been mentioned is the possibility that the urls in the search
result may need to contain personal information, such as user names, in order for
the urls to give access to the information source. In such cases, a possible solution
is to remove this information from the urls, and exchange it with place holders.
The users can then be informed that additional information is required in the url,
in order for it to work.

6.2.5 Error Handling

In retrospect, error handling may not have been given enough attention when de-
signing the architecture. More specifically, the error handling related to communi-
cation between the query broker and the modules. How can the query broker know
whether a module is not responding, or simply slow? A solution to this issue, can
be to include an additional queue for each of the modules that the query broker
can send messages to, asking the module to reply with a message indicating that
it is operational. The modules can then check this queue regularly and respond to
a different queue belonging to the query broker. The query broker will then have
a way to check whether a module is down. If the module does not respond within
some predetermined time frame, the module may be flagged as non-operational,
the error can be logged, and the query broker can stop sending queries to that
module’s query queue.

77

6.2. ARCHITECTURE

6.2.6 Expanding Search Possibilities

The search options, or query parameters, in the architecture are very limited in
contrast to for example free text search, available in search engines on the web.
The reason for the search limitation is of course that it is specialized towards the
domain of system administration. An advantage of having such limited search
possibilities is that the user will likely not have any trouble formulating a search,
which can be more difficult in the context of free text searching.

In retrospect, one might ask the question of whether the option of searching for
servers and services is sufficient to cover the information need of system admin-
istrators. It may be that there are additional query parameters that could cover
broader areas of information, or help in getting information about other entities
useful to system administrators. On such entity is the project. Adding the op-
tion of searching for a project could allow the user to get information about for
instance which servers are involved in a project, the documentation related to a
project, Service Level Agreements related to a project, information about which
customers are involved, and so on. Another aspect is that there may be parties
other than the system administrators, that may have interest in the information
provided by the information sources. For instance service level managers or even
some customers. There may be additional query parameters that could help their
information seeking needs as well. Looking into the value of additional query
parameters is a topic for future research.

6.2.7 Scalability

The topic of scalability has not been mentioned earlier in this thesis. This is
mainly due to the fact that scalability is largely dependent of how a system based
on the architecture is implemented. There are two main dimensions which could
impact the performance of the system.

The first is the number of users that use the system. This can impact the the
modules, the MOM and the query broker. In order to alleviate stress on the mod-
ules, multiple modules can be run against the same service as long as they use
the same queues. In the context of MOM, ApacheMQ which is the MOM used in
the prototype, supports creating networks of message brokers in order to scale to
many clients. If the query broker is under stress, one could implement a form of
load balancing by having a component responsible for distributing queries from
the clients to different query brokers, and having identical sets of modules com-
municating with their own query broker. However, one might ask the question if

78

6.3. IN THE SERVER ROOM

scalability with regards to users is even an issue. There is a limit to how many
system administrators work even in a large organization.

The second dimension is the amount of information sources to collect information
from, and thereby the amount of modules that are part of the system. A large
amount of modules will increase the amount of information that the query broker
has to process. However, the amount of information to process will always be
dependent of the number of users. This means that a load balancing solution
could be applied to the situation where a system includes many modules as well.

6.3 In The Server Room

System administrators do not always sit at their desks. A part of being a system
administrator involves dealing with servers and other hardware. System adminis-
trators sometimes have to disconnect or reconnect different hardware in the server
room, and it is essential to know what impact this will have. Therefore, it could
be useful for system administrators to have a way to get information about the
different servers while they are in the server room. The architecture designed in
this thesis allows system administrators to search for information about specific
servers. As mentioned earlier it is possible to develop a client that is capable
of specifying a search by a simple url. This allows having predefined searches
related to specific servers. These urls can then be embedded in QR-codes, and
hand-held devices like smart-phones or tablets can be used to scan the QR-codes
and perform the search. Then it is simply a matter of sticking a qr-code onto every
server to allow easy access to information. In the case of virtualization, multiple
machines may run on a single server, and a single qr-code will not be sufficient.
In this case, one could possibly have a screen displaying qr-codes for the different
machines running on the physical server.

6.4 Problem Statement Revisited

The problem statement for this thesis was defined the following way:

The goal of this thesis is to facilitate efficient information retrieval for system
administrators by designing a modular architecture which

1. aggregates and correlates information from a variety of sources

79

6.5. SOURCE CODE

2. can classify, sort and prioritize information according to the user and sys-
tems

3. is capable of presenting information in an efficient manner

In retrospect, one might consider this problem statement to be a bit too ambitious,
given the time frame of this master thesis. Not in the sense that it is not possible to
design such an architecture in the given time, this has clearly been done. Rather,
the available time limited the amount of testing that could be done. Therefore it
may be difficult to make definitive conclusions as to in what degree the architec-
ture, and systems developed according to the architecture, help system adminis-
trators with their information demands. An alternative problem statement could
instead have specified the functionality required by a system developed according
to such an architecture. However, as the prototype demonstrated, systems devel-
oped according to the architecture can be capable of aggregating and correlating
information from multiple sources; classify, sort and prioritize the information ac-
cording to user preferences; and present this information to the user in a manner
which reflects the relevance of the information.

One may say that the architecture designed in this thesis, is a step in the right
direction for solving the interoperability problem in the context of system admin-
istration. Also, it is clear that this architecture represents a new way for system
administrators to gather knowledge about the systems they maintain.

The architecture designed, and the prototype developed in this thesis is functional,
relevant and easily expandable. The system can in principle be used by anyone,
and new modules can be developed if needed. System administrators can use
it, develop it further, and share knowledge about the system. New clients can
also be developed to cater to different needs. The system is usable today, and
modifications have been suggested to possibly make it better in the future.

6.5 Source Code

In order to allow for repeatability of the tests performed in this thesis, and help
in future research, all source code and related files, have been included in the
appendix. The source code has been carefully documented to allow for easy un-
derstanding.

80

Chapter 7

Conclusion

This master thesis is aimed at helping system administrators with their information
needs. The goal was to design a modular architecture to help in this endeavour,
that is capable of aggregating and correlating information from different sources;
classify, sort and prioritize the information according to user preferences; and
present this information to the user in an efficient manner.

To design this architecture several key elements where needed. These were a
classification of the domain of system administration, a prioritization scheme, a
strategy for data aggregation, a module design and a design for the presentation
layer. As a proof of concept a prototype based on the architecture was to be
developed. Verification of the prototype’s functionality was to be accomplished
through the use of functionality testing.

An architecture named SQSI (Search Queries for Sysadmin Information) was
designed according to the aforementioned principles, and a prototype based on
SQSI was developed. The prototype included modules for three different services;
Munin, Request Tracker and DokuWiki. The prototype allows users to search for
information about servers and services, and receive information from the three
information sources Munin, Request Tracker and DokuWiki. The results from
testing the prototype showed that it is able to gather information from multiple
sources, prioritize the information according to preference profiles, and present
the results to the user in a manner reflecting the priorities of the user.

Based on the experiences made during the design of the architecture and the de-
velopment of the prototype, several improvements have been discussed and added
to the design.

SQSI is a functional and easily expandable architecture, that represents a new way

81

7.1. FUTURE WORK

for system administrators to gather knowledge about the systems the maintain.

7.1 Future Work

Possible future work and modifications to the architecture have been suggested.
This involves user testing of the system, performance testing of the system, inves-
tigating the value of local importance to the prioritization scheme, looking into
how preference profiles can be generated in a more user friendly and accurate
manner, expanding the search possibilities by additional search parameters, and
investigating the inclusion of relevance feedback in the architecture.

82

Chapter 8

Appendix

8.1 Preference Profiles

8.1.1 Alice

Alice.profile
1 A l e r t 0 . 5
2 Backup 0 . 2
3 C o n f i g u r a t i o n 0 . 2
4 Customer 0 . 2
5 D a t a b a s e 0 . 0
6 F i r e w a l l 0 . 0
7 Hard Dr ive 0 . 7
8 Hardware 1 . 0
9 Documenta t ion 1 . 0

10 G u a r a n t e e 0 . 8
11 Hostname 0 . 6
12 I n s t a l l e d S o f t w a r e 0 . 1
13 I n t r u s i o n D e t e c t i o n 0 . 0
14 Linux 0 . 5
15 Mail 0 . 0
16 Mac OS X 0 . 0
17 Middleware 0 . 0
18 M o n i t o r i n g 0 . 8
19 Network 0 . 0
20 Network I n t e r f a c e 0 . 8
21 Order 0 . 0
22 OS 0 . 6
23 P r o c e s s 7 . 0
24 SLA 0 . 5

83

8.1. PREFERENCE PROFILES

25 S u p p o r t 0 . 0
26 System 0 . 8
27 T i c k e t 0 . 0
28 Trend 1 . 0
29 Uptime 0 . 2
30 Vendor 0 . 5
31 Web 0 . 0
32 Windows 0 . 0

;

8.1.2 Bob

Bob.profile
1 A l e r t 1 . 0
2 Backup 0 . 0
3 C o n f i g u r a t i o n 0 . 8
4 Customer 0 . 2
5 D a t a b a s e 0 . 0
6 F i r e w a l l 0 . 0
7 Hard Dr ive 0 . 1
8 Hardware 0 . 0
9 Documenta t ion 1 . 0

10 G u a r a n t e e 0 . 0
11 Hostname 0 . 0
12 I n s t a l l e d S o f t w a r e 0 . 8
13 I n t r u s i o n D e t e c t i o n 0 . 0
14 Linux 0 . 5
15 Mail 0 . 0
16 Mac OS X 0 . 0
17 Middleware 0 . 0
18 M o n i t o r i n g 0 . 3
19 Network 0 . 0
20 Network I n t e r f a c e 0 . 3
21 Order 0 . 0
22 OS 0 . 4
23 P r o c e s s 0 . 0
24 SLA 0 . 5
25 S u p p o r t 1 . 0
26 System 0 . 2
27 T i c k e t 1 . 0
28 Trend 0 . 0
29 Uptime 0 . 0
30 Vendor0 . 5
31 Web 0 . 4
32 Windows 0 . 0

84

8.2. QUERY BROKER

;

8.2 Query Broker

8.2.1 querybroker.pl

querybroker.pl
1 # ! / u s r / b i n / p e r l −w
2
3 # Needed packages
4 use Ge to p t : : S td ;
5 use Net : : Stomp ;
6 use XML: : Simple ;
7 use Data : : Dumper ;
8 use s t r i c t " v a r s " ;
9 use UNIVERSAL ’ i s a ’ ;

10 use POSIX ;
11 use Q u e r y R e s u l t ;
12 use R e s u l t ;
13
14 ### Globa l v a r i a b l e s
15
16 # t u r n s v e r b o s e mode on or o f f
17 my $VERBOSE = 0 ;
18 # t u r n s debug mode on or o f f
19 my $DEBUG = 0 ;
20 # t h e d i r e c t o r y c o n t a i n i n g t h e u s e r p r o f i l e s
21 my $PROFILEDIR = " p r o f i l e s " ;
22 # t h e stomp query c o n n e c t i o n
23 my $STOMP ;
24 # t h e stomp incoming module c o n n e c t i o n
25 my $STOMPIN ;
26 # s e t s t h e maximum number o f p r o f i l e s t o keep i n memory
27 my $MAXPROFILES = 500 ;
28 # a hash t h a t maps usernames t o Q u e r y R e s u l t s
29 my %QUERYRESULTS;
30 # a hash t h a t maps usernames t o p r o f i l e s
31 my %PROFILES ;
32 # t h e name o f t h e f i l e c o n t a i n i n g t h e modules t o use
33 my $MODULES_FILE = " modules . d a t " ;
34 # an a r r a y c o n t a i n i n g t h e modules t o s u b s c r i b e t o
35 my @MODULES;
36
37 ### End Globa l v a r i a b l e
38
39 # Handle f l a g s and arguments
40 # Example : c == "−c " , c : == "−c argument "

85

8.2. QUERY BROKER

41 my $ o p t _ s t r i n g = ’ vdh ’ ;
42 g e t o p t s (" $ o p t _ s t r i n g " , \my %o p t) o r usage () and e x i t 1 ;
43
44 # P r i n t h e l p message i f −h i s i n v o k e d
45 i f ($op t { ’ h ’ }) {
46 usage () ;
47 e x i t 0 ;
48 }
49
50 # Handle o t h e r u s e r i n p u t
51 $VERBOSE = 1 i f $op t { ’ v ’ } ;
52 $DEBUG = 1 i f $op t { ’ d ’ } ;
53
54 # ##### Main s c r i p t c o n t e n t
55 #
56
57 v e r b o s e (" Verbose i s e n a b l e d \ n ") ;
58 debug (" Debug i s e n a b l e d \ n ") ;
59
60 s e t _ m o d u l e s () ;
61 c o n n e c t _ t o _ s e r v e r () ;
62 s u b s c r i b e _ q u e r y (" queryQueue ") ;
63 foreach my $module (@MODULES) {
64 s u b s c r i b e _ m o d u l e (" r e s u l t Q u e u e $ m o d u l e ") ;
65 }
66 whi le (1) {
67 i f ($STOMP−>c a n _ r e a d ({ t i m e o u t => 0})) {
68 my %query = g e t _ q u e r y () ;
69 s e n d _ q u e r y (\% query) ;
70 }
71 i f ($STOMPIN−>c a n _ r e a d ({ t i m e o u t => 1})) {
72 h a n d l e _ i n c o m i n g _ r e s u l t () ;
73 }
74 }
75
76 d i s c o n n e c t _ f r o m _ s e r v e r () ;
77
78 #
79 # #####
80
81 ##
82 ## S e t s t h e modules t o be used as s p e c i f i e d i n $MODULES_FILE
83 ##
84 sub s e t _ m o d u l e s {
85 open (MOD, $MODULES_FILE) o r d i e " u n a b l e t o open f i l e

$MODULES_FILE \ n " ;
86 v e r b o s e (" Loading modules : \ n ") ;
87 whi le (my $ l i n e = <MOD>) {
88 push (@MODULES, $ l i n e) ;

86

8.2. QUERY BROKER

89 v e r b o s e (" $ l i n e ") ;
90 }
91 }
92
93 ##
94 ## Handles an incoming module r e s u l t . Decoding i t , c h e c k i n g i f

i t ’ s o u t d a t e d ,
95 ## adds p r i o r i t i e s a c c o r d i n g t o a u s e r p r o f i l e , encodes t h e

r e s u l t s , and makes
96 ## s u r e t h e r e s u l t s are s e n t t o t h e c o r r e c t queue .
97 ## T h i s i s a c c o m p l i s h e d t h r o u g h t h e use o f v a r i o u s e sub r o u t i n e s

.
98 ##
99 sub h a n d l e _ i n c o m i n g _ r e s u l t {

100
101 my $xml_da ta = g e t _ m o d u l e _ r e s u l t () ;
102 my @ r e s u l t _ i n f o = g e t _ r e s u l t _ i n f o _ f r o m _ x m l ($xml_da ta) ;
103 my $ u s e r = $ r e s u l t _ i n f o [0] ;
104 my $ u s e r _ d e v i c e = $ r e s u l t _ i n f o [1] ;
105 my $query_number = $ r e s u l t _ i n f o [2] ;
106 my $ e x p i r y = $ r e s u l t _ i n f o [3] ;
107 my $qr = ${$QUERYRESULTS{ $ u s e r _ d e v i c e } } ;
108
109 # need t o check i f t h e r e s u l t i s o u t d a t e d
110 i f ($query_number != $qr−>getQueryNumber ()) {
111 # t h e r e s u l t i s o u t d a t e d , so i t i s i g n o r e d
112 debug (" R e s u l t o u t d a t e d , u s e r _ d e v i c e : $ u s e r _ d e v i c e , que ry

number : $query_number \ n ") ;
113 re turn ;
114 }
115 $qr−>i n c R e s R e c e i v e d () ;
116
117 my @ r e s u l t s = c o n v e r t _ m o d u l e _ r e s u l t ($xml_da ta) ;
118 my @ p r o f i l e = g e t _ p r o f i l e ($ u s e r) ;
119 a d d P r i o r i t i e s (\ @ r e s u l t s , \ @ p r o f i l e) ;
120 my @ o u t p u t _ r e s u l t s ;
121 foreach my $r (@ r e s u l t s) {
122 push (@ o u t p u t _ r e s u l t s , resu l tToJSON ($r)) ;
123 }
124
125 # need t o check whe ther t h e s e a r c h i s f i n i s h e d
126 my $mod_rec = $qr−>g e t R e s R e c e i v e d () ;
127 i f ($mod_rec == s c a l a r (@MODULES)) {
128 $qr−>r e s e t R e s R e c e i v e d () ;
129 debug ("SEARCH FINISHED ! \ n ") ;
130 my $ r e s = " { \ " s e a r c h−f i n i s h e d \ " : \ " t r u e \ " } " ;
131 push (@ o u t p u t _ r e s u l t s , $ r e s) ;
132 }
133 s e n d _ r e s u l t s (\ @ o u t p u t _ r e s u l t s , $ u s e r _ d e v i c e , $ e x p i r y) ;

87

8.2. QUERY BROKER

134 }
135
136 ##
137 ## Sends an a r r a y o f r e s u l t s t o a s p e c f i e d queue
138 ## @param : ARRAY o f encoded r e s u l t s
139 ## @param : s t r i n g c o n t a i n g u s e r and d e v i c e (c o n c a t i n a t e d)
140 ##
141 sub s e n d _ r e s u l t s {
142 my @ r e s u l t s = @{ s h i f t () } ;
143 my $ u s e r _ d e v i c e = s h i f t () ;
144 my $ e x p i r y = s h i f t () ;
145 my $queue = " / queue / r e s u l t Q u e u e $ u s e r _ d e v i c e " ;
146
147 foreach my $ r e s u l t (@ r e s u l t s) {
148 my $ c u r r e n t _ t i m e = t ime ∗ 1000 ;
149 my $ d e a d l i n e = $ c u r r e n t _ t i m e + $ e x p i r y ;
150 $STOMP−>send ({
151 d e s t i n a t i o n => $queue ,
152 body => $ r e s u l t ,
153 e x p i r e s => $ d e a d l i n e
154 }) ;
155 }
156 }
157
158 ##
159 ## Used t o e x t r a c t da ta from an xml ta gge d module−r e s u l t
160 ## @param : a s t r i n g c o n t a i n i n g t h e xml da ta
161 ## @return : ARRAY c o n t a i n i n g t h e f o l l o w i n g da ta as s t r i n g s :
162 ## user ,
163 ## u s e r _ d e v i c e (u s e r and d e v i c e c o n c a t e n a t e d) ,
164 ## query number ,
165 ## e x p i r y , (t h e number o f m i l l i s e c o n d s t h e r e s u l t s s h o u l d

remain i n
166 ## t h e r e s u l t queue b e f o r e b e i n g d e l e t e d)
167 ##
168 sub g e t _ r e s u l t _ i n f o _ f r o m _ x m l {
169 my $xml_da ta = s h i f t () ;
170 my $xml = new XML: : Simple ;
171 my $ d a t a = $xml−>XMLin ($xml_da ta) ;
172 my $ u s e r = $da ta −>{ ’ u s e r ’ } ;
173 my $ u s e r _ d e v i c e = $ u s e r . $da ta −>{ ’ d e v i c e ’ } ;
174 my $query_number = $da ta −>{ ’ query−number ’ } ;
175 my $ e x p i r y = $da ta −>{ ’ e x p i r y ’ } ;
176 my @res_a r r ay = ($use r , $ u s e r _ d e v i c e , $query_number , $ e x p i r y) ;
177 re turn @res_a r r ay ;
178 }
179
180 ##
181 ## Used t o g e t a u s e r p r o f i l e based on u s e r name .

88

8.2. QUERY BROKER

182 ## W i l l c a l l a method t o c r e a t e t h e p r o f i l e and s t o r e i t i n %
PROFILES i f i t

183 ## does n o t a l r e a d y e x i s t .
184 ## @param : s t r i n g u s e r name
185 ## @return : ARRAY c o n t a i n i n g t h e p r o f i l e (p r i o r i t i e s)
186 ##
187 sub g e t _ p r o f i l e {
188 my $username = s h i f t () ;
189 my @ p r o f i l e ;
190 i f (e x i s t s ($PROFILES{ $username })) {
191 debug ("PROFILE EXISTS ! \ n ") ;
192 @ p r o f i l e = @{$PROFILES{ $username } } ;
193 } e l s e {
194 debug ("PROFILE DOES NOT EXIST ! \ n ") ;
195 @ p r o f i l e = c r e a t e _ p r o f i l e _ a r r a y ($username) ;
196 $PROFILES{ $username } = \ @ p r o f i l e ;
197 }
198 re turn @ p r o f i l e ;
199 }
200
201
202 ##
203 ## Used t o send a query t o a l l modules
204 ## @param : HASH c o n t a i n i n g t h e query
205 ##
206 sub s e n d _ q u e r y {
207 my %query = %{ s h i f t () } ;
208 my $ u s e r = $query { ’ u s e r ’ } ;
209 my $ d e v i c e = $query { ’ d e v i c e ’ } ;
210 my $ u s e r _ d e v i c e = $ u s e r . $ d e v i c e ;
211 # check max i n t f o r query number ?
212 # i n c r e a s e t h e number i f t h e r e a l r e a d y e x i s t s a Q u e r y R e s u l t

o b j e c t
213 # f o r t h e u s e r
214 my $qr ;
215 i f (! e x i s t s ($QUERYRESULTS{ $ u s e r _ d e v i c e })) {
216 $qr = new Q u e r y R e s u l t ($ u s e r _ d e v i c e) ;
217 $QUERYRESULTS{ $ u s e r _ d e v i c e } = \ $qr ;
218 } e l s e {
219 $qr = ${$QUERYRESULTS{ $ u s e r _ d e v i c e } } ;
220 i f ($qr−>getQueryNumber () == INT_MAX) {
221 $qr−>rese tQueryNumber () ;
222 } e l s e {
223 $qr−>incQueryNumber () ;
224 }
225 $qr−>r e s e t R e s R e c e i v e d () ;
226 }
227 my $query_xml = "<query > \ n \ t " .
228 "<query−number >" . $qr−>getQueryNumber () .

89

8.2. QUERY BROKER

229 " </ query−number > \ n \ t " .
230 "< use r > $query { ’ u s e r ’} </ use r > \ n \ t " .
231 "< dev i ce > $query { ’ d e v i c e ’} </ dev i ce > \ n \ t " .
232 "< s e r v i c e > $query { ’ s e r v i c e ’} </ s e r v i c e > \ n \ t " .
233 "< s e r v e r > $query { ’ s e r v e r ’} </ s e r v e r > \ n " .
234 " </ query > \ n " ;
235
236 foreach my $module (@MODULES) {
237 debug (" Sending t o $module \ n ") ;
238 my $queue = " / queue / queryQueue$module " ;
239
240 $STOMP−>send ({
241 d e s t i n a t i o n => $queue ,
242 body => $query_xml
243 }) ;
244 }
245 }
246
247 ##
248 ## Used t o c o n n e c t t o t h e ActiveMQ s e r v e r
249 ## I n s t a n t i a t e s t h e two stomp c o n n e c t i o n s STOMP and STOMPIN
250 ##
251 sub c o n n e c t _ t o _ s e r v e r {
252 $STOMP = Net : : Stomp−>new ({ hostname => ’ l o c a l h o s t ’ , p o r t => ’

61613 ’ }) ;
253 $STOMP−>connect ({ l o g i n => ’ admin ’ , p a s s c o d e => ’ a c t i v e m q ’ }) ;
254 $STOMPIN = Net : : Stomp−>new ({ hostname => ’ l o c a l h o s t ’ , p o r t => ’

61613 ’ }) ;
255 $STOMPIN−>connect ({ l o g i n => ’ admin ’ , p a s s c o d e => ’ a c t i v e m q ’ }) ;
256 }
257
258 ##
259 ## D i s c o n n e c t e s bo th stomp c o n n e c t i o n s
260 ##
261 sub d i s c o n n e c t _ f r o m _ s e r v e r {
262 $STOMP−>d i s c o n n e c t ;
263 $STOMPIN−>d i s c o n n e c t ;
264 }
265
266 ##
267 ## Used t o s u b s c r i b e t o t h e query queue
268 ## @param : queue name
269 ##
270 sub s u b s c r i b e _ q u e r y {
271 my $queueName = s h i f t () ;
272 $STOMP−> s u b s c r i b e (
273 { d e s t i n a t i o n => " / queue / $queueName " ,
274 ’ ack ’ => ’ c l i e n t ’ ,
275 ’ a c t i v e m q . p r e f e t c h S i z e ’ => 1

90

8.2. QUERY BROKER

276 }
277) ;
278 }
279
280 ##
281 ## Used t o s u b s c r i b e t o t h e a modules r e s u l t queue
282 ## @param : queue name
283 ##
284 sub s u b s c r i b e _ m o d u l e {
285 my $queueName = s h i f t () ;
286 $STOMPIN−> s u b s c r i b e (
287 { d e s t i n a t i o n => " / queue / $queueName " ,
288 ’ ack ’ => ’ c l i e n t ’ ,
289 ’ a c t i v e m q . p r e f e t c h S i z e ’ => 1
290 }
291) ;
292 }
293
294 ##
295 ## Used t o g e t a query from t h e query queue
296 ## @return : HASH c o n t a i n i n g t h e query
297 ##
298 sub g e t _ q u e r y {
299 my $frame = $STOMP−>r e c e i v e _ f r a m e ;
300 my $xml = new XML: : Simple ;
301 my $ d a t a = $xml−>XMLin ($frame−>body) ;
302 my %query = %{$ d a t a } ;
303 $STOMP−>ack ({ f rame => $frame }) ;
304 re turn %query ;
305 }
306
307 ##
308 ## C o n v e r t s a R e s u l t o b j e c t i n t o a JSON s t r i n g
309 ## @param : R e s u l t o b j e c t
310 ## @return : JSON s t r i n g
311 ##
312 sub resu l tToJSON {
313 my $ r e s = s h i f t () ;
314 my $ t i t l e = $res−> g e t T i t l e () ;
315 my $ s o u r c e = $res−>g e t S o u r c e () ;
316 my $ p r i o r i t y = $res−> g e t P r i o r i t y () ;
317 my $ u r l = $ re s−>g e t U r l () ;
318 my $ j s o n = " { \ " p r i o r i t y \ " : \ " $ p r i o r i t y \ " , " .
319 " \ " u r l \ " : \ " $ u r l \ " , \ " t i t l e \ " : \ " $ t i t l e \ " , " .
320 " \ " s o u r c e \ " : \ " $ s o u r c e \ " } " ;
321 re turn $ j s o n ;
322 }
323
324 ##

91

8.2. QUERY BROKER

325 ## C r e a t e s an a r r a y o f p r i o r i t i e s based on a u s e r p r o f i l e f i l e
326 ## @param : u s e r name
327 ## @return : ARRAY c o n t a i n i n g t h e p r i o r i t i e s
328 ##
329 sub c r e a t e _ p r o f i l e _ a r r a y {
330 my $name = s h i f t ;
331 my @ p r o f i l e ;
332 open (PROFILE , "$PROFILEDIR / $name . p r o f i l e ") o r d i e " Miss ing

p r o f i l e : $name \ n " ;
333 whi le (my $ l i n e = <PROFILE >) {
334 $ l i n e =~ / ([\ d | \ .] +) / g ;
335 my $ p r i o r i t y = $1 ;
336 push (@prof i l e , $ p r i o r i t y) ;
337 debug ($ p r i o r i t y . " \ n ") ;
338 }
339 c l o s e (PROFILE) ;
340 re turn @ p r o f i l e ;
341 }
342
343 ##
344 ## C a l c u l a t e s t h e i n n e r p r o d u c t o f two a r r a y s o f t h e same l e n g t h
345 ## @param : ARRAYREF
346 ## @param : ARRAYREF
347 ## @return : Number (t h e i n n e r p r o d u c t)
348 ##
349 sub i n n e r _ p r o d u c t {
350 my @v1 = @{ s h i f t () } ;
351 my @v2 = @{ s h i f t () } ;
352 my $sp = 0 ;
353 my $ l e n g t h = s c a l a r (@v1) ;
354 f o r (my $ i = 0 ; $i < $ l e n g t h ; $ i ++) {
355 $sp += $v1 [$ i] ∗ $v2 [$ i] ;
356 }
357 re turn $sp ;
358 }
359
360 ##
361 ## Gets a module r e s u l t from a r e s u l t queue
362 ## @return : s t r i n g c o n t a i n i n g xml da ta
363 ##
364 sub g e t _ m o d u l e _ r e s u l t {
365 my $frame = $STOMPIN−>r e c e i v e _ f r a m e ;
366 my $xml_da ta = $frame−>body ;
367 $STOMPIN−>ack ({ f rame => $frame }) ;
368 re turn $xml_da ta ;
369 }
370
371 ##

92

8.2. QUERY BROKER

372 ## C o n v e r t s a xml tag ge d module r e s u l t t o an a r r a y o f R e s u l t
o b j e c t s

373 ## @param : s t r i n g o f xml da ta
374 ## @return : ARRAY c o n t a i n i n g t h e R e s u l t o b j e c t s
375 ##
376 sub c o n v e r t _ m o d u l e _ r e s u l t {
377 my $xml_da ta = s h i f t () ;
378 my $xml = new XML: : Simple ;
379 my $ d a t a = $xml−>XMLin ($xml_da ta) ;
380 my @res_a r r ay ;
381
382 my $ u s e r = $da ta −>{ ’ u s e r ’ } ;
383 my $ d e v i c e = $da ta −>{ ’ d e v i c e ’ } ;
384 my $ u s e r _ d e v i c e = $ u s e r . $ d e v i c e ;
385 my $ q u e r y R e s u l t = ${$QUERYRESULTS{ $ u s e r _ d e v i c e } } ;
386 my $ s o u r c e = $da ta −>{ ’ s o u r c e ’ } ;
387
388 i f (i s a ($da ta −>{ ’ r e s u l t ’ } , ’ARRAY’)) {
389 my @ r e s u l t s = @{ $da ta −>{ ’ r e s u l t ’ } } ;
390 foreach my $ r e s (@ r e s u l t s) {
391 my @ c l a s s i f i c a t i o n = c r e a t e _ c l a s s i f i c a t i o n _ a r r a y (
392 $res −>{ ’ c l a s s i f i c a t i o n ’ }
393) ;
394 my $ r e s u l t = new R e s u l t (
395 \ @ c l a s s i f i c a t i o n ,
396 $res −>{ ’ u r l ’ } ,
397 $res −>{ ’ t i t l e ’ } ,
398 $ s o u r c e) ;
399 push (@res_ar ray , $ r e s u l t) ;
400 }
401 } e l s i f (i s a ($da ta −>{ ’ r e s u l t ’ } , ’HASH’)) {
402 my %r e s = %{$da ta −>{ ’ r e s u l t ’ } } ;
403 my @ c l a s s i f i c a t i o n = c r e a t e _ c l a s s i f i c a t i o n _ a r r a y (
404 $ r e s { ’ c l a s s i f i c a t i o n ’ }
405) ;
406 my $ r e s u l t = new R e s u l t (
407 \ @ c l a s s i f i c a t i o n ,
408 $ r e s { ’ u r l ’ } ,
409 $ r e s { ’ t i t l e ’ } ,
410 $ s o u r c e) ;
411 push (@res_ar ray , $ r e s u l t) ;
412 } # e l s e t h e r e are no r e s u l t s
413 re turn @res_a r r ay ;
414 }
415
416 ##
417 ## C o n v e r t s a s t r i n g o f numbers (c l a s s i f i c a t i o n s t r i n g) i n t o an

a r r a y
418 ## c o n t a i n i n g t h e s e numbers

93

8.2. QUERY BROKER

419 ## @param : s t r i n g
420 ## @return : ARRAY
421 ##
422 sub c r e a t e _ c l a s s i f i c a t i o n _ a r r a y {
423 my $ c _ s t r i n g = s h i f t ;
424 my @c_array = () ;
425 f o r (my $ i =0 ; $i < l e n g t h ($ c _ s t r i n g) ; $ i ++) {
426 my $c = s u b s t r ($ c _ s t r i n g , $ i , 1) ;
427 push (@c_array , $c) ;
428 }
429 re turn @c_array ;
430 }
431
432 ##
433 ## Adds p r i o r i t i e s t o an a r r a y o f R e s u l t o b j e c t s a c c o r d i n g t o a

p r o f i l e
434 ## @param : ARRAY o f R e s u l t o b j e c t s
435 ## @param : ARRAY o f p r i o r i t i e s (t h e p r o f i l e)
436 ##
437 sub a d d P r i o r i t i e s {
438 my @ r e s u l t s = @{ s h i f t () } ;
439 my @ p r o f i l e = @{ s h i f t () } ;
440 foreach my $ r e s u l t (@ r e s u l t s) {
441 my @ c l a s s i f i c a t i o n = @{ $ r e s u l t −> g e t C l a s s i f i c a t i o n () } ;
442 my $ p r i o r i t y = i n n e r _ p r o d u c t (\ @pro f i l e , \ @ c l a s s i f i c a t i o n) ;
443 $ r e s u l t −> a d d P r i o r i t y ($ p r i o r i t y) ;
444 }
445 }
446
447 ##
448 ## P r i n t s t h e c o r r e c t use o f t h i s s c r i p t
449 ##
450 sub usage {
451 p r i n t " Usage : \ n " ;
452 p r i n t "−h Usage \ n " ;
453 p r i n t "−v Verbose \ n " ;
454 p r i n t "−d Debug \ n " ;
455 p r i n t " . / s c r i p t [−d] [−v] [−h] \ n " ;
456 }
457
458 ##
459 ## Used t o p r i n t v e r b o s e messages , when i n v e r b o s e mode
460 ## @param : s t r i n g t o p r i n t
461 ##
462 sub v e r b o s e {
463 p r i n t $_ [0] i f $VERBOSE ;
464 }
465
466 ##

94

8.2. QUERY BROKER

467 ## Used t o p r i n t debug messages , when i n debug mode
468 ## @param : s t r i n g t o p r i n t
469 ##
470 sub debug {
471 p r i n t "DEBUG: " . $_ [0] i f $DEBUG;
472 }

;

8.2.2 QueryResult.pm

QueryResult.pm
1 # ! / u s r / b i n / p e r l
2
3 use s t r i c t ’ v a r s ’ ;
4
5 package Q u e r y R e s u l t ;
6
7 ##
8 ## C o n s t r u c t o r
9 ##

10 sub new{
11 my $ c l a s s = s h i f t ;
12 my $ s e l f = { _ u s e r _ d e v i c e => s h i f t } ;
13 $ s e l f −>{ ’ _queryNumber ’ } = 1 ;
14
15 # The number o f modules t h a t have s e n t r e s u l t s
16 $ s e l f −>{ ’ _moduleResReceived ’ } = 0 ;
17
18 b l e s s $ s e l f , $ c l a s s ;
19 re turn $ s e l f ;
20 }
21
22 ##
23 ## R e t u r n s t h e u s e r _ d e v i c e name
24 ## @return : u s e r _ d e v i c e name
25 ##
26 sub g e t U s e r D e v i c e {
27 my ($ s e l f) = @_;
28 re turn $ s e l f −>{ ’ _ u s e r _ d e v i c e ’ } ;
29 }
30
31 ##
32 ## I n c r e a s e s t h e m o d u l e s R e s R e c e i v e d by 1
33 ##
34 sub i n c R e s R e c e i v e d {
35 my ($ s e l f) = @_;
36 re turn $ s e l f −>{ ’ _moduleResReceived ’ }++;

95

8.2. QUERY BROKER

37 }
38
39 ##
40 ## R e t u r n s t h e number o f module r e s u l t s r e c e i v e d
41 ## @return : number o f module r e s u l t s r e c e i v e d
42 ##
43 sub g e t R e s R e c e i v e d {
44 my ($ s e l f) = @_;
45 re turn $ s e l f −>{ ’ _moduleResReceived ’ } ;
46 }
47
48 ##
49 ## S e t s m o d u l e s R e s R e c e i v e d t o 0
50 ##
51 sub r e s e t R e s R e c e i v e d {
52 my ($ s e l f) = @_;
53 $ s e l f −>{ ’ _moduleResReceived ’ } = 0 ;
54 }
55
56 ##
57 ## S e t s t h e u s e r _ d e v i c e name
58 ## @param : u s e r _ d e v i c e name
59 ## @return : u s e r _ d e v i c e name t h a t was s e t
60 ##
61 sub s e t U s e r D e v i c e {
62 my ($ s e l f , $ u s e r _ d e v i c e) = @_;
63 $ s e l f −>{ ’ _ u s e r _ d e v i c e ’ } = $ u s e r _ d e v i c e i f d e f i n e d ($ u s e r _ d e v i c e

) ;
64 re turn $ s e l f −>{ ’ _ u s e r _ d e v i c e ’ } ;
65 }
66
67 ##
68 ## R e t u r n s t h e queryNumber
69 ## @return : query number
70 ##
71 sub getQueryNumber {
72 my ($ s e l f) = @_;
73 re turn $ s e l f −>{ ’ _queryNumber ’ } ;
74 }
75
76 ##
77 ## I n c r e a s e s t h e queryNumber by 1
78 ##
79 sub incQueryNumber {
80 my ($ s e l f) = @_;
81 re turn $ s e l f −>{ ’ _queryNumber ’ }++;
82 }
83
84 ##

96

8.2. QUERY BROKER

85 ## R e s e t s t h e query number t o 1
86 ##
87 sub rese tQueryNumber {
88 my ($ s e l f) = @_;
89 re turn $ s e l f −>{ ’ _queryNumber ’ } = 1 ;
90 }
91
92 1 ;

;

8.2.3 Result.pm

Result.pm
1 # ! / u s r / b i n / p e r l
2
3 use s t r i c t ’ v a r s ’ ;
4
5 package R e s u l t ;
6
7 sub new{
8 my $ c l a s s = s h i f t ;
9 my $ s e l f = { _ c l a s s i f i c a t i o n => s h i f t , _ u r l => s h i f t , _ t i t l e

=> s h i f t , _ s o u r c e => s h i f t } ;
10 $ s e l f −>{ ’ _ p r i o r i t y ’ } = 0 ;
11
12 b l e s s $ s e l f , $ c l a s s ;
13 re turn $ s e l f ;
14 }
15
16 ##
17 ## R e t u r n s t h e c l a s s i f i c a t i o n v e c t o r
18 ## @return : ARRAY c l a s s i f i c a t i o n v e c t o r
19 ##
20 sub g e t C l a s s i f i c a t i o n {
21 my ($ s e l f) = @_;
22 re turn $ s e l f −>{ ’ _ c l a s s i f i c a t i o n ’ } ;
23 }
24
25 ##
26 ## Used t o add p r i o r i t y
27 ## @param : number , p r i o r i t y t o add
28 ##
29 sub a d d P r i o r i t y {
30 my ($ s e l f , $ p r i o r i t y) = @_;
31 $ s e l f −>{ ’ _ p r i o r i t y ’ } += $ p r i o r i t y ;
32 }
33

97

8.2. QUERY BROKER

34 ##
35 ## R e t u r n s t h e p r i o r i t y
36 ## @return : number , p r i o r i t y
37 ##
38 sub g e t P r i o r i t y {
39 my ($ s e l f) = @_;
40 re turn $ s e l f −>{ ’ _ p r i o r i t y ’ } ;
41 }
42
43 ##
44 ## R e t u r n s t h e u r l
45 ## @return : s t r i n g , u r l
46 ##
47 sub g e t U r l {
48 my ($ s e l f) = @_;
49 re turn $ s e l f −>{ ’ _ u r l ’ } ;
50 }
51
52 ##
53 ## R e t u r n s t h e t i t l e
54 ## @return : s t r i n g , t i t l e
55 ##
56 sub g e t T i t l e {
57 my ($ s e l f) = @_;
58 re turn $ s e l f −>{ ’ _ t i t l e ’ } ;
59 }
60
61 ##
62 ## R e t u r n s t h e s o u r c e name
63 ## @return : s t r i n g , s o u r c e name
64 ##
65 sub g e t S o u r c e {
66 my ($ s e l f) = @_;
67 re turn $ s e l f −>{ ’ _ s o u r c e ’ } ;
68 }
69
70 ##
71 ## R e t u r n s t h e e x p i r y t i m e
72 ## @return : number o f m i l l i s e c o n d s
73 ##
74 sub g e t E x p i r y {
75 my ($ s e l f) = @_;
76 re turn $ s e l f −>{ ’ _ e x p i r y ’ } ;
77 }
78
79 1 ;

98

8.3. SQSI-CLI

;

8.2.4 modules.dat

modules.dat
1 DokuWiki−Module
2 Munin−Module
3 Reques t−Tracke r−Module

;

8.3 SQSI-CLI

sqsi-cli
1 # ! / u s r / b i n / p e r l
2
3 # Needed packages
4 use Ge to p t : : S td ;
5 use Net : : Stomp ;
6 use Data : : Dumper ;
7 use JSON ;
8 use s t r i c t " v a r s " ;
9

10 ## Globa l v a r i a b l e s
11
12 # t u r n s v e r b o s e mode on or o f f
13 my $VERBOSE = 0 ;
14 # t u r n s debug mode on or o f
15 my $DEBUG = 0 ;
16 # t h e stomp c o n n e c t i o n
17 my $STOMP ;
18 # t h e hos tname o f t h e a c t i v e m q s e r v e r
19 my $HOSTNAME = ’ l o c a l h o s t ’ ;
20 # t h e p o r t used t o c o n n e c t t o t h e a c t i v e m q s e r v e r
21 my $PORT = ’ 61613 ’ ;
22 # t h e username used when l o g g i n g i n on t h e a c t i v e m q s e r v e r
23 my $LOGIN = ’ admin ’ ;
24 # t h e password used when l o g g i n g i n on t h e a c t i v e m q s e r v e r
25 my $PASSCODE = ’ a c t i v e m q ’ ;
26 # t h e d e s t i n a t i o n t o s u b s c r i b e t o
27 my $DESTINATION ;
28 # t h e username
29 my $USER ;
30 # t h e d e v i c e name
31 my $DEVICE ;
32 # t h e s e r v i c e name

99

8.3. SQSI-CLI

33 my $SERVICE ;
34 # t h e s e r v e r name
35 my $SERVER ;
36 # a r r a y h o l d i n g r e s u l t s
37 my @RESULTS;
38 # t h e t i m e t o w a i t b e f o r e u p d a t i n g t h e u s e r i n t e r f a c e
39 my $SLEEPTIME = 0 . 0 1 ;
40 # f l a g s e t when t h e a s e a r c h i s f i n i s h e d
41 my $SEARCH_FINISHED = 0 ;
42 # s i g n i f i e s whe ther rank s h o u l d be d i s p l a y e d i n t h e o u t p u t or

n o t
43 my $SHOW_RANK = 0 ;
44
45 ## End Globa l v a r i a b l e s
46
47 # Handle f l a g s and arguments
48 # Example : c == "−c " , c : == "−c argument "
49 my $ o p t _ s t r i n g = ’ vdhu : s : c : i : r ’ ;
50 g e t o p t s (" $ o p t _ s t r i n g " , \my %o p t) o r usage () and e x i t 1 ;
51
52 # P r i n t h e l p message i f −h i s i n v o k e d
53 i f ($op t { ’ h ’ }) {
54 usage () ;
55 e x i t 0 ;
56 }
57
58 # Handle o t h e r u s e r i n p u t
59 $VERBOSE = 1 i f $op t { ’ v ’ } ;
60 $DEBUG = 1 i f $op t { ’ d ’ } ;
61 $SHOW_RANK = 1 i f $op t { ’ r ’ } ;
62 $SERVER = $op t { ’ s ’ } ;
63 $SERVICE = $op t { ’ c ’ } ;
64 $USER = $op t { ’ u ’ } ;
65 $DEVICE = $op t { ’ i ’ } ;
66 $DESTINATION = ’ r e s u l t Q u e u e ’ . $USER . $DEVICE ;
67
68 # ##### Main s c r i p t c o n t e n t
69 #
70
71 v e r b o s e (" Verbose i s e n a b l e d \ n ") ;
72 debug (" Debug i s e n a b l e d \ n ") ;
73
74 $STOMP = Net : : Stomp−>new ({ hostname => $HOSTNAME, p o r t => $PORT})

;
75 $STOMP−>connect ({ l o g i n => $LOGIN , p a s s c o d e => $PASSCODE}) ;
76 $STOMP−> s u b s c r i b e ({
77 d e s t i n a t i o n => " / queue / $DESTINATION" ,
78 ’ ack ’ => ’ c l i e n t ’ ,
79 ’ a c t i v e m q . p r e f e t c h S i z e ’ => 1

100

8.3. SQSI-CLI

80 }) ;
81
82 s e n d _ q u e r y () ;
83 my $ c o u n t e r = 0 ;
84 whi le (1) {
85 i f ($STOMP−>c a n _ r e a d ({ t i m e o u t => 0})) {
86 my %r e s u l t = %{r e c e i v e _ f r a m e () } ;
87 i f (n o t e x i s t s $ r e s u l t { ’ s e a r c h−f i n i s h e d ’ }) {
88 $ c o u n t e r ++;
89 push (@RESULTS, \% r e s u l t) ;
90 @RESULTS = s o r t _ r e s u l t s (\ @RESULTS) ;
91 system (’ c l e a r ’) ;
92 foreach my $ r e s (@RESULTS) {
93 my %r e s u l t = %{$ r e s } ;
94 p r i n t $ r e s u l t { ’ p r i o r i t y ’ } . " \ t " i f $SHOW_RANK;
95 p r i n t $ r e s u l t { ’ t i t l e ’ } . " \ t " . $ r e s u l t { ’ u r l ’ } .
96 " \ t " . $ r e s u l t { ’ s o u r c e ’ } . " \ n " ;
97 }
98 p r i n t " c o u n t e r : $ c o u n t e r \ n " ;
99 }

100 } e l s i f ($SEARCH_FINISHED) {
101 l a s t ;
102 }
103 s e l e c t (undef , undef , undef , $SLEEPTIME) ;
104 }
105
106 #
107 # #####
108
109 ##
110 ## S o r t s an a r r a y o f r e s u l t s c o n t a i n e d i n ha sh es i n d e s c e n d i n g

o r d e r by
111 ## t h e i r p r i o r i t y .
112 ## @param : a r r a y o f r e s u l t ha she s
113 ## @return : a r r a y o f s o r t e d r e s u l t ha sh es
114 ##
115 sub s o r t _ r e s u l t s {
116 my @ u n s o r t e d _ r e s = @{ s h i f t () } ;
117 my @ s o r t e d _ r e s = map {$_−>[1]}
118 s o r t {$b−>[0] <=> $a−>[0]}
119 map { [$_−>{ ’ p r i o r i t y ’ } , $_] }
120 @ u n s o r t e d _ r e s ;
121 re turn @ s o r t e d _ r e s ;
122 }
123
124 ##
125 ## Gets a message from t h e r e s u l t queue and r e t u r n s i t i n t h e

form o f a hash .

101

8.3. SQSI-CLI

126 ## I f t h e message i s a " search− f i n i s h e d " frame , $SEARCH_FINISHED
i s s e t t o 1 .

127 ## @return : r e s u l t hash
128 ##
129 sub r e c e i v e _ f r a m e {
130 my $frame = $STOMP−>r e c e i v e _ f r a m e ;
131 my $decoded_f rame = d e c o d e _ j s o n $frame−>body ;
132 $STOMP−>ack ({ f rame => $frame }) ;
133 my %tmp = %{$decoded_f rame } ;
134 i f ($tmp { " s e a r c h−f i n i s h e d " } eq " t r u e ") {
135 $SEARCH_FINISHED = 1 ;
136 }
137 re turn $decoded_f rame ;
138 }
139
140 ##
141 ## Sends a query message t o t h e query queue w i t h command l i n e
142 ## s p e c i f i e d p a r a m e t e r s .
143 ##
144 sub s e n d _ q u e r y {
145 my $queue = " / queue / queryQueue " ;
146 my $query = "<query > \ n \ t " .
147 "< use r >$USER</ use r > \ n \ t " .
148 "< dev i ce >$DEVICE </ dev i ce > \ n \ t " .
149 "< s e r v e r >$SERVER</ s e r v e r > \ n \ t " .
150 "< s e r v i c e >$SERVICE </ s e r v i c e > \ n " .
151 " </ query >" ;
152
153 $STOMP−>send ({
154 d e s t i n a t i o n => $queue ,
155 body => $query
156 }) ;
157 }
158
159 ##
160 ## P r i n t s t h e c o r r e c t use o f t h i s s c r i p t
161 ##
162 sub usage {
163 p r i n t " Usage : \ n " ;
164 p r i n t "−h Usage \ n " ;
165 p r i n t "−v Verbose \ n " ;
166 p r i n t "−d Debug \ n " ;
167 p r i n t "−u <username > username \ n " ;
168 p r i n t "−s < s e r v e r name> s e r v e r name \ n " ;
169 p r i n t "−c < s e r v i c e name> s e r v i c e name \ n " ;
170 p r i n t "− i < d e v i c e name> d e v i c e name \ n " ;
171 p r i n t "−r Togg le s p r i n t i n g rank i n o u t p u t \ n \ n " ;
172 p r i n t " . / c l i e n t . p l −u <username > −s < s e r v e r name> " .

102

8.4. MUNIN MODULE

173 " −c < s e r v i c e name> − i < d e v i c e name> [− r] [−d] [−v] [−h] \ n
\ n " ;

174 }
175
176 ##
177 ## Used t o p r i n t v e r b o s e messages when i n v e r b o s e mode
178 ## @param : s t r i n g t o p r i n t
179 ##
180 sub v e r b o s e {
181 p r i n t $_ [0] i f $VERBOSE ;
182 }
183
184 ##
185 ## Used t o p r i n t debug messages when i n debug mode
186 ## @param : s t r i n g t o p r i n t
187 ##
188 sub debug {
189 p r i n t "DEBUG: " . $_ [0] i f $DEBUG;
190 }

;

8.4 Munin Module

8.4.1 munin-module.pl

munin–module.pl
1 # ! / u s r / b i n / p e r l
2
3 # Needed packages
4 use Ge to p t : : S td ;
5 use s t r i c t " v a r s " ;
6 use Net : : T e l n e t ;
7 use Net : : Stomp ;
8 use XML: : Simple ;
9 use Data : : Dumper ;

10
11 ### Globa l v a r i a b l e s
12
13 # t u r n s on or o f f v e r b o s e mode
14 my $VERBOSE = 0 ;
15 # t u r n s on or o f f debug mode
16 my $DEBUG = 0 ;
17 # t h e p o r t used t o c o n n e c t t o t e l n e t on t h e munin nodes
18 my $TELNET_PORT = 4949 ;
19 # t h e pa th t o t h e munin c o n f i g u r a t i o n f i l e

103

8.4. MUNIN MODULE

20 my $MUNIN_CONF = " / e t c / munin / munin . con f " ;
21 # an a r r a y c o n t a i n i n g t h e names o f a l l munin nodes
22 my @NODENAMES;
23 # a hash maping s e r v i c e names t o t h e i r r e l e v a n t p l u g i n s
24 my %SERVICES_TO_PLUGINS ;
25 # a hash maping node names and t o t h e i r p l u g i n s
26 my %NODE_PLUGINS ;
27 # a hash maping p l u g i n names t o t h e i r c l a s s i f i c a t i o n v e c t o r s (

s t r i n g s)
28 my %PLUGIN_CLASSIFICATIONS ;
29 # t h e name o f t h e f i l e c o n t a i n i n g t h e c l a s s i f i c a t i o n s t r i n g s
30 my $CLASSIFICATIONS = " c l a s s i f i c a t i o n s . d a t " ;
31 # t h e name o f t h e f i l e c o n t a i n i n g t h e s e r v i c e names and t h e i r

p l u g i n s
32 my $SERVICES = ’ s e r v i c e s . d a t ’ ;
33 # t h e stomp c o n n e c t i o n o b j e c t
34 my $STOMP ;
35 # t h e name o f t h e ActiveMQ s e r v e r
36 my $MQSERVER = " sysadmin14 . i u . h i o . no " ;
37 # t h e name o f t h e munin s e r v e r
38 my $MUNINSERVER = " sysadmin15 . i u . h i o . no " ;
39 # t h e name o f t h e munin domain . Used i n u r l g e n e r a t i o n
40 my $MUNINDOMAIN = " i u . h i o . no " ;
41 # t h e p o r t used t o c o n n e c t t o t h e ActiveMQ s e r v e r
42 my $MQPORT = 61613;
43 # t h e name o f t h i s module
44 my $MODULENAME = " Munin−Module " ;
45 # t h e name o f t h e s o u r c e b e i n g p r o v i d e d by t h i s module
46 my $SOURCENAME = " Munin " ;
47 # t h e name o f t h e query queue
48 my $QUERYQUEUE = "queryQueue$MODULENAME" ;
49 # t h e name o f t h e r e s u l t queue
50 my $RESULTQUEUE = "resultQueue$MODULENAME" ;
51 # t h e number o f m i l l i s e c o n d s a r e s u l t from t h i s module s h o u l d

remain i n t h e
52 # r e s u l t queue o f t h e c l i e n t b e f o r e b e i n g removed
53 my $EXPIRY = 20000 ;
54
55 ### End Globa l v a r i a b l e s
56
57 # Handle f l a g s and arguments
58 # Example : c == "−c " , c : == "−c argument "
59 my $ o p t _ s t r i n g = ’ vdh ’ ;
60 g e t o p t s (" $ o p t _ s t r i n g " , \my %o p t) o r usage () and e x i t 1 ;
61
62 # P r i n t h e l p message i f −h i s i n v o k e d
63 i f ($op t { ’ h ’ }) {
64 usage () ;
65 e x i t 0 ;

104

8.4. MUNIN MODULE

66 }
67
68 # Handle o t h e r u s e r i n p u t
69 $VERBOSE = 1 i f $op t { ’ v ’ } ;
70 $DEBUG = 1 i f $op t { ’ d ’ } ;
71
72 # ##### Main s c r i p t c o n t e n t
73 #
74
75 v e r b o s e (" Verbose i s e n a b l e d \ n ") ;
76 debug (" Debug i s e n a b l e d \ n ") ;
77
78 v e r b o s e (" Loading . . . \ n ") ;
79 s e t _ p l u g i n _ c l a s s i f i c a t i o n s () ;
80 se t_nodenames () ;
81 r e g i s t e r _ n o d e _ d a t a () ;
82 s e t _ s e r v i c e s () ;
83 c o n n e c t _ t o _ s e r v e r () ;
84 v e r b o s e ("$MODULENAME r u n n i n g \ n ") ;
85 s u b s c r i b e ($QUERYQUEUE) ;
86
87 whi le (1) {
88 my %query = g e t _ q u e r y () ;
89 my $ r e s u l t = g e t _ m o d u l e _ r e s u l t (\% query) ;
90 s e n d _ r e s u l t ($ r e s u l t) ;
91 }
92
93 #
94 # #####
95
96 ##
97 ## Used t o read t h e $SERVICES f i l e and s t o r e t h e c o n t e n t s i n
98 ## %SERVICER_TO_PLUGINS i n d e x e d by s e r v i c e
99 ##

100 sub s e t _ s e r v i c e s {
101 open (SER , $SERVICES) o r d i e " u n a b l e t o open $SERVICES \ n " ;
102 whi le (my $ l i n e = <SER>) {
103 chomp ($ l i n e) ;
104 my @input = s p l i t (/ , / , $ l i n e) ;
105 my $ s e r v i c e = $ i n p u t [0] ;
106 my $ l e n g t h = s c a l a r (@input) − 1 ;
107 my @plugins = @input [1 . . $ l e n g t h] ;
108 @{$SERVICES_TO_PLUGINS{ $ s e r v i c e }} = @plugins ;
109 }
110 c l o s e (SER) ;
111 }
112
113 ##

105

8.4. MUNIN MODULE

114 ## Gets t h e r e s u l t s from a query based on t h e s e r v e r and s e r v i c e
name

115 ## @param : s e r v i c e name
116 ## @param : s e r v e r name
117 ## @return : a s t r i n g c o n t a i n i n g a l l xml ta gg ed r e s u l t s from t h e

query
118 ##
119 sub g e t _ r e s u l t s {
120
121 my $ s e r v e r = l c s h i f t ;
122 my $ s e r v i c e = l c s h i f t ;
123 my $ s e r v e r _ e x i s t s = 0 ;
124 my $ s e r v i c e _ e x i s t s = 0 ;
125 $ s e r v e r _ e x i s t s = 1 i f e x i s t s $NODE_PLUGINS{ $ s e r v e r } ;
126 $ s e r v i c e _ e x i s t s = 1 i f e x i s t s $SERVICES_TO_PLUGINS{ $ s e r v i c e } ;
127 my $ r e s u l t s = " " ;
128
129 i f ($ s e r v e r _ e x i s t s and $ s e r v i c e _ e x i s t s) {
130 my %s e r v e r _ p l u g i n s = %{$NODE_PLUGINS{ $ s e r v e r } } ;
131 my @ s e r v i c e _ p l u g i n s = @{$SERVICES_TO_PLUGINS{ $ s e r v i c e } } ;
132 my @ a v a i l a b l e _ p l u g i n s ;
133
134 # Need t o check which o f t h e p l u g i n s f o r t h e s e r v i c e t h a t

are
135 # a v a i l a b l e a t t h e s p e c i f i e d s e r v e r
136
137 foreach my $ s e r v i c e _ p l u g i n (@ s e r v i c e _ p l u g i n s) {
138 i f (e x i s t s $ s e r v e r _ p l u g i n s { $ s e r v i c e _ p l u g i n }) {
139 push (@ a v a i l a b l e _ p l u g i n s , $ s e r v i c e _ p l u g i n) ;
140 }
141 }
142
143 foreach my $ p l u g i n (@ a v a i l a b l e _ p l u g i n s) {
144 my $ t i t l e = " Trend : $ p l u g i n − $ s e r v e r " ;
145 my $c = $PLUGIN_CLASSIFICATIONS{ $ p l u g i n } ;
146 my $ u r l = g e n e r a t e _ u r l ($ s e r v e r , $ p l u g i n) ;
147 my $ x m l _ r e s u l t = g e n e r a t e _ x m l _ r e s u l t ($ t i t l e , $c , $ u r l) ;
148 $ r e s u l t s . = $ x m l _ r e s u l t ;
149 }
150
151 } e l s i f ($ s e r v e r _ e x i s t s and ! $ s e r v i c e _ e x i s t s and l e n g t h ($ s e r v i c e

) == 0) {
152 my %s e r v e r _ p l u g i n s = %{$NODE_PLUGINS{ $ s e r v e r } } ;
153 foreach my $ p l u g i n (v a l u e s %s e r v e r _ p l u g i n s) {
154 my $ t i t l e = " Trend : $ p l u g i n − $ s e r v e r " ;
155 my $c = $PLUGIN_CLASSIFICATIONS{ $ p l u g i n } ;
156 my $ u r l = g e n e r a t e _ u r l ($ s e r v e r , $ p l u g i n) ;
157 my $ x m l _ r e s u l t = g e n e r a t e _ x m l _ r e s u l t ($ t i t l e , $c , $ u r l) ;
158 $ r e s u l t s . = $ x m l _ r e s u l t ;

106

8.4. MUNIN MODULE

159 }
160 } e l s i f (! $ s e r v e r _ e x i s t s and $ s e r v i c e _ e x i s t s and l e n g t h ($ s e r v e r)

== 0) {
161 my @ s e r v i c e _ p l u g i n s = @{$SERVICES_TO_PLUGINS{ $ s e r v i c e } } ;
162 my %s e r v e r s ;
163
164 # Need t o f i n d a l l s e r v e r s t h a t run t h e r e l e v a n t s e r v i c e
165 foreach my $ s e r v e r (keys %NODE_PLUGINS) {
166 foreach my $ s e r v i c e _ p l u g i n (@ s e r v i c e _ p l u g i n s) {
167 i f (e x i s t s $NODE_PLUGINS{ $ s e r v e r }{ $ s e r v i c e _ p l u g i n }) {
168 push (@{ $ s e r v e r s { $ s e r v e r }} , $ s e r v i c e _ p l u g i n) ;
169 }
170 }
171 }
172
173 foreach my $ s e r v e r (keys %s e r v e r s) {
174 my @plugins = @{ $ s e r v e r s { $ s e r v e r } } ;
175 foreach my $ p l u g i n (@plugins) {
176 my $ t i t l e = " Trend : $ p l u g i n − $ s e r v e r " ;
177 my $c = $PLUGIN_CLASSIFICATIONS{ $ p l u g i n } ;
178 my $ u r l = g e n e r a t e _ u r l ($ s e r v e r , $ p l u g i n) ;
179 my $ x m l _ r e s u l t = g e n e r a t e _ x m l _ r e s u l t ($ t i t l e , $c , $ u r l) ;
180 $ r e s u l t s . = $ x m l _ r e s u l t ;
181 }
182 }
183
184 }# e l s e t h e r e are no r e s u l t s f o r t h i s query
185
186 re turn $ r e s u l t s ;
187 }
188
189 ##
190 ## Used t o g e n e r a t e a u r l t o a munin p l u g i n based on s e r v e r and

p l u g i n
191 ## @param : s e r v e r name
192 ## @param : s e r v i c e name
193 ##
194 sub g e n e r a t e _ u r l {
195 my $ s e r v e r = s h i f t ;
196 my $ p l u g i n = s h i f t ;
197 my $ u r l = " h t t p : / / $MUNINSERVER/ munin /$MUNINDOMAIN/ " .
198 " $ s e r v e r / $ p l u g i n . h tml " ;
199 re turn $ u r l ;
200 }
201
202 ##
203 ## Used t o g e n e r a t e an xml ta gge d s i n g l e r e s u l t
204 ## @param : t h e t i t l e
205 ## @param : t h e c l a s s i f i c a t i o n v e c t o r (s t r i n g)

107

8.4. MUNIN MODULE

206 ## @param : t h e u r l l i n k i n g t o t h e r e s o u r c e
207 ## @return : a s i n g l e xml ta gge d r e s u l t
208 ##
209 sub g e n e r a t e _ x m l _ r e s u l t {
210 my $ t i t l e = s h i f t ;
211 my $c = s h i f t ;
212 my $ u r l = s h i f t ;
213 my $ x m l _ r e s u l t = " \ t < r e s u l t > \ n " .
214 " \ t \ t < t i t l e > $ t i t l e < / t i t l e > \ n " .
215 " \ t \ t < c l a s s i f i c a t i o n >$c </ c l a s s i f i c a t i o n > \ n " .
216 " \ t \ t < u r l > $ u r l < / u r l > \ n " .
217 " \ t < / r e s u l t > \ n " ;
218 re turn $ x m l _ r e s u l t ;
219 }
220
221 ##
222 ## Used t o b u i l d t h e module r e s u l t based on a query
223 ## @param : Hash c o n t a i n i n g t h e query da ta
224 ## @return : An xml ta gge d r e s u l t
225 ##
226 sub g e t _ m o d u l e _ r e s u l t {
227 my %query = %{ s h i f t () } ;
228 my $ u s e r = $query { ’ u s e r ’ } ;
229 my $ d e v i c e = $query { ’ d e v i c e ’ } ;
230 my $query_number = $query { ’ query−number ’ } ;
231 my $ x m l _ m o d u l e _ r e s u l t = " " ;
232 my $xml_header = "<module− r e s u l t u s e r = \ " $ u s e r \ " " .
233 " d e v i c e = \ " $ d e v i c e \ " " .
234 " query−number = \ " $query_number \ " " .
235 " s o u r c e = \ "$SOURCENAME\ " " .
236 " e x p i r y = \ " $EXPIRY \ " > \ n " ;
237 my $ x m l _ f o o t e r = " </ module−r e s u l t > \ n " ;
238 $ x m l _ m o d u l e _ r e s u l t . = $xml_header ;
239
240 my $ s e r v e r = $query { ’ s e r v e r ’ } ;
241 i f ($ s e r v e r =~ / ^HASH \ (. ∗ /) {
242 $ s e r v e r = " " ;
243 }
244 my $ s e r v i c e = $query { ’ s e r v i c e ’ } ;
245 i f ($ s e r v i c e =~ / ^HASH \ (. ∗ /) {
246 $ s e r v i c e = " " ;
247 }
248 my $ r e s u l t s = g e t _ r e s u l t s ($ s e r v e r , $ s e r v i c e) ;
249 $ x m l _ m o d u l e _ r e s u l t . = $ r e s u l t s ;
250
251 $ x m l _ m o d u l e _ r e s u l t . = $ x m l _ f o o t e r ;
252 re turn $ x m l _ m o d u l e _ r e s u l t ;
253 }
254

108

8.4. MUNIN MODULE

255 ##
256 ## Used t o send a module r e s u l t t o t h e r e s u l t queue
257 ## @param : an xml tag ge d module r e s u l t
258 ##
259 sub s e n d _ r e s u l t {
260 my $ r e s u l t = s h i f t () ;
261 $STOMP−>send ({
262 d e s t i n a t i o n => " / queue /$RESULTQUEUE" ,
263 body => $ r e s u l t
264 }) ;
265 }
266
267 ##
268 ## Used t o g e t a query message from t h e query queue
269 ## @return : Hash c o n t a i n i n g t h e query da ta
270 ##
271 sub g e t _ q u e r y {
272 my $frame = $STOMP−>r e c e i v e _ f r a m e ;
273 my $xml = new XML: : Simple ;
274 my $ d a t a = $xml−>XMLin ($frame−>body) ;
275 my %query = %{$ d a t a } ;
276 debug ($query { ’ u s e r ’ } . " \ n ") ;
277 debug ($query { ’ query−number ’ } . " \ n ") ;
278 debug ($query { ’ s e r v e r ’ } . " \ n ") ;
279 debug ($query { ’ s e r v i c e ’ } . " \ n ") ;
280 $STOMP−>ack ({ f rame => $frame }) ;
281 re turn %query ;
282 }
283
284 ##
285 ## Connec t s t o t h e ActiveMQ s e r v e r
286 ##
287 sub c o n n e c t _ t o _ s e r v e r {
288 $STOMP = Net : : Stomp−>new ({
289 hostname => $MQSERVER,
290 p o r t => $MQPORT
291 }) ;
292
293 $STOMP−>connect ({
294 l o g i n => ’ admin ’ ,
295 p a s s c o d e => ’ a c t i v e m q ’
296 }) ;
297 }
298
299 ##
300 ## Used t o s u b s c r i b e t o a c e r t a i n queue
301 ## @param : queue name
302 ##
303 sub s u b s c r i b e {

109

8.4. MUNIN MODULE

304 my $queueName = s h i f t () ;
305 $STOMP−> s u b s c r i b e ({
306 d e s t i n a t i o n => " / queue / $queueName " ,
307 ’ ack ’ => ’ c l i e n t ’ ,
308 ’ a c t i v e m q . p r e f e t c h S i z e ’ => 1
309 }) ;
310 }
311
312 ##
313 ## Used t o read t h e $CLASSIFICATIONS f i l e and s t o r e t h e

c l a s s i f i c a t i o n s t r i n g s
314 ## o f t h e p l u g i n s by name i n %PLUGIN_CLASSIFICATIONS
315 ##
316 sub s e t _ p l u g i n _ c l a s s i f i c a t i o n s {
317 open (IN , $CLASSIFICATIONS) or d i e " u n a b l e t o open

$CLASSIFICATIONS \ n " ;
318 whi le (my $ l i n e = <IN >) {
319 $ l i n e =~ / ^ (\ w+) [\ s | \ t] ∗ (\ d +) / ;
320 my $ p l u g i n = $1 ;
321 my $ c _ s t r i n g = $2 ;
322 $PLUGIN_CLASSIFICATIONS{ $ p l u g i n } = $ c _ s t r i n g ;
323 }
324 c l o s e (IN) ;
325 }
326
327 ##
328 ## Used t o s t o r e t h e p l u g i n s a c t i v e f o r each munin node i n %

NODE_PLUGINS
329 ## by node name . The da ta from t h e nodes i s c o l l e c t e d by c a l l i n g
330 ## g e t _ p l u g i n _ i n f o ()
331 ##
332 sub r e g i s t e r _ n o d e _ d a t a {
333 my $ o u t p u t ;
334 my @plugins ;
335 foreach my $node (@NODENAMES) {
336 $ o u t p u t = g e t _ p l u g i n _ i n f o ($node) ;
337 @plugins = s p l i t (/ / , $ o u t p u t) ;
338 foreach my $p (@plugins) {
339 chomp ($p) ;
340 $NODE_PLUGINS{ $node }{ $p } = $p ;
341 }
342 }
343 }
344
345 ##
346 ## Reads t h e $MUNIN_CONF f i l e and s t o r e s t h e names o f a l l t h e

munin nodes
347 ## i n @NODENAMES
348 ##

110

8.4. MUNIN MODULE

349 sub se t_nodenames {
350 open (MCONF, $MUNIN_CONF) or d i e " u n a b l e t o open $MUNIN_CONF\ n " ;
351 whi le (my $ l i n e = <MCONF>) {
352 i f ($ l i n e =~ / ^ \ [(. ∗) \] $ /) {
353 my $nodename = $1 ;
354 push (@NODENAMES, $nodename) ;
355 }
356 }
357 c l o s e (MCONF) ;
358 }
359
360 ##
361 ## C o l l e c t s t h e names o f a l l a c t i v e p l u g i n s f o r a munin node
362 ## @param : node name
363 ## @return : s t r i n g s e p a r a t e d by space c o n t a i n i n g p l u g i n names
364 ##
365 sub g e t _ p l u g i n _ i n f o {
366 my $node = s h i f t () ;
367 my $ o u t p u t ;
368 my $ t e l n e t = new Net : : T e l n e t (
369 Timeout => 10 ,
370 P o r t => $TELNET_PORT ,
371 Prompt => ’ / \ $ $ / ’ ,
372 Errmode => ’ d i e ’
373) ;
374 $ t e l n e t −>open ($node) ;
375 $ t e l n e t −> w a i t f o r (’ / # munin .∗ $ / ’) ;
376 $ t e l n e t −>p r i n t (’ l i s t ’) ;
377 $ t e l n e t −> g e t l i n e ;
378 $ o u t p u t = $ t e l n e t −> g e t l i n e ;
379 re turn $ o u t p u t ;
380 }
381
382 ##
383 ## P r i n t s t h e c o r r e c t use o f t h i s s c r i p t
384 ##
385 sub usage {
386 p r i n t " Usage : \ n " ;
387 p r i n t "−h Usage \ n " ;
388 p r i n t "−v Verbose \ n " ;
389 p r i n t "−d Debug \ n " ;
390 p r i n t " . / s c r i p t [−d] [−v] [−h] \ n " ;
391 }
392
393 ##
394 ## Used t o p r i n t v e r b o s e messages , when i n v e r b o s e mode
395 ## @param : s t r i n g t o p r i n t
396 ##
397 sub v e r b o s e {

111

8.4. MUNIN MODULE

398 p r i n t $_ [0] i f $VERBOSE ;
399 }
400
401 ##
402 ## Used t o p r i n t debug messages , when i n debug mode
403 ## @param : s t r i n g t o p r i n t
404 ##
405 sub debug {
406 p r i n t "DEBUG: " . $_ [0] i f $DEBUG;
407 }

;

8.4.2 classifications.dat

classifications.dat
1 a p a c h e _ a c c e s s e s 00000000000000000000000000010000
2 a p a c h e _ p r o c e s s e s 00000000000000000000001000010000
3 apache_volume 00000000000000000000000000010000
4 cpu 00000000000000000000000001010000
5 df 00000100000000000000000000010000
6 d f _ i n o d e 00000100000000000000000000010000
7 d i s k s t a t s _ i o p s 00000100000000000000000000010000
8 d i s k s t a t s _ l a t e n c y 00000100000000000000000000010000
9 d i s k s t a t s _ t h r o u g h p u t 00000100000000000000000000010000

10 d i s k s t a t s _ u t i l i z a t i o n 00000100000000000000000000010000
11 e n t r o p y 00000000000000000000000001010000
12 ex im_mai lqueue 00000000000000100000000000010000
13 e x i m _ m a i l s t a t s 00000000000000100000000000010000
14 f o r k s 00000000000000000000001000010000
15 f w _ p a c k e t s 00001000000000000010000000010000
16 h t t p _ l o a d t i m e 00000000000000000010000000010000
17 i f _ e r r _ e t h 0 00000000000000000001000000010000
18 i f _ e t h 0 00000000000000000001000000010000
19 i n t e r r u p t s 00000000000000000000000001010000
20 i o s t a t 00000100000000000000000000010000
21 i o s t a t _ i o s 00000100000000000000000000010000
22 i r q s t a t s 00000000000000000000000001010000
23 l o a d 00000000000000000000000001010000
24 memory 00000000000000000000000001010000
25 m u n i n _ s t a t s 00000000000000000000000000010000
26 m y s q l _ b i n _ r e l a y _ l o g 00001000000000000000000000010000
27 mysql_commands 00001000000000000000000000010000
28 m y s q l _ c o n n e c t i o n s 00001000000000000000000000010000
29 m y s q l _ f i l e t a b l e s 00001000000000000000000000010000
30 mysq l_ innodb_bpoo l 00001000000000000000000000010000
31 m y s q l _ i n n o d b _ b p o o l _ a c t 00001000000000000000000000010000
32 m y s q l _ i n n o d b _ i n s e r _ b u f 00001000000000000000000000010000

112

8.4. MUNIN MODULE

33 mysq l_ innodb_ io 00001000000000000000000000010000
34 mysq l_ innodb_ io_pend 00001000000000000000000000010000
35 mysq l_ innodb_ log 00001000000000000000000000010000
36 mysql_ innodb_rows 00001000000000000000000000010000
37 mysq l_ innodb_semaphores 00001000000000000000000000010000
38 mysq l_ innodb_ tnx 00001000000000000000000000010000
39 mysql_myisam_indexes 00001000000000000000000000010000
40 m y s q l _ n e t w o r k _ t r a f f i c 00001000000000000010000000010000
41 mysql_qcache 00001000000000000000000000010000
42 mysql_qcache_mem 00001000000000000000000000010000
43 m y s q l _ r e p l i c a t i o n 00001000000000000000000000010000
44 m y s q l _ s e l e c t _ t y p e s 00001000000000000000000000010000
45 mysql_s low 00001000000000000000000000010000
46 m y s q l _ s o r t s 00001000000000000000000000010000
47 m y s q l _ t a b l e _ l o c k s 00001000000000000000000000010000
48 m y s q l _ t m p _ t a b l e s 00001000000000000000000000010000
49 o p e n _ f i l e s 00000000000000000000000001010000
50 o p e n _ i n o d e s 00000000000000000000000001010000
51 p r o c _ p r i 00000000000000000000001001010000
52 p r o c e s s e s 00000000000000000000001000010000
53 swap 00000100000000000000000001010000
54 t h r e a d s 00000000000000000000001000010000
55 up t ime 00000000000000000000000001011000
56 u s e r s 00000000000000000000000001010000
57 v m s t a t 00000000000000000000001000010000

;

8.4.3 services.dat

services.dat
1 apache , a p a c h e _ a c c e s s e s , a p a c h e _ p r o c e s s e s , apache_volume
2 munin , m u n i n _ s t a t s
3 exim , e x i m _ m a i l s t a t s , ex im_mai lqueue
4 mysql , m y s q l _ b i n _ r e l a y _ l o g , mysql_commands , m y s q l _ c o n n e c t i o n s ,

m y s q l _ f i l e t a b l e s , mysq l_ innodb_bpool , m y s q l _ i n n o d b _ b p o o l _ a c t ,
m y s q l _ i n n o d b _ i n s e r _ b u f , mysq l_ innodb_ io , mysq l_ innodb_io_pend ,
mysq l_ innodb_ log , mysql_innodb_rows , mysq l_ innodb_semaphores ,
mysq l_ innodb_ tnx , mysql_myisam_indexes , m y s q l _ n e t w o r k _ t r a f f i c ,
mysql_qcache , mysql_qcache_mem , m y s q l _ r e p l i c a t i o n ,
m y s q l _ s e l e c t _ t y p e s , mysql_slow , m y s q l _ s o r t s , m y s q l _ t a b l e _ l o c k s ,
m y s q l _ t m p _ t a b l e s

113

8.5. REQUEST TRACKER MODULE

;

8.5 Request Tracker Module

8.5.1 rt-module.pl

rt–module.pl
1 # ! / u s r / b i n / p e r l
2
3 # Needed packages
4 use Ge to p t : : S td ;
5 use s t r i c t " v a r s " ;
6 use Net : : Stomp ;
7 use XML: : Simple ;
8 use Data : : Dumper ;
9 use UNIVERSAL ’ i s a ’ ;

10 use S c a l a r : : U t i l ’ r e f t y p e ’ ;
11
12 ### Globa l v a r i a b l e s
13
14 # t u r n on or o f f v e r b o s e mode
15 my $VERBOSE = 0 ;
16 # t u r n on or o f f debug mode
17 my $DEBUG = 0 ;
18 # t h e stomp c o n n e c t i o n o b j e c t
19 my $STOMP ;
20 # t h e name o f t h e ActiveMQ s e r v e r
21 my $MQSERVER = " sysadmin14 . i u . h i o . no " ;
22 # t h e name o f t h e R e q u e s t T r a c k e r s e r v e r
23 my $RTSERVER = " sysadmin16 . i u . h i o . no " ;
24 # t h e p o r t used t o c o n n e c t o t h e ActiveMQ s e r v e r
25 my $MQPORT = 61613;
26 # t h e name o f t h i s module
27 my $MODULENAME = " Reques t−Tracke r−Module " ;
28 # t h e name o f t h e s o u r c e b e i n g p r o v i d e d by t h i s module
29 my $SOURCENAME = " Reques t T r a c k e r " ;
30 # t h e name o f t h e query queue
31 my $QUERYQUEUE = "queryQueue$MODULENAME" ;
32 # t h e name o f t h e r e s u l t queue
33 my $RESULTQUEUE = "resultQueue$MODULENAME" ;
34 # t h e f i l e c o n t a i n i n g t h e c l a s s f i c a t i o n s s t r i n g s f o r t h e RT

queues
35 my $CLASSIFICATIONS = " q u e u e _ c l a s s i f i c a t i o n s . d a t " ;
36 # Hash mapping RT queue names t o c l a s s i f i c a t i o n s s t r i n g s
37 my %QUEUE_CLASSIFICATIONS ;
38 # t h e number o f m i l l i s e c o n d s a r e s u l t s h o u l d remain i n t h e
39 # r e s u l t queue o f t h e c l i e n t b e f o r e b e i n g removed

114

8.5. REQUEST TRACKER MODULE

40 my $EXPIRY = 40000 ;
41
42 ### End Globa l v a r i a b l e s
43
44 # Handle f l a g s and arguments
45 # Example : c == "−c " , c : == "−c argument "
46 my $ o p t _ s t r i n g = ’ vdh ’ ;
47 g e t o p t s (" $ o p t _ s t r i n g " , \my %o p t) o r usage () and e x i t 1 ;
48
49 # P r i n t h e l p message i f −h i s i n v o k e d
50 i f ($op t { ’ h ’ }) {
51 usage () ;
52 e x i t 0 ;
53 }
54
55 # Handle o t h e r u s e r i n p u t
56 $VERBOSE = 1 i f $op t { ’ v ’ } ;
57 $DEBUG = 1 i f $op t { ’ d ’ } ;
58
59 # ##### Main s c r i p t c o n t e n t
60 #
61
62 v e r b o s e (" Verbose i s e n a b l e d \ n ") ;
63 debug (" Debug i s e n a b l e d \ n ") ;
64 s e t _ q u e u e _ c l a s s i f i c a t i o n s () ;
65 c o n n e c t _ t o _ s e r v e r () ;
66 s u b s c r i b e ($QUERYQUEUE) ;
67 whi le (1) {
68 my %query = g e t _ q u e r y () ;
69 my $ r e s u l t = g e t _ m o d u l e _ r e s u l t (\% query) ;
70 s e n d _ r e s u l t ($ r e s u l t) ;
71 }
72
73 #
74 # #####
75
76 ##
77 ## Used t o g e t a query message from t h e query queue
78 ## @return : Hash c o n t a i n i n g t h e query da ta
79 ##
80 sub g e t _ q u e r y {
81 my $frame = $STOMP−>r e c e i v e _ f r a m e ;
82 my $xml = new XML: : Simple ;
83 my $ d a t a = $xml−>XMLin ($frame−>body) ;
84 my %query = %{$ d a t a } ;
85 debug ($query { ’ u s e r ’ } . " \ n ") ;
86 debug ($query { ’ query−number ’ } . " \ n ") ;
87 debug ($query { ’ s e r v e r ’ } . " \ n ") ;
88 debug ($query { ’ s e r v i c e ’ } . " \ n ") ;

115

8.5. REQUEST TRACKER MODULE

89 $STOMP−>ack ({ f rame => $frame }) ;
90 re turn %query ;
91 }
92
93 ##
94 ## Used t o send a module r e s u l t t o t h e r e s u l t queue
95 ## @param : an xml tag ge d module r e s u l t
96 ##
97 sub s e n d _ r e s u l t {
98 my $ r e s u l t = s h i f t () ;
99 $STOMP−>send ({

100 d e s t i n a t i o n => " / queue /$RESULTQUEUE" ,
101 body => $ r e s u l t
102 }) ;
103 }
104
105 ##
106 ## Connec t s t o t h e ActiveMQ s e r v e r
107 ##
108 sub c o n n e c t _ t o _ s e r v e r {
109 $STOMP = Net : : Stomp−>new ({
110 hostname => $MQSERVER,
111 p o r t => $MQPORT
112 }) ;
113
114 $STOMP−>connect ({
115 l o g i n => ’ admin ’ ,
116 p a s s c o d e => ’ a c t i v e m q ’
117 }) ;
118 }
119
120 ##
121 ## Used t o s u b s c r i b e t o a c e r t a i n queue
122 ## @param : queue name
123 ##
124 sub s u b s c r i b e {
125 my $queueName = s h i f t () ;
126 $STOMP−> s u b s c r i b e ({
127 d e s t i n a t i o n => " / queue / $queueName " ,
128 ’ ack ’ => ’ c l i e n t ’ ,
129 ’ a c t i v e m q . p r e f e t c h S i z e ’ => 1
130 }) ;
131 }
132
133 ##
134 ## Used t o read t h e $CLASSIFICATIONS f i l e and s t o r e t h e

c l a s s i f i c a t i o n s s t r i n g s
135 ## i n %QUEUE_CLASSIFICATIONS by RT queue names
136 ##

116

8.5. REQUEST TRACKER MODULE

137 sub s e t _ q u e u e _ c l a s s i f i c a t i o n s {
138 open (CLASS , $CLASSIFICATIONS) or d i e " u n a b l e t o open

$CLASSIFICATIONS \ n " ;
139 whi le (my $ l i n e = <CLASS>) {
140 $ l i n e =~ / ^ (\ w+) [\ s | \ t] ∗ (\ d +) / ;
141 my $queue = $1 ;
142 my $ c _ s t r i n g = $2 ;
143 $QUEUE_CLASSIFICATIONS{ $queue } = $ c _ s t r i n g ;
144 }
145 c l o s e (CLASS) ;
146 }
147
148 ##
149 ## Used t o b u i l d a module r e s u l t based on a query
150 ## @param : Hash c o n t a i n i n g t h e query da ta
151 ## @return : An xml ta gge d module r e s u l t
152 ##
153 sub g e t _ m o d u l e _ r e s u l t {
154 my %query = %{ s h i f t () } ;
155 my $ u s e r = $query { ’ u s e r ’ } ;
156 my $ d e v i c e = $query { ’ d e v i c e ’ } ;
157 my $query_number = $query { ’ query−number ’ } ;
158 my $ x m l _ m o d u l e _ r e s u l t = " " ;
159 my $xml_header = "<module− r e s u l t u s e r = \ " $ u s e r \ " " .
160 " d e v i c e = \ " $ d e v i c e \ " " .
161 " query−number = \ " $query_number \ " " .
162 " s o u r c e = \ "$SOURCENAME\ " " .
163 " e x p i r y = \ " $EXPIRY \ " > \ n " ;
164 my $ x m l _ f o o t e r = " </ module−r e s u l t > \ n " ;
165 $ x m l _ m o d u l e _ r e s u l t . = $xml_header ;
166
167 my $ s e r v e r = $query { ’ s e r v e r ’ } ;
168 i f ($ s e r v e r =~ / ^HASH \ (. ∗ /) {
169 $ s e r v e r = " " ;
170 }
171 my $ s e r v i c e = $query { ’ s e r v i c e ’ } ;
172 i f ($ s e r v i c e =~ / ^HASH \ (. ∗ /) {
173 $ s e r v i c e = " " ;
174 }
175
176 my $ r e s u l t s = g e t _ r e s u l t s ($ s e r v e r , $ s e r v i c e) ;
177 $ x m l _ m o d u l e _ r e s u l t . = $ r e s u l t s ;
178
179 $ x m l _ m o d u l e _ r e s u l t . = $ x m l _ f o o t e r ;
180 re turn $ x m l _ m o d u l e _ r e s u l t ;
181 }
182
183 ##

117

8.5. REQUEST TRACKER MODULE

184 ## Gets t h e r e s u l t s from a query based on s e r v e r and s e r v i c e
names

185 ## @param : s e r v e r name
186 ## @param : s e r v i c e name
187 ## @return : a s t r i n g c o n t a i n i n g a l l xml ta gg ed r e s u l t s from t h e

query
188 ##
189 sub g e t _ r e s u l t s {
190 my $ s e r v e r = l c s h i f t ;
191 my $ s e r v i c e = l c s h i f t ;
192 my $ s e r v e r _ n o t _ e m p t y = 0 ;
193 my $ s e r v i c e _ n o t _ e m p t y = 0 ;
194 $ s e r v e r _ n o t _ e m p t y = 1 i f $ s e r v e r ne " " ;
195 $ s e r v i c e _ n o t _ e m p t y = 1 i f $ s e r v i c e ne " " ;
196 my $ r e s u l t s = " " ;
197
198 # r e t u r n empty r e s u l t i f t h e s e a r c h p a r a m e t e r s are m i s s i n g
199 re turn $ r e s u l t s i f (! $ s e r v e r _ n o t _ e m p t y and ! $ s e r v i c e _ n o t _ e m p t y

) ;
200
201 open (RT , " r t l s −f queue , s u b j e c t | ") ;
202 my $ s k i p _ l i n e = 1 ;
203 whi le (my $ l i n e = <RT>) {
204 i f ($ s k i p _ l i n e) {
205 $ l i n e = <RT>;
206 $ s k i p _ l i n e = 0 ;
207 }
208 $ l i n e =~ / ^ (\ d +) [\ s | \ t] + (\ S+) [\ s | \ t] + (. ∗) / ;
209 my $ t i c k e t _ n u m b e r = $1 ;
210 my $queue = $2 ;
211 my $ s u b j e c t = $3 ;
212 i f ($ s e r v e r _ n o t _ e m p t y and $ s e r v i c e _ n o t _ e m p t y) {
213 i f ($ s u b j e c t =~ / . ∗ \ b $ s e r v i c e \ b . ∗ / i and
214 $ s u b j e c t =~ / . ∗ \ b $ s e r v e r \ b . ∗ / i) {
215 my $ x m l _ r e s u l t = g e n e r a t e _ x m l _ r e s u l t (
216 " $queue : $ s u b j e c t " ,
217 $QUEUE_CLASSIFICATIONS{ $queue } ,
218 $ t i c k e t _ n u m b e r) ;
219 $ r e s u l t s . = $ x m l _ r e s u l t ;
220 }
221 } e l s i f (! $ s e r v e r _ n o t _ e m p t y and $ s e r v i c e _ n o t _ e m p t y) {
222 i f ($ s u b j e c t =~ / . ∗ \ b $ s e r v i c e \ b . ∗ / i) {
223 my $ x m l _ r e s u l t = g e n e r a t e _ x m l _ r e s u l t (
224 " $queue : $ s u b j e c t " ,
225 $QUEUE_CLASSIFICATIONS{ $queue } ,
226 $ t i c k e t _ n u m b e r) ;
227 $ r e s u l t s . = $ x m l _ r e s u l t ;
228 }
229 } e l s i f ($ s e r v e r _ n o t _ e m p t y and ! $ s e r v i c e _ n o t _ e m p t y) {

118

8.5. REQUEST TRACKER MODULE

230 i f ($ s u b j e c t =~ / . ∗ \ b $ s e r v e r \ b . ∗ / i) {
231 my $ x m l _ r e s u l t = g e n e r a t e _ x m l _ r e s u l t (
232 " $queue : $ s u b j e c t " ,
233 $QUEUE_CLASSIFICATIONS{ $queue } ,
234 $ t i c k e t _ n u m b e r) ;
235 $ r e s u l t s . = $ x m l _ r e s u l t ;
236 }
237 }
238 }
239 c l o s e (RT) ;
240 re turn $ r e s u l t s ;
241 }
242
243 ##
244 ## Used t o g e n e r a t e an xml ta gge d s i n g l e r e s u l t
245 ## @param : t h e t i t l e
246 ## @param : t h e c l a s s i f i c a t i o n v e c t o r (a s t r i n g)
247 ## @param : t h e t i c k e t number
248 ## @return : a s i n g l e xml ta gge d r e s u l t
249 ##
250 sub g e n e r a t e _ x m l _ r e s u l t {
251 my $ t i t l e = s h i f t ;
252 my $c = s h i f t ;
253 my $ t i c k e t _ n u m b e r = s h i f t ;
254 my $ u r l = " h t t p : / / $RTSERVER / r t / T i c k e t / D i s p l a y . h tml ? i d =

$ t i c k e t _ n u m b e r " ;
255 my $ x m l _ r e s u l t = " \ t < r e s u l t > \ n " .
256 " \ t \ t < t i t l e > $ t i t l e < / t i t l e > \ n " .
257 " \ t \ t < c l a s s i f i c a t i o n >$c </ c l a s s i f i c a t i o n > \ n " .
258 " \ t \ t < u r l > $ u r l < / u r l > \ n " .
259 " \ t < / r e s u l t > \ n " ;
260 re turn $ x m l _ r e s u l t ;
261 }
262
263 ##
264 ## P r i n t s t h e c o r r e c t use o f t h i s s c r i p t
265 ##
266 sub usage {
267 p r i n t " Usage : \ n " ;
268 p r i n t "−h Usage \ n " ;
269 p r i n t "−v Verbose \ n " ;
270 p r i n t "−d Debug \ n " ;
271 p r i n t " . / s c r i p t [−d] [−v] [−h] \ n " ;
272 }
273
274 ##
275 ## Used t o p r i n t v e r b o s e messages , when i n v e r b o s e mode
276 ## @param : s t r i n g t o p r i n t
277 ##

119

8.6. DOKUWIKI MODULE

278 sub v e r b o s e {
279 p r i n t $_ [0] i f $VERBOSE ;
280 }
281
282 ##
283 ## Used t o p r i n t debug messages , when i n debug mode
284 ## @param : s t r i n g t o p r i n t
285 ##
286 sub debug {
287 p r i n t "DEBUG: " . $_ [0] i f $DEBUG;
288 }

;

8.5.2 queue_classifications.dat

queue_classifications.dat
1 A l e r t 10000000000000000000000000100000
2 G e n e r a l 00000000000000000000000000100000
3 Order 00000000000000000000100000100000
4 S u p p o r t 00000000000000000000000010100000

;

8.6 DokuWiki Module

8.6.1 dokuwiki-module.pl

dokuwiki–module.pl
1 # ! / u s r / b i n / p e r l
2
3 # Needed packages
4 use Ge to p t : : S td ;
5 use s t r i c t " v a r s " ;
6 use Net : : Stomp ;
7 use XML: : Simple ;
8 use Data : : Dumper ;
9

10 ### Globa l v a r i a b l e s
11
12 # t u r n on or o f f v e r b o s e mode
13 my $VERBOSE = 0 ;
14 # t u r n on or o f f debug mode
15 my $DEBUG = 0 ;
16 # f i l e c o n t a i n i n g t h e c l a s s i f i c a t i o n v e c t o r s

120

8.6. DOKUWIKI MODULE

17 my $CLASSIFICATIONS = " c l a s s i f i c a t i o n s . d a t " ;
18 # hash , mapping c l a s s i f i c a t i o n s
19 my %CLASSIFICATION_MAP ;
20 # t h e pa th t o d i r e c t o r y c o n t a i n i n g a l l w i k i pages
21 my $PAGEPATH = ’ / v a r / l i b / dokuwik i / d a t a / pages ’ ;
22 # t h e stomp c o n n e c t i o n o b j e c t
23 my $STOMP ;
24 # t h e name o f t h e ActiveMQ s e r v e r
25 my $MQSERVER = " sysadmin14 . i u . h i o . no " ;
26 # t h e name o f t h e d o k u w i k i s e r v e r
27 my $DOKUWIKISERVER = " sysadmin17 . i u . h i o . no " ;
28 # t h e p o r t used t o c o n n e c t t o t h e ActiveMQ s e r v e r
29 my $MQPORT = 61613;
30 # t h e name o f t h i s module
31 my $MODULENAME = " DokuWiki−Module " ;
32 # t h e name o f t h e s o u r c e b e i n g p r o v i d e d by t h i s module
33 my $SOURCENAME = " DokuWiki " ;
34 # t h e name o f t h e query queue
35 my $QUERYQUEUE = "queryQueue$MODULENAME" ;
36 # t h e name o f t h e r e s u l t queue
37 my $RESULTQUEUE = "resultQueue$MODULENAME" ;
38 # t h e number o f m i l l i s e c o n d s a r e s u l t from t h i s module s h o u l d

remain i n t h e
39 # r e s u l t queue o f t h e c l i e n t b e f o r e b e i n g removed
40 my $EXPIRY = 40000 ;
41
42 ### End g l o b a l v a r i a b l e s
43
44 # Handle f l a g s and arguments
45 # Example : c == "−c " , c : == "−c argument "
46 my $ o p t _ s t r i n g = ’ vdh ’ ;
47 g e t o p t s (" $ o p t _ s t r i n g " , \my %o p t) o r usage () and e x i t 1 ;
48
49 # P r i n t h e l p message i f −h i s i n v o k e d
50 i f ($op t { ’ h ’ }) {
51 usage () ;
52 e x i t 0 ;
53 }
54
55 # Handle o t h e r u s e r inpu1
56 $VERBOSE = 1 i f $op t { ’ v ’ } ;
57 $DEBUG = 1 i f $op t { ’ d ’ } ;
58
59 # ##### Main s c r i p t c o n t e n t
60 #
61
62 v e r b o s e (" Verbose i s e n a b l e d \ n ") ;
63 debug (" Debug i s e n a b l e d \ n ") ;
64

121

8.6. DOKUWIKI MODULE

65 v e r b o s e (" Loading . . . \ n ") ;
66 s e t _ c l a s s i f i c a t i o n s () ;
67 v e r b o s e ("$MODULENAME r u n n i n g \ n ") ;
68 c o n n e c t _ t o _ s e r v e r () ;
69 s u b s c r i b e ($QUERYQUEUE) ;
70 whi le (1) {
71 my %query = g e t _ q u e r y () ;
72 my $ r e s u l t = g e t _ m o d u l e _ r e s u l t (\% query) ;
73 s e n d _ r e s u l t ($ r e s u l t) ;
74 }
75
76 #
77 # #####
78
79 ##
80 ## Gets t h e r e s u l t s from a query based on t h e s e r v e r and s e r v i c e

names
81 ## @param : s e r v e r name
82 ## @param : s e r v i c e name
83 ## @return : A s t r i n g c o n t a i n i n g a l l xml ta gg ed r e s u l t s from t h e

query
84 ##
85 sub g e t _ r e s u l t s {
86
87 my $ s e r v e r = l c s h i f t ;
88 my $ s e r v i c e = l c s h i f t ;
89 my $ s e r v e r _ i n _ q u e r y = 0 ;
90 my $ s e r v i c e _ i n _ q u e r y = 0 ;
91 $ s e r v e r _ i n _ q u e r y = 1 i f l e n g t h ($ s e r v e r) > 0 ;
92 $ s e r v i c e _ i n _ q u e r y = 1 i f l e n g t h ($ s e r v i c e) > 0 ;
93 my $ r e s u l t s = " " ;
94
95 i f ($ s e r v e r _ i n _ q u e r y and $ s e r v i c e _ i n _ q u e r y) {
96
97 i f (−e "$PAGEPATH / $ s e r v i c e−$ s e r v e r . t x t ") {
98 my $ t i t l e = " Documenta t ion : $ s e r v i c e−$ s e r v e r " ;
99 my $c = g e t _ c l a s s i f i c a t i o n _ v e c t o r ($ s e r v i c e) ;

100 my $ u r l = g e n e r a t e _ u r l (" $ s e r v i c e−$ s e r v e r ") ;
101 my $ x m l _ r e s u l t = g e n e r a t e _ x m l _ r e s u l t ($ t i t l e , $c , $ u r l) ;
102 $ r e s u l t s . = $ x m l _ r e s u l t ;
103 }
104
105 } e l s i f ($ s e r v e r _ i n _ q u e r y and ! $ s e r v i c e _ i n _ q u e r y and l e n g t h (

$ s e r v i c e) == 0) {
106
107 opendir (DIR , "$PAGEPATH") ;
108 my @ f i l e s = readd ir (DIR) ;
109 foreach my $ f i l e (@ f i l e s) {
110 i f ($ f i l e =~ / . ∗ $ s e r v e r . ∗ /) {

122

8.6. DOKUWIKI MODULE

111 my $ i d = $ f i l e ;
112 $ i d =~ s / . t x t / / ;
113 my $ t i t l e = " Documenta t ion : $ i d " ;
114 my $c = g e t _ c l a s s i f i c a t i o n _ v e c t o r ($ f i l e) ;
115 my $ u r l = g e n e r a t e _ u r l ($ i d) ;
116 my $ x m l _ r e s u l t = g e n e r a t e _ x m l _ r e s u l t ($ t i t l e , $c , $ u r l) ;
117 $ r e s u l t s . = $ x m l _ r e s u l t ;
118 }
119 }
120
121 } e l s i f (! $ s e r v e r _ i n _ q u e r y and $ s e r v i c e _ i n _ q u e r y and l e n g t h (

$ s e r v e r) == 0) {
122
123 i f (−e "$PAGEPATH / $ s e r v i c e . t x t ") {
124 my $ t i t l e = " Documenta t ion : $ s e r v i c e " ;
125 my $c = g e t _ c l a s s i f i c a t i o n _ v e c t o r ($ s e r v i c e) ;
126 my $ u r l = g e n e r a t e _ u r l ($ s e r v i c e) ;
127 my $ x m l _ r e s u l t = g e n e r a t e _ x m l _ r e s u l t ($ t i t l e , $c , $ u r l) ;
128 $ r e s u l t s . = $ x m l _ r e s u l t ;
129 }
130
131 }# e l s e t h e r e are no r e s u l t s f o r t h i s query
132
133 re turn $ r e s u l t s ;
134 }
135
136 ##
137 ## Used t o g e t t h e c l a s s i f i c a t i o n v e c t o r o f a term
138 ## @param : term name
139 ## @return : s t r i n g , c l a s s i f i c a t i o n v e c t o r
140 ##
141 sub g e t _ c l a s s i f i c a t i o n _ v e c t o r {
142 my $page_name = s h i f t ;
143 i f (e x i s t s $CLASSIFICATION_MAP{ $page_name }) {
144 re turn $CLASSIFICATION_MAP{ $page_name } ;
145 }
146 $page_name =~ / (. ∗) − .∗ / ;
147 my $ c l a s s = $1 ;
148 re turn $CLASSIFICATION_MAP{ $ c l a s s } ;
149 }
150
151 ##
152 ## Used t o g e n e r a t e t h e u r l t o a w i k i page based on an i d
153 ## @param : i d
154 ## @return : u r l
155 ##
156 sub g e n e r a t e _ u r l {
157 my $ i d = s h i f t ;
158 my $ u r l = " h t t p : / / $DOKUWIKISERVER / dokuwik i / doku . php ? i d = $ i d " ;

123

8.6. DOKUWIKI MODULE

159 re turn $ u r l ;
160 }
161
162 ##
163 ## Used t o g e n e r a t e an xml ta gge d s i n g l e r e s u l t
164 ## @param : t h e t i t l e
165 ## @param : t h e c l a s s i f c a t i o n v e c t o r (a s t r i n g)
166 ## @param : t h e u r l l i n k i n g t o t h e r e s o u r c e
167 ## @return : a s i n g l e xml ta gge d r e s u l t
168 ##
169 sub g e n e r a t e _ x m l _ r e s u l t {
170 my $ t i t l e = s h i f t ;
171 my $c = s h i f t ;
172 my $ u r l = s h i f t ;
173 my $ x m l _ r e s u l t = " \ t < r e s u l t > \ n " .
174 " \ t \ t < t i t l e > $ t i t l e < / t i t l e > \ n " .
175 " \ t \ t < c l a s s i f i c a t i o n >$c </ c l a s s i f i c a t i o n > \ n " .
176 " \ t \ t < u r l > $ u r l < / u r l > \ n " .
177 " \ t < / r e s u l t > \ n " ;
178 re turn $ x m l _ r e s u l t ;
179 }
180
181 ##
182 ## Used t o b u i l d t h e module r e s u l t based on a query
183 ## @param : HASH c o n t a i n i n g t h e query da ta
184 ## @return : An xml ta gge d module r e s u l t
185 ##
186 sub g e t _ m o d u l e _ r e s u l t {
187 my %query = %{ s h i f t () } ;
188 my $ u s e r = $query { ’ u s e r ’ } ;
189 my $ d e v i c e = $query { ’ d e v i c e ’ } ;
190 my $query_number = $query { ’ query−number ’ } ;
191 my $ x m l _ m o d u l e _ r e s u l t = " " ;
192 my $xml_header = "<module− r e s u l t u s e r = \ " $ u s e r \ " " .
193 " d e v i c e = \ " $ d e v i c e \ " " .
194 " query−number = \ " $query_number \ " " .
195 " s o u r c e = \ "$SOURCENAME\ " " .
196 " e x p i r y = \ " $EXPIRY \ " > \ n " ;
197 my $ x m l _ f o o t e r = " </ module−r e s u l t > \ n " ;
198 $ x m l _ m o d u l e _ r e s u l t . = $xml_header ;
199
200 my $ s e r v e r = $query { ’ s e r v e r ’ } ;
201 i f ($ s e r v e r =~ / ^HASH \ (. ∗ /) {
202 $ s e r v e r = " " ;
203 }
204 my $ s e r v i c e = $query { ’ s e r v i c e ’ } ;
205 i f ($ s e r v i c e =~ / ^HASH \ (. ∗ /) {
206 $ s e r v i c e = " " ;
207 }

124

8.6. DOKUWIKI MODULE

208 my $ r e s u l t s = g e t _ r e s u l t s ($ s e r v e r , $ s e r v i c e) ;
209 $ x m l _ m o d u l e _ r e s u l t . = $ r e s u l t s ;
210
211 $ x m l _ m o d u l e _ r e s u l t . = $ x m l _ f o o t e r ;
212 re turn $ x m l _ m o d u l e _ r e s u l t ;
213 }
214
215 ##
216 ## Used t o send a module r e s u l t t o t h e r e s u l t queue
217 ## @param : an xml tag ge d module r e s u l t
218 ##
219 sub s e n d _ r e s u l t {
220 my $ r e s u l t = s h i f t () ;
221 $STOMP−>send ({
222 d e s t i n a t i o n => " / queue /$RESULTQUEUE" ,
223 body => $ r e s u l t
224 }) ;
225 }
226
227
228 ##
229 ## Used t o g e t a query message from t h e query queue
230 ## @return : HASH c o n t a i n i n g t h e query da ta
231 ##
232 sub g e t _ q u e r y {
233 my $frame = $STOMP−>r e c e i v e _ f r a m e ;
234 my $xml = new XML: : Simple ;
235 my $ d a t a = $xml−>XMLin ($frame−>body) ;
236 my %query = %{$ d a t a } ;
237 debug ($query { ’ u s e r ’ } . " \ n ") ;
238 debug ($query { ’ query−number ’ } . " \ n ") ;
239 debug ($query { ’ s e r v e r ’ } . " \ n ") ;
240 debug ($query { ’ s e r v i c e ’ } . " \ n ") ;
241 $STOMP−>ack ({ f rame => $frame }) ;
242 re turn %query ;
243 }
244
245 ##
246 ## Connec t s t o t h e ActiveMQ s e r v e r
247 ##
248 sub c o n n e c t _ t o _ s e r v e r {
249 $STOMP = Net : : Stomp−>new ({
250 hostname => $MQSERVER,
251 p o r t => $MQPORT
252 }) ;
253
254 $STOMP−>connect ({
255 l o g i n => ’ admin ’ ,
256 p a s s c o d e => ’ a c t i v e m q ’

125

8.6. DOKUWIKI MODULE

257 }) ;
258 }
259
260 ##
261 ## Used t o s u b s c r i b e t o a c e r t a i n queue
262 ## @param : queue name
263 ##
264 sub s u b s c r i b e {
265 my $queueName = s h i f t () ;
266 $STOMP−> s u b s c r i b e ({
267 d e s t i n a t i o n => " / queue / $queueName " ,
268 ’ ack ’ => ’ c l i e n t ’ ,
269 ’ a c t i v e m q . p r e f e t c h S i z e ’ => 1
270 }) ;
271 }
272
273 ##
274 ##
275 ##
276 sub s e t _ c l a s s i f i c a t i o n s {
277 open (IN , $CLASSIFICATIONS) or d i e " u n a b l e t o open

$CLASSIFICATIONS \ n " ;
278 whi le (my $ l i n e = <IN >) {
279 $ l i n e =~ / ^ (\ w+) [\ s | \ t] ∗ (\ d +) / ;
280 my $name = $1 ;
281 my $ c _ s t r i n g = $2 ;
282 $CLASSIFICATION_MAP{$name} = $ c _ s t r i n g ;
283 }
284 c l o s e (IN) ;
285 }
286
287 ##
288 ## P r i n t s t h e c o r r e c t use o f t h i s s c r i p t
289 ##
290 sub usage {
291 p r i n t " Usage : \ n " ;
292 p r i n t "−h Usage \ n " ;
293 p r i n t "−v Verbose \ n " ;
294 p r i n t "−d Debug \ n " ;
295 p r i n t " . / s c r i p t [−d] [−v] [−h] \ n " ;
296 }
297
298 ##
299 ## Used t o p r i n t v e r b o s e messages , when i n v e r b o s e mode
300 ## @param : s t r i n g t o p r i n t
301 ##
302 sub v e r b o s e {
303 p r i n t $_ [0] i f $VERBOSE ;
304 }

126

8.6. DOKUWIKI MODULE

305
306 ##
307 ## Used t o p r i n t debug messages , when i n v e r b o s e mode
308 ## @param : s t r i n g t o p r i n t
309 ##
310 sub debug {
311 p r i n t "DEBUG: " . $_ [0] i f $DEBUG;
312 }

;

8.6.2 classifications.dat

classifications.dat
1 hardware 00000001100000000000000000000000
2 s o f t w a r e 00000000100100000000000000000000
3 mysql 00001000100000000000000000000000
4 apache 00000000100000000000000000000010

;

127

Bibliography

[1] S. Albayrak et al. “Agent technology for personalized information filtering:
the PIA-system”. In: Proceedings of the 2005 ACM symposium on Applied
computing. ACM. 2005, pp. 54–59.

[2] R. Barrett, Y.Y.M. Chen, and P.P. Maglio. “System administrators are users,
too: designing workspaces for managing internet-scale systems”. In: CHI’03
extended abstracts on Human factors in computing systems. ACM. 2003,
pp. 1068–1069.

[3] N.J. Belkin and W.B. Croft. “Information filtering and information retrieval:
two sides of the same coin?” In: Communications of the ACM 35.12 (1992),
pp. 29–38.

[4] A.D. Birrell and B.J. Nelson. “Implementing remote procedure calls”. In:
ACM Transactions on Computer Systems (TOCS) 2.1 (1984), pp. 39–59.

[5] T. Bray et al. “Extensible markup language (XML)”. In: World Wide Web
Journal 2.4 (1997), pp. 27–66.

[6] D. Crockford. The application/json media type for javascript object nota-
tion (json). RFC 4627. IETF, 2006. URL: https://tools.ietf.org/html/rfc4627.

[7] M.R. Endsley. “Automation and situation awareness”. In: Automation and
human performance: Theory and applications (1996), pp. 163–181.

[8] M.R. Endsley. “Design and evaluation for situation awareness enhance-
ment”. In: Human Factors and Ergonomics Society Annual Meeting Pro-
ceedings. Vol. 32. 2. Human Factors and Ergonomics Society. 1988, pp. 97–
101.

[9] L. Finkelstein et al. “Placing search in context: The concept revisited”.
In: Proceedings of the 10th international conference on World Wide Web.
ACM. 2001, pp. 406–414.

[10] A. Gohr. DokuWiki. Last visited on 21/03/2012. 2012. URL: http://www.do
kuwiki.org/dokuwiki.

128

https://tools.ietf.org/html/rfc4627
http://www.dokuwiki.org/dokuwiki
http://www.dokuwiki.org/dokuwiki

BIBLIOGRAPHY

[11] E. Greengrass. “Information retrieval: A survey”. In: DOD Technical Re-
port TR-R52-008-001 (2000).

[12] E.M. Haber and J. Bailey. “Design guidelines for system administration
tools developed through ethnographic field studies”. In: Proceedings of the
2007 symposium on Computer human interaction for the management of
information technology. ACM. 2007, p. 1.

[13] T.H. Haveliwala. “Topic-sensitive pagerank: A context-sensitive ranking
algorithm for web search”. In: Knowledge and Data Engineering, IEEE
Transactions on 15.4 (2003), pp. 784–796.

[14] P. Horn. “Autonomic computing: IBM’s perspective on the state of infor-
mation technology”. In: Computing Systems 15.Jan (2001), pp. 1–40.

[15] M.K. Hui and D.K. Tse. “What to tell consumers in waits of different
lengths: An integrative model of service evaluation”. In: The Journal of
Marketing (1996), pp. 81–90.

[16] S. Lawrence. “Context in web search”. In: IEEE Data Engineering Bulletin
23.3 (2000), pp. 25–32.

[17] Best Practical Solutions LLC. RT: Request Tracker. Last visited on 21/03/2012.
2012. URL: http://bestpractical.com/rt.

[18] Munin-monitoring. Munin-monitoring. Last visited on 20/03/2012. 2012.
URL: http://munin-monitoring.org.

[19] S.H. Myaeng and R.R. Korfhage. “Integration of user profiles: Models and
experiments in information retrieval”. In: Information processing & man-
agement 26.6 (1990), pp. 719–738.

[20] F.F.H. Nah. “A study on tolerable waiting time: how long are Web users
willing to wait?” In: Behaviour & Information Technology 23.3 (2004),
pp. 153–163.

[21] N.F. Noy. “Semantic integration: a survey of ontology-based approaches”.
In: ACM Sigmod Record 33.4 (2004), pp. 65–70.

[22] G. Salton and C. Buckley. “Improving retrieval performance by relevance
feedback”. In: Readings in information retrieval (1997), pp. 355–364.

[23] G. Salton, A. Wong, and C.S. Yang. “A vector space model for automatic
indexing”. In: Communications of the ACM 18.11 (1975), pp. 613–620.

[24] B. Sheth and P. Maes. “Evolving agents for personalized information filter-
ing”. In: Artificial Intelligence for Applications, 1993. Proceedings., Ninth
Conference on. IEEE. 1993, pp. 345–352.

129

http://bestpractical.com/rt
http://munin-monitoring.org

BIBLIOGRAPHY

[25] B. Snyder, D. Bosnanac, and R. Davies. ActiveMQ in action. Manning,
2011.

[26] S. Staab and R. Studer. Handbook on ontologies. Springer Verlag, 2004.

[27] STOMP Protocol Specification, Version 1.1. Last visited on 02/04/2012.
2011. URL: http://stomp.github.com/stomp-specification-1.1.html.

[28] R. Studer, V.R. Benjamins, and D. Fensel. “Knowledge engineering: prin-
ciples and methods”. In: Data & knowledge engineering 25.1-2 (1998),
pp. 161–197.

[29] M. Uschold and M. Gruninger. “Ontologies: Principles, methods and ap-
plications”. In: Knowledge engineering review 11.2 (1996), pp. 93–136.

[30] H. Wache et al. “Ontology-based integration of information-a survey of
existing approaches”. In: IJCAI-01 workshop: ontologies and information
sharing. Vol. 2001. Citeseer. 2001, pp. 108–117.

[31] C. Welty. “Ontology research”. In: AI magazine 24.3 (2003), p. 11.

[32] D.D. Woods. “Decomposing automation: Apparent simplicity, real com-
plexity”. In: Automation and human performance: Theory and applications
(1996), pp. 3–17.

130

http://stomp.github.com/stomp-specification-1.1.html

	Introduction
	Problem statement

	Background
	System Administration and Automation
	Information Classification
	Information Retrieval
	Information Filtering
	Systems Monitoring
	Presenting Information
	Message-oriented Middleware

	Approach
	Designing the Architecture
	Classification
	Developing a Prioritization Scheme
	Data Aggregation and Module Design
	The Presentation Layer

	The Prototype
	The Core System
	Modules
	Presentation Layer Implementation
	Verification

	Task Summary

	Results: Architecture
	Domain Classification
	Prioritization Scheme and Preference Profiles
	Module Design, The Query Broker and Data Aggregation
	Communication and Data Transportation

	Presentation Layer Design
	The Meta Model
	Extensibility

	Results: Prototype
	Overview
	Development Environment and Technologies
	Data Transfer Formats
	Queue Naming Scheme
	Query Broker
	Query Distribution
	Handling Incoming Results

	SQSI-CLI: The Client
	The Modules
	Munin Module
	Request Tracker Module
	DokuWiki Module

	Functionality Testing

	Discussion
	The Prototype
	Changes to the Data Transfer Formats
	Functionality Testing

	Architecture
	Caching
	Prioritization
	Generating Preference Profiles
	Presentation Layer
	Error Handling
	Expanding Search Possibilities
	Scalability

	In The Server Room
	Problem Statement Revisited
	Source Code

	Conclusion
	Future Work

	Appendix
	Preference Profiles
	Alice
	Bob

	Query Broker
	querybroker.pl
	QueryResult.pm
	Result.pm
	modules.dat

	SQSI-CLI
	Munin Module
	munin-module.pl
	classifications.dat
	services.dat

	Request Tracker Module
	rt-module.pl
	queue_classifications.dat

	DokuWiki Module
	dokuwiki-module.pl
	classifications.dat

