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Abstract 

 

Background: The Nordic countries’ welfare state is under increased pressure. Health care 

expenditures are rising and expected to do so in the coming decades. It is therefore interesting 

to find out if the Norwegian specialist health care is cost efficient compared to its neighboring 

countries, or whether there are resources which could be allocated differently. The SINTEF 

report A12200 (Kittelsen et al., 2009a) was published in 2009. It found that Finland executes 

its specialist health care with higher productivity compared to Norway. This thesis builds 

upon the SINTEF report and extends it. 

The objective: To find out if the differences in hospital costs between the countries, over time, 

are due to differences in the productivity of the best performing hospitals and periods, which 

defines the efficiency frontier, or due to the distribution of efficiency behind the frontier.  

Method: The parametric method of Stochastic Frontier Analysis is chosen in order to 

decompose the country specific frontiers. The dataset originates from the SINTEF report 

(Kittelsen et al., 2009a). 

Results: Compared to Norway; the frontiers of Finland and Denmark are significantly 

different from the Norwegian frontier. The cost penalty for providing specialist health care in 

Norway as compared to Finland and Denmark is estimated to 26.9 % and 9 %. There is found 

no statistical significant difference between Sweden and Norway. There are differences 

between country specific frontiers but not the efficiency behind each frontier. In addition, 

significant differences are found within Norway which implies regional level frontiers. 

Conclusion: Norway could reduce its expenses by learning from the way Finland has 

organized their specialist health care. The results in this thesis makes it evident that the 

differences in hospital costs are due to differences in country specific productivity, and not the 

distribution of efficiency behind the frontier. It is recommended that future research attempts 

to develop a generic tool for assessing the best deterministic function as well as probability 

density function among several competing models. It would be interesting to examine 

allocative efficiency by shadow price models applied to this dataset. Quality outcomes ought 

to be incorporated in future efficiency evaluation. 
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1 Introduction 

 

The increasing health care expenditures in the Nordic countries have driven authorities to 

investigate methods for enhancing hospital efficiency. This has been done through several 

reforms in the past. One example is the prospective activity based financing schemes that 

reimburse the activity in the hospital, based on the diagnosis related group (DRG) system. 

The thought behind this kind of payment system is that it gives incentives for cost 

containment and at the same time increases efficiency and activity (Magnussen et al., 2009). 

The health sector is a substantial part of the public sector in the Nordic countries. According 

to statistics, nominal general governmental expenditures in the health sector in Norway for the 

year 2000 was around 16 % of total costs, and increased to about 17 % by 2010 (ssb.no, 

2010b). This is illustrated in figure 1. ( 

Figure 1) 

 

Figure 1. General governmental fiscal account, revenue and expenditure.  Source: Statistics Norway. 
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With the high expenditure in the Norwegian health sector in mind, it may not come as a 

surprise that the levels of cost and efficiency, or inefficiency, are of interest. Furthermore, it is 

interesting to examine what the relative levels of efficiency between the Nordic countries are, 

and whether there is a best practice of allocating resources that we can learn from. The 

answers to these questions are not easy to provide, nor are they the main research questions in 

this thesis. However, the methodology used in this thesis may provide a good starting point.  

The research question which is examined in this thesis is: 

Are the differences in hospital costs between Finland, Norway, Denmark and Sweden, over 

time, due to differences in the production possibilities that are specific to country and period, 

or due to the distribution of efficiency behind the frontier? 

In order to investigate the research question, there are two main methods to consider. The 

general literature (e.g. Jacobs et al. (2006), Coelli et al. (2005)) divides the techniques in two 

categories; the non-parametric Data Enveloped Analysis (DEA) method and the parametric 

Stochastic Frontier Analysis (SFA) method.  

This thesis builds on previous studies applying a multi-output cost function in assessing cost 

efficiency and estimating inefficiency. A contribution of this thesis to the literature is to apply 

SFA in an environment where DEA is frequently used, and assess country specific frontiers. 

In the literature it is common to make assumptions on issues such as whether efficiency varies 

over time or not (Coelli et al., 2005). By letting the data decide what type of assumptions are 

best suited for presenting the material, this thesis is not making any a priori specifications. 

Here it is not assumed how technology, time, country nor region influences costs in one way 

or the other; rather I will test for it. 

Researchers often have a notion of explanatory variables that they assume can account for 

(in)efficiency. The dataset used in this thesis provides information on environmental variables 

that is expected to influence the (in)efficiency component directly. The expectancy is not 

taken for granted, instead I will test if the environmental variables are correctly assumed to 

influence the (in)efficiency or not. 

This thesis is organized as follows: chapter 2 presents the aim and motivation for the thesis.  

Chapter 3 gives a background to the subject of the thesis and defines concepts such as a 
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Nordic model of health care; it attempts to define specialist health care and provides a brief 

literature review. Specific methodological issues of concern are explored in chapter 4. I 

include a brief introduction to the DEA technique in order to account for the methodology that 

is omitted, and provide a thorough understanding of SFA. Among several issues, special 

consideration is given to functional forms for assessment of the cost estimation as well as the 

distributions commonly imposed on the residuals.  

Chapter 5 investigates the data and challenges. It gives an account of the variables and what is 

measured as output. Chapter 6 provides a discussion of the model(s) and how estimation is 

conducted, before presenting the results in chapter 7. A discussion of the results is provided in 

chapter 8 followed by a conclusion in chapter 9. 
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2 Aim 

 

The objective of this thesis is to find out if the differences in hospital costs between the 

countries, over time, are due to differences in the productivity of the best performing hospitals 

and periods, which defines the efficiency frontier, or due to the distribution of efficiency 

behind the frontier. 

A parametric method is chosen over a non-parametric method. The SFA method provide 

means of separating measurement error (or noise) from inefficiency in the residual as opposed 

to DEA which assumes that there is no measurement error (Jacobs et al., 2006). In order for 

separation to occur SFA assumes functional restrictions on the residual with respect to the 

noise and inefficiency component respectively (Kittelsen, 1997).  

In addition to use DEA methodology, the SINTEF report A12200 “En komparativ analyse av 

spesialisthelsetjenesten i Finland, Sverige, Danmark og Norge: Aktivitet, ressursbruk og 

produktivitet 2005-2007” (Kittelsen et al., 2009a) tried to employ an SFA analysis, under the 

condition of truncated normal distribution of the inefficiency term1. Unfortunately, 

convergence was not achieved (Kittelsen et al., 2009a, p. 120). ‘Convergence not achieved’ 

simply means that the maximization of the deterministic part in the model fails, i.e. the 

function does not exhibit a global concavity or it is not found (StataCorp, 2009). Therefore, 

another aim of this thesis is to try alternative assumptions of the probability density function 

of the inefficiency term as well as the deterministic part to see whether convergence can be 

achieved. The dataset used stems from the above mentioned SINTEF report. 

A working hypothesis in this thesis is that the previously discovered global DEA frontier 

discussed in the SINTEF report is not entirely representative. In the report (Kittelsen et al., 

2009a) Norway emerged as clearly less productive compared to Finland. If it can be shown 

that the global frontier under DEA is unrepresentative, it could imply that the decision making 

units (DMUs) within each country might be closer to their own frontier. This in turn, may 

suggest that Norwegian public hospitals are as efficient as they have prevailing conditions to 

be. One possibility, if this is verified, is that there are underlying structural differences that 

influence the efficiency. This debate however, will not be the focus of this thesis. 

                                                 
1 Personal transcript provided by Sverre A.C. Kittelsen 
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Nevertheless, a good starting point for further discussion of the structural differences is 

Magnussen et al. (2009). 
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3 Background 

 

One often talks about the Nordic model, which refers to the Nordic welfare state. As with the 

Nordic model, the Nordic health care systems’ are reasonably similar. While the SINTEF 

report (Kittelsen et al., 2009a) defines a health care system in line with Roemer (1989, p. 77) 

as “any health system can be characterized through analysis of five major components: (1) its 

production of resources, (2) organization of programs (including a residual private market), 

(3) sources of economic support, (4) modes of management, (5) patterns of providing 

services.”, the notion of a Nordic health care system is less familiar.  

According to Magnussen et al., (2009, p. 6)  the “Nordic model of healthcare” has a goal of 

equity in health without compromising universalism. Furthermore, it is financed through tax 

based funding and has a large proportion of public governance. The proportion of private 

actors is relative small, and few people have private health care insurance (Magnussen et al., 

2009). 

Yet there are differences. These differences relate to how the systems are organized in terms 

of centralization / decentralization, the use of incentives to get the organizations to adhere 

national directives, how well integrated primary and secondary health care is, etc. (Kittelsen 

et al., 2009a). 

The Nordic countries are also comparable with respect to demographic forecasts. In general 

we have a birth rate under 2, meaning below the rate to sustain the population, although this is 

anticipated to be offset by immigration. All countries have an increasing proportion of elderly 

needing health care within the next 20 years, and in addition the relative proportion of 

workers to retired workers is expected to be reduced further (ssb.no, 2010a, scb.se, 2010, 

dst.dk, 2001). In other words, the demographic forecasts imply increased pressure on the 

welfare states' sustainability. 

These forecasts bring about questions regarding whether the health care sector is using its 

resources efficiently, and whether resources could be allocated differently in order to provide 

the population with even more / better health care services. As a response, a comparative 

study was conducted and presented in 2009. The SINTEF report concluded that Norway has a 
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higher resource usage and labor costs per capita of all the four countries and a lower 

productivity level, particularly when compared to Finland (Kittelsen et al., 2009a). 

Using Norway as a base comparison when considering per capita resource spending in 

somatic care, Sweden used 94 % of the resources, Denmark used 92 % and Finland used only 

65 % in 2007. However, the trend shows that all countries have had a larger real-growth in 

expenditures compared to Norway in the years 2005-2007. The Finnish productivity was 18 

% above the level of the Norwegian productivity measured using the DEA method. The 

differences between Norway, Denmark and Sweden seems statistically non significant at the 5 

% significance level (Kittelsen et al., 2009a). 

 

3.1 Specialist health care 

 

The SINTEF report made an attempt to provide a common definition of the specialist health 

care for all the four countries based on Norway’s division of health care. It discovered that the 

Norwegian definition of the specialist health care originates mainly from the legal division 

between what is to be conducted at municipal and regional level2. Roughly, this division 

implies that primary care is to be conducted at the municipal level, while the specialist care is 

to be provided at the regional level by regional health care authorities (Kittelsen et al., 2009a).  

Thus, the Norwegian health care is divided between two pillars of public sector, as opposed to 

the Swedish and Finnish. While Sweden has placed the responsibility of the primary and 

specialist health care on the regional level, Finland has placed the responsibility on the 

municipal level. For Denmark, Kittelsen et al. (2009a) find that whereas the Danish law 

describes the local and regional authorities responsibilities, it does not specify what is to be 

understood as the specialist health care obligations. Due to the challenges this discrepancy 

introduce and the additional problem in the dataset that could occur when trying to separate 

the services provided in each country, the attempt to define one mutual understanding of the 

specialist heath care is abandoned (Kittelsen et al., 2009a).  

                                                 
2 For details on the law, consult: http://www.lovdata.no/all/tl-19821119-066-001.html#1-2 chapter 1 for 
municipal responsibility, and http://lovdata.no/all/tl-19990702-061-002.html §2-1a. for the regional health 
authorities responsibility 
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In fact, due to the small, but yet significant differences between the countries, it was deemed 

most appropriate to restrict the analysis to somatic care only, as well as provide an 

exploratory analysis of the psychiatric health care (Kittelsen et al., 2009a). This thesis 

however will focus on the specialist health care.  

After this introduction to the topic, the reader should now have a general understanding of the 

most vital results from the SINTEF report (Kittelsen et al., 2009a) that affects this thesis. For 

further details the interested reader is advised to consult the report itself. 

 The SINTEF report (Kittelsen et al., 2009a) used the DEA methodology. 

 A definition of a health care system is provided as well as a notion of a Nordic health 

care model. 

 An attempt was made in the parametric tradition of SFA, but this fails. The analysis is 

thus restricted to public hospitals in the somatic health care. 

 The Nordic countries are comparable in demographic forecasts, which informs of 

future challenges to the sustainability of the Nordic health care model. 

 Norway has a higher resource usage per capita, highest labor cost and a lower 

productivity. Finland represents the opposite case, using 65 % of the resources that the 

Norwegian health care consumes per capita, but has 18 % higher productivity. 

 

3.2 Previous studies 

 

In a recent paper Medin et al. (2010) presents a bootstrapped DEA analysis of cost efficiency 

among  university hospitals in the Nordic countries, excluding Iceland. Some of the 

conclusions are in line with previous findings which argue that the added responsibilities 

(teaching and research) university hospitals have potentially interferes with the routine work 

of patient care and thereby raises the costs. What is new in the article is the inclusion of 

variables explaining research activities and teaching. These have a major impact on the 
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models cost efficiency. Geographic location and patients with a high (>5) DRG weight are 

also shown to affect university hospital efficiency. 

Linna et al. (2006) conducted a comparative study of hospital cost efficiency through DEA in 

Norway and Finland using data from 1999. They found a significant difference between and 

within the countries. The average cost efficiency of Norwegian hospitals was 17-25 % lower 

to that of Finnish hospitals per capita, and had a longer duration of patient stay, commonly 

expressed as Length of stay (LOS).  

Linna et al. (2010) compared the average hospital cost efficiency in the Nordic countries in 

the year 2002. One of several results indicates that Swedish hospitals were less cost efficient 

than the Norwegian hospitals. The paper supported previous findings where the Finnish 

hospital sector was found to be the most cost efficient sector on average among the Nordic 

countries. 

In a working paper, Kittelsen et al. (2009b) investigate the effect of the substantial Norwegian 

hospital reform of 2002. Norway, as opposed to the other Nordic countries, started to re-

centralize its hospitals and changed ownership from regional to state ownership. The paper 

concentrates on the period before and after the shift of ownership (the years 1999-2004) to see 

whether the reform had the effects one hoped for regarding reduced waiting time, cost control 

and increased efficiency. Even though not yet published, some of the findings indicate that 

productivity has increased in the order of 4 % during the time period. However, it is unclear 

why this effect took place.  

In an earlier version in Norwegian, Kittelsen et al. (2007) find that the Norwegian hospital 

reform of 2002 improved hospital productivity with 3-4 %. With some reservations, they also 

found that Norwegian productivity was above the Swedish, yet below the Finnish. For 

Denmark, data was only available for 2002. At that time Denmark was on the same level as 

Finland. Furthermore, one conclusion is that the increased efficiency effect is not due to any 

different technology changes in the other Nordic countries that divert from the technology 

changes in Norway. 
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4 Methodology 

 

In standard economic theory, the productivity of a firm would be explained through the 

relationship between inputs and outputs. The relationship can be exemplified with two firms. 

If firm 1 uses two units of input to produce one unit of output, it would be considered as 

having higher productivity than firm 2 that uses three identical units of input yet produces 

only one identical unit of output. Thus, productivity expresses how much output, or 

production, one achieves with the available resources (Frank and Glass, 2006). This is how 

productivity is to be understood throughout this thesis. 

Of perhaps greater interest is the efficiency. As opposed to productivity, efficiency is always 

expressed in relative terms. Efficiency expresses the productivity in relation to the best 

feasible input / output mix (Carlton and Perloff, 2005). Consequently, firm 1 above not only 

has higher productivity, but is also more efficient than firm 2. Given the prices of the input 

and levels of output are equal for both firms, firm 1 is also more cost efficient compared to 

firm 2, as it uses less monetary resources in production (Frank and Glass, 2006). Now that we 

have a notion of productivity and efficiency, let us turn our attention to the subject of this 

chapter. 

 

4.1 Techniques 

 

As noted earlier, a parametric method is chosen in this thesis rather than a non-parametric 

method. Some theorists (Kittelsen, 1997, Jacobs, 2001) divide the two techniques further into 

deterministic (best practice comparison) and stochastic (random error) categories. DEA would 

be deemed non-parametric but deterministic and SFA would be categorized as parametric 

stochastic. This thesis will however only differentiate between the non-parametric and 

parametric categories. 

I will here briefly provide an explanation of the non-parametric DEA method before 

continuing with the parametric SFA method. Both are techniques for estimating inefficiency 

on aggregate level down to firm specific level. I will not consider index number methods, 
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since it is believed that some Decision Making Units (DMU) are less efficient than others, 

contradicting the underlying assumption of index number methods (Coelli et al., 2005). 

Neither will hybrid non-neutral stochastic models like those of Huand and Liu (1994) be 

discussed, as this is not the interest of this thesis. 

Figure 2 provides a simple graphical presentation of the two techniques discussed, in 
comparison to the simpler ordinary least squares (OLS) method. 

 

 

Figure 2. OLS, DEA and SFA frontier in a single input / output orientation.  Source: Modified from Jacobs, R., 
(2001). 

 

As can be seen, SFA does not align it self to the “best fit” as OLS. Neither does it “rest on” 

the best observed units as DEA (Jacobs et al., 2006) 
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4.1.1 Data Enveloped Analysis 

 

According to Jacobs et al. (2006) DEA is now established as the prominent empirical 

methodology for efficiency evaluation within sectors where we cannot assume cost 

minimizing behavior, and especially so when evaluating the  health care sector.  

The idea of DEA is rather simple. The underlying key assumption is that there is no 

measurement error that results in noise. Therefore, DEA does not need to consider the form of 

the cost or production function.  

In SFA as in DEA the dataset defines the frontier. Some authors (e.g. Jacobs et al., 2006) 

would say that in approaching efficiency measurement SFA is more theoretical while DEA is 

more empirical. Irrespective of Jacobs, the units in DEA that are most efficient constitute the 

frontier. All other units are behind the frontier. Hence, the frontier is enveloped around the 

most efficient units, while the efficiency of a unit that is not fully efficient is measured as its 

relative distance to the frontier. Of course, the DMUs that constitute the frontier has an 

efficiency equal to 1, while those that are behind the frontier take any value between 0 and 1. 

This flexible property makes DEA very attractive when assessing efficiency (Jacobs et al., 

2006).  

Kittelsen (1997) points out that while the DEA has no assumptions regarding the functional 

form of the frontier itself, there exists underlying assumptions regarding the feasible 

technology (or the production possibility set). From Kittelsen (1997), these are, a) that all 

observations constituting the data are feasible, b) free disposal of inputs and outputs, and c) 

“convex envelopment of the data” (Kittelsen, 1997, p. 11).  Figure 3 below provides an 

illustration of the assumptions where each + indicates an observation. Together the three 

assumptions make d) the DEA estimation. 

( 

Figure 3) 
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Figure 3. The assumptions defining the DEA estimate of the feasible technology set.  Source: adapted from 
Kittelsen (1997, p. 11) 
 

As with SFA, DEA can be calculated both under constant return to scale (CRS) or variable 

return to scale (VRS), as illustrated in figure 2 above. If it is assumed that the units are 

operating at an optimal level, CRS is appropriate, if not VRS is often applied. It is important 

to note, that if the data used is expressed in ratios, such as discharge rate or proportion of 

input x and the assumption is that the units are operating at non-optimal levels (VRS), the 

underlying implication becomes a CRS estimation (Jacobs et al., 2006). However, without 

going into details, there are ways to work around the issue of having ratio data but wanting to 

use VRS by applying the Banker, Charnes and Cooper estimation of DEA (as cited in Jacobs 

et al.,  (2006, p. 104)). 
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Finally, since DEA is a model comparing units against a best practice benchmark it can be 

thought of as yardstick model. Comparison against a benchmark makes the result sensitive to 

few observations in the dataset and to extreme outliers. Another potential impairment 

effecting efficiency estimates occurs if the units’ conduct different activity but have similar 

measurement of output / input mix. To give an example, a hospital with emergency care 

would seem to have more outputs than a hospital that does not have emergency care. If there 

are no other peers to benchmark against (hospitals’) with emergency care in the sample, the 

uniqueness of the unit that has emergency care would lead to full efficiency score, and thus 

bias the results (Jacobs et al., 2006). 

 

4.1.2 Stochastic Frontier Analysis 

 

While the DEA technique is appealing with its flexibility and empirical attraction, making it 

unnecessary to a priori determine the functional form, the SFA technique requires the 

consideration of functional form of the regression (mind the usual assumptions and problems 

associated with common regression techniques, e.g. degrees of freedom) and the efficiency 

term. In fact, the separation of the deterministic part from noise and efficiency is why 

Zuckerman et al. (1994) deems SFA superior to DEA. As opposed to DEA, SFA uses all 

information available in the dataset when deriving the efficiency scores of each unit (Jacobs et 

al., 2006).  

The first basic SFA model was proposed separately by Aigner et al. (1977) building on the 

work of Farrell 1957 (as cited in Aigner et al. (1977)), as well as by Meeusen and van Den 

Broeck, (1977) criticizing the Afriat-Richmond production frontier (as cited in Meeusen and 

van Den Broeck (1977)). The basic production model proposed in Coelli et al. (2005) yields: 

 

 'ln i i iy   x  (1) 

and,  i i iv u    
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whereby iy  is an output variable, '
ix is a vector of inputs ,  is a vector of unknown 

parameters, i is the residual composed of iv which is symmetric random error and iu , whom 

is of particular interest, represents estimation of the random inefficiency. Conveniently, the 

function is specified in log form, and therefore the coefficients are expressed in percentage or 

elasticity change (Jacobs et al., 2006), while the inefficiency term is expressed in deviated 

percentage from the frontier (Greene, 2003). As noted above, the functional restriction on the 

error term is usually a normal distribution, and for the inefficiency term it is usually half-

normal, exponential, truncated or a gamma distribution (Coelli et al., 2005). 

When considering a production function the following condition must hold; 

 

 
'exp( ), 0i i i iy v and u  x   (Aigner et al., 1977, p. 24)   (2) 

 

Implying that total output units (production), iy , must be smaller than or equal to the total 

amount of inputs, 'exp( )i iv x . Thereby, the deterministic frontier exhibits diminishing 

returns to scale in line with economic theory of production, or what Coelli et al., (2005) calls 

“output values are bounded from above by the stochastic…variable 'exp( )ix ” and the 

random error varies around the deterministic frontier (Coelli et al., 2005, p. 243). 

Figure 4 below illustrates the above features of (2), the Stochastic production frontier in an 

input / output orientation. Consider two firms, A and B. If 0, ,iu i A B   (no inefficiency) 

the production of firm A and B, *
iq , would be equal to ix   in the figure, sometimes 

referred to as the frontier output (Coelli et al., 2005). To clarify, note that Coelli et al., (2005) 

uses iq instead of iy . 

(Figure 4) 
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Figure 4. A Stochastic Production Frontier.  Source: Coelli et al. (2005, p. 244) 
 

If the noise component is positive, that is 0iv  , the frontier output point would lie above the 

deterministic production function, and vice versa if the noise component is negative. In 

addition, if the sum of ( ) 0i iv u  , the observed output of firm ,i A B  must lie below the 

deterministic production function given by  0exp lni i iq x   . Thus, the frontier output 

tends to vary above and below the functional form of the deterministic compound, while the 

observed output tends to lie below the very same. In this way, one can derive an estimation of 

the inefficiency term exp( )iu  by considering the ratio of observed output to the frontier 

output (Coelli et al., 2005). Considering (1) this observation gives us: 
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4.2 The distribution of the residuals 

 

As mentioned above, the SFA can estimate the inefficiency term with the assumption of a 

distributional form. The distributional forms often used in the literature were half-normal, 

exponential, truncated normal and gamma distributed. I will return to the issue of how the 

assumptions affect the efficiency term. 

Under the half normal distribution, the assumptions regarding the residual i in (1) above can 

be expressed as (Coelli et al., 2005): 

 

 
2~ (0, )i vv iid Normal            (4) 

 
2~ (0, )i uu iid Half normal          (5) 

 

(4) tells us that the stochastic error term is independently and identical (i.id.) normal 

distributed with a mean of 0 and a variance of 2
v , while assumption (5) imposes an 

independent and identical half-normal distribution with 0 mean and variance of 2
u on the 

efficiency term iu . 

The Gamma, Exponential and Truncated normal distributional assumptions changes (5) to, 

(6), (7) and (8) respectively: 

 

 ~ ( , )iu iid Gamma m  (6) 

 ~ ( )iu iid Exponential    (7) 

 
2~ ( , )i uu iid Truncated Normal     (8) 
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The restriction (6) tells us that the gamma distribution is i.id distributed with mean and 

degrees of freedom equal to ,m respectively (Greene, 2003). While (7) is the exponential 

distribution i.id. with mean and variance equal to  , and is a special case of the gamma 

distribution (Johnson and Kotz, 1970). The Truncated normal distribution (8) is i.id. 

distributed with mean and variance, 2, u  , being limited by a range of values (Greene, 2003), 

and is a general case of the half normal distribution (Jacobs et al., 2006). 

A note is made regarding the variance of 2
u in the residual, applying to the half normal 

distribution (5) only. In discussing the half normal distribution, Greene notes (in Schmidt et 

al., 2008) that it is a common mistake to take the value of 2
u  as a face value. By doing so, 

one overestimates 2
u  by a factor of 3. Hence, the true variance of the iu component in a half 

normal distribution is:    2var 2 /i uu       . 

Since the initial SFA model in the SINTEF report (Kittelsen et al., 2009a) did not converge, it 

is of interest to investigate the (5) – (8) distributions. In discussing the Gamma distribution, 

Ritter and Simar (1997) points out that it is preferred to have several thousand observations. 

They also point to the risk of correlation between the stochastic element (noise) and the 

efficiency component when using the Gamma distribution. Hence, all distributions but the 

Gamma distribution will be conducted in this thesis. 

Following the parsimonious criteria above the half normal distribution or the exponential 

distribution would be preferred. As a drawback, they are less flexible than the Gamma and 

truncated normal distribution. On the other hand, the first two are likely to be better in 

separating noise from inefficiency due to the mode at zero (Coelli et al., 2005) and, thereby, 

evade the correlation issue pointed out by Ritter and Simar (1997) above.  

Thus, the different distributions affect the prediction of the efficiency since they affect the 

efficiency component, iu . In discussing the impact of the different probability distributions, 

Coelli et al. (2005) finds 0.09 % change when comparing exponential distribution to half 

normal distribution, while, Greene concludes that the answer to whether “…the distribution 

matter?” is that it “... does not have an analytical answer” (Schmidt et al., 2008, p. 180). 

Nevertheless, in line with Coelli et al. (2005), a likelihood ratio test will be used when 

assessing which distribution of the inefficiency term is most appropriate. 
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4.3 Algebraic forms  

 

The choice of which function to use in the deterministic part of the SFA is an important 

matter. For instance, choosing a Cobb Douglas (C-D) function gives other properties than a 

quadratic or translog function would yield. According to Coelli et al. (2005), there are four 

considerations to take into account when choosing functional form in estimating the 

production technology:  

a) Flexibility, b) Linear in the parameters, c) Regularity, d) Parsimonious. 

Let us consider each in turn. 

a) Flexibility 

it is common to differentiate between first order flexibility and second order 

flexibility. A first order flexible function gives estimates in a linear form, while second 

order flexibility gives a quadratic approximation. Generally a function of second order 

flexibility is preferred as it is more exact in estimating several points in space. 

However, the flexibility reduces the degrees of freedom as the number of parameters 

to be estimated increases. 

b) Linear in the parameters 

when the function exhibits linear parameters we can use the function with linear 

regression methods. 

c) Regularity 

the cost or production function must satisfy what is termed regularity properties of 

economics. This implies that the function must be a non-negative real value, show 

concavity or quasi concavity and exhibit monotonicity. Furthermore, output cannot 

exist without input, neither can output be negative. If input price increases, the total 

cost must increase given the same output. More units of input cannot result in a 

decrease of output units, and costs must increase if units of output increases (Caves 

and Christensen, 1980, Coelli et al., 2005). 
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d) Parsimonious 

implies that the simplest functional form should be used. In other words, the simpler 

the function is the better.  

 

4.4 Considering the functional form and residuals 

 

A perennial consideration in this thesis is the technical aspects of the functional form of both 

the deterministic part, and the distribution of the residual(s). I will here consider each in turn. 

Let me start with rewriting (1) above into a generic form: 

 

 ( )i i iy f  X  (9) 

Where as previously,  

 i i iv u    (10) 

 

Still, this thesis will not deal with inputs in relation to production as in (9). Instead, it 

considers a measure of outputs in relation to costs, thus I rewrite (9) to (11):  

 

 ( )i i ic f  y  (11) 

 

ic stands for costs. It can be the individual organizations’ costs or the total industry costs. 

 if y  indicates the deterministic functional part of outputs, whereas the i is as before. 

Following these considerations when estimating the properties of the production technology 

(and in effect the efficiency term), I choose to try different functions in order to see the impact 
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on the model. In a recent literature review and analytical paper, Rosko and Mutter (2008, p. 

161) found little impact on the estimation of the mean inefficiency term when considering 

alternative cost functions (the deterministic part). The author of this thesis is skeptical to their 

conclusion. Nevertheless, Rosko and Mutter (2008) find reasons to prefer a translog cost 

function over a C-D function, which is in line with the flexibility requirement above.  In this 

thesis the following cost functions from Coelli et al. (2005) are used when assessing the 

deterministic part in addition to a C-D function. I will return to the results later in the thesis. 
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In (12) and (13) above, iC  are observed costs for hospital i, the and n m   are the unknown 

coefficients to be estimated. While 0 is a constant, and in imy y are the observed output 

variables, iv  and iu  are the error term and the efficiency term respective. The only difference 

in (14) is that the function is logarithmic on both sides of the equation.  
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4.4.1 The residuals 

 

Until now, we have assumed that the iv  in (4) is normal distributed, while the iu  is subject to 

alterations. STATA 11, offers possibilities to specify the iu in more detail (StataCorp, 2009). 

In particular, specification of the variance in either / or both error term(s), that is (4), (5), (7), 

and (8). Specified in StataCorp (2009) as: 

 

 2 exp( ), ,i i i v u  w  (15) 

 

where the vector iw consists of a constant, and a function of explanatory variables, while  is 

an unknown vector of coefficients. Still, I will model iu  only, thus not altering the variance of 

(4). 

Generalize Battese and Coelli (1995) the iu can be expressed as: 

 

 i i iu z  W  (16) 

 

where iW is a random variable, defined by the distribution, and the iz  is the function of the 

explanatory variables, and  is as above. (15) and (16) actually express the same, albeit with 

different use of notation. Following (15); (5), (7) and (8) can be rewritten to (17), (18) and 

(19) (StataCorp, 2009); 

 

 2~ (0, ), distributedi uu independently Half normal   (17) 

 2~ ( ), distributedi uu independently Exponential   (18) 
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 2~ ( , ), distributed with truncation point 0 i uu indenpendently Truncated Normal    (19) 

 

Note that (18) has mean and variance embodied in one parameter like Greene discusses in 

Schmidt et al., (2008). 

 

4.4.2 Production vs. costs and multiple outputs 

 

As often is the case with publicly provided goods, price information is usually not available 

on the outputs. This is also the case for the data in this thesis. However, since information 

about the costs generated from providing the public goods are available, efficiency analysis 

can be conducted without hindrance. For example by using (11) above. 

In addition to the problem of public goods, Jacobs et al. (2006) points to the problem of 

multiple outputs. Because SFA is a parametric method, it is ill suited for estimation of a 

production function with multiple outputs (dependent variables) as opposed to DEA. 

However, setting up a cost function avoids the problem of multiple outputs, since the 

dependent variable becomes total costs. Other methods do exist for handling multiple outputs, 

such as distance functions (Coelli et al., 2005) but will not be considered in this thesis.  

According to Jacobs et al., (2006) an underlying assumption when estimating cost functions is 

the need to assume cost minimizing behavior. If this assumption holds, the cost function is 

equivalent to that of the production function. Jacobs et al. (2006) problematize the cost 

minimization assumption in the health care sector. As the Nordic hospitals are publicly 

funded and operate in a suboptimal market, the usual market mechanisms are not applicable. 

In discussing economic behavior Coelli et al. (2005) point out that SFA and DEA do not need 

behavioral assumptions nor price information. In fact this thesis as discussed above, and in 

line with Coelli et al. (2005), assumes that the units are not operating under full efficiency, but 

a priori assumes nothing about behavior. 
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There are many ways that governments can enforce regulations in order to encourage cost 

containment in the public sector, meaning, enforce a behavior. In the typology of Nordic 

Health Care Systems, Magnussen et al. (2009) discusses some of the most widely used 

mechanisms in all of the Nordic countries. Thus, even though the individual units might not 

act according to the usual economic notion of cost minimization, the Nordic health care sector 

per se is assumed to attain to cost containment. Consequently, given the above discussion I 

can justify the use of a cost function in my modeling. 

 

4.5 Estimation 

 

In discussing how to best estimate the parameters in an SFA model, Coelli et al. (2005) 

propose the estimation technique called maximum likelihood estimation (ML) because it 

exhibit asymptotic properties.  

A good explanation of ML is provided in Thomas (2005). Assume a sample size = n , and an 

unknown population mean which is expected to be 40  . When observing the sample mean 

it is detected that it has a mean of 10x  . Thereby, it seems unlikely that the sample stems 

from a population with 40  . But what if it is suspected that 12  ? Then the probability 

that our sample with 10x   stems from a population with a mean of 12   seems 

reasonable. As Thomas (2005) puts it “The maximum likelihood estimator (MLE) of   [and 

variance 2 ] is simply that value of   [and variance 2 ] that maximizes the probability of 

generating the  sample values actually obtained” (Thomas, 2005, p. 346). 

Without going into technical details, the notion of ML requires an explanation. In discussing 

the properties of MLE, Andersen (1970) notes that the ML estimation technique dates back to 

1922. He points out that throughout the years multiple proofs have been set forward that ML 

displays true asymptotic properties. By the 1980’s ML was established as a solid method 

when wanting to estimate parameters, just like Ordinary Least Squares (OLS). However, 

unlike the OLS discussion, concern was devoted to the residuals. It was a necessity to develop 

methods so that the residual(s) also could be proven to exert asymptotic properties.  
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An early proof of ML showing asymptotic properties was achieved with a quadratic function 

and exponential distribution of the residuals in 1968 by Aigner and Chu (1968). In a two 

pages long paper, Schmidt proved how ML under the same deterministic conditions as set 

forward by Aigner and Chu, was valid with half-normal distribution (Schmidt, 1976). In  

discussing ML estimation, Greene (1980) put forward proof for the Gamma distribution. The 

Gamma distribution proved in theory to hold what is termed the usual desired properties of 

MLE. That is, to be consistent, asymptotically normally distributed and asymptotically 

efficient (Greene, 1980). The latter implies that if the residuals are symmetric, MLE 

approaches OLS. Thus, ML outperforms OLS when the residual distribution can be assumed 

to be skewed away (asymmetric) from the frontier (Greene, 1980),  thereby explaining 

Coelli’s statement above in regards to why ML is preferred. 

However, as discussed in Schmidt et al., (2008) the statistical properties of the two first proofs 

are virtually unknown. It has later been revealed that Greene’s (1980) gamma distribution 

shows inconsistency in its estimation regardless of sample size (Jacobs et al., 2006). 

Unfortunately, as indicated in chapter 4.2 above, there is no consensus in the literature which 

may guide the researcher on which distribution should be applied when estimating the iu  

(Jacobs et al., 2006). In discussing the problem of which distribution to choose, Coelli et al., 

(2005) mentions that it is a matter of “computational convenience” (Coelli et al., 2005, p. 

252). As evident below, the log likelihood ratio test can be applied for sensitivity analysis in 

order to assert which distributional assumption is best suited.  

 

4.5.1 Hypothesis testing 

 

According to Coelli et al. (2005) the assumption of technological substitution can be tested for 

correctness. For example, the researcher expects the technology to exhibit constant return to 

scale (CRS) but wants to find out if this is true. By imposing equality assumptions on the 

unknown coefficients and running a restricted least square (RLS) estimator against an 

unrestricted estimator (e.g. OLS) hypothesis testing on the RLS is possible by using the F-

test. This however requires that both the constraints and the regression models need to be 

linear in their parameters (Coelli et al., 2005). As noted by the very same authors, Greene 
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(2003) presents methods where one only needs to run the unrestricted model and then conduct 

the Wald (W) test, or the Lagrange multiplier (LM) test for a restricted model. 

An alternative to the F-test is the likelihood ratio statistic (LR). It is still needed to conduct an 

RLS and an unrestricted regression as in the F-test. However, it is somewhat easier to 

calculate and is applicable to the ML technique used in this thesis. If the LR test has an 

advantage in calculating the test, it has a disadvantage if only a small sample is available. The 

F-test is warranted on small a sample under fulfilled requirements as discussed above (Coelli 

et al., 2005). 

 

The LR-statistic is 

 22[ln ln ] ~ ( )R ULR L L J    (20) 

 

where the values from the log-likelihood function of the restricted and unrestricted models are 

used under a chi-square distribution. Reject the 0 : 0H    hypothesis if the LR statistic >

2
1 ( )J  , where J is the number of restrictions, and  represents the parameter(s). The LR test 

statistic can be used for all the distributions (17), (18) and (19) above, and for parameter 

testing (Coelli et al., 2005). In order to use the LR test statistic to compare which distribution 

on the residual is best suited, a necessary condition is that the parameters are the same 

(Greene, 2003), given they are nested. The same applies to the deterministic function. By 

nested, I mean that they share properties. From the above discussion it should be clear that (5) 

and (8) share properties, and (6) and (7) share properties. Furthermore, (13) and (14) do not 

share properties. 

Vuong’s test can be applied on MLE for comparing competing models, no matter if they are 

overlapping, non-nested, nested or wrongly specified (Vuong, 1989). However, using this test, 

and checking its validity, would be to push the boundaries of this thesis. Furthermore, its 

applicability is not found in the general literature other than when having two competing 

models, while this study has several (Schmidt et al., 2008). Instead I will use (20) to explore 
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whether the assumption - there exists inefficiency - is correct or not. Likewise, I will test 

which parameters should be included or excluded in the model.  

 

4.5.2 Scale elasticity 

 

The notion of elasticity of scale is a well defined concept in fundamental economics. Thus, I 

will not elaborate further on the notion here. However, if ending up with a translog function, 

the scale elasticity will be estimated, as given by Coelli et al. (2005): 
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where  is the cost elasticity evaluated at the output levels of observation i. If   1i y , the 

scale elasticity is below zero because; 
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5 The Data 

 

The dataset used for the analysis in this thesis stems from the above mentioned SINTEF 

report (Kittelsen et al., 2009a). It consists of data on all public financed somatic hospitals in 

Sweden for the years 2005 and 2006 and for Finland, Denmark and Norway throughout the 

years of 2005, 2006 and 2007. Also included are private non-profit hospitals (except Finland), 

and private hospitals financed in a prospective payment scheme as they are publicly financed. 

However, privately financed activity at private hospitals is not included as to avoid biased 

expenditure. One Danish, three Finnish and one Norwegian observation are left out due to 

outlier conditions. In total there are 316 observations in the dataset (Kittelsen et al., 2009a).  

Naturally the data stems from different sources since four countries are under comparison. 

However, all the data is based on official statistical sources in each country, and matched as 

closely as possible to the Norwegian form of organizing the statistical data. Still, the SINTEF 

report (Kittelsen et al., 2009a) faces a lot of different challenges in trying to match the data. 

This is much due to the differences in how each specific country has chosen to organize its 

health care, and why it was decided to only compare the countries somatic public funded 

hospitals. I will now give an example of a challenge and its solution, explain the variables as 

well as describe how activity and costs are measured. 

As mentioned, by law there is a clear definition of what hospital care responsibilities consists 

of in Norway, but this is not the case for Finland and Sweden. Thus, for Norway it is easier to 

separate specialist care data from primary care than in the rest of the other countries as they 

have a different owner structure (see chapter 3 above). As an example, it can be mentioned 

that the Swedish and Norwegian data stems from regional level.  

Finland and Sweden both have specialist care activity out in district wards that are not 

administered by hospitals. Norway also has this type of district activity, but data from Norway 

is only included if the district ward is run by hospital administration. This is not the case for 

Sweden and Finland, where there is potential overlap in the data from primary care when 

considering the activity in the health wards. For Denmark this is not a consideration since 

they do not have this type of activity. The issue has been addressed and corrected for Sweden 

and Finland in the data (Kittelsen et al., 2009a). 
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The discussion above suggests that if activity at one hospital is not conducted at others, it can 

bias the efficiency measure in the DEA method. For this reason the SINTEF report (Kittelsen 

et al., 2009a) excluded some of the activity measured in DRG points, such as radiotherapy. 

Specifically, data on activity in the following DRG groups were excluded in the data for the 

specialist care: 

 Main diagnostic group (MDG) 15: Newborns 

 DRG 462: Rehabilitation 

 DRG 317: Dialysis 

 DRG 409 and 410: Radiotherapy and chemotherapy 

(Kittelsen et al., 2009a). 

 

5.1 Activity and costs 

 

Activity at hospital level is measured along three dimensions (Kittelsen et al., 2009a). It is 

differentiated between 1) outpatient activity, 2) inpatient and 3) daycare patients without 

overnight stay. 

Outpatient activity is regular consultancies, in total number. Inpatients are defined as release 

date minus in-date plus 1. The inpatients are then grouped based on the DRG system. 

Measurement of the last type of category, daycare patients, is also differentiated based on the 

DRG system, but defined as patients who require a bed, but not an overnight stay. In addition, 

patients who have received specialist care that is separated from normal outpatient care, such 

as day surgery are also included in the definition. (Kittelsen et al., 2009a). At the end of 

chapter 5.1.1, table 5.1 gives descriptive on the variables. 

Costs are measured by taking into consideration the expenditures and wages. The data on 

wages are collected through official statistical sources except in Denmark where it is collected 
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from the office of centralized municipality wage3. Wages include data on all “employees, 

regular and variable increases, pension and employers contributions” (Kittelsen et al., 

2009a, p. 94). 

While wages are on a detailed level, the expenditure costs are only available on an aggregate 

level in the form of resources used and its attached monetary value. Unfortunately, capital 

costs are non-comparable due to considerable differences in how the countries depreciate 

capital costs (Kittelsen et al., 2009a). 

 

5.1.1 The variables 

 

realcost is real costs in Norwegian 2007 Kroner expressed in billions, adjusted by a deflator 

subject to wage differences and price differences. I will return to the deflator in chapter 5.2. 

outpatients are number of outpatients in policlinic activity. 

drg inpatients are total number of DRG points related to inpatients, that is category 2 in 

chapter 5.1 above. 

drg daycare is total number of DRG points related to daycare patients, that is category 3 in 

chapter 5.1 above. 

region Norway has 4 health care regions; 1) South Eastern, 2) Western 3) Middle and 4) 

Northern health region. These are included in the analysis to see if there is any discrepancy 

within Norway.  

capital city the capital city variable is included in order to differentiate if city hospitals 

characteristics are different from non capital areas. 

university hospital variable is included in order to see if the university hospitals are different 

from other types of hospitals. Literature, such as Medin et al. (2010), suggests this might be 

the case. 

                                                 
3 Fælleskommunale løndatakontor 
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los deviation is a variable that encompasses length of stay (LOS) deviation from the average 

patient stay sorted by DRG specificity.  

share of outpatients is included in case the policlinic activity contains measurement error. 

This is not adjusted for DRG or case mix. 

cmi (case mix index) is a ratio of total DRG points over number of inpatients plus daycare 

patients, and is thought to reflect the case mix.  

 

Table 1 

Table 5.1 Descriptive statistics 

 Country 

Variables Finland Sweden Denmark Norway 

Number of 
observations 

96 40 105 75 

Real costs in 
Billions # 

1.112 4.812 1.516 1.864 

Outpatients 150 128 368 134 178 620 129 609 

DRG Inpatients 22 516 65 262 22 516 31 447 

DRG Daycare 3 119 18 000 2 651 4 044 

Share of University 
hospital 

0.156 0.250 0.381 0.200 

Share of Capital 
City Hospitals 

0.0313 0.050 0.257 0.160 

CMI 0.848 0.655 0.915 0.918 

LOS Deviation 0.968 1.118 1.017 0.859 

Share of 
Outpatients 

0.841 0.731 0.865 0.773 

# Real costs in NOK 2007 
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5.2 Selecting deflator 

 

Nominal values change from year to year due to differences in, for instance, inflation and 

local wage negotiations. Thus, a deflator is needed in order to provide solid comparability 

over time between the countries in real terms and real change.  

The deflator OECD has constructed could be used. However, the OECD deflator is adjusted 

based on a nation’s gross domestic product (GDP). In the SINTEF report (Kittelsen et al., 

2009a) it is argued that this is erroneous since by considering the GDP one includes other 

sectors than the labor intense health care sector, thereby overestimating the discrepancies of 

input usage between the choice of base country compared to the other countries. 

The deflator used in the SINTEF report (Kittelsen et al., 2009a) is calculated by holding the 

quantity of resource usage fixed in the year 2007. The average nominal cost of the same 

quantity is then divided by the fixed quantum, which makes the deflator. The nominal costs 

are consequently divided by the deflator for each year, and thus adjusted to real costs, 

comparable across the nations across time, as was done in chapter 3 above. The report uses 

the available statistics on wages and constructs a wage deflator, and a purchasing power parity 

index from OECD in order to deflate the other inputs (Kittelsen et al., 2009a).  

Through constructing their own deflator, not based on the GDP, but rather from the sector 

which is analyzed, the validity of the SINTEF report results are improved. According to 

Coelli et al. (2005, p. 155) “the deflator selected must relate to the commodities that 

constitute the aggregate as closely as possible…, the domain of the price index should be the 

same as the domain of the value aggregate”. This requirement is fulfilled, thus I keep the 

same deflator in this thesis as in the SINTEF report. 

 

5.2.1 Other considerations 

 

In SFA modeling, one of the underlying assumptions is that the technology is equal for all 

firms and that the environment facing the firms is similar (Coelli et al., 1999). Yet, we know 
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that technology changes over time. One common way of taking into account the effect time 

has on technology is to include a time trend in the functional form of the model. A linear 

model would in the margin create an inverse relationship to the output, while a C-D function 

gives a constant technology, and a trans log opens the possibility of both increased and 

decreased effect of the technology over time (Coelli et al., 2005).  
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6 The model(s) 

 

I have chosen to continue on the work of Battese and Coelli (1993) and Battese and Coelli 

(1995). In 1993 and later in the paper from 1995, Battese and Coelli derived an SFA with a 

production function using panel data in a time-variant efficiency model, thereby extending 

previous cross-sectional models.  Besides accounting for time in both the deterministic 

function and efficiency term, they also made assumptions regarding the use of parameters 

directly in the efficiency term using a truncated distribution. For example, in the 1995 model 

they included parameters which explain the farmers’ age and level of schooling beside time, 

as explanatory variables for differences in efficiency among the paddy farmers’ over a 10 year 

period. However, as this dataset does not have many years of observations their time trend 

model is not directly applicable to this thesis. 

In the random effects model, I will use parameters to account for time differences, countries, 

years and differences inward the Norwegian health regions. This is a convenient method when 

there are only a few years of data available and it is less restrictive than using time trends 

(Jacobs et al., 2006). Thus, I make no assumptions about whether the technology change over 

time or not, or if it changes between countries; I also let the efficiency of each unit as well as 

the magnitude of efficiency differ. However, I will include parameters that can explain the 

efficiency differences in the iu . By doing these two moments simultaneously, heterogeneity 

(observable and unobservable effects) is accounted for in both the deterministic model and in 

the inefficiency model as Greene advises (Schmidt et al., 2008). 

Still, this thesis will draw upon the work of Battese and Coelli (1995) and use dummies for 

the years 2005 and 2006, while 2007 becomes the base year. In this, the otherwise strong 

assumption of independence between the ,  and i i iy u v  is relaxed (Schmidt et al., 2008). The 

variables for university hospital, capital city, LOS deviation, CMI and share of outpatient 

activity are expected to influence the inefficiency component4, and include them in the iu

accounts for heterogeneity. For ease of notation, let me abbreviate these variables as environ. 

The LR test will be applied in order to test if the expectation of the environ variables effect is 

correct. 

                                                 
4 For explanation of the variables see chapter 5.1.1 above. 
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In addition this thesis will control for the parameters representing country, regions and time 

both in the deterministic part as well as in the efficiency part. Output variables are as 

previously mentioned. Given the different functional forms discussed in chapter 4.4, a generic 

model can be expressed as: 

 

  0 1
'ln ,...,

N

i i im j ij i i
j

C f y y z v u       (23) 

 

 ''and,
N

i k ik i
k

u z w   (24) 

 

(23) reflects the deterministic model, while (24) is the inefficiency model. In (23) 0 is the 

constant. In (23) and (24) j  and k  are the parameters to be estimated, while z  represents 

non-product explanatory variables, such as country, region and the time dummies. The other 

variables are as previously explained. Equation (24) is the equal of (15) and expresses the 

efficiency component as a function of variables. As discussed earlier in this thesis (23) is 

altered depending on if a C-D, Quadratic or translog model is assessed. 

 

6.1 Estimating the models 

 

Extensive work has been done on constructing the models to assure validity and reliability. 

They were estimated using STATA 11.0, and its functions for Frontier (StataCorp, 2009). 

Manipulation was often necessary with respect to algorithms and tolerance of the log 

likelihood in order to meet the requirements for an ML model, as stated in StataCorp (2009, p. 

1012-1015). Often the default Newton-Raphson algorithm works itself into a bad region of 

the likelihood, and thus, did not find convergence or declared a premature model at a local 
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point instead of a global. By altering the algorithm5 to alternatives or combinations of 

algorithms provided in STATA, a global maximum was found.  

As mentioned both in Coelli (2005) and in StataCorp (2009), an important requirement to 

secure that a global maximum have been reached, is that the first derivatives of the log 

likelihood function are close or equal to zero. This can be controlled for in STATA by the 

gradient function. Furthermore, STATA offers the possibility to specify that the log likelihood 

tolerance with respect to the gradient should be equal to zero or as close as possible 

(StataCorp, 2009). The zero tolerance restriction has been applied if necessary, and gradient 

control exercised on all models. 

A further requirement for a valid model is that it does not fail the regularity conditions 

discussed on page 20, like displaying negative marginal costs which would break a condition. 

The procedure presented in Salvanes and Tjøtta (1998) have been applied to make sure the 

second order flexible models fulfill the regularity conditions6. One procedure involves 

calculating a consistency region where the function adheres to the regularity conditions. In 

this thesis however, it has only been calculated whether each of the hospital observations is in 

the consistency region. 

Furthermore, in conducting the LR test(s) I have used both the Chi-square distribution, 

2
0,05   table provided in Thomas (2005), and the less restrictive mixed chi-square distribution 

table provided in Kodde and Palm (1986) to determine the critical significance level of 

0.05   value. In this way type 1 error is controlled for.  Thus, if the value of the test 

statistic is between the critical values of the two distributions I will use the more conservative 

in order to avoid type 1 error - rejecting a true 0 : 0H   .  

  

                                                 
5 Available in STATA 11.0 are / or in combination(s), the Newton-Raphson, Berndt-Hall-Hall-Hausman, 
Davidon-Fletcher-Powell and Broyden-Fletcher-Goldfarb-Shanno algorithms. 
6 Calculations executed by Sverre A. C. Kittelsen 
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7 Results 

 

Table 7.1 Assessment of different models. LR test under: 2
0 : 0 uH against 2

1 : 0 uH . 

Model 

Cobb 
Douglas. 

Half 
Normal 

Cobb 
Douglas. 
Exponen-

tial 

Cobb 
Douglas. 
Truncated 

Normal 

Translog. 
Half 

Normal 

Translog. 
Exponential 

Translog. 
Truncated 

Quadratic. 
Half Normal 

Quadratic. 
Exponen-

tial 

Quadratic. 
Truncated 

Log 
Likelihood 

value 
139.105 160.420 

No 
conver-
gence 

achieved 

No 
conver-
gence 

achieved 

186.393 

 
Unable to 
calculate 

 
Unable 

to 
calculate 

environ 
included 

No No No No No No No No No 

iu  -2.610 -3.780   -3.813     

Gradient 
value 

2.21e-
08 

7.32e-06   1.63e-07 0.082  246.97  

LR test 
statistic 
value 

62.82; 
Reject 

0H  

110; 
Reject 

0H  
  

75.53; 
Reject 0H      

Valid 
 

Yes Yes No No Yes No No No No 

Table 2 

 

Table 7.1 above describes the models onset. First I tested if the deterministic function with all 

the dummy variables was significant when assessing i iv u   . Put in another way, I tested if 

the technical inefficiency component in the model was different from zero. If not, the model 

would be equal to an OLS. Secondly, as discussed in chapter 6.1 above, the gradient should 

be as close as possible to zero. Two models were unable to converge. STATA was unable to 

calculate the initial values for two of the models, in another two models the gradient was not 

close enough to zero. This was in spite of trying to force the gradient to zero and using 

different algorithms. Note that no model under the assumption of truncated normal 

distribution on the residuals managed to complete. As can be seen, only three models pass the 

initial stage.  
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In the next stage the LR test statistic will be used to test if the environ7 parameters in iu are 

significantly different from zero. 

The LR test statistic is as previously explained in (19) above, while the actual hypotheses that 

have been tested for are: 0 1: 0 against : 0H H   . 

In table 7.2 below, the three models are shown, and whether the iu is significant when 

conditioned with the environ variables. All three models pass the LR test for further 

modeling. Thus, 0H : that the environ parameters are equal to zero, is rejected for all three 

models. 

 

Table 7.2 Assessment of environ 

Model 
Cobb Douglas Half 

Normal 
Cobb Douglas 
Exponential 

Trans Log Exponential 

Log Likelihood value 154.198 170.324 198.739 

environ included in iu  Yes Yes Yes 

Gradient value 4.22e-07 2.68e-08 1.89e-08 

LR test statistic value 30.186 19.808 24.692 

Critical value, 5 degrees 
of freedom (Kodde and 

Palm, 1986) 

10.371 10.371 10.371 

Valid Yes Yes Yes 
Table 3 

 

Table 7.2 above illustrates the environ variables contribution to explain inefficiency. This is 

shown by the large value of the LR-test statistic value, and the change in the log likelihood 

value from table 7.1 

                                                 
7 See page 35 above 
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The testing is continued by first investigating the deterministic part. The question is whether 

the parameters contribute significantly to the model. This testing is done on group based level. 

That is, without years against with, without regions against with, etc.  

Years prove to be significantly different from zero for one of the three models. When 

controlled for regions, they prove to be insignificantly different from zero except in the 

translog model with exponential distribution. The country parameters are significantly 

different from zero in all models. Below is the third table reflecting the LR-tests of the 

deterministic part. 

 

Table 7.3 Regularity and parameter test. Deterministic component. 

Regularity test and LR test statistic value. Critical Kodde and Palm (1986) 2
0,05   value in (.)  

Critical Thomas (2005) 2
0,05   value in [.] 

Model 
Cobb Douglas Half 

Normal 
Cobb Douglas 
Exponential 

Translog Exponential 

Years tested for 
0 : 0 jH against 

1 : 0 jH  . Degrees of 

freedom equals 2. 

6.791 (5.138) 5.134 (5.138) 5.850 (5.138) 
[5.991] 

Gradient value 4.84e-06 1.94e-08 8.13e-09 

Regions tested for 
0 : 0 jH against 

1 : 0 jH  . Degrees of 

freedom equals 3. 
 

2.907 (7.045)  14.005 (7.045) 

Gradient value 1.30e-06 1.043 3.47e-06 

Countries tested for 
0 : 0 jH  against 

1 : 0 jH  . Degrees of 

freedom equals 3. 

96.838 (7.045) 
 

 
182.799 (7.045) 

 

Gradient 1.82e-07 0.000112 4.56e-08 

Pass the regularity test Yes Yes 
68 out of 316 observations 
are outside the consistency 

region. 

Valid Yes No Yes 
Table 4 
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From table 7.3, it is clear that the C-D model with a half-normal distribution is a valid model. 

The year and country parameters are undoubtedly estimated as significant, but not regions. 

The gradient resembles zero in all three cases. However, it is a different story with the C-D 

model in the case with Exponential distribution. Unable to push the gradient towards zero in 

two of the three tests despite extensive manipulation, the latter model is discarded. 

The Translog model is also considered valid. Only 68 out of 316 observations are outside the 

consistency region. The translog model is therefore not considered to break the regularity 

conditions. At first glance, the latter model agrees with the C-D model in considering the year 

parameters, and its gradient is close enough to zero. However, as can be observed the test 

statistic for years falls in between the two critical values. As discussed above, I will therefore 

use the conservative Thomas (2005) distribution in order to avoid type 1 error. In other words, 

years are insignificant in the translog model. It disagrees with the Cobb Douglas model when 

it comes to regions. The region variables are therefore not rejected from the cost function in 

the translog case. As in the case with the Cobb Douglas model, the translog model considers 

the country parameters significantly different from zero.  

Observe how the country parameters affect both models. As can be seen from the LR test 

statistic value, the countries contribution to the model is substantial. 

Consequently, this thesis is left with two models. Let me term them model CD and model T. 

In order to avoid any confusion, I will be explicit, model CD is the Cobb-Douglas model, and 

model T is the Translog model. In view of the fact that the two models are not nested, the LR 

test cannot be applied in order to differentiate the most significant model. Instead further 

sensitivity analysis must be undertaken. The LR-tests for the sensitivity analysis of the 

efficiency component are presented in table 7.4. 
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 Table 
7.4 

Sensitivity analysis of the efficiency component in model CD and T, including environ in iu . 

Hypothesis 0 1: 0 against : 0k kH H    

      

 Log likelihood value LR statistic test Critical values   

Model CD T CD T 
Kodde 

and Palm 
(1986) 

Thomas 
(2005) 

Degrees of freedom 

Years 
included 

in iu  
153.19 196.83 0.890 2.038 5.138 5.991 2  

Regions 
included 

in iu  
164.90 206.54 24.317 

Gradient 
=0.827 

7.045 7.815 3  

Table 5 

 

In table 7.4 the full hypothesis testing for whether to include years and regions in the 

efficiency component is presented with the LR statistic as a decision making instrument. The 

first column, log likelihood value, gives the log likelihood value for model CD and T 

respective. The second column, LR statistic test, gives the LR statistic value for model CD 

and T respective. The third column, critical values, gives the critical Kodde and Palm (1986) 

and the Thomas (2005) value for rejecting the hypothesis 0 :H parameters value is equal to 

zero. The final column gives the value on the degrees of freedom.  

From the horizontal perspective, it can be seen that I firstly test the significance of the year 

variables, secondly the significance of the region variables in the iu component. As evident, 

for both models, the year variables are insignificant in the iu component, and thus 0 :H  that 

the parameters are equal to zero, cannot be rejected. 

Observe that for both models the log likelihood value increases when including the region 

variables in the iu  component. However, it is only model CD that is valid since model T has a 

gradient > 0.  

This leaves the Cobb Douglas model, model CD, with regions included in the efficiency 

component along with the environ variables, and from table 7.3, without regions in the 

deterministic function. 
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The translog model, model T, is left as before the tests in table 7.4. In other words, the 

sensitivity analysis did not improve model T any further. 

It is therefore argued; based on the parsimonious criteria above I ought to use model CD as 

the “best” model since “it get’s the job done”. However, there is a problem. Cobb Douglas 

imposes constant scale of elasticity. I believe that the scale elasticity varies between the units. 

In other words, a larger hospital must either have diseconomies of scale or economies of scale 

compared to a smaller hospital, they cannot be equal. 

According to the flexibility criteria it is preferred with a second order function since it is more 

exact in estimating several points in space. In other words, the second order flexibility of the 

translog functional form allows for both varied scale elasticity and varied efficiency between 

the units.  

Though the models are not nested, they have the same dependent and independent variables. 

Therefore I can compare the log likelihood values, where the value of model T is the larger of 

the two. But lacking a LR test I cannot conclude that it is significantly better. Adding the log 

likelihood value to the flexibility criteria, I therefore conclude that model T, the translog 

model, is the “best” model. Below I present model T in full length, in addition to model CD.  
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Table 7.5 
The final models T and CD. Norway in 2007 is base reference country. Values in 
the inefficiency part iu  represent percentage distance from the frontier where 

negative values are increase in efficiency. Table 6 

Dependent variable is real 
costs. 

Model T   Model CD  

Coef. z  Coef. z  

Ln outpatients 0.083 0.883  0.579 0.000 *** 

Ln DRG inpatients 0.566 0.122  0.381 0.000 *** 

Ln DRG daycare 0.294 0.273  0.068 0.010 ** 

Product of ln outpatients × ln 
DRG inpatients 

-0.451 0.002 ***    

Product of ln outpatients × ln 
DRG daycare 

0.103 0.093 *    

Product of ln DRG inpatients × 
ln DRG daycare 

-0.305 0.001 ***    

  21 2 Ln outpatients  0.337 0.016 **    

  21 2 Ln DRG inpatients  0.784 0.000 ***    

  21 2 Ln DRG daycare  0.200 0.010 **    

Year 2005    -0.024 0.109  

Year 2006    0.006 0.698  

Finland -0.313 0.000 *** -0.524 0.000 *** 

Sweden -0.019 0.691  -0.019 0.594  

Denmark -0.094 0.023 ** -0.300 0.000 *** 

Western Health region Norway 0.041 0.212     

Middle Health region Norway 0.089 0.021 **    

Northern Health region Norway 0.124 0.000 ***    

Constant -9.949 0.000 *** -10.893 0.000 *** 

ln 2
v  -5.752 0.000 *** -6.784 0.000 *** 

Table continues       
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Table 7.5 continued  

 Model T  Model CD  

 Coef. z  Coef. z  

ln 2
u        

Western Health region 
Norway 

   -2.377 0.000 *** 

Middle Health region 
Norway 

   -1.900 0.000 *** 

Northern Health region 
Norway    -0.844 0.072 * 

Share of outpatients -4.917 0.139  -6.851 0.000 *** 

LOS deviation 3.441 0.000 *** 1.502 0.002 *** 

CMI 0.564 0.668  3.482 0.000 *** 

University Hospital 0.248 0.615  0.378 0.187  

Capital City -0.580 0.225  -1.280 0.000 *** 

Constant -3.729 0.132  -1.296 0.399  

Average Scale  
Elasticity 0.931  0.972  

***, ** and * indicate significance level   0.01, 0.05 and 0.1 respectively  

 

In table 7.5 above, the final translog model T is presented together with the Cobb Douglas 

model CD for comparison. Firstly, note that the estimated output coefficients can be 

interpreted as output cost elasticities in the CD case, although in T these elasticities also 

depend on the second order terms. Though the outpatients variable is insignificant in model T, 

it is significant in model CD. From model CD it can be observed that the increase is estimated 

to be 0.579 %. 

Secondly, at the bottom of the table is the summarized scale elasticity. As can be seen, the 

translog model exhibit an average elasticity below 1, indicating diseconomy of scales of about 

7 %. In model CD the average scale elasticity is constant, exhibiting diseconomies of scale in 

the order of 2.8%. 
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The year variables are insignificant at the 5 and 1 % level in the CD model. The fact that there 

seems to be no significant difference throughout the years 2005 – 2007 in both models could 

indicate that the technological pathway appears to have been more or less equal for all 

countries.  

In both models the Finland and Denmark variables are observed to be significantly different 

from Norway, which is the reference country. Actually it provides information that Finland, 

Denmark and Norway have their own country specific frontiers. The estimated coefficients 

suggest that Finland and Denmark has a lower cost level than Norway in providing their 

specialist health care. Sweden is in both models estimated to be insignificantly different from 

Norway. 

From model T it can be seen that there exist cost differences inward the Norwegian frontier. 

Norway’s frontier includes the health region south east as reference. Two health regions are 

estimated to have larger costs than the south eastern region, that is, the Norwegian Middle and 

Northern Health Regions. It can therefore be argued that these regions have a different 

productivity than the South Eastern Health Region, thereby their own frontiers. The variables 

were excluded in the C-D model since their contribution was insignificant. I will return to the 

% difference in cost expenditure between the countries and regions below. 

From the 2
v , it can be observed that the noise component in the residual is significant, while 

this is not the case for the constant in 2
u . The insignificant constant in 2

u  suggests that the 

variation in the efficiency component is well described by the parameters. As evident in the 

C-D model and perhaps not surprising, outpatients tend to increase efficiency on average, 

while e.g. increased length of stay decreases efficiency.  

As opposed to the C-D model, the second order flexible model does not leave much 

unexplained efficiency for the iu . Only the LOS variable is significant. This suggests that the 

parameters in the cost function, i.e. the DRG weights, are suited to describe the efficiency 

differences as well as the cost differences. Consequently, model T suggests that there is 

variation in the country specific productivity defining the frontiers, but not the efficiency level 

behind the frontier. The difference in the level of the country specific frontier can be thought 

of as a cost penalty for production in that specific country. A lengthy discussion of the 

parameters in the inefficiency component follows. Let me first present one more table, with 



48 
 

the percentage difference in cost levels, reflecting the cost penalty between the countries and 

the regions. 

 

Table 7.6 
Percentage deviation between the countries and regional frontiers. Positive values indicate 
lower costs. 95 % confidence intervals. 

 Country Region 

 Finland Sweden Denmark 
Western Health 

region 
Middle Health 

region 
Northern Health 

region 

 
Model T 0.269 *** 0.019 0.090 ** -0.042 -0.094 ** -0.132 *** 

 
Confidence 

interval 
(0.318-
0.216) 

(0.106- 
(-0.077)) 

(0.161-
0.013 ) 

(0.023-(-0.110)) 
(-0.013- 
(-0.180)) 

(-0,059- 
(-0.210)) 

 
Model CD 0.408 *** 0.019 0.259 ***   

       
 

Confidence 
interval 

(0.437-
0.378) 

(0.084- 
(-0.051)) 

(0.303-
0.213) 

 

  

***, ** and * indicate significance level   0.01, 0.05 and 0.1 respectively  

Table 7 

As observed in table 7.6 the frontiers become more explicit. Given the size of the hospitals in 

model T, Finland has an expenditure related to their specialist healthcare that is 26.9 % lower 

than the Norwegian. Similar interpretation is valid for Denmark with the magnitude of 9 % 

lower costs compared to Norway. In other words, there is a cost penalty for providing 

specialist health care in Norway by the magnitude of 26.9 % as compared to Finland, and 9 % 

as compared to Denmark. Mind that the base reference is the South Eastern health region of 

Norway. 

In model CD, where the reference case is Norway as a whole, we see that the results are even 

more vigorous. Keep in mind though that the C-D model implies constant elasticity and is not 

considered to be the “best” model. Nevertheless, given the hospital sizes in the C-D model, 
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Finland emerges as having incredible 40.8 % lower costs in the delivery of specialist care. 

Estimation of Denmark suggests 25.9 % lower costs. 

Let me return to model T. From table 7.6 it can also be observed differences within Norway. 

The health regions Middle and Northern are statistical different from the South Eastern 

region. In fact, given the hospital sizes, the South Eastern health region delivers its specialist 

health care in a cheaper way. The Middle Health region is estimated to have 9.4 % higher 

costs associated to its provision of health care, while the Northern Region is estimated to have 

13.2 % higher costs. Thus the region specific frontiers lie above that of the Norwegian and 

there is a cost penalty associated with providing specialist health care in these specific 

regions. An illustration of the country specific frontiers is provided in the next chapter. 
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8 Discussion 

 

As can be seen from the preceding chapter, extensive work was done to estimate the models. 

Out of nine models, three were excluded as the first derivatives never approximated zero, two 

did not converge and two were incalculable. No model was excluded based on the regularity 

test of Salvanes and Tjøtta (1998). Further work was put in sensitivity analysis by omitting 

and including parameters and testing for their relevance with the LR test statistic. 

The result, model T, is very interesting and further research could be done to validate the 

outcome. For example, one could stepwise add the parameters one by one and run the LR test 

as opposed to what I did. The flexibility of the translog function makes the estimation of the 

frontier closer to the observations, that is, the translog function resembles DEA estimation. 

The results from model T are therefore not unexpected. As reported in chapter 3.2 above, 

similar results have previously been found in Linna et al., (2006) when estimating cost 

efficiency using the DEA method. The findings also support the SINTEF report (Kittelsen et 

al., 2009a). 

Furthermore, the results explicitly demonstrate that it is important to use SFA in estimating 

efficiency since the disadvantages of DEA is the strength of SFA, and vice versa. Recollect 

that DEA assumed no measurement error and that all deviation from the frontier was regarded 

as inefficiency, while, SFA assumed that the residuals consisted of both. On the other hand, 

SFA must assume distributional form of the residual and a functional form of the 

deterministic component, whereas DEA need not. Thus, both methods ought to be used as 

they complement each other. 

Kooreman (1994) and Zuckerman (1994) both discuss the complementarities of the two 

methods. They point to the fact that DEA can estimate technical efficiency while SFA can 

estimate a combination of technical efficiency and allocative efficiency. The duality problem 

applies to the results in this thesis, as with all models where price on output is non-existent. 

The tests were controlled for type 1 error as discussed above, and the more conservative chi-

square distribution of Thomas (2005) was used once. The findings point in the same direction 

given the differences between model T and CD. There are considerable - some would say 

extreme - differences in the cost efficiency between the countries, as observed in table 7.5.  
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By including explanatory variables in the iu component, this thesis allows the technical 

efficiency to vary with the environmental variables in iu . Since the iu contains a vector of 

explanatory variables, the inefficiency effects in the model are no longer identically 

distributed, but once estimated they are constant. Note that the significance of the explanatory 

variables in iu are tested for, and not included at the onset. Thus, heteroskedasticity, time and 

environmental variables are correctly accounted for. 

Because the data provides observations at several points in time, the assumption of 

independence is relaxed as discussed in chapter 6. Instead, SFA imply strong assumptions 

regarding the distribution of the inefficiency term. Furthermore, I have tested for both time-

invariant and time-varying inefficiency in model CD and T by assessing the significance of 

the year variables. It turned out that the year variables were insignificant when included in the 

deterministic as well as the inefficiency component in model T. In model CD, years were 

included in the deterministic component but not in the efficiency component. Thus, the final 

model is a time-invariant (constant inefficiency) model in assessing the efficiency behind the 

frontiers. 

The result confirms that the level of technical efficiency has been more or less the same 

throughout the three years with available data. In the literature (Jacobs et al., 2006), it has 

been argued that if it is believed that efficiency vary over time it must be modeled. I here 

show that it is, in my opinion, more correct to test for it.  

The productivity can be decomposed into differences in scale efficiency, cost efficiency (or 

technical efficiency) and the differences in the level of the frontiers. In this thesis I have 

estimated the two latter of these three. An attempt to illustrate this relationship is provided in 

figure 5. 
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Figure 5 illustrates the country specific frontiers. The frontiers are included to provide a 

deeper understanding, but under no circumstances do they reflect reality. Costs are measured 

on the vertical axis, while outputs are measured on the horizontal axis. The stippled line 

emerging from the origin is the tangent to the minimum average cost of the Finnish frontier, 

or just a hypothetical constant return to scale cost function.  

The vertical stippled line indicates the point at which optimal scale efficiency is reached. Any 

increase in outputs beyond this line (to the right) is associated with a proportionate increase in 

costs which is larger than the output value. The point indicated by OS, the optimal scale, 

illustrates the relation. Since the scale elasticity indicated diseconomies of scale and given the 

hospital sizes in the dataset, my observations are to the right of this line. 

The convex line tangent in the OS point represents Finland, illustrating best practice. The fact 

that the frontiers are convex illustrates variable return to scale. The country specific frontier 

with increased costs compared to Finland is the frontier of Norway. As can be seen the 

frontier of Norway indicates higher costs. I have here only illustrated Finland and Norway, as 

leaving Denmark and Sweden out of the figure does not interfere with the analytical point. 

The distance between the Norwegian, NC , and the Finnish, FC , frontier is illustrated in 

figure 5. The percentage deviation was expressed as the cost penalty between the countries, as 

Costs 

NC  

Outputs 

N

SF

C Cost frontier Norway

C Cost frontier Suomi Finland


 

 

OS 

Diseconomies of scale

SE 
TE=CE 

SFC  

Country cost level 
difference, or penalty 

Figure 5. The cost frontiers of Norway and Finland. 
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in table 7.6. In the same way, scale efficiency (SE) is expressed, but as the distance from a 

country specific frontier to its minimum average cost line, or the hypothetical CRS cost 

function, here illustrated by Finland. Scale efficiency is not estimated in this thesis. 

The technical efficiency in the iu component is measured from an observation in space, below 

the country specific frontier, illustrated by the cross above the frontier of the Norwegian 

frontier. In model T the variable LOS deviation was positive for all countries, indicating that 

it is further to “north east” of the country specific frontier and the stippled line representing 

diseconomies of scale. In other words, it is above the frontier and further to the right of the 

stippled line, resulting in increased costs and decreased efficiency. 

The stochastic error component is not included in the illustration.  

 

8.1 The deterministic component 

 

First a clarification; if a variable is significant, it implies that the coefficient is significantly 

different from the hypothesis, 0 : 0H   . In other words, the variable provides important 

information at the 5 % level. If it is insignificant, the coefficient is not significantly different 

from the hypothesis 0 : 0H   , where  represents the coefficient in both instances. 

From the coefficients values it can be seen that there is great difference from the Cobb 

Douglas function to the translog function. The findings contradict the conclusion in Rosko 

and Mutter (2008) discussed above, and is more in line with Greene (Schmidt et al., 2008), 

suggesting it is case specific.  

In line with previous findings, e.g. in the SINTEF report (Kittelsen et al., 2009a), the frontier 

for Sweden turns out to be insignificantly different from the Norwegian frontier in both 

models. 

As opposed to previous findings, the Danish frontier is significantly different from the 

Norwegian. In fact, the CD model estimates that Denmark uses 25.9 % less resources than 

Norway in supplying their specialist health care. The finding is in addition highly significant 
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at the 1 % level. The picture is somewhat moderated in model T, the “best practice model”. 

Here the function represents the data better because of the increased flexibility. In model T 

Denmark is estimated to have 9 % lower costs compared to Norway. Notice that the costs are 

deflated to 2007 NOK. The fact that Denmark is estimated to be more cost efficient in 

providing their specialist health care compared to Norway is in line with Kittelsen et al., 

(2007) but contradicts the findings in Kittelsen et al., (2009a). 

Lastly, the Finnish frontier is also significantly different from the Norwegian. In the CD 

model, Finland uses 40.8 % less resources in providing specialist health care than Norway 

does. Again, the results are somewhat moderated in model T but still substantial, to a cost 

penalty of 26.9 %.  

The Northern and Middle health regions are significantly different from the South Eastern 

health region. In model T they are estimated to use 13.2 % and 9.4 % more recourses than the 

South Eastern health region. In fact, they are so different in their productivity that they have 

their own frontiers. Considering the budget of 58.3 billion NOK in 2007 (Iversen et al., 2010) 

for somatic health care in Norway (executed in the health regions), the discrepancy between 

the regions’ resource usage in providing specialist health care seems enormous. 

 

8.2 The inefficiency 

 

The intuition behind the iu is that any deviation from a value of 0, that is the frontier, is a 

result stemming from the behavior of the unit. Thus, if the unit is engaged in activity in an 

inefficient way, the observed behavior is above the frontier. This was discussed above in 

relation to figure 5, with regards to technical efficiency.  

The variable “share of outpatients” is significant at the 1 % level in the CD model. The 

magnitude is rather strong, by -6,851. This suggests that a high outpatients share is associated 

with a high efficiency of hospitals. Perhaps more importantly, it could indicate that a lot of 

patients are being treated at the wrong point of service. Mind though, the variable is 

insignificant in model T. One could argue, based on model CD, that outpatients should to a 
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larger extent be treated elsewhere, at a lower resource demanding level – such as in primary 

care. However, the argument does not hold for model T which is the preferred model. 

Furthermore, the LOS deviation parameter is significant at the 1 % level in both model CD 

and T. Not surprisingly, the results suggest that the longer the patient stay in hospital the less 

efficient is the treatment. Longer patient stay is not to be confused with wrong treatment. Nor 

should it be confused with need of treatment. The deviation from average length of stay is 

also reflecting patient mix. Thus, the more demanding the patient is, the longer is the 

tendency for staying in hospital beyond the average patient. 

As opposed to model T, it can be observed in model CD that the case mix index parameter is 

significant and positive. Model CD suggests there might be correlation to the length of stay 

variable. However, it can also be the case that the DRG points do not fully compensate the 

patient mix. As mentioned earlier, Medin et al., (2010) finds similar results, in addition to 

discussing the efficiency of university hospitals.  

The university hospital parameter is positive suggesting that these types of hospitals are 

inefficient compared to non-university hospitals. However, in this thesis the parameter is 

insignificant in both models.  

In contrast to model T, the CD model estimates the capital city parameter as significant. In the 

latter model metropolitan hospitals are efficient compared to non-metropolitan hospitals. This 

is opposed to the findings in for instance Zuckerman et al., (1994) who find inefficiency in 

both city and non-city hospitals. In addition, the capital city parameter is highly significant. 

One possible explanation is that patients living in urban areas are different from rural areas, 

while another reason could be connected to the fact that urban hospitals might have lower 

costs connected to logistics. If so, this could indicate that the scale elasticity of capital city 

hospitals is different from that of other hospitals, thus be an argument for large metropolitan 

hospitals since urban conditions seem to increase efficiency.  

Two of the region variables are strongly significant in the CD model. Interestingly, the 

Western and Middle Health Regions seem to be more efficient than the reference region, 

South East.  This is in contrast to model T where the Middle Health Region indicated 

increased costs. A paradox thus seems to emerge. If the two models are combined, the 

Western region is seen to have high expenditures but at the same time it is considered to be 
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more efficient in treating its patients. It would be interesting if future research was to 

investigate this matter further.  

Let us return to model CD, with the Western and Middle health region in the iu . If the model 

was to include variables that could explain the combination of rurality and size of hospitals it 

might have provided a better explanation. Future research could try and account for the 

underlying organization of providing specialist health care – that is variables which in 

addition can explain allocative efficiency. Alternatively, further research could be conducted 

to see if this dataset can be applied to shadow price models in order to estimate allocative 

efficiency, if there exists any. A good start to investigate this possibility would be to consult 

Schmidt et al., (2008, p. 40, 187, 199). 

Thus, the result in table 7.5 suggests that the major part of the differences in expenditure is 

due to the productivity specific to each country, and not the distribution of efficiency behind 

the frontier. For Norway regional differences within the country are found, as evident from 

the separate frontiers of the Middle and Northern Health Regions. In addition, each country 

(except Sweden) has its own specific frontier, and the technical efficiency, or cost efficiency, 

is the difference to each country’s frontier. 

If the differences had been due to discrepancy in incentives, the efficiency behind the frontier 

would have been different in model T. Nor are the differences due to the level of costs as 

wage, nominal values or up-coding of DRG points (incorrect DRG codes selected to obtain 

higher compensation level) since such differences have been eliminated in the dataset. Thus, 

the differences must be understood to originate from other unexplained factors such as 

performance, culture, or organization. 

 

8.3 The elasticity of scale 

 

The above discussion of the inefficiency section has some common suggestions. Firstly, the 

share of outpatients contributed positively to efficiency in both models. However, it was 

argued that the outpatients might be treated at the wrong point of service since they contribute 
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to increased costs. Secondly, Norway emerge as less cost efficient than Denmark and in 

particular Finland, which represented “best practice”. Together these two points, suggest that 

an increase in decentralized health care with smaller specialist health care units, as are found 

in Finland are preferable.  

This is also reflected in the average scale elasticity which in model T had a value of 0.931. As 

mentioned, it indicates diseconomies of scale. In standard economics this implies that the 

average units are too large. If considering one firm owning all the units in the dataset, one 

implication would be that it needs to split some of its units, or change its way of doing 

business. Most likely both actions would be needed in order to reverse the diseconomies of 

scale and benefit increased efficiency. In policy it can be translated to decentralization, 

moving both decision making level and point of service to a lower level.  

In health care there are many more issues than efficiency to consider, such as adhering to the 

national goals of health care provision. Thus, the results in model T should not be taken as 

absolute, rather as signals. In the end, the question of how to deal with the fact of 

diseconomies of scale in the specialist care sector throughout the Nordic countries is a matter 

of policy. However, it suggests that public funds are used inefficiently as it is now. 

 

8.4 Limitations 

 

The observations in this dataset stem from four sources. With increased number of sources 

potential for misspecification is amplified compared to the case of one source. Limitations 

were connected to the completeness in the data for the countries due to differences in 

reporting. The data for Sweden are only for the years 2005 and 2006 which might contribute 

to the insignificant difference between Norway and Sweden. 

Furthermore, all the countries, especially Denmark who has their own DK-DRG system, did 

not use the NorDRG system in the same way. But because DK-DRG is built on the same 

overarching structure as NorDRG, comparability is possible on aggregated level. In addition, 

the structural organization of providing health care in the four countries differs.  
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As discussed in chapter 5, all of these factors could impair the results of this thesis. However, 

this is also why the study was limited to compare only public funded somatic hospitals. Thus, 

the results should be valid.   
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9 Conclusion  

 

The purpose of this thesis has been to examine whether the Nordic countries differ in costs 

and efficiency in providing specialist health care. Previous studies have considered the issue 

using data enveloped analysis (DEA), which is the current norm of methodology. However, 

they have established a joint frontier, something which can be termed a mutual global frontier. 

By doing so, all countries contribute in establishing one frontier, only providing bits to the 

larger puzzle of efficiency, production and / or cost differences, with a potential to bias policy 

decisions as the estimated differences might be erroneous. Consequently, the global frontier in 

the SINTEF report (Kittelsen et al., 2009a) is not fully representative.  

It is argued in this thesis, that the methodology of Stochastic Frontier Analysis (SFA) is 

preferred when wanting to separate the country specific effects. The method provides means 

to differentiate (in)efficiency from noise, as contrary to DEA. I have used SFA to decompose 

the cost efficiency into country specific frontiers.  

As previous findings (Kittelsen et al., 2009a) suggest, Finland is exceptionally efficient in 

providing specialist health care. In fact, in this thesis Finland emerge as 26.9 – 40.8 % more 

cost efficient than Norway depending on the model used. Previously, Linna et al., (2006) have 

suggested around 17-25 % for Finland. The findings in Kittelsen et al., (2009a) suggested 

Finland as significantly different and Sweden and Denmark as insignificantly different from 

Norway when comparing productivity. The results in this thesis suggest that not only Finland 

but also Denmark is significantly different from Norway. Just as important, they strengthen 

the findings in Kittelsen et al., (2009a). Consequently, it is argued that both methods, DEA 

and SFA, should be considered as complementary and hence, both should be applied when 

assessing efficiency estimates as to avoid bias in policy. 

Heteroskedasticity is accounted for in the models. Among several findings, model CD 

suggests that many outpatients are treated at the wrong point of service. Even though they 

enhance the efficiency of specialist care, they do so in a cost driven way. Furthermore, rural 

regions were more efficient than the South Eastern Region of Norway, but at increased costs. 

Metropolitan areas on the other hand are seen to increase efficiency. The scale elasticity 

suggests diseconomy of scale. 
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Since model CD is not the preferred model, the suggestions in the preceding paragraph are not 

the final conclusions. The translog model was considered the best model, but I was unable to 

confirm this by a statistical test. In model T it is argued that there are country specific 

frontiers. Albeit there is a cost penalty of providing specialist health care in Norway as 

compared to Finland and Denmark, it seems that each unit within each country is close to its 

own frontier, indicating cost efficiency under prevailing conditions. The closeness can be 

observed from the fact that it is only LOS deviation which is significantly different from zero 

of the environ variables.  

Model T also indicates that there is large discrepancy inward the Norwegian regions. In fact, 

it is suggested that two of the four regions in Norway (Middle and Northern) are so different 

from the South Eastern region that they have their own frontiers. These regions production is 

at a higher costs level than the South Eastern region, and consequently there is a cost penalty 

for providing health care in the Middle and Northern Health Region. 

It seems reasonable to suggest that there are certain disease specific procedures that Norway 

might be more efficient in conducting than Finland, but are there quality differences? Future 

studies of efficiency differences which include variables explaining quality discrepancies are 

of interest. Since there is a cost penalty of providing specialist health care in Norway it is 

interesting to investigate if the provision of the Finnish specialist health care is qualitative 

different from the Norwegian. Other forms of best practice could be learned from combining 

quality assessment in for instance cost of care of specific diseases, or quality assessment in 

differences of length of stay. In addition, variables that can explain allocative efficiency are of 

interest.  

Much attention is needed in finding ways of comparing functional forms and distributional 

assumptions within future research when having more than two competing models. Although 

this thesis provides exhaustive testing for estimating the optimal functional form of the 

deterministic component and the best distributional assumption of efficiency, it remains a case 

specific concern. I consider it beneficial if future research was to differentiate the optimal 

functional form and distribution in a generic test procedure. 

The findings in this thesis suggest that the country specific frontiers differ due to the 

productivity conditions prevailing in each country, as indicated by the differences in cost 

efficiency, while the distribution of efficiency behind the frontier does not differ among the 
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countries. The conditions prevailing in each country remains unexplained. Consequently, 

Finland seems to exhibit best practice and Norway could reduce its expenditure by learning 

from the Finnish way of organizing and providing the specialist health care.  
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