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Summary 

Liver X receptors are nuclear receptors that regulate cholesterol and fatty acid 

metabolism.  Despite the critical role fatty acids play in energy metabolism, the 

information is scarce regarding molecular processes governing their deposition and 

recovery from lipid droplets (LDs). Adipophilin/Adipose differentiation-related 

protein (ADRP) is a prominent lipid droplet-associated protein (LDAP) and is 

postulated to be necessary for formation and cellular function of LD structures. 

The present study was undertaken to reveal the gene regulation of adipophilin. This 

work shows that LXRα binds an identified LXR response element (LXRE) in the 

human adipophilin promoter. It also demonstrates adipophilin responsiveness upon 

LXR activation in transfection reporter assays.  

Our data indicates that adipophilin is a novel and functional LXR target gene. This is 

the first report to demonstrate that a member of the lipid droplet-associated protein 

family is regulated by LXR and bring further evidence to LXRs interplay in 

cholesterol and lipid metabolism.  
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1. Introduction 

1.1 Nutrition and gene regulation 

The modern life style has led to an epidemic of obesity and comorbidities such as 

type 2 diabetes, hypertension, hyperlipidemia and cardiovascular disease (1). There is 

a growing realization that the effects of nutrition on health and disease cannot be 

understood without a profound understanding of how nutrients act at the molecular 

level. It is now evident that, as well as their function as fuel and co-factors, micro- 

and macronutrients can have important effects on gene and protein expression and, 

accordingly, on metabolism. The challenge is to identify nutrient-influenced 

molecular pathways and determine the down-stream effects of specific nutrients (2).  

Transcription factors are the main agents through which nutrients influence gene 

expression. The nuclear hormone receptor superfamily of transcription factors, with 

48 identified members in the human genome, is the most important group of nutrient 

sensors (3-5). Numerous receptors in this superfamily bind nutrients and their 

metabolites (Table 1.1). These include retinoic acid receptor (RAR), retinoid X 

receptor (RXR), peroxisome proliferator-activated receptors (PPARs), liver X 

receptor (LXR), vitamin D receptor (VDR), farnesoid X receptor (FXR), 

constitutively active receptor (CAR) and pregnane X receptor (PXR) (3-6). 

Several physiological processes are regulated by nuclear receptors (NRs), and this 

superfamily mediate the transcription activity of endogenous and exogenous ligands 

(5;7-10). The above mentioned NRs heterodimerize with RXR to specific conserved 

nucleotide sequences, the so called hormone response elements (HREs) in the 

promoter regions of their target genes. In unliganded form, NRs are often associated 

with co-repressors either as complex on DNA or in cytosol. During ligand binding, 

NRs undergo a conformational change that results in the coordinated dissociation of 

co-repressors and the recruitment of co-activator proteins. This activation will 
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facilitate transcription. In metabolically active organs, such as the liver, intestine and 

adipose tissue, these transcription factors act as ligand sensors by changing the level 

of DNA transcription of specific genes in response to ligand changes (3). NRs have 

important roles in the regulation of numerous processes, including nutrient 

metabolism, embryonic development, cell proliferation and differentiation.  

 

Table 1.1  Transcription-factor pathways mediating nutrient–gene 
interactions 

Nutrient    Compound   Transcription factor   

Macronutrients 
Fats    Fatty acids  PPARs, SREBPs, LXR, HNF4, ChREBP, 

       RXR 

Cholesterol   SREBPs, LXRs, FXR, ROR 

Carbohydrates    Glucose   USFs, SREBPs, ChREBP 

Proteins                Amino acids  C/EBPs 

 

Micronutrients 
Vitamins    Vitamin A   RAR, RXR 

Vitamin D  VDR 

Vitamin E   PXR 

Minerals    Calcium  Calcineurin/NF-ATs 

Iron    IRP1, IRP2 

Zinc    MTF1 

Other food components 
Flavonoids   ER, NFκB, AP1 

Xenobiotics   CAR, PXR 

 

Abbreviations used: AP1, activating protein1; CAR, constitutively active receptor; C/EBP, 
CAAT/enhancer binding protein; ChREBP, carbohydrate responsive element binding protein; ER, 
oestrogen receptor; FXR, farnesoid X receptor; HNF, hepatocyte nuclear factor; IRP, iron regulatory 
protein; LXR, liver X receptor; MTF1, metalresponsive transcription factors; NFκB, nuclear factor 
kB; NF-AT, nuclear factor of activated T cells; PPAR, peroxisome proliferator-activated receptor; 
PXR, pregnane X receptor; RAR, retinoic acid receptor; RXR, retinoid X receptor; SREBP, sterol-
responsive-element binding protein; USF, upstream stimulatory factor; VDR, vitamin D receptor. 
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1.2 The basal transcriptional machinery 

Regulation of gene expression is complex and depends on binding of transcription 

factors to sequence specific sites in the promoter of their target genes. Usually several 

such response elements are located immediately 5’ of the transcription start site (TSS) 

of the gene, but expression may also depend upon other response elements upstream 

and downstream from the transcription start. The complex regulation of genes 

involves several different sets of response elements (Figure 1.1). The core promoter is 

located upstream of TSS and often includes a TATA box and an initiator (Inr). The 

TATA box, the Inr and the downstream promoter element (DPE) bind the 

transcription factor II D (TFIID) Inr complex (11). Enhancers and silencers are 

located both in close proximity and distal to the core promoter while insulators 

usually are found far from TTS. Additional proximal sequence specific regulatory 

factors do not act as activators or repressors, but rather works as “docking sites” 

recruiting enhancer complexes to the core promoter (12). Silencers mediate 

repression of transcription, while insulators prevent enhancers associated with 

adjacent genes to inappropriately regulate other genes (13). Enhancers, silencers and 

insulators work over great distances in the promoter and increase or suppress activity 

of the core promoter. They can be located upstream, downstream or within the 

transcriptional unit, but do not have any promoter activity themselves (14).   

A variety of A/T rich sequences can function as a TATA box, but the sequence 5’-

TATATAAG-3’ was identified as optimal for binding of the TATA box binding 

protein (TBP) (15). The initiator element is located at the TSS and contributes to the 

accurate initiation and strength of the promoter. The Inr is most probably involved in 

recognition and stabilisation of the TFIID complex. The spacing between the Inr and 

the TATA box strongly determines whether they act synergistically or independently. 

The interplay with the downstream promoter element is also important for stable 

TFIID binding. The downstream promoter element (DPE) acts together with Inr to 

recruit the TFIID complex (16), but DPE does not bind TBP itself. DPE does not 



 14 

function independently of the Inr as the TATA box does and is most commonly 

found in TATA less promoters (17). The transcription factor II B (TFIIB) binding 

element is located immediately upstream of the TATA box in many promoters where 

it helps initiate transcription by recognizing the TFIIB factor (18).  

 

 

 

 

Figure 1.1 The transcriptional module responsible for controlling gene 
expression 

A complex arrangement of multiple clustered enhancer modules interspersed with silencer and 
insulator elements which can be located 10–50 kb either upstream or downstream of a composite core 
promoter containing TATA box (TATA), response elements (RE), initiator sequences (INR), and 
downstream promoter elements (DPE) (14). 
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1.3  Nuclear receptors 

The nuclear receptor superfamily describes an evolutionary conserved group of 

transcription factors (19). All NRs share a common structural organization (19;20). 

The N-terminal domain is the least conserved domain and contains a ligand-

independent transactivation function (AF-1). Centrally is the DNA binding domain 

(DBD) responsible for sequence specific binding of the NRs to DNA and 

dimerization to other NRs. The DBD is highly conserved in NRs. The moderately 

conserved C-terminal domain contains a strong dimerization interface for other NRs, 

a ligand binding domain (LBD) and a ligand-dependent transactivation domain. The 

hinge domain between DBD and LBD allows a flexible three-dimensional structure. 

Two nuclear localization signal sequences are found in the hinge and C-terminal 

domain. Some NRs have an additional domain at the extreme C-terminal (F-domain). 

The function of this domain is poorly elucidated.  

Most NRs bind to their cognate HRE as homo- or heterodimers (Figure 1.2). The 

response element sequence consists of hexamer half sites separated by variable length 

of nucleotides. A zinc-finger motif in each receptor monomer recognizes the 

nucleotide sequence on the target DNA. To recruit a receptor dimer, a functional 

HRE must contain two half sites arranged in a specific orientation and spacing. For 

instance, thyroid hormone receptors (T3Rs) preferentially bind to two AGGTCA half 

sites oriented as direct repeats with a four-base spacer (DR4); retinoic acid receptors 

(RARs) bind to the same AGGTCA half sites, but oriented as a DR5; estrogen 

receptors bind to AGGTCA half sites oriented as an inverted repeat with a three-base 

spacer (INV3); and androgen receptors (ARs) recognize an INV3 orientation 

containing AGAACA half sites (21). 
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Figure 1.2  Nuclear receptor binding to DNA 

A nuclear receptor dimer bound to a HRE upstream of a target gene. Each receptor is represented as 
two domains: DNA binding and hormone binding. The HRE shown here is composed of two 
AGGTCA half sites in a direct repeat separated by a spacer; different half-site sequences, spacings, 
and orientations select for the binding of different nuclear receptors. Adapted from (21). 

 

NRs have been classified according to their binding and dimerization characteristics 

(Figure 1.3). The first class includes the classical steroid hormone receptors that bind 

as homodimers to inverted half sites separated by three nucleotides (IR3). The second 

class receptors bind to DR as heterodimers with RXR. The third class includes 

orphan NRs that bind as homodimers to DRs, while class four include orphan NRs 

binding as monomers to single response elements. Orphan NRs are receptors without 

any known physiological ligands. Recently, analysis based on the distribution of 

differentially conserved residues in the LBDs leads to the partition of the entire NR 

superfamily into two mutually exlusive classes and suggests the following proposals: 

Class I NR LBDs form RXR-like homodimers and Class II NRs form stable LBD 

heterodimers with RXR/USP or monomers (22) (Table 1.2).  



 17

 

Figure 1.3  Structure/function organization of nuclear receptors  
 
The six domains (A–F) of nuclear receptors comprise regions of conserved function and sequence. 
All of the nuclear receptors contain a central DBD (regionC), which is the most highly conserved 
domain and includes two zinc finger modules. A LBD (region E) and AF-II is contained in the C-
terminal half of the receptor. Situated between the DBD and LBD is a variable length hinge domain 
(region D), and variable N-terminal region (A/B) contains AF-I activation function. Most receptors 
also contain a variable length C-terminal region F, the function of which is poorly understood. Many 
members of the nuclear receptor family form homo- or heterodimers, and amino acid sequences 
important for dimerization are contained within the DBD and LBD. Adapted from (19).  

Class I Class II 
 

HNF4* TR** 
DHR96 RAR* 
RXR*, USP* PPAR* 
TR2, TR4 RevErb, E75 
DHR78 E78 
TLL, PNR ROR, HR3 
COUP, SVP, EAR2 EcR** 
ER* LXR**, FXR 
ERR* VDR**, PXR**, CAR 
GR*, PR*, AR, MR NGFIB, Nurr1**, NOR1 
SF1, LRH1, FTZ-F1 DHR38** 
DHR39  
GCNF1  
Dax1, SHP  
All C, elegans  

 
Table 1.2  Class partition of 
nuclear receptors based on 
structure-based sequence 
analysis 
 
Only a representative subset including 
all human receptors of the entire 
superfamily is shown here but the 
partition encompasses all NRs. 
Experimentally verified homodimers 
or heterodimers are indicated by (*) or 
(**), respectively. The known 3D 
LBD structures are in bold. Adapted 
from (22).  
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1.4 PPARs and LXRs 

Peroxisome proliferator-activated receptors (PPARs) are important regulators of lipid 

and carbohydrate metabolism, and have become major targets for intervention in 

metabolic diseases (19). This subfamily of NRs comprises three distinct members 

encoded by separate genes: PPARα, PPARβ/δ and PPARγ. The PPARs bind to a 

PPRE (DR1) in the target gene promoter and regulates the gene expression (10;23).  

PPARα is predominantly expressed in fat-burning tissues such as liver, kidney, heart, 

skeletal muscle and adipose tissue, but a lower level of expression is generally 

detected in all tissues examined (24). PPARα serves as the receptor for a structurally 

diverse class of compounds, including polyunsaturated fatty acids (PUFAs) and 

fibrates (25;26). PPARδ is ubiquitously expressed and its specific role remains 

unclear, even though it has been implicated in a wide range of physiological and 

pathophysiological prosesses such as embryonic implantation, wound healing, 

inflammation, cancer and osteoporosis, and recently in macrophage differentiation 

(27). Fatty acids such as palmitic acid and aracidonic acid, and the syntetic agonist 

GW501516 are known ligands for PPARδ (25;26). 

PPARγ exists in two protein isoforms that are created by alternative promoter usage 

and alternative splicing at the 5’ end of the gene (28). Whereas many tissues express 

a low level of PPARγ1, PPARγ2 is highly fat-selective and expressed at very high 

levels in adipose tissue. The differentiation and maintenance of adipose tissue is 

driven by the PPARγ. Natural high affinity ligands for PPARγ have not been 

identified, but endogenous PUFAs and 15-deoxy-∆12-14-prostaglandin J2 (15-PGJ2) 

shows micromolar affinity for the receptor in line with their serum levels (29;30). 

Thiazolidinediones (TZDs), a new class of synthetic antidiabetic drugs, have been 

characterized as high affinity ligands for PPARγ (31).  

Cholesterol and sterol homeostasis is another important regulatory pathway closely 

controlled by NR function. Liver X Receptors (LXRs) are major cholesterol sensors 
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in the body. The main functions of LXRs are to stimulate transition of cholesterol to 

bile acids in hepatocytes, inhibit cholesterol uptake in enterocytes and promote efflux 

of cholesterol from macrophages and possibly adipocytes (reviewed in (4)). All these 

activities decrease the amount of cholesterol in the body (4;32;33).  

LXRα (NR1H3 (Nuclear Receptor Nomenclature Committee, 1999) also described as 

RLD-1) was first isolated from rat liver and later human liver (34;35). Later LXRβ 

(NR1H2, also described as OR-1/UR/NER/RIP15) (36-39) was identified. The two 

isoforms are higly related and share 78 % amino acid sequence identity in both DNA 

and LBDs.  

Similar to other members of the nuclear receptor family, LXRs contain a zinc finger 

DNA-binding domain and a ligand-binding domain that accommodates specific small 

lipophilic molecules. Both isoforms form a heterodimer with RXR, and the 

heterodimers bind to a DR4 (AGGTCA nnnn AGGTCA) LXR response element 

(LXRE) in the promoter of target genes (35;39). LXR/RXR is a so-called permissive 

heterodimer, in that it can be activated by ligands for either LXR or RXR. 
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1.5 LXRs in cholesterol and lipid homeostasis  

The LXRβ isoform is ubiquitously expressed in adults (38), whereas the expression 

of LXRα is predominantly restricted to tissues known to play important roles in lipid 

metabolism, such as liver, skeletal muscle, adipose tissue, kidney and small intestine, 

but a lower expression level is also seen in spleen, pituitary and adrenal gland 

(34;35;40). The major breakthrough in understanding the biological functions of 

LXRs was the identification of their ligands.  

The first LXR activators were identified by screening organic tissue extracts and 

natural compound libraries. Oxidized forms of cholesterol (oxysterols), which are 

intermediary substrates in the rate-limiting steps of steroid hormone biosynthesis, bile 

acid synthesis, and in the conversion of lanosterol to cholesterol, have been identified 

as the potential physiological ligands for LXRs (Figure 1.4) (41). The most potent 

LXR activators are 22(R)-hydroxycholesterol, 24(S)-hydroxycholesterol and 

24(S),25-epoxycholesterol (42). Acetyl-Podocarpic Dimer (APD) (43), T0901317 

(44), and GW3965 (45) were later identified as synthetic compounds with ability to 

activate LXRs. The two latter ones have been widely used in studies to characterize 

functions of the LXRs. PUFAs are found to be competitive inhibitors of LXR 

ligands, antagonizing LXR activity by inhibiting binding of the RXR/LXR 

heterodimer to the LXRE (46;47). Several genes encoding proteins involved in 

important regulatory steps of body cholesterol transport have been shown to be 

regulated by LXRs (Reviewed in (48)). LXRs have also been shown to affect major 

genes encoding proteins that control triglyceride metabolism (48). Thus, LXRs seems 

to provide peripheral tissues with fatty acids while bringing cholesterol back to the 

liver.  
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Figure 1.4  Endogenous synthesis of oxysterol ligands for LXR 

The synthesis of (24)25-epoxycholesterol, cholesterol and oxidized derivatives of cholesterol and 
their conversion to bile acids or steroid hormones are shown. The endogenous LXR agonists are 
bracketed. Many intermediates have been omitted for simplicity. The structure of the synthetic LXR 
agonist, T0901317, is shown for comparison. 
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LXRs appear to control all the major steps in the reverse cholesterol transport 

pathway (Figure 1.5 and Table 1.4). In this process cholesterol is transported from 

extrahepatic tissues into the liver to be excreted as cholesterol or bile acids into the 

bile, and ultimately into the gut. Of particular importance in this pathway is that 

LXRs induce expression of  ATP-binding cassettes A1 (ABCA1) (49) and G1 

(ABCG1) (50), which are involved in transport of cholesterol and phospholipids from 

cells to extracellular cholesterol acceptors, notably the lipid-poor apolipoproteins 

apoAI and apoE. LXRs also induce expression of apoE in macrophages and 

adipocytes (51), and might enhance reverse cholesterol transport in a tissue-specific 

manner.  

The lipid transfer proteins regulated by LXRs include the phospholipid transfer 

protein (PLTP) (52) and cholesterol ester transfer protein (CETP) (53). PLTP is 

involved in the generation of efficient acceptors of cellular cholesterol (preβ-HDL 

(high density lipoprotein)). In this process PLTP transfers excess lipoprotein surface 

phospholipids (surface remnants) to lipid-poor apolipoprotein A-I (apo A-I). The 

remnants are formed when lipoprotein lipase (LPL) hydrolyzes triglyceride-rich 

lipoproteins such as very low density lipoprotein (VLDL) (54). In addition, PLTP 

generates preβ-HDL through remodelling of circulating HDL particles. CETP, in 

turn, transports cholesteryl esters from HDL particles to the apolipoprotein B-100-

containing lipoprotein particles (VLDL, intermediate density lipoprotein or IDL, and 

low density lipoprotein or LDL) (55). This leads to hepatic clearance of the 

cholesteryl esters when the IDL and LDL particles are taken up by the liver. Finally, 

in the mouse, but not in humans, LXRs also increase hepatic transcription of 7-α-

hydroxylase (56), which is involved in bile acid synthesis and thus drives secretion of 

the cholesterol taken up by the liver into the bile. 

Recent studies have revealed that LXRs are involved in the regulation of triglyceride 

metabolism and storage (44;57;58). LXRs stimulate fatty acid synthesis in the liver, 

and the increased quantities of fatty acids in the liver cells then become available for 

the synthesis of triglycerides, which are subsequently secreted into the circulation as 
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major components of the triglyceride-rich lipoproteins (VLDLs). The genes involved 

in fatty acid synthesis and activated by the LXRs include the gene encoding the sterol 

regulatory element-binding protein 1c (SREBP-1c) and the fatty acid synthase (FAS) 

(59). Moreover, LXRs also control the synthesis of lipoprotein lipase (LPL) (60), an 

enzyme located on the luminal surface of vascular endothelial cells hydrolyzing 

triglycerides and liberating fatty acids into adipose tissue for storage and into skeletal 

muscle for energy expenditure. Thus, LXRs are involved in fatty acid metabolism by 

promoting both their hepatic synthesis and their peripheral uptake. 

 

 
 

Figure 1.5 LXRs in the regulation of lipid homeostasis of the body 

LXRs stimulate hepatic fatty acid synthesis by upregulating the SREBP-1c and FAS. The FAs 
formed are incorporated into VLDL particles in the form of TG. The TGs of VLDL are hydrolyzed 
into FFA by LPL in the capillary bed. The resulting LDL particles, the major cholesterol-containing 
lipoproteins in the circulation, accumulate in the arterial wall, notably in macrophages, causing the 
formation of foam cells. Efflux of unesterified cholesterol from the macrophages to apoAI- or E-
containing small phospholipid disks, surface remnants, is facilitated by ABCA1 and ABCG1. The 
surface remnants are derived from the surface material of the VLDL particles upon action of LPL and 
PLTP. Once enriched with unesterified cholesterol, the surface remnants mature into spherical HDL 
particles as the unesterified cholesterol is esterified by LCAT. The cholesteryl esters of the HDL 
particles can be selectively taken up by the scavenger receptor BI (SR-BI) in the liver or, 
alternatively, be transported to larger apoB-100-containing lipoprotein particles (LDL) by CETP. The 
LDL particles are taken up by the hepatic LDL receptors (LDLR). Cholesterol in the liver can be 
used for synthesis of VLDL particles, or can be secreted into the bile, either as such or after being 
converted into bile acids (BA). In this conversion CYP7A1 is rate-limiting. Adapted from (61;62). 
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Table 1.4  LXR target genes in metabolism  
 
 

Target gene Function       Direction/Ref         

Lipid cholesterol metabolism 

Cyp7α*   Rate-limiting enzyme in the conversion of cholesterol                 ↑ LXRE  (41) 

to bile acids                      

CETP   Mediates transfer of cholesterol esters from HDL to    ↑ LXRE  (53) 

triglyceride-rich lipoproteins      

ABCA1   Mediates the active efflux of cholesterol from cells to   ↑ LXRE  (49;50;63;64) 

apolipoproteins                   

ABCG1   Mediates the active efflux of cholesterol and phospholipids   ↑  (63;65) 

from cells to apolipoproteins       

ABCG4   Cellular transmembrane transport of endogenous lipid   ↑  (66) 

substrates  

ABCG5/8  Important role in entero-hepatic sterol transport     (67) 

SREBP1c  Transcription factor that regulates expression of lipogenic enzymes  ↑ LXRE  (58;68;69) 

SCD-1/2**            Rate-limiting enzyme in the cellular synthesis of MUFA from  ↑   (44) 

saturated fatty acids, an important step in producing TG.     

FAS   Catalyzes the formation of long-chain fatty acids from acetyl-CoA  ↑ LXRE  (44;59) 

ApoE   Facilitates cholesterol efflux outside the enterohepatic axis   ↑ LXRE  (51;70) 

ApoC   Cofactor for LPL in hydrolysis of triglyceride                  ↑ LXRE  (70) 

LXRα  Autoregulation        ↑ LXRE  (71-74) 

LPL   Hydrolyzes triglycerides in circulating large lipoproteins   ↑ LXRE  (60) 

PLTP   Transfer phospholipids from triglyceride-rich lipoproteins to HDL  ↑  (52) 

SR-B1  HDL receptor involved in reverse cholesterol transport   ↑ LXRE  (75) 

Angpt13               A family member of the secreted growth factor angiopoietins   ↑ LXRE  (76) 

Carbohydrate metabolism 

PEPCK  Rate-limiting enzyme in gluconeogenesis     ↓ (77-79) 

PDK4   Glycolysis inhibitor       ↑  (78) 

GLUT4   Glucose transporter       ↑  LXRE (80;81) 

Inflammatory response 

TNF-α   Proinflammatory cytokine       ↑/↓ LXRE (82;83) 

Others 

11β-HSD-1 Catalyzes the conversion of inactive cortisone to active cortisol  ↓  (79) 
                    

Only genes with an LXRE found in the promoter and regulated by exposure to an  
LXR agonist are included.↑ Upregulated; ↓ downregulated. *Not directly LXR regulated in  
human. **regulated by SREBP-1. Adapted from (84) 
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1.6 Lipid droplet-associated proteins 

To survive periods of nutrient scarcity, animals have evolved the ability to store 

energy in lipid droplets (LDs) during periods of nutrient excess. LDs are present in 

the cytoplasm of most eukaryotic cells and consist of triacylglyceride and steryl ester-

rich cores surrounded by phospholipid monolayers (3;85-87). Despite the critical role 

fatty acids play in energy metabolism, there is relatively little information on the 

molecular processes that govern their deposition and recovery from the lipid droplets. 

LDs are thought to form by budding from endoplasmatic reticulum (ER) through an 

unusual and poorly characterized mechanism. First, neutral lipids synthesized in the 

ER membrane accumulate in the center of the bilayer and form disks. Next, the disks 

bulge into the cytoplasm as they enlarge and eventually bud from the ER as LDs, 

acquiring ER derived phospholipid monolayers in the process. Although no proteins 

are known to reside in the hydrophobic LD core, several proteins co-localize on the 

droplet surface. These include P200 (88), caveolin-2β (89), vimentin (85;90), mouse 

adipose differentiation-related protein (ADRP) / human adipophilin (hereafter 

referred to as adipophilin) (91;92), perilipin (93;94), S3-12 (95) and tail-interacting 

protein of 47 kDa (TIP47) (96;97). Recently, nearly 40 specifically associated 

proteins in droplets were identified, suggesting that a specific set of proteins are 

present in lipid droplets (98). Based on the protein profile, the droplet appears to 

contain the molecular machinery to synthesize, store, utilize, and degrade various 

lipids derived from enzymatic activity. In addition, this compartment may be directly 

involved in membrane traffic and possibly phospholipid recycling, suggesting that the 

lipid droplet is not a simple cell inclusion but a metabolically active organelle (98). 

Perilipin, adipophilin and TIP47 exhibit high sequence identity within an N-terminal 

motif termed PAT1 and a more distal located PAT2 domain (96;99). A fourth protein, 

S3-12 has been described along with these PAT family members. S3-12 contains a 

repeated 33 amino acid motif also found in adipophilin (100), and it shares protein 

sequence identity to both adipophilin and TIP47 in the C-terminus, but not to 
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perilipin (99) (Figure 1.6). The precise functions of these lipid droplet-associated 

proteins (LDAPs) are not known. Perilipin is the best characterized member, and is 

located on the surface of larger TAG droplets in mature adipocytes (93) and on 

cholesterol ester droplets in steroidogenic cells (101).  

 

Figure 1.6 Sequence relationships of lipid droplet-associated proteins 

The three indicated regions within adipophilin exhibit sequence similarities with the three other 
proteins shown. Values above each region indicate percent identity and in parantheses percent 
similarity to adipophilin. Relatedness to adipophilin is also indicated by shading, with darker shading 
denoting a greater degree of homology. The reported 33-amino acid repeat is not found in TIP-47 
(102). Adapted from (85). 

 

Perilipin is the major protein kinase A (PKA) substrate in adipocytes (103), and PKA 

activation induces phosphorylation of perilipin, ultimately resulting in increased 

lipolysis, whereas insulin stimulation acts contrarily by facilitating dephosphorylation 

of the perilipin protein core (104-106). The importance of perilipin in lipid 

metabolism has been demonstrated in vivo. Consistent with the role of perilipin as a 

barrier to lipolysis (Figure 1.7), perilipin knockout mice have reduced TAG in their 
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Figure 1.7 Role of perilipins in  
                      adipocyte lipid droplets 
 
Lipid droplets contain a neutral lipid core 
surrounded by a phospholipid monolayer. 
Perilipins associate with lipid droplets and 
could plausibly coat the entire surface. 
Exogenous perilipin expression in 3T3-L1 pre-
adipocytes retards triacylglycerol hydrolysis, 
possibly through sterically blocking access of 
hormone-sensitive lipase to the droplet surface. 
Adapted from (90).  

 

adipose tissue (107),  are resistant to both genetic and diet-induced obesity (107), 

show enhanced basal lipolytic rate (108) and fail to respond maximally to lipolytic 

stimuli (109). TIP47 is thought to act as a cargo selection device for trafficking of 

mannose-6-phophate receptors (MPRs) from late endosomes to Golgi (110) in 

addition to its association to lipid droplets (96;97). S3-12 was originally cloned as a 

surface/membrane-associated protein in adipocytes (100), but later observations 

suggests that S3-12 coats nascent LDs in adipocytes (95).  

Adipophilin is a 50-kDa protein initially cloned from a mouse adipocyte cDNA 

library (92). Initial studies showed that adipophilin mRNA was expressed primarily 

in adipose tissue and was induced early during adipocyte differentiation (111;112). 

However, recent studies indicate that adipophilin is a prominent LDAP found in 

many mammalian cell types, including hepatocytes, trophoblasts, testicular Leydig 

and Sertoli cells, adrenal cortex cells, adipocytes, muscle cells, and mammary 

epithelial cells, either during development (113) or in the mature functioning cell 

(85;91;113). Adipophilin has been shown to stimulate long chain fatty acid uptake 

(114), milk lipid secretion (115) and induce formation of lipid droplets (116). 

Conversely its expression is increased at the transcriptional level in the presence of 

fatty acids (117). There is also proposed a role for adipophilin in the transfer of lipid 

between lipofibroblasts and alveolar epithelial cells (118). 
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Adipophilin may be involved in regulating deposition and release of lipids at LDs 

and its expression in LDs appears to be modulated by sterol carrier protein-2 (119). 

Furthermore, adipophilin binds to fatty acids (120) and cholesterol (121). By 

immunofluorescence microscopy using monoclonal antibody raised to an amino-

terminal peptide of adipophilin, the labeling was found as a ring around lipid droplets 

(122). These properties suggest significance of adipophilin for LD functions, but how 

the protein attaches to the LD surface has not been demonstrated in detail.  

Tauchi-Sato et al recently showed that the surface of LDs is a phospholipid 

monolayer of unique fatty acid composition (123). The result indicates that the LD 

surface is a kind of membrane, or a hemi-membrane, but how proteins are bound or 

integrated in it is not known in detail. In contrast to several other proteins localized to 

LDs, adipophilin does not have a long hydrophobic domain indicating that 

adipophilin has two independent domains related to its localization and lipid droplet 

biogenesis. In lipoproteins are α-helices known to be lipid binding elements (124). It 

has been suggested that the presence of 11-mer repeats (Figure 1.8) may play an 

important role in lipid binding of a number of proteins including adipophilin (125), 

but biological evidence of the importance of this repeat is still lacking. 

The molecular mechanisms for regulation of adipophilin expression have not been 

well understood, but Dalen et al have recently shown that adipophilin, perilipin and 

S3-12 are PPARγ target genes in adipose tissue (102). A DR1 element in the mouse 

adipophilin promoter that recruits PPARβ/δ in macrophages has been described 

(126), but analyses in our laboratory have failed to demonstrate that the human 

version of this DR1 element is able to recruit RXRα/PPARγ and transactivate the 

human adipophilin promoter in adipocyte cells (unpublished data). Adipophilin has 

also altered expression opposit to S3-12 and perilipin in obese compared to lean rats, 

suggesting that adipophilin is differently and perhaps more complexly regulated. 

Recent observations in our laboratory have elucidated human adipophilin (112) 

mRNA expression prior to PPARγ (102), suggesting that adipophilin expression is 

not dependent on PPARγ as reported for S3-12 and perilipin.  
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Figure 1.8 Helical pinwheel plot  

The 11-mer helix contains hydrophobic amino acids shown on the upper side of this pinwheel plot 
and polar amino acids on the other side. This structure might give adipophilin both lipid binding and 
hydrophilic properties. Hydrophobic residues are in black, charged residues in red or blue, and polar 
residues in yellow. 11-mer repeat: HxxHxxxHxxx, where H are hydrophobic and x are non-
hydrophobic residues. Adapted from (125). 
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2.  Objectives 

This work takes part in a project with the overall goal to identify novel PPARγ and 

LXRα/β target genes, and to further identify the biological functions and putative 

roles of these genes in common metabolic and cardiovascular diseases.  

The objective of this thesis was to study gene regulation of the lipid droplet-

associated protein adipophilin. Preliminary data suggests that the human adipophilin 

promoter contains a putative DR4 that may be a functional LXRE. It was therefore of 

great interest to investigate whether human adipophilin was a novel LXR target gene.  

 

The focus of the work presented in this thesis was aimed at: 

• Examine whether human adipophilin show responsiveness upon LXR 

activation in transfection studies  

• Test whether mutation of the putative DR4 will abolish induction by LXR 

activation in transfection studies 

• Examine if LXRα bind to the DR4 in the adipophilin promoter  
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3. Materials 

3.1 Bacteria 

One Shot INVαF competent E. coli   Invitrogen 

3.2 Cell lines 

Human liver HepG2 cells      ATCC  
Humane stellate LI90 cells  Japanese Collection of 

Research Bioresources (JCRB)  
Monkey kidney COS-1 cells    ATCC  
Simpson-Golabi-Behmel syndrome (SGBS) cells Wabitsch, University of Ulm 

3.3 Cell medium  

Dulbecco’s Modified Eagle’s Medium (DMEM) Sigma 
Fetal Calf Serum       Sigma 

3.4 Chemicals 

γ-32P[ATP]       Amersham 
[α-32P] dCTP       Amersham 
2-mercaptoethanol      Sigma 
Acetic acid       Sigma 
Acrylamide (40 %)/Bic solution 19:1 (161-0144) BioRad 
Agarose       MedProbe 
Ammonium per sulphate     BioRad 
Ampicillin       Sigma 
Apotransferrin       Sigma    
Boric acid       Sigma 
Bovine Serum Albumin     Sigma 
Bromophenol blue      BioRad 
CaCl2        Merck 
Chloroform       Sigma 
Coenzyme A       Sigma  
Hydrocortisone      Sigma 
Xylene Cyanole FF      BioRad    
DEPC        Sigma  
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Dexamethasone      Sigma 
Dextrose       Sigma  
DMSO (Dimethyl Sulfoxide)    Sigma 
DTT (DL-Dithiothreitol)     Sigma 
EDTA (ethylenediaminetetraacetic acid)   Sigma 
Ethanol       Merck 
Ethidium bromide      Fluka 
Ficoll        Sigma 
Formaldehyde      Sigma 
Formamide       Sigma 
Glucose       Sigma 
Glycerol       Fluka     
Glycin       Sigma 
HCl        Chemi-teknikk AS 
Hepes (Hydroxyethylpiperazineethanesulfonic acid) Sigma 
IBMX (Isobutylmethylxanthine)    Sigma 
Insulin       Sigma 
Isopropanol       Arcus 
KCl        Merck 
KH2PO4       Merck 
LG100268       GSK 
L-glutamine       BioWhittaker   
Luciferin       Sigma    
Methanol       Merck  
MgSO4 x 7H2O      Sigma 
MgSO4       Sigma 
MOPS       Sigma 
Na2HPO4x2H20      Merck 
NaAc (Sodium Acetate)     Merck 
Na-citrate       Merck 
NaCl        Sigma 
NaH2PO4       Merck 
NaOH        Chemi-teknikk AS 
Igepol CA-630 (NP-40)     Sigma     
ONPG (o-nitrophenyl-ß-D-galactopyranoside)  Sigma 
PBS (Phosphate buffered saline)    BioWhittaker   
Phenol       Sigma 
PIPES (Piperazin ethansulfonsäure)q   AppliChem 
Polyvinylpyrrolidone     Sigma 
RNase AWAY      Molecular Bio Products 
Rosiglitazone      Alexis 
Salmon sperm DNA      Invitrogen 
SDS        Sigma 
Streptomycin       BioWhittaker 
T0901317        Alexis 
T3 (Triiodothyronine)     Sigma 



 33

TEMED (Tetramethylethylenediamine)   BioRad 
Tris-base       Sigma 
TRIZOL       Invitrogen 
Trypsin        BioWhittaker 

3.5 Enzymes and buffers 

Buffer B 10X Buffer      Promega 
CIAP        Promega 
Kinase buffer      Promega 
Klenow enzyme      Promega 
Labelling buffer      Promega 
Ligase 10xBuffer      Gibco BRC 
Lysis buffer       Gibco BRC 
MULTI-CORE™ 10X Buffer     Promega 
Pvu II        Promega 
T4 DNA Ligase      Promega 
T4 Polynuceotide kinase     Promega 

3.6 Equipment 

Cell flasks and plates     Corning Incorporated 
EMSA gel and electrophoresis equipment  BioRad 
Falcon tubes       Falcon   
Hypercasette Autoradiography Casettes   Eastman Kodak Company 
Hyperfilm MP RPN 2115     Amersham Pharmacia Biotech 
Nylon membrane /Amersham Hybond   Amersham 
Omnifix        Braun     
Parafilm       American National Can 
Plastic / glad pack      Tybring-Gjedde 
Watman paper / gel blotting paper   Schleicher & Schuell 

3.7 Growth media for bacteria 

Agar        Merck 
Peptone       Merck 
Yeast extracts       Merck 

3.8 Instruments  

AX105 DeltaRange (Weight)    Mettler Toledo 
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Biofuge fresco (Centrifuge)    Heraeus instruments 
Cell counter model Z1     Coulter electronics 
Electrophoresis power supply EPS 500/400  Pharmacia 
Freezer, -86C       Forma Scientific 
Gallenkamp Orbital Incubator    Bergmann 
Gel dryer model 583     BioRad 
Heλiosγ ThermoSpectronic    Nerliens 
Hiclave HV-50 (Autoclave)    HMC/Dipl. Ing Houm 
iEMS Reader MF      Labsystems 
Incubator       Forma Scientific 
Incubator       Thermaks 
Kubota KS-5200C (Centrifuge)    Medinor  
Labinco L21        Labinco BV, Netherlands 
Labinco L46 (Vortex)     Houm 
Leica DMIL/MPS 60 (Microscope)   Leica 
Luminometer TD-20/20     Turner Design 
MilliQ-syntesis       Millipore  
Nicon Digital Camera DXM 1200   Nicon 
Nicon eclipse TS 100     Nicon 
Personal Densitometer SI     Mol Dynamics/Pharmacia 
PhosphoImager SI      Mol Dynamics/Pharmacia 
Photo-print IP-214-SD     Saveen 
PhotoZoom (Microscope)     Cambridge Instruments 
Pipeteboy Comfort      Integra Biosciences 
PMH 92 LABpH meter      Nerliens/Radiometer 
PowerPac 300      BioRad 
Techne TE-10D tempunit     Tamro Lab AS 
Thermed 5002 electronics     GFC 
Transiluminator      LKB, Bromma 
Ultraviolett crosslinker     Amersham Life Science 

3.9 Kits 

JETQUICK Plasmid Maxiprep Kit   Genomed  
JETQUICK Plasmid Miniprep Spin Kit   Genomed 
ProbeQuant G50 Micro Columns     Amersham Biosciences 
QIAEX II Gel Extraction Kit    QIAGEN  

3.10 Plasmids and oligonucleotides 

pCMX       Mangelsdorf (Dallas, TX) 
pCMX-hLXRα      Mangelsdorf (Dallas, TX) 
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pCMX-RXRα       Mangelsdorf (Dallas, TX) 
pEGFP-N1       Clontech 
pGL3-Basic       Promega 
Primers       Sigma 
pSV-β-Gal       Promega 
  

3.11 Software and internet resources 

Adobe Illustrator 10      Adobe 
Automatic camera tamer software (ACT-1) V 2.11 Nikon 
Genesis Labsystems version 2.12 / 1303   Labsystems 
Microsoft Office and Microsoft XP   Microsoft 
NEBcutter Version 2.0      New England BioLabs Inc. 
PubMed,        National Library of Medicine 
Reference manager 10     ISI ResearchSoft 
SPSS 11        SPSS Inc. 
Wisconsin Package Version 10.0    Genetics Computer Group  
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4. Methods 

4.1 Essential DNA techniques 

4.1.1 Spectrophotometric quantitation of nucleic acid 

The nucleic acids in both DNA and RNA absorb light in the ultraviolet range (200-

400 nm), with an absorption peak at 260 nm. Proteins have an absorption peak at 280 

nm. Spectrophotometric readings should be taken at both wavelengths and Kalckar’s 

formula (the OD260/OD280 ratio) should be used to provide an estimate for the purity 

of the nucleic acid. Pure preparations of DNA or RNA have the OD260/OD280 values 

of 1.8 and 2.0 respectively. The concentration of DNA or RNA can be estimated by 

Beer-Lamberts law: A = ε · c · l, were A is absorbance, ε is extinction coefficient, c is 

concentration of sample and l is length of light pathway (cm). An OD260 measurement 

of 1.0 with l equal to 1 centimetre corresponds to approximately 50 µg/ml double 

stranded DNA, 40 µg/ml single stranded DNA or RNA and 20 µg/ml single stranded 

oligonucleotides (127). 

Protocol 
Dilute the sample in dH20 and measure the absorbance at 260 and 280 nm in a 

spectrophotometer. Use quartz cuvettes when measuring, since plastic absorbs light in 

the ultraviolet range. Use dH20 for zeroing the spectrophotometer.  

4.1.2 Separation of DNA by agarose gel electrophoresis 

Agarose gel electrophoresis is a standard method used to separate and identify DNA 

fragments. Large molecules migrate more slowly because of greater friction drag, 

since they have greater difficulties migrating trough the pores in the gel than smaller 

molecules. The DNA is negatively charged at physiological pH and will migrate 

towards the anode in an electric field. The DNA molecules are visualised by ethidium 
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bromide, usually added to the gel before it sets. The ethidium bromide intercalates 

between the bases in a double stranded DNA, and the complex is fluorescent when 

exposed to ultraviolet light (127).  

Protocol 

Solutions 
Sample buffer (10 x) 

50 % glycerol; 50 mM EDTA; 0.25 % (w/v) bromophenol blue; 0.25 % cyanine 

TBE buffer (stock solution 5 x) 

54 g Tris-base; 27.5 g boric acid; 20 ml 0.5 M EDTA (pH 8.0); dH20 to a total 

volume of 1 litre 

Ethidium bromide (stock solution) 

Dilute 10 mg ethidium bromide per ml  

Experimental procedure 
Seal the open ends of a plastic tray and place it horizontal on the table. Prepare 

electrophoresis buffer (0.5 x TBE). Add powder agarose in an aliquot of the buffer 

and melt it in a microwave oven. (Use 0.5 g agarose in 50 ml buffer to make 1% 

agarose gel). Cool the solution to 50-60°C and add ethidium bromide to 1 µg/ml final 

concentration in gel. Place the comb 0.5-1 mm above the plate in position close to the 

cathode and pour the agarose solution into the mold. Remove the comb carefully and 

mount the gel in the electrophoresis apparatus. Add TBE buffer to cover the gel and 

wash the wells with the same buffer. Mix DNA with 6 x sample buffer and load the 

mixture into the well. Attach the electric leads and apply voltage. Run the 

electrophoresis at 3-10 V/cm (50-100 V in small gel chambers) for 1 to 3 hours. 

Detect DNA fragments with an UV detector or in a FlourImager.  



 38 

4.1.3 Preparation of cloning vectors 

Restriction enzymes recognise specific, often palindromic, sequences in double 

stranded DNA and cleave these by hydrolysis of the phosphodiester bonds in DNA. 

Restriction enzymes typically recognise specific DNA sequences that are four, five or 

six nucleotides in length. The localisation of cleavage sites within the sequence 

differs from enzyme to enzyme. Some cleave both strands exactly in the middle of a 

sequence, creating fragments with blunt ends. Others cleave at similar locations some 

basepairs apart on opposite strands in the DNA, creating DNA fragments with single 

stranded termini.  

Calf Intestinal Alkaline Phosphatase (CIAP) catalyzes the hydrolysis of 5´-phosphate 

groups from DNA, RNA, and ribo- and deoxyribonucleoside triphosphates. This 

enzyme is used to prevent recircularization and religation of linearized cloning vector 

DNA by removing phosphate groups from both 5´-termini and may also be used for 

the dephosphorylation of 5´ phosphorylated ends of DNA or RNA for subsequent 

labeling with [32P] ATP and T4 Polynucleotide Kinase. CIAP is active on 5´ 

overhangs 5´ recessed and blunt ends (127).  

Protocol 

Solutions 
Pvu II, Buffer B 10X Buffer, MULTI-CORE™ 10X Buffer, Bovine Serum Albumin,  

CIAP stop buffer, NaAc, Phenol (TE-saturated), Chloroform. 

Experimental procedure 
The following procedure is designed for a typical single stranded reaction, containing 

0.2-0.5 µg DNA. For digestion of larger amounts of DNA, the reaction mixture 

should be scaled appropriately. It is important to optimise the temperature, incubation 

time, pH and salt concentration for optimal digestion of DNA. Use buffer, incubation 

time and temperature recommended by the manufacturer. Optimal for PvuII: storage 

at –20°C in 10mM Tris-HCl (pH 7.4), 50mM NaCl, 0.1mM EDTA, 1mM DTT, 

0.5mg/ml BSA, 50% glycerol. Incubate in buffer B at 37°C.  Cut the cloning vector 
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with chosen restriction enzyme(s) in appropriate buffer. Incubate for at least 2 hours 

at 37 °C or another temperature depending on enzyme(s) used. 1 µl vector (1 µg/µl); 

1 µl restriction enzyme buffer; 0.1 µl BSA (1µg/µl); 0.1 µl Enzyme A (10 U/µl) (0.1 

µl Enzyme B); 77 µl dH2O. Test the cutting by applying 1 µl of the reaction mixture 

on an agarose gel. Calculate the amount of CIAP to be used in the dephosphorylation 

reaction based on the amount of vector used and the size of the cloning vector. 

Formula: [amount vector (µg)/size vector (kb)*3.03 pmol ends]*[volume of diluted 

CIAP solution*0.01 U CIAP/pmol ends]. 

Amount 
(ug) 

Size 
(kb)

5'-ends 
(pmol) 

dilution CIAP
(X ul in 50 ul)

10 3 10,1 5,1
10 4 7,6 3,8
10 4,5 6,7 3,4
10 5 6,1 3,0
10 6 5,1 2,5

 

Mix the digested vector with the following:40 µl digestion mixture; 5 µl CIAP buffer; 

4 µl H2O; 1 µl CIAP (diluted) = 50 µll total. Incubate at 37 °C for 15 minutes. Then 

add an additional 1 µl og CIAP (diluted) and incubate for another 15 minutes. Add 

300 µl CIAP stop buffer and mix well. Add 175 µl phenol and 175 µl chloroform and 

mix vigorously. Centrifuge at 13.000 rpm for 5 minutes. Transfer the aqueous phase 

to a new tube and add 350 µl chloroform. Centrifuge at 13.000 rpm for 5 minutes. 

Measure the amount of the aqueous phase (~330 µl). Add 0.10x 4M NaAc and 2.5x 

EtOH (330 µl digestion mixture; 33 µl NaAc; 907.5 µl EtOH) and precipitate the 

DNA at -80°C for at least 2 hours. Centrifuge at 15.000 rpm at 4 °C for 20 minutes. 

Discard the aqueous phase and wash the pellet with cold 70 % EtOH. Centrifuge at 

15.000 rpm at 4 °C for 20 minutes and discard the aqueous phase. Air-dry the pellet 

for ~5 minutes and resolve the DNA pellet in ~30 µl H2O. Estimate the concentration 

of the cloning vector by electrophoresis, and dilute the vector with H2O. 
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4.1.4 Agarose gel extraction 

QIAEX II Agarose Gel Extraction is design for the extraction of 40 to 50-kb 

fragments from 0.3-2 % standard or low-melt agarose gels in TAE or TBE buffers 

(128). 

Protocol  
Excise the DNA band from the agarose gel with a scalpel and transfer gel slice to a 

microfuge tube. Weigh the gel slice in a colourless tube. Add 300 µl Buffer QX1 and 

200 µl H2O to each 100 mg gel. Resuspend QIAEX II by vortexing for 30 seconds 

and add it to the sample according to the DNA amount; <2 µg DNA add 10 µl, 2-10 

µg DNA add 30 µl. Incubate at 50°C for15 minutes to solubilize the agarose and bind 

the DNA. Mix by vortexing every 2 minutes to keep the buffer in suspension. Check 

if pH <7.5 and add NaAc if pH is above this level. Centrifuge the sample for 30 sek 

at maximum speed and carefully remove supernatant with a pipet. Wash the pellet 

with 500 µl of Buffer QX1, resuspend the pellet by vortexing and centrifuge the 

sample for 30 seconds. Remove all traces of supernatant with a pipet. Wash the pellet 

twice with 500 µl of Buffer PE like the Buffer QX1 wash. Air-dry the pellet for 30 

minutes. Elute DNA by adding 20 µl H20 and resuspend the pellet by vortexing. 

Incubate at 50°C for 5 minutes. Centrifuge for 30 seconds and carefully pipet the 

supernatant (contains purified DNA) to a clean tube.    

4.1.5 Ligation of DNA 

Ligation of DNA is catalysed by DNA ligase, an enzyme that joints to pieces of 

double stranded DNA. T4 DNA Ligase catalyzes the joining of two strands of DNA 

between the 5´-phosphate and the 3´-hydroxyl groups of adjacent nucleotides in 

either a cohesive-ended or blunt-ended configuration. The enzyme has also been 

shown to catalyze the joining of RNA to either a DNA or RNA strand in a duplex 

molecule but will not join single-stranded nucleic acids (129). The reaction is 

performed in eppendorf tubes with small volumes (10-15 µl) facilitating annealing of 
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the two DNA fragments with compatible termini. After annealing, the DNA ligase 

seals the single stand nick in the DNA (127). 

Protocol  
It is recommended to use a 1:3, 1:1, or 3:1 molar ratio of vector:insert DNA when 

cloning a fragment into a plasmid vector. These ratios will vary with other types of 

vectors, for example, cDNA and genomic cloning vectors. The following example 

illustrates the conversion of molar ratios to mass ratios for a 3.0 kb plasmid and a 0.5 

kb insert DNA fragment: (ng of vector × kb size of insert)/ kb size of vector × (molar ratio of 

(insert/ vector)) = ng of insert. Assemble the following reaction in a sterile 

microcentrifuge tube: Vector DNA 100ng; Insert DNA 17ng; Ligase 10X Buffer 1µl; 

T4 DNA Ligase (Weiss units) 0.1–1U; Nuclease-Free Water to final volume of 10µl. 

Incubate the reaction at room temperature for 3 hours, 4°C overnight, or 15°C for 4–

18 hours. 
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4.2 DNA cloning in plasmid vectors 

Closed circular plasmid DNA is cleaved with one or more restriction enzymes and 

ligated in vitro to foreign DNA bearing compatible termini, and then the ligation 

products are transformed into an appropriate strain of E.coli. 

4.2.1  Transformation of E. coli 

Introduction of foreign DNA to bacteria is called transformation. In this process, 

bacteria take up free DNA from solution. Linear fragments must be incorporated in 

the bacteria genome for replication. Plasmids replicate by themselves by acting as 

extra circular genomes. Transformation cells have to be selected from other cells in 

the transformation mixture. To ensure this, plasmids contain markers, usually a gene 

encoding resistance to an antibiotic. Transformed cells are selected by growing the 

transformation mixture in medium containing the same antibiotic, where only 

transformed cells are able to live and multiply. During ligation, re-ligation of the 

plasmid can be a problem. To minimize the possibility for picking cells transformed 

with a re-ligated vector, the transformed cells are selected by the α-complementation 

system. The vector carries a short DNA segment containing the regulatory sequence 

and the coding information of the first 146 amino acid sequence in the β-

galactosidase gene. Within this region is a polycloning site that does not interfere 

with the enzyme activity of the produced N-terminal sequence of the β-galactosidase 

enzyme. The genome in the E.coli strain codes for the carboxyl-terminal sequence of 

the β-galactosidase gene. Neither of these fragments are themselves active, but if they 

associate they form an active enzyme. Insertion of fragments in the polycloning site 

of the plasmid interferes with the production of the N-terminal fragment making it 

unable of this α-complementation. An active enzyme hydrolyses X-gal, making a 

blue product indicating that the colony represents bacteria with re-ligated plasmids 

without inserts (127).  
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Transformation using calcium chloride 

E.coli cells are grown to log phase. Cells are concentrated by centrifugation and 

resuspended in a solution containing calcium chloride. Exposure to calcium ions 

renders the cells able to take up DNA. Plasmid DNA is mixed with cells and 

presumably adheres to them. The mixture of DNA and cells is then heat shocked, 

which allows the DNA to efficiently enter the cells. The cells are grown in non-

selective medium to allow synthesis of plasmid-encoded antibiotic resistance 

proteins, and then plated on antibiotic-containing medium to allow identification of 

plasmid-containing colonies (130).   

Protocol 

Solutions 
LB medium with ampicillin 

To 1L of distilled water, add: 10 peptone; 5g Yeast extract; 10g NaCl.  

Adjust the pH to 7.0 with NaOH. Autoclave to sterilize. Allow the autoclaved 

medium to cool to 55°C and add ampicillin (final concentration 100µg/ml). For LB 

plates, include 15g agar prior to autoclaving. 

CaCl2 solution (250 ml) 

2.21 g CaCl2; 0.756 g PIPES pH 7.0; 44.1 ml 85 % glycerol. Filter-sterilizing or 

autoclave. 

SOC medium 

Tryptone (pancreatic digest of casein), 2% (w/v); Yeast extract, 0.5% (w/v); 8.6 mM 

NaCl; 2.5 mM KCl; 20 mM MgSO4; 20 mM Glucose  

Experimental procedure 
Prepare competent cells 

Inoculate a single colony of E.coli cells into 50 ml LB medium. Grow overnight at 

37°C with moderate shaking. Inoculate 4 ml of the culture into 400 ml LB medium in 

a sterile 2-liter flask. Grow at 37°C, shaking at 250 rpm, to an OD590 of 0.375 (~3 

hours). Aliquot culture into eight 50-ml pre-chilled, sterile polypropylene tubes and 
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leave the tubes on ice for 10 minutes. Centrifuge cells 7 minutes at 1100 x g, 4°C. 

Allow centrifuge to decelerate without brake. Pour of supernatant and resuspend each 

pellet in 10 ml ice-cold CaCl2 solution. Centrifuge cells 5 minutes at 1100 x g (2500 

rpm), 4°C. Discard supernatant and resuspend each pellet in 10 ml ice-cold CaCl2 

solution. Keep resuspended cells on ice for 30 minutes. Centrifuge cells 5 minutes at 

1100 x g, 4°C. Discard supernatant and resuspend each pellet in 2 ml ice-cold CaCl2 

solution. Dispense cells into pre-chilled, sterile polypropylene tubes. Freeze 

immediately at -70°C. 

Transform competent cells 

Aliquot 10 ng of DNA in a test tube and place on ice. Rapidly thaw competent cells 

by warming between hands and dispense 90 µl immediately into test tubes containing 

DNA. Gently swirl tubes to mix, then place on ice for 30 minutes. Heat shock cells 

by placing tubes into 42°C water bath for 1.5 minutes. Place immediately on ice and 

add 410 µl SOC medium. Mix gently and incubate for 1 hour at 37°C.   

4.2.2 Mini preparation of plasmid DNA  

Mini preparation is used for the preparation of small plasmid DNA. The DNA yield is 

up to 30 µg. The procedure employs a modified alkaline/SDS method to prepare the 

clear lysate. After neutralization, the lysate is applied directly onto a spin column and 

the plasmid DNA is bound to the absorption matrix. It is then washed to remove 

RNA, proteins and all other impurities. The purified plasmid DNA is eluted from the 

spin column in TE buffer or water (131). 

Protocol 

Solutions 

G1: Cell suspension solution: 50 mM Tris/Hcl (pH 8.0); 10 mM EDTA; 100 µg 

RNase A 

G2: Cell lysis solution: 200 mM NaOH; 1% SDS 
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G3: Neutralisation/Binding solution: Contains acetate and guanidine hydrochloride 

G4: Wash solution (reconstituted): Contains ethanol, NaCl, EDTA and Tris/HCl 

GX: Wash: Contains acetate, guanidine hydrochloride, EDTA and ethanol  

Experimental procedure 

Transfer one single bacterial colony into 2 ml LB-medium containing 50 µg/ml 

ampicillin and incubate overnight at 37°C with vigorous shaking.  E. coli cells are 

pelleted by centrifugation. Remove all traces of medium carefully. Add 250 µl of 

solution G1 to the pellet and resuspend the cells by vortexing or with a pipette until 

the suspension is homogeneous. Add 250 µl of solution G2 and mix gently, but 

thoroughly, by inverting the tube several times. Incubate at room temperature for 5 

minutes. Add 350 µl of solution G3 and mix gently but thoroughly, by inverting the 

tube until a homogeneous phase is obtained. Centrifuge the mixture at 13 000 rpm for 

10 minutes at room temperature. Place a spin column into a 2 ml receiver tube. Load 

the supernatant from step 4 into the spin column. Centrifuge at maximum speed for 1 

minute. Discard the flowthrough. Empty the receiver tube, and reinsert the spin 

column into the receiver tube. Add 500 µl of solution GX and centrifuge at maximum 

speed for 1 minute. Discard flowthrough and place the column back into the same 

receiver tube. Empty the receiver tube and reinsert the spin column into the receiver 

tube. Add 750 µl of reconstituted solution G4 and centrifuge at maximum speed for 1 

minute. Discard flowthrough and place the spin column back into the same receiver 

tube. Centrifuge again at maximum speed for 1 minute. Place the spin column into a 

new 1.5 ml microfuge tube and add 50 µl of sterile water or buffer directly onto the 

center of the silica matrix of the spin column. Centrifuge at maximum speed for 2 

minutes. 

4.2.3 Maxi preparation of plasmid DNA 

Maxi preparation of DNA is used for isolation of highly purified large amounts of 

plasmid DNA. Instead of phenol:chloroform extraction, the DNA is purified on an 
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anion exchanger in the first purification step. The DNA is then precipitated with 

isopropanol, washed, dried and dissolved in dH20/TE-buffer (132). 

Protocol 

Solutions 
E1: Cell resuspending solution: 50 mM Tris; 10mM EDTA; HCl ad pH 8.0 

E2: Cell lysis solution: 200 mM NaOH; 1.0% SDS (w/v)  

E3: Neutralization: 3.1 M potassium acetate; acetic acid ad pH 5.5 

E4: Column equilibration solution: 600 mM NaCl; 100mM sodium acetate; 0.15% 

TritonX-100; acetic acid ad pH 5.0 

E5: Column washing solution: 800 mM NaCl; 100mM sodium acetate; acetic acid ad 

pH 5.0 

E6: DNA elution solution: 1250 mM NaCl; 100 mM Tris-HCl pH 8.5 

Experimental procedure 
Transfer one single plasmid containing bacterial colony into 500 ml LB-medium 

containing 50 µg/ml ampicillin. Grow bacteria overnight at 37 °C with vigorous 

shaking. Split the bacterial medium in 150-200 ml centrifugation tubes. Do not use 

more than 200 ml medium pr. Tube. Centrifuge at 6.000g for 5 minutes at 4°C, and 

remove the supernatant. Apply 30 ml solution E4, and let the column empty by 

gravity flow. Resuspend the bacterial pellet in 10 ml cold solution E1. Add 10 ml of 

solution E2, mix the solution gently, and incubate at room temperature for 5 minutes. 

Add 10 ml cold solution E3, mix the solution immediately, but gently, by shaking the 

tube. Centrifuge the solutions at 15.000g for 10 minutes at 20°C. Apply the 

supernatant from step 6 to the pre-equilibrated column and allow it to enter the resin 

by gravity flow. Wash the column with 60 ml solution E5, and elute with 15 ml 

solution E6. Precipitate the DNA with 0.7 volumes of isopropanol (10.5 ml) at room 

temperature, and centrifuge immediately at 15.000g for 30 minutes at 4°C. Remove 
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the supernatant carefully. Wash the plasmid pellet with 5 ml 70 % ethanol, and 

centrifuge again at 15.000g for 5-10 minutes at 4°C. Remove the supernatant, and put 

the centrifugation tube upside down for 5 minutes, then turn the tubes and let the 

pellet air dry in room temperature for approximately 15 minutes. Redissolve the 

plasmid pellet in approximately 400 µl, dH2O depending on the size of the pellet, and 

transfer to a clean eppendorf tube. Wash the tube again with 100 µl dH2O to increase 

the yield. 
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4.3 General techniques for culturing cell lines 

To avoid contamination of micro organisms, cells in culture are handled using aseptic 

techniques. As an extra precaution, the cell culture medium is supplemented with 

antibiotics to prevent bacterial growth. The cells are cultured in an incubator at 37°C, 

with 5% CO2 and humidified air to simulate an in vivo situation. When taken out of 

the incubator, the cells are immediately placed in sterile cell culture hood. Gloves are 

ethanolized, and all equipments in use should be sterile, and all bottles or equipment 

brought into the hood ethanolized. 

4.3.1 Thawing of frozen cells 

Cells are thawed by agitation in 37°C water bath (within 40-60 seconds). As soon as 

the ice is melted, the ampule is removed from the water bath. All of the operations 

from this point on are carried out under strict aseptic conditions. The cell suspension 

are transferred and diluted with the recommended culture medium in culture flask. 

4.3.2 Cell counting  

The Coulter counter estimates the number of cells in the suspension. This apparatus 

measure changes in current when a particle pas trough two electrodes in a current 

leading solution. These changes correspond with the volume of the particle. A 

particle size between 7-16 µm has been found to be equivalent to the size of the cells 

and was defined as the interval for particle counting. 

4.3.3 Cell Cultures  

Monkey kidney COS-1 cells (ATCC no. CRL 1650) 
COS-1 is a fibroblast-like cell line established from CV-1 simian cells which were 

transformed by origin-defective mutant of SV40 which codes for wild type T antigen. 

The line contains T antigen, retains complete permissiveness for lytic growth of 
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SV40, supports the replication of ts A209 virus at 40C and supports the replication of 

pure populations of SV40 mutants with deletion on the early region. This line 

contains a single integrated copy of the complete early region of SV40 DNA, and is a 

suitable host for transfection, especially for vectors requiring expression of SV40T 

antigen (133). COS-1 cells were cultured in Dulbecco’s modified Eagle’s medium 

(DMEM) supplemented with 10% fetal calf serum (FCS), 2 mM L-glutamine, 

penicillin (50 U/ml) and streptomycin (50 µg/ml). Cells were kept subconfluent prior 

to experiments. 

Human liver Hep G2 cells (ATCC no HB-8065) 
This human cell line was derived from tissue of a 15-year old male Caucasian. The 

cells are epithelial in morphology, have a modal chromosome number of 55 and are 

not tumorigenic in nude mice. The cells produce alpha-fetoprotein, albumin, alpha2-

macroglobulin, alpha1-antitrypsin, transferring, alpha1-antichymotrypsin, 

haptoglobin, ceruloplasmin, plasminogen, complement (C3, C4), C3-activator, 

fibrinogen; alpha1-acid glycoprotein, alpha2-HS glycoprotein, beta-lipoprotein and 

retinol binding protein (134-136). Hep G2 cells were cultured as COS-1 cells. 

Humane stellate LI90 cells (NIHS/JCRB 0160) 
The LI-90 cells are human hepatic ito (fat storing) stellate-shaped mesenchymal 

tumor cells that exist in the space of Disse of the liver and contain many fat droplets 

in cytoplasm. Cells were derived from tissue of a 55-year old Japanese female with 

an epitethelioid hemangioendothelioma (137). LI 90 cells were cultured as COS-1 

cells. 

Simpson-Golabi-Behmel syndrome (SGBS) cells  
SGBS cells are a human preadipocyte cell strain derived from stromal cell fraction of 

subcutaneous adipose tissue of a male infant with Simpsin-Golabi-Behmel syndrome, 

a rare X-linked disorder characterized by pre- and postnatal overgrowth (138). 

Although the biological mechanism behind the prolonged differentiation capacity is 
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still unknown, SGBS adipocytes are morphologically, biochemically and functionally 

identical to in vitro differentiated adipocytes from healthy subjects and are therefore 

an ideal human adipocyte in vitro model system. SGBS cells were cultured in 

DMEM/Nutrient Mix (0F) supplemented with 10% non- heat inactivated fetal calf 

serum (OF+10% FCS). Growth medium for all cells was supplemented with 2 mM L-

glutamine, penicillin (100 U/ml), streptomycin (100 µg/ml) and vitmix (0.04 g biotin 

+ 0.02 g D-pantotenate (or 0.04 g DL-pantotenate in 50 ml MQ water). Cells were 

not allowed to grow confluent prior to experiments. 

4.3.4 Differentiation of SGBS cells  

Protocol 

Solutions 
Adipogenic media 3FC 
0F (- FCS)      10 ml 
0,01 mg/ml human apo-transferrin   10 µl of 10 µg/µl stock 
2x10-8M insulin|     2 µl of 100 µM stock 
10-7M  cortisol    10 µl of 100 µM stock 
0.2 nM T3     10 µl of 200 nM stock 

Quickdiff 
3FC       10 ml 
25nM  dexamethasone   10 µl of 25µM stock 
500µM IBMX     222 µl of 22.5 mM stock 
2 µM  rosiglitazone    2 µl of 10 mM stock  

 
Experimental procedure 
Seed the cells in appropriate culture chamber/flask (25 cm2 culturing flasks) before 

you start differentiation. Then let the cells grow confluent before you start the 

differentiation program. This increases the degree of differentiation substantially. 

Remove the medium. Add 5 ml Quick-diff medium, and incubate for 4 days. Change 

medium to freshly made 3FC (5 ml) after 4 days, and then incubate another 4 days. 

Then change medium each 3rd-4th day until experiment.  
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4.4 Promoter analysis 

The information governing how transcription factors influence gene expression is laid 

down in the regulatory genomic sequences, not in the proteins themselves, and thus a 

tremendous amount of information can be mined from regulatory regions. Linking the 

results of functional analysis of gene regulation can allow rapid identification of a 

series of potential coregulated genes and thus facilitate target gene characterization 

and identification (139). Functional assays for promoter analysis makes it possible to 

assess a control region’s ability to mimic accurately the expression pattern of the 

endogenous gene. Mutations can then be introduced into the control region to identify 

important regulatory elements and, ultimately, important transcription factors (140). 

4.4.1 Computer analysis 

The DNA sequences that comprise promoters do not provide much direct information 

about regulation. Promoter function is not coupled to fixed stretches of sequence 

homology, but rather to highly variable elements representing individual transcription 

factor binding sites that act as a binding site for their cognate protein. The sites are 

generally composed of 10 to 30 nucleotides; of these, usually only a small core of 

nucleotides, often separated by nonconserved sequences, establishes the criteria for a 

binding site. Because of this inherent variability, transcription factor binding sites 

cannot be efficiently described by their individual sequence. However, the flexibility 

of these sites can be defined by either an IUPAC consensus sequence or by weight 

matrices. IUPAC consensus sequences use ambiguous symbols (e.g., B=C, G or T; 

R=A or G) to describe the variability of nucleotide usage. Software that allows 

detection and characterization of individual binding sites is available from several 

sources, including Signal Scan (http://bimas.dcrt.nih.gov/molbio/signal), MATRIX 

SEARCH, Genetics Computer Group (gcg) Wisconsin Package Version 10.0 or 

MatInspector (http://www.gsf.de/biodv). A large collection of functional binding sites 
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derived from the literature can be found in the TRANSFAC database 

(http://transfac.gbf.de/TRANSFAC/) (139).  

The computer analysis (80) was performed prior to my experiments and a limited 

protocol is added since this method was fundamental to further characterization of the 

human Adipophilin gene.  

Protocol 
Briefly, the full-length human adipophilin mRNA (accession: #BC005127) was used 

to identify the chromosomal localization, exon/inton boundary and the predicted 

transcription start (TS) site by BLAST against htgs sequences (annealed to: 

#BC005127). A short 5‘- regulatory sequence for the mouse adipophilin gene, was 

used as bait to identify a longer form of the mouse adipophilin promoter (accession: 

#L09734.1 annealed to #AL824707.5). The promoter sequences spanning 5.000 bp 

up- and downstream from TS was extracted and analyzed for presence of response 

elements by the use of consensus PPRE (RGGBSA A AGGTCA) and LXRE 

(DGGTYA HWHW MGKKCA) sequences generated by the gcg-program 

(Wisconsin Package Version 10.0, Genetics Computer Group (gcg), Madison, Wisc.) 

to localize potential PPRE elements. 

4.4.2 Cloning and mutagenesis of the adipophilin promoter 

Cloning and mutagenesis of the adipophilin promoter was performed prior to my 

experiments and a limited protocol is added since this method was fundamental to 

further examination of the human adipophilin gene.  

Protocol 
Briefly, the full-length human and murine adipophilin promoters were amplified with 

Pfu Turbo (Stratagene) from human (Clontech, #6550-1) and mouse (Clontech; 

#6650-1) genomic DNA with PCR settings as described previously (80).The 

following primers were used: 5'-human adipophilin (KpnI): 5'-
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TAGGTACCAAAAACGTCTCCTTTGTCCTCTGGA-3', 3'- human adipophilin 

(KpnI): 5'-TAGGTACCTCTAACGCGTTTCCCTTTCGATAAT-3', 5'-mouse 

adipophilin (NheI): 5'-ATGCTAGCATCGCCTTGGGATCTAATCTTGGT-3' and 

3'-mouse adipophilin (NheI): 5'-

ATGCTAGCCTAACAGGAGAGCTGAGGGACGAG-3' Both promoter was first 

cloned into the pPCR-Script vector (Stratagene) prior to insertion into the luciferace 

reporter vector pGL3-Basic (Promega) to generate reporter vectors. 

4.4.3 Transient transfection assay  

Transient transfection assay is the most common functional assay to study 

transcription regulation. In this method plasmids containing the control region of 

interest are introduced by one of several transfection procedures into cells maintained 

in culture. Typically, the control region regulates transcription of a “reporter gene”, a 

gene whose mRNA or protein level can be measured easily and accurate. If the 

regulatory region of interest is a promoter, it is placed immediately upstream of the 

reporter, such that the inserted promoter will drive reporter gene transcription. If the 

control gene of interest is an enhancer or other control region that appears to function 

at a distance from the promoter, a well characterized promoter is usually placed 

upstream of the reporter gene, with the enhancer inserted upstream of the promoter or 

downstream of the reporter gene. At a specific time point following transfections of 

cultured cells with the resulting plasmid, the activity of the control region is assessed 

by measuring mRNA or protein synthesis from the reporter gene. This assay is 

considered to be transient because the plasmids remain episomal and rarely integrate 

into the host genome (140).  
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 Figure 4.1 Transient transfection assay 

The most commonly used reporter gene is the luciferase gene from the firefly 

Photinus. This gene encodes a 61-kD enzyme that oxidizes D-luciferin in the 

presence of ATP, oxygen and Mg2+, yielding a fluorescent product that can be 

quantified by measuring the released light. In the conventional assay for luciferase, a 

flash of light is generated that decays rapidly after the enzyme and substrates are 

combined (141). 

 

 

Figure 4.2  Bioluminescent reaction catalyzed by firefly luciferase 
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Protocol 

Solutions 
2 x Hepes-buffer-saline (2 x HBS) 

1.6 g NaCl; 0.074 g KCl; 0.024 g Na2HPO4x2H20; 0.2 g dextrose; 1 g hepes. Solve in 

ddH2O to a total volume of 100 ml and adjust pH to 7.05 with NaOH. Sterilize by 

filtration. 

CaCl2 (250 mM) 

Sterilize by filtration. 

10 x PBS  

1 tablet in 10 ml ddH20 or 137 mM NaCl; 2.7 mM KCl; 4.3 mM Na2HPO4; 1.4 mM 

KH2PO4; The final pH should be 7.3. Sterilize by filtration. 

2 x HBS /PBS 

10 µl 10 x PBS / ml 2 x HBS 

Luciferase assay reagent 

470 µM luciferin;  530 µM ATP; 270 µM coenzyme A; 20 mM tricine; 3.74 mM 

MgSO4 x 7H2O; 0.1mM EDTA; 33.3mM DTT; ad 100 ml H2O. 

Experimental procedure 
Transient transfections of COS-1 and HepG2 cells were performed after 

modifications of the calcium phosphate precipitation method (142).  

Ligands 

Ligands were dissolved in DMSO before addition to the transfection medium at 

appropriate concentrations.  

Cells 

Split COS-1 or HepG2 cells 24 hours prior transfection in 6-well and 12-well plates 

respectively, with a cell density of 2 x 105 cells / subconfluent per well. Change to 

transfection medium prior transfection. 
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Plasmids 

Each well receive 5 µg test plasmid, 3 µg pSV-β-Gal as internal control, 1 µg of 

pCMX, pCMX-RXRα or pCMX-hLXRα expression vectors and 2µg pGL3-basic to a 

total volume of 12 µg DNA in the experiments.   

Transfection 

Mix DNA in 2 x HBS and add calcium chloride in a phosphate buffer. Add this mix 

in droplets to the cells. The result is a formation of a DNA-calcium phosphate 

precipitate, which is layered on the cells. The precipitate is taken up by endocytosis. 

Incubate for 24 to 48 hours.  

Harvesting and lysis 

Equilibrate 1 x lysis buffer to room temperature before use. Carefully remove the 

growth medium from cells to be assayed. Rinse cells with PBS, being careful to not 

dislodge attached cells. Remove as much of the PBS rinse as possible. Add enough 

1X lysis buffer to cover the cells (e.g., 250 µl per well of a 6-well plate).  Rock 

culture dishes several times to ensure complete coverage of the cells with lysis buffer. 

Scrape attached cells from the dish. Transfer cells and all liquid to a microcentrifuge 

tube. Place the tube on ice. Vortex the microcentrifuge tube 10–15 seconds, then 

centrifuge at 12,000g for 15 seconds (at room temperature) or up to 2 minutes (4°C).  

Luminometer 

Dispense 100µl of the Luciferase Assay Reagent into luminometer tubes, one tube 

per sample. Program the luminometer to perform a 2-second measurement delay 

followed by a 10-second measurement read for luciferase activity. Sensitivity should 

be approximately 39.9. Add 10 µl of cell lysate to a luminometer tube containing the 

Luciferase Assay Reagent. Mix by pipetting 2–3 times or vortex briefly. Place the 

tube in the luminometer and initiate reading.  
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4.4.4 β-Galactosidase assay 

β-galactosidase is a commonly used reporter molecule. The β-galactosidase enzyme 

assay system with reporter lysis buffer is a convenient method for assaying β-

galactosidase activity in lysates prepared from cells transfected with β-galactosidase 

reporter vectors such as pSV-β-galactosidase control vector. The standard assay is 

performed by adding sample to the buffer that contains the substrate ONPG (o-

nitrophenyl-β-D-galactopyranoside). Samples are incubated for 30 minutes, during 

which time the β-galactosidase hydrolyzes the colorless substrate to o-nitrophenol, 

which is yellow. The absorbance is then read at 420 nm with a spectrophotometer 

(143).  

Protocol 

Solutions 
Z-buffer 

60 mM Na2HPO4; 40 mM NaH2PO4; 10mM KCL; 1mM MgSO4. Adjust to pH 7.0. 

Add 50 mM 2-mercaptoethanol before use 

o-nitrophenyl-ß-D-galactopyranoside (ONPG) reaction buffer 

ONPG (4mg/ml) in 100 mM Phosphate buffer, pH 7.0 

Experimental procedure 
Mix 175 µl of 2-mercaptoethanol in 50 ml Z-buffer and add 1.5 ml to the eppendorf 

tube with 3 µl β-Galactosidase (0.1mU/µl). Make a standard curve by pipetting 

duplicates of 0, 10, 20, 30, 40, 50, 60 and 70 µl into a 96-well plate followed by 10 µl 

of each cell lysate from the transfection experiments in the resisting wells. Dilute 

with Z-buffer to a total volume of 200 µl in each well and add 40 µl o-nitrophenyl-ß-

D-galactopyranoside (ONPG) (4 mg/ml). Place a cover on the plate. Incubate the 

plate at 37°C for 30 minutes or until a faint yellow colour has developed. Colour 

development continues for approximately 3 hours. Read the absorbance of the 

samples at 420 nm in a plate reader.  
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4.4.5 Green fluorescent protein transfection marker  

Green fluorescent protein (GFP) is a 28-kD protein from the jellyfish Aequorea 

victoria. GFP contains an intrinsic peptide chromophore that emits green light 

following oxidation and excitation with ultraviolet or blue light. The pEGFP-N1 

encodes a red-shifted variant of wild-type GFP, which has been optimized for 

brighter fluorescence and higher expression in mammalian cells (144;145). GFP are 

used for monitoring gene expression and can be used as a substitute for luciferase 

reporters, by measuring fluorescence in a flourometer. pEGFP-N1 can also be used 

simply to express EGFP in cell line of interest as a transfection marker (146). 

Protocol 
HepG2 cells cultured in 12-well plates were transfected with 2.5, 5.0 and 7.5 µg 

pEGFP-N1 using the calcium phosphate precipitation method (4.4.3). The DNA 

amount of 5.0 µg was based on experience with transfections in COS-1 cells (Cell 

amount reduced ~60 % in 12-well plates compared to 6-well plates). The amount of 

GFP positive cells were estimated visually after 48 and 72 hours based on experience 

with COS-1 cells.   
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4.5 DNA binding by regulatory transcription factors 

4.5.1 Electrophoretic mobility shift assay (EMSA)  

In an electrophoretic mobility shift assay (EMSA) a 32P-labeled DNA fragment 

containing a specific DNA site is incubated with a cognate DNA-binding protein. The 

protein-DNA complexes are separated from free (unbound) DNA by electrophoresis 

through a nondenaturing polyacrylamide gel. The protein retards the mobility of the 

DNA fragments to which it binds. Thus, the free DNA will migrate faster than the 

DNA-protein complex. An image of the gel is used to reveal the positions of the free 

and bound 32P-labeled DNA (147;148). EMSA was thus used to bind the LXR 

protein to its LXRE (LXRE) or probe identified upstream on the adipophilin gene 

(studied in transfections) (140;149).   

Protocol 

Solutions 

Gel fixing solutions (1 litre)  

700 ml dH2O; 200 ml methanol; 100 ml acetic acid. 

5x running buffer / EMSA buffer) (1litre) 

TRIS-base 0.25 M 30.28 g; Glycin 1.9 M 142.63 g; EDTA 10 mM 3.72 g; dH20 700 

ml. pH=8.5, Add dH20 to final volume of 1 litre. 

2 x Binding buffer (for in vitro translated proteins) 
Stock solution  in reaction   2 x buffer       50 ml 
   1 M Tris-HCl (pH=8.0) 20 mM   40 mM     2 ml 
   1 M KCl 80 mM 160 mM     8 ml 
 85 % glycerol    8 %   16 %  8.8 ml 
   5 % NP-40 0.1 %  0.2 %     2 ml 
   1 M DDT 1 mM  2 mM 200 µl 
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Experimental procedure 

Annealing of oligo 

Dilute each oligo to 20 pmol/µl in 100 µl dH20 (20 µl of each 100 pmol/µl oligo 

stock, 60 µl dH2O). Boil the tube in water bath for 5 minutes, and let cool down at 

room temperature in the same solution until ~35°C (or until next day). Store annealed 

oligo at -20°C. 

Radio labelling of oligo 

Mix the following reagents and incubate in a water bath at 37°C for 90 minutes: 34 µl 

H2O;  4 µl annealed probe (20 pmol/µl);  5 µ 10 x kinase buffer;  5 µ γ-32P[ATP] (5 

µCi/µl ⇒ 25 µCi);  2 µl T4 Polynuceotide kinase (5 U/µl). Purify on ProbeQuant 

G50 Micro Columns (Amersham Biosciences), and dilute probe to 100 µl by adding 

50 µl dH2O. Store labelled probe at 4°C. 

In vitro transcription and translation of proteins 

Defreeze reticulocyte lysate (Master Mix) on ice, and take care not to expose the 

lysate to air more than necessary (as it reacts with CO2). For same reason, do not 

store the lysate on dry ice. Mix the following reagents and incubate at 30°C for 60-90 

minutes: 40 µl Reticulocyte lysate (Master Mix); 2.5 µl Plasmid (1 µg/µl); 1 µl 

Methionine; 6.5 µl DEPC. Freeze the in vitro translated proteins at -70°C until use. 

Might be stored for at least one year. Avoid repeated freezing/defreezing of lysate, 

and disperse the translated lysate in eppendorf tubes (~30 µl/each tube). 

Preparation of native gel (2 gels) 

Mix the following reagents (add TEMED as last component): 42 ml H2O; 1.25 ml 5 x 

EMSA running buffer; 6.3 ml 40% acrylamide; 0.5 ml 10 % APS (ammonium per 

sulphate); 25 µl TEMED. 40% acrylamide = 40% Acrylamide/BIs solution 19:1 

(BioRad, #161-0144). TEMED = N,N,N’,N’-tetra-metylethylenediamine (BioRad, 

#161-0801). 10% APS is solved in dH2O and stored at stocks of 1 ml at -20°C.  
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Let the gel polymerise for at least one hour before you use the gel. Do not let the gel 

dry in room temperature for to long, as this might make it difficult to remove the 

comb later on. Wrap it into a plastic bag containing 0.5xRunning buffer (~20 ml) to 

avoid drying. 

Pre-running of gel 

Dilute 10 x EMSA running buffer to 1 x EMSA running buffer concentration. Place 

the gel in position in the chamber, and wash the bottom of the gel (between the glass 

plates) to remove all air bobbles. Wash each well with buffer. Pre-run the gel 30 to 60 

minutes at 100 V. 

Binding reaction 

Mix the samples as follows: 10 µl 2 x binding buffer; 4 µl Protein (in vitro translated); 

1 µl ssDNA; y µl competitor; 4-y µl dH2O. Add 1 µl of radiolabeled probe 

(remember to dilute probe to the desired concentration). Incubate with radiolabeled 

probe for 20 minutes at room temperature. 

Electrophoresis 

Wash each well (just prior to addition of probe) and apply samples on gel. Wait 2 

minutes and turn on the current. Run at 180 V for 3.5 hours. Wash the gel with water. 

Take special care of washing the bottom of the gel to remove radioactive free probe 

in the solution remaining between the glass plates. Remove the side dispensers and 

then remove one of the glass plates while letting the gel stick to the other one. Add 

Fix solution (just to cover the gel surface), and fix the gel for 5-10 minutes 

(reticulocyte lysate turns brown). Pour of the fix solution (against the bottom of the 

gel), and transfer the gel to a Watman paper (Press the Watman paper quickly and 

gently on top of the gel, and then remove the paper with the gel attached to it. Dry the 

gel at 70°C for 30-60 minutes. It is optimal to preheat the gel dryer to decrease the 

drying time required. Gels are then subjected to autoradiography at 70 °C (41). 
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4.6 RNA analysis 

RNA analysis is used to measure the amount and size of RNAs transcribed from 

DNA and to estimate their abundance. Northern analysis is capable of obtaining these 

pieces of information simultaneously from a large number of RNA preparations, and 

is therefore fundamental to studies of gene expression in eukaryotic cells. The basic 

steps in this analysis are isolation and separation of RNA, transfer and fixation to a 

solid membrane, hybridization with radio-labelled probe against gene of interest, 

removal of unspecifically probe and finally detection, capture and analysis of an 

image of the specifically bound probe molecule (127).   

4.6.1 Isolation of total RNA from cell cultures with TRIZOL 

Protocol 
Wash the cell layer once with 10-15 ml 1x PBS. Remove PBS and lyse the cells 

directly in the culture flask by adding 1.5 ml TRIZOL reagent to a 25 cm2 culture 

flask. Wait for 2-3 minutes to allow the cells to lyse completely, and pass the cell 

lysate several times through the pipette and transfer to an RNase free tube. Freeze 

samples at -20°C, or at -70°C for longer storage. Incubate the homogenised samples 

for 5 minutes at 15-30°C to permit complete dissociation of nucleoprotein complex. 

Add 300 µl chloroform (0.2 ml/1 ml of TRIZOL reagent used for homogenisation). 

Shake vigorously by hand for 15 seconds, and then incubate the tube at 15-30°C for 2 

to 3 minutes. Centrifuge the samples at no more than 12.000 g for 15 minutes at 2 to 

8°C. After centrifugation, the mixture separates into a lower red, phenol-chloroform 

phase, an interphase, and a colourless upper aqueous phase. RNA remains 

exclusively in the upper aqueous phase. Transfer the aqueous phase to a fresh tube. 

Precipitate the RNA from the aqueous phase by mixing with isopropanol. Use 1.5 ml 

isopropanol (0.5 ml/1 ml of TRIZOL reagent used for homogenisation). Incubate the 

samples at 15 to 30°C for 10 minutes, and centrifuge by no more than 12.000 g for 

30-40 minutes at 2 to 8°C. Remove the supernatant. Wash the RNA pellet with 75% 
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ethanol, adding at least 1.5 ml of ethanol (at least 1 ml of 75% ethanol/1 ml of 

TRIZOL reagent used for homogenisation). Mix gently and centrifuge at no more 

than 7500 g for 5 minutes at 2 to 8°C.  Remove the supernatant, and air-dry the RNA 

pellet for 5 to 10 minutes. Dissolve in approximately 15 µl RNase free water (DEPC 

water), depending on the size of the pellet.  

4.6.2 Northern analyses 

Solutions 
10x Running buffer (1 L) 

0.4 M MOPS (pH 7.0) 83.72 g; 100 mM NaCl 8.2 g; 10 mM EDTA 3.72 g; Adjust 

pH with NaOH. 

10x Loading dye (10 ml) 

50% Glycerol 5.8 ml; 1 mM EDTA 20 µl - 0.5 M EDTA (pH 7.5 – 8.0); 0.4% 

Bromophenol blue; 0.04 g 0.4% Xylene cyanol 0.04 g. 

20x SSPE (1 litre)  

NaCl 175.3 g; NaH2PO4 x H2O 27.6 g; (Na2HPO4 28.4 g); EDTA 7.4 g. Adjust pH to 

7.4 with NaOH.  

Hybridisation mix (0.5 L) 

5x SSPE  125 ml 20x SSPE 

10x Denhardt (without BSA)     1 g Ficoll 

     1 g Polyvinylpyrrolidone 

100 µg/ml salmon sperm DNA  5-6 ml 10 mg/ml freshly denatured 

ssDNA 

50% formamide 250 ml deionised formamide 

  2% SDS   10 g SDS (or 200 mL 10% SDS) 

Solution 1 (1 L): 100 ml 20x SSC (2x SSC) and 2.5 ml 20% SDS (0.05% SDS) 

Solution 2 (1 L): 5 ml 20x SSC (0.1x SSC) and 5 ml 20% SDS (0.1% SDS)  
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Stripping solution 1 (1 L): 25 ml 20% SDS (0.5% SDS)  

Stripping solution 2 (1 L: 100 ml 20x SSC (2x SSC) 

Stock solutions 
20x SSC (1 L): 175.3 g NaCl and 88.2 g Na-citrate. Adjust pH to 7.0 with a few 

drops of 10 M NaOH 

20% SDS (1.0 L): 200 g SDS. Dissolve overnight without heating. 

Experimental procedure 

Preparation of gel 
Make 400 ml of a 1% agarose gel by melting agarose, 288.6 ml H2O (DEPC) and 40 

ml 10x running buffer in a microwave. Then chill the solution to approximately 65°C 

before adding 71.4 ml formaldehyde. Formaldehyde should have a final 

concentration of 2.2 M. For each sample make a mix of the following: 4.5 µl RNA 

(up to 20 µg) and DEPC, 2.0 µl 10x buffer, 3.5 µl formaldehyde and 10.0 µl 

formamide (deionised). Heat the samples for 15 minutes at 65°C. Put on ice for 1 

minute. Add 2 µl loading dye and centrifuge to get the sample in the bottom of the 

tube. Run the gel overnight. Start at 80 V, until samples have migrated into the gel, 

and then adjust the voltage down to approximately 40 V.  

Blotting of gel 
Rinse the gel in DEPC water. Put 10x SSPE in each of the buffer reservoirs in the gel 

chamber. Cut three layers of Whatman papers, soak them in 10x SSPE buffer and lay 

them one by one over the glass plate/support with ends reaching into 10x SSPE 

buffer in the chamber below. Remove air bubbles for each layer of Whatman paper. 

Cut a Nylon membrane (Amersham Hybond) and three pieces of Whatman papers 

with the same size as the gel. Soak the layers of Whatman papers in 10x SSPE and 

place the gel upside down on top of the Whatman papers. Make sure there are no air 

bubbles between the gel and the Whatman papers. Put Parafilm on top of the gel 

along each side of the gel to ensure that all blotting solution is transferred through the 
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gel only. Soak the nylon membrane in 2x SSPE and place it on top of the gel and 

Parafilms. Soak the Whatman papers in 2x SSPE and put them one by one on top of 

the stack. Put blotting paper on top of the stack. Put a glass plate on top and a weight 

(1 kg for a 20x20 cm gel). Blot the gel for at least 20 hours. Remove the blotting 

papers and the Whatman papers, remove the membrane and place it on a clean piece 

of Whatman paper and let it air-dry completely. Crosslink both sides of the 

membrane in the UV-crosslinker (Energy 700 at both sides).  

Labelling of oligo 

Pipette 30-50 ng of probe (X µl) into an eppendorf tube, add 5 µl primer, and dilute 

to total volume of 33 µl with dH2O. Make a small hole in the top of the eppendorf 

tube and boil the mix for 5-10 min. After boiling, put the probe directly on ice to 

minimise renaturation of the probe. Centrifuge down the probe. Add 10 µl 5x 

labelling buffer, 5 µl [α-32P] dCTP and 2 µl Klenow enzyme. Incubate at 37°C for 10 

minutes to 1 hour. Separated the probe on a Sephadex G-50 column (ProbeQuantTM 

G-50 Micro Columns, 27-533-01) right after incubation. Reaction mix: 1 µl probe, 

5 µl primer 28-1 µl H20 | 10 µl buffer, 5 µl [α-32P] dCTP, 2 µl Klenow enzyme. Mix 

the contents in the Sephadex G-50 spin column until a homogenous solution. Loosen 

the top of the column, remove the tip at the bottom, and put the column in an 

eppendorf tube. Centrifuge the column at 3000 rpm for 1 minute. Dry the tip of the 

column with paper to remove the remainder of the solution. Add the probe-mix in the 

middle of the dry column matrix. Centrifuge the column at 3000 rpm for 2 minutes. 

The probe passes through the column, while the nucleotides remain in the column. 

Count the incorporation by pipetting 2 x 1 µl of the flow-through in a scintillation 

counter. The count number should be about 1-5 ⋅ 106, (~108 total).  

Prehybridisation 

To make freshly denatured ssDNA, heat DNA at 100°C for 10 minutes, then put on 

ice for two minutes. Add ssDNA as the last component, and freeze the hybridisation 

mix at 20°C until use. Wet the membrane with hybridisation mix. Put the membrane 
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into a hybridisation tube, and add 10 ml hybridisation mix. Remove all air bubbles, 

and pre-hybridise the membrane in a tube at 42°C for 3 hours.  

Hybridisation and whasing 
Denature the probe by heating at 100°C for 10 min, and then put the probe on ice. 

Pipette the probe into 10-15 ml fresh hybridisation mix in a 15 ml Falcon tube.  

Remove the hybridisation solution, and replace with the hybridisation solution 

containing the probe. Remove all air-bubbles, and incubate at 42°C until next day. 

Wash the membrane once with 20 ml solution 1 at room temperature for 1-2 min. 

Then wash twice in 100-200 ml solution 1 at room temperature with moderate 

shaking for 15 minutes. Preheat a water bath to 50°C, and put a container containing 

solution 2 in the water bath. Wash the membrane 2 x 15 min at 50°C in 100-200 ml 

solution 2.  

Exposure 
Wrap the filter in plastic (Saran), and remove all air-bubbles, and most of the liquid. 

Expose the membrane for the acquired time.  

Stripping 
Heat a 0.5% SDS solution until boiling. Remove the solution from the hot plate and 

incubate the blot in the solution for 10 minutes. Transfer the blot to 2xSSC solution 

for 5 minutes at room-temperature. The blot is then ready for prehybridisation or 

storage at 4°C in plastic (Saran). 
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4.7 Statistical analysis 

The results from transfection studies are presented as means ± SD, and are 

representative for three individual experiments performed in triplicates. The relatively 

small sample size in the transfection experiments complicates testing of normal 

distribution conformation of the data. Since assumptions of a parametric test cannot 

be met, a comparison using a non-parametric method which does not require any 

assumptions concerning the distributions of the data was carried out. The non-

parametric alternative to the independent sample t test comparison for two samples, 

the Mann Whitney U test, was then conducted for significance testing. Statistically 

significance was set at the 5 % level (P<0.05).  
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5. Results 

5.1 Characterization of the human adipophilin promoter 

Preliminary data in Hilde Nebb’s research group suggested that the human 

adipophilin gene had a DR4 element in the promoter region that might function as a 

LXRE. This information formed the basis of further examination of the gene 

regulation of adipophilin, using cell cultures, promoter analysis and DNA binding 

studies presented in this thesis.  

5.1.1 Identification of a putative LXRE 

Analysis of the proximal promoter of the human adipophilin gene using the Genetic 

Computing Group package, identified a DR4 element (-129 GGGTGA cact 

CGGGCT -114) (Figure 5.1 C). This type of DR4 response element has been shown 

to function as a high affinity binding site for heterodimers between RXR and LXR. 

To date, verified LXREs identified in LXR target genes correspond to a DR4, and the 

examined element shows high identity with the consensus sequence for LXREs 

(Table 5.1). Similar computer analysis techniques have been used to screen for 

PPARγ and LXR response elements in the GLUT4, S3-12 and perilipin promoters 

(80;102).  

The high score candidate LXRE was found in the human promoter, but not in mouse 

(Figure 5.1A). Alignment of the human and mouse promoter suggest that the 

identified LXRE has undergone changes in the course of evolution resulting in 

species variation in the gene regulation of adipophilin (Figure 5.1, A and C). This 

supports a recent observation indicating that the adipophilin gene transcript is also 

differently transcribed during differentiation of human and mouse fibroblasts into 

adipocytes ((102) and Dalen, Personal communication). 
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Figure 5.1: Characterization of the human adipophilin promoter  
A) A schematic presentation of the cloned human adipophilin promoter (nucleotides -3592 to +415) 
and the mouse adipophilin promoter (nucleotides -2781 to +50). The transcription start site is marked 
by +1. The nucleotide position of the black boxes points out the localisation of the PPRE and LXRE. 
B and C) Sequence alignment and identity between the nucleotides surrounding the human and 
mouse adipophilin PPRE and LXRE. The two half sites in the conserved PPRE and LXRE are 
encircled by boxes, and conserved nucleotides are indicated by vertical lines.
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Table 5.1 Functional LXR response elements identified in LXR target genes 

Target gene  LXRE   Tissue    Ref          

                                             →         → 
Cyp7α   (mice)  TGGTCA ctca AGTTCA Liver     (41) 

CETP    GGGTCA ttgt CGGGCA Liver     (53) 

ABCA1   AGGTTA ctat CGGTCA Macrophages, intestine, CNS  (49;67;150) 

ABCG1  (LXRE1) TGGTCA ctca AGTTCA Macrophages, CNS   (65;150) 

  (LXRE2) AGTTTA taat AGTTCA Macrophages, CNS   (65) 

SREBP1c  GGGTTA ctgg CGGTCA Liver, adipose tissue, intestine, CNS (58;150) 

FAS   GGGTTA ctgc CGGTCA Macrophages, liver   (59) 

ACC   GGGTTA cctc GGGTCA Not reported    (151) 

ApoE   GGGTCA ctgg CGGTCA Macrophages, adipose tissue  (51;70) 

ApoCI/apoCII/apoCIV GGGTCA ctgg CGGTCA Macrophages    (70) 

LXRα (human) AGGTTA ctgc TGGTCA Macrophages, adipose tissue  (71;72;74) 

LXRα (mice)  AGGTTA ctgc TGGCCA Adipose tissue    (73) 

LPL   TGGTCA ccac CGGTCA Macrophages, liver    (60) 

PLTP   AGGTTA ctag AGTTCA Macrophages, liver   (152) 

SR-BI   TGGACT tcat GGATCA Liver     (75) 

Angpt13 (human) AGGTTA catt CGTGCA Not reported    (76) 

GLUT4  (human) GGGTTA cttt GGGGCA Adipose tissue    (80;81) 

TNFα   GGGCTA tgga AGTCGA Macrophages    (153) 

Akr1b7 (mice)   AGGTCA tcca AGATGA Intestine     (154) 

 
Consensus GGGTTA  n4  CGGTCA 

T T C       A TG 
   A           T   

Adipophilin (human) GGGTGA cact CGGGCT 

 
 
The table shows nucleotide sequences of identified functional LXREs. Nucleotide sequences are 
written from left to right. The consensus sequence for LXREs is idicated on the bottom. 
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5.2 Electrophoretic mobility shift assay 

5.2.1 LXRα binds the human LXRE in the adipophilin promoter  

To determine if the potential LXRE found in the human adipophilin promoter (Figure 

5.1c) is able to bind the RXR/LXR heterodimer, an electrophoretic mobility shift 

assay (EMSA) with double stranded oligonucleotides containing the identified human 

adipophilin LXRE was performed (Figure 5.2A, oligonucleotide sequence).  

No protein-DNA complex was observed without the presence of both in vitro 

translated RXRα and LXRα proteins as shown in Figure 5.2B (lane 1-4), but a 

specific protein-DNA complex with the LXRE was observed in presence of RXRα 

and LXRα proteins (lane 5). In the presence of increasing concentrations of wild-type 

competitor, the RXRα/LXRα complex was diminished (lanes 6-8). In contrast, the 

abundance of the RXRα/LXRα complex was unaffected by the mutant competitor 

(lanes 9-11). This result suggests a specific protein-DNA complex binding, since the 

binding was diminished by excess unlabeled wild type but not mutated 

oligonucleotides.   
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  A 

 Adipophilin-LXRE-2s ACGTGCCCGAGGGTGACACTCGGGCTTGGGACAGGG 
 Adipophilin-LXRE-2a TGCACGGGCTCCCACTGTGAGCCCGAACCCTGTCCC 

 Adipophilin-LXRE-2s-mut ACGTGCCCGAGccTGACACTCccGCTTGGGACAGGG 
 Adipophilin-LXRE-2a-mut TGCACGGGCTCggACTGTGAGggCGAGCCCTGTCCC 

B 

 

Figure 5.2 LXRE in the human adipophilin promoter recruits the 
RXRα/LXRα heterodimer 

A) The nucleotide sequence for the oligonucleotides used. Each half-site in the DR4 element is 
indicated in underlined and boldface type, and the base substitution in the mutated oligonucleotides is 
given in the mutated oligonucleotides. B) Direct and specific binding of the RXRα/LXRα 
heterodimer to the LXRE in the human adipophilin promoter. The EMSA was performed with 
annealed double stranded 32P-labeled human adipophilin LXRE nucleotides and incubated in the 
presence of in vitro translated RXRα and /or LXRα proteins as indicated. Cold competitor was added 
in excess; 4.8, 14.4 and 48 times compared to labeled probe, respectively (lanes 6-8).  
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5.3 Regulation of the adipophilin promoter in COS-1 cells 

5.3.1 The adipophilin promoter is responsive to LXR activation 

To determine the validity of the particular LXRE found in the human adipophilin 

promoter, the ability of a LXR agonist to activate the human adipophilin promoter 

was examined. The promoter was cloned (sequence spanning from -3592 to +415) 

and inserted into the pGL3-basic luciferase-reporter vector.  

COS-1 cells were cultured in 6-well plates and transiently transfected with the full-

length human adipophilin promoter. Co-transfection with RXRα and LXRα 

expression vectors and treatment for 72 hours with the LXR ligand T0901317 (0.1 

µM), gave a 2.5-fold increase in reporter activity (Figure A1 / Appendix). This 

induction was minimal when compared to the cells receiving both receptor expression 

vectors and no ligand.  

In an attempt to elevate the reporter activity measured in the full-length construct, 

investigation of factors that might influence the basal activity and thus the relative 

reporter response was conducted. Examination of CCAAT/enhancer binding protein 

α (cEBPα) indicated that it was not able to activate adipophilin expression (Figure A2 

/ Appendix). Since this luciferase-reporter also included a PPAR response element 

(located -2375 to 2363) that might influence the result, generation of a deletion 

construct lacking the PPAR response element was conducted (Figure 5.3). PvuII was 

used as restriction enzyme (Figure 5.4) and a deletion construct was generated as 

described in methods. 
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Figure 5.3 Human adipophilin full-length and deletion construct  

A schematic presentation of the full-length and deletion construct made for the human adipophilin 
promoter. The arrow points out the transcription start site. A) Full-length construct. B) Deletion 
construct. 

 

          ↓         ↓  

  

 

Figure 5.4 Digestion of the human adipophilin construct with restriction 
nuclease PvuII 

Presentation of PvuII cleavage sites (arrows). PvuII is a restriction endonuclease that cleaves DNA in 
a sequence specific manner to produce blunt ended products. The enzyme binds to a 12 base-pair site 
containing the consensus sequence CAGCTG. Cleavage occurs between the G and C bases. 
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5.3.2 Deletion construct shows elevated reporter activity  

To examine whether the generated deletion construct lacking a fragment of 2022 

nucleotides, including the PPAR response element, could elevate the reporter activity, 

COS-1 cells were transiently transfected with this construct (Figure 5.3B). Co-

transfection with RXRα and LXRα expression vectors and treatment for 72 hours 

with the RXR ligand LG100268 (0.01 µM) and the LXR ligand T0901317 (0.1 µM), 

showed a statistically significant induction in the reporter activity (P<0.05).  

Interestingly, the addition of both RXR and LXR expression vectors increased the 

reporter activity (P<0.05), indicating presence of endogenous ligands for the 

RXRα/LXRα heterodimer in COS-1 cells (Figure 5.5). A maximal 4.3-fold increase 

in reporter activity was observed following the addition of both receptor expression 

vectors and ligands. This induction was also statistically significant when compared 

to the cells receiving both receptor expression vectors and no ligand, indicating an 

increased responsiveness upon LXR activation. This result suggests that generation of 

a deletion construct and use of this construct in the transfection assay optimized LXR 

activation. 
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Figure 5.5  Transfection with a human adipophilin reporter in COS-1 cells 
shows that adipophilin is a LXR target gene. 

A) A schematic presentation of the deletion construct made for the human adipophilin promoter. The 
arrow points out the transcription start site.  

B) Transient transfection with the wild type deletion construct of human adipophilin luciferase 
reporter into COS-1 cells. The cells were co-transfected with β-galactosidase expression vector as an 
internal control and pCMX, pCMX-RXRα and/or pCMX-LXRα expression vectors as indicated. The 
medium was supplemented with vehicle (DMSO; white), RXRα ligand (LG100268; light grey), 
LXRα ligand (T0901317; dark grey) or both ligands (black). The result is representative for three 
individual experiments performed in triplicates. Results are given as mean + SD. (None, vehicle = 1). 
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5.3.3 Mutation of LXRE abolish induction by LXRα agonist 

Earlier studies have shown that transcriptional regulation of LXR target genes are 

mediated through a DR4 element (Table 5.1). To test if the DR4 element identified 

by computer analysis was indeed able to mediate transcriptional activation, LXRE 

mutation constructs were generated (Figure 5.6) and tested in transfection assays. 

Targeted mutations were introduced into the two half sites of the LXRE in the 

reporter construct (Figure 5.2A). Three different clones of the LXRE mutation 

construct were made to investigate potential errors generated in the PCR based 

mutation procedure. 

 

 

 

Figure 5.6 Human adipophilin promoter-luciferase reporters 

A schematic presentation of the full-length and LXRE mutated construct made for the human 
adipophilin promoter. The arrow points out the transcription start site. A) Full-length construct. C) 
LXRE mutated deletion construct.  

 

Transient transfections of the full-length luciferase reporter into COS-1 cells in 

combination with LXRα and RXRα expression vectors and stimulation with the LXR 

ligand T0901317 (0.1 µM), induced reporter activity (Figure 5.7).  A maximal 2.5 

fold increase in reporter activity was observed following addition of both receptor 

vectors and the ligand (P<0.05). Furthermore, three clones of the full-length construct 

containing mutated versions of the LXRE as described above, were also transfected 

into the COS-1 cells in the presence of LXRα and RXRα expression vectors and  
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T0901317 (0.1 µM). The ability of the RXRα /LXRα heterodimer complex to induce 

transcription of the adipophilin promoter was then significantly reduced. These data 

suggest that the LXR activated regulation of the human adipophilin promoter reporter 

is dependent on the LXRE characterized in Figure 5.1c. 
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Figure 5.7  Mutation of the identified LXRE in the adipophilin gene abolished 
reporter activity after LXRα agonist treatment  

A) A schematic presentation of the deletion construct and three different clones of the LXRE 
mutation construct made for the human adipophilin promoter. B) Transient transfection of full-length 
and clone 1-3 of the LXRE mutation construct of adipophilin reporters in COS-1 cells. Cells were co-
transfected with no expression plasmid (white), LXRα expression plasmid (light grey), LXRα and 
RXRα expression plasmids (dark grey and black) stimulated with vehicle (white, light grey and dark 
grey) or T0901317 (0.1µM; black). Results are given as mean + SD. (Control = 1). 
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Clone 1 from the experiments presented in Figure 5.7 was chosen for further studies. 

A deletion construct of clone 1 was generated using the PVU II restriction enzyme 

(Figure 5.8).   

 

 

 

 

Figure 5.8 Human adipophilin LXRE mutated deletion reporter  

A schematic presentation of the LXRE mutation construct and its corresponding deletion construct 
made for the human adipophilin promoter. The arrow points out the transcription start site. C) LXRE 
mutation construct. D) LXRE mutaded delition construct.  

 

 

Clone 1 of the LXRE mutation constructs in Figure 5.7, its corresponding LXRE-

mutated deletion construct, the full-length construct and the deletion construct 

lacking the PPAR response element were transfected into COS-1 cells in the presence  

of LXRα and RXRα expression vectors and the LXR ligand T0901317 (0.1 µM) 

(Figure 5.9). 

Addition of both receptor expression vectors and the LXR ligand increased reporter 

activity only in the full-length and deletion construct as expected (Figure 5.9). This 

increase was statistically significant for both constructs (P<0.05). The LXRE mutated 

deletion construct completely abolished the induction by ligands. 
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Figure 5.9  Transfections with deletion constructs and LXRE-mutated 
adipophilin promoters in COS 1-cells 

A) A schematic presentation of the deletion and the LXRE mutation construct made for the human 
adipophilin promoter.  

B) Transient transfection of full-length, LXRE-mutated full-length, deletion construct and LXRE-
mutated deletion construct of adipophilin reporters in COS-1 cells. Cells were co-transfected with no 
expression plasmid (white), LXRα expression plasmid (light grey), LXRα and RXRα expression 
plasmids (dark grey and black) stimulated with vehicle (white, light grey and dark grey) or T0901317 
(0.1µM; black). Results are given as mean + SD. (None, Control = 1). 
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5.4 Regulation of the adipophilin promoter in HepG2 cells 

5.4.1 The adipophilin promoter is a target for regulation by LXR  

To determine the functionality and responsiveness of the identified LXRE in a more 

physiologically relevant cell strain than COS-1 cells, the impact of a LXR agonist 

alone or in combination with a RXR agonist was investigated in the human hepatic 

HepG2 cell line. Transfection optimizing analysis using GFP was first performed, 

and is described in methods and results shown in Figure 5.10 and 5.11.  

HepG2 cells were cultured in 12-well plates and  transiently transfected with the 

deletion construct in combination with RXRα and LXRα expression vectors and 

incubated for 72 hours with the RXR ligand LG100268 (0.01 µM) and the LXR 

ligand T0901317 (0.1 µM). 

The addition of RXRα and LXRα expression vectors gave a statistically significant 

elevation in reporter activity, indicating a high level of endogenous agonists also in 

HepG2 cells (Figure 5.12). A maximum 3.2-fold increase in reporter activity was 

measured after treatment with both ligands (P<0.05). These results are consistent with 

results from transfection studies in COS-1 cells presented in Figure 5.5.  

Interestingly, an additional transfection experiment using lipoprotein deficient serum 

(LPDS) gave an 8-fold increase in reporter activity (P<0.05) (A3 / Appendix). This 

experiment was carried out to investigate if there were any endogenous agonists in 

the previously used serum, but the differences between addition of both RXR and 

LXR expression vectors with or without ligands were not increased compared to 

previous experiments (~2-fold increase). This result might however suggest the 

presence of antagonists or inhibitors in the original serum (FCS).     

Taken together, the results from EMSA and transfection studies indicate that the 

adipophilin promoter is a target for regulation by LXR.  
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Figure 5.10 Determination of transient transfection efficiency in HepG2-cells 

The plasmid EGFP with 2.5 (a and b), 5.0 (c and d) or 7.5 µg (e and f) DNA was transiently 
transfected into HepG2 cells using the calcium phosphate precipitation method. Differences in green 
fluorescence protein expression were determined visually after 48 and 72 hours. Each picture is 
representantive of three photos.  

 
 

 
Figure 5.11  
Amount of green florescence 
protein positive cells  
 
The picture shows the amount of 
green fluorescence protein positive 
HepG2 cells after transfection with 5 
µg DNA for 72 hours (Figure 5.10 
d). Conditions similar to Figure 5.10 
d / Figure 5.11 were chosen for 
further studies in HepG2 cells.  
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Figure 5.12 Transfection with a human adipophilin reporter construct in 
HepG2 cells shows LXR responsiveness  

B) Transient transfection with the deletion construct of human adipophilin luciferase reporter into 
HepG2 cells. The cells were co-transfected with β-galactosidase expression vector as an internal 
control and RXRα and/or LXRα expression vectors as indicated. The medium was supplemented 
with vehicle (DMSO; white), RXRα ligand (LG100268; light grey), LXRα ligand (T0901317; dark 
grey) or both ligands (black). The result is representative for three individual experiments performed 
in triplicates. Results are given as mean + SD. (None, Control = 1). 
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6. Discussion 

6.1  Methodology 

Analysis of reporter gene activity driven by various adipophilin constructs and 

binding studies in vitro have been central methods in this thesis. These are common 

methods frequently used in molecular biology research and have their advantages and 

limitations.  

Analysis of the transcriptional potential of the adipophilin promoter was examined by 

cloning the promoter in front of the reporter gene and introducing this construct into 

COS-1 and HepG2 cells. Transcriptional regulatory elements might be located over 

great distances in the genome and can be found far upstream, far downstream as well 

as within gene introns. The reporter gene approach to identify response elements in 

promoters usually involves cloning of promoter fragments of 5 kb or less in front of 

the reporter gene. The responses or lack of responses, found in such systems do not 

necessary reflect the “true” responses since the promoter fragment is taken out of its 

endogenous environment in the genome. Thus, cloning parts of the promoter 

obviously does not include all the regulatory elements involved in the regulatory 

processes rendering the researcher with only limited information of the overall 

transcriptional mechanisms involved. However, this approach does provide basic 

information of the adipophilin promoter and its respective response elements being 

investigated.     

The choice of transfection method may also influence the results in the promoter 

analysis. In this work transfections were performed after the calcium phosphate 

precipitation method. This method may not be the most optimal accessible, but it is 

widely used and can be performed quite easily with reagent-grade chemicals at a 

reasonable cost.  
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Cell lines express different levels of transcription factors and an ideal cell strain for 

transfection studies would be cells not expressing the expression vectors of interest. 

Experience with COS-1 cells in our laboratory indicates that these cells do not, or 

only to a modest extent, express LXRα. To make sure that COS-1 and HepG2 cells 

had adequate levels of transcription factors to give responses to the RXR and LXR 

agonists in the experiments, cells were co-transfected with RXR, LXR or both 

expression vectors. Transfection studies indicated that these cell lines did not have 

high levels of RXR and LXRα transcription factors prior to transfection, since an 

increased response was observed after co-transfection with expression vectors and no 

agonist treatment. This elevated activity also unravelled presence of endogenous 

ligands. To determine if compounds in the fetal calf serum (FCS) in the culture 

medium could be the source of LXR agonists, transfections with LPDS was 

performed (Figure A3 / Appendix). Differences in reporter activity between addition 

of both RXR and LXR expression vectors with or without ligands were not increased 

compared to previous experiments (~2-fold increase), but their maximal 5.5-fold and 

8-fold increase compared to the control is an interesting result (P<0.05).  A possible 

explanation is that the LPDS has less antagonists or inhibitors, resulting in an 

elevated transcriptional activity. Further transfection studies examining LXR target 

genes should therefore consider these results when it’s desirable to optimize the 

reporter activity. Another potential candidate for the observed high basic activity was 

c/EBPα, a key transcription factor that acts as master regulator of many cellular 

responses and which are able to induce PPARγ expression (155;156). Transfection 

experiments with c/EBPα suggest that this transcription factor do not regulate 

adipophilin (Figure A2 / Appendix). Transfection studies with deletion constructs of 

the adipophilin promoter did neither reduce basic activity, but an elevated reporter 

activity was observed and might be explained by removal of regulatory elements such 

as the PPRE.      

The optimal ligand concentrations for the COS-1 and HepG2 cell lines were also 

investigated. Several concentrations of T0901317 were examined in the transfection 

studies. Doses from 0.0001 to 5.0 µM were tested and a T0901317 concentration of 



 86 

0.1 µM gave maximal increase in luciferase responses (results not shown). Higher 

doses might be toxic to the cells as the β-galactosidase activity rapidly decreased. For 

LG100268 a concentration of 0.01 µM was chosen to achieve maximal luciferase 

response in COS-1 and HepG2 cells. The ligand titration data were used as a tool to 

achieve maximal reporter responses in the transfection studies presented in the result 

chapter. 

In these experiments the recently developed synthetic ligand T0901317, utilized to 

study the effects of LXR activation in vivo, was used. Docking studies of several 

endogenous agonists have suggested a common anchoring essentially identical to 

T0901317 (157). 22(R)-hydroxycholesterol, 24(S)-hydroxycholesterol and 24(S),25-

epoxycholesterol are naturally-occurring agonists for LXR that bind at physiological 

concentrations and likely serve as endogenous modulators of LXR activities 

(41;42;158). A limitation in LXR research in general is that a large amount of 

information on the effects of LXR activation have relied on only a few LXR ligands 

on a wide variety of parameters in cultured mammalian cells. Unfortunately, other 

oxysterols may be of considerably more physiological importance. Moreover, the 

results of studies with these agonists have been frequently generalized to other 

oxysterols without experimentation. The limited availability of natural and stabile 

oxysterols might also be a major factor responsible for the very restricted number of 

studies of their in vivo effects.  

COS-1 cells were chosen for the initial transfection studies since this cell line is an 

especially well suited host for transfections. The choice of cell lines is an important 

factor when promoter regions and response elements are characterized. Immortal cell 

lines commonly have an increased growth rate and a low differentiation level, which 

can make them different in terms of cell signalling responses and gene expression 

levels compared to normal cells. The use of primary cells would provide a more 

natural model system, but such cells are more difficult to obtain and keep in culture. 

However, observed effects in immortal cell lines could be confirmed in primary cells 

to further verify results obtained from cell lines.  



 87

SGBS cells were originally the preferred cell line to reproduce results from 

transfection studies. SGBS adipocytes are morphologically, biochemically and 

functionally identical to in vitro differentiated adipocytes and are therefore a suited 

human adipocyte in vitro model system. However, several components in the 

differentiation medium could interfere with the test parameters. Insulin, 

triiodothyronine and cortisol are important hormones in regulation of lipogenesis and 

might alter expression of genes including LXRα and adipophilin. These cells do 

neither fulfill the criteria for a cell line, since they are not immortalized and lose their 

capacity to proliferate and finally die after 70 generations. Figure A5 / Appendix 

shows successful differentiation of SGBS cells from fibroblasts like cells to cells with 

adipocyte like morphology with characteristic lipid droplets in cytoplasm. Work with 

SGBS cells revealed that more experience and optimizing of the protocol are 

necessary before reliable results can be obtained regarding studies on LXR, and to 

examine whether adipophilin is regulated by LXR in this cell type. Due to 

troubleshooting with SGBS cells, HepG2 cells were used to determine the 

functionality and responsiveness of the identified LXRE in a more physiologically 

relevant cell strain than COS-1 cells. The human stellate fat storing cell line LI90 

replaced SGBS cells in RNA analysis, but investigations in this cell line did not leed 

to reliable results regarding regulation of adipophilin mRNA by LXR activation in 

vitro. Furher studies are needed to obtain these RNA data, however this is beyond the 

scope of this thesis. 

EMSA was used in this work because it is by far the most frequently used assay, 

largely because it is the most straightforward and has proven to be the most sensitive 

and successful for detecting and characterizing specific protein-DNA interactions at 

an early stage of an analysis. Several methods are in use for the in vitro detection of 

and characterization of protein-DNA interactions, EMSA, DNase I footprint, 

exonuclease III footprinting, Southwestern blotting, Chromatin immunoprecipitation 

(ChIP), various chemical protection and interference assays and UV crosslinking. 

Procedures and experiences regarding these alternatives are not implemented in our 

lab and EMSA was chosen to give most reliable results. 
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The change in reporter activity observed in this work is in accordance with results 

reported on other LXR target genes (References in Table 5.1). However, Mann 

Whitney U test was conducted for significance testing of the data from transfection 

studies. It might be questionable if use of statistical analysis is necessary when the 

sample size is small and the differences between groups are as high as 300 to 400 %. 

Today many manuscripts submitted to journals only focus their conclusion on genes 

that show a change in activity of, say, more than a 2-fold (159), but several journals 

are now toughening up their criteria for accepting papers and some have published 

guidelines for stressing the importance of appropriate statistical analysis (159;160).  
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6.2 General discussion  

In light of the potential importance of lipid droplet associated proteins in lipid 

metabolism, the transcriptional regulation of adipophilin was examined. This work 

shows that LXRα binds the LXRE in the human adipophilin promoter demonstrated 

in electrophoretic mobility shift assay.  Furthermore, treatment of COS-1 and HepG2 

cells with an agent that selectively activates LXRs increases human adipophilin 

expression in transfection studies. A DR4, a potential LXRE, was previously 

identified with computer analysis of the human adipophilin promoter. This promoter 

is active in COS-1 and HepG2 cells and its reporter activity is induced by treatment 

of agents that activate RXR or LXR. Mutation of the identified DR4 completely 

abolished the inducible response of the adipophilin promoter to a selective LXR 

agonist. Our data indicates that the DR4 element found in the adipophilin promoter is 

a functional LXRE and suggests that adipophilin is a target gene of LXR.  

Previous observations have indicated (117;161;162) and demonstated (102) that the 

expression of adipophilin and two other members of the LDAP family, S3-12 and 

perilipin, are regulated by PPARs (102;117;162), which are important transcription 

factors in adipogenesis. Dalen et al further suggest that the anti-diabetic effects of 

PPARγ activation might to a certain extent be mediated by altered expression of 

LDAPs (102). The data from transfection studies presented in this thesis are the first 

to show that a member of the LDAP family is regulated by LXRα. Recent studies 

have identified LXRs as important regulators of cholesterol and lipid metabolism. It 

has been reported that LXR ligands increase expression of ABCA1 and induce apoA-

I-dependent cholesterol efflux (64). LXR ligands have also been shown to induce 

expression of genes involved in lipogenesis and elevate plasma triglyceride levels 

(44;58). Recently, triglyceride and cholesterol metabolism have been linked 

identifying LXRα as a PPARγ target gene in macrophages (71) and adipose tissue 

(57). Nebb and colleagues have also shown that LXRs are necessary for SREBP-1c 

induction by insulin (163), but it is unclear whether LXRs are just required for 
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keeping a sufficient SREBP basal level. Interestingly, SREBP-1c is an important 

transcription factor in regulation of lipogenesis, and SREBP-1c target genes are 

inhibited in LXRα/β ”double knock-out” (DOKO) mice compared to control mice 

(8). An important observation in our laboratory, supporting the putative interplay 

between lipid and cholesterol metabolism, is that LXR increase lipid droplet size in 

adipocytes and induce expression of SREBP. Furthermore, LXRα/β DOKO mice 

show gradually decreased white and brown adipose tissue with age compared with 

control mice (57). This indicates that LXR have a function in remodelling of fat in 

adipose tissue.  

Although, the function of adipophilin is not fully elucidated, there is some evidence 

for a role in lipid droplet formation and fatty acid uptake (114). Interestingly, long 

chain fatty acids stimulate adipophilin gene transcription (117). In addition, deletion 

of the gene encoding perilipin in mice suggests that adipophilin or other LDAPs 

might help regulate lipid uptake in addition to forming lipid storage droplets (108). 

Taken together, our findings of elevated adipophilin expression upon LXR activation 

and the potential role of adipophilin in lipid droplet formation might give further 

evidence to the link between lipid and cholesterol metabolism.  

The results from this thesis suggest that some of the reported up-regulation of 

adipophilin by PPARγ activation may be mediated by PPARγ induced expression of 

LXRα, at least in human. Bildirici et al recently reported elevated human adipophilin 

expression upon PPARγ activation in human trophoblasts (161). A putative and 

highly theoretically mechanism is that PPARγ ligands give a PPARγ induction of 

target genes including LXRα which then induces adipophilin expression (Figure 6.1). 

Our results might then bring new knowledge regarding a more direct gene regulation 

of adipophilin in human upon ligand activation of LXR. Nebb’s group have recently 

reported this cross-talk between PPARγ and LXR in adipose tissue, but physiological 

evidence is still scarce and need further investigation.  
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Figure 6.1 Transcription factors that might alter adipophilin expression 

PPARγ2 is shown to be regulated by c/EBPα (155) and LXRβ, and has been reported to induce 
adipophilin expression (102). LXRα expression is induced by PPARγ (57;71;164) and LXRβ 
(71;72;74), and is shown to be autoregulated (71) and regulate SREBP-1c (58). SREBP-1c is also 
autoregulated (165) and regulate PPARγ1 (166). Our finding of LXRα responsive adipophilin 
expression suggests a direct regulation of the human adipophilin gene not dependent on PPARγ, and 
elucidates a potential complex interplay between transcription factors resulting in altered adipophilin 
expression.  

 

Previous studies have shown that adipophilin mRNA is induced early during 

adipocyte differentiation (111;112) and is expressed prior to PPARγ (102). This 

observation indicates that adipophilin expression, unlike S3-12 and perilipin, is not 

dependent on PPARγ. In 3T3-L1 cells adipophilin protein levels increase during 

differentiation together with perilipin and S3-12. These findings suggest that 

adipophilin may play a certain role in the early stage of adipose differentiation. LXRα 

is induced later in adipose differentiation, supporting observations of this nuclear 

receptor as a PPARγ target gene (57). Our findings of a functional LXRE in the 
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human promoter indicate that adipophilin may also have a certain role later in adipose 

differentiation, since adipophilin induction matches the timing of LXRα induction 

(80;102). This might at least be plausible at the transcription level, but it is uncertain 

if translational modifications promote degeneration of mRNA or protein levels of 

adipophilin. 

Heid et al have reported a very high sequence homology and immunological cross-

reactivity over a range of species, including human, bovine, pig, dog, rat, and mouse, 

indicating that adipophilin has been strongly conserved during evolution. The human 

and mouse proteins share extensive homology with overall 84 % identical amino 

acids (91). However, alignment of the human and mouse promoter suggest that the 

adipophilin promoter has undergone changes in the course of evolution resulting in 

species variation in LXR responsiveness and thus the gene regulation of adipophilin. 

Caution should therefore be exercised when interpreting and extrapolating LXR 

findings from animal studies into human.  

Elevated expression of LDAPs is proposed to increase the body’s capacity to trap 

circulating fatty acids in white adipose tissue, resulting in elevated insulin sensitivity 

(102). Investigations of the gene regulation of LDAPs are therefore important to 

confirm if altered regulation of these genes are involved in diabetes type 2, obesity 

and its comorbidities.  Because NRs bind small molecules which can be easily 

modified by drug design, and regulate a group of diverse and crucial biological 

functions such as metabolism, homeostasis, development and disease, they have 

become promising pharmacological targets. The ability of LXR ligands to promote 

cellular cholesterol efflux makes them potentially attractive agents for the modulation 

of human lipid metabolism. Their lipogenic activity, however, is a major limitation 

(59;167). Although the ability of LXR ligands to raise HDL levels is promising, the 

transient hypertriglyceridemia induced by the current available agonists is an 

undesired side effect. Clearly, a detailed understanding of the mechanism whereby 

LXR ligands raise triglyceride levels will be required before LXR can be optimized 

as an intervention target. Interestingly, recent evidence suggests that adipophilin 
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could play a regulatory role in lipid accumulation. For example, adipophilin 

facilitates uptake and transport of LCPUFAs in a dose dependent manner (114), and 

fatty acids are robust stimulus of adipophilin gene transcription (117). Development 

of specific LXR agonists not affecting the liver, only LXR target genes with fatty 

acid trapping properties could be an interesting challenge in pharmacological 

research. However, the knowledge of adipophilin and other LDAPs is still in its 

infancy and barely beyond the descriptive stage. Further investigations of their 

functions and gene regulations are important to unravel their potential role in lipid 

and cholesterol metabolism and as potential intervention targets in common 

metabolic diseases.  
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6.3 Conclusion 

This work shows that LXRα bind to a DR4 response element in the human 

adipophilin promoter. Furthermore, treatments of COS-1 and HepG2 cells with an 

agent that selectively activate LXR increase human adipophilin expression in 

transfection studies. An identified LXRE, the DR4 element, is active in COS-1 and 

HepG2 cells and is induced by treatment with agonists that activate RXR or LXR. 

Mutation of the identified LXRE completely abolished the inducible response of the 

adipophilin promoter to selective LXR agonist.  

Our data indicates that adipophilin is a novel and functional LXR target gene. This is 

the first report to demonstrate that a member of the LDAP family is regulated by 

LXR and bring further evidence to the cross-talk approach between cholesterol and 

lipid metabolism. 



 95

7. References 
 

 (1)  Report of a Joint FAO/WHO Expert Consultation. Diet, nutrition and the prevention of 

chronic diseases.  2003.  WHO Technical Report Series, No. 916.  

 (2)  Muller M, Kersten S. Nutrigenomics: goals and strategies. Nat Rev Genet 2003; 4(4):315-

322. 

 (3)  Francis GA, Fayard E, Picard F, Auwerx J. Nuclear receptors and the control of metabolism. 

Annu Rev Physiol 2003; 65:261-311. 

 (4)  Lu TT, Repa JJ, Mangelsdorf DJ. Orphan nuclear receptors as eLiXiRs and FiXeRs of sterol 

metabolism. J Biol Chem 2001; 276(41):37735-37738. 

 (5)  Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schutz G, Umesono K et al. The nuclear 

receptor superfamily: the second decade. Cell 1995; 83(6):835-839. 

 (6)  Chawla A, Repa JJ, Evans RM, Mangelsdorf DJ. Nuclear receptors and lipid physiology: 

opening the X-files. Science 2001; 294(5548):1866-1870. 

 (7)  Beato M, Herrlich P, Schutz G. Steroid hormone receptors: many actors in search of a plot. 

Cell 1995; 83(6):851-857. 

 (8)  Evans RM. The steroid and thyroid hormone receptor superfamily. Science 1988; 

240(4854):889-895. 

 (9)  Kastner P, Mark M, Chambon P. Nonsteroid nuclear receptors: what are genetic studies 

telling us about their role in real life? Cell 1995; 83(6):859-869. 

 (10)  Mangelsdorf DJ, Evans RM. The RXR heterodimers and orphan receptors. Cell 1995; 

83(6):841-850. 

 (11)  Smale ST, Kadonaga JT. The RNA polymerase II core promoter. Annu Rev Biochem 2003; 

72:449-479. 

 (12)  Calhoun VC, Stathopoulos A, Levine M. Promoter-proximal tethering elements regulate 

enhancer-promoter specificity in the Drosophila Antennapedia complex. Proc Natl Acad Sci 

U S A 2002; 99(14):9243-9247. 



 96 

 (13)  Burgess-Beusse B, Farrell C, Gaszner M, Litt M, Mutskov V, Recillas-Targa F et al. The 

insulation of genes from external enhancers and silencing chromatin. Proc Natl Acad Sci U S 

A 2002; 99 Suppl 4:16433-16437. 

 (14)  Levine M, Tjian R. Transcription regulation and animal diversity. Nature 2003; 

424(6945):147-151. 

 (15)  Wong JM, Bateman E. TBP-DNA interactions in the minor groove discriminate between A:T 

and T:A base pairs. Nucleic Acids Res 1994; 22(10):1890-1896. 

 (16)  Burke TW, Kadonaga JT. Drosophila TFIID binds to a conserved downstream basal 

promoter element that is present in many TATA-box-deficient promoters. Genes Dev 1996; 

10(6):711-724. 

 (17)  Kutach AK, Kadonaga JT. The downstream promoter element DPE appears to be as widely 

used as the TATA box in Drosophila core promoters. Mol Cell Biol 2000; 20(13):4754-4764. 

 (18)  Nikolov DB, Chen H, Halay ED, Usheva AA, Hisatake K, Lee DK et al. Crystal structure of 

a TFIIB-TBP-TATA-element ternary complex. Nature 1995; 377(6545):119-128. 

 (19)  Olefsky JM. Nuclear receptor minireview series. Journal of Biological Chemistry 2001; 

276(40):36863-36864. 

 (20)  Robinson-Rechavi M, Escriva GH, Laudet V. The nuclear receptor superfamily. J Cell Sci 

2003; 116(Pt 4):585-586. 

 (21)  Privalsky ML. The role of corepressors in transcriptional regulation by nuclear hormone 

receptors. Annu Rev Physiol 2004; 66:315-360. 

 (22)  Brelivet Y, Kammerer S, Rochel N, Poch O, Moras D. Signature of the oligomeric behaviour 

of nuclear receptors at the sequence and structural level. EMBO Rep 2004; 5(4):423-429. 

 (23)  Kliewer SA, Forman BM, Blumberg B, Ong ES, Borgmeyer U, Mangelsdorf DJ et al. 

Differential expression and activation of a family of murine peroxisome proliferator-

activated receptors. Proc Natl Acad Sci U S A 1994; 91(15):7355-7359. 

 (24)  Kliewer SA, Forman BM, Blumberg B, Ong ES, Borgmeyer U, Mangelsdorf DJ et al. 

Differential expression and activation of a family of murine peroxisome proliferator-

activated receptors. Proc Natl Acad Sci U S A 1994; 91(15):7355-7359. 



 97

 (25)  Forman BM, Chen J, Evans RM. Hypolipidemic drugs, polyunsaturated fatty acids, and 

eicosanoids are ligands for peroxisome proliferator-activated receptors alpha and delta. Proc 

Natl Acad Sci U S A 1997; 94(9):4312-4317. 

 (26)  Kliewer SA, Sundseth SS, Jones SA, Brown PJ, Wisely GB, Koble CS et al. Fatty acids and 

eicosanoids regulate gene expression through direct interactions with peroxisome 

proliferator-activated receptors alpha and gamma. Proc Natl Acad Sci U S A 1997; 

94(9):4318-4323. 

 (27)  Vosper H, Patel L, Graham TL, Khoudoli GA, Hill A, Macphee CH et al. The peroxisome 

proliferator-activated receptor delta promotes lipid accumulation in human macrophages. J 

Biol Chem 2001; 276(47):44258-44265. 

 (28)  Tontonoz P, Hu E, Graves RA, Budavari AI, Spiegelman BM. mPPAR gamma 2: tissue-

specific regulator of an adipocyte enhancer. Genes Dev 1994; 8(10):1224-1234. 

 (29)  Forman BM, Tontonoz P, Chen J, Brun RP, Spiegelman BM, Evans RM. 15-Deoxy-delta 12, 

14-prostaglandin J2 is a ligand for the adipocyte determination factor PPAR gamma. Cell 

1995; 83(5):803-812. 

 (30)  Xu HE, Lambert MH, Montana VG, Parks DJ, Blanchard SG, Brown PJ et al. Molecular 

recognition of fatty acids by peroxisome proliferator-activated receptors. Mol Cell 1999; 

3(3):397-403. 

 (31)  Lehmann JM, Moore LB, Smith-Oliver TA, Wilkison WO, Willson TM, Kliewer SA. An 

antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated 

receptor gamma (PPAR gamma). J Biol Chem 1995; 270(22):12953-12956. 

 (32)  Edwards PA, Kast HR, Anisfeld AM. BAREing it all: the adoption of LXR and FXR and 

their roles in lipid homeostasis. J Lipid Res 2002; 43(1):2-12. 

 (33)  Peet DJ, Janowski BA, Mangelsdorf DJ. The LXRs: a new class of oxysterol receptors. Curr 

Opin Genet Dev 1998; 8(5):571-575. 

 (34)  Apfel R, Benbrook D, Lernhardt E, Ortiz MA, Salbert G, Pfahl M. A novel orphan receptor 

specific for a subset of thyroid hormone-responsive elements and its interaction with the 

retinoid/thyroid hormone receptor subfamily. Mol Cell Biol 1994; 14(10):7025-7035. 

 (35)  Willy PJ, Umesono K, Ong ES, Evans RM, Heyman RA, Mangelsdorf DJ. LXR, a nuclear 

receptor that defines a distinct retinoid response pathway. Genes Dev 1995; 9(9):1033-1045. 



 98 

 (36)  Seol W, Choi HS, Moore DD. Isolation of proteins that interact specifically with the retinoid 

X receptor: two novel orphan receptors. Mol Endocrinol 1995; 9(1):72-85. 

 (37)  Shinar DM, Endo N, Rutledge SJ, Vogel R, Rodan GA, Schmidt A. NER, a new member of 

the gene family encoding the human steroid hormone nuclear receptor. Gene 1994; 

147(2):273-276. 

 (38)  Song C, Kokontis JM, Hiipakka RA, Liao S. Ubiquitous receptor: a receptor that modulates 

gene activation by retinoic acid and thyroid hormone receptors. Proc Natl Acad Sci U S A 

1994; 91(23):10809-10813. 

 (39)  Teboul M, Enmark E, Li Q, Wikstrom AC, Pelto-Huikko M, Gustafsson JA. OR-1, a 

member of the nuclear receptor superfamily that interacts with the 9-cis-retinoic acid 

receptor. Proc Natl Acad Sci U S A 1995; 92(6):2096-2100. 

 (40)  Auboeuf D, Rieusset J, Fajas L, Vallier P, Frering V, Riou JP et al. Tissue distribution and 

quantification of the expression of mRNAs of peroxisome proliferator-activated receptors 

and liver X receptor-alpha in humans: no alteration in adipose tissue of obese and NIDDM 

patients. Diabetes 1997; 46(8):1319-1327. 

 (41)  Lehmann JM, Kliewer SA, Moore LB, Smith-Oliver TA, Oliver BB, Su JL et al. Activation 

of the nuclear receptor LXR by oxysterols defines a new hormone response pathway. J Biol 

Chem 1997; 272(6):3137-3140. 

 (42)  Janowski BA, Willy PJ, Devi TR, Falck JR, Mangelsdorf DJ. An oxysterol signalling 

pathway mediated by the nuclear receptor LXR alpha. Nature 1996; 383(6602):728-731. 

 (43)  Sparrow CP, Baffic J, Lam MH, Lund EG, Adams AD, Fu X et al. A potent synthetic LXR 

agonist is more effective than cholesterol loading at inducing ABCA1 mRNA and 

stimulating cholesterol efflux. J Biol Chem 2002; 277(12):10021-10027. 

 (44)  Schultz JR, Tu H, Luk A, Repa JJ, Medina JC, Li L et al. Role of LXRs in control of 

lipogenesis. Genes Dev 2000; 14(22):2831-2838. 

 (45)  Collins JL, Fivush AM, Watson MA, Galardi CM, Lewis MC, Moore LB et al. Identification 

of a nonsteroidal liver X receptor agonist through parallel array synthesis of tertiary amines. 

J Med Chem 2002; 45(10):1963-1966. 

 (46)  Ou J, Tu H, Shan B, Luk A, DeBose-Boyd RA, Bashmakov Y et al. Unsaturated fatty acids 

inhibit transcription of the sterol regulatory element-binding protein-1c (SREBP-1c) gene by 



 99

antagonizing ligand-dependent activation of the LXR. Proc Natl Acad Sci U S A 2001; 

98(11):6027-6032. 

 (47)  Yoshikawa T, Shimano H, Yahagi N, Ide T, Amemiya-Kudo M, Matsuzaka T et al. 

Polyunsaturated fatty acids suppress sterol regulatory element-binding protein 1c promoter 

activity by inhibition of liver X receptor (LXR) binding to LXR response elements. J Biol 

Chem 2002; 277(3):1705-1711. 

 (48)  Repa JJ, Mangelsdorf DJ. The liver X receptor gene team: potential new players in 

atherosclerosis. Nat Med 2002; 8(11):1243-1248. 

 (49)  Costet P, Luo Y, Wang N, Tall AR. Sterol-dependent transactivation of the ABC1 promoter 

by the liver X receptor/retinoid X receptor. J Biol Chem 2000; 275(36):28240-28245. 

 (50)  Venkateswaran A, Repa JJ, Lobaccaro JM, Bronson A, Mangelsdorf DJ, Edwards PA. 

Human white/murine ABC8 mRNA levels are highly induced in lipid-loaded macrophages. 

A transcriptional role for specific oxysterols. J Biol Chem 2000; 275(19):14700-14707. 

 (51)  Laffitte BA, Repa JJ, Joseph SB, Wilpitz DC, Kast HR, Mangelsdorf DJ et al. LXRs control 

lipid-inducible expression of the apolipoprotein E gene in macrophages and adipocytes. 

 (52)  Cao G, Beyer TP, Yang XP, Schmidt RJ, Zhang Y, Bensch WR et al. Phospholipid transfer 

protein is regulated by liver X receptors in vivo. J Biol Chem 2002; 277(42):39561-39565. 

 (53)  Luo Y, Tall AR. Sterol upregulation of human CETP expression in vitro and in transgenic 

mice by an LXR element. J Clin Invest 2000; 105(4):513-520. 

 (54)  Goldberg IJ. Lipoprotein lipase and lipolysis: central roles in lipoprotein metabolism and 

atherogenesis. J Lipid Res 1996; 37(4):693-707. 

 (55)  Oliveira HC, Ma L, Milne R, Marcovina SM, Inazu A, Mabuchi H et al. Cholesteryl ester 

transfer protein activity enhances plasma cholesteryl ester formation. Studies in CETP 

transgenic mice and human genetic CETP deficiency. Arterioscler Thromb Vasc Biol 1997; 

17(6):1045-1052. 

 (56)  Peet DJ, Turley SD, Ma W, Janowski BA, Lobaccaro JM, Hammer RE et al. Cholesterol and 

bile acid metabolism are impaired in mice lacking the nuclear oxysterol receptor LXR alpha. 

Cell 1998; 93(5):693-704. 

 (57)  Juvet LK, Andresen SM, Schuster GU, Dalen KT, Tobin KA, Hollung K et al. On the role of 

liver X receptors in lipid accumulation in adipocytes. Mol Endocrinol 2003; 17(2):172-182. 



 100 

 (58)  Repa JJ, Liang G, Ou J, Bashmakov Y, Lobaccaro JM, Shimomura I et al. Regulation of 

mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors, 

LXRalpha and LXRbeta. Genes Dev 2000; 14(22):2819-2830. 

 (59)  Joseph SB, Laffitte BA, Patel PH, Watson MA, Matsukuma KE, Walczak R et al. Direct and 

indirect mechanisms for regulation of fatty acid synthase gene expression by liver X 

receptors. J Biol Chem 2002; 277(13):11019-11025. 

 (60)  Zhang Y, Repa JJ, Gauthier K, Mangelsdorf DJ. Regulation of lipoprotein lipase by the 

oxysterol receptors, LXRalpha and LXRbeta. J Biol Chem 2001; 276(46):43018-43024. 

 (61)  Kovanen PT, Pentikainen MO. Pharmacological evidence for a role of liver X receptors in 

atheroprotection. FEBS Lett 2003; 536(1-3):3-5. 

 (62)  Tontonoz P, Mangelsdorf DJ. Liver X receptor signaling pathways in cardiovascular disease. 

Mol Endocrinol 2003; 17(6):985-993. 

 (63)  Repa JJ, Turley SD, Lobaccaro JA, Medina J, Li L, Lustig K et al. Regulation of absorption 

and ABC1-mediated efflux of cholesterol by RXR heterodimers. Science 2000; 

289(5484):1524-1529. 

 (64)  Schwartz K, Lawn RM, Wade DP. ABC1 gene expression and ApoA-I-mediated cholesterol 

efflux are regulated by LXR. Biochem Biophys Res Commun 2000; 274(3):794-802. 

 (65)  Kennedy MA, Venkateswaran A, Tarr PT, Xenarios I, Kudoh J, Shimizu N et al. 

Characterization of the human ABCG1 gene: liver X receptor activates an internal promoter 

that produces a novel transcript encoding an alternative form of the protein. J Biol Chem 

2001; 276(42):39438-39447. 

 (66)  Engel T, Lorkowski S, Lueken A, Rust S, Schluter B, Berger G et al. The human ABCG4 

gene is regulated by oxysterols and retinoids in monocyte-derived macrophages. Biochem 

Biophys Res Commun 2001; 288(2):483-488. 

 (67)  Repa JJ, Berge KE, Pomajzl C, Richardson JA, Hobbs H, Mangelsdorf DJ. Regulation of 

ATP-binding cassette sterol transporters ABCG5 and ABCG8 by the liver X receptors alpha 

and beta. J Biol Chem 2002; 277(21):18793-18800. 

 (68)  DeBose-Boyd RA, Ou J, Goldstein JL, Brown MS. Expression of sterol regulatory element-

binding protein 1c (SREBP-1c) mRNA in rat hepatoma cells requires endogenous LXR 

ligands. Proc Natl Acad Sci U S A 2001; 98(4):1477-1482. 



 101

 (69)  Yoshikawa T, Shimano H, Amemiya-Kudo M, Yahagi N, Hasty AH, Matsuzaka T et al. 

Identification of liver X receptor-retinoid X receptor as an activator of the sterol regulatory 

element-binding protein 1c gene promoter. Mol Cell Biol 2001; 21(9):2991-3000. 

 (70)  Mak PA, Laffitte BA, Desrumaux C, Joseph SB, Curtiss LK, Mangelsdorf DJ et al. 

Regulated expression of the apolipoprotein E/C-I/C-IV/C-II gene cluster in murine and 

human macrophages. A critical role for nuclear liver X receptors alpha and beta. J Biol Chem 

2002; 277(35):31900-31908. 

 (71)  Laffitte BA, Joseph SB, Walczak R, Pei L, Wilpitz DC, Collins JL et al. Autoregulation of 

the human liver X receptor alpha promoter. Mol Cell Biol 2001; 21(22):7558-7568. 

 (72)  Li Y, Bolten C, Bhat BG, Woodring-Dietz J, Li S, Prayaga SK et al. Induction of human 

liver X receptor alpha gene expression via an autoregulatory loop mechanism. Mol 

Endocrinol 2002; 16(3):506-514. 

 (73)  Ulven SM, Dalen KT, Gustafsson JA, Nebb HI. Tissue specific auto-regulation of the LXRα 

gene facilitates induction of apoE in mouse adipose tissue. J Lipid Res. In press. 

 (74)  Whitney KD, Watson MA, Goodwin B, Galardi CM, Maglich JM, Wilson JG et al. Liver X 

receptor (LXR) regulation of the LXRalpha gene in human macrophages. J Biol Chem 2001; 

276(47):43509-43515. 

 (75)  Malerod L, Juvet LK, Hanssen-Bauer A, Eskild W, Berg T. Oxysterol-activated 

LXRalpha/RXR induces hSR-BI-promoter activity in hepatoma cells and preadipocytes. 

Biochem Biophys Res Commun 2002; 299(5):916-923. 

 (76)  Kaplan R, Zhang T, Hernandez M, Gan FX, Wright SD, Waters MG et al. Regulation of the 

angiopoietin-like protein 3 gene by LXR. J Lipid Res 2003; 44(1):136-143. 

 (77)  Cao G, Liang Y, Broderick CL, Oldham BA, Beyer TP, Schmidt RJ et al. Antidiabetic action 

of a liver x receptor agonist mediated by inhibition of hepatic gluconeogenesis. J Biol Chem 

2003; 278(2):1131-1136. 

 (78)  Stulnig TM, Steffensen KR, Gao H, Reimers M, Dahlman-Wright K, Schuster GU et al. 

Novel roles of liver X receptors exposed by gene expression profiling in liver and adipose 

tissue. Mol Pharmacol 2002; 62(6):1299-1305. 



 102 

 (79)  Stulnig TM, Oppermann U, Steffensen KR, Schuster GU, Gustafsson JA. Liver X receptors 

downregulate 11beta-hydroxysteroid dehydrogenase type 1 expression and activity. Diabetes 

2002; 51(8):2426-2433. 

 (80)  Dalen KT, Ulven SM, Bamberg K, Gustafsson JA, Nebb HI. Expression of the insulin-

responsive glucose transporter GLUT4 in adipocytes is dependent on liver X receptor alpha. 

J Biol Chem 2003; 278(48):48283-48291. 

 (81)  Laffitte BA, Chao LC, Li J, Walczak R, Hummasti S, Joseph SB et al. Activation of liver X 

receptor improves glucose tolerance through coordinate regulation of glucose metabolism in 

liver and adipose tissue. Proc Natl Acad Sci U S A 2003; 100(9):5419-5424. 

 (82)  Landis MS, Patel HV, Capone JP. Oxysterol activators of liver X receptor and 9-cis-retinoic 

acid promote sequential steps in the synthesis and secretion of tumor necrosis factor-alpha 

from human monocytes. J Biol Chem 2002; 277(7):4713-4721. 

 (83)  Fowler AJ, Sheu MY, Schmuth M, Kao J, Fluhr JW, Rhein L et al. Liver X receptor 

activators display anti-inflammatory activity in irritant and allergic contact dermatitis 

models: liver-X-receptor-specific inhibition of inflammation and primary cytokine 

production. J Invest Dermatol 2003; 120(2):246-255. 

 (84)  Steffensen KR, Gustafsson JA. Putative metabolic effects of the liver X receptor (LXR). 

Diabetes 2004; 53 Suppl 1:S36-S42. 

 (85)  Londos C, Brasaemle DL, Schultz CJ, Segrest JP, Kimmel AR. Perilipins, ADRP, and other 

proteins that associate with intracellular neutral lipid droplets in animal cells. Semin Cell 

Dev Biol 1999; 10(1):51-58. 

 (86)  Murphy DJ. The biogenesis and functions of lipid bodies in animals, plants and 

microorganisms. Prog Lipid Res 2001; 40(5):325-438. 

 (87)  Zweytick D, Athenstaedt K, Daum G. Intracellular lipid particles of eukaryotic cells. 

Biochim Biophys Acta 2000; 1469(2):101-120. 

 (88)  Wang SM, Fong TH, Hsu SY, Chien CL, Wu JC. Reorganization of a novel vimentin-

associated protein in 3T3-L1 cells during adipose conversion. J Cell Biochem 1997; 

67(1):84-91. 

 (89)  Fujimoto T, Kogo H, Ishiguro K, Tauchi K, Nomura R. Caveolin-2 is targeted to lipid 

droplets, a new "membrane domain" in the cell. J Cell Biol 2001; 152(5):1079-1085. 



 103

 (90)  Brown DA. Lipid droplets: proteins floating on a pool of fat. Curr Biol 2001; 11(11):R446-

R449. 

 (91)  Heid HW, Moll R, Schwetlick I, Rackwitz HR, Keenan TW. Adipophilin is a specific marker 

of lipid accumulation in diverse cell types and diseases. Cell Tissue Res 1998; 294(2):309-

321. 

 (92)  Jiang HP, Serrero G. Isolation and characterization of a full-length cDNA coding for an 

adipose differentiation-related protein. Proc Natl Acad Sci U S A 1992; 89(17):7856-7860. 

 (93)  Greenberg AS, Egan JJ, Wek SA, Garty NB, Blanchette-Mackie EJ, Londos C. Perilipin, a 

major hormonally regulated adipocyte-specific phosphoprotein associated with the periphery 

of lipid storage droplets. J Biol Chem 1991; 266(17):11341-11346. 

 (94)  Londos C, Brasaemle DL, Gruia-Gray J, Servetnick DA, Schultz CJ, Levin DM et al. 

Perilipin: unique proteins associated with intracellular neutral lipid droplets in adipocytes 

and steroidogenic cells. Biochem Soc Trans 1995; 23(3):611-615. 

 (95)  Wolins NE, Skinner JR, Schoenfish MJ, Tzekov A, Bensch KG, Bickel PE. Adipocyte 

protein S3-12 coats nascent lipid droplets. J Biol Chem 2003; 278(39):37713-37721. 

 (96)  Miura S, Gan JW, Brzostowski J, Parisi MJ, Schultz CJ, Londos C et al. Functional 

conservation for lipid storage droplet association among Perilipin, ADRP, and TIP47 (PAT)-

related proteins in mammals, Drosophila, and Dictyostelium. J Biol Chem 2002; 

277(35):32253-32257. 

 (97)  Wolins NE, Rubin B, Brasaemle DL. TIP47 associates with lipid droplets. J Biol Chem 

2001; 276(7):5101-5108. 

 (98)  Liu P, Ying Y, Zhao Y, Mundy DI, Zhu M, Anderson RG. Chinese hamster ovary K2 cell 

lipid droplets appear to be metabolic organelles involved in membrane traffic. J Biol Chem 

2004; 279(5):3787-3792. 

 (99)  Lu X, Gruia-Gray J, Copeland NG, Gilbert DJ, Jenkins NA, Londos C et al. The murine 

perilipin gene: the lipid droplet-associated perilipins derive from tissue-specific, mRNA 

splice variants and define a gene family of ancient origin. Mamm Genome 2001; 12(9):741-

749. 

 (100)  Scherer PE, Bickel PE, Kotler M, Lodish HF. Cloning of cell-specific secreted and surface 

proteins by subtractive antibody screening. Nat Biotechnol 1998; 16(6):581-586. 



 104 

 (101)  Servetnick DA, Brasaemle DL, Gruia-Gray J, Kimmel AR, Wolff J, Londos C. Perilipins are 

associated with cholesteryl ester droplets in steroidogenic adrenal cortical and Leydig cells. J 

Biol Chem 1995; 270(28):16970-16973. 

 (102)  Dalen KT, Schoonjans K, Ulven SM, Weedon-Fekjaer MS, Bentzen TG, Koutnikova H et al. 

Adipose Tissue Expression of the Lipid Droplet-Associating Proteins S3-12 and Perilipin Is 

Controlled by Peroxisome Proliferator-Activated Receptor-γ. Diabetes. In press. 

 (103)  Greenberg AS, Egan JJ, Wek SA, Moos MC, Jr., Londos C, Kimmel AR. Isolation of 

cDNAs for perilipins A and B: sequence and expression of lipid droplet-associated proteins 

of adipocytes. 

 (104)  Clifford GM, Londos C, Kraemer FB, Vernon RG, Yeaman SJ. Translocation of hormone-

sensitive lipase and perilipin upon lipolytic stimulation of rat adipocytes. J Biol Chem 2000; 

275(7):5011-5015. 

 (105)  Egan JJ, Greenberg AS, Chang MK, Londos C. Control of endogenous phosphorylation of 

the major cAMP-dependent protein kinase substrate in adipocytes by insulin and beta-

adrenergic stimulation. J Biol Chem 1990; 265(31):18769-18775. 

 (106)  Mooney RA, Bordwell KL. Counter-regulation by insulin and isoprenaline of a prominent 

fat-associated phosphoprotein doublet in rat adipocytes. Biochem J 1991; 274 ( Pt 2):433-

438. 

 (107)  Martinez-Botas J, Anderson JB, Tessier D, Lapillonne A, Chang BH, Quast MJ et al. 

Absence of perilipin results in leanness and reverses obesity in Lepr(db/db) mice. Nat Genet 

2000; 26(4):474-479. 

 (108)  Tansey JT, Sztalryd C, Gruia-Gray J, Roush DL, Zee JV, Gavrilova O et al. Perilipin 

ablation results in a lean mouse with aberrant adipocyte lipolysis, enhanced leptin 

production, and resistance to diet-induced obesity. Proc Natl Acad Sci U S A 2001; 

98(11):6494-6499. 

 (109)  Sztalryd C, Xu G, Dorward H, Tansey JT, Contreras JA, Kimmel AR et al. Perilipin A is 

essential for the translocation of hormone-sensitive lipase during lipolytic activation. J Cell 

Biol 2003; 161(6):1093-1103. 

 (110)  Diaz E, Pfeffer SR. TIP47: a cargo selection device for mannose 6-phosphate receptor 

trafficking. Cell 1998; 93(3):433-443. 



 105

 (111)  Eisinger DP, Serrero G. Structure of the gene encoding mouse adipose differentiation-related 

protein (ADRP). Genomics 1993; 16(3):638-644. 

 (112)  Heid HW, Schnolzer M, Keenan TW. Adipocyte differentiation-related protein is secreted 

into milk as a constituent of milk lipid globule membrane. Biochem J 1996; 320 ( Pt 3):1025-

1030. 

 (113)  Brasaemle DL, Barber T, Wolins NE, Serrero G, Blanchette-Mackie EJ, Londos C. Adipose 

differentiation-related protein is an ubiquitously expressed lipid storage droplet-associated 

protein. J Lipid Res 1997; 38(11):2249-2263. 

 (114)  Gao J, Serrero G. Adipose differentiation related protein (ADRP) expressed in transfected 

COS-7 cells selectively stimulates long chain fatty acid uptake. J Biol Chem 1999; 

274(24):16825-16830. 

 (115)  Mather IH, Keenan TW. Origin and secretion of milk lipids. J Mammary Gland Biol 

Neoplasia 1998; 3(3):259-273. 

 (116)  Imamura M, Inoguchi T, Ikuyama S, Taniguchi S, Kobayashi K, Nakashima N et al. ADRP 

stimulates lipid accumulation and lipid droplet formation in murine fibroblasts. Am J Physiol 

Endocrinol Metab 2002; 283(4):E775-E783. 

 (117)  Gao J, Ye H, Serrero G. Stimulation of adipose differentiation related protein (ADRP) 

expression in adipocyte precursors by long-chain fatty acids. J Cell Physiol 2000; 

182(2):297-302. 

 (118)  Schultz CJ, Torres E, Londos C, Torday JS. Role of adipocyte differentiation-related protein 

in surfactant phospholipid synthesis by type II cells. Am J Physiol Lung Cell Mol Physiol 

2002; 283(2):L288-L296. 

 (119)  Atshaves BP, Storey SM, McIntosh AL, Petrescu AD, Lyuksyutova OI, Greenberg AS et al. 

Sterol carrier protein-2 expression modulates protein and lipid composition of lipid droplets. 

J Biol Chem 2001; 276(27):25324-25335. 

 (120)  Serrero G, Frolov A, Schroeder F, Tanaka K, Gelhaar L. Adipose differentiation related 

protein: expression, purification of recombinant protein in Escherichia coli and 

characterization of its fatty acid binding properties. Biochim Biophys Acta 2000; 

1488(3):245-254. 



 106 

 (121)  Atshaves BP, Starodub O, McIntosh A, Petrescu A, Roths JB, Kier AB et al. Sterol carrier 

protein-2 alters high density lipoprotein-mediated cholesterol efflux. J Biol Chem 2000; 

275(47):36852-36861. 

 (122)  Nakamura N, Fujimoto T. Adipose differentiation-related protein has two independent 

domains for targeting to lipid droplets. Biochem Biophys Res Commun 2003; 306(2):333-

338. 

 (123)  Tauchi-Sato K, Ozeki S, Houjou T, Taguchi R, Fujimoto T. The surface of lipid droplets is a 

phospholipid monolayer with a unique Fatty Acid composition. J Biol Chem 2002; 

277(46):44507-44512. 

 (124)  Frank PG, Marcel YL. Apolipoprotein A-I: structure-function relationships. J Lipid Res 

2000; 41(6):853-872. 

 (125)  Bussell R, Jr., Eliezer D. A structural and functional role for 11-mer repeats in alpha-

synuclein and other exchangeable lipid binding proteins. J Mol Biol 2003; 329(4):763-778. 

 (126)  Chawla A, Lee CH, Barak Y, He W, Rosenfeld J, Liao D et al. PPARdelta is a very low-

density lipoprotein sensor in macrophages. Proc Natl Acad Sci U S A 2003; 100(3):1268-

1273. 

 (127)  Sambrook J. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory 

Press, Cold Spring Harbor, New York.  1989. 

 (128)  QIAGEN. QIAEX II Handbook for DNA Extraction from Agarose Gels. [20021]. 1999.  

 (129)  Engler MJ, Richardson CC. In: The Enzymes. Boyer, P.D., ed., Academic Press, New York, 

NY., 1982. 

 (130)  Seidman CE, Struhl K, Sheen J, Jessen T. Introduction of plasmid DNA into cells. Current 

Protocols in Molecular Biology. John Wiley & Sons Inc, 1997. 

 (131)  Genomed. JETQUICK Plasmid Miniprep Spin Kit 250. Oktober 2000[400250]. 2000.  

 (132)  Genomed. JETSTAR Plasmid Maxiprep Kit. [220020]. 1994.  

 (133)  Gluzman Y. SV40-transformed simian cells support the replication of early SV40 mutants. 

Cell 1981; 23(1):175-182. 



 107

 (134)  Aden DP, Fogel A, Plotkin S, Damjanov I, Knowles BB. Controlled synthesis of HBsAg in a 

differentiated human liver carcinoma-derived cell line. Nature 1979; 282(5739):615-616. 

 (135)  Knowles BB, Howe CC, Aden DP. Human hepatocellular carcinoma cell lines secrete the 

major plasma proteins and hepatitis B surface antigen. Science 1980; 209(4455):497-499. 

 (136)  Darlington GJ, Kelly JH, Buffone GJ. Growth and hepatospecific gene expression of human 

hepatoma cells in a defined medium. In Vitro Cell Dev Biol 1987; 23(5):349-354. 

 (137)  Murakami K, Abe T, Miyazawa M, Yamaguchi M, Masuda T, Matsuura T et al. 

Establishment of a new human cell line, LI90, exhibiting characteristics of hepatic Ito (fat-

storing) cells. Lab Invest 1995; 72(6):731-739. 

 (138)  Wabitsch M, Brenner RE, Melzner I, Braun M, Moller P, Heinze E et al. Characterization of 

a human preadipocyte cell strain with high capacity for adipose differentiation. Int J Obes 

Relat Metab Disord 2001; 25(1):8-15. 

 (139)  Werner T, Fessele S, Maier H, Nelson PJ. Computer modeling of promoter organization as a 

tool to study transcriptional coregulation. FASEB J 2003; 17(10):1228-1237. 

 (140)  Carey M, Smale ST. Transcriptional Regulation in Eukaryotes. Consepts, Strategies, and 

Techniques. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 2000. 

 (141)  Promega. Luciferase Assay System. Technical Bulletin No. 281.  2002.  

 (142)  Graham FL, van der Eb AJ. A new technique for the assay of infectivity of human 

adenovirus 5 DNA. Virology 1973; 52(2):456-467. 

 (143)  Rosenthal N. Identification of regulatory elements of cloned genes with functional assays. 

Methods Enzymol 1987; 152:704-720. 

 (144)  Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC. Green fluorescent protein as a 

marker for gene expression. Science 1994; 263(5148):802-805. 

 (145)  Prasher DC, Eckenrode VK, Ward WW, Prendergast FG, Cormier MJ. Primary structure of 

the Aequorea victoria green-fluorescent protein. Gene 1992; 111(2):229-233. 

 (146)  BD Biosciences Clontech. Product protocol: pEGFP-N1 N-terminal Protein Fusion Vector 

(Catalog #6085-1).  2004.  



 108 

 (147)  Fried MG, Bromberg JL. Factors that affect the stability of protein-DNA complexes during 

gel electrophoresis. Electrophoresis 1997; 18(1):6-11. 

 (148)  Kerr LD. Electrophoretic mobility shift assay. Methods Enzymol 1995; 254:619-632. 

 (149)  Promega. Quick protocol for: TNT-T7 quick coupled transcription translation system. 

Technical Manual No.045.  2000.  

 (150)  Whitney KD, Watson MA, Collins JL, Benson WG, Stone TM, Numerick MJ et al. 

Regulation of cholesterol homeostasis by the liver X receptors in the central nervous system. 

Mol Endocrinol 2002; 16(6):1378-1385. 

 (151)  Zhang Y, Yin L, Hillgartner FB. Thyroid hormone stimulates acetyl-coA carboxylase-alpha 

transcription in hepatocytes by modulating the composition of nuclear receptor complexes 

bound to a thyroid hormone response element. J Biol Chem 2001; 276(2):974-983. 

 (152)  Mak PA, Kast-Woelbern HR, Anisfeld AM, Edwards PA. Identification of PLTP as an LXR 

target gene and apoE as an FXR target gene reveals overlapping targets for the two nuclear 

receptors. J Lipid Res 2002; 43(12):2037-2041. 

 (153)  Landis MS, Patel HV, Capone JP. Oxysterol activators of liver X receptor and 9-cis-retinoic 

acid promote sequential steps in the synthesis and secretion of tumor necrosis factor-alpha 

from human monocytes. J Biol Chem 2002; 277(7):4713-4721. 

 (154)  Volle DH, Repa JJ, Mazur A, Cummins CL, Val P, Henry-Berger J et al. Regulation of the 

Aldo-Keto Reductase Gene akr1b7 by the Nuclear Oxysterol Receptor LXR{alpha} in the 

Mouse Intestine: Putative Role of LXRs in Lipid Detoxification Processes. Mol Endocrinol 

2004. 

 (155)  Ramji DP, Foka P. CCAAT/enhancer-binding proteins: structure, function and regulation. 

Biochem J 2002; 365(Pt 3):561-575. 

 (156)  Rosen ED, Walkey CJ, Puigserver P, Spiegelman BM. Transcriptional regulation of 

adipogenesis. Genes Dev 2000; 14(11):1293-1307. 

 (157)  Svensson S, Ostberg T, Jacobsson M, Norstrom C, Stefansson K, Hallen D et al. Crystal 

structure of the heterodimeric complex of LXRalpha and RXRbeta ligand-binding domains 

in a fully agonistic conformation. EMBO J 2003; 22(18):4625-4633. 



 109

 (158)  Janowski BA, Grogan MJ, Jones SA, Wisely GB, Kliewer SA, Corey EJ et al. Structural 

requirements of ligands for the oxysterol liver X receptors LXRalpha and LXRbeta. Proc 

Natl Acad Sci U S A 1999; 96(1):266-271. 

 (159)  Tilstone C. DNA microarrays: vital statistics. Nature 2003; 424(6949):610-612. 

 (160)  Firestein GS, Pisetsky DS. DNA microarrays: boundless technology or bound by 

technology? Guidelines for studies using microarray technology. Arthritis Rheum 2002; 

46(4):859-861. 

 (161)  Bildirici I, Roh CR, Schaiff WT, Lewkowski BM, Nelson DM, Sadovsky Y. The lipid 

droplet-associated protein adipophilin is expressed in human trophoblasts and is regulated by 

peroxisomal proliferator-activated receptor-gamma/retinoid X receptor. J Clin Endocrinol 

Metab 2003; 88(12):6056-6062. 

 (162)  Rosenbaum SE, Greenberg AS. The short- and long-term effects of tumor necrosis factor-

alpha and BRL 49653 on peroxisome proliferator-activated receptor (PPAR)gamma2 gene 

expression and other adipocyte genes. Mol Endocrinol 1998; 12(8):1150-1160. 

 (163)  Tobin KA, Ulven SM, Schuster GU, Steineger HH, Andresen SM, Gustafsson JA et al. Liver 

X receptors as insulin-mediating factors in fatty acid and cholesterol biosynthesis. J Biol 

Chem 2002; 277(12):10691-10697. 

 (164)  Chawla A, Boisvert WA, Lee CH, Laffitte BA, Barak Y, Joseph SB et al. A PPAR gamma-

LXR-ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis. 

Mol Cell 2001; 7(1):161-171. 

 (165)  Amemiya-Kudo M, Shimano H, Yoshikawa T, Yahagi N, Hasty AH, Okazaki H et al. 

Promoter analysis of the mouse sterol regulatory element-binding protein-1c gene. J Biol 

Chem 2000; 275(40):31078-31085. 

 (166)  Fajas L, Schoonjans K, Gelman L, Kim JB, Najib J, Martin G et al. Regulation of 

peroxisome proliferator-activated receptor gamma expression by adipocyte differentiation 

and determination factor 1/sterol regulatory element binding protein 1: implications for 

adipocyte differentiation and metabolism. Mol Cell Biol 1999; 19(8):5495-5503. 

 (167)  Grefhorst A, Elzinga BM, Voshol PJ, Plosch T, Kok T, Bloks VW et al. Stimulation of 

lipogenesis by pharmacological activation of the liver X receptor leads to production of 

large, triglyceride-rich very low density lipoprotein particles. J Biol Chem 2002; 

277(37):34182-34190. 



 110 

 (168)  Haugen F, Zhaid N, Dalen KT, Hollung K, Nebb HI, Drevon C.A. Resistin expression in 

cultured adipocytes is reduced by arachidonic acid. J Lipid Res. In press. 

 

  



 111

Appendix 

A 

 

B 

0

1

2

3

R
el

at
iv

e 
Lu

c-
ac

tiv
ity

Vehicle
LXRα
RXRα,LXRα
RXRα,LXRα and T0901317

 

Figure A1 Transfection with human adipophilin promoters shows modest 
responsiveness to LXR activation 

A) A schematic presentation of the human adipophilin promoter construct. B) Transient transfection 
with the full-length construct of human adipophilin luciferase reporter into COS-1 cells. Cells were 
co-transfected with no expression plasmid (white), LXRα expression plasmid (light grey), LXRα and 
RXRα expression plasmids (dark grey and black) stimulated with vehicle (white, light grey and dark 
grey) or T0901317 (0.1µM; black). The result is representative for three individual experiments 
performed in triplicates. Results are given as mean + SD. (None, vehicle = 1). 
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Figure A2 Transfection with c/EBPα 

Transient transfection with reporter constructs of human adipophilin (hADrP), murin adipophilin (m-
ADrP), murin S3-12 (m-S3-12) and resistin. Cells were co-transfected with c/EBPα (µM). Resistin 
(168) is known to be induced by c/EBPα. Results are given as ± SD. (Control = 1). 
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Figure A3  Transfection in HepG2 cells cultured in medium with LPDS 

Transient transfection with the deletion construct of human adipophilin luciferase reporter into 
HepG2 cells cultured in medium with LPDS. The cells were co-transfected with RXRα and LXRα 
expression vectors as indicated. The medium was supplemented with vehicle (DMSO; white), RXRα 
ligand (LG100268; light grey), LXRα ligand (T0901317; dark grey) or both ligands (black). Results 
are given as mean + SD. (None, vehicle = 1). 
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AAAAACGTCTCCTTTGTCCTCTGGAGGTTCACTGAAAAATCAACTGGCGGAAAGCAAATTAACAGGTCAAAAGA
TATACATGTATTATTATAAAAAGACGTAAATGTATTATTGGGCATGTGGGGGAACCACAGAGTAATTACTCCAC
CTCTCAGTGGGCTCAGAAGCTTATATACCCCTCCTGAGGTTACAGAAAGTTTGGGGGCTCAGAGAATGGTGGTA
AATCAGGATTTAGTGGCAAGACAGAAATGGAAACTTGGCTAGCAAAAGTCATTTCATTATGTAGATTGGGGTCC
CCAAACTTTGGGCCATTTACACTGTGGCCATTTACATTCCTGTTAGGAATAGGGCCGCACAGCAAGAGGTGAGT
GGCGGGTGAGTGAGCAATACCGCCTGAGCTCTGCCTCTTGTCAGGTCAGCAGCTGGTATTAGGTTCTCTTAGGA
GCAAGAACGCCGCTGTGAACTGCACATGCAAGGGATCTAGGTTGCGGCTCCTTATGAGAATCTAATGCCGATGA
TTTAAGGTGGAACAGTTTCATCCTGAAAACCATCCCCCTGCCCTGGTCCATGGAAAAATTGTCTTCCATGAAAC
CTATCCCTGGTGCCAAAAAGGTTGGGGACCGCTCATGTAGATGAAACCTCACAGGTAGTAGCCATTGGAAAGAA
TAGATGGTTGATGTTTCTTTCAGACCTTTAAAGGTGTCAGACTGTCCATTAACCTTTCCTATATCTGGACGAGG
GAAAACCTCAGAGAGCACCTGGCTGCATCAATGCAGATTTTCTCTGTATATTGCAAGCCTCTCTCACACACACA
CACACACACACACACACACACACACACACACACACACACACCAAACAGCTTCGTAGGACTACTTCCGCCTGCAG
GTCCTCTGAACAGCCATATCTCAAAATATGTGAAAGAAGTATATTTTGGGGTAAAATTTTTTGGTTTCCTTCAC
TACACATCTCACCTTGGGTGTTATTCTTGCCACTGGTTTCATGTTCTCAGACTCACGAAGCTGAAAAACAGTTG
GGGATGCAGAATTTGATGTGCTTCATCCTTTGTGGGCTTGAAGAGTCTCTTGTTCCCAAAATTATTCCCTGGGG
CCCTCTGCTTCACAGGCAAATAAAAGCAAAAAGAAGCTTGCTCAGCCTTAAGTGAGGAAATGACTCACAGGTTT
AAAACAAAAAAGGAAAAGATGGAGGCATTTTGTAGGTGAAAGGGCGAGAGTCTTCTGATGCAAAGTAAGAGGTC
ATTAGAGCAGGGATGGATTATCAATAAGCAGAGCAAACATTTGCTTAGGGAACAAACAGCGCCGGAACACGAAA
AAGAAAAGAAAAACATAATAATTTAATTACTTAAAACACTGAAGATGGCAACATAGGAAAAAACCCAAACCAGA
ACATTTTTGGACTTCATAACATTTTATGGTTCAGTATTTATGGCTTAGTATTTTATTTTGAATTACATGTGGGG
AGGAGGGGTAAAAATACTTTAATTTTTCTTGCTAAGTAAGTACTATTATATATTCAGGTATAATGGGATAAGGG
ATACCATTTTAATGGGTCCGTTTGGAGCTTTAAATATGATCAACAGTATCTGTGTGCATGCAAGATTGGTTAAG
AAACTGGGTTAGACCGAGTGCGGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCAAGGCGGGCGGATCA
CGAGGTCAAGCGATCGAGACCATCCTGGCCAACATGGTGAAACCCCGTCTCTACTAAAAATACAAAAATTAGCT
GGGCGTGGTGGCCCGCGCTTGTAGTCCCAGCTACTCGGGAGGCTGAGGCAAGAGAATCACTTGAACCCGGGAGG
CTGGGGTTGCAGTGAGCCAAGATCGCGCCACTGCACTCCAGCCTGGCGACAGAGCGAGACTCCGTCTCAAAAAA
CAACAACAACAACAACAACAACAGAAAATGAAAACAAATTGGGGTAAAAGTCTCTGAGAGCTTCCTACAGTTAC
AACTCCAAAGCTTCACAAAGCCAGTCCCTCCTGGCTGGAGCCAGGGACTCCAACGCTGTGGGCCTCTCAGGGGG
CGGACCCGCGGCGCCAGCGCCTGCTCCCTTCCCACCTCCCAACCCTCCTCTCTGCTGTATCCTCCCTGCGAGCT
GTGTCGGGGGCCGGGGGGGGGGAGTGGGGGCCCAGGCCGGACAGCTTCATCTGGAAATCCCCCGCCACTCACGG 
GGGAAGAAGTCCCACGAGCCCTATCTGGCCTCGGGCGCTGGCGCAACTTGTCTGCTCAAATAATCTCGTTCCAA
ATCTGTGCGTTTTACACAAGAAACAAACAAACAAAACAACAACAACAAAAAAACACAACTGGGACTCAGATGAC
GTTTTAAGTTGTCTTTGAAAAACAATGCATAACCCTGCACGTATAAAGTTGCCTATGTCACATAACCCTAGGCA
GCTGTCATTCTGGAGTGATCTGGAGTTAAGTTTTTTGTTTTCTTTTTCTTTTTTCTTTTCTTTTTTTTTTTTTA
GACAGGGTCTCAGTCACTCAGGCTGGGGTGCAGTGGTACAGTGGCGCGATCTCGACTCATTGCAGCCTCGACCA
CCTGGGCTCAAAAGATTCTTTCACCTCAGCCACCCACCCGCCTGCCCCCAACCCCGCTAAACAGCCGGGACTAG
CTGGGACTACAGGCGCGCGCCACCACGCTGGGCTGCTTTCTTTGTATTTTGAGAGAGACGGGGTTTCGCCATGT
TGGCCAGGCTGGTGATTCGCTCGCCTCGGCCTCCCAAAGTGCTAGGATTACAGGCGTGAGCCACCGCGCCCAGC
CGCCACAAAACTTTTAAAAGTTATTACTTCGCTAAAAATAACAGCGTAGAAGCCATTGTGCAGCGCCACGCGAT
CTCGGCTCACTGCAGCCTCGACCTCCCAGGCTCAAGCGATCCTCCCATCTTAGCCTCGCAGGTAGCTGGGGCCA
CAGGCGCACGACACCACGCTGGGCTATTTTTTAAAATAAAATAAAAATCTTCGCCAGGCTGGTCTCGAACTCCT
AGGCTCGACAGATCCTCTCGCCTCAGCATCCCAAAGTGTTGTGATTACAGGCGTGAGCCACCGCTTCCATTTTT
AGAGTTCTATTCTGAGGACTAACGCCGTTCAACAAGTTGGTGTGAATTTGTTTGCATTTTTCAAAACCCCAAAG
CCGGCCTGGGCGCCATCCCCATTTGCCCCGGGCCTCTCAGGACCCCGACCACAGGCAGGACCCCGACCACAGGC
AGCGCCCCGACTCCAGGCAGCGCCCCGACTCCAGGCAGGGCTACCTCCAACTCCCAGCCTCCCCAGGCCGGGCC
CCCGCCCGGCTCCCGACAGGCTCCTCTCCCCGTGGCGGGGCCCCTCGCCCAGGCAGCACACCCTCTCAACCCGA
CCGGGCCCCCACCACTCTAGGAGGGCCGGCGTTGGGGGAGGGCGCCGGGACGTGCCCGAGGGTGACACTCGGGC
TTGGGACAGGGCGTGCTGCCGCGGGTCACGTGCTGCGGAGGCTTGGGGAGGGGCGGCGAGGCGGGGTTTATAGC
CCGGGCGCCCGCGGGCCCCACGCTTTGACCGGGTCGTGGCAGCCGGAGTCGTCTTCGGGACGCGCCTGCTCTTC
GCCTTTCGCTGCAGTCCGTCGGTGAGTGCGCGCCCAGTGGGTGCCCCAGCGAACCGGTCCCGGGCCCCCAGCGG
CGCCCAGTTGGGGTGGGGGGCTCCCCGGGGCCTTGGGACCGCTGCTCTGCTCCCCGCGGGGCTCAAAGGTGGAC
GGGACGCGGGGGTGATGGTCCGAGACCCCCCGCTCGCCTCGCGGCTTCCAGGTCCTGGCTGGGTAGGGGCGGTC
TGCTGAACCCGCGCTTTCGACCCTTGCCTTTGTGCGTTGAGGCTTCTTTCCTGCCAACAGATTTAGGGCGATTG
CTATCGAATGTCCCTTGGCCTGCTTGGGTGGTTGTGGGAAAACAATATTTGTCGAAGGGACATTATCGAAAGGG 
AAACGCGTTAGA 
 
 

Figure A4 Human adipophilin promoter – cloned 
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Figure A5 Successful differentiation of SGBS cells 
SGBS cells were morphologically fibroblast-like and differentiated into mature adipocytes with 
characteristic lipid droplets. SGBS adipocytes are morphologically identical to in vitro differentiated 
adipocytes from healthy subjects and are a human adipocyte in vitro model system.   
 

 

 

 


