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“To do is to do.” – Homo Erectus

“To be is to be.” – René Descartes

"To be is to do." – Immanuel Kant

"To do is to be." – Friedrich Nietzsche

"Do be do be do." – Frank Sinatra 
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1. Abbreviations 

AP-1 activated protein 1 
APC antigen presenting cell 
Cbl casitas B-lineage lymphoma 
Cbp Csk binding protein 
CD cluster of differentiation 
Csk C-terminal Src kinase 
ERK extracellular signal regulated kinase 
GAP GTPase activating protein 
GEF guanine nucleotide exchange factor 
Grb2 growth factor receptor bound protein 2 
IKK I B kinase 
IL-2 interleukin 2 
IS immunological synapse
ITAM immunoreceptor tyrosine based activation motif 
kd knockdown
LAT linker for activation of T cells 
Lck lymphocyte-specific protein-tyrosine kinase 
LIME Lck interacting membrane protein 
MAPK mitogen activated protein kinase 
MHC major histocompatibility complex 
NFAT nuclear factor of activated T cells 
NF B nuclear factor B
PAG phosphoprotein associated with glycosphingolipid enriched microdomains 
PI3K phosphatidylinositol 3 kinase 
PKC protein kinase C 
PLC phospholipase C 
PKR protein kinase RNA 
Ras rat sarcoma 
SFK Src family kinase 
SH Src homology 
SHP-1 SH2 domain containing protein tyrosine phosphatase 1 
SLP-76 SH2 domain containing leukocyte protein of 76 kD 
SOS son of sevenless 
Src sarcoma (from Rous sarcoma) 
TCR T cell receptor 
ZAP-70  -chain-associated protein of 70 kD 
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Abstract
We have targeted Lck with siRNA-mediated RNA interference and investigated signaling 

properties in T cells with Lck knockdown. Proximal signaling was reduced in Lck-kd cells, 

as determined by overall tyrosine phosphorylation, CD3  phosphorylation and Ca2+

mobilization. Despite this, NFAT-AP-1 activation and IL-2 secretion was increased (Paper 

I). We found that Grb2-SOS1 was recruited to hypophosphorylated CD3-zeta in these cells, 

leading to sustained Ras-Raf-1-ERK1/2 activation (Paper II). Furthermore, endocytosed 

TCR/CD3-containing vesicles were not targeted to lysosomes, and CD3-zeta levels 

remained elevated in Lck-kd cells (Paper III). This indicates that prolonged survival of 

internalized TCR/CD3-complexes may lead to sustained signaling through the Grb2-SOS1-

Ras-ERK pathway. If allowed to operate in the absence of negative feedback mediated by 

SHP-1 (Paper I), Ras-GAP (Paper II), and c-Cbl (Paper III) Lck-kd may thus result in 

hyperresponsive signaling in T cells with low Lck levels.

We have also investigated the involvement of G proteins in TCR-mediated immune 

responses, and the possible interplay between G q and Lck (Paper IV). TCR engagement 

activated G q and G s but not G i-2. Targeting of G s, G i-2 and G q using siRNA-

mediated knockdown demonstrated a specific role of G q in T cell activation with an 

increase in the transcriptional activation of NFAT-AP1, despite reduced proximal signaling. 

The same was found in primary T cells from G q deficient mice which displayed 

hyperproduction of IL-2, but a reduced ability to activate proximal signaling events. 

3. Introduction 

3.1. The immune system 
The human body is under constant attack from infectious agents such as viruses, bacteria, 

fungi, protozoa and parasites, and many mechanisms have evolved to protect us against 

these threats. Very few infectious agents can penetrate the barrier of intact skin, but the 

epithelia and mucus membranes of the nasopharynx, lungs, gastrointestinal and urogenital 

tracts are more vulnerable to entry. Microorganisms come in many different forms, and they 

continually change structure and strategy to breach or evade our first line defences. When 

infectious agents gain access to the body, they may cause disease, which can be fatal if left 

unchecked. A flexible immune response is therefore required to deal with the large variety 

of microorganisms. Recognition of pathogens is essential for the immune system, and 



especially separation from self and harmless material. The two main categories of pathogen 

recognition are the innate (non-adaptive) and adaptive immune responses. The former 

employs a fixed set of  mechanisms which have co-evolved with emerging microbes, and 

detect classical patterns in foreign material, such as bacterial carbohydrates 

(lipopolysaccharide), nucleic acids (bacterial or viral DNA or RNA) and peptidoglycans. In 

the adaptive immune response, T and B lymphocytes are responsible for specific immune 

recognition. T cells regulate, direct or execute immune effector functions, and are the 

subject of the next chapter. B cells produce antibodies. The hallmark of adaptive immunity 

is a custom tailored response to each microorganism. The response is therefore slower in 

onset but more potent than innate immunity. The adaptability of the system is achieved by 

somatic mutations and irreversible recombination of antigen receptor gene segments. These 

mechanisms allow a small number of genes to generate a vast number of different antigen 

receptors, which are then expressed on individual lymphocytes. Lymphocytes with self-

reacting receptors are eliminated, and the body thereby generates a receptor repertoire for 

essentially all antigens that are non-self. Triggering of a particular receptor gives rise to 

clonal selection and proliferation of the lymphocyte, and because the gene rearrangements 

have lead to an irreversible change in the DNA of each cell, all of the progeny will inherit 

genes encoding the same receptor specificity. This includes the T and B memory cells which 

are keys to long-lived specific immunity. 

3.2. T cells 
The main classes of T cells are the CD4+ helper (Th), CD8+ cytotoxic (Tc) and FOXP3+ 

regulatory (Treg) cells. All T cells develop from lymphoid bone marrow progenitor cells 

and are educated in the thymus. Naïve T cells migrate through lymph nodes, spleen and 

other secondary lymphoid organs, ready to be activated by the interaction with professional 

antigen presenting cells (APCs), such as macrophages, B cells and dendritic cells. CD4+ T 

cells regulate and direct cytotoxic (Th1) or humoral (Th2) immune responses depending on 

the type of infection encountered. The former is typically mounted against virus infections 

and cancer cells, whereas the latter targets bacterial and protozoan infections. The Th1 and 

Th2 responses are characterized mainly by the profile of cytokines produced, which in turn 

activate specific subsets of immune cells. The Th1 response involves IFN , TNF and IL-2, 

and triggers cell-mediated inflammatory reactions executed by NK cells, macrophages and 

Tc cells. Tc cells eliminate virus infected cells and cancer cells through direct intervention 
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after recognition of foreign antigen presented on MHC class I molecules. The Th2 response 

involves IL-4, IL-5, IL-10 and IL-13, and activate B cells. B cells produce and secrete 

antibody molecules, which bind infectious material and mark it for destruction. Tregs 

suppress immune responses after an infection has been purged, and thereby maintain 

immune system homeostasis and tolerance to self. Aberrant or disturbed activation of T 

cells may lead to autoimmune diseases or immunodeficiency.  

3.3. T cell receptor signaling 
The T cell receptor (TCR) complex 

consists of the heterodimeric 

chains and a  set of six polypeptides, 

the CD3 chains, designated 

(Fig.1). APCs continously process 

exogenous peptides and present them 

on MHC class II molecules. The TCR 

interacts with peptide-loaded MHC 

class II molecules but will only be 

engaged with sufficient strength if 

there are matching antigen epitopes 

present (Reviewed in Kuhns et al. 

2006, and Rudolph et al., 2006). Many 

factors are involved in proper 

activation of T cells. The strength and 

duration of the TCR-MHC class II engagement is important, but also the presence of a co-

stimulatory signal mediated through CD28. CD28 interaction with B7 proteins on APCs 

ensures that the TCR is engaged by professional immune cells, and not  accidentally by 

other cells or by soluble antigen. Absence of a secondary CD28 signal will lead to T cell 

anergy, a state characterized by a lack of T cell responsiveness to otherwise effective 

antigens. Anergy has emerged as a fundamental mechanism for preventing autoimmune 

responses to self-antigens. 

Figure 1. The TCR/CD3-complex 

The TCR is located in specialized plasma membrane microdomains, termed lipid rafts. 

Lipid rafts consist of cholesterol and sphingolipid-enriched platforms which segregate 
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various signaling molecules, and are postulated to function in signaling and membrane 

trafficking (Ilangumaran et al., 2000; Marmor and Julius, 2001; Harder, 2001; Horejsi, 

2003). The immunological synapse is a term used to denote the complex array of protein-

protein interactions which arises between a T cell and an APC (Monks et al. 1998; Grakoui 

et al., 1999; Reviewed in Dustin et al., 2005). The formation and organization of an 

immunological synapse is constituted by the coalescence of lipid rafts and recruitment of 

signaling proteins, the binding of integrins and adhesion molecules, as well as the TCR-

MHC class II and CD28-B7 contacts. Altogether, this platform relays coordinated signals 

from the exterior to the interior of the T cell. Intracellular TCR signaling will be elaborated 

in the following chapters. Briefly summarized, Lck becomes activated upon TCR 

engagement, and phosphorylates the intracellular portions of the TCR/CD3-complex. ZAP-

70 binds and phosphorylates LAT, to which many adaptor and effector proteins are 

recruited. This culminates with the mobilization of intracellular Ca2+ and activation of PKC 

and Ras. In turn, transcription factors translocate to the nucleus of the T cell. Activated T 

cells secrete a plethora of cytokines which lead to proliferation and differentiation of 

immune cells. 

3.4. Lck and Src family kinases 
The most membrane proximal event to take place after engagement of the TCR is the 

activation of Lck (Lymphocyte specific tyrosine kinase). Lck is a 509 amino acids long, 56-

kD nonreceptor protein-tyrosine kinase of the Src oncogene family. The Src family of 

kinases (SFKs) also contain the members Src, Yes, Fyn, Lyn, Hck, Fgr and Blk, but only 

Lck, Fyn and Yes are expressed in T cells (Kitamura et al., 1982; Marth et al., 1985; 

Voronova and Sefton, 1986; Semba et al., 1986; Cooke and Perlmutter 1989; Olszowy et al., 

1995). The SFKs share many structural and functional features of Lck, and since Lck is is 

the main topic of this thesis, it will serve as a model example of a Src kinase in the 

following presentation. 
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3.4.1 Structure of Lck 
Lck is composed of SH3, SH2 and SH1 domains 

arranged sequentially from the N-terminus to the C-

terminus (see Fig. 2). The SH3 domain is 57 residues 

long and interact with proline rich regions with a 

central PXXP motif (Cohen et al., 1995). The SH2 

domain is 91 residues long and interacts with certain 

phospho-tyrosines (the Src SH2 domain prefer the 

sequence pYEEI/L) (Cohen et al., 1995; Pawson, 

1995). The SH1 domain is a 250 residue-long tyrosine kinase. Although Fyn and Lck both 

have SH2 and SH3 domains, the binding specificities of these domains are significantly 

different, and confer unique functions to these SFKs in T cell signaling (Lin et al., 2000; and 

reviewed in Zamoyska et al., 2003). Lck functions primarily as a tyrosine kinase, but both 

the SH2 (Straus et al., 1996; Lewis et al., 1997) and the SH3 domain (Denny et al., 1999) 

have been shown to be important for signaling in T cells. 

Figure 2. Lck 

Lck is anchored to the plasma membrane through lipid modifications (Marchildon et al., 

1984; Marth et al., 1985, Voronova and Sefton, 1986). The N-terminal residues G2 and 

C3/5 are myristoylated and palmitoylated respectively (Marchildon et al., 1984; Johnson et 

al., 1994, Paige et al., 1993; Koegl et al., 1994; Yurchak et al., 1995). Fyn also contains 

lipid anchors, but the localizations of Lck and Fyn are non-overlapping in T cells, 

suggesting spatial organization by other mechanisms (Ley et al., 1994; Lin et al., 2000; 

Filipp et al., 2003; Filipp et al. 2004). Lck interacts with two cysteines within an CXCP 

motif in the intracellular domains of CD4 and CD8 through a unique SH4 domain in a zinc-

dependent manner (Veillette et al., 1988; Rudd, et al., 1988; Rudd et al., 1989; Luo and 

Sefton, 1990; Turner et al., 1990; Kim et al., 2003). Approximately 50% of Lck in T cells 

interact with CD4 in this way (Veillette et al., 1988), and since CD4 is normally excluded 

from lipid rafts, so is Lck. In fact, up to 95% of Lck to resides in soluble membrane 

fractions, whereas more than 98% of Fyn concentrates within lipid rafts, some of which 

associates with the TCR/CD3-complex (Samelson et al., 1990; Timson Gauen et al., 1992; 

Filipp et al., 2003). There is some controversy in the field regarding Lck and lipid raft 

translocation. It has been reported that a large fraction of Lck resides in lipid rafts even in 

resting cells, and that CD28 but not CD4 stimulation results in more Lck recruitment into 

rafts (Tavano et al., 2004). 
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3.4.2. Lck and Fyn in T cell development 
Lck is primarily expressed in T cells where it serves many functions, both in signaling and T 

cell ontogeny. TCR signaling affects the selection and survival of T cells at every stage of 

development (Shortman and Wu, 1996, Sebzda et al., 1999; Kruisbeek et al., 2000). Lck 

knockout mice display thymic atrophy and diminished double positive (CD4+CD8+) 

thymocytes (Molina et al., 1992). Mature, single positive thymocytes could not be detected 

in these animals and peripheral T cell counts were very low Similar findings have been 

reported with transgenic mice expressing a dominant-negative version of Lck (Levin et al., 

1993). This underscores an important role of Lck in T cell development for which Fyn can 

not compensate. Thymocytes from Fyn-deficient mice undergo normal maturation (Stein et 

al., 1992; Appleby et al., 1992). However, Fyn is not completely dispensable since knockout 

of both Lck and Fyn leads to a complete arrest in T cell development at the double negative 

(CD4-CD8-) thymocyte stage (van Oers et al., 1996a; Groves et al., 1996). 

3.4.3. Regulation of Lck by phosphorylation and dephosphorylation 
Lck is phosphorylated on two main residues, Y394 (Marth et al., 1988; Veillette et al., 

1989a; Veillette et al., 1989b; Lou and Sefton, 1990; Abraham and Veillette, 1990) and 

Y505 (Courtneidge, 1985; Cooper et al., 1986; Cooper and King, 1986; Amrein and Sefton, 

1988;  MacAuley and Cooper, 1989). The former is an autophosphorylation site which leads 

to 2-4 fold increased tyrosine kinase activity. The latter is phosphorylated by C-terminal Src 

Kinase (Csk) which inhibits Lck (Okada and Nakagawa 1989; Thomas et al., 1991; Nada et 

al., 1991; Okada et al., 1991; Bergman et al., 1992). Phosphorylated Y505 interacts with the 

intrinsic SH2 domain of Lck, thus folding the protein onto itself. This inhibits the kinase 

domain indirectly by inducing conformational changes in the catalytic site (Yamaguchi and 

Hendrickson, 1996; Sischeri et al., 1997; Xu et al., 1997; Xu et al., 1999). pY394 is 

dephosphorylated primarily by the PTPases SHP-1, CD45 and LYP (Wu et al., 2006), 

wheras pY505 is dephosphorylated mainly by CD45. SHP-1 is a central negative regulator 

of T cell signaling and is presented in chapter 3.7.2. CD45 is expressed in all nucleated 

hematopoietic cells, but not in other cell types (Mustelin et al., 1989; Mustelin et al., 1990; 

Mustelin et al., 1992). In CD45-deficient lymphocytes both Lck and Fyn are 

hyperphosphorylated on Y505 and Y528 respectively, and these cells show diminished 

responses to antigen stimulation (Pingel and Thomas 1989; Ostergaard et al., 1989; 

Koretzky et al., 1990; Kishihara et al., 1993; Stone et al., 1997). Membrane targeting or 
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overexpression of Csk is sufficient to inhibit TCR induced phosphorylation and IL-2 

production through phosphorylation of Y505 (Chow et al., 1993). In contrast, deletion or 

mutation of Y505 in Lck results in a constitutively active enzyme (Marth et al., 1988; 

Abraham et al., 1991; Chow et al., 1993). Dephosphorylation of pY505 is therefore thought 

to be a critical positive regulator of Lck and Fyn in T cells. Lck is also phosphorylated on 

S59 (Winkler et al., 1993), and this regulates the specificity of the SH2 domain (Joung et al., 

1995). Weak TCR ligands may trigger a negative feedback loop dependent on the 

recruitment of SHP-1 to Lck. This is prevented when stronger ligands bind though ERK-

dependent phosphorylation of S59 in Lck (Stefanova et al., 2003). Phosphorylation of Y192 

within the SH2 domain of Lck disrupts SH2 binding, thereby negatively regulating its 

participation in T cell antigen receptor signaling (Couture et al., 1996). 

3.4.4. Activation and function of Lck 
The TCR/CD3-complex lacks enzymatic activity and is therefore dependent on external 

kinase activity for signal transmission. Lck is considered to be the principal mediator of this 

function (Veillette et al., 1989a; Veillette et al., 1989b; Veillette et al., 1989c; Barber et al., 

1989; Abraham et al., 1991; Luo and Sefton, 1992). However, the exact nature of how Lck 

becomes activated after engagement of the TCR is still elusive. Several mechanisms have 

been proposed: Release from tonic inhibition bt Csk, dephosphorylation of the inhibitory 

pY505 by CD45, clustering within the immunological synapse and juxtaposition of Lck 

with the TCR/CD3-complex through CD4-Lck interaction with MHC class II molecules. 

Other forms of SFK activation have also been described. For example, it has been shown 

that engagement of the SH3 domain of Lck by a proline-rich sequence in CD28 increases 

the phosphotransferase activity of Lck (Holdorf et al., 1999). Furthermore, engagement of 

the IL-2 receptor increases the activity of bound Lck (Horak et al., 1991), although IL-2 

signaling is not dependent on Lck (Karnitz et al., 1992). In fact, T cells from Lck -/- mice 

exibit enhanced proliferative responses to IL-2 stimulation (Molina et al., 1992). Src 

interaction with small G proteins is discussed in chapter 3.8., and examined in more detail in 

Paper IV. The kinetics and discrete regulation of Y394 and Y505 dephosphorylation by 

CD45 is not fully elucidated, and it is likely that CD45 has a role as both positive and 

negative regulator of T cell signaling, which is underscored by recent data (McNeill 2007). 

It has also been reported that CD4-Lck clusters outside the immunological synapse, away 

from the TCR-CD3 complex (Ehrlich et al., 2002). Furthermore, stimulation with anti-CD3
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antibodies (OKT3) is sufficient to trigger robust Lck activation in Jurkat and primary T 

cells, but the link between CD3  engagement and Lck activation is still unknown. 

Although different mechanisms of activation exist, it is evident that Lck becomes activated 

upon TCR engagement. The main substrates for Lck are the CD3-chains of the TCR-

complex (Barber et al. 1989), and several lines of evidence suggest a pivotal role for Lck in 

signal transmission through the TCR. Pharmacological inhibition of Lck and Fyn with PP2, 

or new specific Lck inhibitors, abolish anti-CD3-induced T cell signaling (Hanke et al., 

1996; Rapecki et al., 2002). The Jurkat cell line JCaM1, which is deficient in Lck, does not 

respond to anti-CD3 engagement, and reconstitution of these cells with Lck restores T cell 

signaling (Goldsmith and Weiss, 1987; Straus and Weiss, 1992). Fyn may also 

phosphorylate the TCR/CD3-complex, but overexpression of Fyn in JCaM1 cells only leads 

to a partial recovery (Denny et al., 2000). On the other hand, it has been shown that Syk is 

activated independently of Lck upon CD3-stimulation (Couture et al., 1994; Chu et al., 

1996), and reconstitution of JCaM1 cells with Syk, but not ZAP-70, could also restore 

signaling to ERK (Williams et al., 1997).  Knockout mice have been generated for both Lck 

and Fyn, and data from these animals indicate that Lck is important, but not indispensible 

for the TCR/CD3 signaling pathway. The proliferative response to anti-CD3 or TCR

crosslinking was substantially reduced in Lck -/- T cells, but was still higher than in 

unstimulated cells (Molina et al., 1992). Phosphorylation of CD3  and ZAP-70 was virtually 

absent in murine Lck -/- thymocytes, but several phosphoproteins were induced, although to 

a lower degree and with slower kinetics than in wild-type cells (van Oers et al., 1996b). 

TCR engagement resulted in CD69 expression in Lck deficient mice, albeit to a 

substantially lower level than in control animals. Furthermore, peripheral T cells from Lck -

/- mice showed normal responsiveness to allostimulation (allo-MHC antigens), suggesting 

that Lck is not required for this T cell effector function (Yamada et al., 1997). A major 

problem with Lck knockout animals is that compensatory mechanisms may have developed, 

and that the few T cells that do mature may represent a population that has adapted to the 

loss of Lck. Lck–/– mice may therefore not be the best model to investigate all aspects of Lck 

signaling in vivo, and conditional transgenic mice (Lck1ind) that express Lck by a T cell-

specific tet-inducible mechanism have been developed. This model has reveled a central role 

for Lck in the differentiation of CD4 and CD8  thymocytes, but no detectable change in T 

cell numbers in peripheral lymphoid organs was observed even 9 weeks after loss of Lck 

(Legname et al., 2000; Tewari et al., 2006). Interestingly, it has been shown that the absence 
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of Lck actually increased the long-term survival of naïve T cells (Seddon et al., 2000), and 

that Lck expression was not essential for responses of memory CD8+ T cells to secondary 

antigen stimulation in vivo or in vitro (Tewari et al., 2006). One report has used mice 

expressing a Lck transgene in the thymus to overcome the developmental block associated

with the Lck–/– background (Trobridge and Levin 2001). It was shown that primary Lck–/– T 

cells from these animals had an impaired Ca2+ mobilization and defective proliferation.

However, the authors also showed that T cells expressing an excess of a catalytically 

inactive Lck were capable of inducing Ca2+-fluxes, suggesting that Lck kinase activity is not 

essential in T cell activation. TCR signaling in Lck1ind mice with or without the Fyn -/-

background has recently been investigated (Lovatt et al., 2006). In this system, T cells with 

low levels or complete absence of Lck was compared to wild-type cells. It was shown that 

Lck controls the threshold of T cell activation by specifically activating the CD3 -ZAP-70-

LAT-PLC 1-pathway, leading to Ca2+ dependent induction of IL-2 synthesis. Surprisingly, 

crosslinking CD4 with the TCR enhanced signal transduction even in the absence of Lck, 

resulting in Ca2+ flux and phosphorylation of some LAT residues in Lck-deficient T cells. 

This occured without  ZAP-70 or PLC 1 phosphorylation. Furthermore, the activation of

MEK and ERK was surprisingly high in Lck-low or Lck-deficient mice, although reduced 

compared to wild type animals. Fyn was shown to be responsible for these effects, and the 

authors concluded that Lck and Fyn target the ERK1/2-pathway through distinct Ras 

activators. Interestingly, when intracellular IL-2 was visualized, a significant proportion of

Lck-deficient cells were found to produce IL-2 even though secretion was reduced. This 

indicates that signals received in the absence of Lck are sufficient to open the IL-2 locus but 

insufficient to induce normal levels of IL-2 secretion. Work included in this thesis 

investigate further how low levels of Lck may result in T cell signaling (Paper I and II). 
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3.4.5 Summary of Lck interaction partners and/or substrates 
Table 1. Lck interaction partners and/or substrates 
Protein Reference
Cbl I Rao et al., 2002, Hawash et al., 2002 
CD28 I Holdorf et al., 1999 
CD3 / / / S Barber et al., 1989, Straus and Weiss 1992, van Oers 1996b 
Ezrin S Autero et al., 2003 
Fyn S Filipp et al., 2003 
IL-2 receptor I/S Hatakeyama et al., 1991, Delespine-Carmagnat 1999 
Itk S Heyeck et al., 1997 
LAT S Jiang and Cheng, 2007 
LIME I/S Brdickova et al., 2003, Hur et al., 2003 
PKC / S Konishi et al., 2001, Liu et al., 2000 
PLC 1 S Liao et al., 1993 
Ras-GAP S/I Amrein et al., 1992, Amrein et al., 1994 
Shc S/I Walk et al., 1998, Fukushima et al., 2005 
SHP-1 S/I Lorenz et al., 1994 
Unc119 I Gorska et al., 2004 
Vav1 S Gulbins et al., 1993 
ZAP-70 S/I Duplay et al., 1994, Pelosi et al., 1999 
I = Interaction partner; S=Substrate 

3.4.6 Fyn 
Fyn has been shown to be important for signal transduction in T cells (Cooke et al., 1991; 

Tsygankov et al., 1992). Peripheral T cells from Fyn -/- animals display relatively normal 

proliferative responses, but have blunted Ca2+ mobilization and IL-2 production (Stein et al., 

1992; Appleby et al., 1992). Although Fyn plays a role in T cell signaling, it does not have 

the same impact as Lck, since overexpression of Fyn can not fully substitute for the loss of 

Lck (Denny et al., 2000). It has been shown that Fyn requires Lck recruitment to lipid rafts 

for its activation, and Fyn thus appears to be dependent on and function subsequently to Lck 

upon TCR engagement (Filipp et al., 2003; Filipp et al., 2004). Some lines of evidence have 

suggested that one of the roles of Fyn is to dampen T-cell responses, while Lck acts to 

amplify them (Lovatt et al., 2006; Filby et al., 2007). Fyn provides incomplete signals, such 

as those delivered by antagonistic ligands (Utting et al., 1998), and Fyn interacts specifically 

with some negative regulators of T-cell activation, such as c-Cbl (Tsygankov et al., 1996; 

see chapter 3.7.4.) and Cbp/PAG (Yasuda et al., 2002). Cbp/PAG is a transmembrane 

protein which binds Csk when phosphorylated (Brdicka et al., 2000; Kawabuchi et al., 

2000). TCR stimulation leads to transient dephosphorylation of Cbp/PAG, probably in a 

CD45-dependent manner, therby releasing Csk from its plasma membrane anchor, and thus 

facilitating T cell activation (Torgersen et al., 2001; Davidson et al., 2003). Fyn-mediated 
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rephosphorylation of Cbp/PAG leads to the recruitment of Csk, and thereby constitutes a 

negative feedback mechanism. The function of Cbp/PAG is, however, still under 

investigation. In contrast to Csk null mutation, which leads to embryonic lethality (Imaoto 

and Soriano, 1993; Nada et al., 1993), Cbp/PAG-deficient mice appear normal (Dobenecker 

et al., 2005; Xu et al., 2005). Dobenecker et al. reported that Csk was still recruited to lipid 

rafts in these animals, indicating that other Csk adaptors compensate for the loss of 

Cbp/PAG. On the other hand, Xu. et al. reported that raft localization of Csk was greatly 

reduced, but that this did not lead to any detectable functional defects in T cell signaling. A 

recent report showed that siRNA-mediated knockdown of Cbp/PAG enhanced SFK and Ras 

activation (Smida et al., 2007). It has also been shown that Fyn-dependent phosphorylation 

of Cbp/PAG is involved in the induction of anergy (Davidson et al., 2007). Other interaction 

partners of Fyn in T cell signaling are SAP/SLAM (Chan et al., 2003; Latour et al., 2003; 

Davidson et al., 2004), Fyb (Da Silva et al., 1997) and the focal adhesion kinase family 

(Kanazawa et al., 1996). Phosphorylation of Pyk2 links Fyn to cytoskeletal organization, 

cell spreading and migration (Qian et al., 1997) 

3.4.7. Lck and human pathophysiology 
Aberrant expression or regulation of Lck has been associated with several diseases. Some 

patients with systemic lupus erythematosus (SLE) have T cells with decreased levels of Lck 

due to increased ubiquitin-mediated degradation. The specific Lck activity, however, was 

increased, and the T cells displayed augmented apoptosis and lipid raft abnormalities 

(Matache et al., 1999; Matache et al., 2001; Jury et al., 2003).

Patients with common variable immunodeficiency (CVID) or severe combined immuno 

deficiency (SCID) have been reported to have reduced Lck levels (Goldman et al., 1998; 

Sawabe et al., 2001). In both patients it was shown that the lck transcript lacked the entire 

exon 7 resulting in reduced or almost complete loss of Lck expression. Interestingly, JCaM1 

cells exibit the exactly same defect, but the responsible mutation is yet to be found. 

Surprisingly, anti-CD3-induced tyrosine phosphorylation, ERK1/2 phosphorylation and 

calcium mobilization was intact in the SCID-patient, yet CD69 and most proliferative 

responses were reduced. However, the proliferative responses to allo-antigen were intact 

(Goldman et al., 1998) as reported previously (Yamada et al., 1997). Altogether, these 

studies indicate that loss of Lck can result in congenital immunodeficiency and selective 
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CD4 lymphopenia. This separates human T cell development from that of mice, since mice 

deficient in p56lck show a substantial reduction in CD4+/CD8+ thymocytes with the 

development of only a small number of peripheral single positive T cells (Molina et al., 

1992).

Lck is the target of many viral proteins, especially the tyrosine kinase interacting protein Tip 

of Herpesvirus saimiri (HVS), and Nef encoded by the Human immunodeficiency virus 

(HIV). The oncoprotein Tip physically interacts with Lck in HVS transformed cells, and 

augments Lck activity independently of Y394 and/or Y505 phosphorylation (Wiese et al., 

1996; Hartley et al., 1999). Tip induces peripheral T-cell lymphoma in transgenic mice 

(Wehner et al. 2001). Nef contributes to HIV disease pathogenesis by augmenting virus 

replication and disturbing T cell function. Nef binds and inhibits Lck, and MAPK kinase 

activity (Greenway et al., 1996), but simultaneous overexpression of Nef has been shown to 

increase T cell ERK1/2 phosphorylation in a calcium-independent manner (Schrager et al., 

2002). Furthermore, Nef synergizes with PMA in inducing NFAT activation, an effect that 

is independent of Lck (Manninen et al., 2002). According to these data it appears that the 

Ras pathway rather than the calcium pathway is the rate-limiting step in TCR-mediated 

NFAT induction. The suceptibility of T cells to HIV infection has been inversely correlated 

with Lck activity (Yousefi et al., 2003). HIV binds to CD4 through gp120 (Juszczak et al., 

1991), and internalization of gp120 is associated with down-modulation of membrane CD4 

and Lck together with impairment of T cell activation (Cefai et al., 1992). Reduced levels of 

Lck but increased levels of Fyn may play a role in the anergic response observed early 

during HIV infection (Cayota et al., 1994). 

Reduced Lck levels have also been shown in some type 1 diabetic patients. Interestingly, 

both ZAP-70 and PLC 1 recruitment and phosphorylation was relatively normal, despite 

reduced phosphorylation of CD3  (Nervi et al., 2000). Furthermore, T cells from the 

synovial fluid of rheumatoid arthritis patients displayed lower levels of Lck protein, and 

components of the TCR/CD3-complex (Romagnoli et al., 2001). This downregulation 

correlated with hyporesponsiveness of the T cells. Lastly, Lck has also been shown to be 

downregulated in Alzheimer disease, and was identified as a risk gene for this disease 

(Zhong et al., 2005). 
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3.5. CD3 chain ITAMs 
Immunoreceptor tyrosine-based activation motifs (ITAMs) are 

found within the intracellular portions of the CD3 chains, and are 

the principal substrates for Lck in T cell signaling (Barber et al. 

1989; Irving et al., 1993, Iwoshima et al., 1994, van Oers et al., 

1996b). ITAMs have the concensus sequence YXXL/IX(6-

8)YXXL/I (Reth, 1989), and CD3  contains three repititions of 

of this motif, whereas the  ,  and -chains contain only one 

(Reviewed in Pitcher et al., 2003, and Pitcher and van Oers, 

2003). Each doubly phosphorylated ITAM may recruit the 

tandem SH2 (Src homology 2) domains of ZAP-70 (Chan et al., 

1991; Wange et al., 1992; Wange et al., 1993; Iwashima et al., 

1994) (Fig. 3). ZAP-70 is a Syk family tyrosine kinase which is activated through 

phosphorylation by Lck on Y443 (Chan et al., 1995; Kong et al., 1996) and 

autophosphorylation on many sites, most importantly Y319 (Pelosi et al., 1999; Di Bartolo 

et al., 1999; Williams et al., 1999). The main substrate of ZAP-70 is the Linker for 

Activation of T cells (LAT) (Zhang et al., 1998) (see chapter 3.6). Loss of ZAP-70 disrupts 

TCR signaling and T cell development (Negishi et al., 1995; Williams et al., 1998), 

although ZAP-70-independent signaling has also been shown (Shan et al. 2001). 

Figure 3. CD3

In thymocytes and peripheral T cells, ITAMs are constitutively tyrosine phosphorylated on 

some residues (van Oers et al., 1993; van Oers et al.; 1994; Pitcher et al., 2003), and it 

appears that Lck or Fyn may fulfill the function of partly phosphorylating ITAMS in resting 

T cells equally well (Seddon and Zamoyska, 2002). ZAP-70 binds to these phosphorylated 

ITAMs but is not activated. Whether this pool of ZAP-70 transduces low level signals 

necessary for T cell survival, primes T cells for activation, or merely protects the ITAMs 

from other proteins, is currently unknown (reviewed in Zamoyska et al., 2003). 

Mutational analysis has revealed redundancy between various chains of the CD3 complex. 

CD3 /  provides normal T cell functions in the absence of CD3  (Wegener et al., 1992; 

van Oers et al., 1998, Ardouin et al., 1999; van Oers et al., 2000), and TCR signaling is not 

qualitativly affected by crippling of the CD3  ITAM (Sommers et al., 2000). The migration 

of unphosphorylated CD3  is 16 kD, and depending on increasing tyrosine phosphorylation, 

21 and 23 kD forms also appear. The six tyrosine residues in ITAM1-3 are numbered Y1-6 
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counting from the N-terminal membrane proximal part. The kinetics of CD3

phosphorylation has been studied to great extent, with some conflicting findings. It is 

thought that a hierarchic pattern of phosphorylation exists, where phosphorylated ITAM2 

and 3 correspond to p21, whereas full phosphorylation correspons to p23 (Kersh et al., 

1998a; van Oers et al., 2000). Differential signaling occurs from truncated or tyrosine-to-

phenylalanine mutations in CD3  ITAMs, and partially phosphorylated CD3  can inhibit 

(Kersh et al., 1999), variably affect (Chae et al., 2004) or not affect (Ardouin et al., 1999) T 

cell activation. Some reports indicate that proteins such as Grb2, Shc and SOS may be 

recruited to hypophosphorylated ITAMs (Ravichandran et al., 1993; Osman et al., 1995; Nel 

et al., 1995; Labadia et al., 1996; Zenner et al., 1996; Chau and Madrenas 1999). This kind 

of signaling from CD3  may be relevant under certain physiological settings, for example, it 

has been shown that various TCR binding affinities may mediate differential 

phosphorylation of the CD3  chains, leading to anergy in some cases (Sloan-Lancaster et 

al., 1994; Madrenas et al., 1995; Kersh et al., 1998b). Hypophosphorylation of CD3  and 

alternative signaling mechanisms are addressed in paper II. 

3.6. LAT and downstream signaling 
Activated CD3-bound ZAP-70 maintains the 

tyrosine phosphorylation cascade by 

phosphorylating LAT (Zhang et al., 1998; 

Weber et al., 1998) and SLP-76 (Wardenburg 

et al., 1996). LAT is a transmembrane protein 

which concentrates in lipid rafts (Lin et al., 

1999). It contains ten pY residues, where 

Y127, Y132, Y171 Y191 and Y226 (human 

sequence) are the most important (Zhang et 

al., 2000; Sommers et al., 2001; Paz et al., 

2001; Lin and Weiss, 2001). LAT serves as a 

docking site to which a number of adapter and 

signaling molecules bind through SH2 

domains (Grb2, Gads, PLC 1 and PI3K), or 

indirectly via adapters (SLP-76, Vav-1, SOS and Itk) (Zhang et al., 1998; Finco et al., 1998; 

Zhang et al., 1999a; Liu et al., 1999; Shan and Wange, 1999; Zhang et al., 2000; Bunnell et 

Figure 4. LAT signaling 
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al., 2000;  Ching et al., 2000; Paz et al., 2001; Lin and Weiss, 2001) (See Fig. 4). LAT is 

essential for TCR signaling as LAT-deficient mice have a block in thymocyte development 

at the immature stage and completely lack mature peripheral T cells (Finco et al., 1998; 

Zhang et al., 1999). SLP-76 is of particular importance for the LAT signaling scaffold. It 

binds LAT through Gads and is phosphorylated by ZAP-70 (Wardenburg et al., 1996). 

Phosphorylated SLP-76 provides binding for the Tec family kinase Itk which is imperative 

for full PLC 1 activation (Yablonski et al., 1998; Irvin et al., 2000; Bogin et al., 2007). As 

such, from SLP-76 and Itk knockout mice have similar phenotypes, and display disturbed 

PLC 1 activity, Ca2+ mobilization and IL-2 production (Liao and Littman, 1995; Clements 

et al., 1998; Pivniouk et al., 1998). Fully activated PLC 1 (pY783) catalyses the formation 

of IP3 and DAG (Downward et al., 1990), where the former leads to intracellular Ca2+

influx, and the latter recruits conventional and novel PKCs and RasGRP. RasGRP and SOS 

are guanine nucleotide exchange factors (GEFs), and catalyse the binding of GTP on the 

small G protein Ras. RasGRP has been shown to be the most important GEF in T cells 

(Ebinu et al., 2000; Priatel et al., 2002; Roose et al., 2005), although Grb2-SOS has also 

been implicated (Ravichandran et al., 1993), and especially upon partial agonist stimulation 

(Chau and Madrenas, 1999). Recent data indicate interplay between SOS1 and RasGRP in T 

cell Ras activation (Roose et al., 2007). Ras-GTP activates Raf-1, which phoshorylates 

MEK, leading to ERK phosphorylation. Phosphorylated ERK in turn activates c-Fos and c-

Jun which constitute the AP-1 transcription factor dimer (Su and Karin, 1996). The novel 

type calcium-independent PKC  is critical in the activation of NF B in T cells (Sun et al., 

2000). PKC  is unique in its ability to localize to the supramolecular activation clusters of 

the TCR/CD3 complex (Monks et al., 1997; Monks et al., 1998). where it is phosphorylated 

and activated by Lck (Liu et al., 2000). Once active, PKC  activates IkB kinase (IKK) 

(Coudronniere et al., 2000, Lin et al., 2000), through the phosphorylation of CARMA1 

(Sommer et al., 2005; Matsumoto et al., 2005) and recruitment of the Bcl10–MALT1 

complex. Activated IKK phosphorylates I B (Brown et al., 1995; Traenckner et al., 1995), 

marking it for ubiquitination and proteosomal degradation (Chen et al., 1995; Scherer et al., 

1995). When released from inhibition by  I B, the transcription factor NF B is free to 

translocate into the nucleus (May and Ghosh, 1998). On the other hand, the transcription 

factor NFAT translocates to the nucleus upon dephosphorylation by Calcineurin, a 

phosphatase activated by Ca2+ bound to calmodulin (Jain et al., 1993; Aramburu et al. 1998; 

Peng et al. 2001). NFAT, AP-1 and NF B promote the transcription of a number of genes, 

most importantly IL-2, a cytokine which promotes long term proliferation of activated T 
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cells (Zhang and Nabel, 1994). Signal transduction from the TCR and CD28 also lead to 

cytoskeletal rearrangements, involving proteins such as Vav1, Cdc42, Rac-1 and WASP 

(Stowers et al., 1995; Holsinger et al., 1998; Sedwick et al., 1999; Snapper and Rosen, 

1999). These rearrangements are important for integrin signaling and formation of the 

immunological synapse.

3.7. Lck and inhibition of T cell signaling 

Figure 5. Negative regulation  of 
TCR signaling through Lck 

Interestingly, Lck has also been linked to negative 

regulation of TCR signaling (fig. 5). Some early 

reports suggested that the kinase function of Lck 

was not required for CD4-dependent T cell 

activation (Collins and Burakoff, 1993) or that 

deletion of the kinase domain even lead to 

hyperactivity (Xu and Littman, 1993). Engagement 

of the TCR with antagonists increased the activity 

of CD4-associated Lck without leading to T cell 

activation (Racioppi et al., 1996; Haughn et al., 

1992). Such T cells become anergic, and this indicates a negative role for Lck. Interestingly, 

it has been shown that triggering of the T cell antigen receptor by superantigens, such as 

staphylococcal enterotoxins, occurs independently of Lck (Yamasaki et al., 1997). In fact, 

JCaM1 cells lacking Lck, or human T cells pretreated with the PP2, are strongly 

hyperresponsive to SEE stimulation (Criado and Madrenas, 2004). This reveals a negative 

contribution of Lck to T cell activation, an effect that is dependent on its kinase activity. It 

was recently shown that superantigen triggering of the TCR activated  PLC  in a G 11-

dependent manner, and this resulted in robust ERK1/2 activation in Lck-deficient cells 

(Bueno et al., 2006). Other examples of Lck-independent signaling and negative regulation 

can also be found in the literature. For example, inhibition of Lck by antisense RNA in Th2 

cells leads to elevated levels of lymphokine mRNAs, including IL-4, IL-5, and IL-10, and 

these cells were capable of secreting IL-4 upon activation through the TCR (Al-Ramadi et 

al., 1996). This occured despite abolished phosphorylation of CD3  and ZAP-70 and 

defective Ca2+ mobilization to antigenic stimuli. These data indicate that Lck-independent 

pathways of gene induction exist, a concept which we explored further in papers I and II. 

The negative role implicated for Lck is emphasized by its involvement in ligand-induced 
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TCR internalization (Luton et al., 1994; D’Oro et al., 1997; Lee et al., 1997; Salio et al., 

1997) and activation-induced cell death (Yu et al., 2004).  These data suggest that Lck may 

be important for regulating the availability of TCR and the magnitude of T cell signaling. 

Apoptotic pathways are also dependent on Lck (see chapter 3.7.5.). In paper III we 

investigated TCR turnover in T cells with low levels of Lck. 

3.7.1. Negative regulators of TCR signaling 
Inhibitory signaling is an important aspect of TCR signaling. In resting cells, inhibitory 

mechanisms keep the cell at rest, preventing aberrant immune activation. When the TCR of 

primary T cells is engaged without the secondary CD28 signal, negative feedback 

mechanisms trigger pathways rendering the cell anergic. T cells undergoing thymic 

education become apoptotic if triggered by autoantigens (clonal deletion). T cells react 

differently depending on the strength and duration of TCR engangement, or to paracrine 

cytokines and cell-cell contacts with other immune cells. A balance of activating and 

inhibiting pathways are important for this fine tuning of T cell responses. The tyrosine 

phosphorylation cascade outlined in chapters 3.3-3.6 reaches its peak after about 2-3 

minutes of TCR/CD3 stimulation. Likewise, the MAP kinases ERK1/2 reach their 

maximum phoshorylation within 3 minutes. After this peak most phosphorylation levels 

decline rapidly through the action of phosphatases and protein degradation, and are down to 

basal after about 30 minutes of TCR stimulation. Failures in these inhibitory mechanisms 

may lead to aberrant T cell responses, facilitating autoimmune diseases or cancer 

developement. 

3.7.2. SHP-1 
The function of the tyrosine phosphatase SHP-1 is an instructive example of negative T cell 

signaling (reviewed in Zhang J. et al., 2000). It is expressed at high levels in hematopoietic 

cells of all lineages, and altered expression and/or structure of SHP-1 plays a role in the 

progress of many forms of leukemia. Thymocytes from moth-eaten mice with reduced 

levels of SHP-1 show increased activation of Lck and Fyn, and develop a severe 

autoimmune and immunodeficiency syndrome with hyperactive T cells (Lorenz et al., 

1996). SHP-1 is activated by engagement of its tandem SH2 domains by phosphotyrosines 

(Pei et al., 1994), and Lck-mediated phosphorylation of Y536 and Y564 (Lorentz et al., 

1994, Frank et al., 2004). SHP-1 in turn serves to deactivate Lck by dephosphorylating 
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Y394 (Chiang et al., 2001), and also dephosphorylates other effectors of T cell signaling

such as ZAP-70 (Plas et al., 1996, Brockdorff et al., 1999), Vav1 (Pani et al., 1996; Kon-

Kozlowski et al., 1996),  SLP-76 (Binstadt et al., 1998) and CD3  (Sozio et al. 2004). 

Furthermore, SHP-1 participates in fine tuning of TCR signals, as demonstrated by low 

affinity ligands which trigger binding of the SHP-1 to Lck. This negative feedback is 

circumvented by stronger ligands through phosphorylation of S59 in Lck in an ERK-

dependent manner, which prevents SHP-1 binding and inhibition (Stefanova et al., 2003). 

The impact of Lck-kd on SHP-1 activity was addressed in Paper I. 

3.7.3. Ras-GAP 
The Ras GTPase p120 Ras-GAP is a negative regulator of Ras signaling acting by 

accelerating the hydrolysis of Ras-GTP to Ras-GDP. Ras-GAP is thought to be activated by 

membrane recruitment and tyrosine phosphorylation on several residues, most importantly 

Y460 (Liu and Pawson, 1991; Amrein et al., 1992, Park et al., 1993). There has been some 

controversy regarding the effects of Ras-GAP phosphorylation by Lck (Amrein et al., 1994, 

Giglione et al., 2001). Recently it was shown that Ras-GAP interacts with Cbp/PAG in 

stimulated T cells, suppressing Ras activation (Smida et al., 2007). This effect was shown to 

be independent of Csk binding. The phosphorylation and recruitment of Ras-GAP in the 

context of Lck knockdown was investigated in Paper II. 

3.7.4. Cbl 
The E3 ubiquitin ligase Cbl functions as a negative regulator of many signaling pathways. 

Cbl exists in two main isoforms, c-Cbl and Cbl-b, with a high level of sequence 

conservation. c-Cbl is activated by tyrosine phosphorylation on several residues, most 

importantly Y700, Y731 and Y774 (Hunter et al., 1999; Donovan et al., 1994; Feshchenko 

et al., 1998; Kassenbrock and Anderson, 2004). These residues are not, however, substrates 

of Lck or ZAP-70, but of Fyn and Syk (Hunter et al., 1999; Feshchenko et al., 1998; 

Tsygankov et al., 1996; Deckert et al., 1998), which are activated directly or indirectly by 

Lck (Filipp et al., 2003). Engagement of the TCR leads to activation of T cells, but also 

internalization and lysosomal degradation of the receptor complex (Valitutti et al., 1997). 

This serves to terminate signaling, and this process is dependent on the tyrosine kinase 

activity of Lck (Luton et al., 1994; D’Oro et al., 1997) and ubiquitination by c-Cbl (Hou et 

al., 1994; Cenciarelli et al., 1996; Wang et al., 2001, Naramura et al., 2002). Ubiquitination 
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marks active enzymes and receptors for degradation (reviewed in Thien and Langdon, 2005 

and Swaminathan and Tsygankov, 2006). Cbl-dependent ubiquitination requires interaction 

with the target protein. For example, c-Cbl and Lck interact through binding of proline-rich 

seqences in Cbl with the SH3 domain in Lck. The SH2 domain of Lck also binds to 

phosphorylated sites in Cbl, and the Cbl TKB domain binds to the activation loop 

phosphorylation site in Lck after stimulation of T cells (Rao et al., 2002). Other notable 

targets for c-Cbl-mediated ubiquitination are Vav (Miura-Shimura et al., 2003), Fyn 

(Yokouchi et al., 2001; Andoniou et al., 2000; Hunter et al., 1999), ZAP-70 (Lupher et al., 

1996), as well as the already mentioned TCR/CD3-complex. Consistent with the negative 

regulation assigned to the Cbl family of proteins, T cells from c-Cbl-/- and Cbl-b-/- mice were 

hyperactive upon TCR engagement, although some biochemical distinctions between the 

phenotypes existed (Murphy et al., 1998; Naramura et al., 1998; Thien et al., 1998; 

Bachmaier et al., 2000; Chiang et al., 2000). T cells from double-knockout (dKO) mice 

lacking both c-Cbl and Cbl-b, failed to modulate surface TCR after ligand engagement, 

resulting in sustained TCR signaling and ERK1/2 phosphorylation. However, signaling 

through the major TCR pathways were not increased (Naramura et al., 2002). The impact of 

reduced Lck levels on c-Cbl activity and TCR/CD3 turnover was investigated further in 

Paper III. 

3.7.5. Bak 
Bak is a pro-apoptotic member of the Bcl-2 family of proteins, and participates in the 

mitochondrial pathway of apoptosis. JCaM1 cells were shown to completely lack Bak, an 

effect that was reversed upon reconstitution with Lck (Samraj et al., 2006). This and other 

studies have shown that T cells lacking Lck are resistant to apoptosis induced by many 

kinds of stimuli (Di Somma et al., 1995; Oyaizu et al., 1995; Belka et al., 2003; Hur et al., 

2004; Gruber et al., 2004). Interestingly, the effect of Lck on Bak transcription was 

independent of the kinase domain of Lck and classical mediators of T-cell signaling such as 

ZAP-70 and LAT (Samraj et al., 2006). Most research regarding Lck has focused on its 

capacity as a tyrosine kinase, but these data indicate that Lck also participates in other kinds 

of signaling, where the presence of Lck is required for the transcription of other proteins. 
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3.8. Heterotrimeric G proteins and T cell signaling 
Heterotrimeric G proteins consist of an -subunit that binds and hydrolyzes GTP, and - and 

-subunits that form an undissociable -complex. Coupling between an activated G-

protein-coupled receptor (GPCR) and its G protein promotes the exchange of GDP for GTP 

on the -subunit. This allows the -subunit and the -complex to dissociate and modulate 

the activity of a variety of effectors such as ion channels and enzymes (reviewed in 

Offermanns, 2000). T cells express most G -subunits of the G s, G i, G q/o and G 12

families (Offermanns et al., 2001), and heterotrimeric G proteins have been implicated in T 

cell signaling in several reports (Cenciarelli et al., 1992; Sancho  et al., 1993; Stanners et al., 

1995; Zhou et al., 1998; Tsoukas et al., 2000; Lippert et al., 2000). For example, it has been 

shown that activation of primary T cells lead to recruitment of G s and G q to lipid rafts 

(Abrahamsen et al., 2004), and crosstalk between heterotrimeric G-proteins and different 

tyrosine kinases has been reported in several cell types (Luttrell et al., 1996; Luttrell et al., 

1997; Luttrel et al., 1999; Luttrell et al., 2004). Src can be activated directly by G s or G i

through binding binding of the G protein to the catalytic domain of Src (Ma et al., 2000), 

and Lck can also be regulated positively by the same G s-dependent mechanism (Gu et al., 

2000). Cross-talk between the G q and Lck has been reported (Inngjerdingen et al. et al., 

2002). Transfection with a function deficient mutant of G q/11 impared phosphorylation of 

CD3  and ZAP-70 (Stanners et al. 1995). A recent report shows that JCaM1 cells lacking 

Lck may be activated through a G 11-dependent mechanism, mediated through PLC 1

activation (Bueno et al., 2006). The involvement of G proteins in T cell signaling and the 

interplay between G proteins and Lck was explored in paper IV. 
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4. Aims of the present study 
In this thesis we wanted to investigate the molecular mechanisms responsible for regulation 

of TCR-induced signaling mediated through the Src kinases Lck and Fyn, and the 

heterotrimeric G proteins G s, G i-2 and G q.

The main objectives of the present study were to: 

1.   Generate siRNAs for the SFKs Lck and Fyn, as well as the heterotrimeric G proteins 

G s, G i-2 and G q, and validate these siRNAs with respect to potency and specificity in 

both Jurkat and primary human T cells. 

2.   Explore the impact of Lck knockdown in T cells, and hereunder: 

a) Characterize the observed paradoxical hyperresponsive Lck-kd phenotype using 

standard biochemical assays. 

b) Investigate possible alternative mechanisms of T cell activation. 

c) Study the involvement of Lck in negative T cell signaling. 

3.   Investigate the involvement of heterotrimeric G proteins in T cell signaling, with 

particular emphasis on their possible crosstalk with Lck. 
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5. Synopsis of papers 
Paper I: 

Short-interfering RNA-mediated Lck knockdown results in augmented downstream T 

cell responses. Here, we designed, synthesized and validated four siRNAs and one control 

siRNA for Lck and Fyn respectively. We obtained highly efficient knockdown in both 

Jurkat and primary human T cells using low doses of siRNA (100 nM). By using other 

siRNAs we controlled for off-target effects. As expected, proximal signaling was reduced 

with Lck-kd as determined by overall tyrosine phosphorylation, CD3  phosphorylation and 

Ca2+ mobilization. Surprisingly, we observed augmented activation of NFAT-AP-1 and 

sustained phosphorylation of ERK1/2 in Jurkat cells, and increased secretion of IL-2 in 

primary T cells. We found that the phosphatase activity of SHP-1 was reduced in Lck-kd 

cells, and we speculated whether alternative mechanisms of activation could be in operation, 

possible mediated through ERK as we observed sustained phosphorylation of this MAPK. 

Fyn did not seem to be responsible for this mechanism since co-knockdown of Fyn did not 

reverse hyperresponsiveness in Lck-kd cells. 

Paper II: 

Hypophosphorylated TCR/CD3-zeta signals through a Grb2-SOS1-Ras pathway in 

Lck knockdown cells. In this study we presented an alternative mechanism of TCR 

signaling in T cells with Lck-kd. We reported the recruitment of Grb2-SOS1 to CD3  after 

prolonged stimulation of Lck-kd cells. In line with this, Ras, Raf-1 and ERK1/2 displayed 

sustained activation. In a solid phase assay, Grb2 bound to incompletely phosphorylated 

ITAM1 with the pY-Y configuration, but was competed by ZAP-70 with respect to binding 

to the doubly phosphorylated pY-pY conformation of the ITAMs. We also found that the 

phosphorylation of Ras-GAP was strongly suppressed in Lck knockdown cells, indicating 

that a Ras negative feedback mechanism is dependent on Lck. 

Paper III: 

Normal TCR/CD3 endocytosis but reduced CD3-zeta degradation despite diminished 

Cbl phosphorylation in T cells with low Lck levels. In this report we investigated further 

how low levels of Lck may result in aberrant T cell signaling. c-Cbl phosphorylation was 

strongly reduced in T cells with Lck knockdown, as was ubiquitination of CD3 .

Surprisingly, endocytosis of the T cell receptor complex occured normally, but confocal 

microscopy showed that CD3  containing vesicles were not targeted for lysosomal 
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degradation to the same degree as in control cells. This led to reduced degradation of CD3 ,

and we hypothesized that prolonged cytosolic subsistence of the T cell receptor complex 

could result in extended signaling in T cells with Lck knockdown. 

Paper IV: 

G q regulates TCR-mediated immune response in T cells through an Lck-dependent 

pathway. In this paper we showed that G s and and G q, but not G i-2 were activated 

upon anti-CD3 stimulation, and we targeted G s, G i-2 and G q with siRNA-mediated 

knockdown to examine their roles in TCR sigaling. G s-kd and G i-2-kd did not result in 

any significant changes, but G q-kd reduced Lck activity significantly. Despite this, NFAT-

AP-1 and ERK1/2 phosphorylation were augmented. Similarly, primary T cells from G q-/-

mice displayed reduced proximal signaling, but augmented secretion of IL-2, IL-5, IL-12 

and TNF- . The hyperresponsivenss in G q-kd cells was reversible when cells were 

transfected with constitutively active Lck Y505F or pretreated with PP2. We speculated that 

G q has a key regulatory role in T cell signaling acting at the level of Lck. 
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6. Discussion 

6.1. The Lck knockdown phenotype 

6.1.1. Low levels of Lck and alternative signaling mechanisms 
Recruitment of other proteins than ZAP-70 to hypophosphorylated CD3  ITAMs has been 

suggested previously, but not in the context of Lck knockdown. (Ravichandran et al., 1993, 

Osman et al., 1995, Nel et al., 1995, Labadia et al., 1996, Zenner et al., 1996, Chau et al., 

1999). Chau and Madrenas (1999) proposed that partial agonists may trigger Grb2-SOS 

binding to hypophosphorylated CD3  in the absence of LAT phosphorylation. Similarly, we 

propose that low levels of Lck may give rise to hyperresponsive signaling through CD3 -

Grb2-SOS1 when negative feedback through SHP-1, Ras-GAP and c-Cbl is displaced 

(Paper I-III). An important question is why T cells treated with pharmacological inhibitors 

to Lck such as PP2, or cells overexpressing Csk, do not display a similar hyperactivity in 

response to anti-CD3 ligation. Such treatments also reduce the kinase activity of Lck, but 

they do not result in an hyperactive response as described for Lck-kd.

It is becoming clear that Lck does not function exclusively as a tyrosine kinase. Lck is also 

an important adapter protein, and participates in signaling pathways not directly related to 

the TCR. It was recently reported that the transcriptional activation of the pro-apoptotic 

protein Bak was dependent on Lck (Samraj et al., 2006). The authors concluded that this 

effect was independent of the kinase domain of Lck, PP2 treatment, and classical mediators 

of T-cell signaling such as ZAP-70 and LAT. How Lck confers its influence on Bak 

expression remains undetermined. In another report, JCaM1 cells expressing a mutated form 

of Lck lacking the SH3 domain, failed to activate ERK1/2 despite normal TCR  chain 

phosphorylation, ZAP-70 recruitment, and ZAP-70 activation (Denny et al., 1999). In 

contrast, we show that ERK1/2 becomes activated despite reduced TCR  phosphorylation 

and ZAP-70 activation (Papers I and II). These results suggest that Lck participates in more 

than one signaling pathway, and that removal of Lck, or parts of Lck, may result in different 

outcomes than mere inhibition of the protein. This notion is of interest in T cells since most 

of the research conducted on Lck has focused on its capacity as a tyrosine kinase. The 

siRNA-mediated Lck-kd phenotype we have investigated is paradoxical in this respect, and 

alludes to alternative or complementary signaling mechanisms. Whether or not such 

responses are aberrant or physiologically relevant is not known. Acute knockdown of a 

protein is unlikely to occur in a physiological setting. T cells with reduced levels of Lck 
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have been reported from humans in the literature, but these patients have endured long 

lasting lack of Lck activity. The pathologies implicated ranged from immunodeficiency 

(CVID, SCID) to autoimmunity (lupus, diabetes, reumatoid arthritis). Common for most, 

but not all of these cases, was reduced proximal T cell signaling. In some cases, various 

forms of activity was observed, although not hyperresponsiveness as we report. It is 

therefore possible that siRNA-mediated knockdown of Lck results in an experimentally 

induced artificial phenotype. What is interesting, however, is that we have detected an 

alternative signaling mechanism, which may be important for signaling in T cells in other 

contexts. In the study published by Lovatt et al., low levels of Lck produced the same 

degree of MEK and ERK1/2 phosphorylation as Lck-deficient cells. This effect was shown 

to be dependent on Fyn, and they speculated that SOS could be involved in producing Ras 

activation (Lovatt et al., 2006). Clearly, such a notion is interesting in respect to the data 

presented in Paper II. In the classical paradigm of T cell activation, Lck is the exclusive 

conveyer of signal transmission mediated through the TCR. In this framework, Lck is 

activated by TCR engagement and its primary function is to phosphorylate the TCR/CD3-

complex. Genetic, mutational and pharmacological data assembled from fifteen years of 

research indicate that Lck plays an important role, but it is not indispensable for T cell 

signaling, and Lck also participates in negative regulation. Lck-independent signaling 

mechanisms have been shown especially for partial agonist effects (Yamasaki et al., 1997; 

Chau and Madrenas, 1999; Criado and Madrenas, 2004; Bueno et al., 2006). It has also been 

shown that defective Ca2+ signaling blocks NFAT1 translocation, while selectively 

activating NFAT2 in anergic T cells (Srinivasan and Frauwirth, 2007). The field now 

increasingly acknowledges the non-linear dynamics of cellular systems, with increasing 

focus on differential signaling mechanisms, and the more complex role of signal transducers 

such as Lck. 

6.1.2. Lck and apoptosis 
Since Lck has been implicated in apoptosis and activation induced cell death (AICD), we 

hypothesized that reduced apoptosis and/or AICD, could contribute to sustained signaling i 

T cells with low levels of Lck. However, during the course of the experiments conducted in 

Jurkat TAg cells (6 h for the NFAT-AP-1-luciferase assay), no induction of  apoptosis or 

reduction of cell viability was observed after OKT3 stimulation, even with low or high 

dosages (TM, unpublished observations). This was surprising as we found Bak expression 
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to be severely affected by Lck 

knockdown (Fig. 6), in agreement with 

the report by Samraj et al. (2006). 

Activation of Caspase-3 was even 

reduced upon OKT3-stimulation in both 

control and Lck-kd cells, and there was no 

difference in Caspase-3 activation in the 

positive control (FasL treatment) (TM, 

unpublished observations). 

Figure 6. Bak expression in Lck-kd cells 

6.1.3. Endocytosis of TCR/CD3 
As reported in Paper III, we observed no difference in endocytosis of engaged TCR/CD3-

complex in control and Lck-kd cells. This was surprising as previous reports had indicated 

this process to depend on Lck and/or Cbl-mediated ubiquitination for this process to occur 

(Luton et al., 1994, D’Oro et al., 1997, Hou et al., 1994, Cenciarelli et al., 1996, Wang et al., 

2001, Naramura et al., 2002). Seemingly, endocytosis can take place with very low Lck 

and/or Cbl activity, or other mechanisms are involved. The latter scenario seems plausible 

as internalization of the TCR/CD3-complex was completely unaffected by the loss of Lck. 

However, we did observe a significant reduction in lysosomal sorting of CD3-containing 

vesicles in the Lck-kd cells. This suggests that Cbl-mediated ubiquitinylation is required for 

this process, but is dispensable for endocytosis of the TCR. Similar data have been reported 

for the EGF receptor (Duan et al., 2003, Padrón et al., 2007).  

6.2. The involvement of heterotrimeric G proteins in T cell signaling 
As shown in paper IV, triggering of the TCR leads to GTP-binding and thus activation of 

G q. The mechanism whereby this occurs is unknown, but probably involves the 

recruitment of a GEF for heterotrimeric G proteins to the membrane, or cross-talk between 

the TCR and a GPCR, perhaps CXCR4 (Peacock and Jirik 1999; Kumar et al., 2006; 

Patrussi et al., 2007). Knockdown of G q inhibited Lck autophosphorylation, whereas 

overexpression of a constitutively active mutant of G q augmented Lck activity. These data 

alludes to some kind of interplay beween Lck and G q, which has been shown previously 

for G s and Lck (Gu et al. 2000). Surprisingly, G q-kd and G q KO augmented 

downstream T cell responses, despite reduced proximal signaling. This effect was reversed 
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to basal levels by PP2, and to the level of stimulated control cells by co-transfection with 

Lck Y505F. This indicates that both reduction and overexpression of G q may produce 

Lck-dependent hyperactivity. Furthermore, since Lck Y505 reduced the response in G q-kd

cells, but augmented signaling in unstimulated cells, it is likely that Lck contributes both 

negatively and positively to T cell activation. We postulate that TCR stimulation activates 

G q which augments Lck activity, whereas G q-kd inhibits Lck activity and results in 

signaling through other pathways. 

6.3. Methodological considerations 

6.3.1. siRNA-mediated RNAi 
A publication in 1990 triggered the discussion of co-suppression of endogenous genes by 

transgenes: Overexpression of chalcone synthase, which is responsible for violet coloration 

in petunias, rendered the petunia flowers white (Napoli et al., 1990). dsRNA-mediated gene 

silencing of target mRNA was documented in C.elegans eight years later (Fire et al., 1998), 

a work for which the principal investigators Andrew Fire and Craig Mello received the 

Nobel Prize in 2006. This method has since been employed with success in mammalian 

cells (Elbashir et al., 2001), and T lymphocytes (McManus et al., 2002a, McManus et al., 

2002b), and is now routinely used in biomedical research. Per october 2007, a PubMed 

search returns more than 12.800 hits for “siRNA”. 

The siRNAs used in this thesis are 21-nt duplex oligomers with a 2-nt overhang on each 

end. They were designed and synthesized in-house based on an in-house developed 

algorithm by Amarzguioui et al., (2004). The utility of the RNAi approach depends on 

target specificity and side effects of the treatment. For example, indifferent design or 

secondary RNA structures may cause off-target down regulation of other genes (Bridge et 

al., 2003). siRNAs utilize a molecular machinery already present in the cell, that probably 

evolved to combat RNA viruses. The complete effects of this system, appart from mRNA 

clevage, are still not known in full detail. When introduced into mammalian cells, long 

dsRNAs are fragmented by the protein Dicer. The shorter pieces are used as templates by 

RNA induced silencing complex (RISC) to cleave any complementary RNA sequence in the 

cell, thus disrupting protein translation. However, virus-infected cells may also trigger a 

PKR-interferon response when exposed to dsRNA. This shuts down all protein production 

and induces the production of INF , a cytokine which activates cytotoxic immune cells. 
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This classical anti-viral defence is instigated to avoid transcription of viral proteins and to 

ensure elimination of infected cells. siRNAs are thought to be short enough to evade the 

PKR-interferone effects in vertebrates, but 21-nt siRNAs have been shown to activate these 

mechanisms in a concentration-dependent manner in vitro (Sledz et al., 2003). Such 

problems must be considered whenever using siRNAs, and they must be controlled for as 

thoroughly as possible in biomedical research. The siRNAs used in this thesis were 

examined and validated by the following means: 

1.) All siRNA seqences were blasted towards the human genome to avoid overlap 

with other proteins. 

2.) Control siRNAs were designed for all siRNAs employed. The control siRNAs 

contain a triple G/C switch, and were tested with standard biochemical assays 

(monitoring of NFAT-AP-1 reporter assay, and ERK1/2 phosphorylation), against 

mock transfected cells and another control siRNA (Csk2033M3), to ensure that they 

did not significantly influenced signaling. 

3.) Knockdown cells were compared to control transfected cells in all experiments, 

thus ensuring that introduction of siRNAs per se does not generate unwanted side 

effects.

4.) Dosage and incubation time were optimized for each siRNA to ensure minimum 

RNA load in each cell. For Lck232 and Fyn1059, 100 nM of siRNA and 48 hours of 

incubation post transfection was found to produce optimal knockdown. For 

knockdown of G-proteins, 400 nM siRNA was used. Compared to other studies, both 

100 nM and 400 nM are low (Peter et al., 2007) when taking into account 

transfection efficiency in electroporation and nucleofection used on T cells. This 

indicates high potency of the designed siRNAs.

5.) We monitored several other proteins to verify that knockdown was specific. For 

Lck-kd, the expression of Fyn, Csk, PKC , PLC 1, LAT, FAK and Pyk2 was not 

disturbed in siRNA concentrations up to 1500 nM, which was the maximum tested. 

6.) For Lck-kd and G q-kd, another siRNA was used to reproduce the main findings. 

No difference in results between the different siRNAs was found, thus minimizing 

the risk of observations being influenced by off-target effects due to secondary 

structures.

7.) For Lck-kd we also performed a selection experiment. Cells were co-transfected 

with a surface marker, and positive cells were selected from control and Lck 

knockdown populations for NFAT-AP-1 luciferase reporter assays. Selected cells 
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were compared to control and negatively selected cells, but no difference in relative 

signaling between Lck knockdown and control cells was observed. As expected, the 

absolute luciferase numbers were higher in the selected population as they contained 

more NFAT-AP-1 cDNA. However, since transfection with siRNAs are about 3-fold 

more efficient than cDNA transfections, and knockdown efficiency is so high, the 

selected cells behaved essentially as the whole cell population, and indeed, the 

knockdown of Lck was similar between the two groups (Paper I). 

8.) We also transfected cells and monitored them for several days. The 

hyperresponsive effect seen in Lck-kd cells was induced upon protein knockdown 

and was completely reversible when protein levels returned to normal, 

approximately 7-9 days post-transfection (Paper III). 

Based on these assays, we propose that the siRNAs used in our studies are properly 

validated, and that the results obtained are primarily due to knockdown of specific proteins, 

not unwanted side effects. Given these premises, siRNA-induced gene silencing have many 

advantages over gene knockout by homologous recombination. Firstly, it is a faster and 

cheaper method, and one can relatively easily knock down more than one protein 

simulatneously. Secondly, the method gives acute knockdown in mature human cells. The 

last point is important as it opposes to knockout animals who may suffer embryonic lethality 

or long term defects from their knockouts. For example, compensatory mechanisms may 

develop over time. The siRNAs used in this thesis have provided potent knockdown 

consistently, and the cells could be used in experiments just 48 h after transfection.  

   This does not preclude that other problems might arise with siRNA induced gene 

silencing. An important factor is that ranges of knockdown are obtained. Since we operated 

with knockdown efficiencies close to 100% this factor is minimized, but it is still possible to 

envision the potential problem: In principle, if western blotting of whole cell lysates show 

90% knockdown of a protein, one can not be sure whether 100% of the cells have 90% 

protein knockdown, or 90% of the cells have 100% knockdown. The most plausible 

scenario is a range of knockdowns ranging from 0% in untransfected cells and close to 

100% in cells with high transfection efficiency. Most biochemical assays are conducted on 

whole cell populations, and effects from certain levels of knockdown may dominate the 

final result. For example, it is possible that certain ranges of Lck knockdown produce 

hyperactive responses, while untransfected cells behave as normal cells, and some cells with 
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very high knockdown are nonresponsive. The end result may indicate augmented signaling, 

even though this is not true for all the cells in the experiment.  

6.3.2. The Jurkat cell model 
In immunology, the Jurkat T cell line (Weiss et al.,  1984) has been used along side other T 

cell lines and primary T cells from mice and humans, as model systems for investigation of 

T cell signaling. A large body of research using both Jurkat cell lines and primary T cells, 

has demonstrated the crucial role of Lck in T cell development and TCR signaling. It is 

therefore surprising to note that Jurkat TAg T cells with siRNA mediated Lck knockdown 

display hyperresponsiveness.  Jurkat TAg T cells are Jurkat E6.1 cells stably transfected 

with Simian virus 40 (SV40) large T antigen (TAg). The complete nature of  SV40 

oncogenic cellular transformation is not completely understood, but it involves the 

manipulation of tumor suppressors and cell cycle regulatory proteins such as the 

retinoblastoma family of proteins, p53 and the transcriptional co-activators p300 and CBP 

(reviewed in Ali et al., 2001). Jurkat TAg and E6.1 cells are thought of as identical in regard 

to TCR signaling characteristics, but TAg cells are more viable and easier to transfect. As a 

control, knockdown of Lck was conducted in Jurkat TAg and E6.1 cells in parallell, and 

NFAT-AP-1 activation was monitored. Surprisingly, Jurkat E6.1 Lck-kd cells were 

completely non-responsive to anti-CD3 ligation, wheras Jurkat TAg Lck-kd cells were 

hyperresponsive (Fig. 7). These conflicting data are not unique to Jurkat cells. A similar 

scenario was reported for HEK293 cells by Lefkowitz et al. in 2002, in which the Ptx-

sensitivity to -adrenergic ERK1/2 activation was 

shown to vary from 0 to 100% in cell lines 

obtained from various sources (Lefkowitz et al. 

2002). How is it possible that Jurkat TAg cells 

and Jurkat E6.1 cells with Lck-kd give rise to 

completely different phenotypes? Based on data 

from primary human T cells where observations 

are similar to those in obtained in Jurkat TAg we 

have continued to investigate Lck knockdown in 

Jurkat TAg cells, but only reproduction of these 

results by other groups can validate our 

conclusions. Cell lines may accumulate 
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differences over time, and batches of cells may vary from laboratory to laboratory. We have 

reproduced the results from Jurkat TAg cells with other sources to rule out specific 

disorders with our batch. Relative to other cell types, the Jurkat TAg and E6.1 cells are very 

similar, and the two cell lines have been used side by side in experiments for many years. 

This discrepancy warrants a discussion regarding the validity of cell lines, not only in T cell 

signaling, but also in experimental research generally. This also illustrates the necessity of 

validating observations from cell lines in primary human cells or mouse models. We have 

used primary human T cells in Papers I and II, and mouse T cells from knockout mice in 

Paper IV.

6.4. Future perspectives 
Many interesting questions were raised during the work on this thesis, and further 

investigation of complementary or alternative signaling mechanisms in T cells is of interest. 

It is becoming clear that the strictly linear signaling concept of the Lck-CD3-ZAP70-LAT 

pathway is an oversimplification. Various ligand affinities and durations of TCR, CD3, CD4 

and CD28 engagements, may produce different kinds of signaling. Within the Lck 

knockdown model, it would be interesting to monitor more closely differences in activation 

patterns for various of Lck protein levels. For example, it is possible to transfect T cells with 

siRNAs, withdraw cells after various periods of incubation, and analyse the status of many 

phosphoproteins by flow cytometry. By doing this, changes in signaling depending on 

reducing or increasing amounts of Lck can be observed with higher fidelity. 

Furthermore, since the expression of Bak is dependent on the presence of Lck, it would be 

interesting to perform microarray analysis of Lck-kd cells to monitor whether other proteins 

are affected. If other proteins are also regulated, it may bring new insight to the paradoxical 

hyperresponsive signaling we have observed in Lck-kd cells. The mechanism by which Lck 

controls the promoter activity and expression of other proteins is also of importance, since 

this opens up new a aspect of Lck-mediated signaling. 

In Paper III we reported that endocytosis of the TCR/CD3-complex occured normally 

despite reduced Lck and Cbl activity. Seemingly, internalization of the receptor was not 

dependent on Lck/Cbl, or very low levels of activity from these proteins was sufficient for 

this process to occur. Furthermore, even though reduced, colocalization of CD3-containing 
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vesicles with lysosomes was not completely abolished in Lck-kd cells, indicating that 

vesicles can merge with lysosomes independently of ubiquitination. Further investigation of 

the mechanism by which TCR/CD3 is endocytosed, and how these vesicles localize with 

lysosomes, is warranted. The Lck-kd model, and siRNA-mediated knockdown of other 

protens, can be used as a valuable tool for such experiments. For example, what phenotypes 

will knockdown of c-Cbl, or the concurrent knockdown of c-Cbl and Lck produce in this 

respect? 

The question of how the TCR activates G q, and how the activated subunit exerts its effect 

on Lck, and vice versa, will be interesting to pursue in future studies. Our data indicate that 

interplay between Lck and G q exist, and that they interact physically in T cells. 

Furthermore, signaling through, and crosstalk between TCR and CXCR4 would be 

interesting to investigate using siRNA-mediated knockdown of Lck and G-proteins. 

Finally, the striking difference in signaling observed in Jurkat TAg and Jurkat E6.1. cells 

with Lck-kd should be investigated further. That two similar cell lines can generate 

completely different phenotypes is disturbing, and this finding should be addressed more 

thoroughly in the wider scientific community. 
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7. Conclusions 
1. siRNA-mediated knockdown of the 

Src family kinase Lck, but not Fyn, 

renders T cells hyperresponsive.

2. An alternative signaling pathway is 

activated in T cells with low levels of 

Lck. Prolonged stimulation leads to 

recruitment of Grb2-SOS1 to 

hypophosphorylated CD3 , resulting 

in signaling through Ras-Raf-1-MEK-

ERK.

3. Colocalization of CD3-containing 

vesicles with lysosomes is reduced in 

stimulated T cells with Lck 

knockdown, resulting in prolonged 

subsistence of CD3 .

Figure 8. Alternative signaling pathway in T 
cells with siRNA-mediated Lck knockdown. 

4. Negative regulators of T cell signaling, such as SHP-1, Ras-GAP and Cbl display reduced 

activity in Lck-kd cells. We propose that sustained signaling from CD3 -Grb2-SOS1-Ras-

ERK1/2 in the absence of the negative feedback constraints normally imposed by Lck, may 

result in hyperresponsiveness in T cells with siRNA-mediated Lck knockdown (Fig. 8). 

5. We report interplay between Lck and G q. G q appears to enhance Lck activation upon 

TCR triggering. Knockdown of G q renders T cells hyperresponsive possibly due to 

sustained ERK signaling. Altogether this indicates a regulatory role of this G protein in T 

cell signaling. 
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