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3. ABBREVIATIONS 
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MPT Mitochondrial permeability transition pore 
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K+ Potassium 
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[Ca2+]i   Free cytosolic Ca2+
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GA General anaesthetics 

IP3 Inositol triphosphate  

LGIC Ligand-gated ion channels 

5 HD 5-hydroxydecanoate 

MAC Minimal alveolar concentration 

MitoKATP Mitochondrial adenosine triphosphate - regulated potassium channels  

NMDA N-methyl-D-aspartate 

ATP Adenosine-5'-triphosphate 

ADP Adenosine diphosphate 

PKC Protein kinase C 

ROS Reactive oxygen species  

OGD  Oxygen – and glucose deprivation 

VA Volatile anaesthetics 
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4. INTRODUCTION 
4.1  General anaesthesia

General anaesthesia is a state defined by a reversible drug induced loss of consciousness, 

areflexia and analgesia (1). The discovery of general anaesthesia, in the mid 19th century, 

is considered a major milestone in medical history, making modern surgery possible by 

rendering the patient unaware of, and unresponsive to, painful stimulation. Although GA 

are administered to millions of patients each year (2), the exact mechanisms of 

unconsciousness still remain elusive.  

  Anaesthetics appear to act on the cell membrane by interacting with the main 

components, namely lipids, proteins and oligosaccharides (3). Meyer and Overton 

proposed the lipid theory by showing a close correlation between anaesthetic potency and 

lipid solubility at the beginning of the 20th century (4). However, interaction of 

anaesthetics with functional membrane proteins became evident as the activity of purified 

luciferase (a soluble lipid-free enzyme responsible for the luminescent reaction in firefly) 

was inhibited by GA (5).  

The idea that anaesthetics act by disrupting lipid bilayers or some other nonspecific 

mechanisms is largely abandoned, and anaesthetics at clinical concentrations are now 

thought to exert their effects selectively by binding directly to specific proteins (5).  

  

        Much research have focused on identifying a particular brain region on which 

anaesthetics act to induce their effects (6). The most sensitive regions appear to be the 

thalamic sensory relay nuclei and the deep layer of the cortex to which these nuclei 

project. This constitutes the route taken by sensory impulses reaching the cortex, so 

inhibition can result in a lack of awareness of sensory input. As the anaesthetic 
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concentration is increased, all brain functions are affected, including motor control, reflex 

activity, respiration and autonomic regulation (7).    

 

4.2  Cellular mechanisms of general anaesthesia     
At the cellular level, the effect of anaesthetics is mainly to inhibit excitatory synaptic 

transmission. In 1906 Sherrington reported that chloroform blocked reflex activity in the 

spinal cord at lower concentrations than needed to inhibit impulse propagation along 

nerve fibres (8). Numerous studies have since implicated that inhibition of synaptic 

transmission could be due to reduced transmitter release, increased transmitter uptake, 

inhibition of the action of the transmitter, or reduced excitability of the postsynaptic cell 

(9, 10).   

      GA may effect the impulse conduction on several sites like: 1. Afferent nerve fibres, 

2. Excitatory synapse, 3. Inhibitory synapse, 4. Postsynaptic neurone. Clinically relevant 

doses of isoflurane depress impulse conduction in thin, unmyelinated, afferent nerve 

fibres, whereas almost no effect is found on impulse propagation in thicker, myelinated 

fibres (11). Furthermore, isoflurane hyperpolarizes the postsynaptic neuron (12), making 

the cell more refractory to membrane depolarisation. 

     

4.3 Molecular mechanisms of general anaesthesia 
 GA in supraclinical doses act non-specifically, leading to a variety of effects. In 

clinically relevant doses, however, GA are thought to exert its effects directly on proteins, 

possibly binding to a hydrophobic area of the protein and inhibiting its normal function 

(5). The most likely targets are VGCC, LGIC and second messenger systems.  
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  The molecular target for intravenous anaesthetics, such as propofol, is identified 

as the GABAA receptor, with functional effects possibly depending on the receptor 

subunit composition (7). For VA, such as isoflurane and sevoflurane, there are currently 

three main candidates: 1. GABAA receptors, 2. Two-pore-domain K+ channels, and 3. 

NMDA receptors. In addition, there are evidence for involvement of several minor 

targets, such as inhibitory glycine receptors and cyclic-nucleotide-gated (HCN) channels, 

which underlie the hyperpolarisation-activated cation current, and presynaptic Na+ 

channel subtypes (7).  

 

4.4 The presynaptic terminal and signal transduction 
Depolarization of nerve terminals opens VGCC coupled to the exocytotic machinery and 

facilitates signal transduction by releasing neurotransmitters (13). Neurotransmitter 

release has been intensively studied since 1950, using the frog neuromuscular synapse as 

a model (14). The influx of Ca2+ further propagates Ca2+ release from internal stores, such 

as the ER and the mitochondria. The resulting increase in cytosolic Ca2+ initiates the 

fusion of neurotransmitter containing vesicles with the plasma membrane. The released 

neurotransmitter diffuses across the synaptic cleft and may interact with postsynaptic 

receptors, leading to either excitatory or inhibitory stimuli, depending on the 

neurotransmitter or postsynaptic receptor involved. The signal transduction process is 

terminated by enzymatic breakdown or reuptake into either the presynaptic terminal or 

adjacent glial cells (15). 

 

 9



4.5 Transmitter substances 
The predominant excitatory neurotransmitters in the mammalian brain, glutamate and 

acetylcholine, allow the passage of Na+ and Ca2+ and thereby depolarize the plasma 

membrane toward the threshold potential required for triggering an action potential (15).  

The major inhibitory neurotransmitters, GABA and glycine, usually affect Cl- channel 

receptors and render the target cell more difficult to depolarize (16).  

To summarize, the nerve terminal converts an electrical signal to a chemical signal, and 

the postsynaptic cell converts the chemical signal back to an electrical one. Anaesthetics 

may exert their effects by disrupting signal transduction along these pathways. Matthews 

and Quilliam in 1964, provided the first evidence that anaesthetics may reduce the nerve 

impulse induced amount of transmitter release (17). Considerable evidence now indicate 

that VA potentiate the effect of inhibitory postsynaptic receptors, predominantly the 

GABAA-receptor, as well as depress the effect of excitatory postsynaptic receptors (18-

25). Previous studies from our lab has also shown that isoflurane increase uptake velocity 

of glutamate into presynaptic terminals in the high affinity area (26). 

 

4.6  Intracellular Ca2+ and voltage gated Ca2+ channels 
Intracellular Ca2+ is an important second messenger that controls neurosecretion and 

neuronal excitability through at least five major classes of VGCC, which are known as 

the L, N, P/Q, R and T subtypes (27). Furthermore, cytosolic Ca2+-homeostasis is 

regulated by the Ca2+-ATPase and the Na+/Ca2+ exchanger, which in neurons pump Ca2+ 

out of cytosol and intracellular organelles, including ER and mitochondria (13). In the 

ER, Ca2+ is controlled by IP3 and ryanodine receptors, which after stimulation release 
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Ca2+ (Ca2+ dependent Ca2+ release), and by the Ca2+-ATPase that actively pumps Ca2+ 

from the cytoplasm back into the ER (28). 

Studies on the P/Q – and the N-types of the VGCC, which are the most influential in the 

Ca2+-dependent presynaptic release of neurotransmitters have revealed only a modest 

sensitivity to VA (29-31). Furthermore, data indicate no significant effect of VA on basal 

[Ca2+]i (30, 32). However, in studies on hippocampus slices and acutely dissociated 

neurons it has been reported an increased basal [Ca2+]i in response to clinically relevant 

concentrations of isoflurane (33). In rat synaptosomes, isoflurane tended to increase the 

basal [Ca2+]i (34). 

 

4.7.1 Mitochondrial function 
The mitochondria play an essential role in cellular homeostasis. Structurally, they 

comprise of an outer membrane, that is freely permeable to most ions and small 

molecules, and an impermeable inner membrane with specialized carriers and 

transporting systems.  

  The electron transport chain is present in the inner mitochondrial membrane and 

is composed of five distinctive complexes responsible for shuttling electrons and 

ultimately ATP synthesis (27). Complexes I, II, and IV function as proton pumps, in 

series with respect to the electron flux and in parallel with respect to the proton circuit. 

Each complex in the respiratory chain receives or donates electrons to carrier enzymes, 

such as coenzyme Q and cytochrome C, and ultimately molecular oxygen and protons are 

reduced to form water at complex IV. The fall in redox potential during the electron flux 

generates an electrochemical proton gradient by pumping protons across the inner 
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mitochondrial membrane. The protons re-enter the mitochondrial matrix through the ATP 

synthesis at complex V and phosporylate ADP to ATP (Fig.1).  

The electrochemical potential around –150 mV across the inner mitochondrial membrane 

therefore drives the three fundamental functions of mitochondria, namely ATP 

generation, Ca2+ uptake/storage, and generation/detoxification of ROS (27, 35-37). 

Furthermore, changes in mitochondrial Ca2+ regulate the enzymes in the tricarboxylic 

acid cycle. 

 

 

Figur 1. Electron transport chain shown coupled to the transport of protons. Reprinted with approval of 
 Lippincott Williams and Wilkins, WK Health, Philadelphia, USA. 
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4.7.2 Mitochondrial Ca2+ uptake and release 
Mitochondrial uptake of Ca2+ during physiological Ca2+ signalling regulates 

mitochondrial metabolism, mainly by up regulating the dehydrogenases of the 

tricarboxylic acid cycle (pyruvate dehydrogenase, 2-oxoglutarate dehydrogenase and 

NAD+ isocitrate dehydrogenase) (37, 38). The influx of Ca2+ into the matrix is dependent 

on the electrochemical gradient for Ca2+, and low resting intramitochondrial Ca2+ 

concentration (39). The main route of entry to the matrix is the uniporter located in the 

inner membrane (40). 

 The Ca2+ extrusion from the mitochondrial matrix is an active process requiring either 

ATP hydrolysis or an extramitochondrial ion travelling down an electrochemical gradient 

(41, 42). In some tissues, Ca2+ is extruded from the mitochondria in exchange for Na+. A 

Na+/H+ antiporter restores the mitochondrial Na+ balance. Excessive mitochondrial Ca2+ 

accumulation in combination with oxidative stress, ATP depletion and high inorganic 

phosphate, may initiate opening of the MPT, resulting in dissipation of the ��m and 

ceasing of oxidative phosphorylation.  The following ATP depletion may lead to both 

necrotic and apoptotic cell death (43). 

Thus, the respiratory chain generates the ��m and that in combination with a 

mitochondrial/cytosolic Ca2+ gradient, provides the necessary driving force for 

mitochondrial Ca2+ uptake and release (37).  There has also been suggested Na+ 

independent Ca2+ efflux by either reversal of the uniporter (44) . 

 

4.7.3 Mitochondria and ROS production 
The mitochondria are the major intracellular source of ROS. Complex IV reduces 

molecular oxygen to water. However, about 5 % of this reaction may occur as a single 
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electron reduction at complex III, generating superoxide anion O2
-. There is also evidence 

of a minor ROS production at complex I (45). The mitochondria are also vulnerable to 

ROS that may cause DNA strand breakage, peroxidation of polyunsaturated fatty acid 

chains and inhibition of the electron transport chain (45). Furthermore, ROS may increase 

Ca2+ release from intracellular stores, and thereby increase the mitochondrial uptake. 

Current evidence indicates that Ca2+overload and ROS in combination may initiate MTP, 

although the interaction between them is not fully understood.    
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5. THE AIMS OF THE STUDY 
 
The present study was conducted to investigate the effects of isoflurane and sevoflurane, 

the most commonly used VA in neuroanaesthesia (46, 47), on mitochondria from 

cerebrocortical synaptosomes. Mitochondrial function was studied with special emphasis 

on the complexes in the electron transport chain that are important to maintain the 

mitochondrial membrane potential. The effects of VA were then compared with the 

effects of the intravenous anaesthetic propofol. The specific aims were defined:  

 

1. To assess whether sevoflurane affects mitochondrial function in the central 

 nervous system, and to investigate whether an effect involves the activation of 

 mitoKATP. (Paper I) 

 

2. To compare the effects of isoflurane and sevoflurane on the [Ca2+]i and the 

 ��m, and to explore  whether clinically relevant concentrations affect the 

 ��m by inhibition of the electron transport chain. (Paper II) 

 

3. To investigate whether the mitochondrial sensitivity to anaesthetics is related to 

 age and the relationship to intervention of the respiratory chain activity. 

 (Paper III) 
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4. To investigate and compare the effects of sevoflurane and propofol on [Ca2+]i and 

 the ��m in rat and human cerebrocortical synaptosomes, and relate the changes to 

 interventions in the electron transport chain. (Paper IV) 
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6. MATERIALS AND METHODS 
6.1 The synaptosomal preparation 

Isolated nerve terminals (synaptosomes) have been in use since the beginning of the 

1960s (48) to investigate presynaptic function. Through a process of homogenization and 

centrifugation (49), the nerve terminals are pinched off and resealed (Fig.2). The 

synaptosomes contain mitochondria and are able to maintain the ATP levels for more 

than 6 hours when kept on ice (49, 50). Preserved in a medium with a low K+ 

concentration, they maintain a membrane potensial of -60 mV to -80mV (51) and a 

cytoplasmic free Ca2+ concentration of 0.1-0.2 �M (52). The synaptosomal preparation is 

thus regarded energetically intact (13).  There are two main experimental advantages 

using this preparation. First, it is the simplest preparation with an intact plasma 

membrane and cytoplasm including mitochondria, metabolic pathways, and machinery 

for uptake, storage, and release of neurotransmitter. Secondly, it is free from glial and 

neuronal cell body elements (53). The synaptosomal preparation can be made from the 

animal or human brain of any age, in contrast to the neonatal requirement of most 

neuronal cell cultures.  

  There are numerous mitochondria in the nerve terminals (54). Although not 

representative of an intact neuron, the synaptosomal preparation represents a simple 

model for investigating mitochondrial and cellular function (13, 54), and seems ideal 

when studying the effects of neuropharmacological agents on mitochondrial function in 

the brain. There are, however, differences in the function of mitochondria in the neuronal 

soma and mitochondria situated in the presynaptic terminal (55), which underline the 
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importance of studying mitochondrial function both in neurons and in presynaptic 

terminals in isolation. 

 

 

Fig. 2. Electron microscopic picture of the 

synaptosomal preparation from rat brain 

used in these thesis showing isolated 

presynaptic boutons (B). Some 

postsynaptic elements such as a 

postsynaptic spinae (S) connected to the 

presynaptic terminals in dense synaptic 

clefts. Magnification: X 64 000.  With 

approval of Reidun Torp, Centre for 

Molecular Biology and Neuroscience, 

Oslo, Norway.

 

 

 

6.2 Measuring mitochondrial function using fluorescent probes 
In the present work a time-course registration of functional mitochondrial parameters was 

studied using a fluorescence spectrophotometer (Hitachi Ltd., Tokyo, Japan). 

Synaptosomal [Ca2+]i was measured as the fluorescence of fura-2 (Molecular Probes, the 

Netherlands), a ratiometric dye that upon binding to Ca2+ exhibits a shift in the excitation 

maximum (56). Fura-2 is excited at 340 nm and 380 nm of light, and the ratio of the 

emissions at those wavelengths is directly correlated to the amount of [Ca2+]i. An increase 

in the normalized fura-2 ratio thus indicates an increase in [Ca2+]i. 

 18



  The ��m, a central parameter of mitochondrial function, was measured as the 

fluorescence of JC-1, a lipophilic and cationic dye that exhibits potential-dependent 

accumulation in the negatively charged mitochondria. At low concentrations (low ��m), 

JC-1 exists mainly in a monomeric form, emitting green fluorescence, whereas JC-1 in 

high concentrations (high ��m) forms aggregates emitting red fluorescence. A reduction 

in the normalized JC-1 ratio indicates a depolarization of the mitochondrial membrane 

(57).  

To assess whether the observed effect of VA on the ��m was disturbed by interference 

between the two fluorescence probes, single-dye experiments with JC-1 and sevoflurane 

2 MAC were performed. Sevoflurane decreased the ��m in N-ACSF and in Ca2+ 

depleted ACSF to the same degree as in dual-probe experiments. 

 

6.3 Inhibition of the respiratory chain  

In order to investigate the mechanisms of isoflurane and sevoflurane action on the 

electron transport chain, complex I and V were inhibited by adding oligomycin 2 �g/ml 

and rotenone 2 �M  

 Oligomycin is a natural antibiotic isolated from Streptomyces

diastatochromogenes which inhibits mitochondrial H+-ATP synthase at complex V (58). 

Oligomycin at high concentrations may also inhibit the plasma membrane Na+-K+-

ATPase. 

 Rotenone is a naturally occurring chemical from the roots of several tropical and 

subtropical plant species belonging to the genus Lonchocarpus or Derris with toxic 

properties towards humans and other mammals.  Its toxic effect is due to a general 
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inhibition of cellular respiration. Specifically, rotenone inhibits the phosphoryl group 

transfer at complex I by inhibiting the transfer of electrons from iron-sulfur centers in 

complex I to ubiquinone, and thereby preventing the conversion of NADH into usable 

cellular energy (ATP)(59). 

6.4 Membrane depolarization 
The synaptosomal plasma membrane can be depolarized with K+ producing a clamped 

depolarisation, which does not, however, mimic physiological conditions (60). A more 

physiological membrane depolarisation is evoked by the K+ channel inhibitor 4-AP (13). 

Using 4-AP, repetitive activation of Ca2+ channels are produced, and most of the Ca2+ 

independent efflux of amino acids seen with  K+  evoked depolarization is avoided (61).  

  In the present investigations the mitochondrial uncoupler FCCP 1 �M was added 

after anaesthetic exposure in each experiment to attain maximum mitochondrial 

depolarization.  

6.5 Anaesthetic agents 
Sevoflurane is a methyl propyl ether, which was synthesized in 1968. The initial 

development was slow because of some apparent toxic effects and problems of 

biotransformation and stability with soda lime. The drug has been available for general 

clinical use in Japan since 1990 and has been more recently introduced in Western 

Europe. The blood/partion coefficient of sevoflurane is 0.69, which is about half of that 

of isoflurane (1.43) and closer to that of desflurane (0.42), making the rate of 

equilibration between alveolar and inspired concentration faster than for halothane, 

enflurane and isoflurane, but slower than for desflurane. The MAC value of sevoflurane 
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in adults is between 1.7 and 2% in O2 and 0.6% in 60% N2O (62). It is non-flammable 

and non-irritating. 

      Sevoflurane has established itself as an important neuroanaesthetic agent, as both 

cerebral autoregulation and perfusion pressure is better maintained with sevoflurane than 

with isoflurane (63, 64). Sevoflurane has similar effects on the CNS as halothane, 

isoflurane and desflurane. Intracranial pressure increases at high-inspired concentrations, 

but the effect is minimal over the 0.5-1.0 MAC range. Sevoflurane decreases arterial 

pressure, but cardiac output is well preserved over the normal anaesthetic maintenance 

dose. In summary, sevoflurane produces a smooth and fast induction and a rapid recovery 

with minimal effects on respiratory and circulatory parameters using a clinical anaesthetic 

concentrations. 

       Sevoflurane and all other anaesthetic agents, at supra-clinical doses, however, can 

cause death by loss of cardiovascular reflexes and respiratory paralysis. Increased 

epileptiform electroencephalographic activity and seizure-like motor activity are reported 

in association with sevoflurane administration. (65). There is also a theoretical risk of 

renal toxicity due to the inorganic fluoride ion  

 

 Isoflurane is a halogenated ether inhalation-agent that was initially synthesized in 1965. 

It is non-flammable, suitable for vaporization, and has a low biodegradation as only 0.17 

% is metabolized, with rapid elimination and thus small toxicity (66). A low blood/gas 

partition coefficient of 1.4 provides rapid uptake, distribution and elimination (66). MAC 

is 1.3% in middle aged humans and 1.5% in rats (62). Cerebral blood flow is mainly 

unaltered at concentrations of isoflurane below 1 MAC, and cerebral oxygen 
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consumption is decreased under isoflurane anaesthesia (67). Thus, isoflurane has until 

recently been considered the inhalation anaesthetic of choice in neurosurgery (46, 47). 

 

Propofol is a short acting intravenous agent, clinically available since 1977, mainly used 

for induction of anaesthesia and long-term sedation. Propofol is presented in a 1-2 % 

formulation consisting of an oil and water emulsion. The pharmacokinetic profile is 

characterized by a rapid distribution from blood to tissues, and an equally rapid clearance. 

Propofol is mainly and rapidly metabolized in the liver, but some minor metabolites are 

also detected in the urine. The total body clearance of propofol is greater than liver blood 

flow, indicating an extrahepatic metabolism (68). 
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7. SUMMARY OF RESULTS 
7.1 Paper I 

Recent studies have demonstrated that VA increase the ischemic tolerance of the heart by 

activating mitochondrial signalling pathways. In particular, stimulation of mitoKATP has 

been documented (8, 9).  In this study we therefore wanted to test whether sevoflurane 

affects mitochondrial function in the brain by altering the ��m, and to investigate 

whether activation of mitoKATP might be involved. The effects of sevoflurane on the ��m 

was related to alterations in [Ca2+]i.  

In Ca2+-containing medium, sevoflurane 1 and 2 MAC gradually decreased the 

normalized JC-1 ratio from 0.96 ± 0.04 in control to 0.92 ± 0.03 and 0.89 ± 0.04, 

representing a decrease in the ��m (n=9, p<0.01). Furthermore, sevoflurane 2 MAC 

increased [Ca2+]i. In Ca2+-depleted medium, sevoflurane 1 and 2 MAC decreased the 

��m while [Ca2+]i remained unaltered. Sevoflurane 2 MAC attenuated the 4-AP induced 

decrease in the ��m. When mitoKATP was blocked, adding the specific antagonist 5-HD 

500 �M, the sevoflurane induced decrease in the ��m was attenuated, but not blocked. 

The depolarizing effect of sevoflurane compared to FCCP was calculated to 12.2 ± 3.1 % 

in Ca2+-containing medium and 17.4 ± 1.7 % in Ca2+-depleted medium (n=5).  

 This study suggests that sevoflurane in clinically relevant concentrations depolarizes the 

mitochondrial membrane in isolated CNS presynaptic terminals, and that this effect is not 

dependent on Ca2+-influx to the cytosol, even though [Ca2+]i in this situation was 

significantly altered. Opening of mitoKATP is only partly responsible for the depolarizing 

effect of sevoflurane, suggesting that additional mechanisms must be involved.  
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7.2 Paper II 
Having observed that clinical concentrations of sevoflurane affects the ��m in neural 

mitochondria, we wanted to further elucidate the mechanisms. Earlier studies have 

demonstrated that both VA and barbiturates inhibit the mitochondrial respiration by 

interfering with complex I (69-71) and the oxidative phosphorylation at complex V (69, 

72-74), and thereby proposing the mitochondria as one of the targets for anaesthetic 

agents. The ��m controls the generation of ATP and ROS, and sequestration of [Ca2+]i. 

The main purpose of the present study was to compare the effects of isoflurane and 

sevoflurane on the ��m, and to explore whether clinical concentrations of these 

anaesthetics affect the ��m by inhibition of the electron transport chain. 

 Isoflurane 1 and 2 MAC decreased the normalized JC-1 ratio from 0.92 ± 0.03 in control 

to 0.86 ± 0.02 and 0.81 ± 0.01, respectively, reflecting a depolarization of the 

mitochondrial membrane (n=9). Isoflurane 2 MAC increased [Ca2+]i. In Ca2+-depleted 

medium, isoflurane still decreased the ��m while [Ca2+]i remained unaltered. The effect 

of isoflurane was more pronounced than for sevoflurane. Blocking complex V of the 

respiratory chain enhanced the isoflurane and sevoflurane induced mitochondrial 

depolarization, whereas blocking complex I and V decreased the ��m to the same extent 

in control, isoflurane and sevoflurane experiments. 

 This study demonstrates that isoflurane and sevoflurane may act as metabolic inhibitors 

by depolarizing presynaptic mitochondria through inhibition of the electron transport 

chain. Isoflurane seems to inhibit mitochondrial function more pronounced than 

sevoflurane. Both agents inhibit the respiratory chain sufficiently to cause ATP synthase 

reversal. 
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7.3 Paper III 
We further wanted to investigate mitochondrial sensitivity to anaesthetics related to age. 

The sensitivity for GA increases with age, but the mechanism for this age related 

sensitivity is still unknown. The main purpose of the present study was thus to investigate 

the effects of isoflurane on [Ca2+]i and the ��m in isolated presynaptic terminals from 

neonatal, adolescent, and adult rats. The effect was compared and related to intervention 

of the respiratory chain activity.    

In neonatal rats isoflurane had no significant effect on the ��m. In adolescent and adult 

synaptosomes, however, isoflurane 1 and 2 MAC decreased the ��m. Isoflurane 2 MAC 

increased [Ca2+]i in neonatal and adolescent rats, but not in adult synaptosomes. In Ca2+-

depleted medium, isoflurane still decreased the ��m while [Ca2+]i remained unaltered. By 

blocking complex V of the respiratory chain, the isoflurane induced mitochondrial 

depolarization was enhanced in all age groups. Blocking complex I depolarized the 

mitochondria to the same extent as isoflurane 2 MAC, but without any additive effect.  

 This study demonstrates that isoflurane depolarizes the ��m of neural mitochondria in an 

age dependent manner by inhibition of the respiratory chain. The effect is more 

pronounced in the adolescent and adult than in neonatal rats. The increased mitochondrial 

sensitivity with age seems to be related to the reversed function of the ATP synthase. 

 

7.4 Paper IV 
Volatile and intravenous anaesthetics influence brain physiology differently. The 

mitochondrial membrane potential drives the main functions of mitochondria. 

Sevoflurane depolarizes neural mitochondria.  There is still, however, limited information 

concerning the effects of anaesthetics on neural mitochondria in humans. The effects of 
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sevoflurane and propofol on [Ca2+]i and the ��m was therefore compared in rat and 

human synaptosomes, and the changes related to interventions in the electron transport 

chain. 

 Sevoflurane and propofol decreased the ��m in rat synaptosomes in a dose dependent 

manner, and to the same extent by equipotent doses. Inhibition of complex V enhanced 

the depolarizing effect of sevoflurane 2 MAC, but not of propofol 100 �M. Neither 

sevoflurane nor propofol affected [Ca2+]i significantly. Sevoflurane and propofol 

decreased the ��m in human synaptosomes to the same extent as in the rat experiments. 

 The depolarizing effect of propofol on the �m was more rapid in onset than that of 

sevoflurane. Whereas sevoflurane inhibits the respiratory chain sufficiently to cause ATP 

synthase reversal, the depolarizing effect of propofol seems to be related to inhibition of 

the respiratory chain from complex I-V.  
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8. DISCUSSION 
 
The effects of isoflurane, sevoflurane and propofol on mitochondrial function was studied 

in cerebrocortical synaptosomes prepared from the female rat and human brain. The role 

of signalling pathways, such as activation of mitoKATP, and whether these anaesthetics 

affect the ��m by inhibition of the electron transport chain was investigated. The effects 

of VA was related to alterations in [Ca2+]i.The effects of VA were then compared with 

the effects of the intravenous anaesthetic propofol. 

8.1 The effects of volatile anaesthetics on the mitochondrial membrane 
potential   

Isoflurane and sevoflurane in concentrations corresponding to 1 and 2 MAC depolarized 

the ��m gradually in a dose dependent manner (paper I and II), while only 2 MAC, a 

clinically relevant concentration in induction of anaesthesia, increased [Ca2+]i slowly. 

When extracellular Ca2+ was removed, isoflurane and sevoflurane 1 and 2 MAC still 

decreased the ��m without altering [Ca2+]i. The findings imply that most of the 

mitochondrial depolarization caused by the VA administration was independent of 

Ca2+influx to the cytosol. In contrast, a much higher concentration of isoflurane (3.1 mM) 

had to be applied to cortical neuronal-glial cultures to produce a depolarization of the 

��m, and this was followed by irreversible cell damage (75).  

The depolarizing effect of isoflurane is more pronounced than for sevoflurane. Still, when 

extracellular Ca2+ was removed, isoflurane decreased the ��m without affecting the 

[Ca2+]i, and the effect on the ��m was more pronounced than for sevoflurane. The degree 

of mitochondrial depolarization induced by VA thus seems to be related to altered 

 27



mitochondrial function rather than effects on Ca2+-influx due to plasma membrane 

depolarization (13). 

The K+-channel inhibitor 4-AP or the mitochondrial uncoupler FCCP was added at the 

end of each experiment to simulate pre-synaptic membrane depolarization or to attain 

maximum mitochondrial depolarization, respectively. A rapid and substantial 

mitochondrial depolarization was achieved by FCCP, while membrane depolarization 

with 4-AP decreased the ��m moderately.  Isoflurane and sevoflurane 2 attenuated the 4-

AP evoked change in [Ca2+]i  and the ��m. Compared with FCCP the depolarizing effect 

of isoflurane and sevoflurane was less and more protracted (approximately 27 % in Ca2+ 

depleted medium). The anaesthetics did not change the value of maximum mitohondria 

depolarization with FCCP, this emphasizes that the effects of isoflurane and sevoflurane 

is due to a reduction in the ��m, and not unspecific additive effects on the JC-1 

fluorescence signal. However, since isoflurane and sevoflurane had an intrinsic 

depolarizing effect on mitochondria, further studies using a shorter time of exposure 

could reveal whether VA attenuate 4-AP induced changes in the ��m.  

            There is considerable evidence that opening of mitoKATP, either directly or by 

activation of PKC, is important in VA induced cardioprotection (76, 77). This effect has 

to some extent been attributed to a decrease in the ��m and mitochondrial uncoupling 

(76), as activation of mitoKATP allow K+ to enter into the mitochondria (78). In the brain, 

the density of mitoKATP are higher than in both liver and heart tissue, and these channels 

play a central role in the regulation of mitochondrial matrix volume (79). In this study 5-

HD (paper I), a specific mitoKATP-antagonist, tended to attenuate the anaesthetic induced 

decrease in the ��m in Ca2+-containing medium, but without reaching statistical 

 28



significance. In Ca2+-depleted medium, the sevoflurane induced decrease in the ��m was 

significantly attenuated by 5-HD. However, the ��m was still significantly decreased by 

the anaesthetic in the presence of 5-HD. Thus, even though sevoflurane is known to 

activate mitoKATP, the anaesthetic-induced mitochondrial depolarization found in this 

study is only partly due to activation of mitoKATP. These findings are in accordance with 

reports where opening of the cardiac mitoKATP depolarized the mitochondria only to a 

minor degree (78, 80).  

Sevoflurane and propofol depolarized the neural mitochondria in rat and human 

synaptosomes to the same degree, but with a different pharmacokinetic profile. Whereas 

propofol depolarized the mitochondria rapidly, sevoflurane exerted its effect more 

gradually. The surgical specimens used in this study were collected from superficial 

cortical structures from patients subjected to a temporal lobe resection due to medically 

intractable epilepsy. The tissue is supposedly normal, but is exposed to ischemia during 

preparation that may produce a pool of nonviable synaptosomes with damaged 

mitochondria, and the results of the present study can therefore not be applied directly to 

the healthy human brain. 

 

What mechanisms are responsible for the depolarization of the ��m in presynaptic 

mitochondria?  

 

 Complex I, III, and IV in the electron transport chain act as proton pumps that generate 

an electrochemical potential of about -150 mV across the inner mitochondrial membrane.  

The energy generated is used to produce ATP and to buffer intracellular Ca2+ whenever 
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the local [Ca2+]i rises above a critical "set point" (27, 37, 81, 82).  The ��m is therefore 

regarded a central parameter of mitochondrial function (37, 82). Mitochondrial 

depolarization can result from increased ATP demand or increased Ca2+-influx (83). In 

both cases, mitochondrial ATP synthase at complex V would continue to function and 

maintain the cytosolic ATP/ADP ratio. Impaired electron transport or substrate supply, 

and enhanced inner membrane proton permeability would also depolarize the 

mitochondria (83). Furthermore, activation of other ionic channels in the mitochondrial 

membrane, such as mitoKATP, could to some degree reduce the ��m (84). Additionally, it 

must be kept in mind that synaptic and non-synaptic mitochondria differ somewhat in 

their metabolic properties. Notably, synaptic mitochondria have a lower respiration rate 

and complex IV activity, which may render them more susceptible to insults such as 

ischemia (85). 

 

8.2 The effects of volatile anaesthetics on the electron transport chain 
Mitochondrial depolarization can be caused by respiratory chain inhibition, impaired 

substrate supply, or enhanced inner membrane proton permeability. Under these 

conditions, cytosolic ATP is consumed as complex V operates in a reverse mode to 

extrude matrix protons in an attempt to maintain the ��m (27).  In cells or subcellular 

fractions with active glycolysis, respiratory chain inhibition at complex I to IV will 

therefore cause only a partial depolarization, because ATP synthase reversal at complex 

V can maintain a suboptimal ��m (27). In the present thesis, the finding of a 

considerably more depolarized mitochondrial membrane during isoflurane and 

sevoflurane (paper II) experiments when complex V was blocked indicates that the 
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mitochondrial membrane was sufficiently depolarized by the anaesthetics to partly 

reverse the function of ATP synthase at complex V. These findings in presynaptic 

terminals are in coherence with the effect of barbiturates on neural mitochondria in rat 

cortical neural cultures (86).    

In synaptosomes, rotenone inhibition of complex I causes a drop in ATP levels (27), 

rendering the cell function dependent on the glycolytic capacity for ATP supply (87). The 

present study demonstrates that isoflurane depolarizes the ��m to the same extent as 

rotenone (paper III). Isoflurane did not potentiate the effects of rotenone on the 

mitochondria, suggesting related uncoupling mechanism. FCCP was still able to decrease 

the ��m, indicating residual mitochondrial function. These findings are in accordance 

with other studies indicating that complex I is the most sensitive complex of the electron 

transport chain to inhibition by VA in mammalian mitochondria as shown in cardiac 

mitochondria (87).  

After blocking complex I and inhibiting the ATP synthase reversal at complex V, neither 

isoflurane nor sevoflurane at concentrations corresponding to 2 MAC did significantly 

decrease the ��m further. Still, FCCP was able to decrease the ��m, indicating that there 

was not complete collapse of the ��m. These data suggest that clinical concentrations of 

isoflurane and sevoflurane depolarize presynaptic mitochondria by inhibition of the 

electron transport chain. VA thus seem to act as weak metabolic inhibitors of 

mitochondrial respiration as suggested by researchers more than 30 years ago (70), and 

this effect induces a mild depolarization of presynaptic mitochondria even at clinical 

concentrations.   
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8.3 The effects of volatile anaesthetics on free cytosolic Ca2+

 Ca2+ regulation in synaptosomes ([Ca2+]i) was investigated by administration of saturated 

solutions of isoflurane and sevoflurane and testing immediate response on [Ca2+]i. In an 

environment with extracellular Ca2+-concentration of 1.3 mM, isoflurane and sevoflurane 

2 MAC increased the basal [Ca2+]i (paper I and II). The findings are in accordance with 

studies using brain slices and dissociated neurons (33), while earlier experiments with 

synaptosomes have failed to demonstrate any significant increase in [Ca2+]i after 

isoflurane exposure (33, 34, 88). In contrast to changes in the ��m, the anaesthetics had 

the opposite effect on [Ca2+]i, as isoflurane 2 MAC caused a smaller increase in [Ca2+]i 

than sevoflurane 2 MAC (84, 89). This is interesting as increased basal [Ca2+]i-levels 

augments the probability of inducing seizures (34). Epileptiform electroencephalographic 

activity and seizure-like motor activity have in fact been reported during sevoflurane 

anaesthesia (65).  

Previous studies on the VGCC, which are the most influential in the Ca2+-dependent 

presynaptic release of neurotransmitters, have revealed only a modest sensitivity to VA 

(5, 31). However, recent studies have shown that anaesthetics may attenuate the 

depolarization-induced Ca2+-increase in the presynaptic independently of VGCC by 

inhibiting the Ca2+-dependent Ca2+-release from ER (90, 91).   

 

In the present studies isoflurane and sevoflurane also increased basal [Ca2+]i in 

synaptosomes with relatively high extracellular Ca2+-concentration (Paper I & II), that 

increased the Ca2+-load into the presynaptic terminals (Paper I). The anaesthetics could 

thus potentially inhibit Ca2+-uptake into presynaptic Ca2+-stores such as ER (28), as 

described in kidney cells (92), or attenuate mitochondrial Ca2+-buffering (59), as 
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discussed later. However, the effects of isoflurane and sevoflurane on the ��m was 

independent of Ca2+-influx to the cytosol. The effects of isoflurane and sevoflurane on 

cytosolic Ca2+-homeostasis in the presynaptic terminal are interesting topics for further 

research.  

 

8.4 The age related effects of volatile anaesthetics on mitochondria  
Mitochondrial and synaptosomal Ca2+-efflux rates decline with age, and the ability to 

bind Ca2+ within the mitochondria may also change (93). The consequences of increased 

cytosolic Ca2+ and altered mitochondrial Ca2+-buffering may involve mitochondrial 

depolarization or an increased propensity toward activation of the MPT (94). Reduced 

��m would furthermore lower the driving force for Ca2+ entry and clearance of cytosolic 

Ca2+ load.  

The depolarizing effect of isoflurane on neural mitochondria is more pronounced in the 

adolescent and adult than in neonatal synaptosomes (paper III). Previously it has been 

shown that isoflurane enhances suppresion of excitatory synaptic transmission in the aged 

rat hippocampus (95), and that increased sensitivity of mature synapses to anaesthetic 

action is not due to altered nerve fibre conduction (96). Taken together these findings 

suggest the involvement of synaptic sites in the age dependent potentiation of anaesthetic 

action. A lower overall energy requirement in neonates and a different distribution of 

glutamate receptors might be involved in the observed difference in mitochondrial 

sensitivity (97, 98) . 

 In the present study the isoflurane induced depolarization was enhanced in all age groups 

when complex V was blocked. The neonatal rats thus preserved the ��m better during 
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isoflurane exposure than adolescent and adult rats, indicating a more pronounced reversal 

of ATP synthase at complex V in neonates. The increased mitochondrial sensitivity with 

age seems to be related to the reversed function of the ATP synthase of the electron 

transport chain. 

 The effect of isoflurane on [Ca2+]i was not influenced by age. When extracellular Ca2+ 

was removed, isoflurane still decreased the ��m, and the effect was more pronounced in 

the adolescent and adult than in neonatal synaptosomes. The age dependent isoflurane 

sensitivity thus seems to be linked to a mitochondrial site rather than changes in [Ca2+]i.  

 

8.5 Volatile anaesthetics and clinical implications 
In the present thesis, the neuroprotective possibilities of VA during OGD have not been 

studied. However, since VA, such as isoflurane and sevoflurane, are frequently used in 

patients at risk for ischemic tissue damage, a neuroprotective potential is of considerable 

clinical interest, and will be briefly discussed.  

VA possess neuroprotective properties in both in vivo and in vitro animal models of 

ischemia (99, 100). One possible mechanism would be their ability to reduce neuronal 

excitability through enhanced inhibitory and depressed excitatory synaptic transmission 

(101-103). It has been reported that small bursts of ROS production may initiate 

preconditioning in the myocardium (104, 105), and that isoflurane induced such a ROS 

production by inhibiting the respiratory chain in myocardial mitochondria (106). VA may 

also precondition brain against ischemia by activating mito KATP (107, 108). In the 

present study, we demonstrate that isoflurane and sevoflurane inhibits the respiratory 

chain in neural mitochondria. Whether this effect could stimulate a burst of ROS 
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production, that in turn may act neuroprotective, is an interesting topic for further 

research.  

The electrochemical potential across the mitochondrial inner membrane is important for 

cellular Ca2+-regulation (80). During ischemia, when the cytosolic Ca2+-concentration 

rapidly increases, mitochondria are vulnerable to a Ca2+-overload known to trigger the 

lethal MPT (78, 109). The slow dissipation of the ��m produced by isoflurane and 

sevoflurane may attenuate ischemic mitochondrial Ca2+-overload in the presynaptic 

terminal by lowering the driving force for Ca2+-uptake (37, 110), and thus prevent the 

activation of necrotic and apoptotic pathways or attenuate the oxidative stress (111). In 

addition, a decrease in the ��m is known to reverse the ATP synthase leading to 

depletion of cytoplasmatic ATP, and is generally associated with neurotoxicity (37). 

Whether a slow mitochondrial depolarization may be a neuroprotective mechanism must 

therefore be interpreted with caution.  

 Recent studies have demonstrated that anaesthetic agents can protect the brain in 

experimental models both during ischemia and by preconditioning before an ischemic 

injury (112-114). Anaesthetic agents influence the pathophysiology of cerebral ischemia 

at multiple levels. VA reduce ischemia induced glutamate release, inhibit postsynaptic 

glutamate receptors (115), and enhance GABA mediated hyperpolarization (116). In 

addition, they increase the level of antiapoptotic proteins such as Bcl-2 (117) that reduce 

mitochondrial permeability transition, cytochrome C release and subsequent activation of 

apoptosis cascades. 

Preconditioning has been demonstrated for isoflurane (108) and sevoflurane by activation 

of sarcolemmal and mitochondrial potassium–ATP channels, activation of adenosine, and 
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activation of signal transduction pathways such as ERK ½, Akt, PKC and P38 (118, 119). 

Furthermore, a recent investigation by Engelhard et al. observed increased neurogenesis 

by sevoflurane 4 weeks after cerebral ischemia (120), and suggesting the possibility that 

anaesthetics may effect post ischemic CNS regeneration. 

Despite the vast number of studies exploring the cerebral effects of anaesthetics, it is yet 

not known whether some of the VA are neuroprotective in clinical settings (47, 114, 121). 

To obtain this kind of knowledge, it might be important to elucidate the molecular 

mechanisms of action of the different VA in vitro. This information could be utilized to 

design further in vitro and in vivo studies testing the neuroprotective potential of different 

anaesthetic agents during OGD and excitotoxic stimuli. VA induced neuroprotection is a 

crucial topic for future research, as revealing clinical relevant neuroprotective 

mechanisms could make an immense improvement in the outcome from brain injury and 

cerebrovascular diseases. 
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9. MAIN CONCLUSIONS 
 
The main conclusions in the present thesis are: 

1. Sevoflurane slowly depolarizes the mitochondrial membrane in isolated CNS 

presynaptic terminals, and this effect is not dependent on Ca2+-influx to the cytosol. 

Opening of mitoKATP is only partly responsible for this depolarizing effect of 

sevoflurane. 

 

2. Isoflurane and sevoflurane depolarize presynaptic mitochondria through inhibition 

of the electron transport chain. Isoflurane seems to inhibit mitochondrial function more 

pronounced than sevoflurane. Both agents inhibit the respiratory chain sufficiently to 

cause ATP synthase reversal. 

 

3. Isoflurane depolarizes the ��m of neural mitochondria in an age dependent 

manner by inhibition of the respiratory chain. The effect is more pronounced in the 

adolescent and adult than in neonatal rats.  

 

4. Sevoflurane and propofol at equipotent doses depolarize the mitochondria in rat 

and human nerve terminals to the same extent. The depolarizing effect of propofol on the 

�m was more rapid in onset than that of sevoflurane. Whereas sevoflurane inhibits the 

respiratory chain sufficiently to cause ATP synthase reversal, the depolarizing effect of 

propofol seems to be related to inhibition of the respiratory chain from complex I-V. 
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