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INTRODUCTION

 

1 Introduction 

1.1 The immune system – an overview 

The immune system has evolved primarily to protect the host against invading pathogens 

including viruses, bacteria, yeasts, protozoa and multi-cellular parasites. Ever-present 

microorganisms and parasites are relentlessly trying to make a meal or breading ground out 

of a suitable host organism. To enhance the odds of survival and consequently the prospect 

to reproduce, complex defense systems and counter measures have co-evolved in an 

evolutionary arms-race between invaders and host organisms.   

The immune system is divided into the innate and the adaptive immune systems. The 

innate system is phylogenetically conserved and components of this system can be found in 

practically all multi-cellular organisms, whereas an adaptive immune system is found in 

vertebrates only (1). Characteristics of the mammalian, and particularly the human, immune 

system will be discussed briefly in this section.   

Epithelial cells, lining the skin and the mucosal surfaces provide a physical barrier 

segregating the tightly regulated internal compartment of the host and the external milieu. 

Infections occur when invading pathogens succeed in colonizing the epithelium and breach 

the barrier. Some intestinal pathogens can cause an infection without breaching the barrier, 

but these typically secrete toxins or interact directly with the epithelial cells. Located 

immediately behind the first line of defense, awaiting intruders, are key players of the 

cellular innate immune system; namely the phagocytic macrophages. Activated 

macrophages release cytokines and other mediators ultimately leading to inflammation 

which involves recruitment of neutrophils and plasma proteins to the site of infection to 

facilitate elimination of the pathogen.  

 1



INTRODUCTION

 
 

A fundamental feature of the immune system is its ability to discriminate between 

foreign structures originating from invading organisms and innocuous environmental factors 

or self antigens (Ags). Cells of the innate immune system rely on a limited repertoire of 

promiscuous germ-line encoded pattern recognition receptors (PRRs) that recognize 

conserved pathogen-associated molecular patterns (PAMPS), or more generally microbe-

associated molecular patterns (MAMPS) to make this discrimination (2;3). Importantly, the 

immune system also sense endogenous alarm or danger signals from infected or damaged 

host tissues, many of which signal though the same receptors as do MAMPS. The danger 

model (4;5) put forward the idea that the governing signals of immune reactions are solely 

endogenous signals emanating from stressed or injured tissues. Poly Matzinger, the mother 

of the danger model, recently suggested that the innate immune system evolved to detect 

damage-associated molecular patterns (DAMPS); “Any molecule that is not normally 

exposed can be a DAMP if it is revealed during, after, or because of injury or damage” (6). 

The innate defense system is fully functional immediately following recognition of 

infection or tissue damage. In addition to providing a crucial first line of defense, usually 

sufficient to fight off most pathogens on its own, the innate immune system alarms and 

recruits the adaptive immune system if required. The hallmark of adaptive immunity is the 

ability to tailor an Ag-specific response. Specific defense is based primarily on the presence 

of immunoglobulins (Igs) and T cell receptors (TCRs) on B- and T-lymphocytes, 

respectively. Each lymphocyte, or clone thereof, expresses a unique Ig or TCR generating 

an enormous pool of specificities with the potential to recognize practically any Ag. In order 

to activate the adaptive immune system, Ags must be internalized and processed by antigen-

presenting cells (APCs), i.e. dendritic cells (DCs), macrophages and B cells that migrate to 

regional lymph nodes (LN). Here, the Ag is presented to T cells in the context of a peptide - 

major histocompatibility complex (MHC) class I or II molecule complex. The adaptive 
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immune response is characterized by clonal expansion of activated lymphocytes, generation 

of B cells (plasma cells) producing Ag-specific antibodies (Abs), generation of CD4+ T 

helper (Th) cells (of critical importance for plasma cell development and Ab production) 

and generation of cytotoxic CD8+ T cells. In contrast to the innate defense, the Ag-specific 

adaptive defense mechanisms needs time to get operational. Another key feature of the 

adaptive immune system is immunological memory. A pool of Ag-specific lymphocytes is 

maintained after an infection is cleared, allowing faster and more robust recall responses 

upon re-challenge with the same pathogen at a later time.  

This oversimplified overview of the intimately interacting innate- and adaptive 

immune systems only serves as a brief introduction to selected terms and mechanisms 

discussed in this thesis. The complex and fascinating biology of the immune system has 

been thoroughly reviewed elsewhere (7-11) and detailed expertly in several textbooks 

(12;13).  

 

1.2 Mucosal defense – selective border control 

The mucosal surfaces of the gut, airways, urogenital tracts, and ducts of exocrine glands are 

lined by a monolayer of epithelial cells that form crucial barriers. The vast and vulnerable 

surface of the human mucosa, estimated to be approximately 200-times larger than that of 

the skin, is the major port of entry for microorganisms and exogenous materials (14). The 

mucosae of the airways and gut are faced with a paradoxical challenge, namely the task of 

allowing gas exchange and nutrient uptake, respectively, and at the same time selectively 

exclude entry of harmful agents such as pathogens and toxins. The task appears particularly 

challenging for the gut mucosa. The complex microflora of the human intestine, estimated 

to contain more than 1000 bacterial species, comprise a total microbial load of 1013-1014 

microorganisms (15-17). Thus, the indigenous microbiota is a plentiful source of potentially 
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harmful organisms and biologically active products with potential to challenge the epithelial 

integrity and consequently the host’s wellbeing.   

An array of constitutive non-specific mucosal defence features, including production 

of mucus and anti-microbial peptides (e.g. defensins), intestinal peristalsis and respiratory 

ciliary movement, and constant epithelial shedding and renewal, contributes to Ag 

elimination and host resistance (18-20). Moreover, a specialized mucosal defence system 

has evolved to protect these vulnerable surfaces, handle the immense antigenic load and 

maintain homeostasis.  

 

1.2.1 Inductive sites – sampling, priming and homing 

The mucosal immune system is frequently divided into inductive sites and effector sites 

(Figure 1). The principle inductive site is organized mucosa-associated lymphoid tissue 

(MALT). Gut-associated lymphoid tissue (GALT) comprise Peyer’s patches (PPs) of the 

small intestine, numerous scattered isolated lymphoid follicles (ILFs), predominantly in the 

distal gut, local and regional draining LN and the appendix. PPs and ILFs do not have 

afferent lymphatics. Instead, microfold (M) cells of follicle-associated epithelium (FAE) 

serve as entry portals for luminal Ags. The underlying subepithelial dome (SED) is 

populated by APCs that process and present Ags to naïve lymphocytes (reviewed in 

21;22;23). In addition intestinal APCs, particularly DCs, may sample luminal contents 

directly by extending transepithelial protrusions (24). Stimulated lymphocytes drain to 

mesenteric LNs (MLNs), and subsequently enter the blood stream via the thoracic duct 

before they eventually migrate (“home”) to the appropriate effector sites where terminal 

differentiation takes place (21-23). In general, primed immune cells preferentially home to 

effector sites corresponding to the inductive sites where they initially were activated by Ags. 

Homing to the gut is governed by tissue-specific imprinting and depends on specific 
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interactions between endothelial cells and leukocytes as well as soluble tissue-produced 

chemotactic cytokines (chemokines) (25;26).  

 

Figure 1. The mucosal immune system.  
MALT are the inductive sites for mucosal immunity and are composed of B-cell follicles, T cell zones and 
FAE with M cells (detailed in insert) through which exogenous Ags are actively transported to reach APCs, 
including DCs, macrophages, B cells, and folicular DCs (FDCs) in the SED region. In addition, quiescent 
intra- or subepithelial DCs may capture Ags at effector sites and migrate via draining lymphatics to 
local/regional LNs where they stimulate T cells for productive or suppressive immune responses. Naïve B 
and T cells enter MALT (and LNs) via high endotelial venules (HEVs). Primed memory/effector B and T 
cells migrate from MALT and lymph nodes to peripheral blood for subsequent extravasation at mucosal 
effector sites. The gut LP contains abundant T cells (mainly CD4+) and mostly IgA PCs with lower 
abundance of IgM and IgG PCs. J-chain expression in PCs mediates polymerization of IgA and IgM and is 
required for pIgR-mediated epithelial transport and generation of SIgA and SIgM. IgG is also transferred 
into the lumen paracellularly (broken arrow) or via neonatal Fc receptor (FcRn)-mediated transport (not 
depicted). The distribution of IELs (mainly T-cell receptor �/�+CD8+ and some �/�+ T cells) is also 
depicted.  
 
Reprinted by permission from Macmillan Publishers Ltd/Nature Publishing Group, Mucosal Immunology  
(P. Brandtzaeg et al.) © 2008 (23). The figure was originally published in Trends in Immunology  
(P. Brandtzaeg and R. Pabst) © 2004 (27) and permission to reprint has been granted by Elsevier.  
The figure and legend has been modified. 
 

1.2.2 Effector sites – secretory immunity and immune exclusion 

A network of scattered immune cells throughout the lamina propria (LP) and the epithelium 

constitute the effector sites of the intestinal immune system (Figure 1). The epithelium is 

populated by intra epithelial lymphocytes (IELs), predominantly cytotoxic CD8+ T cells, 
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whereas the LP harbors CD4+ T cells, numerous APCs and vast numbers of Ab-secreting 

plasma cells (PCs) (reviewed in 28). 

IgA+ B cells, primed in PPs, home to the intestinal LP where they undergo terminal 

differentiation to IgA-producing PCs.  The primary role of LP PCs is to produce mainly 

dimeric IgA complexed with J chain. The polymeric immunoglobulin receptor (pIgR) on 

secretory epithelial cells mediates transepithelial transport of this complex to the lumen of 

the intestine.  The ectodomain of pIgR, known as secretory component (SC), is cleaved of 

coupled to its cargo at the apical surface to form secretory IgA (SIgA). pIgR also exports J 

chain-containing pentameric IgM to produce secretory IgM (SIgM), and cleaved, 

unoccupied pIgR is released to secretions as free SC (reviewed in 22). Secretory Abs (SAbs) 

perform multi-layer immune exclusion of exogenous Ags: (I) Coating of luminal 

microorganisms and their products reduces access to the epithelial surface and hence 

protects against invasion and overgrowth, (II) SAbs that encounter epithelial invaders en 

route to the lumen may neutralize these intracellularly, and (III) penetrating Ags in the LP 

may be shuttled back out to the lumen bound to polymeric Igs by pIgR-mediated export 

(22). The importance of the non-inflammatory, secretory immune system is illustrated by 

the striking fact that approximately 80% of all PCs reside in the LP of the gut, 90% of which 

are dimeric IgA producers (29). Mucosal secretions also contain IgG. Transepithelial 

transport of IgG is mediated by the neonatal Fc receptor (FcRn). FcRn also contribute to 

luminal Ag sampling by recycling IgG immune complexes across the intestinal epithelial 

barrier for processing by LP APCs (30;31). 

 

1.3 Immune regulation – battle strategy and peace keeping 

The immune system utilizes a broad arsenal of powerful and lethal “arms” to combat 

invaders, many of which may harm the host itself. It is of decisive importance for the 
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function of the immune defense, and thus the wellbeing of the host, that the “warfare” is 

tightly regulated. A well functioning immune system handles the following key challenges 

appropriately: What, when, where and how to attack? And just as important: When to 

“cease fire”? 

  

1.3.1 Self tolerance and regulatory T cells 

To prevent an attack on healthy self tissues, self-reactive T- and B lymphocytes are 

eliminated during development in the thymus and bone marrow, respectively. Despite the 

strict selection process, known as central tolerance, self-reactive T cells are found in the T-

cell repertoire of healthy individuals. However, autoimmune disease is relatively rare, 

indicating that peripheral regulatory mechanisms suppress the potentially pathogenic effect 

of these cells (32;33). This regulatory effect is now largely ascribed to a subset of CD4+ T 

cells, known as regulatory T cells (Tregs). Tregs are frequently divided into naturally occurring 

Tregs and adaptive/inducible Tregs which develop in the thymus or are induced in the 

periphery, respectively. Recently, multiple subpopulations of Tregs have been characterized. 

Although the expression pattern is not exclusive for Tregs or include all Tregs, Tregs are 

frequently characterized by surface expression of CD25 and high expression of the 

transcription factor FoxP3 (reviewed in 34).  

Tregs are emerging as instrumental regulators of immune responses with a range of 

functions including suppression of immune cell proliferation and differentiation, 

suppression of effector T-cell cytokine production/release, inhibition of cytotoxic CD8+ T 

cell degranulation and of B-cell maturation and Ab production. Accordingly, Tregs have the 

capacity to turn off immune responses following clearance of pathogens and hence, avoid 

chronic, pathogenic, immune activation. Regulation of target cells may be mediated directly 

by the Tregs or indirectly via Treg modulation of Th cells and APCs (reviewed in 35). 
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Although the mechanisms of Treg action remain debated, direct cell-cell contact, competition 

for growth factors and release of soluble factors have been suggested (reviewed in 36).  

The most prominent mediators produced by Tregs include transforming growth factor 

(TGF)-� and interleukin (IL)-10. Belonging to a diverse class of soluble signaling 

components known as cytokines, TGF� and IL-10 have pleiotropic effects on the immune 

system and are central to immune regulation and homeostasis (37). These regulatory 

cytokines contributes to tolerance to self Ags and harmless environmental Ags and control 

inflammatory responses by targeting both effector T cells (paracine effect) and Tregs 

(autocrine effect) (37).  

Recently it has become evident that Tregs also interact with APCs. In general, APCs 

respond to Tregs by down-regulation of Ag-presentation function and concurrent expression 

of immunosuppressive surface molecules and cytokines. Conversely, APCs have an 

important effect on the peripheral pool of Tregs as they have been demonstrated to induce de 

novo generation of peripheral Tregs by conversion of naïve T cells (38). Thus the mutual 

interaction between APCs and Tregs is crucial for the maintenance of peripheral tolerance.  

Treg conversion by mucosal DCs is discussed in some detail below (section 1.3.2). 

 

1.3.2 Oral tolerance and ignorance to commensal bacteria 

Priming of lymphocytes in the intestinal mucosa may lead to three major immunological 

events: (I) local SIgA production, (II) priming of systemic immunity, both of which produce 

a protective responses to pathogens, and importantly (III) induction of immunological 

tolerance. Tolerance induction to harmless dietary Ags and the normal harmless microflora 

(commensal bacteria) is a fundamental event in gut immune regulation. Oral tolerance, 

defined as suppression of an Ag-specific immune reaction by prior oral administration of the 

same Ag, preserve systemic hyporesponsiveness to the ever present food proteins and 
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commensal flora. While the precise mechanisms remain elusive, it is generally accepted that 

the orally induced hyporesponsiveness involves T cell deletion, anergy and/or the induction 

of Treg (reviewed in 39;40).  

Although systemic tolerization may take place in peripheral LNs, the key site for 

induction of oral tolerance is the MLNs (41;42). Tolerization in the MLNs relies on Ag-

loaded DCs migrating from the LP and PPs (42). How then do the tolerogenic DCs 

communicate that they carry innocuous Ags rather than Ags of pathogenic origin to the 

MLN T cells? Accumulating evidence supports the idea that resident mucosal DCs are 

quiescent, possibly due to conditioning in a suppressive environment shaped by stromal 

cells. Furthermore, activation and Ag-processing in the absence of inflammation or danger 

signals results in Ag presentation in the context of low levels of costimulatory molecules 

and concomitant production of immunomodulating cytokines, eventually causing tolerance 

induction rather than productive immunity (reviewed in 43;44).  

Recent data demonstrates that GALT DCs express retinaldehyde dehydrogenases 

(RALDH) enabling them to metabolize vitamin A in the diet to retinoic acid (RA). RA has 

emerged as a pivotal mediator of TGF�-dependendt conversion of T cells into FoxP3+ Tregs 

(45-48). RA-signaling is also essential for gut homing imprinting, preferentially to the small 

intestine, and is implicated in IgA class switching. Thus, mucosal DCs orchestrate the 

mucosal immune response and homeostasis in part via RA (reviewed in 25). The 

mechanisms by which the mucosal DCs themselves are “coached” are only partly 

understood, but involve factors present in the local environment, including intestinal 

epithelial cells (IEC), IEC-derived thymic stromal lymphopoietin (TSLP) and RA, bacterial 

products, IL-10, TGF� and peroxisome-proliferative-activated receptor (PPAR)�-ligands 

(reviewed in 49).  
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In healthy individuals the systemic compartment of the immune system is 

unresponsive to the large and complex commensal microflora present in the intestine. 

Interestingly, the same bacteria may easily prime systemic immunity when administered 

intravenously. This compartmentalized organization of the immune system facilitate 

production of a strong, non-inflammatory, mucosal response without the requirement of 

establishing systemic tolerance which would in turn suppress the ability to respond to 

invading commensals (e.g. opportunistic pathogens) or closely related pathogens causing 

sepsis (41). MLNs are essential in preserving systemic ignorance to commensal 

microorganisms. DCs that have sampled commensals from the intestine primarily induce 

mucosal IgA responses in the PP. Importantly, DCs also carry commensals to the MLNs. 

Commensal-laden DCs do not leave the MLN via efferent lymphatics and thus live 

commensals do not gain access to systemic circulation (50). Hence, the MLNs function as a 

firewall that eliminates constant penetration and systemic priming by intestinal microbes 

“astray” (41).   

 

1.3.3 Immunopathology 

Inappropriate immune reactions may cause severe immunopathology in genetically 

predisposed individuals. A dysregulated immune system may potentially cause 

hypersensitivity, autoimmunity, immunodeficiency or exaggerated host responses, all of 

which are associated with morbidity and mortality. In the case of hypersensitivity, loss of 

tolerance induction or break of tolerance cause adverse immune reactions to innocuous 

environmental Ags such as dietary- or inhaled Ags evident in food allergy and allergic 

asthma, respectively. Inappropriate immunologic ignorance on the other hand, may lead to 

functional immunodeficiency with increased risk of infections. In autoimmune diseases, 

including multiple sclerosis, rheumatoid arthritis and type I diabetes, the immune system 
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direct an assault to self Ags, causing persistent inflammation and associated tissue- and 

organ injury. 

In sepsis, a systemic host response to infection, the release of potent mediators of 

inflammation may result in an exaggerated pathogenic response in the circulation and vital 

organs (51). An experimental model of endotoxic shock, which mimics the dysregulated 

systemic inflammation seen in severe sepsis and associated organ failure, has been 

employed in this thesis (Paper I).  

In inflammatory bowel disease (IBD), epithelial barrier dysfunction and abrogated 

systemic ignorance to commensal bacteria contributes to chronic inflammation in the gut 

(17). An animal model of IBD has been employed in this thesis (Paper II). Sepsis, IBD and 

the applied animal models are discussed in some detail below (section 1.5) and in Paper I 

and II, respectively. 

 

1.4 Beta-glucans – immunomodulating polysaccharides 

Medicinal bioprospecting, the search for natural products useful in preventing or treating 

disease, has proven to be a valuable strategy in the discovery and development of novel 

drugs. Celebrated examples include antibiotics and immunosuppressive drugs isolated from 

fungi (e.g. penicillin from Penicillium notatum and cyclosporine A from Tolypocladium

inflatum, respectively) (52;53).   

Attempts to manipulate the immune system to improve health, has led to the 

discovery of a range of promising natural compounds including immunomodulating 

polysaccharides. In particular, �-glucans, a diverse group of glucose polymers, have 

attracted considerable interest (54).  
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1.4.1 History of �-glucans – Initial interest and early exploration 

Interest in �-glucans as so called biological response modifiers (BRMs), with beneficial 

effects on human and animal health, has two major historical origins (reviewed in 54). In the 

1940s Pillemer and Ecker (55) prepared and studied zymosan, a crude mixture of 

polysaccharides, proteins and lipids, isolated from the cell wall of the yeast Saccharomyces 

cerevisiae. Zymosan proved to be a potent stimulator of macrophages and mediated the 

release of various cytokines, contributing to enhancement of non-specific immune reactions 

(56). Subsequent research identified �-glucan as the primary zymosan component 

responsible for the observed biological effects. While early �-glucan research in the United 

States and Europe was founded on the zymosan story, efforts in Asia, primarily Japan, 

originated in traditional medicine (54). In Asian folk medicine, consumption of medicinal 

mushrooms (e.g. shiitake, Lentinula edodes; maitake, Grifola frondosa; and reishi, 

Ganoderma lucidum) and mushroom-derived extracts has a long standing tradition (57-59). 

When the composition and biological effects of these mushrooms were investigated, �-

glucan was once again found to be the main immunomodulating constituent.  

Since the pioneering work by DiLuzio (e.g. 60-63) and Chihara (e.g. 64-66) in the 

1960s and 1970s on yeast- and mushroom-derived �-glucans, respectively, numerous 

beneficial effects of various �-glucan preparations have been reported (reviewed in section 

1.4.3). Currently the research focus is on elucidating the cellular and molecular mechanisms 

by which purified �-glucans exert their immunomodulating properties.  

 

1.4.2 Structure and source of �-glucans 

�-Glucans are carbohydrate polymers consisting entirely of glucose (Figure 2). These 

glucose homopolymers make up a highly heterogeneous group differing in glycosidic bond 

arrangement (67). This thesis deals with a major class of �-glucans known as �-1,3-glucan 
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(also known as �-1�3-glucan) and other �-glucan classes are not discussed herein. In the 

following the term “�-glucan” refers to �-1,3-glucan.  

The D-glucose monomers are connected by �-1,3 linkages to form a helical polymer 

backbone (Figure 2A). Adding to the structural complexity, �-glucans may also contain 

branches connected to the backbone (e.g. by �-1,6 linkages) (Figure 2B) or display mixed 

backbone glycosidic bond composition (e.g. �-1,3/1,4)(67).  

A

 

C

B

 

Figure 2. General structure of �-1,3/1,6-glucan.  
A) �-1,3/1,6-glucans are polymers with a backbone consisting of glucose residues linked by �-glycosidic 
bonds between carbon atoms in position 1 and 3. Side chain residues are bound to the backbone by �-
glycosidic bonds between carbon atoms in position 1 and 6. Adapted from Biopolymers  (M. Sletmoen et
al.) 2008 (68). B) Example of a branched �-1,3/1,6-glucan. Backbone length and distance between 
branches (m�1) as well as side chain length (n�1) may vary considerably depending on the source of 
origin and the extraction method. Figure reprinted with permission from Biotec Pharmacon ASA. C) �-
Glucans form higher order structures. Schematic representation of single-, double- and triple helical �-
glucan structures. The glucose ring is rigid and �-glucan polymer flexibility arises from rotation around 
the glycosidic bond, creating a pseudo-helical structure. Inter strand hydrogen bonds in the helical core 
contribute to formation and stability of dynamic higher order polymers with side branches exposed to the 
exterior (68). Reprinted by permission from Elsevier, International Immunopharmacology (M.F. Moradali 
et al.) © 2007 (69). The figure has been modified.  
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These diverse polymers can exist as single strands or as higher complexes such as triple 

helices (68;69) (Figure 2C). The nature of the backbone, the nature and frequency of 

branches, tertiary structure, molecular weight, solubility and polymer charge are all 

physicochemical characteristics that influence the potency of a given �-glucan as a BRM 

(54;68;70;71). Despite extensive research, structure – function prediction is not straight 

forward. Differences in macromolecular structure, and thus biological activity, largely 

depend on the isolation procedure and source of origin.  

�-Glucans are found in a variety of organisms as structural components of the cell 

wall, polysaccharide storage or secretory products (67). The major source of �-glucan is 

fungi, including yeast and mushrooms. This thesis is based on work employing a 

Saccharomyces cerevisiae-derived, soluble, branched �-1,3/1,6-glucan (SBG, Biotec 

Pharmacon ASA, Tromsø, Norway). Other examples of yeast derived �-1,3/1,6-glucan 

products include poly-1,6-�-D-glucopyranosyl-1,3-�-D-glucopyranose (PGG) (72) and 

whole glucan particle (WGP ) (73). �-Glucans isolated from medicinal mushrooms include 

Lentinan (shiitake, Lentinula edodes) and Grifolan (maitake, Grifola frondosa), both of 

which are examples of branched �-1,3/1,6-glucans (74;75). �-Glucans are also prepared 

from plants. Cereal grains, including oat (Avena sativa) and barly (Hordeum vulgare) have 

been demonstrated to contain linear �-glucans with mixed �-1,3/1,4 backbone composition 

(76-78). Cereal-derived �-glucans have attracted considerable interest due to their 

importance as widely used components in human- and livestock nutrition. Furthermore, �-

1,3-glucans have been isolated form algae and bacteria including Laminarin (e.g. Phycarine, 

Laminaria digitata) and Curdlan (Agrobacterium sp.), respectively (79;80). Thus, �-glucans 

are found in a broad range of organisms belonging to different taxonomic groups including 

both prokaryotes and eukaryotes.  
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Interestingly, �-glucan is generally not found in organisms belonging to the animal 

kingdom. One sole exception, Hyalinoecia tubicola – a polychaete worm, has been reported 

to secrete �-1,3-glucan (81). �-Glucan is a potential source of glucose, provided the 

presence of an appropriate digestive machinery. The digestive tract of invertebrates contains 

�-1,3-glucan specific hydrolases, but whether these are products of the animal itself or of its 

microflora is debated. �-Glucan hydrolases are generally not found in vertebrates, humans 

included, thus �-1,3-glucan digestion in higher animals is likely to be caused by gut 

microorganisms (81).  

 

1.4.3 Immunomodulating effects of �-1,3-glucans  

�-Glucans have been reported to modulate cytokine profiles and phagocyte activity,  

enhance protection against sepsis, infections and tumor development, and promote wound 

healing. Furthermore, effects on non-immune parameters including cholesterol reduction 

and blood glucose control have been reported. Although the accumulating literature on the 

properties of �-glucans is extensive, the cellular and molecular mechanisms behind the 

reported effects remain unclear. Contradictory findings and discrepancies in the literature, 

contributes to the lack of mechanistic understanding.  

Selected examples of biological effects of �-1,3-glucans in vitro, in animal models 

and in humans are discussed in some detail below. The literature on �-glucans as BRMs has 

been thoroughly reviewed elsewhere (54;70;71;78;82-84). 

 

1.4.3.1 Effects of �-1,3-glucan: highlights from in vitro studies 

Although major discrepancies exist, �-glucan treatment in vitro in general enhances the 

response of leukocytes. Increased production of pro-inflammatory cytokines, exemplified by 
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tumor necrosis factor (TNF)� from rat alveolar macrophages (85), and TNF�, interleukin 

(IL)-6, IL-8, IL-10 and tissue factor production by human peripheral blood mononuclear 

cells (PBMCs) (86), has been reported. However not all �-glucan preparations mediate 

release of pro-inflammatory cytokines (72). In fact, �-glucans have also been demonstrated 

to suppress pro-inflammatory cytokine production in response to a secondary challenge 

(87). In addition, �-glucan treatment in vitro has proved to enhance phagocyte activity, 

antimicrobial capacity, and cytotoxicity including increased oxidative burst activity (83). 

Furthermore, �-glucan treatment has been reported to influence neutrophil migration (88), 

DC maturation (89) and epithelial chemokine production (90) in vitro. 

 

1.4.3.2 Effects of �-1,3-glucans following parenteral administration 

�-1,3-Glucans have been studied extensively in animal models and to a much lesser extent 

in clinical trials. In most of these studies the study drug has been administered via parenteral 

routes.  

Systemic administration of �-glucans enhances host protection against infections. 

Intravenous (i.v.) and intra nasal administration of lentinan significantly reduced viral titers 

in the lung and enhanced survival in an influenza infection model (91). Furthermore, 

intraperitoneal (i.p.) administration of lentinan has been demonstrated to confer protection 

against Mycobacterium tuberculosis in mice (92). Soluble �-1,3-glucan from Sclerotinia 

sclerotiorum delivered i.p. had both curative and prophylactic effects on experimental 

Streptococcus pneumoniae infection (93). Intramuscular (i.m.) and i.v. administration of S.

cerevisiae-derived �-glucan enhanced clearance of Staphylococcus aureus and Escherichia

coli in animal models (94;95). Moreover, parenteral �-glucan administration increased host 

resistance to fungal pathogens (96) and protozoal infections (97). 
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Parenteral administration of �-glucan reportedly mediate protection against sepsis 

and associated multiple organ dysfunction syndrome (MODS), and prolong survival in 

experimental models (98-100). In line with the animal studies, i.v. �-1,3-glucan treatment 

decreased post-surgery infection incidence, reduced the duration of intensive care, 

decreased septic morbidity and increased survival in critical care patients (101-104). Glucan 

phosphate delivered i.p. mediated organ protection following myocardial ischemia-

reperfusion (I/R) injury, further supporting the idea that �-glucan therapy may prove useful 

in prevention of surgical complications (105). 

�-Glucans protects against neoplastic transformation and cancer progression and 

have been demonstrated to reduce established tumors in animal models (106-108). 

Accordingly, �-glucans have attracted considerable interest as anti-cancer remedies and 

several �-glucan preparations are currently approved for clinical cancer therapy (57;58). 

Additionally, systemic �-glucan administration has been demonstrated to alleviate adverse 

reactions associated with radiation and chemotherapy (107;109). The anti-cancer activity 

has in part been credited to the modulating effect on the Th1/Th2 balance. �-Glucan 

treatment reportedly result in Th1 skewing and thus, dominance of a cell-mediated immune 

response (110-113).  

Th1 profile predisposition suggests a possible role for �-glucan in allergic disease 

management. Also of note, �-glucans used as vaccine adjuvant increased specific Ab titers, 

reduced pathogen load and decreased mortality in animal models (114-116). Moreover, 

topical and i.v. application of �-glucans have proved to enhance wound healing in animal 

models and humans (117-119) and SBG is currently in clinical trials for topical treatment of 

chronic ulcers in diabetic patients (120).  
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1.4.3.3 Effects of �-1,3-glucans following oral administration 

Oral drug administration is attractive and remains the preferred delivery route despite 

challenges associated with low bioavailability due to poor intestinal barrier penetration and 

gastrointestinal degradation. Although parenteral delivery has dominated in the field of �-

glucan research, orally administered �-1,3-glucans clearly mediates beneficial effects on 

human and animal health. Essential literature on the effects of p.o. and intragastric 

administration of �-1,3-glucans is summarized below. 

Like parenteral delivery, oral and intragastric �-glucan treatment reportedly 

enhanced host resistance to viral, bacterial, fungal and protozoal infections (121-123). Also, 

oral pretreatment with �-glucans mediated protection against sepsis and MODS in animal 

models (124 and Paper I). Oral �-glucan prophylaxis attenuated I/R-injury in animal models 

of kidney failure and pressure ulcer formation (125;126). Supporting the clinical relevance 

of pre-surgery �-glucan treatment, orally administered �-glucan attenuated I/R-injury and 

exhibited cardioprotective properties in patients subjected to coronary artery bypass grafting 

(127). Dietary �-1,3-glucans, especially those derived form cereal grains, may reduce blood 

glucose and cholesterol levels, indicating a possible role for �-glucans in management of 

diabetes and hypercholesterolemia (84;128-136).  

It has been speculated whether �-1,3-glucans may enhance the mucosal immune 

system. In support of this idea, Lehne et al. (137) reported that orally administered SBG 

increased saliva IgA- but not IgG-levels, without affecting the level of antibodies in 

circulation. Moreover, evidence of increased numbers of IELs in the small intestine 

following p.o. �-glucan administration was presented by Tsukada and co-workers (138). In 

line with these reports, data presented in Paper III indicate that oral �-1,3-glucan 

administration had an effect on MLNs and PPs, key inductive sites for mucosal immunity. 

Furthermore, oral and intracolonic �-1,3-glucan pretreatment protected against chemically-
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induced mucosal injury in animal models of acute colitis (139 and Paper II), possibly by 

improving epithelial restitution and thus, barrier integrity (Paper III).  

Oral �-glucan treatment enhances wound healing. Impaired wound healing is a 

major complication of diabetes mellitus (140). Interestingly, Sparassis crispa-derived �-

glucan delivered orally accelerated skin wound healing in diabetic rats (141). Also, bowel 

anastomosis wound healing, impaired by anti-inflammatory drugs, was significantly 

improved in rats pretreated with �-glucan orally (142).  

Allergic rhinitis, conjunctivitis, asthma and food allergy are IgE mediated diseases, 

largely driven by a Th2-biased immune response to an allergen (143). Accordingly, a shift 

towards a Th1 profile emerges as a useful strategy to treat these prevalent conditions. 

Interestingly, oral �-glucan treatment improved allergic symptoms, reduced total- and 

specific IgE levels, decreased eosinophil counts and mediated a rise and fall in Th1 and Th2 

cytokine levels, respectively, in pollen allergy clinical trials (144;145). In a mouse model of 

food allergy, similar effects of oral �-glucan administration were reported (146).  

Early evidence that orally administered �-1,3-glucan has immunomodulating 

properties and the potential to inhibit tumor growth was provided by Suzuki and colleagues 

(147). Subsequently, �-glucans delivered p.o. have attracted some interest as anti-cancer 

remedies on their own (148-150). However, major attention is now given to orally 

administered �-glucans as an adjuvant in cancer therapy. �-1,3-Glucans reportedly 

synergized with, and enhanced the therapeutic effect of anti-tumor monoclonal antibodies 

(73;151-154).  

Chemo- and radiation therapy frequently results in leukopenia, rendering patients 

immunocompromised and at risk of acquiring treatment-associated complications. Oral and 

parenteral �-1,3-glucan therapy may increase patient tolerance to irradiation and 

chemotherapy by stimulating hematopoietic activity and increase leukocyte numbers (155).   
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The cellular- and molecular mechanisms behind the health promoting effects of �-

1,3-glucans are discussed in section 1.4.4 below. 

 

1.4.3.4 Adverse reactions 

Purified �-1,3-glucans generally show low or no toxicity and yeast �-glucans recently 

received the “generally recognized as safe” (GRAS) rating by the U.S. Food and Drug 

Administration (FDA) (156). However, there are reports of adverse events, primarily in 

relation to parenteral delivery of insoluble, particulate or impure �-glucan preparations. 

Unexpectedly, non-steroidal anti-inflammatory drugs (NSAIDs) in combination with �-

glucans increased mortality in several mouse strains (157;158). Furthermore, Di Luzio and 

colleagues reported that parenteral administration of particulate, but not soluble, �-glucans 

caused granuloma formation and hepatosplenomegaly in a mouse model (159). 

Interestingly, although the data is inconsistent, inhalation of environmental �-1,3-glucan 

aerosol (e.g. molds and house dust) has been suggested to contribute to airway inflammation 

and allergy (reviewed in 160).  

 

1.4.4 Mechanisms of �-1,3-glucan action 

Numerous reports advocate the use of �-1,3-glucans to treat or prevent various medical 

conditions. However, the current knowledge of the mechanisms of action and 

pharmacokinetics remains insufficient. The fact that the �-glucan literature is inconsistent, 

and frequently contradictory, complicates delineation of underlying mechanisms. 

Heterogeneity in the physicochemical characteristics of the �-glucans studied, source of 

origin, purity, presence of contaminants and the experimental model systems employed all 
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contribute to the current confusion. Clearly, increased mechanistic understanding is 

desirable. Proposed mechanisms of action are discussed here. 

 

1.4.4.1 Bioavailability - Uptake, clearance and pharmacokinetics  

Information about the persistence and clearance of �-glucans from circulation, and the 

significance of molecular weight, degree of branching and solution conformation on 

pharmacokinetics is limited. Rice and colleagues were the first to demonstrate that the 

physicochemical characteristics of the �-glucan critically influenced pharmacokinetics 

(161).  In line with previous reports, Rice et al. concluded that various �-glucans 

administered i.v.  have similar plasma half lives (161-164). Estimation of bioavailability is 

complicated by the fact that �-glucans are internalized by cells in circulation and solid 

organs (e.g. liver and spleen) and remains cell-associated for an extended period of time, 

thus plasma levels only tell part of the story (123;165-167).  

The uptake of orally administered �-glucans, and biological effect thereof, has been 

highly controversial. Although it is now widely accepted that orally administered �-glucans 

may enhance host immunity, it is still not established whether �-glucans may act directly on 

the gastrointestinal mucosa or if entry to the blood stream is feasible and required to mediate 

biological effects. Gastrointestinal absorption of orally administered �-glucans has been 

addressed in a very limited number of publications, including Paper I. Hong et al. reported 

uptake of particulate �-glucan from the gut mediated by intestinal macrophages that 

internalized the �-glucan particle, circulated throughout the body, and subsequently released 

bioactive soluble �-glucan into circulation (153). A recent paper by Rice et al. convincingly 

demonstrated that three structurally distinct �-1,3-glucans were internalized by a subset of 

epithelial cells (possibly M cells), GALT cells (i.e. macrophages and DCs) and rapidly 

entered circulation following a single oral dose (123). We too detected �-glucan in 
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circulation following oral administration and speculated whether gastrointestinal uptake is 

(in part) mediated by macrophages and DCs that sample �-glucan from the lumen by 

extending trans-epithelial protrusions (Paper I). Although the uptake mechanism remains 

elusive, Rice and coworkers points out that several cells in the gastrointestinal tract are 

capable of interacting with �-glucans and suggest that �-glucan loaded cells may serve as a 

reservoir (123). Of note, we reported that the immunomodulating capacity of SBG does not 

appear to correlate strictly with plasma levels, indicating that different mechanisms of action 

may be at play depending on the route of delivery (Paper I). 

�-Glucan glucanase deficiency, and hence lack of rapid degradation, in vertebrates 

contributes to the longevity of �-glucans. Clearance of low and high molecular weight �-

glucans are believed to occur primarily via glomerular filtration and liver oxidation, 

respectively (167-169). 

 

1.4.4.2 �-Glucan receptors, signaling pathways and downstream consequences 

�-Glucans are believed to exert their immunomodulating properties through specific 

receptors. Multiple cell-surface receptors, including Dectin-1, complement receptor 3 (CR3 

a.k.a. CD11b/CD18), scavenger receptors and lactosylceramide, have been implicated in �-

glucan recognition (83;170). These widely expressed receptors are found at varying 

expression levels on macrophages, DCs, neutrophils, natural killer (NK) cells, mast cells, 

microglia, B cells and a subset of T cells (83;171-173) and on non-immune cells including 

epithelium (90;174;175), endothelium (176), fibroblasts (177) and pituitary cells (178). 

Accumulating evidence suggests that Dectin-1 is the primary �-glucan receptor 

responsible for the immunomodulating effects of �-glucans (179-181). Furthermore, Dectin-

1-deficient mice are susceptible to fungal infections, indicating an important role in anti-

fugal defence (182;183). Dectin-1 is highly specific for glucans with a �-1,3-backbone and 
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differentially recognizes a variety of �-1,3-glucans demonstrated by a great range of binding 

affinities (184). The minimal structural component recognized by Dectin-1 is a glucose-

heptamer backbone with at least one glucose side branch (184). Low molecular weight �-

glucans are generally considered to be biologically inactive (170), suggesting that receptor 

cross-linking (i.e. formation of homo- or hetero multi-receptor complexes) is required for 

bioactive �-glucans to exert their effects (185). Systemic administration of �-1,3-glucan 

phosphate resulted in prolonged reduction of membrane-associated Dectin-1 in peripheral 

leukocytes, whereas oral administration caused increased surface expression on GALT 

macrophages (123;165). Thus, Dectin-1-positive cells respond differentially to �-1,3-glucan 

exposure depending on tissue localization and drug delivery route.  

Dectin-1 engagement leads to phosporylation of the immunoreceptor tyrosine-based 

activation motif (ITAM) present in the cytoplasmic tail of the receptor resulting in a number 

of cellular responses including; ligand-receptor complex endocytosis, enhanced 

phagocytosis, nuclear factor (NF)�B activation ultimately leading to production of cytokines 

and chemokines, and respiratory burst (production of reactive oxygen species; ROS) 

(reviewed in 71;181;186;187). Although the mechanistic details are still lacking and 

multiple (possibly cell-type specific) downstream signalling pathways exist, spleen tyrosine 

kinase (Syk) and caspase recruitment domain (CARD) 9 appears to be central (71;181;186-

188) (Figure 3). 

Interestingly, Dectin-1 has been demonstrated to collaborate with Toll-like receptors 

(TLRs) in a MyD88 and Syk-dependent manner (180;188-192) (Figure 3). Blocking of 

Dectin-1, using specific mAbs, abrogated the anti-tumor effect of Schizophyllan �-1,3-

glucan, indicating a critical role for Dectin-1 in the observed cancer-protective capacity of 

�-glucans (193). Research employing Dectin-1 knock out (KO) animal models (or 

tissue/cell-specific KO models) will shed additional light on the precise mechanisms and the 
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role of Dectin-1. It is conceivable that Dectin-1 contributes to many different immune 

system-mediated responses to �-1,3-glucans including increased resistance to infections and 

tumor development, and modulation of inflammation. 

 

Figure 3. Dectin-1 is a major �-glucan receptor; signal transduction and TLR collaboration.  
Ligand binding, e.g. by �-glucan containing yeast, to the extra-cellular carbohydrate recognition domain of 
Dectin-1 triggers tyrosine phosphorylation of the cytosolic ITAM motif, presumably by Src kinases, and 
induces an intracellular signaling cascade that results in various cell-type specific responses. Despite 
requiring only the membrane-proximal tyrosine for signaling, the cytoplasmic tail of Dectin-1 can interact 
with spleen tyrosine kinase (Syk). The nature of this interaction is unknown but it is proposed to occur by 
bridging of two Dectin-1 molecules. Whereas interactions with Syk can directly induce cellular responses, 
such as the respiratory burst and IL-10 production, signals from the TLR-pathway are also required for the 
production of IL-2. Syk contributes to phagocytosis in DCs, but it is not required for Dectin-1 induced 
phagocytosis in macrophages, which occurs through an uncharacterized mechanism possibly involving 
an unidentified kinase. Through this novel pathway, Dectin-1 also collaborates with the TLRs to induce 
pro-inflammatory responses (e.g. TNF� production), although Dectin-1 might be able to directly induce 
TNF� in certain cells. 
 
Reprinted by permission from Macmillan Publishers Ltd, Nature Reviews Immunology (G.D. Brown) © 
2006 (181). The figure legend has been modified.  
 

However, �-glucans may also work through other receptors than Dectin-1. Such 

mechanisms include potentiation of anti-tumor mAbs via �-glucan priming of CR3 

(153;194), causing complement enhanced Ab-dependent cell-mediated cytotoxicity and/or 
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CR3-dependent cell-mediated cytotoxicity (195). Moreover, activation of the 

phosphoinositide 3-kinase (PI3K)/Akt pathway by �-glucans (possibly involving Dectin-1 

or class A scavenger receptor) has been demonstrated to ameliorate septic, inflammatory 

and I/R injury (reviewed in 196).  

The molecular mechanism underlying the beneficial effects of orally administered �-

glucans on hypercholesterolemia and blood glucose levels remains blurred. Suggested 

mechanisms include delayed stomach emptying, binding to bile, increased small intestine 

viscosity, suppression of glucose absorption and enhanced production of short-chain fatty 

acids (71;84;197). Finally, �-glucans have been proposed to have prebiotic properties, 

promoting health indirectly by affecting the composition of the intestinal commensal 

microbiota. Indeed, work by Snart et al demonstrated that a �-glucan supplemented diet 

resulted in Lactobacillus-enriched cecal microbiota in a rat model (198). Interestingly, 

beneficial effects of Lactobacillus-based probiotics have been demonstrated in animal 

models as well as in clinical trials (199).  

  

1.5 Model diseases and experimental animal models 

A rat model of endotoxin-induced shock and multiple organ dysfunction syndrome (MODS) 

and a mouse models of IBD were adopted to confirm SBG bioactivity and to investigate 

effects of �-1,3-glucan on mucosal inflammation, respectively. The animal models 

employed in this thesis, and the human diseases they intend to mimic, are outlined below.  

 

1.5.1 Sepsis, shock and MODS 

Sepsis is defined as a systemic inflammatory response to infection. The diagnosis represents 

a continuum of severity, ranging from minor symptoms to life-threatening conditions. 
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Severe sepsis is defined as sepsis accompanied by hypoperfusion or dysfunction in at least 

one organ system (multiple organ dysfunction syndrome, MODS) and septic shock is 

defined as sever sepsis accompanied by hypotension requiring circulatory support therapy 

(200;201). The reported incidence rate of sepsis varies considerably (202-210), nevertheless 

frequently sited papers by Martin et al. (202) and Dombrovskiy et al. (203) estimated the 

incidence of sepsis and severe sepsis to be approximately 240/105 and 132/105, respectively. 

The mortality rate in patients hospitalized with sever sepsis is decreasing. Despite this 

decrease a considerable increase in the incidence rate causes the over all number of sepsis-

related deaths to increase, thus sepsis remains a leading cause of death (202;203).  

The pathophysiology of sepsis involves pathologic processes triggered by microbial 

pathogens that are exacerbated by the host attempt to produce a protective immune response 

(Figure 4). Sepsis is a complex and multifactorial syndrome. Innate recognition of bacterial 

components, including lipopolysaccharide (LPS), lipoteichoic acid or peptidoglycan, 

classical PAMPs, by TLRs and other PRRs triggers the release of potent mediators of 

inflammation. The pro-inflammatory cytokines TNF� and IL-1� in particular, but also IL-6, 

IL-8 and high-mobility group box-1 protein (HMGB-1) are thought to be important 

mediators during the early stage of sepsis and MODS development. Synergistic effects 

between cytokines, chemokines, acute phase proteins, complement, coagulation factors, 

eicosanoids, proteases and reactive oxygen intermediates, have been shown to be critically 

involved in the pathogenesis of sepsis and MODS. Induction of inducible nitric oxide 

synthase (iNOS) expression (i.e. by LPS, TNF� or IL-1�), predominantly in macrophages, 

leads to excessive production of nitric oxide (NO) which cause vasodilatation, reduced 

cardiac contraction and consequently, reduced blood pressure and organ perfusion, 

ultimately causing MODS and shock to develop. Also of note, dysregulated coagulation and 

 26



INTRODUCTION

 

increased capillary leakage further ads to hemodynamic disturbances and eventually to 

shock (reviewed in 51;211-214) (Figure 4).  

 

 
Figure 4. Pathogenetic networks in sepsis, shock and organ failure. 
LPS and other PAMPs simultaneously activate multiple parallel cascades that contribute to the 
pathophysiology of systemic inflammation, shock and MODS. Explosive release of cytokines and 
other pro-inflammatory mediators and activation of complement and coagulation cause an 
exaggerated state of inflammation ultimately leading to hemodynamic disturbances, hypoperfusion, 
multiple organ dysfunction, septic shock and eventually death.  
 
Reprinted by permission from Macmillan Publishers Ltd, Nature (J. Cohen) © 2002 (215).  
The figure legend has been modified. 

 

Clearly, there is a need for novel and alternative treatment and prevention strategies. The 

use of BRMs, such as �-glucans, to modulate the host immune response may prove to be a 

promising therapeutic approach. 
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1.5.1.1 Endotoxin-induced shock and shock-associated organ failure  

Systemic injection of LPS (a.k.a. endotoxin), a key mediator in Gram-negative sepsis, has 

been demonstrated to produce pathophysiological alterations, including systemic 

inflammation, hemodynamic disturbance and organ dysfunction, similar to those reported 

for septic patients (216). LPS activates an immense range of genes, causing an explosive 

release of pro-inflammatory cytokines and additional mediators with the capacity to cause 

injury to vital organs (217). Importantly, LPS-induced shock does not fully recapitulate 

what happens in the septic patients. Acute endotoxemia is a widely used model and it 

represents a valid tool to study systemic inflammation and the resulting sepsis-like 

symptoms, although confirmation in a more clinically relevant model is desirable. The LPS-

model and alternative sepsis models are discussed briefly in the methodological 

consideration section (4.1.1) and in Paper I. 

 

1.5.2 Inflammatory bowel disease (IBD) 

IBD refers to two related chronic inflammatory disorders characterized by acute flares 

followed by remission: ulcerative colitis (UC) and Crohn's disease (CD). UC affects the 

inner lining of the colon which becomes inflamed and develops ulcers. UC generally 

involves the distal part of the colon but may progress proximally to pan-colitis. CD tends to 

involve the entire bowel wall and commonly affects the terminal ileum and parts of the 

colon, but may affect any part of the gastrointestinal tract (reviewed in 218). A major 

complication of CD, affecting 35% of CD patients, is the formation of fistulas (219). 

Furthermore, UC and CD may be considered systemic disorders as more than 35% of IBD 

patients experience extraintestinal complications, with musculoskeletal, dermatologic and 

ocular symptoms predominating (220). The incidence of IBD varies considerably world 

wide with incidence rates between 0.5-24.5/105 and 0.1-16/105 inhabitants for UC and CD, 
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respectively. The highest rates are reported in Northern and Western Europe as well as 

North America (221). The etiology and pathophysiology of both UC and CD is complex. 

Accumulating evidence suggests that an inappropriate immune response to non-pathogenic 

microbes of the intestine and other luminal antigens plays a critical role in the initiation and 

pathogenesis of IBD (17;222;223).  

 Mucosal homeostasis is a balancing act between effector cells and regulatory cells 

and a shift in the balance may result in mucosal inflammation. IBD is associated with over 

expression of pro-inflammatory cytokines including TNF�, interferon (IFN)�, IL-1� and IL-

6. CD and UC have been considered Th1 and Th2 driven diseases, respectively, although 

the picture now appears more complex. Th17 cells, a distinct subset of CD4+ Th cells 

characterized by abundant IL-17 production, are associated with intestinal inflammation and 

tissue pathology and have attracted considerable attention recently. IL-23, a cytokine that 

shares the p40 subunit with IL-12 (which drives Th1 differentiation), is central in promoting 

Th17 function and earlier blocking studies of p40 may have affected both Th1 and Th17 

effector T cells (reviewed in 224;225). The above mentioned cytokines and their producers 

may prove to be attractive therapeutic targets. 

 Familial aggregation suggests that IBD has a heritable component. The discovery of 

susceptibility genes has demonstrated the importance of innate and adaptive immune 

responses and epithelial barrier integrity in IBD pathogenesis (Figure 5). Since NOD2 

(a.k.a. CARD15 and IBD1), encoding a intracellular gene product involved in innate 

sensing of microbes and release of anti-microbial peptides, was described as the first 

susceptibility gene associated with CD, additional IBD-associated genes have been 

described (reviewed in 226;227;228).  Positive family history of IBD is generally more 

frequent in CD than in UC.  
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 Genome-wide association studies have significantly increased the number of known 

genetic risk factors in CD. Currently more than 30 genes are described as risk factors 

associated with CD development. Selected examples of recently identified genetic risk 

factors include ATG16L1, ATG5 and IRGM which are involved in autophagy, handling of 

gut microbes and macrophage function, MST1 and its receptor which limit inflammatory 

responses, PTGER4 which is involved in epithelial restitution, and IL23R which play a 

central role in maintenance and expansion of Th17 cells (reviewed in 229) (Figure 5).  

 Importantly, IBD-prone genotypes results from multiple genetic variants that each 

exerts a minor effect on the overall risk of disease development. The increased IBD 

incidence over the past decades, particularly in developing countries, suggests that 

environmental factors, are implicated in IBD development (221). 

 IBD is routinely treated with antibiotics, immunosuppressive- and anti-inflammatory 

drugs. Promising antibody-based therapeutics blocking key cytokines, interfering with T-

cell activation and migration of inflammatory cells emerge as potent alternative therapies 

for IBD (230). Although these strategies may prove effective, available therapeutics are 

associated with considerable adverse reactions (230) including opportunistic infections 

(231).  

 Patients with severe IBD, refractory to medical treatment or with neoplastic 

transformation, require surgery. Surgery continues to have an important role in IBD 

treatment as 30-40% of UC patients and 70% of CD patients require surgical intervention at 

some point (232). Total colectomy, the only cure for UC, is indicated in approximately 25% 

of UC patients (233). Notably, as many as 40-60% of IBD patients respond poorly to current 

standard therapy, indicating a considerable need for new, more effective and safe therapies 

(234). 
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Figure 5. Selected CD-associated susceptibility genes and cell-specific signaling pathways. 
The mucus layer and tight junctions associated with intestinal epithelial cells maintain barrier integrity 
under homeostatic conditions. Disruption of this dynamic balance between host-defence immune 
responses and luminal enteric bacteria at the mucosal frontier is central to the pathogenesis of IBD. 
Recent genetics studies implicate alterations in autophagy, innate immunity and the balance between 
pathogenic and regulatory T-cell populations as risk factors for Crohn’s disease. Signalling pathways 
involved in inflammation and the potential roles of proteins encoded by disease-associated genes are 
depicted. a) Nucleotide-binding oligomerization domain protein 2 (NOD2) has a role in the sensing of 
cytosolic microbial ligands and in the release of antimicrobial peptides. b) Dendritic cells (DCs) extend 
dendrites between epithelial cells and can sense changes in luminal contents. Interleukin-23 receptor 
(IL23R) has a role in maintaining Th17 cells. c) Autophagy (involving ATG5) is required for the delivery of 
nucleic acids to endosomal Toll-like receptor 7 (TLR7) and the downstream activation of type 1 interferon 
(IFN) signalling in plasmacytoid DCs. d) Prostaglandin E receptor 4 (PTGER4) is involved in promoting 
epithelial restitution. e) Autophagy 16-like 1 (ATG16L1) and immunity-related GTPase family member M 
(IRGM) are involved in autophagy, anti-microbial defence, macrophage stimulation and stimulation of 
adaptive immune responses. f) Macrophage-stimulating protein (MSP) and its receptor, MST1 receptor 
(MST1R), have a role in inhibiting inflammatory responses. NO, nitric oxide. 
 
Reprinted by permission from Macmillan Publishers Ltd, Nature Reviews Immunology (R.J. Xavier and 
J.D. Rioux) © 2008 (229). The figure legend has been modified. 
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1.5.2.1 Dextran sulfate sodium-induced colitis 

We have employed the widely used dextran sulfate sodium (DSS) model to study the effect 

of SBG (soluble �-1,3-glucan) on intestinal inflammation (Paper II). Oral exposure to water-

dissolved DSS induces a reproducible acute colitis in rodents. Although the precise 

molecular mechanisms remains elusive, DSS appears to have a toxic effect on the basal 

crypt epithelium, causing reduced mucosal barrier function, subsequently resulting in 

colonic inflammation and ulceration (235). Resembling UC, DSS-induced colitis is 

characterized by diarrhoea, bloody stool and body weight loss. Histological hallmarks 

include superficial mucosal erosions, ulcer formation and inflammatory cell infiltration to 

the colonic lamina propria. Furthermore, colon shortening and thymic involution are known 

features of DSS-induced colitis. As in UC, pathology is predominant in the distal colon with 

no involvement of the small intestine. Importantly, DSS-induced murine colitis is treatable 

with drugs frequently used to control human UC (235; and reviewed in 236;237).   

 Available animal models do not fully recapitulate all the traits of human IBD. Still, 

they are important tools developed to evaluate new treatments and to elucidate the etiology 

and pathophysiology of IBD. The DSS-model, and alternative IBD models, are discussed 

briefly in the methodological considerations section (section 4.1.2) and in Paper II and have 

been thoroughly reviewed elsewhere (236-240). 
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2 Aims of the study 

�-1,3-Glucans have proven to be potent immunomodulators with obvious clinical potential. 

Yet, the current understanding of the underlying mechanisms of action remains insufficient. 

The main aim of this study was to establish in vivo models amenable to experimental 

manipulations in order to study the health-promoting effects of �-glucans with a focus on 

oral administration and mucosal biology.  

 

A major objective was to compare systemic- and oral SBG prophylaxis in a rat model of 

shock and shock-associated organ failure.   

Specific objectives were to:  

� Quantify the extent of absorption of orally given SBG to systemic circulation. 

� Determine the effect of SBG on hemodynamics during shock development.  

� Investigate organ protection by SBG prophylaxis. 

� Analyze the effect of SBG prophylaxis on endotoxin-induced cytokine storm. 

 

A second major objective was to evaluate the effect of oral SBG administration on mucosal 

inflammation in a mouse model of inflammatory bowel disease.   

Specific objectives were to:  

� Determine if oral SBG reduced colitis-associated morbidity and mortality.  

� Examine and quantify the effect of oral SBG on intestinal histopathology.  

� Analyze the effect of oral SBG on colitis-associated systemic inflammation. 
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A third major objective was to analyze effects of oral SBG on mucosal inductive and 

effector sites in the intestine of healthy mice.  

Specific objectives were to:  

� Identify qualitative and quantitative changes in GALT (inductive sites).  

� Analyze colonic epithelial proliferation, goblet cell and IEL numbers. 
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3 Summary of results 

3.1 Paper I 

Oral and systemic administration of �-glucan protects against lipopolysaccharide-

induced shock and organ injury in rats.  

Sandvik A., Wang Y.Y., Morton H.C., Aasen A.O., Wang J.E. and Johansen F-E. 

 

Systemic administration of �-glucan reportedly mediates protection against experimental 

sepsis, associated shock and organ failure. Furthermore, oral �-glucan administration 

enhances host resistance, although the extent and significance of gastrointestinal absorption 

remains unclear. We set out to confirm the immunomodulating capacity of SBG in a rat 

model of LPS-induced shock and shock-associated organ injury, comparing systemic- to 

oral �-glucan administration. Rats were pretreated with SBG or placebo orally or 

subcutaneously, anaesthetized and subjected to endotoxemia by intravenous infusion of LPS 

or saline (sham).  

Oral SBG prophylaxis produced plasma �-glucan levels significantly higher than 

what we observed in the placebo group, indicating gastrointestinal absorption. Still, the 

reported �-glucan content in plasma was only a minute fraction of a single oral dose and 

approximately 40-fold less than what we observed in rats administered SBG 

subcutaneously, despite the fact that the daily oral dose was 10-fold higher. Oral and 

systemic SBG prophylaxis enhanced mean arterial blood pressure recovery following LPS-

induced blood pressure collapse. Furthermore, SBG treatment attenuated LPS-induced 

organ injury. Oral treatment with SBG conferred relative protection of the liver and kidneys 

whereas only hepatic protection was observed in rats treated subcutaneously. We observed a 

moderate increase in baseline plasma IL-1� levels following subcutaneous SBG 
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administration and a moderate reduction in plasma levels of proinflammatory cytokines in 

both SBG-treated groups compared to placebo. 

In conclusion, we demonstrated a striking positive effect of SBG on LPS-induced 

hemodynamic disturbances and on shock-associated organ injury. Oral administration of 

SBG had a more pronounced effect than subcutaneous injection. Additionally, SBG 

prophylaxis caused subtle changes in the cytokine profile, including attenuated levels of 

mediators of inflammation subsequent to endotoxin challenge.  

 

3.2 Paper II 

Soluble �-glucan protects against experimental ulcerative colitis.  

Sandvik A., Grzyb K., Reikvam D.H., Erofeev A., Jahnsen F.L. and Johansen F-E. 

 

Treatment of IBD is associated with significant adverse reactions and unsatisfactory 

efficacy, thus new therapies are wanted. �-Glucans reportedly modulate inflammation and 

mediate wound healing, suggesting a potential role for �-glucans in IBD therapy. We 

investigated the effect of oral SBG administration on experimental UC. Mice were 

pretreated with SBG-supplemented drinking water prior to colitis induction and SBG was 

continued throughout the experiment. Mice supplied with regular drinking water or SBG 

only served as controls. Colitis was induced by exposing mice to DSS orally. 

Oral SBG prophylaxis reduced colitis-associated body weight loss and mortality. 

Furthermore, SBG treatment attenuated DSS-induced colonic inflammation and tissue 

damage. Also, colitis-associated colon shortening and thymic involution was attenuated by 

SBG treatment. Finally, colitis-associated systemic inflammation was attenuated in SBG 

treated mice.  
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In conclusion, we demonstrated a beneficial effect of oral SBG administration on all 

investigated parameters in experimental UC and propose that SBG has potential as a 

therapeutic agent in IBD management.  

 

3.3 Paper III 

Effects of oral administration of soluble �-glucan on the gut and gut-associated 

lymphoid tissue in mice. 

Sandvik A., Bækkevold E.S., Jahnsen F.L. and Johansen F-E. 

 

�-Glucans may stimulate the mucosal immune system when administered orally. We sought 

to identify effects of oral� �-glucan administration on gut-associated lymphoid tissue and the 

intestinal epithelium of healthy mice. Mice were provided SBG-supplemented drinking 

water for 20 days. Control animals were provided regular drinking water.  

 SBG was well tolerated and no clinical signs of morbidity were noted. Oral SBG 

administration increased the number of macroscopically visible Peyer’s patches (PPs) and 

enlarged the mesenteric lymph nodes (MLNs) without altering the composition of major 

lymphocyte subsets. Also, increased intestinal epithelial proliferation, possibly related to 

improved epithelial barrier function, was observed in SBG-treated mice.  

 In conclusion we demonstrated that mucosal application of SBG stimulated 

inductive sites of immune responses (PPs and MLNs) as well as effector sites of immune 

defense (mucosal epithelium). Our data supports the hypothesis that �-glucans may enhance 

host protection, in part, by effects on the mucosal immune system. 
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4  Methodological considerations 

 
Detailed descriptions of methods are provided in the respective papers included in this 

thesis. General aspects of the chosen methods, their advantages and limitations are 

discussed in this section. 

4.1 Animal models 

Laboratory mice and rats reflect human biology remarkably and animal models have 

contributed immensely to increased understanding of human biology as well as to the 

development of new therapies and diagnostic tools (241;242). Mice have become the animal 

of choice in immunological research due to the availability of well characterized strains and 

the relative ease by which mice can be managed and genetically manipulated. However, 

separated by 65 million years of evolution, essential differences in physiology as well as in 

both innate and adaptive immunity exists between the human and murine immune system 

(243). Thus, extrapolating data form animal studies to humans require caution and 

awareness of the limitations of the applied animal model.  

For ethical reasons, and as required by animal rights legislation, we have aimed at 

minimizing the number of experimental animals employed. Experiments have been 

designed according to the reduction, refinement and replacement principles (reviewed in 

244). All use of laboratory animals was approved by the National Animal Research 

Authority (Forsøksdyrutvalget) and conducted in accordance with the Norwegian Animal 

Welfare Act and the Norwegian Regulation on Animal Experimentation.  
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4.1.1 LPS-induced shock and shock-associated organ failure in rats 

Systemic and oral administration of �-glucan has previously been demonstrated to mediate 

protection against sepsis and associated organ injury (100;124). Several sepsis models exist, 

but no one fully resembles the timing of disease onset, progression and the use of supportive 

intervention in clinical human sepsis. We employed a rat model of endotoxin-induced shock 

to investigate whether the �-glucan studied (SBG) may in fact mediate biological responses. 

LPS infusion is a reductionistic model, designed to mimic the systemic host response to 

Gram-negative sepsis. Recognition of LPS, by the innate immune system triggers the 

release of potent mediators of inflammation that may result in an exaggerated pathogenic 

response. Pathophysiological alterations, similar to those reported for septic patients, 

include systemic inflammation, hemodynamic disturbances, organ dysfunction and shock 

(216).  

The trachea, right carotid artery, jugular vein and urine bladder of anesthetized rats 

were cannulated to facilitate respiration, blood pressure monitoring and blood sampling, 

administration of LPS or vehicle, and to facilitate urine flow, respectively. In addition to 

LPS infusion, the surgical trauma, open wounds in a non-sterile environment, repeated 

blood sampling and extended anesthesia, may contribute to pathology. The experimental 

procedures are detailed in Paper I. 

Although the clinical relevance of a bolus injection of LPS is questionable, the 

explosive release of pro-inflammatory cytokines and additional mediators of inflammation 

observed shortly after LPS-infusion are potential drug targets. Indeed, numerous preclinical 

studies have successfully targeted cytokines (e.g. TNF� and IL-1�). However, the cytokine 

storm triggered by LPS does not mirror the human sepsis situation well and attempts to 

block these mediators therapeutically has regrettably largely failed in the clinic (216;245).  
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The endotoxin model is of limited clinical relevance compared to models based on 

live polymicrobial sepsis, such as the cecal ligation and puncture (CLP) model, which is 

considered the current gold standard (245-247). Pure LPS engages a limited number of 

PRRs (i.e. TLR4) in contrast to the complex picture in septic patients (and in CLP) 

challenged with propagating Gram-positive, Gram-negative and fungal pathogens, all of 

which display multiple PAMPs that eventually affect the host response (248;249).  

We chose to investigate the outcome of oral prophylactic �-glucan treatment in the 

applied model because the time of onset, the amount of circulating endotoxin and the 

severity of the sepsis-like reaction is tightly controlled. On the downside, the model is 

labour intensive and does not have survival as an outcome. From an ethical perspective, on 

the other hand, acute experiments are favourable as post-surgery distress is eliminated.  

It should be noted that rodents are relatively resistant to LPS compared to humans 

(250). Nevertheless, unexpected, premature mortality, likely to be associated with varying 

LPS-potency, was observed. It is well known that experimental animals exposed to 

sublethal doses of LPS exhibit markedly reduced mortality when rechallenged with a 

normally lethal injection of endotoxin, a phenomenon known as endotoxin tolerance 

(251;252). Concerns that the observed protective effect of SBG against LPS-induced shock 

and MODS was due to induction of endotoxin tolerance by contaminating LPS rather than 

mediated by the �-glucan itself may duly be expressed.  However, we find this scenario 

unlikely as SBG is certified to be essentially endotoxin free. Certainly, the concern is 

irrelevant for the animals administered SBG orally, as the gastrointestinal tract is constantly 

exposed to LPS. 

The clinical relevance of prophylactic drug administration, with respect to sepsis 

management, can certainly be debated. We and others provide evidence and propose that 

pretreatment with �-glucans may in fact be a constructive strategy to reduce the risk of 
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complications associated with scheduled surgery (in high risk patients), including post-

operative hospital-acquired infections, sepsis, organ failure and death (102;104;127;196). 

 

4.1.2 DSS-induced colitis in mice 

DSS-induced colitis is one of the most frequently used models of intestinal inflammation. 

DSS appears to have a direct toxic effect on the basal crypt epithelium, leading to reduced 

mucosal barrier function, subsequently resulting in inflammation and ulceration (235). 

Colitis induction depend on IFN� expression and additional pathogenic mechanisms include 

impaired macrophage phagocytosis (253;254). Recently, DCs were demonstrated to be 

critical in the development of acute colitis (255). Furthermore, colitis induction is 

independent of T cells, B cells and NK cells as severe combined immunodeficient (SCID) 

mice develop colitis in response to DSS (256-258). 

Although, oral DSS-exposure causes a reproducible colitis resembling UC, outcome 

prediction is complicated by the fact that DSS concentration, quality and exposure time; 

animal strain, age/size and gender; as well as environmental conditions all affect the result. 

Consequently, considerable inter-lab variation and variation with time can be expected. To 

further complicate the picture, the microbial environments in which the experiments are 

conducted, and the microbiota of the experimental animals, are also of decisive importance. 

Accordingly, the model requires laborious optimization of experimental conditions, 

including titration of DSS. Results from pilot studies illustrate how surprisingly narrow the 

DSS-concentration window may be. In our hands 1.5 and 2.0 % (w/v) DSS for 7 days 

followed by 7 days of regular drinking water produced moderate, sub lethal, colitis in male 

C57BL/6 mice, whereas 1.5 and 3% DSS proved lethal in a different microbial environment 

(“unclean” vs. “clean” side of the animal facility, respectively). Repeated dose titration 

demonstrated that 1.5% DSS caused a sever colitis with acceptable mortality in male 
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BALB/c mice, in the latter environment, thus these conditions were chosen for the SBG 

intervention study in Paper II. Bearing in mind that DSS concentrations of 3-10% is 

regularly used by others (259) 1.5% DSS must be considered a rather mild regiment.  

Inter-animal fluid consumption variation has been reported, thus the observed 

differences in colitis severity may simply be a dose dependency phenomenon reflecting 

variations in the daily fluid consumption. Egger et al. addressed this key question and 

concluded that acute DSS-induced colonic mucosal injury is directly dependent on the 

concentration of DSS rather than the total DSS dose consumed (238). This supports the 

robustness of the model as minor differences in fluid consumption is unlikely to 

significantly affect the severity of the colitis induced. 

Although the model has contributed to increased insight into the pathophysiology of 

IBD, particularly on the role of the epithelial barrier, it can be argued that DSS-induced 

acute colitis is an invalid model of human UC as UC is a chronic relapsing disease. Thus, it 

should be mentioned that chronic colitis may be achieved in selected mouse strains (260) or 

by the use of repeated cycles of DSS exposure (235). In support of the clinical relevance of 

the acute DSS model, gene expression profiling revealed that of 32 genes known to change 

transcriptional activity in IBD, 15 are differentially expressed in DSS-colitis (240). DSS-

colitis resembled human IBD more closely than the widely used 2,4,6-trinitrobenzene 

sulfonic acid (TNBS) model (2/32 genes), but proved inferior to a model relying on transfer 

of  a T-cell population depleted of Tregs to immunocompromised recipients (30/32 genes), in 

terms of gene expression matching (240).  

Oral DSS administration causes intestinal inflammation and ulceration affecting the 

colon exclusively, despite exposure of the entire gastrointestinal tract. This phenomenon 

may in part be explained by the high degree of water re-absorption naturally occurring in 

this anatomical segment of the intestine (261), causing particularly high DSS exposure to 
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the colonic mucosa. Also, the high density and complexity of the large bowel microflora, 

compared to the relatively sparsely colonized stomach and small bowel (17), may add to the 

explanation of the observed segmentation of the intestinal injury. In favor of the DSS-

model, with respect to clinical relevance, altered microflora composition is observed both in 

UC and DSS-induced colitis (17;235).  

The role played by the commensal microbiota in DSS-induced colitis is unclear, 

largely due to conflicting results from different research groups. Microbes are not of critical 

importance for colitis induction as germ-free mice (GF) develop intestinal inflammation in 

response to DSS, but disease characteristics in GF mice differ from traits seen in 

conventional (CV) animals with intact microbiota (262;263). Kitajima et al. found sever 

rectal bleeding and an enlarged cecum filled with blood on day 1, followed by sever anemia 

and death as early as day 3 in GF mice given water with 5% DSS, whereas no mortality and 

only moderate changes was recoded in CV mice (262). Mortality in GF mice was not 

associated with colonic lesions indicative of colitis, while colitis with crypt loss, 

inflammatory cell infiltration and ulceration was observed in identically treated CV mice 

(262). Furthermore, a low dose DSS (1%) gave no observed colitis in CV mice, while rectal 

bleeding, body weight loss, anemia and mortality was delayed in GF mice compared with 5 

% DSS (262). Similarly, Bylund-Fellenius and co-workers reported 75% mortality in GF 

mice vs. no mortality in CV mice following exposure to 5% DSS for 6 days, but their 

histopathological findings were similar in surviving GF and CV animals (263). Contrary to 

these two reports, a paper by Hudcovic and colleagues reported that 2.5% DSS caused 

severe UC in CV mice, but not in GF mice (in both acute and chronic models), indicating an 

important role for the microbiota in DSS-induced UC after all (258). These inconsistencies 

may possibly be explained by heterogeneity in the DSS products, doses and animal strains 

employed.  
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Supporting the clinical relevance of the model, both human UC and DSS-induced 

chronic colitis is associated with development of colorectal cancer (264). Moreover, DSS-

induced colitis is successfully treated with drugs frequently used to treat human IBD 

including antibiotics, immunosuppressive- and anti-inflammatory drugs as well as so called 

biologic therapeutics such as cytokine-blocking Abs (265-269).  

 

4.2 Plasma �-glucan quantitation 

The planning and execution of work in this thesis has been hampered by the lack of readily 

available reagents to detect, trace and quantitate �-glucans. To the best of my knowledge, 

the only reagent commercially available for �-glucan measurement is an assay known as 

Fungitell (or Glucatell) which is currently marketed as a diagnostic tool for fungal 

infections. The assay is based on Factor G, a soluble PRR isolated from horseshoe crab 

(Limulus polyphemus) amebocytes, which specifically recognize �-1,3-glucans. The assay is 

sensitive (pg/ml range) and thus at risk of contamination from environmental �-1,3-glucan 

during sampling or analysis. We used Fungitell to determine the plasma �-glucan levels in 

blood samples collected approximately 1 hour after the final SBG dose was administered. 

Although repeated blood sampling was performed, kinetic analysis was not performed. The 

reported cut off value for a positive test in fungal diagnostics varies between 60-120 pg/ml 

(270-272) and we considered plasma levels below 80 pg/ml to be background signal. 

  

4.3 Clinical chemistry analysis – organ injury assessment 

Biochemical analysis of plasma for indicators of organ dysfunction and injury was carried 

out on an automated clinical chemistry analyzer by an accredited hospital laboratory (Paper 

I). Elevated plasma levels of alanine aminotransferase (ALAT), aspartate aminotransferase 
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(ASAT), bilirubin and �-glutamyl-transferase (�-GT) were considered markers of hepatic 

dysfunction and liver injury. Whereas ALAT is considered a specific marker for 

parenchymal injury, contribution to ASAT levels may originate from muscle cells, kidneys, 

erythrocytes and the brain in addition to injured hepatocytes (273). Although ALAT and 

ASAT levels were modulated by SBG, bilirubin and �-GT, markers of hepatic secretory 

dysfunction and liver injury, respectively, were not altered by neither oral nor subcutaneous 

prophylaxis with SBG. Although the experimental animals were outbred we did not expect 

the broad range of aminotransferase values obtained. 

Elevated plasma levels of urea and creatinine, were used as indicators of renal 

dysfunction. However, these commonly used markers are not ideal as they need time to 

accumulate in blood, fail to reflect dynamic changes in glomerular filtration rate and do not 

reflect genuine kidney injury (274).  

Also of note, blood chemistry may not always correlate well with clinical disease as 

abnormal plasma levels of disease markers may be reported without signs of disease and 

vice versa. Histological analysis to confirm the proposed organprotective effect of SBG was 

not performed. 

 

4.4 Multiplex bead array cytokine/chemokine measurement 

Cytokine- and chemokine levels in rat plasma and mouse serum were measured using 

species-specific multiplex bead-based array assays from Bio-Rad Laboratories on the 

Luminex 100 technology platform. The assays were carried out according to manufacturer’s 

instructions. The assay is based on dyed beads as the solid phase for sandwich immuno-

detection with cytokine/chemokine specific pairs of mAbs. Beads are classified based on 

their dye intensity and one bead population is coupled with one target specificity. Multiple 

bead populations, each conjugated with different capture mAbs, may be mixed to allow 
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simultaneously detection of up to 100 different analytes. The corresponding reporter mAbs 

are biotinylated for subsequent labeling with a fluorescent reporter and the recorded reporter 

intensity correlates with the amount of a given analyte in the sample.  

Collection of data from numerous beads per analyte provides statistical rigor to the 

reported signal intensity. The method requires only small samples (<10μl), is semi-

automated, requires limited sample handling and generates a lot of data from each sample. 

The assays include standards for direct calculations of concentrations, are sensitive 

(<10pg/ml) and have a large dynamic range (5 log) which reduce the need for sample 

dilution and optimization. Potential cross reactivity is clearly an issue when performing 

multiplex analysis. Importantly, the assays employed have been validated by the 

manufacturer and cross reactivity is certified to be negligible. Repeated freezing and 

thawing of the samples as well as high lipid content and hemolysis will affect the analysis 

negatively.  

Of note, comparison of results obtained using bead-based multiplex arrays with 

enzyme-linked immunosorbent assays (ELISAs) or bead arrays form other manufacturers or 

alternative technology platforms is not straight forward. Although a good correlation is 

reported, quantitative values may differ significantly. However, variability is reduced if 

identical pairs of mAb and similar diluents and standards are employed (275-277). 

 

4.5 Histological assessment 

Histology, the study of the microscopic anatomy of cells and tissues, is a powerful 

diagnostic tool that permits studies of changes in tissues in situ. Tissue samples collected for 

histological analyses were fixed in neutral buffered formalin, which preserve the tissue 

morphology well, processed using an automated tissue processor and embedded in paraffin.  
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Hematoxylin and eosin (H&E) stained sections of colon segments were evaluated, 

for the degree of inflammation, extent of tissue damage and presence of epithelial 

regeneration based on a semi-quantitative scoring system adapted from Siegmund et al. 

(278) (Paper II, Table 1). Although multiple (proximal, medial and distal) colon segments 

from each experimental animal were scored separately, we can not rule out that patchy 

distribution of diseased tissue may have affected the results. Ideally, multiple serial sections 

within each colon segment, alternatively a longitudinally oriented section, should have been 

analyzed to address this potential pitfall.   

 MLN cross section area, a measure of MLN size, was calculated by analyzing 

microphotographs of H&E sections using a build in feature in the microscope imaging 

software (Paper III). Considering that the MLNs are asymmetrical structures of variable 

shapes, the orientation of the LN is of importance when cutting sections for morphological 

assessment and size estimation. Also of note, repeated sectioning produce sections with 

gradually increasing or decreasing area depending on the starting point of the first section 

and this is likely to vary from sample to sample. Although, systematic serial sectioning of 

entire MLNs was not carried out, repeated sectioning produced results with the same 

tendency.   

 Alcian blue (AB) and periodic acid-Schiff (PAS) staining, marking acidic- and 

neutral mucopolysaccharides, respectively, enhanced recognition of mucus secreting goblet 

cells in the epithelium of the distal colon (Paper III). The number of AB/PAS positive cells 

(goblet cells) in a representative area of a section was counted and expressed as the average 

number per 20 crypts. The intra crypt distribution of goblet cells was expressed as the 

number of AB/PAS positive cells present in the lower-, central- and upper 1/3 of the crypts. 

To eliminate bias in the morphometric examinations, all microscopy, inflammation 

grading and image analysis was performed by an examiner blinded to the sample identity. 
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4.6 Immunofluorescence assays 

Immunofluorescence assays exploit the antigen specificity and target binding properties of 

Abs, which are directly or indirectly labeled with fluorophors that can be readily detected. 

Immunofluorescence assays are commonly divided into histochemistry- and cytochemistry 

assays; dealing with tissue samples or cell smears and suspensions, respectively. In Paper III 

we took an immunofluorescence histochemistry approach to study intestinal epithelial 

proliferation and IELs, whereas immunofluorescence cytochemistry was employed to 

address the leukocyte composition of secondary lymphoid organs and whole blood after oral 

SBG treatment.   

 

4.6.1 Immunohistochemistry 

Ki67 antigen is a cell cycle related nuclear protein expressed in all phases of the active cell 

cycle and hence, a commonly used proliferation marker (279). CD3, a pan-T cell marker, 

was used to identify T cells in the epithelium. Both primary Abs employed were raised 

against antigens of human origin, but was confirmed to cross react with several species, 

including mice. Ki67-antigen and CD3 expression was visualized using a fluorophor 

conjugated secondary detection Ab. Naturally, the specificity of the Abs employed is of 

critical importance. Also of decisive importance is the antigen epitope accessibility. Tissue 

fixation in formalin leads to protein-protein and protein-nucleic acid cross-linking by 

formation of methylen bridges (280). Although this contributes to excellent morphology 

conservation, antigenic epitopes may become “masked”, rendering the material largely 

unavailable for Ab binding and thus, immunohistochemistry analysis. Fortunately, antigen 

retrieval procedures may reverse epitope distortion (280). We successfully used the Ki67 

and anti-CD3 Abs on deparafinized formalin fixed sections following antigen retrieval in 
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Paper III. Immunohistochemistry is a relatively insensitive method and the evaluation of 

specific staining relies on the signal-to-noise ratio. Thus, careful titration of Abs and the use 

of irrelevant negative control Abs is essential. We titrated the primary Abs using serial 

sections of the study biopsies and employed a primary irrelevant antibody at the same 

concentration.  Unspecific staining was negligible. 

 Sections stained with anti-CD3 Ab were studied directly in a fluorescence 

microscope and digital photomicrographs of Ki67 stained sections were evaluated by an 

examiner blinded to the sample identity. CD3 positive cells clearly located within the 

epithelium were considered to be IELs. IELs were scarce in the distal colon and the entire 

circumference of the colon section was screened for positive cells.  

 Analysis of topographic cell distribution depends on proper tissue orientation. 

Photomicrographs of intact and well oriented crypts were chosen for analysis of epithelial 

proliferation. The number of Ki67 positive cells was counted and expressed as the average 

number per crypt, counting 8 or more crypts. The distribution of Ki67 positive cells, a 

measure of the proliferating zone, was expressed as the height of the Ki67 positive zone in 

relation to the total crypt height.  

 

4.6.2 Flow cytometry 

In Paper III, flow cytometry analysis was used to study the distribution of major leukocyte 

populations in dispersed cells isolated from secondary lymphoid organs (PP, MLN, inguinal 

LN, spleen) and whole blood. Flow cytometry is more sensitive than is immunohistological 

techniques and by far more suited for objective cell enumeration. The instrument can handle 

large cell numbers in a short period of time which adds statistical rigor to the analysis. 

Detection of multiple fluorophores allows for simultaneous analysis of multiple cell subsets. 

A major drawback of flow cytometry analysis on dispersed cells from solid organs is the 
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lack of information on the spatial distribution of the various cell types within the organ from 

which they originated. In this respect flow cytometry analysis is complementary to 

immunohistochemistry. One should also be aware of the potential pitfall that the cell 

isolation procedure may affect the cells, consequently changing the expression profiles of 

molecular markers selected for analysis. To minimize sample handling bias, all samples 

were treated identically. All antibodies were titrated, using splenocytes, to identify the 

optimal working dilutions. Unstained cells from all tissues analyzed served as controls.  

 

4.7 Statistics 

The statistical analysis is detailed in each paper. In general measurements involving three or 

more experimental groups and parameters evaluated at consecutive time points, including 

body weight data, fluid consumption, mean arterial blood pressure and cytokine 

measurements were analyzed by two-way analysis of variance (ANOVA) with Bonferroni 

post test. Measurements involving three or more experimental groups and parameters 

evaluated at one time point only, including indicators of organ dysfunction and injury, were 

analyzed by ANOVA with Bonferroni post test. Plasma �-glucan level data failed the 

D’Angostino & Pearson Omnibus Normality Test and were analyzed by non-parametric 

ANOVA (Kruskall-Wallis Test) with Dunn’s Multiple Comparison Test. Categorical data 

on mortality was expressed as percent survival and analyzed with the log-rank test. 

Measurements involving comparison of two experimental groups, including histopathology 

score, colon length, thymus weight, PP number, MLN cross section area, goblet cell 

number, epithelial proliferation and IEL number and lymphocyte composition were 

analyzed using the non-parametric Mann-Whitney test. 

 We have studied a limited number of experimental animals, and infer that what we 

observe in our samples is also true for the populations from which the samples were taken. 
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The presence of outliers, i.e. data points far from neighbouring data points, may seriously 

bias or distort data analysis, making generalizations about the population invalid. In 

particular, outliers may bias data analysis when studying small sample sizes. Obviously, 

suspect outliers can represent genuine and exiting findings or originate from abnormal 

experimental animals, but can also simply be an error of unknown origin. There may be 

good reasons both to keep and eliminate outliers, thus handling of outliers is a delicate 

business. Highly suspect outlier values, unlikely to represent random sampling from a 

Gaussian population, were identified by Grubbs’ outlier detection test and excluded from 

further analysis (281).  

 All statistical analysis was carried out using GraphPad Prism, version 4 (GraphPad 

Software, San Diego, CA, USA). Differences at P<0.05 were considered statistically 

significant. 
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5 General discussion  
 

A well functioning immune system is a powerful tool to preserve homeostasis and host 

wellbeing. A dysregulated immune system, on the other hand, may cause sever pathology. 

Accordingly, modulation of host immunity emerges as a valuable approach to prevent and 

treat disease. �-Glucans are potent immunomodulators with evident clinical potential. 

However, our comprehension of the underlying mechanisms explaining how �-glucans 

modulate host immunity remains insufficient. The objective of this investigation was to 

study how �-glucans work, with emphasis on oral drug administration and mucosal biology. 

To this end we examined the effect of the study drug on healthy experimental animals and 

in two animal models of disease.  

 The rational for focusing on oral administration and mucosal biology was dual. First, 

from a drug delivery point of view the oral route is desirable. It is non-invasive, easily 

permit repeated drug administration and self medication with minimal user supervision. 

Hence, confirmation of oral efficacy is of great interest. Secondly, oral administration 

deposits the drug in proximity to inductive sites and effector sites of the mucosal immune 

system. We proposed that the effect of the study drug on the gut and mucosal immune 

system could shed additional light on the mechanisms by which �-glucans work.  

 It should be stressed that we have only studied one specific �-glucan product, 

namely SBG, a Saccharomyces cerevisiae-derived water-soluble �-1,3/1,6-glucan provided 

by Biotec Pharmacon ASA. Importantly, �-glucans are heterogeneous by nature, standard 

assays to validate �-glucan bioactivity are lacking and so are systematic head-to-head 

comparisons of various �-glucan preparations. Thus, we can not infer from our data, with 

confidence, that what we observed with SBG is also true for �-glucans in general.  
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 In Paper I, we set out to investigate the effect of SBG in a rat model of endotoxemia 

and shock-associated organ injury, as a benchmark test for biological response modifier 

potential. We compared the efficacy of systemic vs. oral drug delivery and sought to 

establish whether orally administered SBG was absorbed from the gastrointestinal tract to 

the circulation. Parenteral delivery has dominated in the field of �-glucan research. Efforts 

following the pioneering work by Suzuki and co-workers (147) in the late 1980’s, has 

established that �-glucans are potent biological response modifiers also when delivered via 

the oral route. However, the extent of absorption and translocation from the gastrointestinal 

tract to blood, and the functional importance of this, remains poorly understood.  

 We report in Paper I that plasma from animals given SBG orally were clearly 

positive for �-glucan content. However, plasma levels indicated that only a very small 

fraction of the orally administered SBG translocated to systemic circulation. On the other 

hand, we can not rule out that absorbed SBG is rapidly eliminated from plasma. In fact, 

Ozment-Skelton et al., recently demonstrated that �-glucan was cleared from systemic 

circulation by circulating peripheral leukocytes, splenocytes, and peritoneal cells (165). 

Hence, plasma levels might not be a meaningful measure of uptake. 

 Our finding is in line with absorption data published by Hong et al. and Rice et al., 

but deviates from what Lehne et al. reported for SBG in humans (123;137;153). It should be 

stressed that, although we detected �-glucan in plasma following oral administration and 

found this to be instructive, a kinetic study is warranted to examine gastrointestinal 

absorption of SBG in detail. Also, our study was designed to compare subcutaneously 

treated rats and rats given SBG by oral gavage in a rat model of endotoxemia and was 

inadequate for pharmacokinetic comparison between the two routs of delivery. 

 �-Glucans reportedly mediate protection against sepsis and sepsis-associated organ 

injury following both systemic and oral administration (100;124;282). In line with these 
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reports, SBG attenuated critical liver and kidney injury mediated by the septic shock-like 

reaction induced by LPS infusion. One mechanism of organ injury in sepsis is oxidative 

damage due to the generation of free radicals (reviewed in 283). Sener et al., proposed that 

�-glucans are organoprotective by counteracting oxidative injury in sepsis (124) and, 

although controversial, �-glucans have been suggested to have anti-oxidant properties (284). 

 Hypoperfusion is a major contributor to shock-associated MODS (285). 

Interestingly, SBG produced a beneficial effect on mean arterial blood pressure (MAP) in 

endotoxaemic rats. This is a novel asset of �-glucans, first described in Paper I. We propose 

that SBG protects against LPS-induced organ injury, in part, by improving organ perfusion. 

The mechanism underlying the effect of SBG on hemodynamics remains unknown. We 

speculate that SBG modulate the release of inflammatory mediators causing indirect 

protective downstream effects on vascular stability and thus, blood pressure. 

 We identified a discrepancy between the effects of oral and subcutaneous 

administration of �-glucan. Renal protection was only seen following oral SBG treatment. 

Furthermore, the 40-fold higher �-glucan plasma level obtained using systemic drug 

delivery did not correlate with superior protection of the liver, recovery of MAP or 

modulation of cytokines seen with oral administration. Although we have not performed a 

proper dose-response study, our data suggests that the plasma level does not correlate with 

the beneficial effect of SBG for any of the parameters tested. This suggests to us that 

discrete cellular and molecular mechanism may be involved in the mode of action 

depending on the route of delivery.  

 In Paper II we investigated the effect of SBG on experimental colitis. Nosalova et al. 

reported that Pleuran, a water insoluble �-glucan from Pleurotus ostreatus, protected against 

colon injury induced by instillation of acetic acid (139). In our study, SBG delivered orally 

mediated a protective effect on all investigated parameters of disease severity in DSS-
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induced colitis. Colitis-associated body weight loss and mortality was significantly reduced 

in SBG treated mice. Furthermore, thymic involution, colon shortening and histological 

inflammation and intestinal ulceration were attenuated. DSS induces colitis via toxic effects 

on the epithelium, resulting in reduced mucosal barrier function and subsequent 

inflammation and ulceration (235). We hypothesize that SBG protects against DSS-induced 

experimental UC, in part, via beneficial effects on the epithelial barrier. In Paper III we 

demonstrate that oral SBG administration increased colonic epithelial proliferation in 

healthy mice. Our data suggests that SBG may enhance epithelial restitution and we find it 

plausible that increased epithelial proliferation may reinforce intestinal barrier function and 

thus resistance to DSS and influx of luminal content. 

 SBG emerge as a promising drug candidate for IBD therapy in humans. IBD is a 

chronic-relapsing disease associated with impaired intestinal barrier function and it remains 

to be established whether SBG therapy is beneficial in established or chronic colitis. 

Although clinical trials are warranted, we hypothesize that SBG therapy may prolong the 

remission phase in IBD patients, consequently reducing the need for harsh treatments, 

including immunosuppressive drugs, associated with adverse reactions. It is well established 

that chronic colitis is a major risk factor in development of colorectal cancer (reviewed in 

286). Furthermore, �-glucans are known to posses anti-tumor properties (reviewed in 108). 

Accordingly, although speculative, we propose that SBG might have dual protective effects 

in IBD patients by (I) limiting intestinal injury and inflammation associated with cancer 

development, and (II) by direct anti-cancer effects.    

 SBG administration attenuated systemic inflammation both in LPS-induced shock 

(Paper I) and DSS-induced colitis (Paper II). Release of mediators of inflammation, 

including cytokines, is a central event in the pathogenesis of sepsis and colitis. In Paper I we 

reported that LPS-induced rise in plasma IFN� and IL-6 was attenuated at later time points 
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following both oral and systemic SBG administration, whereas the rise in IL-1� and IL-2 

levels was attenuated in the oral group only. Our data suggests that these mediators 

implicated in the early phase of sepsis may return more rapidly to baseline levels in SBG 

treated rats. It has been suggested that the organ-protective capacity of �-glucans in sepsis 

and trauma models is associated with reduction in TNF� levels (124;287). We did not 

identify a significant effect of SBG on plasma TNF� levels in Paper I, regardless of delivery 

route. The subtle changes in the cytokine profile are unlikely to explain the beneficial effect 

of SBG on organ function and hemodynamics in the endotoxaemic rat. However, our data 

convincingly demonstrate that SBG prophylaxis modulated systemic inflammation induced 

by LPS infusion. 

 DSS-induced colitis is associated with systemic inflammation. In Paper II we 

demonstrate that oral SBG therapy limited the release of key cytokines implicated in IBD 

pathogenesis (288), including TNF�, IFN�, IL-1�, IL-6, IL-17. Interestingly, several of 

these pro-inflammatory mediators are targets for novel IBD therapies (289). In general SBG 

treated colitic mice had a cytokine profile very similar to that of healthy control animals. 

We believe that the systemic inflammation is secondary to the DSS-induced intestinal 

inflammation. The reduced level of inflammatory mediators in circulation in SBG treated 

colitic mice is likely to reflect the beneficial effect of SBG on the integrity of the intestine.  

 Importantly, data from the LPS-shock model and DSS-colitis model, on the effect of 

SBG on markers of systemic inflammation, correspond very well. Interestingly SBG did not 

have a major impact on cytokine profiles in the absence of inflammation. With one 

exception, a small increase in IL-1� following subcutaneous SBG injection, none of the 

cytokines or chemokines studied was significantly altered by SBG administration to healthy 

animals. The literature on the effects of �-glucans on cytokines is contradictory and the 
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mechanisms by which �-glucans modulate cytokine expression are only partly understood 

(see section 1.4.4).  

 �-Glucans reportedly enhance the mucosal immune system (137;138). Moreover, 

Rice et al., demonstrated that orally administered �-glucans are captured and internalized by 

intestinal epithelial cells and GALT cells (123). We sought to identify effects of oral� SBG 

administration on GALT and the colonic epithelium, mucosal inductive- and effector sites, 

respectively.  In Paper III we demonstrate that oral SBG stimulated expansion of PPs and 

MLNs. Although speculative, we find it plausible that �-glucan-laden cells migrating from 

the intestinal epithelium to GALT may contribute to the observed expansion of MLNs and 

PPs. The nature and maturation/activation status of these cells remains unknown. 

Interestingly, Rice et al. reported that PP macrophages and DCs up-regulate Dectin-1 and 

TLR2 expression, respectively, in response to �-glucan internalization (123). Conceivably, 

these cells may modulate the inductive events in GALT, and consequently impact the 

resulting mucosal immune response. Follow-up studies are warranted to further characterize 

this novel finding and to establish whether GALT expansion results in superior immune 

defense. 

 Tsukada et al., reported that oral �-glucan administration increase the number of 

small intestine IELs, mucsal effector cells (138). IELs were scarce in the distal colon and, in 

contrast to Tsukada, we did not observe a difference between SBG-treated mice and 

controls. Furthermore, oral SBG administration did not change the number or distribution of 

goblet cells in the colon.  

 Oral SBG delivery significantly increased colonic epithelial proliferation. To the 

best of our knowledge, we are the first to report that �-glucans stimulate intestinal epithelial 

proliferation. Further investigations are warranted to elucidate how SBG stimulate epithelial 
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renewal. Data in Paper III supports the hypothesis that �-glucans may enhance host 

protection, in part, by effects on the mucosal immune system. 
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6 Concluding remarks and future perspectives 

�-Glucans continue to attract considerable interest due to their evident potential for use in 

human and veterinary medicine. Efforts to characterize the underlying mechanisms of action 

have advanced basic research on these BRMs. I hope that this thesis add new knowledge to 

this exiting field of study and contribute to move it forward.   

 A dysregulated immune system cause severe pathology in septic shock with MODS 

and in IBD. We have employed animal disease models, mimicking key features of these 

inflammatory disorders, as well as healthy experimental animals in an attempt to elucidate 

how �-glucans, SBG explicitly, modulate host immunity and thereby promote health.  

 

The present study demonstrates that: 

� SBG was well tolerated in the animal models employed. 

� Only a minute fraction of orally administered SBG translocated to systemic circulation. 

� Oral and systemic SBG administration attenuated LPS-induced shock and shock-

associated organ injury.  

� SBG had a beneficial effect on hemodynamics in endotoxaemic rats suggesting that the 

mechanism for organ protection involves superior organ perfusion. 

� The level of protection was not strictly dependent on �-glucan plasma levels. 

� SBG prophylaxis attenuated systemic levels of mediators of inflammation both in 

endotoxic rats and colitic mice. 

� Oral SBG administration protected against mortality and morbidity in experimental UC. 

� Oral SBG administration had an effect on mucosal inductive- (PPs and MLNs) and 

effector (intestinal epithelium) sites. 
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We propose that SBG have a potential for clinical application in pre-/post surgery care. For 

instance as prophylactic treatment in high risk patients scheduled for surgery, to reduce the 

risk and severity of post surgery complications like severe sepsis. Although clinical trials 

are warranted, we suggest that SBG has a potential for use in IBD treatment. Furthermore, 

SBG affected essential inductive sites of the mucosal immune system, suggesting that, 

although speculative, SBG may have adjuvant properties that can boost the effect of 

mucosal vaccines. Our data support the idea that �-glucans enhance host protection, in part, 

by effects on the mucosal immune system. Yet, the precise mechanisms by which �-glucans 

work remains unclear. 

 Future plans and work in progress aims at elucidating the cellular and molecular 

mechanisms behind our findings following SBG administration. We aim at identifying �-

glucan target cells by employing experimental animals that lack essential immune cells 

and/or by tracing the fate of orally administered SBG.  
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Summary

b-Glucans are glucose polymers with a variety of stimulatory effects on the
immune system. The objective of this study was to determine the effect of
prophylactic oral administration of soluble Saccharomyces cerevisiae-derived
b-1,3/1,6-glucan (SBG) on the outcome of experimental endotoxaemia and
shock-associated organ injury. Male Wistar rats were pretreated with SBG
orally (SBGpo, 20 mg/kg/day) for 14 days, subcutaneously (SBGsc, 2 mg/kg/
day) for 3 days, or vehicle (placebo). Rats were anaesthetized and subjected to
endotoxaemia by intravenous infusion of Escherichia coli lipopolysaccharide
(LPS) (6 mg/kg) or saline infusion (sham). We observed significant levels of
plasma b-glucan in the SBGpo group (P < 0·5), although the SBGsc group had
levels approximately 40-fold higher despite a 10-fold lower dose. SBG prophy-
laxis caused enhanced blood pressure recovery following LPS-induced blood
pressure collapse. Oral treatment with SBG attenuated the LPS-induced rise in
plasma creatinine levels (P < 0·05), indicating protection against renal injury.
SBG also attenuated the plasma levels of aspartate aminotransferase and
alanine aminotransferase (SBGpo, P < 0·01; SBGsc, P < 0·01), indicating pro-
tection against LPS-induced hepatic injury. A moderate increase in baseline
interleukin (IL)-1b levels was observed in the SBGsc group (P < 0·05). In the
LPS-challenged rats, plasma levels of proinflammatory cytokines was moder-
ately reduced in both SBG-treated groups compared to placebo. SBG treat-
ment, particularly oral administration, had a striking effect on the
haemodynamics of LPS-treated rats, although only a minute fraction of the
orally administered b-glucan translocated to the circulation. Enhanced organ
perfusion may thus be responsible for the attenuated levels of indicators of
kidney and liver injury seen in SBG-treated rats.
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Introduction

Sepsis, a systemic host response to infection, with multiple
organ dysfunction syndrome (MODS), continues to be the
main cause of morbidity and mortality in intensive care
units [1]. Systemic administration of b-glucans has been
shown to mediate protection against sepsis and MODS [2,3],
modulate cytokine profiles [4,5] and prolong survival [5–8]
in experimental animal models. b-Glucans have also been
shown to possess an array of beneficial properties, including
enhancing protection against infections [6,8,9], tumour
development [10,11] and radiation injury [12,13], lowering
plasma lipids [14,15], increasing salivary IgA secretion [16],

promoting wound healing [17], mediating protection
against myocardial ischaemia and reperfusion injury [18] as
well as restoring haematopoiesis following bone marrow
injury [19]. These heterogeneous glucose polymers consist of
a backbone of b-(1→3)-linked b-D-glucopyranosyl units
with b-(1→6)-linked side chains of varying length and
distribution. They are major cell wall structural components
in fungi and are also found in some bacteria and plants
(reviewed in [20]).

Recognition of bacterial components such as Gram-
negative lipopolysaccharide (LPS) by the innate immune
system trigger the release of potent mediators of inflamma-
tion that result in an exaggerated pathogenic inflammatory
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response in the circulation and vital organs. The proinflam-
matory cytokines tumour necrosis factor (TNF)-a, interleu-
kin (IL)-1a and IL-6 are thought to be important mediators
during the early stage of sepsis and MODS. Synergistic
effects between these cytokines, secondary inflammatory
mediators and reactive oxygen intermediates have been
shown to be involved in the pathogenesis of sepsis and asso-
ciated organ injury (reviewed in [21,22]).

The immunomodulating potential of b-glucans has been
attributed to their ability to prime and activate leucocytes.
Several receptors, expressed both by immune and non-
immune cells, have been implicated in recognition of
b-glucans, including the type 3 complement receptor, scav-
enger receptors, lactocylceramide and dectin-1 (reviewed in
[23]). Several reports indicate that orally administered
b-glucans may exert biological effects [2,10,11,24–26].
However, no reports on the absorption and pharmacokinet-
ics of orally administered soluble glucans have been available
until recently [8].

We designed this study to investigate the protective capac-
ity of orally administered soluble b-glucan in an experimen-
tal rat model of LPS-induced shock and shock-associated
organ injury. The specific objectives of the investigation
were: (1) to establish whether an orally administered
Saccharomyces cerevisiae-derived water-soluble b-glucan was
absorbed from the gastrointestinal tract and translocated to
systemic circulation, (2) to examine the effect of this
b-glucan on haemodynamic parameters during the progres-
sion of endotoxin-induced shock, (3) to investigate whether
b-glucan administration mediate protection against devel-
opment of organ injury/dysfunction and (4) to study the
effect of b-glucan on systemic inflammation.

Materials and methods

Materials

Endotoxin free (< 0·5 EU/ml) SBG, a S. cerevisiae-derived
water-soluble b-1,3/1,6-glucan was provided by Biotec Phar-
macon ASA (Tromsø, Norway). LPS from Escerichia coli
(B6:026, chromatography purified) was from Sigma
(St Louis, MO, USA).

Animals

Male Wistar rats (Taconic Europe, Denmark) were main-
tained in the minimal disease unit at the Centre for
Comparative Medicine at Rikshospitalet-Radiumhospitalet
University Hospital, Oslo, Norway for at least 1 week before
they were entered into experiments. Animals were supplied
with water (reversed osmosis and ionic-exchange-treated)
and fed conventionally (Rat and Mouse no. 3 Breeding,
Special Diets Services, Witham, Essex, UK) ad libitum. Cages
were kept at 21 � 1°C and 55 � 10% relative humidity.
Light conditions consisted of alternating 12-h light/dark

cycles with 1 h dusk and dawn with gradual decrease or
increase of light intensity. The present investigation was
approved by the national ethics committee for animal
experiments.

Surgical procedure and sample collection

Rats [275 (244–306) g; mean and (range)] were anaesthe-
tized with thiopental sodium [intraval sodium, 120 mg/kg,
intraperitoneally (i.p.)]. Anaesthesia was maintained by
supplementary injections of thiopental sodium as required
and the rectal temperature was maintained at 37°C using a
homeothermic blanket (Harvard Apparatus, Holliston, MA,
USA). Surgery was carried out essentially as described pre-
viously [27]. Briefly, the trachea was cannulated to facilitate
respiration. The right carotid artery was cannulated to facili-
tate repeated blood sampling and connected to a pressure
transducer (Harvard Apparatus) for monitoring of mean
arterial blood pressure. The jugular vein was cannulated for
the administration of LPS or vehicle (saline). The urine
bladder was also cannulated to facilitate urine flow. Cardio-
vascular parameters were allowed to stabilize for approxi-
mately 30 min before animals were subjected to
endotoxaemia. Rats were given saline 1 ml/kg/h intrave-
nously (i.v.) throughout the experiment for fluid
resuscitation. Blood samples were collected from the cannu-
lated artery immediately prior to LPS or saline (sham) infu-
sion and at 1, 3 and 6 h thereafter. Blood samples were
collected in heparinized microcentrifuge tubes and plasma
was obtained by immediate centrifugation at 2200 g for
3 min at room temperature. Plasma samples were stored at
-70°C for subsequent analysis.

Experimental design

Rats were divided into the following experimental groups:

1 SBGpo group: SBG was administered orally to rats by tube
feeding [20 mg/kg body weight (bw), 400–600 ml of a
10-mg/ml solution] daily for 14 days prior to surgery. Fol-
lowing surgery, LPS (6 mg/kg) (n = 8) or vehicle (sham,
n = 5) was administered via the jugular vein over a 10-min
period.

2 SBGsc group: SBG was administered in three subcutane-
ous injections (2 mg/kg bw, 100–120 ml of a 5-mg/ml
solution) 48 h, 24 h and immediately prior to surgery.
Following surgery, LPS (6 mg/kg) (n = 8) or vehicle
(sham, n = 5) was administered via the jugular vein over a
10-min period.

3 Placebo group: rats received subcutaneous injections or
oral instillation of equal volumes of vehicle [phosphate
buffered saline (PBS)] as described above for SBG. Fol-
lowing surgery, LPS (6 mg/kg) (n = 8) or vehicle (sham,
n = 10) was administered via the jugular vein over a
10-min period.
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Measurement of biochemical indicators of organ
dysfunction and injury

Liver injury was assessed by measuring rise in plasma levels
of alanine aminotransferase (ALAT, a specific marker for
parenchymal injury), aspartate aminotransferase (ASAT, a
non-specific marker for parenchymal injury), bilirubin (a
marker of hepatic secretory dysfunction) and g-glutamyl-
transferase (g-GT, and indicator of liver dysfunction and
liver injury). Renal dysfunction was assessed by measuring
the rises in serum levels of urea and creatinine (an indicator
of reduced glomerular filtration rate), whereas pancreatic
injury was assessed by measuring amylase. All the above-
mentioned organ function markers were measured by
enzymatic photometric assays (Roche Automated Clinical
Chemistry Analyser; Roche Diagnostics, Indianapolis, USA).

Measurement of plasma cytokines

Plasma cytokine levels were measured with a rat-specific
Bio-Plex multiplex suspension array assay (Bio-Rad Labora-
tories, Hercules, CA, USA). Measurements and data analysis
were performed on a Bio-Plex system, powered by xMAP
technology by Luminex, operated with Bio-Plex Manager 4·0
software (Bio-Rad Laboratories). The instrument was cali-
brated with the CAL2 settings (LOW RP1 target value) using
Bio-Plex calibration beads (Bio-Rad Laboratories). All
samples were diluted 1 : 4 in Bio-Plex rat serum sample
diluent buffer (Bio-Rad Laboratories) and the assays carried
out according to manufacturer’s instructions. Plasma
samples were analysed as single samples, whereas standards
were analysed in duplicate.

Measurement of plasma b-glucan

Plasma b-glucan levels were determined with FungitellTM,
a 1,3-b-D-glucan specific protease zymogen-based
colorimetric assay according to the manufacturer’s
instructions (Associates of Cape Cod Inc., East Falmouth,
MA, USA). Samples and standards were analysed in
duplicate.

Statistical analysis

Plasma b-glucan levels are expressed as mean � standard
error of the mean (s.e.m.) values. These data failed the
D’Angostino and Pearson omnibus normality test and were
analysed by non-parametric analysis of variance (anova)
(Kruskall–Wallis test) with Dunn’s multiple comparison
test. Mean arterial blood pressure and cytokine measure-
ments are expressed as mean � s.e.m. values and analysed
by two-way anova with Bonferroni’s multiple comparison
test. Data representing plasma levels of indicators of organ
dysfunction and injury are analysed by anova with

Bonferroni’s multiple comparison test. Highly suspect
outlier values were identified by Grubb’s outlier detection
test and excluded from further analysis. All statistical analy-
sis was carried out using GraphPad Prism, version 4
(GraphPad Software, San Diego, CA, USA). Differences at
P = 0·05 were considered statistically significant.

Results

Absorption and translocation of orally administered
SBG

Male Wistar rats were divided into arbitrarily three groups:
group 1 received 20 mg SBG/kg bw daily via feeding tube for
14 days prior to surgery (SBGpo); group 2 received 2 mg
SBG/kg bw subcutaneously 48 h, 24 h and immediately prior
to surgery (SBGsc); and group 3 received PBS orally or sub-
cutaneously prior to surgery (placebo). To determine the
extent of b-glucan absorption into circulation in the SBGpo
group, plasma concentration of b-glucan was examined by
means of the FungitellTM method.We found significant levels
of plasma b-glucan in the SBGpo group compared with
placebo (P < 0·05), although the SBGsc group had levels
approximately 40-fold higher despite a 10-fold lower dose
(Fig. 1).
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Fig. 1. Plasma b-glucan concentration following oral and

subcutaneous soluble Saccharomyces cerevisiae-derived

b-1,3/1,6-glucan (SBG) administration. SBG, a S. cerevisiae-derived

water-soluble b-glucan, was administered by oral gavage [20 mg/kg

body weight (bw)] daily for 14 days (SBGpo, n = 13) or as

subcutaneous injections (2 mg/kg bw) on 3 consecutive days

(SBGsc, n = 13) to male Wistar rats. Placebo control animals received

corresponding volumes of phosphate-buffered saline (n = 17). Blood

samples were collected from the cannulated carotid artery. Plasma

b-glucan levels were measured with a 1,3-b-D-glucan specific,

protease zymogen-based, colorimetric assay. Data are presented as

mean � s.e.m. on a log scale. *P < 0·05, **P < 0·01 as determined by

non-parametric analysis of variance with Dunn’s multiple

Comparison Test.
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Effect of SBG on mean arterial blood pressure in
endotoxaemia

To investigate the effect of prophylactic SBG-treatment on
haemodynamics during LPS-induced shock, mean arterial
blood pressure (MAP) was monitored. Baseline levels of
MAP for all groups of animals ranged from 136 � 5 to
147 � 7 mmHg, and did not differ significantly between
groups. MAP in sham-control animals decreased gradually
throughout the experiment (Fig. 2). SBG administration,
mucosal or systemic, did not affect MAP of the sham-control
animals significantly (data not shown). Systemic administra-
tion of LPS caused an immediate and dramatic decrease in
MAP. Approximately 40 min after initiation of the LPS infu-
sion, MAP levels started to increase and continued to do so
until the 2·5 h time-point at which the blood pressure again
started to decrease slowly (Fig. 2). Oral administration of

SBG enhanced the recovery of MAP compared with placebo
treatment and MAP remained higher in this group through-
out the experiment (P < 0·05 at 5·5 h and P < 0·01 at 6 h
versus placebo). Subcutaneous injection of SBG also resulted
in enhanced MAP recovery (P < 0·05 at 6 h versus placebo),
although to a lesser extent than did oral SBG prophylaxis.

Effect of SBG on indicators of organ injury

Organ injury was assessed by quantification of plasma level
of various biochemical markers 6 h following intravenous
LPS administration. LPS infusion caused a twofold increase
in levels of plasma creatinine compared to sham (P < 0·001).
The creatinine level in the SBGpo group was reduced by
approximately 25% compared to the placebo group
P < 0·05). This effect was not observed in the SBGsc group
(Fig. 3a). LPS infusion also caused a 3·5-fold increase in the
plasma urea level compared to sham (P < 0·001). Although
not statistically significant, the SBGpo group had a minor
reduction in plasma urea compared to placebo control
animals after LPS administration (P = 0·07). The plasma
urea level in the SBGsc group remained at the placebo level
and was significantly higher than in the SBGpo group
(P < 0·05) (Fig. 3b).

LPS-infusion to placebo-treated rats caused an approxi-
mately 10-fold elevation in ASAT level compared to sham
(P < 0·001). Both the SBGpo group (P = 0·01) and the SBGsc
group (P = 0·01) had significantly attenuated plasma ASAT
levels compared with placebo following LPS infusion
(Fig. 4a). Intravenous LPS administration caused an
approximately 25-fold increase in mean plasma ALAT level
compared to sham animals (P < 0·001). Mean ALAT values
in both SBG-treated groups were significantly reduced com-
pared to the placebo-treated animals (SBGpo; P < 0·01,
SBGsc; P < 0·01) (Fig. 4b).

Administration of LPS also caused increased plasma levels
of g-GT, bilirubin and pancreatic amylase compared to sham
animals. However, these variables were not altered by either
oral or subcutaneousprophylaxiswith SBG(datanot shown).

Effect of SBG on baseline plasma cytokine levels

Prophylactic treatment with SBG resulted in a statistically
significant increase in plasma level of IL-1a in the SBGsc
group (P < 0·05) compared to placebo-treated animals prior
toLPS infusion (Fig. 5a).A slight elevation in IL-2, IL-6, IL-10
and IFN-g levels was also observed, whereas TNF-a levels
were modestly reduced following SBG treatment. These
changes were, however, not statistically significant (Fig. 5).

Effect of SBG on plasma cytokine levels following LPS
infusion

Blood samples were collected 1, 3 and 6 h after intravenous
infusion of LPS, and plasma levels of cytokines were
analysed. Administration of LPS caused an immediate and
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substantial rise in plasma level of TNF-a (Fig. 5b). Subse-
quently, levels decreased gradually but remained consider-
ably higher than baseline values even after 6 h. Conversely,
the plasma level of IFN-g increased gradually and remained
high at the 6 h time-point (Fig. 5c). Following LPS infusion,

plasma levels of IL-1a, IL-2, IL-6 and IL-10 increased
rapidly, levelled off and remained at an elevated level
throughout the experiment (Fig. 5).

In the SBGsc group, the LPS-induced rise in IFN-g and
IL-6 levels were significantly attenuated (IFN-g; P < 0·001,
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IL-6; P < 0·001) compared to placebo-treated animals at 6 h
(Fig. 5c,d). SBGsc-treated animals also had significantly
higher plasma levels of IL-10 compared to both placebo
(P < 0·001) and SBGpo (0·001) at 1 h (Fig. 5f).

In the SBGpo group, levels of IFN-g (P < 0·01) and IL-6
(P < 0·001) were also significantly attenuated compared to
placebo control rats at 6 h (Fig. 5c,d). Furthermore, levels of
IL-1a (P < 0·01) and IL-2 (P < 0·01) were significantly
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attenuated compared to placebo control rats at 6 and 3 h,
respectively (Fig. 5a,e).

Neither SBGsc nor SBGpo treatment reduced the
elevated levels of TNF-a significantly, although a tendency
towards reduction in TNF-a level was observed at 3 and 6 h
(Fig. 5b). In the sham animals, no significant differences in
plasma levels between placebo and SBG treatment were
observed for any of the studied cytokines at 1, 3 and 6 h
(data not shown).

Discussion

In this report we demonstrate for the first time that prophy-
lactic treatment with orally administered water-soluble
b-1,3/1,6-glucan produces a beneficial effect on haemody-
namics and attenuates critical organ injury in the LPS-
challenged rats.

Several animal sepsis models exist, but none fully resemble
the timing of disease onset, progression and the use of sup-
portive therapeutic intervention in clinical human sepsis.
Systemic injection of LPS, a key mediator in Gram-negative
sepsis, has been demonstrated to produce pathophysiologi-
cal alterations, including systemic inflammation, haemody-
namic disturbance and organ dysfunction similar to those
reported for septic patients. We chose to investigate the
outcome of oral prophylactic b-glucan treatment in the
applied endotoxin-based model because the time of onset,
the amount of circulating endotoxin and the severity of the
sepsis-like reaction is tightly controlled [28].

Whether b-glucans are absorbed from the gastrointestinal
tract has been a matter of dispute. Recently, Rice et al. [8]
administered fluorescently labelled b-glucans orally to rats
and detected fluorescence in plasma shortly after adminis-
tration, suggesting rapid uptake. However, they did not
address whether the detected fluorescence originated from
fluorochromes associated with b-glucan in plasma or from
detached fluorochromes. Conversely, in a recent phase I
clinical trial Lehne et al. [16] reported lack of systemic
absorption of orally administered soluble b-glucan. We
found that oral administration of SBG to rats produced
plasma levels of b-glucan 17-fold higher than that observed
by us in the placebo control animals. The total amount of
b-glucan in plasma was estimated to be approximately 30 ng
following 14 consecutive days of oral administration of
5–6 mg per day. Thus only a minute fraction of a single oral
dose of SBG was translocated to plasma and the biological
relevance of intestinal absorption remains uncertain. Phar-
macokinetic analysis and further comparisons between the
two chosen routes of delivery were beyond the scope of this
work. Tissue levels of SBG were not quantified due to meth-
odological limitations.

Dendritic cells (DCs) sample constitutively the intestinal
mucosa for food- and environmental antigens, commensal
microbes and their products. These DCs migrate from the
intestinal epithelium and Peyer’s patches to the mesenteric

lymph nodes (MLNs), where they are involved in the devel-
opment of oral tolerance and systemic immunity [29]. We
speculate that mucosal DCs sample or interact with soluble
b-glucan locally via projections across the epithelium and
then migrate via afferent lymphatics to the MLNs, where
immune modulation is initiated. In support of this hypoth-
esis, Rice et al. [8] reported recently that orally administered
b-glucan was bound and internalized by intestinal epithelial
cells and gut-associated lymphoid tissue leading to
increased dectin-1 and Toll-like receptor 2 expression asso-
ciated with increased survival in experimental sepsis. Fur-
thermore, Hong et al. [11] demonstrated that fluorescent
b-glucan particles were taken up by gastrointestinal mac-
rophages and shuttled to the spleen, lymph nodes and the
bone marrow.

In severe sepsis and septic shock the release of proinflam-
matory mediators leads to haemodynamic disturbances. The
present investigation demonstrated clearly that oral, as well
as subcutaneous, administration of SBG had beneficial
effects on the mean arterial blood pressure in rats after
experimental induction of endotoxaemia. The protective
effect became pronounced as the shock response progressed
and at the 5·5- and 6-h time-points, MAP in the orally
treated group was significantly higher than in the placebo
control group.MAP in the subcutaneously treated group was
significantly elevated at 6 h compared to placebo.

We observed a gradual decrease in blood pressure in the
sham animals, similar to what has been described in this
model previously [30]. We find it plausible that the gradual
fall in MAP is caused by the stress of the surgery in a non-
sterile environment: cannulation, repeated blood sampling
and the fact that the animals are under anaesthesia for more
than 6 h. Reduced blood pressure in sham animals over time
resulted in no statistically significant difference in MAP
between placebo and sham-treated animals at the late time-
points, although a clear trend was observed. Furthermore, a
single animal with vastly improved MAP dynamics was
observed in the placebo group, explaining the large s.e.m.
value. Nevertheless, indicators of organ injury and cytokine
levels for this animal indicated development of a significant
shock reaction with organ injury.

The cellular and molecular mechanisms behind the
observed haemodynamic protection effect of orally admin-
istered SBG on MAP remain unknown. Although controver-
sial, b-glucans have been demonstrated to hold anti-oxidant
properties [31]. Accordingly, SBG treatment may affect the
oxidative status, and hence mediate indirect effects on
myocardial- and smooth muscle contraction and conse-
quently enhance blood pressure.

Infusion of LPS to rats resulted in increased plasma levels
of creatinine and urea, indicating impaired glomerular fil-
tration due to renal injury. Here we demonstrated that oral
administration of SBG significantly attenuated plasma crea-
tinine levels and also resulted in a minor reduction of plasma
urea in the endotoxic rats. However, subcutaneous delivery
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of the soluble b-glucan did not mediate the same level of
protection against renal injury.

To monitor liver injury we measured plasma levels of
ALAT and ASAT, caused by hepatocyte leakage, although
ASAT may also be released from skeletal and heart muscle
cells (reviewed in [32]). Accordingly, our observation that
SBG significantly attenuated the plasma levels of ASAT and
ALAT indicated strongly that SBG had a protective effect
against LPS-induced hepatic injury. Both subcutaneous and
oral administration of soluble b-glucan mediated protection
against liver injury and dysfunction in contrast to the better
efficacy of oral b-glucan in reducing kidney injury. The
mechanism behind the organ-protective capacity of
b-glucan, however, remains elusive. We hypothesize that the
superior blood pressure in the SBG-treated rats may contri-
bute to the reduced kidney and liver injury, reflecting the
benefit of enhanced organ perfusion.

Our observations on the organ-protective effect of SBG
are in agreement with recent papers. Sener et al. [2] and
Toklu et al. [26] demonstrated reduced TNF-a levels follow-
ing administration of b-glucan in animal models of sepsis,
suggesting that the organ-protective capacity of SBG may be
due to modulation of the cytokine profile in the endotoxic
rat. We found that prophylactic subcutaneous treatment
with SBG produced a moderate increase in baseline plasma
levels of IL-1a, whereas the expression level for the other
cytokines studied was not significantly changed, regardless of
delivery route. The literature on the effects of b-glucan on
cytokine expression is inconsistent, probably reflecting a
complex biological interplay as well as the use of different
experimental systems and a variety of b-glucan preparations.
In agreement with our findings, Rasmussen and coworkers
[7] demonstrated that treatment with aminated soluble
b-glucan and b-glucan-derivatized microbeads resulted in
increased levels of IL-1 but no change in TNF-a in a murine
model. Although Engstad et al. [33] found that soluble
b-glucan induced production of IL-8 and monocyte tissue
factor as well as minor amounts of TNF-a, IL-6 and IL-10 in
human whole blood cultures, Wakshull and coworkers [34]
found no production of inflammatory cytokines following
glucan exposure in a similar assay. b-Glucan treatment of
isolated leucocytes and monocytic cell lines has, to a variable
degree, induced or had no effect on production of
inflammatory cytokines [4,35]. Furthermore, conflicting
data exist regarding the activation or inhibition of the
transcription factors nuclear factor-kappa B (NF-kB) and
NF-interleukin-6 (IL-6) transcription factor by b-glucan
[5,35]. These inconsistencies contribute to the enigma asso-
ciated with the mechanisms by which b-glucans work.

LPS activates an immense range of genes, including an
array of inflammatory mediators with the capacity to cause
injury to vital organs (reviewed in [36]). In contrast to Sener
et al. [2] and Toklu et al. [26], we did not observe a statisti-
cally significant reduction in TNF-a levels following SBG
treatment. Thus, the observed organo-protective effect of

SBG appears not to be coupled solely to the modulation of
this key mediator of inflammation. We found that LPS-
induced increase in plasma IL-1a, IFN-g, IL-6 and IL-2 levels
were attenuated at later time-points following prophylactic
treatment with SBG, suggesting that these mediators in the
early phase of sepsis may return more rapidly to baseline
levels in SBG-treated rats. In accordance with our data,
Nakagawa et al. [37] reported that soluble b-glucan
extracted from Candida albicans significantly suppressed
endotoxin-induced IL-6, IL-2 and IFN-g production in cul-
tures of human monocytes or peripheral blood mono-
nuclear cells. In contrast to our observations, Soltys and
Quinn [4] reported a reduction in TNF-a production and
described a substantial increase in IL-6 production from
lymphocytes and monocytes isolated from b-glucan-treated
mice following a subsequent challenge with LPS in vitro.

The subtle changes in the cytokine profile reported here
are unlikely to explain solely the observed beneficial effect of
SBG on organ function and haemodynamics in the endot-
oxaemic rat. Nevertheless, the cytokine data demonstrate
that SBG prophylaxis does affect the systemic inflammation
induced by LPS infusion. Notably, this is the case even after
oral applications that produce low plasma levels of SBG. The
contribution of this cytokine modulation on the observed
organoprotective and haemodynamic effect remains
unknown.

The present work identified a discrepancy between the
effects of oral and subcutaneous administration of b-glucan.
Plasma IL-10 and urea levels were significantly higher in the
subcutaneously treated group at 1 and 6 h, respectively, com-
pared to the orally treated animals. Interestingly, renal pro-
tection was seen only in the SBGpo group, despite the fact
that the plasma level of SBG in the SBGsc group was much
higher. Moreover, the higher plasma level of SBG in the
SBGsc group did not lead to superior protection of the liver,
recovery of MAP or modulation of cytokines compared to
oral administration. Thus, it seems that the plasma level does
not correlate with the observed effect of SBG for any of the
parameters tested. This suggests that discrete cellular and
molecular mechanisms may be involved in the mode of
action, depending on the route of delivery. Further research
is required to elucidate this discrepancy.

In conclusion, we demonstrated a striking positive effect
on the haemodynamics during the progression of LPS-
induced shock in rats that had received prophylactic SBG
treatment. In spite of the fact that only a small fraction of
orally administered b-glucan was absorbed from the gas-
trointestinal tract to the circulation, oral administration of
SBG had a more pronounced effect than subcutaneous
injection. We observed attenuated levels of indicators of
kidney and liver injury following SBG treatment, which may
be due to enhanced organ perfusion. Additionally, SBG pro-
phylaxis caused subtle changes in the cytokine profile,
including attenuated levels of mediators of inflammation
subsequent to endotoxin challenge. Characterization of how
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b-glucans exert their biological effects may add to the under-
standing of the workings of the innate immune system and
may be helpful in identifying new targets and applications
for b-glucans in human therapy.
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Corrigenda

In [1], IL-1b is erroneously named IL-1a on several occasions in the text.

IL-1b is used correctly in the abstract (p. 168) and in the relevant figure heading (Fig 5a, p. 173).

IL-1a is incorrectly used on seven (7) occasions throughout the paper:
• p 169, Top left column (Introduction), line 3.
• p 171, Bottom right column (Results), line 40.
• p 172, Bottom right column (Results), line 1.
• p 173, Bottom right column (Results), line 4.
• p 173, Figure legend, figure 5.
• p 175, Center left column (Discussion), line 26.
• p 175, Top right column (Discussion), line 3.

IL-1a should be substituted with IL-1b in all these occurrences.

In [1], an extra comma was introduced in the keywords list: ‘multiple organ dysfunction, syndrome (MODS)’. This is incorrect
and should read ‘multiple organ dysfunction syndrome (MODS)’.

We apologize for these errors.
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Abstract

 

Background and objective: Treatment of inflammatory bowel disease (IBD) is associated 

with significant adverse reactions and unsatisfactory efficacy, thus new therapies are 

welcomed. �-Glucans are glucose polymers with an array of stimulatory effects on the 

immune system. We set out to investigate the effect of soluble Saccharomyces cerevisiae-

derived �-1,3/1,6 glucan (SBG) on experimental ulcerative colitis (UC). Methods: 

Experimental colitis was induced by exposing mice to dextran sulphate sodium (DSS, 1.5% 

w/v) for 7 days followed by regular drinking water for 4 days. Some mice were pretreated 

for 7 days with SBG-supplemented drinking water (100mg/L), and SBG was supplied 

throughout the experiment for these mice. Mice supplied with regular drinking water or 

SBG only served as controls. Results: Oral SBG administration reduced colitis-associated 

mortality and body weight loss. Furthermore, SBG treatment attenuated DSS-induced 

colonic inflammation and tissue damage, characterized by lowered histopathology score. 

Also, colitis-associated colon shortening and thymic involution was attenuated by SBG 

treatment. Finally, colitis-associated systemic inflammation was attenuated in SBG treated 

mice. Conclusion: We demonstrate a beneficial effect of oral SBG administration on key 

parameters in experimental UC and propose that SBG have a potential as a therapeutic agent 

in future IBD management. It remains unanswered, however, whether SBG enhance 

mucosal barrier function or modulate the inflammation secondary to epithelial injury. 
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Introduction

 

Inflammatory bowel disease (IBD) refers to two related chronic relapsing inflammatory 

disorders: ulcerative colitis (UC) and Crohn's disease (CD). UC affects the inner lining of 

the colon which becomes inflamed and develops ulcers while CD tends to involve the entire 

bowel wall and commonly affects the terminal ileum and parts of the colon, but may affect 

any part of the gastrointestinal tract (1). The incidence of IBD varies considerably world 

wide with incidence rates between 0.5-24.5/105 and 0.1-16/105 inhabitants for UC and CD, 

respectively. The highest rates are reported in Northern and Western Europe as well as 

North America (2).  

The etiology of both UC and CD is complex. The discovery of susceptibility genes 

has demonstrated the importance of innate and adaptive immune responses and epithelial 

barrier integrity in IBD pathogenesis. Environmental factors, including commensal bacteria, 

are implicated in IBD development. Accumulating evidence suggests that an inappropriate 

immune response to non-pathogenic microbes of the intestine and other luminal antigens 

plays a critical role in the initiation and pathogenesis of IBD (3, 4).  

IBD is routinely treated with antibiotics, immunosuppressive- and anti-inflammatory 

drugs, and more recently by promising antibody-based therapeutics. Although these 

strategies may prove effective, available therapeutics are associated with considerable 

adverse reactions (5) including opportunistic infections (6). Surgery continues to have an 

important role in IBD treatment as 30-40% of UC patients and 70% of CD patients require 

surgical intervention (7). Notably, as many as 40-60% of IBD patients respond poorly to 

current standard therapy, indicating a considerable need for new, more effective and safe 

therapies (8).   

Several animal models have been developed to investigate the etiology and 
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pathophysiology of IBD and to evaluate new treatments. Experimental models of IBD can 

be roughly divided into three main categories: models that are based on genetic defects in 

immune regulation (spontaneous or engineered), models based on transfer of colitogenic 

cells to immunocompromised hosts, and models that rely on a chemical insult to the mucosa 

(reviewed in 9, 10). We have employed the widely used dextran sulfate sodium (DSS) 

model. Oral exposure to water-dissolved DSS induces a reproducible acute colitis in 

rodents. Although the precise molecular mechanism behind DSS-induced colitis remains 

elusive, DSS appears to have a direct toxic effect on the basal crypt epithelium, leading to 

reduced mucosal barrier function, subsequently resulting in inflammation and ulceration 

(11).   

�-Glucans are glucose polymers with a variety of stimulatory effects on the immune 

system. �-Glucan administration has been reported to modulate cytokine profiles, enhance 

protection against sepsis, infections and tumor development and promote wound healing 

(12). Although most studies on �-glucan in vivo have employed systemic delivery, we 

recently demonstrated that oral feeding of soluble Saccharomyces cerevisiae-derived �-

1,3/1,6 glucan (SBG) provided better protection against experimental endotoxemia and 

associated multiple organ dysfunction syndrome in rats than subcutaneous injection of SBG 

(13). 

 Because �-glucan may modify inflammation, enhance wound healing and possibly 

function as a pre-biotic (affect the composition of indigenous gut microbiota) (14), we 

postulated that SBG would have a protective effect on experimental IBD. The aim of this 

study was to investigate the protective capacity of orally administered SBG in a murine 

model of UC (11). We provide evidence here that oral SBG administration ameliorated key 

parameters of DSS-induced colitis, indicating a potential for novel use of �-glucan in IBD 

management.  

 4



Materials and Methods 

 

Materials 

Dextran Sulfate Sodium (DSS, MW 36,000-50,000) was purchased from MP Biomedicals, 

Inc. (Solon, Ohio, USA). Endotoxin free (<0.5EU/mL) SBG, a Saccharomyces cerevisiae-

derived water-soluble �-1,3/1,6-glucan was provided by Biotec Pharmacon ASA (Tromsø, 

Norway). Anesthesia: Hypnorm® (fentanyl citrate 0.315 mg/mL and fluanison 10 mg/mL, 

VetaPharma Ltd, Leeds, UK) and midazolam (5 mg/mL, B. Braun Meslungen AG, 

Germany) were diluted 1:1 in sterile water and subsequently combined in a 1:1 ratio. 

 

Animals 

Male BALB/c mice were purchased from Taconic Europe (Ejby, Denmark) and maintained 

in the minimal disease unit at the Centre for Comparative Medicine at Rikshospitalet 

University Hospital, Oslo, Norway for at least one week before they were entered into 

experiments. Animals were housed 2 mice per cage, supplied with water and conventionally 

fed (Rat and Mouse No.3 Breeding, Special Diets Services, Witham, Essex, UK) ad libitum. 

Cages were kept at 21±1oC and 55±10% relative humidity. Light conditions consisted of 

alternating 12h light/dark cycles with one hour dusk and dawn. The present investigation 

was approved by the National Animal Research Authority and conducted in accordance 

with the Norwegian Animal Welfare Act and the Norwegian Regulation on Animal 

Experimentation.  
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Induction and treatment of colitis 

Experimental colitis was induced by exposure to DSS dissolved in the drinking water for 7 

days. Animals were pretreated as indicated below for 7 days before induction of colitis. 

Mice were sacrificed following an acute-/recovery phase of 4 days. 

 

Mice [22.3 (19.4-24.9) g; mean and (range)] were randomly distributed to four experimental 

groups: 

1. Control (Ctr) animals (n=12): Regular drinking water was provided throughout the 

experiment. 

2. SBG treated animals (n=12): SBG (100mg/L) was provided in the drinking water 

throughout the experiment. 

3. DSS treated animals (n=16): Regular drinking water was provided in the pretreatment 

phase (7 d). DSS (1.5% w/v) was administered during the induction period (7 d) and 

regular drinking water was continued in the acute-/recovery phase (4 d). 

4. SBG+DSS treated animals (n=15): SBG (100mg/L) was provided in the drinking water 

in the pretreatment phase (7 d). DSS (1.5% w/v) dissolved in water containing SBG 

(100mg/L) was administered during the induction period (7 d) and SBG (100mg/L) in 

the drinking water was continued in the acute-/recovery phase (4 d). 

 

Termination and necropsy   

Main criterion for humane endpoint was body weight reduction of >20% of baseline weight. 

Mice assessed as clearly moribund, without meeting the weight criterion, were also 

euthanized for animal welfare reasons.  
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Animals were anesthetized by subcutaneous injection of Hypnorm® and midazolam 

(50-75μL/10g body weight) prior to cardiac puncture. Postmortem mice were soaked in 

70% ethanol and fixed to a dissection board. The abdomen and thorax was opened and the 

colon and thymus were excised. The colon was flushed with cold PBS and partitioned into 

proximal-, medial- and distal colon segments prior to fixation. All tissue samples were kept 

on ice and fixed in 10 % formalin for 24 h at 4 oC.  Fixed tissue samples were transferred to 

PBS with 0.1% formalin and stored at 4 oC for subsequent preparation and analysis. Blood 

collected by cardiac puncture at termination was allowed to clot on ice. Serum was 

harvested following centrifugation and stored at -70 oC for subsequent analysis. 

 

Clinical evaluation 

Body weight, fluid consumption and general observation  

Body weight and fluid consumption was monitored and recorded daily. Mice were 

monitored for signs of rectal bleeding, diarrhea, and general signs of morbidity, including 

hunched posture and failure to groom. 

Colon length and appearance 

Colon was excised and left to rest on a non-absorbing surface to reduce tension before the 

total colon length was measured and photographed. Colon appearance, including absent or 

unformed stool and macroscopic bowel thickening, was recorded.       

Thymus assessment  

Formalin fixed thymus were blotted onto absorbing paper to remove excess liquid. Both 

thymus lobes were weight separately (Ohaus Explorer®, d= 0.1mg, Ohaus, Switzerland) and 

the average lobe weight was calculated and recorded. 
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Histological scoring 

Formalin fixed biopsies were processed using an automated tissue processor (Leica TP1050, 

Leica Instruments GmbH, Nussloch, Germany) and subsequently embedded in paraffin. 

Sections were cut at 4μm (Leica RM 2135, Leica Instruments GmbH), stained with 

hematoxylin and eosin (H&E), and evaluated by a trained pathologist (K.G.) blinded to the 

sample identity and study groups.  

 Histopathology grading of colitis was determined largely as described in (15), with 

some adaptations (Table 1). The tissue damage score was adjusted by multiplying the score 

with a factor corresponding to the extent of ulceration (Table 1). Proximal-, medial- and 

distal colon segments were assessed separately.  

 

Cytokine analysis 

Serum cytokine levels were measured using a mouse-specific Bio-Plex 23-plex suspension 

array assay (BioRad Laboratories, Hercules, CA, US). All samples were diluted 1:4 in Bio-

Plex species specific serum sample diluent buffer (BioRad Laboratories) and the assay 

carried out according to manufacturer’s instructions. Measurements and data analysis were 

performed on a Bio-Plex system, powered by xMAP technology by Luminex, operated with 

Bio-Plex Manager 4.1 software (BioRad Laboratories). The instrument was calibrated with 

the CAL2 settings (LOW RP1 target value) using Bio-Plex calibration beads (BioRad 

Laboratories).  Samples were analyzed as single samples, whereas standards were analyzed 

in duplicates. Analytes below detection level or unchanged in all experimental groups were 

not included in the figure (Fig. 6). 

 
 

 8



Statistical analysis 

Body weight data are expressed as mean ± standard error of the mean (SEM) values and 

analyzed using two-way analysis of variance (ANOVA) with Bonferroni posttest. 

Categorical data on mortality was expressed as percent survival and analyzed with the 

logrank test. Histopathology score, colon length and thymus weight data were expressed as 

median values and analyzed using the Mann-Whitney test. Cytokine data are expressed as 

mean ± standard deviation (SD) values and analyzed using one-way ANOVA with 

Bonferroni’s multiple comparison test. Data presented are pooled from two independent 

experiments. All statistical analysis was carried out using GraphPad Prism, version 4 

(GraphPad Software, San Diego, CA, USA). Differences at P<0.05 were considered 

statistically significant.  

 

 9



Results 

Oral SBG administration attenuates colitis-associated body weight 

loss.

To evaluate a possible protective role of SBG in murine DSS colitis we designed a treatment 

regimen consisting of a prophylactic phase (day -7 to day 0), an induction phase (day 0 to 

day 7), and an acute phase/recovery period (day 7 to day 11). We randomly divided wild 

type BALB/c mice into four experimental groups as detailed in the methods section: Ctr, 

SBG, DSS and DSS+SBG.  

Body weight and fluid consumption was recorded daily during pretreatment, colitis 

induction, and for 4 days after DSS termination. Water consumption was 5-7 

mL/mouse/day, corresponding to a daily SBG dose of 20-30mg/kg (data not shown). There 

was no significant difference in fluid consumption between the experimental groups (data 

not shown). We observed a dramatic weight loss of approximately 15% between day 6 and 

10 in DSS-treated animals. Also the DSS+SBG group experienced colitis-associated weight 

loss but was significantly protected compared to the DSS group (Fig. 1).  Furthermore, the 

onset of weight reduction appeared delayed in the SBG+DSS group compared to the DSS 

group. Control animals increased steadily in weight throughout the experiment with no 

difference in body weight dynamics between the SBG-treated animals and mice receiving 

regular drinking water (Fig. 1). 
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Oral SBG administration improves survival in experimental colitis. 

DSS exposure induced clinical symptoms including bloody stool, diarrhea, rectal bleeding, 

inactivity, failure to groom, and in some severe cases hunched posture and trembling. 

Moribund animals and mice experiencing weight loss exceeding 20% of base line weight 

were euthanized for humane reasons.  In the DSS+SBG group only 1 out of 15 animals was 

euthanized compared to 6 out of 16 mice in the DSS group. Thus, oral SBG treatment 

protected against colitis-associated mortality (Fig. 2).  

 

Oral SBG administration attenuates DSS-induced colonic 

inflammation and tissue damage. 

To further investigate whether SBG administration could protect against DSS-induced 

inflammation and ulceration, histology sections of the proximal, medial and distal colon 

were examined.  No apparent pathology was observed in the Ctr- or SBG groups.  In the 

DSS group, on the other hand, considerable inflammatory cell infiltration extending into the 

submucosa, and in several cases with transmural involvement, was observed. Severe 

distortion of the mucosal architecture, including lack of distinct crypts and goblet cells, 

moderate to extensive ulceration, in some cases with total lack of epithelium, was disclosed. 

Mucosal edema and signs of bowel wall thickening was also identified (Fig. 3A). In 

accordance with previous publications (11), inflammation and tissue damage was more 

prominent and consistent in distal than in proximal sections of the colon (data not shown). 

Therefore, we compared distal sections from the DSS+SBG and DSS groups and found a 

significantly lower histopathology score in the SBG-treated group (Fig. 3B).  
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Oral SBG administration reduces colitis-associated colon 

shortening.

Colon shortening is a well established disease-associated characteristic of DSS-induced 

colitis (11). To further evaluate the protective capacity of SBG on experimental colitis, 

colons were excised and the length was measured. Oral SBG administration alone did not 

have an effect on colon length. In the DSS group colons were approximately 30% shorter 

than colons from control animals. The colon length in the DSS+SBG group was clearly 

affected by DSS-exposure, but was significantly longer than colons in the DSS group (Fig. 4 

A and B). The 6 shortest colons in the DSS group all originated from euthanized animals, 

suggesting that shortening of the colon correlated well with colitis-associated morbidity. We 

also observed that colons from the DSS group contained largely unformed stool as opposed 

to fecal pellets in the DSS+SBG group and control groups (Fig. 4A). Macroscopic wall 

thickening distally and loss of bowel transparency was apparent in both DSS- and 

DSS+SBG groups although it appeared more striking in the DSS group.  

 

Oral SBG administration protects against thymus involution in 

acute colitis. 

Thymic involution has been associated with experimental colitis including DSS-induced 

colitis (16). To investigate whether oral SBG administration had an impact on thymic 

involution in acute colitis, the thymus was collected post mortem. Mice euthanized due to 

the severity of colitis had reduced thymic mass compared to control animals, suggesting that 

reduced thymic weight correlated with colitis-associated morbidity (Fig. 5, open symbols). 

Interestingly, oral SBG administration significantly limited colitis-associated thymus 

involution (Fig. 5).  
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Oral SBG administration limits systemic inflammation in acute 

colitis.

To investigate whether the reduced inflammation observed in the colon is mirrored in the 

systemic compartment, serum samples were analyzed for levels of cytokines and 

chemokines.  DSS-induced intestinal inflammation was associated with increased systemic 

levels of key mediators and regulators of inflammation (Fig. 6). In the DSS+SBG group 

serum levels of interleukin (IL)-1�, IL-3, IL-6, IL-10, IL-17, monocyte chemotactic protein 

(MCP)-1 and interferon (IFN)� were significantly lower than what we observed in the DSS 

group (Fig. 6). In most instances these cytokines/chemokines were not above baseline levels 

in SBG+DSS animals while they were significantly increased in the DSS group. 

Furthermore, a tendency towards reduction in tumor necrosis factor (TNF)�, IL-1�, IL-5, 

IL-13, MIP-1� and GM-CSF was observed in the DSS+SBG group compared to the DSS-

group. Serum IL-2 was significantly elevated in both the DSS- and the DSS+SBG groups. 

No difference between the Ctr group and SBG group was observed for any of the assessed 

analytes (Fig. 6 and data not shown). 
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Discussion

DSS-induced colitis is a widely used mouse model of human IBD. Here, we demonstrate 

that oral administration of soluble S. cerevisiae-derived �-1,3/1,6-glucan (SBG) mediated a 

protective effect on all investigated parameters of disease severity in this experimental 

colitis model. Oral SBG treatment reduced colitis-associated weight loss, mortality, colon 

shortening and thymic involution and attenuated colonic inflammation and tissue damage in 

the experimental animals. To our knowledge, this is the first study demonstrating a 

protective effect of soluble �-glucan in experimental colitis. 

 Although animal models of UC and CD do not fully recapitulate all the traits of 

human IBD, they are valuable tools to delineate molecular mechanisms of IBD pathogenesis 

and to evaluate new therapeutic strategies. In a recent study te Velde and co-workers (17) 

compared the colonic gene expression profiles in 3 mouse models of IBD: (I) Transfer of 

colitogenic CD45RB T-cells to immunodeficient hosts, (II) DSS-induced colitis and (III) 

2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis. They demonstrated that of 32 

genes known to be differentially expressed in IBD, 30 were up- or down regulated in the T-

cell transfer model, compared to 15 and 2 in the DSS and TNBS models, respectively, 

inferring that the chronic colitis induced in the T-cell transfer model most closely mimics 

human IBD (17). Oral exposure to water-dissolved DSS induces a reproducible acute colitis 

in rodents without affection of the small intestine. Resembling UC, the hallmark of DSS-

induced colitis is diarrhea, bloody stool, body weight loss, mucosal ulcer formation and 

inflammatory cell infiltration to the colonic lamina propria.  Furthermore, colon shortening 

and thymic involution are characteristics of DSS-induced colitis. Importantly, DSS-induced 

murine colitis is treatable with drugs frequently used to control human UC (9-11).   
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 SBG administration alone did not affect body weight or any other parameter that we 

measured compared to control animals receiving regular drinking water. Oral pretreatment 

and continued SBG exposure significantly reduced the severity of all investigated 

parameters of experimental colitis.  Thus, SBG had a protective effect against DSS-induced 

colitis. This is in agreement with Nosál'ová et al. (18), which found that pleuran, an 

insoluble �-glucan derived from oyster mushrooms, reduced colonic injury in rats injected 

with acetic acid to induce acute colitis.  

Although the majority of studies concerning the properties of �-glucans in vivo have 

employed systemic delivery, several studies have demonstrated that orally administered �-

glucan mediate biological responses. We recently demonstrated that oral administration of 

SBG mediated protection against experimental endotoxemia and shock-associated organ 

failure in rats (13). Uptake of orally administered �-glucans from the gastrointestinal tract 

has been a matter of dispute. Lehne et al. (19) reported lack of systemic uptake following 

oral SBG administration in humans. Employing a structurally related, fluorescently labeled 

�-glucan, Rice et al. (20) reported rapid systemic uptake following oral administration. In 

our previous study, we found detectable plasma levels of the ~20kDa �-glucan following 

three weeks of feeding, but only a minute fraction of the total SBG dose was detected in 

circulation. Furthermore, the biological activity of fed SBG in modulating endotoxemia 

could not be accounted for by the plasma levels of �-glucan suggesting that mechanisms of 

�-glucan action may depend on the route of delivery (13). Thus, the relevance as well as the 

mode of gastrointestinal �-glucan uptake remains to be determined. Considering that �-

glucan action does not necessarily correlate with plasma levels, we did not quantify the level 

of SBG in circulation or in tissue samples in the present work.       

 A broad range of DSS concentrations, exposure times and exposure cycles and 

assorted mouse strains with diverse susceptibility have been employed to study pathogenesis 
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of colitis and to evaluate new therapeutics in this model (21, 22).  In the present study a 

relatively mild regimen, 1.5% DSS for 7 days in male BALB/c mice, caused severe disease, 

demonstrating the importance of appropriate dose titration. The sensitivity to DSS appeared 

to depend on microbial or other environmental factors as we have observed different 

susceptibility in genetically identical mice with known differences in their commensal 

intestinal flora (unpublished observations).   

 Reduced mucosal barrier function, as a consequence of DSS feeding, causes colonic 

inflammation with inflammatory cell infiltration and ulceration. Our histopathology analysis 

demonstrated that SBG administration reduced colitis-associated inflammation and tissue 

damage, supporting the notion that �-glucan may protect against colitis development and 

progression. In accordance with Okayasu (11) and others we observed that the colonic 

inflammation and tissue damage was more pronounced in the distal part of the colon, with 

moderate inflammation in the medial segment and no apparent pathology proximally.  

We demonstrate that �-glucan treatment protected against colitis-induced thymic 

involution. Involution may be due to increased thymocyte migration associated with cell 

recruitment to the site of inflammation and SBG therapy may attenuate thymus involution 

by limiting the initial DSS-induced inflammation. Alternatively, one may speculate that 

SBG-stimulated dendritic cells (DCs) or macrophages interact with thymocyte proliferation 

and maturation directly or indirectly. Reid et al.. demonstrated strong dectin-1 expression, a 

major �-glucan receptor, on subpopulations of DCs and macrophages in the medullary and 

corticomedullary regions of the thymus, suggesting that dectin-1 play a role in leukocyte 

interactions and T-cell development (23).  

 As expected, serum levels of pro-inflammatory cytokines and chemokines were 

elevated in the DSS group. Also, systemic IL-10, a key regulatory cytokine, was found to be 

elevated in this group probably reflecting an attempt to resolve the inflammation. TNF� has 
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been demonstrated to be a major player in intestinal inflammation and a promising target in 

IBD therapy (reviewed in 24). In the present study a significant difference in serum TNF� 

levels between the study groups was not revealed by the statistical analysis with correction 

for multiple comparisons. In a separate analysis, however, comparing the DSS- and 

DSS+SBG groups only, p-values of <0.05 were obtained also for TNF�, IL-1� and IL-13. In 

line with the clinical histopathology data presented, oral SBG administration appeared to 

attenuate systemic inflammation. We believe that the systemic inflammation is secondary to 

the DSS-induced intestinal inflammation. Thus, the reduced serum levels of inflammatory 

mediators in the DSS+SBG group is likely to reflect the beneficial effect of SBG on the 

integrity of the intestine in DSS-exposed mice.  

IBD pathogenesis is associated with elevated levels of potent pro-inflammatory 

cytokines including IL-1�, IL-6, IL-12, IL-17, IL-23, IFN� and TNF� (reviewed in 25). 

Targeting of these key mediators of inflammation has proven to be a promising strategy in 

IBD management (26). Also, the important roles of IL-10 and transforming growth factor 

(TGF)�, key regulatory cytokines in mucosal homeostasis, have been evidenced by the 

development of spontaneous colitis in IL-10 deficient mice and mice with defective TGF� 

signaling, respectively (27, 28). �-Glucan administration reportedly modulate cytokine 

profiles in various animal models of inflammation. Bedirli et al. reported that �-glucan 

treatment reduced plasma levels of IL-1�, IL-6 and TNF� associated with attenuated lung 

injury in a rat model of sepsis (29). Breivik et al. demonstrated enhanced TGF� induction 

by peritoneal lipopolysaccharide (LPS) injection in rats orally pre-treated with SBG (30). 

We recently demonstrated that SBG administration attenuated a LPS-induced rise in plasma 

levels of IFN�, IL-1�, IL-2 and IL-6 in a rat model of endotoxin shock. We also reported a 

significant increase in plasma IL-10 levels (13).  
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In UC and DSS-induced colitis mucosal erosions and ulcers develop. Ulceration 

represented a major part of the reported histopatology score and the lower score in the 

DSS+SBG vs. DSS group was largely due to lower extent of ulceration. Although we 

hypothesize that SBG treatment limited the initial formation of ulcers in the inductive phase 

rather than enhanced mucosal recovery only after ulcer development, it is possible that �-

glucan may have beneficial effects on epithelial regeneration and healing of established 

wounds. In support of this hypothesis, SBG has been demonstrated to enhance healing of 

chronic ulcers in diabetic patients (31). Moreover, Portera et al. demonstrated that 

intravenous injection of �-glucan phosphate increased wound tensile strength, correlated 

with collagen biosynthesis, in experimental skin- and colon wound models (32).  

Patients with severe UC, refractory to medical treatment or with neoplastic 

transformation, require surgery and colectomy is ultimately indicated in approximately 25% 

of UC patients (33). Anastomotic leakage is a common adverse event following colectomy. 

Furthermore, corticosteroid exposure, which frequently is the case in UC, leads to impaired 

wound healing in bowel anastomosis. Interestingly, oral �-glucan treatment has been 

demonstrated to improve colonic anastomotic wound healing impaired by long-term 

medication in a rat model (34). 

The precise cellular and molecular mechanisms behind the immunomodulating 

properties of �-glucans remain elusive. Several �-glucan receptors with a wide distribution 

profile on both immune and non-immune cells have been described (12). Accumulating 

evidence suggests that dectin-1 is the primary receptor that mediates host responses to �-

glucans (35, 36). Dectin-1 has been proposed to collaborate with Toll-like receptors (TLRs) 

in a MyD88 and Syk dependent manner (37-41 and reviewed in 42). Dectin-1 activation 

without concomitant TLR activation results in expression of IL-10 and IL-2 mediated by 

activation of Syk (43). It is possible that SBG, which is a pure soluble �-glucan preparation 
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free of detectable protein, is particularly useful in this regard as it would presumably fail to 

engage TLRs. 

The dynamic interplay between the intestinal microflora and the host mucosal 

immune system plays a pivotal role in the initiation and pathogenesis of IBD. Thus, animal 

models with defective immune regulation completely rely on intestinal colonization for 

colitis development (44, 45). Also, altered flora composition in IBD patients and the 

therapeutic benefit of antibiotics, probiotics and prebiotics supports the notion that intestinal 

flora composition is of critical importance (46, 47). Interestingly, �-glucans have been 

proposed to have prebiotic properties, affecting the composition of the commensal flora. 

Work by Snart et al. demonstrated that a �-glucan supplemented diet resulted in 

Lactobacillus-enriched cecal flora in a rat model (14). Beneficial effects of Lactobacillus-

based probiotics have been demonstrated in animal models of IBD as well as in clinical 

trials (47).  

In conclusion, we demonstrate that oral administration of soluble �-glucan mediated 

protection against DSS-induced colitis evidenced by beneficial effects on all major 

parameters of experimental colitis. However, it remains to establish whether SBG therapy is 

beneficial in established or chronic colitis. Also it remains unanswered whether SBG 

enhance mucosal barrier function or modulate the inflammation secondary to epithelial 

injury. Despite increased understanding of the biology behind IBD and efforts to exploit this 

knowledge in the development of new therapies, there is still a considerable need for new 

effective and safe drugs to treat IBD patients. In light of our findings, and previously 

reported beneficial effects of �-glucan, SBG appear to be a promising drug candidate for 

IBD therapy in humans. Work in progress aims at elucidating the cellular and molecular 

mechanisms behind these promising findings. 
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Study Highlights 

What is current knowledge  

� IBD treatment is associated with considerable adverse reactions and unsatisfactory 

efficacy, thus new therapies are welcomed.  

� Accumulating evidence suggests that an inappropriate/dysregulated immune 

response plays a critical role in the instigation and pathogenesis of IBD.  

� �-Glucans mediates an array of stimulatory effects on the immune system. 

 

What is new here 

� Oral administration of soluble �-glucan (SBG) produced beneficial effects on all 

investigated parameters of experimental colitis. 

� We propose that SBG has a potential as a novel therapeutic agent in future IBD 

management. 
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Figure legends 

Figure 1. Effect of oral SBG administration on weight loss in acute 

colitis.

Mice were pretreated with SBG or regular drinking water for 7 days (day -7 to 0), prior to 

induction of acute colitis by oral exposure to DSS for 7 days (day 0 to 7). Body weight was 

recorded daily during pretreatment, colitis induction, and for 4 subsequent days during the 

acute- and initial recovery phase (Acu/Rec; day 7 to 11), after which the animals were 

sacrificed. Body weight is expressed as percentage of base line (BL) values, mean ± SEM. E 

= Euthanized mice: body weight reduction >20% or moribund; weight at time of euthanasia 

was extrapolated to subsequent days. *P<0.05, **P<0.01, ***P<0.001, DSS+SBG vs. DSS 

as determined by two-way analysis of variance with Bonferroni posttest. Data presented are 

pooled from two independent experiments. 

 

Figure 2. Effect of oral SBG administration on survival in acute colitis. 

Mice were pretreated with SBG or regular drinking water prior to induction of acute colitis 

by oral exposure to DSS as described. Mortality was recorded in the acute-/recovery phase 

following DSS-removal (from day 7 to planned termination at day 11) and expressed as 

percent survival. Humane endpoint criterion was body weight loss >20% of baseline weight. 

Unmistakably moribund animals not meeting the weight loss criterion were also euthanized. 

*P<0.05, DSS+SBG vs. DSS as determined by log-rank test. Data presented are pooled 

from two independent experiments. 
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Figure 3. Effect of oral SBG administration on colonic inflammation and 

tissue damage in acute colitis. 

Mice were pretreated with SBG or regular drinking water prior to induction of acute colitis 

by oral exposure to DSS as described. Postmortem, colons were excised, flushed with PBS 

and prepared for histological analysis. Formalin fixed, paraffin embedded, H&E stained 

sections were examined for inflammatory cell infiltration, tissue damage and the absence or 

presence of epithelial regeneration (Table 1).  A) Representative distal colon H&E sections 

from control animals (Ctr), SBG-treated animals (SBG), DSS-treated animals (DSS) and 

DSS and SBG combination-treated animals (DSS+SBG). Original magnification 100x. B) 

Distal colon histopatology score. Each data point represents one animal. Open symbols 

indicate animals euthanized for animal welfare reasons. Bars represent median values. 

*P<0.05, DSS+SBG vs. DSS as determined by Mann-Whitney test. Data presented are 

pooled from two independent experiments. 

Figure 4. Effect of oral SBG administration on colitis-associated colon 

shortening. 

Mice were pretreated with SBG or regular drinking water prior to induction of acute colitis 

by oral exposure to DSS as described. Postmortem, colons were excised and the colon 

length was measured.  A) Representative pictures of colons excised from control animals 

(Ctr), SBG-treated animals (SBG), DSS-treated animals (DSS) and DSS and SBG 

combination-treated animals (DSS+SBG). Images have been digitally enhanced (Adobe 

Photoshop CS 8.0, Adobe Systems Inc., San Jose, CA, USA). B) Colon length in mm. Each 

data point represents one animal. Open symbols indicate animals euthanized for animal 
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welfare reasons. Bars represent median values. *P<0.05, DSS+SBG vs. DSS as determined 

by Mann-Whitney test. Data presented are pooled from two independent experiments. 

Figure 5. Effect of oral SBG administration on thymus weight in acute 

colitis.

Mice were pretreated with SBG or regular drinking water prior to induction of acute colitis 

by oral exposure to DSS as described. Postmortem, thymus was excised. Following formalin 

fixation, weight (mg) was recorded. The average weight of one thymus lobe is presented. 

Each data point represents one animal. Open symbols indicate animals euthanized for 

animal welfare reasons. Bars represent median values. *P<0.05, DSS+SBG vs. DSS as 

determined by Mann-Whitney test. Data presented are pooled from two independent 

experiments. 

Figure 6. Effect of oral SBG administration on indicators of systemic 

inflammation in acute colitis.

Mice were pretreated with SBG or regular drinking water prior to induction of acute colitis 

by oral exposure to DSS as described. Blood, collected by cardiac puncture at sacrifice, was 

allowed to clot before centrifugation and serum collection. Serum cytokines and chemokine 

levels (pg/ml) were analyzed using a multiplex bead-array assay as detailed in the methods 

section. Data presented are mean ± SD values, 4-6 mice per group. * P<0.05, ** P<0.01, 

*** P<0.001 as determined by one-way ANOVA with Bonferroni’s multiple comparison 

test. # P<0.05 DSS+SBG vs. DSS as determined by Mann-Whitney test. The dotted line 

indicates the estimated detection limit of the assay.  
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Table 1 

     Histopathology scoring criteria 

Inflammatory cell infiltration Score 0-3 
Presence of occasional inflammatory cells in the lamina propria  0 
Increased numbers of inflammatory cells in the lamina propria 1 
Confluence of inflammatory cells extending into the submucosa  2 
Transmural extension of inflammatory infiltrate  3 

Tissue damage Score 0-3 
No mucosal damage 0 
Lymphoepithelial lesions 1 
Surface mucosal erosion or focal ulceration 2 
Extensive mucosal damage and extension into deeper structures of the bowel wall  3 

Extent of ulceration; epithelial surface area Factor 1-4 
  0 -   25% 1 
25 -   50% 2 
50 -   75% 3 
75 - 100% 4 

Epithelial regeneration Score 0-1 
Absent 0 
Present 1 
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Abstract

�-Glucans are glucose polymers with a variety of stimulatory effects on the immune system. 

Although little is known about the cellular and molecular mechanisms behind the beneficial 

effects, it has been suggested that� �-glucans may stimulate the mucosal immune system 

when administered orally. Aim: To identify effects of oral� �-glucan administration on gut-

associated lymphoid tissue (GALT) and the intestinal epithelium of healthy mice. Methods:  

Male BALB/c mice were provided drinking water supplemented with SBG, a water-soluble

Saccharomyces cerevisiae-derived �-glucan, ad libitum for 20 days. Control animals (Ctr) 

were provided regular drinking water. Results: SBG was well tolerated and no clinical signs 

of morbidity were noted. In the SBG group, the number of macroscopically visible Peyer’s 

patches (PPs) was approximately 40 % higher than what we observed in the Ctr group 

(P<0.01). Furthermore, the cross section area of isolated mesenteric lymph nodes (MLNs) 

was approximately 35 % larger than in the Ctr group (P<0.05). Despite evident changes in 

GALT, lymphocyte composition was not altered. Moreover, the number of proliferating 

epithelial cells was 37 % higher in the SBG group (P<0.01) and the size of the proliferative 

zone was 25 % larger (P<0.001) compared to Ctr. Conclusions: Mucosal application of 

SBG stimulate formation and/or expansion of PPs and MLNs. Increased epithelial 

proliferation suggests that SBG may also affect intestinal barrier function and/or restitution. 

Our data supports the hypothesis that �-glucans may enhance host protection, in part, by 

effects on the mucosal immune system. Such effects may be mediated both on the inductive 

sites of immune responses (PPs and MLNs) as well as the effector sites of immune defense 

(mucosal epithelium). 
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Introduction
 

Attempts to manipulate the immune system with natural compounds to prevent or treat 

disease, has led to the exploration of immunomodulating polysaccharides. �-Glucans are 

heterogeneous glucose polymers with a variety stimulatory effects on the immune system 

(reviewed in 1). �-Glucans reportedly improve host responses to infection (2-4), enhance 

protection against tumor development (5;6), sepsis (7-9), ischemia/reperfusion injury (10-

12) and colitis (13 and Sandvik et al., manuscript), promote wound healing (14-16) have 

adjuvant properties (17-19) and stimulate hematopoietic activity (20). Furthermore, effects 

on non-immune parameters including cholesterol reduction and blood glucose control 

(reviewed in 21) as well as pre-biotic properties (22) have been reported. �-Glucans are 

thought to exert their immunomodulating properties through specific receptors. Multiple 

cell-surface receptors, including Dectin-1, complement receptor 3, scavenger receptors and 

lactosylceramide, expressed on both immune- and non-immune cells, have been implicated 

in �-glucan recognition (reviewed in 23;24). Accumulating evidence points to Dectin-1 as 

the primary �-glucan receptor (25-27), but clearly alternative pathways exists (28;29).  

 The uptake of orally administered �-glucans from the intestine to systemic 

circulation, and the biological effect thereof, has been controversial. Yet, it is now 

recognized that �-glucans enhance host defence when delivered orally (e.g. 4;5;9;28). 

Although we and others recently demonstrated limited translocation to blood following oral 

�-glucan administration to experimental animals (4;9;28), it remains unclear whether �-

glucans may act directly on the gastrointestinal mucosa or if entry to the blood stream is 

required to mediate biological effects.  

 The intestinal epithelial barrier, consisting of a monolayer of epithelial cells, is 

crucial in confining the large intestinal microbiota and potentially harmful environmental 
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antigens to the luminal compartment while allowing nutrient absorption. The intestinal 

mucosa is the major port of entry for microorganisms and ingested exogenous materials. 

Consequently, a specialized defence system has evolved to fortify the vulnerable surface, 

handle the immense antigenic load and maintain homeostasis (30). The mucosal immune 

system is frequently divided into inductive sites and effector sites. The principle inductive 

site is organized mucosa-associated lymphoid tissue (MALT). Gut-associated lymphoid 

tissues (GALT) comprise Peyer’s patches (PPs), isolated lymphoid follicles (ILFs), local 

and regional draining lymph nodes (LN), including the mesenteric LNs (MLNs), and the 

appendix (31;32). Class switch recombination to IgA, the major antibody isotype and 

principal effector molecule in mucosal secretions (i.e. secretory IgA; SIgA), primarily takes 

place in the PPs, MLNs and ILFs (reviewed in 33). Furthermore, MLNs constitute a 

functional firewall between gut and systemic immune systems and are necessary for 

induction of oral tolerance and preservation of systemic ignorance to commensal 

microorganisms (34;35).  

 A network of immune cells scattered throughout the lamina propria (LP) and the 

epithelium constitute the effector sites of the intestinal immune system. The epithelium is 

populated by intra epithelial lymphocytes (IELs), predominantly cytotoxic CD8pos T cells, 

whereas the LP harbors CD4pos T cells, numerous antigen presenting cells (APCs) and vast 

numbers of Ab-secreting, primarily IgApos, plasma cells (reviewed in 36). IELs, frequently 

divided into two main groups based on the nature of their T cell receptor (�� vs. ��), are 

strategically located in proximity to the antigen-rich intestinal lumen where they serve on 

the first line of defense by eliminating infected or transformed epithelial cells in a highly 

regulated fashion (37). Additional non-specific and constitutive defense mechanisms, 

including secretion of mucus by goblet cells in the crypts of the intestine, production of anti-
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bacterial peptides (e.g. defensins) by paneth cells in the crypt base and constant epithelial 

shedding and renewal, contributes to host resistance (38-40).  

 It has been investigated whether �-glucans enhance the mucosal immune system. 

Lehne et al. reported that orally administered water-soluble �-glucan significantly increased 

saliva IgA- but not IgG-levels, without affecting the level of antibodies in circulation in 

healthy humans (41). Furthermore, Tsukada et al. found that oral �-glucan treatment 

increased the number of small intestine IELs (42).  

 The overall aim of this work was to identify and examine physiological changes 

potentially contributing to the health-promoting effects of �-glucans. Specifically we aimed 

at identifying effects of oral administration of SBG, a Saccharomyces cerevisiae-derived 

water-soluble �-glucan, on mucosal inductive- and effector sites in the intestine of healthy 

mice. We show a stimulatory effect of oral SBG on mucosal inductive sites which may 

modulate host immune responses. Furthermore, orally administered �-glucans enhanced 

epithelial proliferation, and thus conceivably may reinforce intestinal repair. 
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Materials and Methods 

Materials 

Endotoxin free (<0.5EU/mL) SBG, a Saccharomyces cerevisiae-derived water-soluble �-

1,3/1,6-glucan was provided by Biotec Pharmacon ASA (Tromsø, Norway). Anesthesia: 

Hypnorm® (fentanyl citrate 0.315 mg/mL and fluanison 10 mg/mL, VetaPharma Ltd, Leeds, 

UK) and midazolam (5 mg/mL, B. Braun Meslungen AG, Germany) were diluted 1:1 in 

sterile water and subsequently combined in a 1:1 ratio. Antibodies for 

immunohistochemistry (IHC): Polyclonal rabbit IgG anti-human Ki67 (Ab15580; Abcam, 

Cambridge, UK), reported to cross react with murine Ki67 antigen, polyclonal rabbit anti-

human CD3 (A0452; Dako Cytomation, Glostrup, Denmark), reported to cross react with 

murine CD3, rabbit IgG anti-hemocyanin control antibody (H0892; Sigma-Aldrich, 

St. Louis, MO, US) and Alexa Fluor 488 conjugated goat anti-rabbit IgG secondary reporter 

antibody (A11034; Invitrogen, Carlsbad, CA, US). Primary and secondary antibodies were 

diluted to working concentrations in phosphate buffered saline (PBS) supplemented with 

1.25% and 12.5% bovine serum albumin (BSA) (A7511; Sigma-Aldrich, St. Louis, MO, 

US), respectively. Citraconic anhydride (CA) buffer (0.05%, pH7.4) (27430; Sigma-

Aldrich, St. Louis, MO, US) was used for IHC antigen retrieval. Flow cytometry analysis 

medium (FM) was made up of PBS supplemented with 5% heat inactivated fetal calf serum 

and 0.01% sodium azide. OptiLyse B lysing solution (Beckman Coulter, Fullerton, CA, US) 

was used to lyse whole blood erythrocytes prior to flow cytometry analysis. PE-Cy7 

conjugated rat anti-mouse CD4 (RM4-5), Pacific Blue conjugated rat anti-mouse CD8� (53-

6.7), PerCP-Cy5.5 conjugated rat anti-mouse CD11b (M1/70), APC conjugated hamster 

anti-mouse CD11c (HL3), PE conjugated rat anti-mouse CD19 (ID3), biotinylated rat anti-

mouse I-A/I-E (MHC class II) (2G9) antibodies and APC-Cy7 conjugated streptavidin were 
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all from BD Pharmingen (BD Biosciences, San Jose, CA, US ) and FITC conjugated rat 

anti-mouse Dectin-1 (2A11) antibody was provided by AbD Serotec (Kidlington, UK).  

Animals 

Male BALB/c mice were purchased from Taconic Europe (Ejby, Denmark) and maintained 

in the minimal disease unit at the Centre for Comparative Medicine at Rikshospitalet 

University Hospital, Oslo, Norway for at least one week before they were entered into 

experiments. Animals were housed 2 mice per cage, supplied with water and conventionally 

fed (Rat and Mouse No.3 Breeding, Special Diets Services, Witham, Essex, UK) ad libitum. 

Cages were kept at 21±1oC and 55±10% relative humidity. Light conditions consisted of 

alternating 12h light/dark cycles with one hour dusk and dawn. The present investigation 

was approved by the National Animal Research Authority and conducted in accordance 

with the Norwegian Animal Welfare Act and the Norwegian Regulation on Animal 

Experimentation.  

Experimental groups and treatment 

Mice [22.4 (20.3-24.9) g; mean and (range)] were randomly distributed to two experimental 

groups SBG treated mice and control (Ctr) mice receiving SBG-supplemented water 

(100mg/L) or regular drinking water, respectively, ad libitum for 20 days (0-19). Body 

weight and fluid consumption was recorded and mice were monitored for clinical signs of 

morbidity throughout the experiment.  

 Three identical, but separate, experiments were performed. Tissue samples 

conserved for subsequent histological investigation were collected in the two first 

experiments, whereas fresh material for flow cytometric analysis was collected in the third 

experiment.  
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Termination and necropsy   

Animals were anesthetized by subcutaneous injection of Hypnorm® and midazolam (50-

75μL/10g body weight) prior to cardiac puncture. Postmortem mice were soaked in 70% 

ethanol and fixed to a dissection board. The abdomen was opened and the, MLNs, inguinal 

lymph nodes (ILNs), spleen and intestine were excised. The small intestine was examined 

for macroscopically visible PPs and identified PPs were excised. The colon was flushed 

with cold PBS to remove fecal contents prior to fixation. Tissue samples collected for 

subsequent histological analysis were kept on ice and fixed in 10 % formalin for 24 h at 4 

oC.  Fixed tissue samples were transferred to PBS with 0.1% formalin and stored at 4 oC for 

subsequent preparation and analysis. PPs, MLNs, ILNs and spleens isolated for subsequent 

flow cytometric analysis were transferred to ice cold FM. Blood collected by cardiac 

puncture, in lithium heparin vacuum tubes (Venoject, Terumo, Tokyo, Japan), was kept on 

ice until subsequent analysis.  

Histochemistry and immunohistochemisty 

Formalin fixed biopsies were processed using an automated tissue processor (Leica TP1050, 

Leica Instruments GmbH, Nussloch, Germany) and subsequently embedded in paraffin. 

Sections were cut at 4μm (Leica RM 2135, Leica Instruments GmbH) and placed on 

polysine coated slides (Menzel GmbH & Co KG, Braunschweig, Germany). Microscopy 

and image analysis was performed by an examiner blinded to the sample identity (A.S.).  

MLN cross section area

MLN sections were manually stained with hematoxylin and eosin (H&E) and examined in a 

light microscope fitted with a digital camera and imaging software (Olympus BX51, 

ColorView IIIu, AnalySISpro 5.0, Olympus Soft Imaging Solution GmbH, Münster, 

Germany). The MLN cross section area was calculated by analyzing microphotographs 
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using a build in feature in the microscope imaging software. Briefly, the perimeter of the 

MLN section was marked using an interpolating drawing tool, and the area was calculated 

based on the number of pixels included.  

Goblet cell count

Sections from the distal colon were deparafinized in xylene and ethanol and rehydrated in 

distilled water before staining with hematoxylin, alcian blue and periodic acid Schiff reagent 

(AB/PAS) in an automated tissue stainer (NexES special stains, Ventana Medical Systems 

Inc., Tucson, AZ, US). Colonic sections were examined in a light microscope (Leitz Dialux 

20, Leica Microsystems GmbH, Weltzar, Germany). The number of goblet cells was 

determined by counting AB/PAS positive cells in 20 well oriented crypts, displaying the 

intact crypt height, and expressed as the mean number of positive cells per crypt. Intra crypt 

distribution of goblet cells was indicated as the number of positive cells in the basal-, 

central- and top 1/3 of the crypt. Illustration microphotographs were acquired using a light 

microscope fitted with a camera (Olympus BX51, ColorView IIIu, AnalySISpro 5.0).  

Immunohistochemistry  

Formalin fixed sections from distal colon biopsies were deparafinized in xylene and ethanol, 

rehydrated in PBS, and boiled in CA antigen retrieval buffer for 20 minutes. Sections were 

incubated with primary antibodies or concentration- and isotype-matched control antibodies 

over night at 4 °C. Following washing in PBS, sections were incubated with fluorochrome-

conjugated secondary antibody for 3 h at room temperature. Nuclei were stained with 

Hoechst stain. Sections were examined in a fluorescence microscope (Nikon Eclipse E800, 

Nikon, Tokyo, Japan) fitted with a digital camera and imaging software (AnalySISpro 3.2, 

Olympus Soft Imaging System GmbH, Münster, Germany).  
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 The number of proliferating Ki67 positive epithelial cells and the size of the 

proliferative zone were determined by analysis of digital images (Microsoft Office Picture 

Manager, Microsoft Corporation, Redmond, WA, US). Areas of the section displaying 

intact crypt height were chosen for analysis. Cell count was expressed as the mean number 

of positive cells per crypt, counting 	 8 crypts, and the proliferative zone was expressed as a 

percentage of the total crypt height.  

 IEL numbers were determined by counting CD3 positive cells clearly located within 

the epithelium. The entire circumference of a colon section was screened directly in the 

fluorescence microscope (Nikon Eclipse E800). 

Flow cytometry 

Spleens, MLNs, ILNs and PPs were disrupted and grinded between two sheaths of nylon 

mesh in FM buffer using flat spatula-tip tweezers. The homogenate was filtrated over a 

fresh nylon mesh, centrifuged (1400 rpm/410 g, at 4 oC for 4 min, Kubota 8800, Kubota 

Manufacturing Corp., Tokyo, Japan) and washed in FM to produce single cell suspensions. 

1 million MLN-, ILN- and PP cells and 300μL whole blood were incubated with 100 μL of 

a staining cocktail, consisting of antibodies (listed in the material section) and 0.1 mg rat 

IgG per 100 μL in FM buffer, for 30 min on ice in the dark. Cells were washed in FM, 

centrifuged as described above and incubated with APC-Cy7 conjugated streptavidin for 20 

min on ice in the dark to label the biotinylated antibody employed. Following washing in 

FM, tissue-derived single cells were resuspended in paraformaldehyde (1% in PBS) and 

incubated for 5 min on ice in the dark for fixation. The fixative was removed and cells were 

resuspended in FM and stored in the dark at 4 oC for subsequent flow cytometry analysis. 

Leukocytes were prepared for analysis from the whole blood staining reaction by lysis of 

erythrocytes in OptiLyse B according to manufacturer’s instructions. The lysis solution was 

removed by centrifugation, cells were fixed, resuspended in FM, and stored for analysis as 
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described above. Unstained spleen, MLN, ILN, PP and OptiLyse B treated whole blood 

cells served as controls. Cell suspensions were analysed on a flow cytometer (BD LSR II, 

BD FACSDiva analysis software 5.0.3, BD Biosciences, San Jose, CA, US).  

Statistical analysis 

Body weight and fluid consumption data were expressed as mean values with standard 

deviation of the mean (SD) and analyzed using two-way analysis of variance (ANOVA) 

with Bonferroni post test. PP number, MLN cross section area, goblet cell numbers, 

epithelial proliferation and IEL numbers were expressed as median values and analyzed 

using the Mann-Whitney test. Flow cytometry data on lymphocyte composition was 

expressed as mean values with standard deviation (SD) and analyzed using the Mann-

Whitney test. Highly suspect outlier values, unlikely to represent random sampling from a 

Gaussian population, were identified by Grubb’s outlier detection test and excluded from 

further analysis. All statistical analysis was carried out using GraphPad Prism, version 4 

(GraphPad Software, San Diego, CA, USA). Differences at P<0.05 were considered 

statistically significant.  
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Results 

Effect of SBG supplementation on body weight and fluid consumption 

Male BALB/c mice were randomly distributed into two experimental groups: A group 

receiving SBG-supplemented drinking water (SBG) and a control group receiving pure 

drinking water (Ctr). To monitor the overall health condition of the experimental animals in 

response to oral SBG administration, body weight was recorded. The mice steadily gained 

weight and no difference in body weight dynamics between Ctr and SBG treated animals 

was observed (Figure 1 A). SBG appeared to be well tolerated and no clinical signs of 

morbidity were noted.  

 To further investigate the effect of SBG supplementation on appetite and overall 

activity, and importantly to estimate the daily and total SBG dose acquired, the average 

fluid consumption per mouse was calculated. Fluid consumption was approximately 4-7 

ml/mouse/day, corresponding to a daily �-glucan dose of 15-30 mg/kg body weight in the 

SBG group. No difference in fluid consumption between the experimental groups was 

recorded (Figure 1 B). Fluid consumption showed a minor fall immediately after transfer to 

clean cages, replacement of bottles with fresh ones or addition of fresh drinking water with 

or without SBG (days 0, 4, 6 and 13) (Figure 1 B). 

Oral SBG administration affect mucosal inductive sites 

To investigate the effect of oral SBG administration on GALT, PPs and MLNs, essential 

mucosal inductive- and regulatory sites, were examined. In the SBG group, the median 

number of macroscopically observable PP in the small intestine was approximately 40 % 

higher than what we observed in the Ctr group (P<0.01) (Figure 2 A). Furthermore, we 

identified a significant increase in the MLN size in SBG-treated mice. In the SBG group, the 
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median cross section area of isolated MLNs was approximately 35 % larger than what we 

observed in the Ctr group (P<0.05) (Figure 2 B). Assuming sphereoid LNs, this corresponds 

to an estimated volume increase of 50-60 %.  

 Despite the evident changes in GALT following oral SBG administration, 

characterization of the major lymphocyte populations (CD4pos, CD8pos, CD19pos cells) by 

flow cytometry analysis revealed no differences between the experimental groups neither 

for the PPs nor the MLNs (Figure 3). Similarly, lymphocyte composition in blood 

leukocytes, spleen- and ILN single cell suspensions, representing the systemic compartment, 

was not altered by oral SBG administration (data not shown). Flow cytometry analysis 

revealed the presence of Dectin-1pos cells, primarily MHC class IIpos, CD11bpos or CD11cpos 

cells, i.e. macrophages and dendritic cells (DCs), in all cell preparations examined.  

However, oral SBG administration did not appear to change the expression profile of this �-

glucan receptor. Of MLN single cells isolated from SBG treated mice, 3.5 ±1.8 % were 

Dectin-1 positive vs. 3.3 ±1.2 % in Ctr animals (mean ± SD). The corresponding numbers 

for PP were 0.22 ±0.04 % vs. 0.23 ±0.05 %, for ILN 3.2 ±1.2 % vs. 3.4 ±0.7 %, for spleen 

6.5 ±1.6 % vs. 7.1 ±1.2 %, and for blood leukocytes 7.9 ±1.6 % vs. 8.0 ±1.9 %. 

Oral SBG administration increase epithelial proliferation 

To examine natural defense functions mediated by the different intestinal epithelial cell 

types, we first analyzed the number and distribution of mucus producing goblet cells. Oral 

SBG administration did not affect the number or intra crypt distribution of goblet cells in the 

distal colon. The number of AB/PAS positive goblet cell per crypt in SBG treated mice was 

6.6 [3.1-8.8] compared to 7.6 [5.4-10.3] in the Ctr group (mean and [range]).  We also 

stained sections for IELs, but very few IELs were identified in the distal colon sections and 

no difference in IEL numbers between SBG treated mice and controls was revealed. The 
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number of CD3pos IELs per section in SBG treated mice was 12.4 [5.0-21.0] compared to 

12.3 [6.5-21.5] in the Ctr group (mean and [range]).  

Next, we investigated the effect of oral SBG administration on the intestinal 

epithelium, a mucosal effector site.  In mice treated with SBG the number of proliferating 

epithelial cells in the distal colon was significantly higher than what we observed in control 

animals (Figure 4). The median number of Ki67pos cells per crypt in the SBG group was 

37 % higher than in the Ctr group (P<0.01). Also, the median size of the proliferative zone 

was 25 % larger in the SBG group (P<0.001) (Figure 4).  
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Discussion

Numerous reports advocate the use of �-glucans to treat or prevent various medical 

conditions and several �-glucan preparations are currently in clinical trials (43). Yet, the 

current understanding of the mechanisms of action remains inadequate. Here we 

demonstrate for the first time that orally administered SBG stimulate GALT and epithelium, 

vital inductive- and effector sites of the mucosal immune system, respectively. 

 Although �-glucans have attracted interest as growth performance enhancers in 

livestock (44-46), we did not observe any difference in body weight gain between SBG-

treated mice and controls over the 20 day experimental period. Yeast �-glucans are listed as 

“generally recognized as safe” (GRAS) by the US Food and Drug Administration (FDA) 

(47). We observed no clinical signs of morbidity and no change in appetite, fluid 

consumption or general behavior, thus the study drug appeared to be well tolerated. Whether 

the minor decrease in fluid consumption in both experimental groups following transfer to 

clean cages, replacement of bottles with fresh ones or addition of fresh drinking water with 

or without SBG represents a methodological problem or reflects a biological phenomenon 

remains unclear. The calculated daily SBG dose range (15-30mg/kg) was previously 

demonstrated to mediate protection against experimental colitis (Sandvik et al., manuscript). 

Furthermore, in a recent clinical trial, Lehne et al. reported increased saliva IgA levels in 

healthy volunteers administered 400 mg SBG orally for 4 consecutive days (5.7 mg/kg/day, 

assuming 70kg body weight) (41). Thus, it is conceivable that the dose range used in this 

study is sufficient to mediate biological responses in experimental animals as well as in 

humans.  

 Although it is now acknowledged that oral �-glucan therapy enhance host immunity, 

it remains unclear whether �-glucans act on the gastrointestinal mucosa or require 
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absorption to the blood stream to mediate protective effects. Lehne and co-workers suggests 

that systemic uptake is not a prerequisite for host responses as serum samples were �-glucan 

negative (41). In line with this finding, we recently published evidence suggesting that the 

degree of protection does not depend on the �-glucan serum levels and that the mechanism 

of action may depend on the route of delivery (9).  

 In this study we demonstrate that oral administration of soluble �-glucan has an 

effect on GALT (PP and MLN) size. Hong and co-workers reported that particulate �-

glucan delivered by intragastric gavage was internalized by gastrointestinal macrophages 

that traffic to the spleen, peripheral lymph nodes and bone marrow (28). Furthermore, Rice 

and co-workers showed that intestinal epithelial cells, possibly M cells of follicle associated 

epithelium, and PP cells bound and internalized water-soluble �-glucans delivered orally 

(4). Epithelial uptake was demonstrated to be independent of Dectin-1 expression (4). In a 

previous study we speculated whether mucosal macrophages and DCs could sample �-

glucan from the intestinal lumen via transepithelial protrusions (9). Presumably, �-glucan-

laden cells migrate from the gut via GALT and lymphatics to reach the systemic 

compartment. Although speculative, we find it plausible that �-glucan-laden cells migrating 

from the intestinal epithelium to GALT may contribute to the observed expansion of MLNs 

and PPs.  

 Increased numbers of macroscopically visible PPs in SBG treated mice may 

theoretically be the result of (I) expansion of invisible PPs or PP anlagen or (II) genuine 

secondary lymphoid organ neogenesis. While we have not addressed this question 

experimentally, the current view is that PPs show considerable plasticity but form at 

predetermined primitive anlagen that develop during embryogenesis or early post natal life 

(48). It remains to be explored whether PP and MLN expansion is due to increased cell 

influx, reduced efflux, or proliferation. If proliferation is taking place, central questions 
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arising include; is the response mono- or polyclonal, what is the antigen, and is the 

propagation driven by SBG-primed APCs? In general purified �-glucans are considered 

poor immunogens. Hence, we find it unlikely that SBG administration results in a SBG 

specific immune response, especially when delivered via the oral route. Also, the 

maturity/differentiation status of the GALT cells and the presence/number of germinal 

centres remain unexplored. Follow-up studies are required to establish whether GALT 

expansion results in superior immune defence. Nevertheless, we hypothesize that SBG 

modulation of mucosal inductive sites, may shape the immune response and, consequently, 

contribute to improved host wellbeing. 

 We characterized the relative content of CD4pos and CD8pos T cells and CD19pos B 

cells, major lymphocyte populations, of MLNs and PPs by flow cytometry and found no 

significant difference between SBG treated mice and controls. Rice et al., found that oral �-

glucan administration resulted in increased Dectin-1 expression on PP macrophages as well 

as up regulated Toll-like receptor (TLR) 2 expression on PP DCs. Thus, oral �-glucan 

delivery modulated expression of central pattern recognition receptors in GALT (4). Of 

note, Dectin-1 and TLR2 have been demonstrated to collaborate (49). In contrast to Rice 

and co-workers we observed no change in Dectin-1 expression in response to oral SBG 

administration.  

 Goblet cells are mucus producing cells of epithelial origin with an important role in 

natural defence at the mucosal effector site. Goblet cells are abundant in the densely 

colonized colon where secreted mucins add strength to the epithelial barrier and prevent 

adhesion of intestinal microbes to the epithelium (50). Oral SBG administration did not 

change the number and distribution of goblet cells in the colon. The effect of oral SBG 

treatment on production of antimicrobial peptides, including defensins from Paneth cells – 

yet another cell type of epithelial origin, and the mucus composition, was not examined. Of 

 17



note, we only addressed the distal colon and do not know whether our observations are 

representative for other segments of the intestine.  

 Tsukada et al. reported that oral �-glucan administration increased the number of 

IELs in the small intestine in mice, indicating that oral �-glucan delivery may reinforce 

effector mechanisms of the mucosal immune system (42). We did not observe that SBG 

caused altered IEL numbers. IELs were scarce in the distal colon and we can not rule out 

that a difference between the groups may be apparent in the small intestine which is more 

densely populated with IELs. What is more, the distribution of IEL subsets in the large and 

small intestine differs (51). In contrast to Tsukada et al., Van Nevel and co-workers, 

studying a different �-glucan, reported that a �-glucan supplemented diet resulted in reduced 

numbers of IELs and possibly reduced mucosal turnover rate in newly weaned piglets (52). 

 We recently demonstrated that oral SBG prophylaxis protected against dextran 

sulfate sodium (DSS)-induced colitis (Sandvik et al., manuscript). DSS is believed to induce 

intestinal inflammation primarily by disrupting the epithelial barrier (53). Here we report 

that SBG increased the number of proliferating epithelial cells as well as the size of the 

proliferative zone in the colon when administered orally. Data presented here strongly 

suggests that the protective effect of SBG in experimental colitis is, in part, due to 

stimulatory effects on epithelial proliferation and thus conceivably on epithelial barrier 

restitution and function. In support of this idea, Laukoetter et al. demonstrated that 

increased intestinal epithelial proliferation in Junctional Adhesion Molecule A (JAM-A) 

deficient mice was associated with improved colon histology following DSS-induced colitis 

(54). To the best of our knowledge, we are the first to report that oral �-glucan 

administration stimulate intestinal epithelial proliferation. Of note, in the mouse, the small 

intestine epithelium renews approximately every 5 days (55). Thus, the baseline rate of 

proliferation is high and continuous epithelial shedding and renewal is part of the innate 
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defense system. It remains to establish whether the SBG-mediated increase in proliferation 

improve the intestinal barrier integrity.    

 We have not addressed whether oral SBG administration have stimulatory effects on 

the lamina propria (LP). Lehne et al. demonstrated that oral SBG caused increased levels of 

IgA in saliva, indicating stimulatory effects on mucosal inductive sites and/or IgApos plasma 

cells in the LP (41). In a pilot experiment, we too examined IgA levels in saliva and feces, 

following intra gastric SBG administration. In contrast to Lehne and colleagues, we did not 

observe any difference in total IgA levels between SBG treated mice and controls 

(unpublished observation). Furthermore, we have not addressed whether oral SBG may 

affect intestinal DCs and regulatory T cells, key regulators of intestinal defense and 

homeostasis.  

 In conclusion, we demonstrate that oral administration of SBG, a Saccharomyces

cerevisiae-derived water-soluble �-glucan, stimulated formation and/or expansion of PPs 

and MLNs. Furthermore, SBG stimulated proliferation of mucosal epithelial cells, 

suggesting that SBG may also affect intestinal renewal and/or barrier function. Conceivably, 

�-glucans may enhance host protection, in part, by effects on the mucosal immune system. 

The stimulatory effects may be mediated both on the mucosal inductive sites of immune 

responses as well as the effector sites of immune defense. Further work is required to 

explain how these changes in health mice may contribute to the reported health promoting 

effects of �-glucans.  
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Figure legends 

Figure 1. Effect of SBG supplementation on body weight and fluid 

consumption.

Male BALB/c mice were randomly assigned to two experimental groups. One group 

received SBG supplemented drinking water (SBG; closed symbols) and the control group 

received pure drinking water (Ctr; open symbols). Mice and drinking bottles were weight 

regularly throughout the experiment. A) Body weight was recorded and B) daily fluid 

consumption per mouse was calculated. Body weight is expressed as percentage of base line 

(BL) values, and fluid consumption is expressed as ml/mouse/day, mean values and SD. 

 

Figure 2. Oral SBG administration increases the number of Peyer’s patches 

and cross section area of mesenteric lymph nodes.  

Mice were treated with SBG (SBG; closed symbols) or regular drinking water (Ctr; open 

symbols) as described. At termination, anesthetized mice were sacrificed and the small 

intestine and the mesenteric lymph nodes (MLNs) were excised. Sections of formalin fixed, 

paraffin embedded MLNs were stained with hematoxylin and eosin and examined in a light 

microscope. A) The number of macroscopically visible Peyer’s patches (PP) in the small 

intestine was recorded. B) The MLN cross section area was calculated by software assisted 

image analysis. Bars represent median values. *P<0.05, **P<0.01, as determined by Mann-

Whitney test. Highly suspect outlier values, unlikely to represent random sampling from a 

Gaussian population, were identified by Grubb’s outlier detection test and excluded from 

further analysis. 
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Figure 3. Oral SBG administration does not affect PP and MLN lymphocyte 

composition.

Mice were treated with SBG (SBG; closed bars) or regular drinking water (Ctr; open bars) 

as described. Freshly isolated Peyer’s patches (PPs) and mesenteric lymph nodes (MLNs) 

were homogenized and single cell suspensions were stained for flow cytometry analysis as 

described in the materials and methods section. Lymphocytes were identified and gated on 

based by their forward-, side scatter properties. Back gating confirmed that the selected cell 

population was in fact lymphocytes.  The proportion of major lymphocyte populations 

(CD4pos and CD8pos T cells and CD19pos B cells) in A) PPs and B) MLNs were determined.  

Mean values and SD are presented (n=6/group). 

 

Figure 4. Oral SBG administration increase epithelial proliferation

Mice were treated with SBG (SBG; closed symbols) or regular drinking water (Ctr; open 

symbols) as described. Formalin fixed distal colon specimens were prepared for 

immunohistochemistry as described in the materials and methods section. Briefly, Ki67 was 

used as a proliferation marker and positive cells were visualized using an Alexa Fluor 488 

conjugated secondary antibody. A) The number of Ki67 positive epithelial cells expressed 

as the mean number of positive cells per crypt, counting 	8 intact crypts. B) The size of the 

proliferative zone expressed as a percentage of the total crypt height. Proliferation was 

quantified by analysis of digital images. Bars represent median values. **P<0.01, 

***P<0.001, as determined by Mann-Whitney test. 
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