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ABBREVIATIONS 

cAMP cyclic adenosine 3’,5’-

monophosphate 

CD cluster of differentiation 

CpG cytosine-phosphate-guanosine 

DNA deoxyribonucleic acid 

ELISA enzyme-linked immunosorbent 

assay

EMD enamel matrix derivative 

ERK extracellular signal-related 

kinase 

G+/÷ Gram-positive/negative 

HDL high-density lipoprotein 

IL interleukin 

IRF interferon-regulatory factor  

LAMP lysosome associated membrane 

protein 

LBP lipopolysaccharide-binding 

protein 

LDL low-density lipoprotein 

LPS lipopolysaccharide 

LXR liver x receptor 

MAMP microbe-associated molecular 

pattern 

MAPK mitogen-activated protein 

kinase 

MCP monocyte chemoattractant 

protein 

MDP muramyl dipeptide 

MIP macrophage inflammatory 

protein 

MMP matrix metalloproteinase 

mRNA messenger ribonucleic acid 

MODS  multiple organ dysfunction 

syndrome  

MyD  myeloid differentiation protein 

NF nuclear factor 

NOD nucleotide-binding 

oligomerization domain 

PBMC peripheral blood mononuclear 

cells

PepG peptidoglycan 

PGLYRP peptidoglycan recognition 

protein 

PI3K phosphatidylinositol 3-kinase 

PMN polymorphonuclear cells 

PPAR peroxisome proliferator-

activated receptor 

PRR pattern recognition receptor 

RT-PCR reverse transcriptase 

polymerase chain reaction 

TGF tumor growth factor 

TLR toll-like receptor 

TNF tumor necrosis factor 

TRAM  TRIF-related adaptor molecule 

TRIF toll-interleukin-1 receptor-

related adaptor protein inducing 

interferon
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INTRODUCTION

Throughout the last couple of decades the scientific community has steadily warmed to 

the thought of the innate immune system as an appropriate object of study. Most 

immunologists have traditionally thought of innate immunity as a very crude and 

primitive host defense system, subordinate to the complexity, specificity and efficacy of 

the adaptive immune response. The discovery of toll-like receptors (TLRs) with inherited 

specificity for microbiological motifs, and the realisation that an efficient host response 

(innate and adaptive) is under the control of TLR signaling, have dramatically widened 

our understanding of infectious immunology and inflammatory disease. Most 

investigators now believe the two paradigms of immunity to be entwined and appreciate 

the intricate relationship between the two. This thesis is limited to attend to a few concepts 

of innate immunity and inflammation, most importantly the interactions of some 

conserved bacterial motifs with circulating human leukocytes, and ways in which the 

subsequent inflammation can be modulated. 

Endotoxins

Endotoxins are molecules closely associated with the cytoplasm or cell wall of certain 

micro-organism. They are biologically characterized by their ability to cause fever and in 

sufficient doses - shock and death. Another defining feature is that they induce 

inflammation through interaction with specific high-affinity receptors on leukocytes 

(reviewed in [1]).  Endotoxins have been the focus of extensive research for more than a 

century, and have for most of these years been synonymous with lipopolysaccharide 

(LPS) of Gram-negative (G÷) bacteria [1]. LPS is an important structural component of the 

outer leaflet of the outer membrane of G÷ bacteria (Figure 1), containing a polysaccharide 

and a lipid component, lipid A, which serves to anchor LPS in the bacterial cell wall and 

also accounts for the interactions of LPS with the host’s immune system.  

In recent years, other components of bacterial cell walls, most prominently 

lipoteichoic acid and peptidoglycan (PepG), have been recognized to have endotoxic 

properties (reviewed in [2]). PepG is an integral structural part of both G+ and G÷ bacterial 

cell walls (Figure 1); although it makes up a much larger part of G+s (the layer is 20-80 
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nm vs. 7-8 nm thick). PepG consists of a glycan backbone with alternating moieties of N-

acetylglucosamine acid and N-acetyl muramic acid, where the muramic acid acts as the 

linking substance between peptides and sugars. The peptide is composed of alternating L- 

and D-amino acids; the first is always L-alanine and the second and fourth are invariably 

D-glutamine and D-alanine. The PepG that makes up the thin layer in Gram-negative 

bacteria is characterized by a mesodiaminopimelic acid in the third position. Different 

types of cross-linkage between the peptides occur (Figure 2).

The emergence of alternative bacterial motifs has widened the scope of endotoxin 

research and is a natural consequence of the fact that the incidence of G+ sepsis is 

increasing, accounting for 33% of incidences in Norway in 1999 [3] and 52% in the 

United States in 2000 [4]. The prevalence pattern of nosocomial infections have changed 

the most, in part due to the outburst of methicillin-resistant Staphylococcus aureus strains.

Figure 1. Prototypical cell walls of G+ and G÷ bacteria. The peptidoglycan layer (blue) is thicker in 

G+ than in G÷ bacteria (20-80 nm vs. 7-8 nm). 

Bioavailability and interactions with the host

In order to elicit the pathophysiological changes of endotoxemia, endotoxins need to 

escape their embedment in the bacterial cell walls and interact with the host. During 

normal growth, LPS is continuously shed [5], and lipid A is subsequently exposed to the 

host environment, where it ignites signaling cascades which will be reviewed later on. 

PepG is also shed in significant amounts during bacterial growth, although this might be 

restricted to certain strains (reviewed in [6]). Both LPS and PepG are released from 

bacteria during an infection, as the consequence of bacterial lysis, and they can reach the 

circulation through translocation from the intestine, although it is uncertain whether this is 

mainly an indicator of bacterial translocation or direct absorption of endotoxins across the 
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intestinal wall [7;8]. In addition, some antibiotics (especially -lactams) potently enhance 

the release of endotoxins from both G+ and G÷ bacteria (reviewed in [9]), although this is 

of unknown clinical relevance.

Gram+ peptidoglycan
(S.aureus)

Gram÷ peptidoglycan
(E.coli)

Figure 2. Organization and structure of PepG. There are two main structural differences between G+

and G÷ PepG: Cross-linkage is more widespread in G+ PepG, and PepG from G÷ bacteria is

characterized by the mesodiaminopimelic acid in the third position of the stem peptide. D/L-Ala, D/L-

alanine; D-Glu, D-glutamine; Gly, Glycine, L-Lys, L-lysine; m-DAP, mesodiaminopimelic acid.

The cellular interactions of endotoxins with the host are mainly mediated by tissue 

macrophages and blood leukocytes. LPS and PepG are members of a broader class of 

conserved microbiological motifs, called microbe-associated molecular patterns 

(MAMPs), which activate the innate immune system. In contrast with other cell types

which are generally relatively indifferent to MAMPs, cells of the hematopoietic lineage 

express a host of pattern recognition receptors (PRRs) that recognize MAMPs and these 

are of primary importance for the in vivo response to LPS [10]. Increasing knowledge 

about PRRs has emerged in the last decade and has revolutionized the way we think of the 

innate immune system. Most notably the TLRs have been discovered to play instrumental

roles in integrated immunity by conferring responsiveness to a number of different 

bacterial motifs (reviewed in [11]), TLR4 being the cell-activating receptor for LPS [12]. 
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The nucleotide-binding oligomerization domains (NODs) are another class of MAMP 

receptors, binding muropeptides, the building blocks of PepG [13;14]. 

LPS engages in a complex with LPS-binding protein (LBP) which binds to the CD14 

receptor [15]. Subsequently, a signal is relayed across the cell membrane by TLR4, which 

requires the cell surface molecule MD-2 for activation [12;16]. TLR2 has for some time 

been believed to relay PepG signaling [17-20], but there is evidence that the intracellularly 

located NOD1 and NOD2 are the true cell activating receptors for PepG [13;14;21;22], 

through detection of its minimal bioactive substructures muramyl dipeptide (MDP, part of 

both G+ and G÷ PepG) and diaminopimelic acid-containing tripeptides (only in G÷ PepG). 

In addition cryoporin/NALP3 has been identified as yet another cell activating receptor 

for MDP [23;24], although other studies have not reached similar conclusions [25]. The 

PepG recognition proteins (PGRP, named PGLYRP in mammals) are a set of newly 

discovered pattern recognition receptors. They do not confer cell activation in mammals, 

but serve bactericidal functions, partaking in neutrophil killing of intra- and extracellular 

bacteria [26;27], and enzymatically digesting PepG molecules (Figure 3) [28]. 

Host response 

Engagement of TLR4 by LPS leads to recruitment of adaptor molecules (myeloid 

differentiation protein-88 [MyD88], Mal, toll-interleukin-1 receptor-related adaptor 

protein inducing interferon [TRIF] and TRIF-related adaptor molecule [TRAM]) to its 

intracellular domain. Two major inflammatory pathways - nuclear factor- B (NF B) [29] 

and interferon-regulatory factor 3 (IRF3) [30], are activated via MyD88/Mal and 

TRIF/TRAM, respectively (reviewed in [31]) (Figure 3). Whereas activation and nuclear 

translocation of NF B leads to tumor necrosis factor (TNF)  transcription, IRF3 

activation typically induces interferons implicated in anti-viral defense. The mitogen-

associated protein kinase (MAPK) family (ERK1/2, JNK, p38) also participate in 

signaling events downstream of TLR4 (reviewed in [32]). In total, activation of TLR4 

turns on more than 1.000 genes, of which 75% are MyD88-independent [33]. They 

include pro-inflammatory cytokines (e.g. interleukin [IL]-1, IL-6, IL-12, TNF ,

macrophage migration inhibitory factor, high-mobility group B-1), anti-inflammatory 

cytokines (e.g. tumor growth factor (TGF) , IL-10), interferons, colony-stimulating 

factors, chemokines (IL-8, monocyte chemoattractant proteins [MCP], macrophage 
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inflammatory proteins [MIP]), receptors (tissue factor, TLR4, NOD2), inducible nitric 

oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and others [10;34-37]. 

When NOD proteins are activated by PepG fragments they associate with RICK/RIP2 

[38] to activate downstream signaling pathways, most notably NF B pathway and 

MAPKs (reviewed in [39]). In addition, PepG seems to activate caspase-1 through the 

cryopyrin/NALP3 inflammasome, thereby stimulating the processing and secretion of IL-

1  and IL-18 [23;24]. In summary PepG induces a variety of functionally different 

cytokines in monocytic cells, of which the chemokines have been demonstrated to be 

particularly strongly induced [40]. Among these IL-8 (CXCL8) represents the prototypical 

chemokine, recruiting neutrophilic granulocytes to a site of inflammation and inducing 

release of lysosomal enzymes and reactive oxygen species from activated neutrophils [41] 

(reviewed in [42]). 

.
Figure 3. The cellular response to LPS and PepG. The complexity of intracellular signaling pathways 

is substantially simplified. 
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Both LPS and PepG have been shown to enhance the release of matrix metalloproteinases 

(MMPs) from whole blood and neutrophilic granulocytes [43;44] in vitro, as well as in 

vivo endotoxemia [43;45]. MMPs are enzymes which are primarily involved in 

degradation and remodelling of extracellular matrix. More recently they have been heavily 

implicated in innate immune responses, and especially MMP-9 is believed to be an 

important inflammatory mediator (reviewed in [46]). This notion is supported by the fact 

that MMP-9-null mice are protected against LPS-induced shock [47] and experimental 

models of arthritis [48], bullous pemphigoid [49], and autoimmune encephalomyelitis 

[50]. MMP-9 plays a significant part in host defense, partly by inactivating serine protease 

inhibitor 1-proteinase [51], which is an inhibitor of neutrophil elastase, an important 

mediator in the defense against G÷ infections [52]. 

The traditional view of sepsis has been that of an uncontrolled inflammatory response, 

or as Lewis Thomas put it: “Our arsenals for fighting off bacteria are so powerful...that we 

are more in danger from them than the invaders.”[53]. In line with this is the notion that 

the morbidity of sepsis or endotoxemia is largely mediated by an unrestrained cytokine 

storm. The prototypic inflammatory cytokines IL-1 and TNF  are quickly released from 

monocytes/macrophages and induce the secretion of a host of other cytokines from 

different leukocyte populations, as well as prostaglandins, leukotriens, nitric oxide, 

reactive oxygen species and cell adhesion molecules (reviewed in [54]). This systemic 

inflammatory response is associated with circulatory hypoxia, disseminated intravascular 

coagulation, microcirculatory collapse and massive infiltration of phagocytes, which 

initiate adult respiratory distress syndrome, renal failure, myocardial depression and 

multiple organ dysfunction syndrome (MODS) (reviewed in [55]). Some investigators 

have suggested that MODS is caused by metabolic shutdown, mediated by cytokine- or 

hormone-mediated depression of mitochondrial function, and that this is an adaptive 

response to severe or prolonged cellular stress [56]. Others argue that uncorrected, 

persisting microcirculatory dysfunction is the driving force in the pathophysiology of 

sepsis, leading to hypoxia, cellular distress and organ failure (reviewed in [57]). However, 

partly because of improvements in intensive care, few patients die from circulatory 

collapse, hypoxemia or renal failure. They rather die because care is given up when 

prolonged treatment is considered futile [58]. 

The morbidity of sepsis may not solely be attributed to an excessive inflammatory 

response (reviewed in [58]). There is substantial evidence to suggest that most septic 

patients eventually become immunosuppressed, unable to eradicate the infectious agent 
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and predisposed to nosocomial infections [59] (reviewed in [60]). Potential mechanisms 

of immunosuppression are a shift from a Th1 to a Th2 response [61] (reviewed in [62]), T-

cell anergy [63], lymphocyte apoptosis [64;65] and inability of macrophages to activate T-

cells (reviewed in [58]). Endotoxin tolerance, the inability of leukocytes to respond to a 

second endotoxic challenge, is a well described phenomenon [66] (reviewed in [67]) It is 

associated with poorer clinical outcomes in ICU patients [68] and might be employed as a 

tool to identify and differentiate patients with sepsis from those with systemic 

inflammatory response syndrome [69;70].  

These phenomena may contribute to failure to clear a primary infection and a tendency 

to acquire secondary infections. The true picture is probably one that takes into account 

both the exaggerated inflammatory response and the compromised immune system. It 

must also be noted that septic patients are a highly heterogeneous group. While fulminant 

meningococcemia is characterized by a rapid progression of disease and high circulating 

levels of pro-inflammatory cytokines [71], an immunosuppressed patient contracting a 

nosocomial infection post-operatively is bound to be a different story. 

Metabolism in sepsis and the liver X receptor 

Sepsis is associated with a multitude of endocrine and metabolic alterations. It has been 

observed that patients admitted to intensive care units (ICUs) for both infectious and non-

infectious causes have markedly reduced values of both total cholesterol, low-density 

lipoprotein (LDL) and high-density lipoprotein (HDL) [72]. Low cholesterol levels are 

strongly associated with exacerbation of disease and adverse outcome in several patient 

groups [73-75]. This may be due to the severity of the underlying disease (e.g. cancer, 

sepsis) which represents a catabolic driving force, but lipoproteins, especially HDL, are 

also known to interact with and neutralize LPS, and attenuate inflammation and MODS in 

experimental models [76;77]. Hyperglycemia and insulin resistance are common in 

critical illness, and not related to glucose homeostasis at baseline [78]. There is now 

substantial evidence to suggest that strict glucose control in the ICU significantly reduces 

morbidity and mortality [79;80]. 

The altered metabolism in critical illness and its potentially important role in the 

pathology of disease, has led investigators to target mechanisms governing lipid and 

glucose metabolism. The liver X receptor (LXR) belongs to the nuclear receptor 

superfamily (reviewed in [81]) and is a whole body master regulator of cholesterol 
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uptake, .transport and metabolism [82;83] and is also involved in the regulation of 

apoptosis and glucose sensitivity [84;85] (Figure 4). Its physiological ligands are 

oxysterols, oxidized metabolites of cholesterol, and in macrophages ligand binding 

initiates transcription of genes controlling reverse cholesterol transport, thereby 

protecting cells from lipid overload [86;87]. It has been demonstrated that LXR signaling 

has anti-inflammatory effects on rodent macrophages, suppressing LPS-induced genes 

including iNOS, COX-2, IL-1 , IL-6, MCP, and MMP-9. In addition, LXR-null mice 

have enhanced cytokine responses to LPS challenge [88;89]. On this background our 

laboratory has recently introduced the concept that LXR may be a node in the 

pathophysiology of sepsis, and that impaired LXR signaling may, at least in part, underlie 

development of septic complications. We have demonstrated that pre-treatment with a 

synthetic LXR ligand protects against hepatic injury in a rat model of endotoxemia, by 

suppressing TNF  release from Kupffer cells [90], and that liver injury is aggravated in 

LXR -deficient mice after cecal ligation and puncture, compared with wild type mice 

(unpublished results). A study in human monocytes, exploring the anti-inflammatory 

potential of LXR agonism is presented in the thesis (paper V)  

Figure 4. Cellular effects of LXR activation. Activation of LXR by its endogenous ligands, oxysterols, 

leads to dimerization with RXR and initiation of gene transcription. The results are promotion of 

cholesterol efflux and glucose sensitivity and inhibition of transcription of pro-atoptopic factors and 

release of pro-inflammatory mediators
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Enamel matrix derivative 

Enamel matrix derivative (EMD) is a substance extracted from developing porcine tooth 

buds. It primarily contains amelogenins, which are the major proteins of developing tooth 

enamel matrix and are predominantly involved in formation of enamel and dental 

cementum. There is substantial evidence that enamel matrix derivative (EMD) improves 

the clinical outcome of periodontal treatment in patients with severe periodontitis [91;92] 

and promotes healing of venous leg ulcers [93]. One observes an attenuation of gingival 

inflammation, enhancement of periodontal ligament and gingival fibroblast proliferation 

and promotion of vessel formation, thereby promoting healing of soft tissue wounds 

[92;94-97]. A local increase in the synthesis and secretion of growth factors and 

cytokines, including TGF  and IL-6, is involved [95], but the precise mechanisms of 

EMD-cell interactions are largely unknown. Lysosome associated membrane protein 

(LAMP)-1 and CD63 have recently been implicated in the recognition and internalization 

of amelogenins [98;99], but there are no reports of LAMP-1 or CD63 regulating signal 

transduction pathways.

The available literature suggests that EMD has immunomodulatory properties, but the 

potential effects of EMD on inflammatory responses, such as cytokine formation, remain 

mostly unexplored. However, it has been shown that cAMP is elevated in periodontal 

ligament and epithelial cells after exposure to EMD [95]. Factors that initiate intracellular 

formation of the second messenger cAMP down-regulate the monocyte/macrophage-

driven cytokine burst [100;101] and cAMP is known to inhibit activation of nuclear 

factor- B and particularly the release of TNF , as well as regulating several other 

mechanisms of innate and adaptive immunity [102;103] (reviewed in [104]).

In paper IV we aimed to elucidate the impact of EMD on endotoxin-induced 

inflammatory cytokine burst and whether this could be attributed to cAMP accumulation. 

15



AIMS OF STUDY 

To explore the structural requirements of PepG to interact with the innate immune 

system to induce cytokines in human blood and organ injury in rats. 

To study the capacity of PepG to elicit the release of matrix metalloproteinase-9 and 

interleukin-8 and to alter the expression of NOD2 in human blood, monocytes and 

neutrophil granulocytes. 

To explore the potential of amelogenin and an LXR agonist to modulate inflammation, 

assessed by the synthesis of pro- and anti-inflammatory cytokines, in human blood and 

monocytes.
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METHODS 

Whole blood model 

A whole blood model was used in papers I-V as developed and described previously by 

our laboratory [105]. Its main advantage is that it is a fast and easy way to explore 

inflammatory responses in a human cell system with complex leukocyte interactions. 

Venous blood is drawn from healthy volunteers, anticoagulated with heparin and 

incubated in plastic tubes at 37˚C with slow rotation. At different time points plasma is 

removed by centrifugation and frozen for later analyses. In other experiments CD14+ cells 

(monocytes, macrophages and a subset of granulocytes) are isolated using magnetic beads 

attached to a CD14 antibody (Dynabeads). RNA is thereafter isolated. 

 We have previously characterized this whole blood model [105] and have shown that 

pro-inflammatory cytokines (IL-1 , IL-6, TNF ) are readily released into plasma upon 

exposure to LPS and that corresponding mRNA accumulates in CD14+ cells. Leukocyte 

viability is relatively stable (93,5 % at 24 h), pO2 decreases from 5.7 to 3.4 kPa in 24 h, 

while pCO2 is markedly increased, from 5.7 to 21 kPa. The rise in pCO2 is accompanied 

by a decrease in pH from 7.1 to 6.6. There is evidence that hypoxia can increase leukocyte 

responsiveness to LPS [106] and that cytokine release is augmented in macrophages 

exposed to high levels of CO2  [107;108]. We can therefore not exclude that altered gas 

tensions influence the inflammatory responses in this model. 

Primary cultures of human monocytes and neutrophilic granulocytes 

In papers II, III and V monocytes and neutrophils were isolated from venous blood drawn 

from healthy volunteers. The blood was subjected to density gradient centrifugation, 

according to principles described by Arne Bøyum [109].  In this procedure, blood is 

applied on top of a layer of Polymorphprep (AxisShield). Two distinct bands are formed 

by centrifugation, one containing polymorphonuclear cells (>95 % neutrophilic 

granulocytes, as determined by flow cytometry) and one containing mononuclear cells. To 

isolate monocytes from the mononuclear cell suspension, adherent monocytes are allowed 

to adhere to plastic plates, and lymphocytes and non-adherent cells are removed by 
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washing. By using this method we probably select a sub-population of blood monocytes, 

most likely those that are most differentiated towards macrophages. 

Quality control of PepG 

In endotoxin research the purity of bacterial products is of paramount importance. A 

number of important findings in the last couple of decades have to be interpreted with 

caution because it is difficult to exclude contamination or co-purification of the bacterial 

cell wall products with other bacterial components. Professor Simon J. Foster has 

provided us with highly purified PepG from S.aureus, Bacillus subtilis and 

Curtobacterium flaccumfaciens. PepG was purified as described for B.subtilis by 

professor Foster in 1992 [110]. In short, proteins were removed by pronase treatment and 

anionic polymers were removed from purified cell walls by treatment with hydrofluoric 

acid. The PepG was then washed numerous times and sterilized by autoclaving. It was 

subjected to gel electrophoresis with no evidence of protein, and the PepG was also 

enzymatically digested, obtaining the expected reverse-phase high-pressure liquid 

chromotography muropeptide profile with no spurious products. The PepG preparations 

were analysed for the presence of LPS by Limulus Amebocyte Lysate test, and was shown 

to contain 35 pg LPS per mg PepG. Moreover, pre-treatment with the LPS inhibitor 

polymyxin B or the CD14 antibody 18D11 (which specifically blocks LPS-induced 

signaling) had no effect on the production of TNF  induced by PepG [111]. Prior to 

experiments PepG was dispersed by sonication (3,000 Hz, 3  10 s).

In vivo endotoxemia 

In paper I, in vivo experiments were performed as described by Wang et al. [112]. First, 

male Wistar rats were anaesthetized with thiopentone sodium. Then, the trachea, right 

carotid artery and left jugular vein were cannulated to facilitate respiration, register mean 

arterial pressure and heart rate, and provide an access for administration of compounds. 

After surgery, heart rate and blood pressure were allowed to stabilize for 10–15 minutes, 

followed by slow injection of saline or PepG into the jugular vein over a 10-min period. 

The rectal temperature was kept at 37˚C throughout the experiment. The rats were 

euthanized at 6 h and plasma was collected for analyses of markers of hepatic 

injury/dysfunction (AST, ALT, GT, bilirubin) and renal failure (urea, creatinine). 
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Assays

Enzyme-linked immunosorbent assay (ELISA), enzyme immunoassay (EIA), quantitative 

real-time reverse transcriptase polymerase chain reaction (qRT-PCR), and multiplex 

antibody bead analysis are standardized and commonly used methods of analysis and will 

not be described in further detail. Zymography was performed by Yun Yong Wang and 

Solveig Pettersen and I will therefore not elaborate on this method. Procedures are 

described in the methods section of each paper and are generally performed according to 

manufacturer’s instructions. 
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SUMMARY OF RESULTS 

Paper I 

In two models of PepG endotoxemia we showed that Staphylococcus aureus PepG 

induced markers of hepatic injury/dysfunction (AST, ALT, GT, bilirubin) and renal 

failure (urea and creatinine) in the rat, and the release of functionally different cytokines 

(IL-6, IL-8, IL-10, and TNF ) in human blood. These effects were abrogated by 

enzymatically hydrolyzing the glycan backbone of PepG, but only weakly reduced by 

breaking the peptide cross-bridges, suggesting that the integrity of the glycan backbone of 

PepG is crucial for its endotoxic properties. However, the PepG fragments retained their 

ability to synergize with LPS. PepG from bacteria with different peptide side chains 

(S.aureus, C.flaccumfaciens, and B.subtilis) had similar immunostimulatory potentials. 

Paper II 

In this paper we demonstrated that S.aureus PepG induced the accumulation of MMP-9 in 

human blood. MMP-9 release was significantly enhanced in neutrophil cultures, and 

seemed to be the result of degranulation and not de novo synthesis, as the combined 

amount of intra- and extracellular MMP-9 was not increased by PepG. Inhibition of p38 

MAPK attenuated MMP-9 release, suggesting a role for p38 MAPK in neutrophil 

degranulation caused by PepG. 

Paper III

S.aureus PepG dose-dependently triggered prolonged release of IL-8 in primary cultures 

of human monocytes and neutrophilic granulocytes, as well as in whole blood. Inhibition 

of p38 MAPK and Src family kinases reduced IL-8 release in both cell types, whereas 

ERK1/2 and PI3K inhibition affected monocytes only. This suggests that differing 

signaling pathways are triggered by PepG in these cells. The basal level of NOD2 

expression was higher in monocytes than in neutrophils and was up-regulated by both 

PepG and LPS.
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Paper IV  

We revealed that enamel matrix derivative (EMD) containing amelogenins of different 

sizes attenuated the release of pro-inflammatory (TNF , IL-8), but not anti-inflammatory 

(IL-10) cytokines in human blood challenged by endotoxins (PepG or LPS). The effect 

was most pronounced as pre-treatment. The anti-inflammatory effect of EMD was 

accompanied by cAMP accumulation in blood mononuclear cells, and as a cAMP 

analogue mimics the actions of EMD, we suggested that EMD’s anti-inflammatory 

potential can at least partly be attributed to increased intracellular cAMP. 

Paper V 

We showed that LXR  was up-regulated by LPS in human monocytes, suggesting a role 

for this receptor in inflammation. Furthermore, a synthetic LXR agonist attenuated the 

release of a multitude of cytokines (IL-1 , IL-6, IL-8, IL-10, IL-12, TNF , MIP-1 /  and 

MCP-1) induced by LPS, and to some extent PepG. This effect on cytokine release was 

neither accompanied by a down-regulation of endotoxin receptor expression, nor by 

attenuation of cytokine mRNA levels, suggesting that the LXR effect occurred via 

posttranscriptional mechanisms. 
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DISCUSSION 

This thesis aimed to explore the pathophysiology of endotoxemia from different points of 

view. First, from a microbiological point of view, with regard to the structure of PepG, 

secondly, from a cellular point of view, elucidating the cellular response to PepG, and 

ultimately from an interventionist point of view, modulating potentially important 

signaling events in order to re-establish homeostasis. 

 In Paper I we explored the biological activity of different PepG structures by cutting 

the molecule with two different enzymes. It has been known for some time that the 

integrity of the glycan backbone is of importance for PepG’s inflammatory potential [113-

115]. Our study was the first to report that PepG-induced organ injury in the endotoxemic 

rat is strongly attenuated by prior digestion of the glycan backbone. We also reported that 

cytokine formation and mRNA accumulation in an ex vivo whole human blood model 

were attenuated by loss of backbone integrity.

Human lysozyme digests glycan chains and is a major secretory molecule of both 

macrophages and neutrophilic granulocytes [116;117]. The importance of inactivating 

peptidoglycan is pin-pointed by the fact that lysozyme-deficient mice develop more severe 

inflammatory lesions after PepG exposure than their wild-type counterparts [118]. 

However, lysozyme-mediated bacterial killing might release large quantities of PepG into 

the bloodstream, augmenting the inflammation in sepsis and endotoxemia. There is also 

evidence that highly inflammatory substructures might be released upon degradation of 

PepG, approximating the potency of LPS [119]. 

This thesis highlights the fact that endotoxins cause the release of a multitude of 

functionally different cytokines and inflammatory mediators from human leukocytes. This 

is a well known feature of LPS, and we believe it is of great interest that also PepG 

induced the release of TNF , IL-1 , IL-6, IL-8, IL-10, IL-12, MIP-1 , MIP-1 , MCP-1 

and MMP-9 in our studies. In Paper II we focused on MMP-9, a matrix metalloproteinase 

involved in remodelling of extracellular matrix [46], and found that it is readily released 

from human neutrophils by degranulation in response to PepG. Degradation of tissue 

matrix might be beneficial in combating infections, making the site of infection more 

accessible for granulocytes and lymphocytes. In the context of sepsis and endotoxemia the 
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same properties of matrix metalloproteinases could be detrimental to the host, contributing 

to organ damage and circulatory collapse. Besides, MMP-9 has additional roles in 

inflammation, modulating the activity of pro-inflammatory cytokines (IL-1 ) [120] and 

chemokines (IL-8) [121]. In Paper III we focused on IL-8, which is a prototypical 

chemokine, mainly promoting attraction of neutrophils to a site of inflammation and 

subsequent release of lysosomal enzymes and respiratory oxygen species [42;122;123]. 

Serum levels of IL-8 correlate with severity of disease in sepsis patients [124;125] and is 

associated with the development of nosocomial pneumonia in multitrauma patients [126]. 

However, the significance of this remains uncertain, as high concentrations of IL-8 

actually may reduce recruitment of neutrophils and inhibit neutrophil-endothelium

interactions [127]. In summary, paper II and III provide further evidence in support of 

peptidoglycan as an important endotoxin. 

The two last studies included in this thesis explore ways of curbing the inflammatory 

potential of endotoxins. Paper IV aimed to elucidate the properties of a xenobiotic 

material, EMD, a substance mainly containing amelogenin proteins. Amelogenin has 

recently been shown to be expressed by a number of cell types, including cells of 

hematopoietic linage [128], implying that it might serve other functions than enamel and 

dental cementum formation. Basic and clinical research has demonstrated that EMD plays 

an important role in tissue regeneration [91-94], but although the literature suggests that 

EMD has immunomodulatory properties, this area is mostly unexplored. Our study is the 

first to demonstrate the effects of EMD on the inflammatory response of human blood 

leukocytes. We showed that EMD curbed the pro-inflammatory cytokine burst, but did not 

affect the anti-inflammatory response (IL-10), and that this pattern is almost similar to the 

effects of an increase in cAMP formation, which has been demonstrated to suppress TNF

[129] and increase IL-10 [130]. EMD has been shown to enhance cAMP levels in 

periodontal ligament and epithelial cells [95], and cAMP accumulation was indeed 

induced by EMD in our study. Apart from this the cellular mechanisms behind the anti-

inflammatory effect are largely unknown. Some investigators have presented data 

demonstrating that amelogenin negatively regulates receptor activator of nuclear factor- B

(RANK) ligand [131;132], which controls osteoclast formation and initiates a broad range 

of inflammatory cellular events in osteoclasts through RANK (reviewed in [133]). 

However, the cAMP/PKA pathway is known to enhance, rather than suppress, RANK 

ligand expression [134;135].
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EMD consists mainly of amelogenin, and when separated by gel electrophoresis a 

complex mixture of gene splice products are revealed [136]. These peptides have differing 

bioactivity [137], and it is unlikely that the whole protein (M180) is required to produce 

the observed effects. We have used recombinant amelogenin as well as smaller sequences 

in the whole blood model, without producing conclusive results, and this work should be 

taken further, not least because amelogenin fragments have differing solubility [138]. The 

hydrophobic properties became evident in a recent study from our lab, where EMD 

aggregated in capillary beds of pigs and caused a rise in systemic and pulmonary blood 

pressure [139]. There should be taken steps to isolate bioactive fragments which are 

applicable for systemic administration. 

In Paper V, we utilized a synthetic ligand to activate a well-known endogenous 

receptor, LXR. We found that the LXR agonist worked as a general suppressor of 

cytokine release in monocytes. When we went further to elucidate the cellular 

mechanisms, we were surprised to find that cytokine mRNA levels were not affected. 

Neither was there evidence of a diminished transport of mRNA out of the nucleus or a 

decreased cellular release. This is in line with studies we have done in rat Kupffer cells 

(unpublished results). Further work is underway to explore the underlying mechanisms of 

LXR’s effects, which could, according to preliminary data, involve mechanisms 

governing mRNA stability or translation, possibly thorough inhibition of p38 MAPK 

phosphorylation.

LXR is a whole body master regulator of reverse cholesterol metabolism, insulin 

sensitivity and apoptosis and partakes in several aspects of macrophage biology 

[81;82;84;88]. Low circulating levels of cholesterol [75], decreased glucose tolerance [79] 

and increased leukocyte apoptosis [64] are common in critically ill patients and predict a 

poor outcome. LXR potentially counteracts all these conditions, and hence, it is an 

extremely attractive molecule to target. We have previously demonstrated that an LXR 

ligand attenuates liver injury and Kupffer cell TNF  release in endotoxemic rats, and 

more recent work has shown that liver injury is aggravated in LXR deficient mice 

subjected to cecal ligation and puncture (unpublished results). Sepsis is a complex disease 

warranting complex approaches, and LXR has the potential to counteract sepsis at 

multiple levels. Therefore, studies are therefore underway to investigate the role and 

function of LXR in monocytes of septic patients. 

Merely placing a lid on endotoxin-induced pro-inflammatory mediator release is 

probably a too simplistic way of handling the pathophysiology of sepsis [140]. 
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Controlling excessive inflammation in the early phase of disease is certainly beneficial, 

but in the clinical setting one seldom gets the chance to apply a drug prior to the onset of 

controlled endotoxemia, and the measured cytokines might have come and gone and 

elicited late-onset responses (reviewed in [141]). In addition, cytokine formation is a 

crucial part of competent innate and adaptive immune responses [141], and abrogating 

them in the context of an out-of-control infection might be detrimental to the eradication 

of the infectious agent. Antibodies against TNF  or IL-1 have in several large phase III 

studies been ineffective and in some settings harmful, and anti-cytokine monotherapy is 

considered to be of limited value (reviewed in [142]). It is becoming increasingly clear 

that sepsis is an extensively complex process that affects various metabolic, endocrine, 

neurological and immunological factors [55;64;75;143]. What we preferably should try to 

do is restricting the excessive systemic inflammation, while at the same time addressing 

the whole picture with regard to metabolic dysfunction, apoptosis, immunological anergy 

and more. In this context, LXR agonism seems to provide an especially intriguing

possibility.

25



Reference List 

 [1]  Beutler B, Rietschel ET: Innate immune sensing and its roots: the story of endotoxin. 
Nat Rev Immunol 2003;3:169-176. 

 [2]  Wang JE, Dahle MK, McDonald M, Foster SJ, Aasen AO, Thiemermann C: 
Peptidoglycan and lipoteichoic acid in gram-positive bacterial sepsis: receptors, signal 
transduction, biological effects, and synergism. [Review] [219 refs]. Shock 
2003;20:402-414.

 [3]  Flaatten H: Epidemiology of sepsis in Norway in 1999. Crit Care 2004;8:R180-R184. 

 [4]  Martin GS, Mannino DM, Eaton S, Moss M: The epidemiology of sepsis in the United 
States from 1979 through 2000. N Engl J Med 17-4-2003;348:1546-1554. 

 [5]  Andersen BM, Solberg O: Endotoxin liberation associated with growth, encapsulation 
and virulence of Neisseria meningitidis. Scand J Infect Dis 1988;20:21-31. 

 [6]  Cloud-Hansen KA, Peterson SB, Stabb EV, Goldman WE, Fall-Ngai MJ, Handelsman 
J: Breaching the great wall: peptidoglycan and microbial interactions. Nat Rev 
Microbiol 2006;4:710-716. 

 [7]  Tabata T, Tani T, Endo Y, Hanasawa K: Bacterial translocation and peptidoglycan 
translocation by acute ethanol administration. J Gastroenterol 2002;37:726-731. 

 [8]  Shimizu T, Tani T, Endo Y, Hanasawa K, Tsuchiya M, Kodama M: Elevation of 
plasma peptidoglycan and peripheral blood neutrophil activation during hemorrhagic 
shock: plasma peptidoglycan reflects bacterial translocation and may affect neutrophil 
activation. Crit Care Med 2002;30:77-82. 

 [9]  Nau R, Eiffert H: Modulation of release of proinflammatory bacterial compounds by 
antibacterials: potential impact on course of inflammation and outcome in sepsis and 
meningitis. Clin Microbiol Rev 2002;15:95-110. 

 [10]  Michalek SM, Moore RN, McGhee JR, Rosenstreich DL, Mergenhagen SE: The 
primary role of lymphoreticular cells in the mediation of host responses to bacterial 
endotoxim. J Infect Dis 1980;141:55-63. 

 [11]  Lien E, Ingalls RR: Toll-like receptors. Crit Care Med 2002;30:S1-S11. 

 [12]  Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, Birdwell D, Alejos E, 
Silva M, Galanos C, Freudenberg M, Ricciardi-Castagnoli P, Layton B, Beutler B: 
Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 
gene. Science 11-12-1998;282:2085-2088. 

 [13]  Girardin SE, Boneca IG, Carneiro LA, Antignac A, Jehanno M, Viala J, Tedin K, 
Taha MK, Labigne A, Zahringer U, Coyle AJ, DiStefano PS, Bertin J, Sansonetti PJ, 
Philpott DJ: Nod1 detects a unique muropeptide from gram-negative bacterial 
peptidoglycan. Science 6-6-2003;300:1584-1587. 

26



 [14]  Girardin SE, Boneca IG, Viala J, Chamaillard M, Labigne A, Thomas G, Philpott DJ, 
Sansonetti PJ: Nod2 is a general sensor of peptidoglycan through muramyl dipeptide 
(MDP) detection. J Biol Chem 14-3-2003;278:8869-8872. 

 [15]  Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, Mathison JC: CD14, a receptor for 
complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 21-9-
1990;249:1431-1433.

 [16]  Shimazu R, Akashi S, Ogata H, Nagai Y, Fukudome K, Miyake K, Kimoto M: MD-2, 
a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J 
Exp Med 7-6-1999;189:1777-1782. 

 [17]  Takeuchi O, Hoshino K, Kawai T, Sanjo H, Takada H, Ogawa T, Takeda K, Akira S: 
Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-
positive bacterial cell wall components. Immunity 1999;11:443-451. 

 [18]  Schwandner R, Dziarski R, Wesche H, Rothe M, Kirschning CJ: Peptidoglycan- and 
lipoteichoic acid-induced cell activation is mediated by toll-like receptor 2. J Biol 
Chem 18-6-1999;274:17406-17409. 

 [19]  Yoshimura A, Lien E, Ingalls RR, Tuomanen E, Dziarski R, Golenbock D: Cutting 
edge: recognition of Gram-positive bacterial cell wall components by the innate 
immune system occurs via Toll-like receptor 2. J Immunol 1-7-1999;163:1-5. 

 [20]  Dziarski R, Gupta D: Staphylococcus aureus peptidoglycan is a toll-like receptor 2 
activator: a reevaluation. Infect Immun 2005;73:5212-5216. 

 [21]  Travassos LH, Girardin SE, Philpott DJ, Blanot D, Nahori MA, Werts C, Boneca IG: 
Toll-like receptor 2-dependent bacterial sensing does not occur via peptidoglycan 
recognition. EMBO Rep 10-9-2004. 

 [22]  Girardin SE, Travassos LH, Herve M, Blanot D, Boneca IG, Philpott DJ, Sansonetti 
PJ, Mengin-Lecreulx D: Peptidoglycan molecular requirements allowing detection by 
Nod1 and Nod2. J Biol Chem 24-10-2003;278:41702-41708. 

 [23]  Martinon F, Agostini L, Meylan E, Tschopp J: Identification of bacterial muramyl 
dipeptide as activator of the NALP3/cryopyrin inflammasome. Curr Biol 9-11-
2004;14:1929-1934.

 [24]  Pan Q, Mathison J, Fearns C, Kravchenko VV, Da Silva CJ, Hoffman HM, Kobayashi 
KS, Bertin J, Grant EP, Coyle AJ, Sutterwala FS, Ogura Y, Flavell RA, Ulevitch RJ: 
MDP-induced interleukin-1{beta} processing requires Nod2 and CIAS1/NALP3. J 
Leukoc Biol 2007;82:177-183. 

 [25]  Mariathasan S, Weiss DS, Newton K, McBride J, O'Rourke K, Roose-Girma M, Lee 
WP, Weinrauch Y, Monack DM, Dixit VM: Cryopyrin activates the inflammasome in 
response to toxins and ATP. Nature 9-3-2006;440:228-232. 

 [26]  Cho JH, Fraser IP, Fukase K, Kusumoto S, Fujimoto Y, Stahl GL, Ezekowitz RA: 
Human peptidoglycan recognition protein-S is an effector of neutrophil-mediated 
innate immunity. Blood 14-6-2005. 

27



 [27]  Dziarski R, Platt KA, Gelius E, Steiner H, Gupta D: Defect in neutrophil killing and 
increased susceptibility to infection with nonpathogenic gram-positive bacteria in 
peptidoglycan recognition protein-S (PGRP-S)-deficient mice. Blood 15-7-
2003;102:689-697.

 [28]  Wang ZM, Li X, Cocklin RR, Wang M, Wang M, Fukase K, Inamura S, Kusumoto S, 
Gupta D, Dziarski R: Human peptidoglycan recognition protein-L is an N-
acetylmuramoyl-L-alanine amidase. J Biol Chem 5-12-2003;278:49044-49052. 

 [29]  Sen R, Baltimore D: Inducibility of kappa immunoglobulin enhancer-binding protein 
Nf-kappa B by a posttranslational mechanism. Cell 26-12-1986;47:921-928. 

 [30]  Kawai T, Takeuchi O, Fujita T, Inoue J, Muhlradt PF, Sato S, Hoshino K, Akira S: 
Lipopolysaccharide stimulates the MyD88-independent pathway and results in 
activation of IFN-regulatory factor 3 and the expression of a subset of 
lipopolysaccharide-inducible genes. J Immunol 15-11-2001;167:5887-5894. 

 [31]  O'Neill LA: How Toll-like receptors signal: what we know and what we don't know. 
Curr Opin Immunol 2006;18:3-9. 

 [32]  Palsson-McDermott EM, O'Neill LA: Signal transduction by the lipopolysaccharide 
receptor, Toll-like receptor-4. Immunology 2004;113:153-162. 

 [33]  Bjorkbacka H, Fitzgerald KA, Huet F, Li X, Gregory JA, Lee MA, Ordija CM, 
Dowley NE, Golenbock DT, Freeman MW: The induction of macrophage gene 
expression by LPS predominantly utilizes Myd88-independent signaling cascades. 
Physiol Genomics 17-11-2004;19:319-330. 

 [34]  Michie HR, Manogue KR, Spriggs DR, Revhaug A, O'Dwyer S, Dinarello CA, 
Cerami A, Wolff SM, Wilmore DW: Detection of circulating tumor necrosis factor 
after endotoxin administration. N Engl J Med 9-6-1988;318:1481-1486. 

 [35]  Guha M, Mackman N: LPS induction of gene expression in human monocytes. Cell 
Signal 2001;13:85-94. 

 [36]  Mirlashari MR, Lyberg T: Expression and involvement of Toll-like receptors (TLR)2, 
TLR4, and CD14 in monocyte TNF-alpha production induced by lipopolysaccharides 
from Neisseria meningitidis. Med Sci Monit 2003;9:BR316-BR324. 

 [37]  Wang H, Bloom O, Zhang M, Vishnubhakat JM, Ombrellino M, Che J, Frazier A, 
Yang H, Ivanova S, Borovikova L, Manogue KR, Faist E, Abraham E, Andersson J, 
Andersson U, Molina PE, Abumrad NN, Sama A, Tracey KJ: HMG-1 as a late 
mediator of endotoxin lethality in mice. Science 9-7-1999;285:248-251. 

 [38]  Kobayashi K, Inohara N, Hernandez LD, Galan JE, Nunez G, Janeway CA, 
Medzhitov R, Flavell RA: RICK/Rip2/CARDIAK mediates signalling for receptors of 
the innate and adaptive immune systems. Nature 14-3-2002;416:194-199. 

 [39]  Myhre AE, Aasen AO, Thiemermann C, Wang JE: Peptidoglycan--an endotoxin in its 
own right? Shock 2006;25:227-235. 

28



 [40]  Wang ZM, Liu C, Dziarski R: Chemokines are the main proinflammatory mediators in 
human monocytes activated by Staphylococcus aureus, peptidoglycan, and endotoxin. 
J Biol Chem 7-7-2000;275:20260-20267. 

 [41]  Schroder JM, Mrowietz U, Christophers E: Purification and partial biologic 
characterization of a human lymphocyte-derived peptide with potent neutrophil-
stimulating activity. J Immunol 15-5-1988;140:3534-3540. 

 [42]  Baggiolini M, Clark-Lewis I: Interleukin-8, a chemotactic and inflammatory cytokine. 
FEBS Lett 27-7-1992;307:97-101. 

 [43]  Pugin J, Widmer MC, Kossodo S, Liang CM, Preas HL, Suffredini AF: Human 
neutrophils secrete gelatinase B in vitro and in vivo in response to endotoxin and 
proinflammatory mediators. Am J Respir Cell Mol Biol 1999;20:458-464. 

 [44]  Ding Y, Uitto VJ, Haapasalo M, Lounatmaa K, Konttinen YT, Salo T, Grenier D, 
Sorsa T: Membrane components of Treponema denticola trigger proteinase release 
from human polymorphonuclear leukocytes. J Dent Res 1996;75:1986-1993. 

 [45]  Wang JE, Pettersen S, Stuestol JF, Wang YY, Foster SJ, Thiemermann C, Aasen AO, 
Bjornland K: Peptidoglycan of S.aureus causes increased levels of matrix 
metalloproteinases in the rat. Shock 2004;22:376-379. 

 [46]  Parks WC, Wilson CL, Lopez-Boado YS: Matrix metalloproteinases as modulators of 
inflammation and innate immunity. Nat Rev Immunol 2004;4:617-629. 

 [47]  Dubois B, Starckx S, Pagenstecher A, Oord J, Arnold B, Opdenakker G: Gelatinase B 
deficiency protects against endotoxin shock. Eur J Immunol 2002;32:2163-2171. 

 [48]  Itoh T, Matsuda H, Tanioka M, Kuwabara K, Itohara S, Suzuki R: The role of matrix 
metalloproteinase-2 and matrix metalloproteinase-9 in antibody-induced arthritis. J 
Immunol 1-9-2002;169:2643-2647. 

 [49]  Liu Z, Shipley JM, Vu TH, Zhou X, Diaz LA, Werb Z, Senior RM: Gelatinase B-
deficient mice are resistant to experimental bullous pemphigoid. J Exp Med 3-8-
1998;188:475-482.

 [50]  Dubois B, Masure S, Hurtenbach U, Paemen L, Heremans H, van den OJ, Sciot R, 
Meinhardt T, Hammerling G, Opdenakker G, Arnold B: Resistance of young 
gelatinase B-deficient mice to experimental autoimmune encephalomyelitis and 
necrotizing tail lesions. J Clin Invest 1999;104:1507-1515. 

 [51]  Liu Z, Zhou X, Shapiro SD, Shipley JM, Twining SS, Diaz LA, Senior RM, Werb Z: 
The serpin alpha1-proteinase inhibitor is a critical substrate for gelatinase B/MMP-9 in 
vivo. Cell 1-9-2000;102:647-655. 

 [52]  Belaaouaj A, McCarthy R, Baumann M, Gao Z, Ley TJ, Abraham SN, Shapiro SD: 
Mice lacking neutrophil elastase reveal impaired host defense against gram negative 
bacterial sepsis. Nat Med 1998;4:615-618. 

 [53]  Thomas L: Germs. N Engl J Med 14-9-1972;287:553-555. 

29



 [54]  Dinarello CA: Proinflammatory and anti-inflammatory cytokines as mediators in the 
pathogenesis of septic shock. Chest 1997;112:321S-329S. 

 [55]  Cohen J: The immunopathogenesis of sepsis. Nature 19-12-2002;420:885-891. 

 [56]  Singer M, De Santis V, Vitale D, Jeffcoate W: Multiorgan failure is an adaptive, 
endocrine-mediated, metabolic response to overwhelming systemic inflammation. 
Lancet 7-8-2004;364:545-548. 

 [57]  Ince C: The microcirculation is the motor of sepsis. Crit Care 2005;9 Suppl 4:S13-
S19.

 [58]  Hotchkiss RS, Karl IE: The pathophysiology and treatment of sepsis. N Engl J Med 9-
1-2003;348:138-150.

 [59]  Meakins JL, Pietsch JB, Bubenick O, Kelly R, Rode H, Gordon J, MacLean LD: 
Delayed hypersensitivity: indicator of acquired failure of host defenses in sepsis and 
trauma. Ann Surg 1977;186:241-250. 

 [60]  Oberholzer A, Oberholzer C, Moldawer LL: Sepsis syndromes: understanding the role 
of innate and acquired immunity. Shock 2001;16:83-96. 

 [61]  Gogos CA, Drosou E, Bassaris HP, Skoutelis A: Pro- versus anti-inflammatory 
cytokine profile in patients with severe sepsis: a marker for prognosis and future 
therapeutic options. J Infect Dis 2000;181:176-180. 

 [62]  Opal SM, DePalo VA: Anti-inflammatory cytokines. Chest 2000;117:1162-1172. 

 [63]  Heidecke CD, Hensler T, Weighardt H, Zantl N, Wagner H, Siewert JR, Holzmann B: 
Selective defects of T lymphocyte function in patients with lethal intraabdominal 
infection. Am J Surg 1999;178:288-292. 

 [64]  Hotchkiss RS, Swanson PE, Freeman BD, Tinsley KW, Cobb JP, Matuschak GM, 
Buchman TG, Karl IE: Apoptotic cell death in patients with sepsis, shock, and 
multiple organ dysfunction. Crit Care Med 1999;27:1230-1251. 

 [65]  Hotchkiss RS, Tinsley KW, Swanson PE, Schmieg RE, Jr., Hui JJ, Chang KC, 
Osborne DF, Freeman BD, Cobb JP, Buchman TG, Karl IE: Sepsis-induced apoptosis 
causes progressive profound depletion of B and CD4+ T lymphocytes in humans. J 
Immunol 1-6-2001;166:6952-6963. 

 [66]  Heagy W, Hansen C, Nieman K, Rodriguez JL, West MA: Impaired mitogen-activated 
protein kinase activation and altered cytokine secretion in endotoxin-tolerant human 
monocytes. J Trauma 2000;49:806-814. 

 [67]  West MA, Heagy W: Endotoxin tolerance: A review. Crit Care Med 2002;30:S64-
S73.

 [68]  Heagy W, Nieman K, Hansen C, Cohen M, Danielson D, West MA: Lower levels of 
whole blood LPS-stimulated cytokine release are associated with poorer outcomes in 
surgical ICU patients. Surg Infect 2003;4:171-180. 

30



 [69]  Heagy W, Hansen C, Nieman K, Cohen M, Richardson C, Rodriguez JL, West MA: 
Impaired ex vivo lipopolysaccharide-stimulated whole blood tumor necrosis factor 
production may identify "septic" intensive care unit patients. Shock 2000;14:271-276. 

 [70]  Wilson CS, Seatter SC, Rodriguez JL, Bellingham J, Clair L, West MA: In vivo 
endotoxin tolerance: impaired LPS-stimulated TNF release of monocytes from 
patients with sepsis, but not SIRS. J Surg Res 1997;69:101-106. 

 [71]  Waage A, Brandtzaeg P, Halstensen A, Kierulf P, Espevik T: The complex pattern of 
cytokines in serum from patients with meningococcal septic shock. Association 
between interleukin 6, interleukin 1, and fatal outcome. J Exp Med 1-1-1989;169:333-
338.

 [72]  Gordon BR, Parker TS, Levine DM, Saal SD, Wang JC, Sloan BJ, Barie PS, Rubin 
AL: Low lipid concentrations in critical illness: implications for preventing and 
treating endotoxemia. Crit Care Med 1996;24:584-589. 

 [73]  Jacobs D, Blackburn H, Higgins M, Reed D, Iso H, McMillan G, Neaton J, Nelson J, 
Potter J, Rifkind B, .: Report of the Conference on Low Blood Cholesterol: Mortality 
Associations. Circulation 1992;86:1046-1060. 

 [74]  Chenaud C, Merlani PG, Roux-Lombard P, Burger D, Harbarth S, Luyasu S, Graf JD, 
Dayer JM, Ricou B: Low apolipoprotein A-I level at intensive care unit admission and 
systemic inflammatory response syndrome exacerbation. Crit Care Med 2004;32:632-
637.

 [75]  Chernow B: Variables affecting outcome in critically ill patients. Chest 1999;115:71S-
76S.

 [76]  Pajkrt D, Doran JE, Koster F, Lerch PG, Arnet B, van der PT, ten Cate JW, van 
Deventer SJ: Antiinflammatory effects of reconstituted high-density lipoprotein during 
human endotoxemia. J Exp Med 1-11-1996;184:1601-1608. 

 [77]  McDonald MC, Dhadly P, Cockerill GW, Cuzzocrea S, Mota-Filipe H, Hinds CJ, 
Miller NE, Thiemermann C: Reconstituted high-density lipoprotein attenuates organ 
injury and adhesion molecule expression in a rodent model of endotoxic shock. Shock 
2003;20:551-557.

 [78]  Cely CM, Arora P, Quartin AA, Kett DH, Schein RM: Relationship of baseline 
glucose homeostasis to hyperglycemia during medical critical illness. Chest 
2004;126:879-887.

 [79]  Van den Berghe G., Wouters P, Weekers F, Verwaest C, Bruyninckx F, Schetz M, 
Vlasselaers D, Ferdinande P, Lauwers P, Bouillon R: Intensive insulin therapy in the 
critically ill patients. N Engl J Med 8-11-2001;345:1359-1367. 

 [80]  Van den Berghe G, Wilmer A, Hermans G, Meersseman W, Wouters PJ, Milants I, 
Van Wijngaerden E, Bobbaers H, Bouillon R: Intensive insulin therapy in the medical 
ICU. N Engl J Med 2-2-2006;354:449-461. 

 [81]  Chawla A, Repa JJ, Evans RM, Mangelsdorf DJ: Nuclear receptors and lipid 
physiology: opening the X-files. Science 30-11-2001;294:1866-1870. 

31



 [82]  Schuster GU, Parini P, Wang L, Alberti S, Steffensen KR, Hansson GK, Angelin B, 
Gustafsson JA: Accumulation of foam cells in liver X receptor-deficient mice. 
Circulation 27-8-2002;106:1147-1153. 

 [83]  Alberti S, Schuster G, Parini P, Feltkamp D, Diczfalusy U, Rudling M, Angelin B, 
Bjorkhem I, Pettersson S, Gustafsson JA: Hepatic cholesterol metabolism and 
resistance to dietary cholesterol in LXRbeta-deficient mice. J Clin Invest 
2001;107:565-573.

 [84]  Joseph SB, Bradley MN, Castrillo A, Bruhn KW, Mak PA, Pei L, Hogenesch J, 
O'connell RM, Cheng G, Saez E, Miller JF, Tontonoz P: LXR-dependent gene 
expression is important for macrophage survival and the innate immune response. Cell 
15-10-2004;119:299-309.

 [85]  Laffitte BA, Chao LC, Li J, Walczak R, Hummasti S, Joseph SB, Castrillo A, Wilpitz 
DC, Mangelsdorf DJ, Collins JL, Saez E, Tontonoz P: Activation of liver X receptor 
improves glucose tolerance through coordinate regulation of glucose metabolism in 
liver and adipose tissue. Proc Natl Acad Sci U S A 29-4-2003;100:5419-5424. 

 [86]  Juvet LK, Andresen SM, Schuster GU, Dalen KT, Tobin KA, Hollung K, Haugen F, 
Jacinto S, Ulven SM, Bamberg K, Gustafsson JA, Nebb HI: On the role of liver X 
receptors in lipid accumulation in adipocytes. Mol Endocrinol 2003;17:172-182. 

 [87]  Naik SU, Wang X, Da Silva JS, Jaye M, Macphee CH, Reilly MP, Billheimer JT, 
Rothblat GH, Rader DJ: Pharmacological activation of liver X receptors promotes 
reverse cholesterol transport in vivo. Circulation 3-1-2006;113:90-97. 

 [88]  Joseph SB, Castrillo A, Laffitte BA, Mangelsdorf DJ, Tontonoz P: Reciprocal 
regulation of inflammation and lipid metabolism by liver X receptors. Nat Med 
2003;9:213-219.

 [89]  Castrillo A, Joseph SB, Marathe C, Mangelsdorf DJ, Tontonoz P: Liver X receptor-
dependent repression of matrix metalloproteinase-9 expression in macrophages. J Biol 
Chem 21-3-2003;278:10443-10449. 

 [90]  Wang YY, Dahle MK, Agren J, Myhre AE, Reinholt FP, Foster SJ, Collins JL, 
Thiemermann C, Aasen AO, Wang JE: Activation of the liver X receptor protects 
against hepatic injury in endotoxemia by suppressing Kupffer cell activation. Shock 
2006;25:141-146.

 [91]  Sculean A, Windisch P, Keglevich T, Fabi B, Lundgren E, Lyngstadaas SP: Presence 
of an enamel matrix derivative on human teeth following periodontal surgery. Clin 
Oral Invest 2002;6:183-187. 

 [92]  Wennstrom JL, Lindhe J: Some effects of enamel matrix proteins on wound healing in 
the dento-gingival region. J Clin Periodontol 2002;29:9-14. 

 [93]  Vowden P, Romanelli M, Price P: Effect of amelogenin extracellular matrix protein 
and compression on hard-to-heal venous leg ulcers. J Wound Care 2007;16:189-195. 

 [94]  Hoang AM, Oates TW, Cochran DL: In vitro wound healing responses to enamel 
matrix derivative. J Periodontol 2000;71:1270-1277. 

32



 [95]  Lyngstadaas SP, Lundberg E, Ekdahl H, Andersson C, Gestrelius S: Autocrine growth 
factors in human periodontal ligament cells cultured on enamel matrix derivative. J 
Clin Periodontol 2001;28:181-188. 

 [96]  van der Pauw MT, Van den Bos T., Everts V, Beertsen W: Enamel matrix-derived 
protein stimulates attachment of periodontal ligament fibroblasts and enhances 
alkaline phosphatase activity and transforming growth factor beta1 release of 
periodontal ligament and gingival fibroblasts. J Periodontol 2000;71:31-43. 

 [97]  Yuan K, Chen CL, Lin MT: Enamel matrix derivative exhibits angiogenic effect in 
vitro and in a murine model. J Clin Periodontol 2003;30:732-738. 

 [98]  Tompkins K, George A, Veis A: Characterization of a mouse amelogenin [A-4]/M59 
cell surface receptor. Bone 2006;38:172-180. 

 [99]  Shapiro JL, Wen X, Okamoto CT, Wang HJ, Lyngstadaas SP, Goldberg M, Snead 
ML, Paine ML: Cellular uptake of amelogenin, and its localization to CD63, and 
Lamp1-positive vesicles. Cell Mol Life Sci 2007;64:244-256. 

 [100]  van der Poll T, Jansen J, Endert E, Sauerwein HP, van Deventer SJ: Noradrenaline 
inhibits lipopolysaccharide-induced tumor necrosis factor and interleukin 6 production 
in human whole blood. Infect Immun 1994;62:2046-2050. 

 [101]  Badger AM, Olivera DL, Esser KM: Beneficial effects of the phosphodiesterase 
inhibitors BRL 61063, pentoxifylline, and rolipram in a murine model of endotoxin 
shock. Circ Shock 1994;44:188-195. 

 [102]  Chong YH, Shin SA, Lee HJ, Kang JH, Suh YH: Molecular mechanisms underlying 
cyclic AMP inhibition of macrophage dependent TNF-alpha production and 
neurotoxicity in response to amyloidogenic C-terminal fragment of Alzheimer's 
amyloid precursor protein. J Neuroimmunol 2002;133:160-174. 

 [103]  Spengler RN, Spengler ML, Lincoln P, Remick DG, Strieter RM, Kunkel SL: 
Dynamics of dibutyryl cyclic AMP- and prostaglandin E2-mediated suppression of 
lipopolysaccharide-induced tumor necrosis factor alpha gene expression. Infect 
Immun 1989;57:2837-2841. 

 [104]  Torgersen KM, Vang T, Abrahamsen H, Yaqub S, Tasken K: Molecular mechanisms 
for protein kinase A-mediated modulation of immune function. Cell Signal 2002;14:1-
9.

 [105]  Wang JE, Solberg R, Okkenhaug C, Jorgensen PF, Krohn CD, Aasen AO: Cytokine 
modulation in experimental endotoxemia: characterization of an ex vivo whole blood 
model. Eur Surg Res 2000;32:65-73. 

 [106]  Ghezzi P, Dinarello CA, Bianchi M, Rosandich ME, Repine JE, White CW: Hypoxia 
increases production of interleukin-1 and tumor necrosis factor by human 
mononuclear cells. Cytokine 1991;3:189-194. 

 [107]  West MA, Baker J, Bellingham J: Kinetics of decreased LPS-stimulated cytokine 
release by macrophages exposed to CO2. J Surg Res 1996;63:269-274. 

33



 [108]  West MA, Hackam DJ, Baker J, Rodriguez JL, Bellingham J, Rotstein OD: 
Mechanism of decreased in vitro murine macrophage cytokine release after exposure 
to carbon dioxide: relevance to laparoscopic surgery. Ann Surg 1997;226:179-190. 

 [109]  Boyum A: Isolation of mononuclear cells and granulocytes from human blood. 
Isolation of monuclear cells by one centrifugation, and of granulocytes by combining 
centrifugation and sedimentation at 1 g. Scand J Clin Lab Invest Suppl 1968;97:77-89. 

 [110]  Foster SJ: Analysis of the autolysins of Bacillus subtilis 168 during vegetative growth 
and differentiation by using renaturing polyacrylamide gel electrophoresis. J Bacteriol 
1992;174:464-470.

 [111]  Wang JE, Jorgensen PF, Almlof M, Thiemermann C, Foster SJ, Aasen AO, Solberg R: 
Peptidoglycan and lipoteichoic acid from Staphylococcus aureus induce tumor 
necrosis factor alpha, interleukin 6 (IL-6), and IL-10 production in both T cells and 
monocytes in a human whole blood model. Infect Immun 2000;68:3965-3970. 

 [112]  Wang JE, Dahle MK, Yndestad A, Bauer I, McDonald MC, Aukrust P, Foster SJ, 
Bauer M, Aasen AO, Thiemermann C: Peptidoglycan of Staphylococcus aureus
causes inflammation and organ injury in the rat. Crit Care Med 2004;32:546-552. 

 [113]  Rotta J: Endotoxin-like properties of the peptidoglycan. Z Immunitatsforsch Exp Klin 
Immunol 1975;149:230-244. 

 [114]  Janusz MJ, Esser RE, Schwab JH: In vivo degradation of bacterial cell wall by the 
muralytic enzyme mutanolysin. Infect Immun 1986;52:459-467. 

 [115]  Hoijer MA, Melief MJ, Debets R, Hazenberg MP: Inflammatory properties of 
peptidoglycan are decreased after degradation by human N-acetylmuramyl-L-alanine 
amidase. Eur Cytokine Netw 1997;8:375-381. 

 [116]  Cramer EM, Breton-Gorius J: Ultrastructural localization of lysozyme in human 
neutrophils by immunogold. J Leukoc Biol 1987;41:242-247. 

 [117]  Gordon S, Todd J, Cohn ZA: In vitro synthesis and secretion of lysozyme by 
mononuclear phagocytes. J Exp Med 1-5-1974;139:1228-1248. 

 [118]  Ganz T, Gabayan V, Liao HI, Liu L, Oren A, Graf T, Cole AM: Increased 
inflammation in lysozyme M-deficient mice in response to Micrococcus luteus and its 
peptidoglycan. Blood 15-3-2003;101:2388-2392. 

 [119]  Majcherczyk PA, Langen H, Heumann D, Fountoulakis M, Glauser MP, Moreillon P: 
Digestion of Streptococcus pneumoniae cell walls with its major peptidoglycan 
hydrolase releases branched stem peptides carrying proinflammatory activity. J Biol 
Chem 30-4-1999;274:12537-12543. 

 [120]  Schonbeck U, Mach F, Libby P: Generation of biologically active IL-1 beta by matrix 
metalloproteinases: a novel caspase-1-independent pathway of IL-1 beta processing. J 
Immunol 1-10-1998;161:3340-3346. 

 [121]  Van den Steen PE, Proost P, Wuyts A, Van Damme J, Opdenakker G: Neutrophil 
gelatinase B potentiates interleukin-8 tenfold by aminoterminal processing, whereas it 

34



degrades CTAP-III, PF-4, and GRO-alpha and leaves RANTES and MCP-2 intact. 
Blood 15-10-2000;96:2673-2681. 

 [122]  Detmers PA, Lo SK, Olsen-Egbert E, Walz A, Baggiolini M, Cohn ZA: Neutrophil-
activating protein 1/interleukin 8 stimulates the binding activity of the leukocyte 
adhesion receptor CD11b/CD18 on human neutrophils. J Exp Med 1-4-
1990;171:1155-1162.

 [123]  Thelen M, Peveri P, Kernen P, Von Tscharner V, Walz A, Baggiolini M: Mechanism 
of neutrophil activation by NAF, a novel monocyte-derived peptide agonist. FASEB J 
1988;2:2702-2706.

 [124]  Lin KJ, Lin J, Hanasawa K, Tani T, Kodama M: Interleukin-8 as a predictor of the 
severity of bacteremia and infectious disease. Shock 2000;14:95-100. 

 [125]  Livaditi O, Kotanidou A, Psarra A, Dimopoulou I, Sotiropoulou C, Augustatou K, 
Papasteriades C, Armaganidis A, Roussos C, Orfanos SE, Douzinas EE: Neutrophil 
CD64 expression and serum IL-8: sensitive early markers of severity and outcome in 
sepsis. Cytokine 2006;36:283-290. 

 [126]  Muehlstedt SG, Richardson CJ, West MA, Lyte M, Rodriguez JL: Cytokines and the 
pathogenesis of nosocomial pneumonia. Surgery 2007;130:602-609. 

 [127]  Gimbrone MA, Jr., Obin MS, Brock AF, Luis EA, Hass PE, Hebert CA, Yip YK, 
Leung DW, Lowe DG, Kohr WJ, .: Endothelial interleukin-8: a novel inhibitor of 
leukocyte-endothelial interactions. Science 22-12-1989;246:1601-1603. 

 [128]  Deutsch D, Haze-Filderman A, Blumenfeld A, Dafni L, Leiser Y, Shay B, 
Gruenbaum-Cohen Y, Rosenfeld E, Fermon E, Zimmermann B, Haegewald S, 
Bernimoulin JP, Taylor AL: Amelogenin, a major structural protein in mineralizing 
enamel, is also expressed in soft tissues: brain and cells of the hematopoietic system. 
Eur J Oral Sci 2006;114 Suppl 1:183-189. 

 [129]  Katakami Y, Nakao Y, Koizumi T, Katakami N, Ogawa R, Fujita T: Regulation of 
tumour necrosis factor production by mouse peritoneal macrophages: the role of 
cellular cyclic AMP. Immunology 1988;64:719-724. 

 [130]  Brenner S, Prosch S, Schenke-Layland K, Riese U, Gausmann U, Platzer C: cAMP-
induced Interleukin-10 promoter activation depends on CCAAT/enhancer-binding 
protein expression and monocytic differentiation. J Biol Chem 21-2-2003;278:5597-
5604.

 [131]  Nishiguchi M, Yuasa K, Saito K, Fukumoto E, Yamada A, Hasegawa T, Yoshizaki K, 
Kamasaki Y, Nonaka K, Fujiwara T, Fukumoto S: Amelogenin is a negative regulator 
of osteoclastogenesis via downregulation of RANKL, M-CSF and fibronectin 
expression in osteoblasts. Arch Oral Biol 2007;52:237-243. 

 [132]  Hatakeyama J, Sreenath T, Hatakeyama Y, Thyagarajan T, Shum L, Gibson CW, 
Wright JT, Kulkarni AB: The receptor activator of nuclear factor-kappa B ligand-
mediated osteoclastogenic pathway is elevated in amelogenin-null mice. J Biol Chem 
12-9-2003;278:35743-35748.

35



 [133]  Lee ZH, Kim HH: Signal transduction by receptor activator of nuclear factor kappa B 
in osteoclasts. Biochem Biophys Res Commun 30-5-2003;305:211-214. 

 [134]  Kim S, Yamazaki M, Shevde NK, Pike JW: Transcriptional control of receptor 
activator of nuclear factor-kappaB ligand by the protein kinase A activator forskolin 
and the transmembrane glycoprotein 130-activating cytokine, oncostatin M, is exerted 
through multiple distal enhancers. Mol Endocrinol 2007;21:197-214. 

 [135]  Takami M, Cho ES, Lee SY, Kamijo R, Yim M: Phosphodiesterase inhibitors 
stimulate osteoclast formation via TRANCE/RANKL expression in osteoblasts: 
possible involvement of ERK and p38 MAPK pathways. FEBS Lett 31-1-
2005;579:832-838.

 [136]  Simmer JP: Alternative splicing of amelogenins. Connect Tissue Res 1995;32:131-
136.

 [137]  Veis A, Tompkins K, Alvares K, Wei K, Wang L, Wang XS, Brownell AG, Jengh 
SM, Healy KE: Specific amelogenin gene splice products have signaling effects on 
cells in culture and in implants in vivo. J Biol Chem 29-12-2000;275:41263-41272. 

 [138]  Tan J, Leung W, Moradian-Oldak J, Zeichner-David M, Fincham AG: The pH 
dependent amelogenin solubility and its biological significance. Connect Tissue Res 
1998;38:215-221.

 [139]  Gundersen RY, Ruud TE, Jørgensen PF, Scholz T, Reinholt FP, Wang JE, 
Lyngstadaas SP, Aasen AO. Systemic administration of enamel matrix derivative 
(EMD) in lipopolysaccharide-challenged pigs: effects on the inflammatory response. 
Surg Infect . 2007.
Ref Type: In Press 

 [140]  Baue AE: Multiple organ failure, multiple organ dysfunction syndrome, and systemic 
inflammatory response syndrome. Why no magic bullets? Arch Surg 1997;132:703-
707.

 [141]  Riedemann NC, Guo RF, Ward PA: The enigma of sepsis. J Clin Invest 
2003;112:460-467.

 [142]  Dinarello CA: Anti-cytokine therapies in response to systemic infection. J Investig 
Dermatol Symp Proc 2001;6:244-250. 

 [143]  Brun-Buisson C, Doyon F, Carlet J, Dellamonica P, Gouin F, Lepoutre A, Mercier JC, 
Offenstadt G, Regnier B: Incidence, risk factors, and outcome of severe sepsis and 
septic shock in adults. A multicenter prospective study in intensive care units. French 
ICU Group for Severe Sepsis. JAMA 27-9-1995;274:968-974. 

36




