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List of abbreviations 
A Asystole; electrical standstill of the heart, verified with an iso-electric ECG. 

A-CPR Advanced CPR; CPR with addition of drug administration, endotracheal 

intubation and defibrillation. 

AED Automatic external defibrillator; an externally applied defibrillator with software 

that automatically analyzes whether a shock is appropriate. 

ALS Advanced Life Support; A-CPR 

B-CPR Bystander CPR 

BLS Basic Life support; CPR with chest compressions and ventilation only. 

CI Confidence Interval; a measurement of the precision of the midpoint estimates; 

the 95 % CI of a mean marks the interval where a calculation of the mean from 

several samples of the population would be found 95 % of the times. 

CPR Cardiopulmonary resuscitation 

D-CPR Bystander or first responder CPR with the additional capacity of defibrillation 

using an AED. 

EMS Emergency Medical System; usually consists of a call centre (1-1-3 in Norway) 

with a dispatch unit and several first-responder units and ambulances, and even 

more advanced resources.

IHCA In-hospital cardiac arrest 

OOHCA Out-of-hospital cardiac arrest 

PEA Pulseless Electrical Activity; organized rhythm visible on the ECG, but no 

palpable pulsations. 

PCI Percutaneous Coronary Intervention, the radiological procedure of visualisation 

of the coronary arteries and subsequent interventions to re-open these arteries.  

ROSC Return of spontaneous circulation 

VAM Voice Advisory Manikin; a manikin for CPR training that measures performance 

and provides automated feedback (verbal and visual) via an attached computer. 
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Introduction

Background

Sustained life depends on circulation of oxygenated blood to the vital organs of the body. 

In daily life we rely on the heart to circulate blood, with sufficient oxygen transport 

capacity in the form of erythrocytes, and the lungs to provide gas exchange. In some 

circumstances and for limited periods of time, technical devices can replace one or more of 

these essential functions; e.g. during open heart surgery a heart-lung-machine temporarily 

oxygenates and circulates blood allowing the surgeons the luxury of operating on a 

motionless heart. 

The Norwegian legal definition of death is described in relation to the Transplantation 

and Autopsy Act from 1977: 

Certain signs of total destruction of the brain defined as complete and irreversible 

loss of function in Cerebrum, Cerebellum, and Medulla Oblongata. 

It is thus not the absence of heartbeat or breathing that defines death, although the 

permanent absences of these are the most commonly used criteria for death and if left 

untreated, these conditions invariably cause loss of all functions associated with life. 

Cardiopulmonary resuscitation (CPR) is the provision of circulation and ventilation by 

artificial efforts to postpone or avoid irreversible brain destruction. The cause of 

cardiopulmonary arrest can in some instances be reversed and to uphold oxygen transport 

to the vital organs in the meantime is decisive but not always sufficient to save lives. 

The practical application of a combination of external chest compressions and artificial 

ventilation is attributed to the inspired collaboration of Kouwenhoven, Knickerboker and 

the legendary Peter Safar. They all admitted to have stood on the shoulders of others and 

records of resuscitation of victims of drowning and Chloroform anaesthesia go back for 

centuries. From the time of their first publications the recommendations of how to perform 

these tasks have been periodically published with increasing detail and scientific 

foundation. International collaboration to collect and evaluate scientific evidence and joint 

publications of guidelines for a uniform performance across the world was initiated in the 

1970’s and its latest effort is the present consensus on science and treatment 

recommendations.1-3
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The international guidelines summarize the knowledge and give recommendations on 

how to perform the different skills of CPR: 

• Chest compressions. 

• Ventilations. 

• Interventions such as defibrillation, intubation, i.v. access, and medication. 

• The relationships between all these efforts, i.e. pattern. 

We know from animal experiments and human experience that how we perform these 

tasks affects systemic and coronary blood flow and outcome. However, until recently we 

have not been able to control or monitor the performance of these skills during real 

episodes of cardiac arrest, and we have reason to believe that performance on manikins in a 

training environment is dramatically different from real life. The advent of new monitoring 

devices has been the directly initiating event for this project. Our resuscitation research 

group led by Prof. Petter Andreas Steen has been involved in this project for more than ten 

years and I too, recognise the shoulders on which this thesis stands; mainly those of Lars 

Wik, Kjetil Sunde and Elizabeth Dorph.  

Outline of the thesis 

In the present thesis I seek to understand how the guidelines for CPR are implemented 

clinically and if the quality of CPR can be improved by applying automated feedback on 

actual performance. 

The first part of this thesis describes our experiences from monitoring the quality of 

CPR performance and how automated feedback influenced it in three ambulance services 

in Europe (clinical papers I-IV). In the second part I explore these findings and argue that 

monitoring and reporting quality of CPR must be standardized and included in any 

comparative study of resuscitation. 

The progress of science is fast, and some recommendations that derive from the 

findings in our clinical papers are already implemented in current guidelines. At the time 

of our studies training and treatment protocols were based on the 2000 version of the 

guidelines.4,5
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Summary of included papers 

The following section summarizes the four papers included in the thesis and elaborates on 

some aspects of background, methods and results from these. Finally, a discussion of the 

implications of the current work is presented. 

Background

Why does survival after cardiac arrest remain so poor? Numerous experimental and 

clinical studies indicate that quality of CPR influences hemodynamics and outcomes.3

Additional predictors of outcome are peri-arrest events such as witnessed arrest, bystander 

CPR, response time, initial rhythm, and time to defibrillation.6-8 Factors during in-hospital 

treatment after ROSC include protocols of systematic intensive care treatment with 

percutaneous coronary intervention (PCI) if indicated, and therapeutic hypothermia.9-13

Quality of bystander CPR is reported to influence survival.14-16 The limitation of these 

studies was that quality of B-CPR was only assessed after arrival of the ambulance and 

only crudely scored by palpation of pulsations during chest compressions and observation 

of chest rise during inflations. During in-hospital resuscitation attempts with invasive 

blood pressure measurements a relationship between arterio-venous pressure gradient and 

short-term survival has been found.17 Invasive monitoring is not feasible during routine 

out-of-hospital CPR and a non-invasive, robust, and objective tool to measure performance 

was needed. 

Sunde et al. used the memory module of standard defibrillators and found some 

estimates of quality by examining the noise artefacts on the ECG tracings.18 Their findings 

of long chest compression pauses and highly variable and often inadequate chest 

compression rates have been confirmed by other groups.19,20 A prototype defibrillator was 

developed by Laerdal Medical. This defibrillator used an additional chest compression pad 

fitted with an accelerometer to characterize chest compressions and had an extra memory 

card to allow for downloading and reviewing the events electronically off-line. 

In CPR performance studies on recording manikins automated feedback had impressive 

effects.21-23 The number of compressions with target compression depth increased from 32 

to 92 % with the introduction of automated feedback and even after 6 months reactivation 

of skills with automated feedback improved the same percentage from 46 to 81 %.22

We wanted to study the effects of similar automated feedback in a clinical setting. We 

hypothesized that such feedback would improve performance, and that the experience from 
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episodes with feedback could “spill over” with increased awareness of quality factors also 

in episodes without feedback. We therefore decided against randomization and for a 

sequential study design; first determining baseline quality of CPR without feedback 

(baseline phase) [I] followed by a period with automated feedback to the rescuers 

(feedback phase) [II]. 

The many tasks required during clinical advanced life support (ALS) add complexity to 

the situation and might divert attention from the performance of chest compressions and 

ventilations.24,25 Most interventions should be performed at the start of a resuscitation 

episode, and we therefore planned to compare CPR quality the first five minutes to the 

remainder of the episode to assess whether interventions in general would jeopardize CPR 

quality. In addition, we studied the quality of CPR before and after intubation as a 

protected airway should allow continuous chest compressions without pauses for 

ventilations [III], and the effect of semi-automatic versus manual use of defibrillators [IV]. 

AEDs have made early defibrillation possible for lay-rescuers as well as professional 

first-responders and are also used by some during ALS. In animal studies26 and 

retrospective analyses of human ECG data,27 a longer delay from last chest compression 

decreases the chances for ROSC after a defibrillation. The pause induced by rhythm 

analysis and voice prompts by AEDs varies between different defibrillators,28 whereas 

manual defibrillators should enable shorter pauses in chest compressions with a possible 

downside of more inaccurate ECG analysis. 

These are certainly not the only conceivable factors influencing quality of CPR, and 

further investigations in our group will elaborate possible effects of attitudes and 

motivation, the effect of omitting administration of i.v. medications, and the effect of 

different policies towards end-of-treatment decisions. 

Methods

Design and setting 

All included papers are from a multi-centre intervention study conducted in the ambulance 

services of Akershus (Lørenskog, Asker and Bærum stations), Stockholm (Södermalm 

station), and London (NW sector, Fulham station). The collaboration also included in-

hospital sites at Chicago University Hospitals in USA and at Allgemeine Krankenhaus, 

Medical University of Vienna, Austria. The collaboration was led by P.A. Steen in Oslo. 
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He was principal investigator for the out-of-hospital sites. L. B. Becker and F. Sterz were 

principle investigators for the in-hospital sites of Chicago and Vienna, respectively. 

All patients with cardiac arrest that were treated with the experimental defibrillator in 

the three ambulance services were included. Patients younger than 18 years were excluded 

because the feedback system would not adjust for differences in size. No attempt to 

exclude patients with a non-cardiac or even a traumatic cause of cardiac arrest was made, 

as the primary endpoint was quality of CPR. Rates of ROSC and survival to hospital 

admittance and discharge were studied as secondary outcomes without power analysis as a 

standard requirement of CPR research.29,30

Six experimental defibrillators were deployed in each service and served as the primary 

defibrillator in ambulances dispatched to cardiac arrests. In Akershus and London a one 

tiered system responded to cardiac arrests with at least two ambulances. Each unit was 

manned with two persons of whom at least one was trained and certified in advanced life 

support including defibrillation, i.v. medications, and endotracheal intubation. In 

Stockholm the first tier consisted of two ambulance personnel with training in basic life 

support measures and a second tier with a nurse anaesthetist. The experimental defibrillator 

was dispatched with the first tier. The dispatch of the two tiers was simultaneous and they 

usually arrived at the same time. There were also differences in treatment protocols; in 

Akershus they were trained to provide three minutes of chest compressions before the first 

defibrillation attempt, and in London their standing orders were to transport the victims to 

the nearest hospital if initial resuscitation attempts were unsuccessful. The yearly 

demographics of the three ambulance services with regard to cardiac arrests are presented 

in table 1 of paper I. 

We also collected data from in-hospital cardiac arrests that occurred outside the ICU 

and operating theatre at the University of Chicago Hospitals [IV]. The prototype 

defibrillator was dispatched along with the cardiac arrest team. The team leaders were 

residents of general internal medicine in a one-month cardiology rotation, and the rest of 

the team consisted of nurses, respiratory therapist and medical students, all trained and 

certified in advanced cardiac life support (ACLS) or basic life support (BLS) (nurses and 

medical students). The in-hospital teams and the ambulances in Akershus used the 

defibrillator in manual mode. In Stockholm and London the defibrillators default start-up 

mode was semi-automatic with the ECG-waveforms visible on the LCD-screen. 
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Technology and measurements 

The common tool in these studies was the prototype defibrillator Heartstart 4000SP, 

developed by the section of Research and Development at Laerdal Medical in Stavanger in 

collaboration with Philips Medical (Andover, MA, USA) that provided the original 

defibrillators (Heartstart 4000). The work was led by Helge Myklebust. The automated 

feedback system was based on a manikin based feedback system developed at Laerdal 

Medical for research purposes. The defibrillators were approved for investigational use in 

Europe by DNV (CE-mark; 2002-OSL-MDD-0009) and in the US by FDA (IDE# 

G020121).

The original functions and specifications of the Heartstart 4000 biphasic defibrillator 

were left unchanged and included the possibility to choose manual or semi-automatic 

programs as the default start-up, and biphasic truncated exponential waveform with 

impedance-adjusted non-escalating energy output (150J). 

The essential new feature of these research defibrillators was the addition of an extra 

chest compression pad to be placed between the rescuer’s hands and the sternum of the 

patient. The chest sensors were fitted with an accelerometer (ADXL202e, Analog Devices, 

USA) and a pressure sensor (22PCCFBG6, Honeywell, USA). A similar accelerometer 

was mounted within the defibrillator housing to allow for cancelling out vertical movement 

of the supporting surface. This setup was validated in a manikin setup, and the error in 

depth estimation by double integration of the accelerometer signal was found to be less 

than ±1.6 mm.31 The signal from the force transducer originally served as a trigger (2 kg 

force) to start and stop the integration process and to assure that decompression was 

complete so each new compression would start on a zero depth. In a third phase of the 

project the force transducers in all chest pads were replaced with more accurate ones 

(HBM DF2S-LAD, HBM, Darmstadt, Germany) to allow for calculation of the force-depth 

relationship.32 The defibrillators were fitted with an extra LCD screen and storage 

capabilities to store not only ECG, defibrillator events and time-line in the standard storage 

memory card, but also additional information from the extra sensors in an extra memory 

card. The sampling rate was enhanced to 500Hz, and amplitude resolution for all channels 

was improved for the purpose of this research project. 

The integrations were done on-line but the results were only revealed to the rescuers in 

the second phase of the project [II] through graphs on the extra LCD-panel and automated 

verbal feedback. When data were analysed in retrospect a second detection algorithm for 

chest compression depth was used when there was insufficient force or noisy signals from 
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the force sensor. This could be the case when the rescuers’ hands were not placed directly 

over the compression pad, but rather on the rims of the pad. 

The double integration resulted in a continuous curve of chest compression deflection 

with time. This allowed for detection of maximum depth for each compression which was 

averaged for each time period studied, detection of compression rate by determining the 

average of the reciprocal time interval between two distinct parts of the compression 

depth-time curve for intervals less than 1.5 s (as discussed on page 38), and the calculation 

of compression part of duty cycle as discussed on page 42 and Figure 11. A chest 

compression pad deflection of less than 8 mm was regarded as non-significant and not 

included in chest compression count or calculations. 

Figure 1 

The accumulated time without chest compressions in each episode was calculated by 

adding all intervals between two consecutive chest compressions longer than 1.5 s. Lack of 

Figure 1 shows an example of calculation of no-flow time. Time is represented along the X-axis and the 

upper line shows where the imagined change from a non-perfusing rhythm (PEA) changes to a pulse 

generating rhythm (ROSC). In the Nth minute we see 2 interruptions in chest compressions, for a total of ten 

seconds (NFT), resulting in a no-flow ratio (NFR) for this one-minute segment of 10s/60s=0.17. In the next 

minute (N+1th) ROSC is detected after 40s, NFT is thus the time used for one ventilation pause (5s) and the 

rhythm check (5s) and NFR for this one-minute segment is 10s/40s=0.25. If the rhythm check is allowed 

according to the guidelines this time is subtracted for calculation of adjusted NFR (NFRadj). This fraction is 

the potential for improvement of performance given the guidelines and defibrillators used. For the N+1th

minute NFRadj is 5s/40s=0.13. For the total two-minutes shown here the numbers will be:  

NFT = 20 s, NFR = 20s/100s = 0.20, NFTadj = 15s, NFRadj = 15s/100s = 0.15 
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chest compressions is of course not a problem after ROSC. The available software did not 

allow for real-time detection of ROSC, and the rhythm and ROSC-status was evaluated 

retrospectively based on ambulance report forms and detection of QRS-related impedance 

changes.33 The accumulated time without chest compressions when the cardiac rhythm was 

of a non-perfusing character (non-ROSC), was called no-flow time (NFT) to emphasize the 

consequences for the patient. This corresponds to the term hands-off time in manikin 

studies which emphasizes the rescuers potential for improving their performance. To 

facilitate comparison between episodes of different length, the NFT was divided by the 

total length of episode without ROSC and this ratio was called no-flow ratio (NFR). See 

Figure 1. During the feedback phase the LCD-panel showed the number of seconds since 

last chest compression and verbal prompts were given after specific numbers of seconds 

since the last chest compression. 

Some NFT could be justified because of the needs for interventions such as rhythm 

analysis, defibrillation and pulse checks. To visualize the potential for rescuers’ 

improvement we therefore calculated an adjusted NFT and NFR (NFTadj and NFRadj,

respectively) where some time was deducted (from the numerator) for each intervention by 

a set of rules based on the guidelines recommendations, defibrillator specific times, and 

our own clinical experience with such required interventions. 

Ventilation counts were estimated from typical changes in transthoracic impedance, as 

measured across the standard self-adhesive defibrillation pads by applying a near constant 

alternating current of 32 kHz. The impedance signal was further filtered by adaptive 

filtering. The information from the compression sensor (acceleration and force signals) was 

used to optimize the noise filtering.34 The ventilations were automatically recognised and 

ventilation counts were reported for each time period studied. Maximum change in 

impedance and the inflation time as measured from the start of deflection to the maximum 

deflection were also registered. In the feedback phase the changes in transthoracic 

impedance were displayed on the LCD panel as a ventilation rate and a circle that was 

filled according to the magnitude of the impedance change. Automated verbal feedback 

was provided as described on page 15. 

After collection of all raw data on a designated server, the data was electronically 

filtered, and downsampled from 500 to 50 Hz. The episodes could then be viewed and 

annotated in a custom-made computer program (SISTER studio, Laerdal Medical, 

Stavanger, Norway). All episodes were annotated automatically for chest compressions, 

pauses and ventilations, and then annotations for cardiac rhythm was added manually by 
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one of the medical researchers and one engineer with in-depth knowledge of the 

measurement technology. All annotations were checked for correctness and could be 

changed manually by one of the researchers before summary analysis of each episode.

The quality of CPR in each episode was summarized for the whole episode from the 

first recorded ECG-tracing (or first recorded chest compression) to the end of registrations 

or the end of active treatment. In cases without ROSC end of episode was defined as 

10-20 s after the last recorded chest compression or defibrillation. In addition, CPR quality 

was summarized for the first five minutes of CPR, for the time before intubation, and the 

time after intubation if appropriate. Quality was also summarized for each one-minute 

segment of the episodes. Intubation was annotated in the episode based on written 

information from the rescuers and typical changes in compression:ventilation pattern. 

In paper IV all defibrillation attempts were identified and classified as first, middle or 

last in a series of shocks, and the time intervals before, between and after shocks were 

registered. The human delay parts of these pauses were determined using the same rules as 

for NFTadj described on page 14. (See also Figure 1, paper IV) In addition the pre-shock 

and post-shock rhythm were registered and the shocks were termed inappropriate if the 

pre-shock rhythm was not VF or VT, and successful if the rhythm 5 s after the shock was 

not VF or VT. Comparisons were made between manual and semi-automatic use of the 

defibrillators and secondarily between manual users in-hospital versus out-of-hospital. 

Automated feedback 

The rules for automated feedback were initially adapted from the “voice advisory manikin” 

(VAM)-software.21 Additions and modifications were done to accommodate for 

differences in technology. Incomplete release was given a higher priority as this might not 

only be deleterious to the patient, but also jeopardize the depth measurements. (See on 

page 12). In addition, ventilation was measured based on changes in transthoracic 

impedance (in milliohms) and initially the grading of feedback on insufficient volumes was 

based on few experiments on healthy volunteers. The positive encouraging feedback, used 

during manikin practice, was removed from the software for fear that it would seem 

inappropriate during real resuscitation and for fear of feedback overload to the rescuers. 

Partway into the feedback phase of the study, evaluation forms from the users and the 

results from the baseline phase [I] made us change the feedback software with more 

emphasis on no-flow time and less on ventilation volume grading. When originally 

designing the study, we had not realized that prolonged pauses not explained by guideline 
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required interventions would be a major problem, and feedback on this had been given low 

priority. Ventilation volume estimation was found to be too imprecise to be so heavily 

weighted in the feedback algorithm. The changes are summarized in table 1 in paper II. 

During manikin practice, feedback had been given on pattern of compressions and 

ventilations based on whether endotracheal intubation was performed or not, and this 

feature was transferred into the defibrillators. The change in feedback rules was based on 

the pushing of the “intubation” button by the rescuers. However, this button was rarely 

used, and the consequences of leaving the feedback software in “unintubated” mode, was 

that only the first 15 compressions were evaluated until 2 ventilations were performed. 

This “error” was removed in the software revision so that all compressions and ventilations 

were available for real-time analysis and the feedback algorithm. 

Figure 2 

Figure 2 shows a screenshot of the extra LCD-screen used for visual feedback which was activated 

during the second phase. The upper panel shows the impedance change tracing and the semi-filled circle 

according to a grading of the impedance change according to a target of 1.1  (completely filled circle). 

The two numbers to the left are the ventilation rate determined form the last three ventilations (middle) 

and the inflation time for the last ventilation (bottom). The lower panel shows compression depth tracing, 

and to the left the current compression rate and the number of seconds from the last chest compression 

detected (highlighted). 
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It is currently unknown what kind of feedback is needed to improve quality of clinical 

CPR. During manikin practice only verbal feedback was used, but during training of 

paramedics and medical students in CPR, many of the authors had also utilised the on-

screen display of the VAM-software. To enable feedback regardless of background noise 

or if the user decided to silence the verbal feedback, this option was also included in the 

experimental defibrillators via an extra in-built LCD-panel. A screenshot of this panel is 

provided in Figure 2. 

Statistics 

The primary outcome in all the papers was quality of CPR. Secondarily, we analysed 

changes in outcome on an intention to treat basis in paper II, but the study was on purpose 

not powered to detect such changes. We also looked at adherence to guideline target values 

as an outcome [III]. 

Power analysis 

Power analysis for the change in quality with introduction of automated feedback [II] was 

made with the software package Sample Power (ver. 2.0, SPSS Inc, Chicago, IL) based on 

effect of automated feedback in the manikin studies and the results from the baseline study. 

We wanted a power of more than 0.85 with an alpha of less than 0.05 to reject a null 

hypothesis of no difference if the real difference was less than 0.1 in no-flow-ratio or less 

than 4 mm chest compression depth. The baseline no-flow-ratio was 0.48 ± 0.18 and a 

reduction to 0.38 with similar variation would translate into a total of 211 patients (176 

from baseline compared to 35 in the intervention group) and for an increase in chest 

compression depth from 34 ± 9 mm to within guidelines of 38 mm the power calculation 

prescribed a total of 246 (176 versus 70).

No power analysis was made for survival, but retrospectively to exclude a 50 % 

increase in survival to hospital admittance from 42/241 (17%) in the baseline period to 

25% with a power of 0.85 and an alpha of 0.05 would have needed approximately 10 000 

additional cases. 

Statistical analysis 

Data were collected and organized using a spreadsheet program (Excel 2003, Microsoft 

Corp., Redmond, WA) and statistical analyses were performed with SPSS for Windows 

(SPSS ver. 11.0 and 12.0, Chicago, IL). 
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For continuous data results are presented as mean with standard deviation (SD) or 

median with 25- and 75-percentiles depending on whether the data approximated a normal 

distribution. For comparisons mean differences with 95 % confidence intervals (CI) or 

medians with 95 % CI are presented. CI for medians are calculated using a normal 

approximation described by Altman.35

Testing for statistical significance was done with two-sided Student’s t-test for 

independent samples or Mann-Whitney U-test as appropriate. When comparisons between 

quality in the first five minutes and the rest of the episode were done in paper I, and before 

and after intubation in paper III, each patient served as his/her own control and a paired t-

test was applied. Proportions were tested with Chi-squares test with continuity correction 

or Fisher’s exact test if expected number in any category was less than 5. Differences in 

proportions were also evaluated by univariate analysis with odds ratios (OR) with 95 % CI 

when possible. 

Survival after cardiac arrest probably depends on several factors, summarized in the 

chain of survival3 and described in retrospective analyses.6-13 The factors described can be 

divided into; 

• Patient factors such as age, gender, and co-morbidity. 

• Peri-arrest factors such as cause, location, and initial rhythm. 

• EMS/community factors such as bystander CPR, quality of bystander CPR, 

response intervals, and treatment algorithms. 

• Post-resuscitation factors such as percutaneous coronary intervention (PCI) if 

appropriate, hypothermia, use of inotropes and circulation support, and intensive 

care in general.

There may be interdependence between several of these, such as bystander CPR and 

initial rhythm or response intervals and initial rhythm. To describe complex interactions on 

one outcome one can use a multiple regression, and when the outcome is dichotomous a 

logistic regression can be used to determine the relative importance between several 

determinants. It is important to notice that logistic regression is only descriptive and does 

not imply causality. It is however, a powerful tool to dig for relationships in data to find 

good questions for future studies. 

We used a model of multiple logistic regressions in paper II where different 

measurements of CPR quality were entered into models of previously described predictors 

of short-time survival. Short-time survival was defined as admittance to hospital intensive 



Quality of CPR 

- 19 - 

care unit or ward with spontaneous circulation. We used short-time survival as the 

dependent factor in this analysis, because we did not have information about in-hospital 

treatment which has been shown to influence on overall survival.9,13

Ethical issues 

The studies were approved by the appropriate ethical boards at each site and registered 

as a clinical trail at http://www.clinicaltrials.gov/, (NCT00138996). The need for informed 

consent from each patient was waived in accordance with paragraph 26 of the Helsinki 

declaration for human medical research. The absolute condition for such research is that 

the subjects’ physical/mental condition that prevents obtaining the informed consent is a 

necessary characteristic of the research population.36 The ethical basis for this decision is 

firstly the assumption of altruism; an unselfish will to support research to improve future 

care for acute and serious illness of similar kind as the subject is currently suffering. 

Secondly, during acute and serious illness, the process of obtaining a fully informed 

consent is detrimental to the appropriate treatment and that during such circumstances the 

consent procedure could be considered as undue pressure to accept the investigation. The 

transfer of consent authority to relatives (if present) or bystanders is restricted by the same 

problem of undue pressure in addition to possible conflicting interests. There are 

inconsistent legal practices regarding representatives for adult patients under such 

circumstances in different countries. 

In our study all patients were entered into the study based on these considerations. 

Informed consent cannot be obtained from a cardiac arrest victim before the interventions 

take place. In addition, the chance that the new interventions could be deleterious to the 

patients was remote; an extra chest pad fastened to the sternum with double adhesive tape, 

and, in the feedback phase [II and IV], the possibility that automated feedback could 

change performance of CPR. The possible (extra) emotional stress imposed on bystanders 

was not specifically addressed in the protocol, but the paramedics at the scene had the 

opportunity to turn the volume of verbal feedback down, switch to tonal feedback or to 

visual feedback on the LCD-panel only. 

It could be critically argued that the patients were not the only study subjects, but also 

the involved ambulance personnel. It was their performance with and without automated 

feedback that was measured. The involved ambulance services decided on their 

participation on an organisational level which included discussions with the involved 

unions, but without formal consent process from each ambulance personnel. This may 
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influence data collection, as it is conceivable that an unwilling rescuer would be more 

reluctant to complete the process of collecting all necessary data. The cooperation of the 

ambulance personnel is indeed the crucial factor to succeed in this kind of research. 

The publication of the first paper in JAMA [I], was extensively covered in news media 

internationally and in Norway. The coverage in the US media was based on the press 

release by JAMA/AP 37 and focused on the findings in the paper and the accompanying in-

hospital study.38 In contrast, the headline and ingress chosen by Aftenposten (major daily 

newspaper in Norway) was that inadequate CPR performed by paramedics killed 500 

person per year in Norway.39 Naturally, the paramedics involved in the study in Akershus 

(and elsewhere in Norway), were insulted and felt stabbed in the back. Quite a lot of work 

was required by the authors to regain the trust of the ambulance personnel to continue their 

participation in other on-going studies. A lesson learned for all about the dangers of 

popularisation of research findings. 

Funding 

The expenses for the development of research defibrillators and for the process of 

achieving CE-marking and FDA-approval for investigational purposes were covered by the 

two companies responsible for the development of the defibrillator; Laerdal Medical 

(Stavanger, Norway) and Philips Medical Systems (Andover, MA, USA). Furthermore, 

Laerdal Medical set up a data collection server, paid for additional training in the use of the 

custom defibrillators, and travel expenses. 

The salaries for the researchers came from the Norwegian Air Ambulance Foundation 

(JKJ), Ullevål University Hospital, Division of Prehospital Emergency Medicine (PAS, HS 

and LW), University of Oslo (PAS) and the participating ambulance services (LS, RF). 

Helge Myklebust is a full-time employee of Laerdal Medical on a fixed salary. The 

American co-authors were paid by their respective hospitals. Furthermore, the projects 

were supported by unrestricted grants from the Regional Health Authorities East, Anders 

Jahre Foundation for Sciences and the Laerdal Foundation. None of the funding parties had 

any role in the interpretation of the data or the decision to publish. 
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Results

Paper I 

In the baseline phase of the SISTER study 65/241 (27 %) episodes had insufficient data 

available for analysis of CPR quality. Two patients were wrongly included as they did not 

receive CPR. The main reasons for exclusion were failure to place the chest compression 

sensor (33/65) and technical problems (26/65). In addition, the technical quality precluded 

analysis of ventilation count in 13 episodes. The main result from the 176/241 (73 %) 

episodes was that CPR quality was generally poor, with long chest compression pauses 

between shallow chest compressions (Table 3, paper I). The only differences in quality 

between the first five minutes and the rest of the episode were a slightly longer No Flow 

Ratio when adjusted for required pauses (42 vs. 38 %) and fewer compressions actually 

given (60 vs. 64 per minute) during the first five minutes (Table 3, paper I). 

Paper II 

After introduction of automated visual and verbal feedback nine (8 %) of the 117 

attempted resuscitated were excluded due to technical errors (5) and failure to attach the 

chest pad (4). The exclusion rate was significantly lower than in the first phase (OR for 

completeness of data 4.4 (95 % CI; 2.1, 9.2)). The number of episodes where ventilation 

count could be reliably estimated for the whole episode was similar (163/176 versus 

98/108). Quality of CPR was improved for chest compression depth and rate, but NFR and 

NFRadj was only marginally improved. Overall ventilation count per minute was similar in 

the baseline and feedback cohorts. This was as expected, since this measure had been close 

to target in the first phase. The fraction of one-minute segments with excessively high 

ventilation count was reduced from 10 % to 8 %. Though statistically significant, this 

slight improvement is unlikely to have a clinical impact. 

When the two versions of feedback software were compared, we found an interesting 

improvement from version 1 to 2 for the more highly prioritized no flow time, apparently 

at the cost of poorer chest compression depth (Table 4, paper II). 

Paper III 

We were able to identify 119/176 episodes from the baseline cohort where we had 

reliable CPR quality recordings both before and after intubation. The reasons for exclusion 

were poor data quality (13), not intubated during the resuscitation (23) or intubated before 
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or within the first minute of chest compressions (17), and four cases of suspected 

unrecognized oesophageal intubation. 

The quality increased after intubation when directly compared (Table 2, paper III), but 

not when CPR quality before and after intubation was compared to the target values of the 

international guidelines for unintubated and intubated patients (Table 1 and 3, paper III). 

After intubation, general quality was still too poor compared to what is needed to generate 

a good cardiac output. 

We have repeated the analysis with the data from the feedback phase and the results are 

similar. Table 1 shows absolute measures of CPR quality and the figures shows frequency 

distributions of number of compressions per minute (Figure 3) and ventilations per minute 

(Figure 4) before and after intubation for one-minute segments. 

An interesting observation was the possibility to detect failed intubation or misplaced 

endotracheal tubes by the absence of impedance changes (Figure 5, paper III). This could 

be of interest during out-of-hospital resuscitation as other methods of determining correct 

placement of an endotracheal tube are either very user dependent (visual inspection, 

auscultation), they require intended actions at several time points (rechecking tube 

placement after each repositioning of the patient), or they are based upon the level of CO2

in exhaled air, which during low flow states such as during CPR, may be very low. 

Transthoracic impedance is on the other hand measured continuously by almost all 

defibrillators through the already present defibrillation pads. 
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Table 1 

N=58 Before 

intubation 

After

intubation 

Difference 

Length of segment (s) 377 ± 245 1205 ± 540  

No flow time (s) 224 ± 176 401 ± 294  

 NFR 0.57 ± 0.17 0.40 ± 0.17 -0.16 (-0.11, -0.21)* 

Chest compressions    

 Compressions per minute 48 ± 19 67 ± 20 19 (14, 25)* 

 Compression rate (min-1) 109 ± 13 111 ± 11 1 (-5, 2) 

 Compression depth (mm) 37 ± 7 38 ± 6 1 (-2, 1) 

Ventilations per minute 6.3 ± 3.2 13 ± 3.7 6.5 (5.5, 7.6)* 

Table 1 shows some summary CPR quality variables before and after intubation in the 58 episodes of the 

feedback phase where we had reliable quality registrations from at least one minute before intubation and 

after intubation. The asterisks (*) mark where a paired t-test for difference not equal to zero produced a 

P<10-8.

Figure 3 
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Figure 3 shows the frequency distribution of number of compressions per one-minute segments before 

(left) and after (right) intubation in the 58 episodes where reliable quality registrations from both were 

available. The number of one-minute segments was 364 and 958, respectively. 
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Figure 4 
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Paper IV 

We identified 1165 defibrillation attempts in a total of 223 episodes with at least one 

shock. There were 635 manual shocks and 530 AED-shocks, and the distribution of shocks 

per episode and the number of shocks given as first, middle or last in a series was similar 

in the two groups. Significantly more shocks were inappropriate in the Manual group with 

the highest rate in-hospital (Table 2, paper IV). In contrast, delays before, between, and 

after shocks were significantly shorter during manual use. Also the parts of the delays 

attributable to human factors were shorter in the manual group (Table 3, paper IV). 

The successfulness of the shocks in the two groups was similar; in both groups VF/VT 

was terminated for more than 5 s after ~60 % of the shocks. However, there seemed to be a 

higher chance for more organized rhythms (PEA and ROSC) and a lower chance for 

asystole associated with manual defibrillation, OR for an organized rhythm after manual 

shock versus AED shock; 1.8 (95 % CI; 1.4, 2.4) (Table 2, paper IV).

Discussion 

Together these four papers represent a first major effort to describe quality of CPR in detail 

with parallel papers from our collaborating partners from in-hospital resuscitation38,40,41

and even CPR quality in a specialized emergency room environment42 have been 

published. The data have been reused for secondary analysis of electrophysiology43 and 

signal processing.44,45 We have established a baseline dataset on how CPR is performed in 

the real world [I] and have tried to single out the effect of certain interventions both 

Figure 4 shows the frequency distribution of number of ventilations per one-minute segments before (left) 

and after (right) intubation in the 58 episodes where reliable quality registrations from both were 

available. The number of one-minute segments was 364 and 958, respectively. 
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practically [II] and theoretically [III and IV]. In addition, our understanding of the physics 

of chest compressions has improved,32 and the importance of attitudes46 and 

implementation have been highlighted. 

I will first discuss some limitations of the current project and then some implications of 

the results. The final part of the discussion will be a recommendation including definitions 

to facilitate collection and reporting of CPR quality data for quality assurance purposes, for 

all clinical trials in resuscitation research, and for those of us who still think there is more 

knowledge to be gained by studying the relationship between specific quality measures and 

outcomes. 

Limitations 

The major concern when one wants to establish a cause effect relationship is the control 

group. The gold standard is the randomized study, where chance assigns subjects to 

intervention or control groups. Still, expectations of effect (or other subtle changes in 

behaviour) could influence both patients and researchers, and blinding is used to eliminate 

such bias. In double-blinded studies neither subjects studied nor the researcher(s) 

administering the intervention and evaluating the effect know whether the patient belong to 

the control or intervention group. Double-blinded randomized trials make determination of 

cause-effect relationships easier, as the two groups hopefully will be similar in all aspects 

other than the intervention. Such an approach was not possible in our project for several 

reasons. Firstly, feedback on quality of CPR to the rescuers was the intervention studied, 

and the rescuers could therefore not be blinded. The group assignment could have been 

kept from the researchers evaluating the collected data, but this would have delayed the 

results from the first phase by more than a year. Secondly, we have previously reported an 

extended effect of automated feedback to the next training sessions in manikin studies,21-23

and in a randomized study, we feared a spill-over of skills into the control group. 

We therefore chose a sequential approach. Prospectively planned studies with historical 

controls will not have the statistical strength of randomized studies, but all measures were 

taken to have the two cohorts as similar as possible, and by involving three different 

ambulance services the results should be more robust for generalization. The hypothesis of 

effect of automated feedback was prospectively determined, as were the sub analyses of 

the different interventions in paper III and IV. Any finding regarding CPR quality and the 

effect of automated feedback would have been potentially interesting to publish, and this 
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was also stated in the protocol. The study thus conformed with the requirements for studies 

without internal control described by Bailar.47

No-one in the ambulance services were informed about the results from the baseline 

phase before all data from the feedback phase had been collected. The awareness of being 

watched is by itself probably improving the quality,48 and all involved personnel knew that 

we wanted to study quality of CPR from the start of phase one. However, the higher OR 

for completeness of data in phase two, predominantly due to higher adherence to protocol, 

i.e. placement of the extra chest pad, could either be due to increased familiarity with the 

equipment or indicate higher awareness of CPR quality in the second phase. The latter 

would be an indirect effect of the automated feedback in that the rescuers would want the 

feedback to be active, and not necessarily a confounding factor.  

We cannot rule out the possibility that temporal trends influence the results. During the 

years 2002-2004 quality of CPR was not the hot topic it has since become, partly due to the 

present studies, and the ambulance services involved were operating with the same 

guidelines and local algorithms during the whole period.  

A multi-centre study as this will also be vulnerable to changes in case-mix from the 

different sites. We found site-differences in quality and survival in the first phase and a 

relative change in proportions of episodes between the first and second phases. Site 

specific CPR quality data were not disclosed, and the changes were in the direction that the 

proportion of episodes from the site with better quality was smaller, underestimating the 

effect of automated feedback (Figure 5 and Figure 6). Some differences in CPR quality 

between sites may be due to different local protocols. Including sites with different 

protocols was an intention of the study, as this tends to make conclusions drawn from the 

results more general. 
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Figure 5 
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CPR quality 

We found overall poor quality of CPR. Pauses were long and frequent, and chest 

compressions were too shallow. Hyperventilation did not seem to be a major problem 

during out-of-hospital resuscitation in our material as has been reported by others.38,49

Figure 6 shows overall quality of CPR during both phases for NFR (left) and Compression depth (right) for 

the three sites. The left site in both panels is the site with (slightly) better quality. 

Figure 5 shows the distribution of episodes included from each of the three sites in baseline phase (left) 

and feedback phase (right). The exploded slice of the pie represents the site with better quality during 

both baseline and feedback phase of the study. The change in distribution was not significant (P=0.3, 

Chi-square test). 
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Chest compressions 

Chest compression depth was less than guidelines recommendations, but improved 

significantly with automated feedback. In paper II the number of episodes with average 

compression depth within guidelines doubled. The increase in chest compression depth 

was lower after the second version of feedback software which gave higher priority to 

feedback on compression pauses was applied (Tables 3 and 4, paper II). 

In addition, we found that chest compression depth whether expressed as average depth 

in the episode or as percentage of compressions within guidelines depth was associated 

with higher short term survival (Figure 1, paper II). To try to adjust for other known 

determinants of short time survival, we entered depth along with other CPR quality 

measures in a logistic regression model based on previous findings.8 In this logistic 

regression approach we also found significantly increased odds for survival if the arrest 

was witnessed, in line with previous findings. In our model the other known factors such as 

response time, bystander CPR, and an initial rhythm of VF/VT did not achieve a level of 

significance, probably due to a limited number of cases or interactions. Interestingly, all 

these factors where found to be in the previously reported range in the unadjusted analysis, 

except for response time which in our analysis seemed unrelated to short time survival or 

even oppositely related. The explanation for this probably lays in site differences, where 

one site had shorter response times, but low rates of bystander CPR, poor quality of CPR 

and very low survival. The administration of adrenaline tended to be associated with 

poorer survival, similar to what was found in a large material from the Swedish cardiac 

arrest registry.50 In this analysis we did not adjust for long episode duration which 

previously has been found to be associated with poorer survival and the number of 

medications given might be a surrogate for episode length. 

There was no change in chest compression depth before and after intubation during the 

baseline period [III] or in the feedback material (Table 1 on page 23). 

The chest compression rate was in the high acceptable range in the baseline phase [I], 

similar before and after intubation [III]. Automated feedback improved this quality 

measure to well within guideline targets [II]. Interestingly, the number of episodes with 

very high or very low chest compression rates was reduced, illustrated in the box plot in 

Figure 7.
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Figure 7 

The number of chest compressions actually delivered per minute did not change as this 

depends both on no flow ratio and compression rate which both were reduced. 

Incomplete release was not a general problem in the baseline phase [I], and very little 

feedback was actually provided for such errors in the feedback phase [II], subsequently we 

did not find any changes in this measure. Only 277 (1.6 %) of more than 17 000 feedback 

prompts delivered during the 108 episodes of the second phase were for incomplete release 

even though this was the highest priority feedback for reasons of compression depth 

calculation (discussed on page 15). However, in some episodes incomplete release was a 

problem; 15/176 (9 %) in baseline phase and 7/108 (7 %) in the feedback phase had more 

than 10 % of the chest compressions with incomplete release (OR 0.7 (95 % CI; 0.3, 1.9), 

non-significant).

Similarly, chest compression duty cycle was remarkably constant, and did not change 

between the two phases. Only 97 (0.6 %) of more than 17 000 feedback prompts in phase 

two were for poor duty cycle. With the same technology duty cycle was 0.43 (95 % CI; 

0.40, 0.45) during in-hospital CPR in Vienna42 and 0.38 ± 0.07 in Chicago (D. Edelson, 

personal communication) even though the patients were compressed on a bed and not on 

the floor, a factor previously shown to reduce duty cycle during manikin practice.51

Ventilations 

Overall, the number of ventilations per minute did not deviate from the recommendations 

[I], and after introduction of automated feedback the mean number of ventilations per 

Figure 7 shows a box plots of the distribution of average chest compression rates (min-1) per episode in 

the baseline phase (left) and the feedback phase (right). The two horizontal lines show the limits for 

automated feedback (90 and 120 min-1). 
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minute did not change [II]. Thus, we did not replicate the apparent finding of 

hyperventilation with a rate of 30 ± 3 per minute reported by Aufderheide et al.49 They 

only reported the highest ventilation rate in a 16 s segment after intubation however, and 

such a short observation period may be misleading while the mean for the whole episode 

may disguise periods of hypo- or hyperventilation. When analysed by one-minute 

segments, we found a marked increase in mean ventilation rate after intubation, but the 

fraction of one-minute segments with ventilation rates above 20 min-1 were still only 20 % 

[II].

Figure 8 

We were not able to analyse ventilation volumes and inspiration times reliably in all 

episodes, and as explained feedback was changed accordingly. Even so, we did find an 

increase in inspiration time from 0.8 ms ± 0.2 to 0.9 ms ± 0.2, P<0.001 from the baseline to 

the feedback phase. In contrast, impedance change as a surrogate for ventilation volume 

increased with the first version of feedback, but when feedback regarding ventilation was 

reduced from version 1 to 2 of the feedback software, the values changed back to baseline 

levels. (Figure 8 ) Longer inflation time and lower tidal volume have been associated with 

lower inspiratory airway pressure and less gastric inflation.52

Figure 8 shows the distribution of mean transthoracic impedance changes per ventilation in episodes 

from the baseline phase and from the feedback phase with the two versions of automated feedback 

(N=163, 61, and 37, respectively). The two dotted, horizontal lines mark the two levels of feedback used 

in version 1 (0.8 and 1.1 ). In version 2, feedback on ventilation volume was restricted to 0.8  only. 
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Pauses and interventions 

Without feedback there were no chest compressions nearly half the time when there was no 

spontaneous circulation, there were no chest compressions [I], and this fraction only 

improved when pauses were more aggressively addressed by changes in feedback software 

from only a tonal beep every 15 s without chest compressions to a tonal beep at 15 s 

followed by verbal prompts every 15 s thereafter [II]. 

Pauses in chest compressions that would be “necessary” according to the guidelines5 for 

rhythm analyses, defibrillation attempts and possibly pulse checks could only explain a 

small fraction of the measured pauses. This “necessary” fraction of no-flow time was 

reduced in the feedback phase from median (25-, 75-percentiles) 0.08 (0.05, 0.12) to 0.06 

(0.04, 0.09), P=0.02, Mann-Whitney U-test. Shorter mean episode length, slightly reduced 

fraction of episodes with VF as the initial rhythm, and fewer defibrillations per episode 

probably explains most of this difference. 

Figure 9 

Other interventions such as placement of i.v.-needle, medications and endotracheal 

intubation were thought to be most time consuming during the first minutes of 

resuscitation, but as described on page 21 the difference between no-flow ratio adjusted for 

rhythm analysis, defibrillation attempts and possibly pulse checks (NFRadj) in the first 5 

minutes and the rest of the episode was small [I]. This analysis was not published for the 

feedback material, but the differences were similar (Table 2). The reason for the small 

Figure 9 shows the distribution of mean No-flow ratio in episodes from the baseline phase and from the 

feedback phase with the two versions of automated feedback (N=176, 69, and 39, respectively). Only the 

change from feedback version 1 to 2 was statistically significant (See table 4, paper II). 
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differences in quality may be that the interventions we imagined should occur in the first 5 

minutes actually did not occur until later in the episode, or that planned and intervention 

associated pauses in general only explains little of the poor quality observed. Supportive of 

the first explanation is the finding from paper III where less than half of the intubations 

occurred before five minutes. 

Table 2 

 First five minutes of CPR Entire episode of CPR 

No flow   

 NFR 0.44 ± 0.19 0.44 ± 0.17 

 NFRadj 0.38 ± 0.18 0.37 ± 16 

Chest compressions   

 Compressions per minute 64 ± 24 63 ± 21 

 Compression rate (min-1) 109 ± 14 109 ± 12 

 Compression depth (mm) 37 ± 7 37 ± 6 

Ventilations per minute 9.3 ± 4.7 11 ± 4 

Table 2 shows some quality measures for the first five minutes and the entire episode of CPR from the 108 

episodes in the feedback phase. For ventilations the number of available episodes was 98. Numbers are 

presented as mean ± standard deviation. NFR; no-flow ratio, and NFRadj; no-flow ratio adjusted for time 

“necessary” for rhythm analysis, defibrillation attempts, and pulse check, if appropriate. See text for 

explanations. 

Before intubation we assumed that ventilations would generate much no flow time, as 

chest compressions are discontinued for two inflations with a bag-mask-valve device (or 

mouth-to-mouth/mask). In paper III we found a reduction of NFR of 0.20 from before 

intubation to after intubation, and similar findings are presented in Table 1 (on page 23) 

before and after intubation for the feedback cohort. If all this reduction in NFR was due to 

reduction in ventilation pauses, such pauses could be estimated to comprise one third of the 

mean 206 s of pause before intubation, or 69 s. The average length of episodes before 

intubation was 349 s, resulting in ~12 s per minute for ventilation pauses, not far from the 

recommended three ventilation pauses á 5 s. That leaves the remaining pause time of ~24 s 

per minute unexplained. 

We were able to study the time delays associated with defibrillation attempts in two 

comparable groups using the same model of defibrillators in either manual or AED mode. 
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We found that manual mode resulted in shorter delays before, between and after the 

defibrillations and possibly a tendency towards more shocks resulting in an organized 

rhythm [IV]. This result was not adjusted for length of pre-shock pause which in another 

paper which studied only the first shock of every episode with manual defibrillation mode, 

was found to be inversely related to chance of VF termination.40

One fourth of the manual shocks were given without a shockable rhythm, and this 

fraction was even higher among residents during in-hospital resuscitation. Most 

inappropriate shocks were performed on an organized rhythm, mostly PEA, but luckily the 

resulting rhythm was the same after nearly 90 % of the inappropriate shocks, and there 

were no signs from circulation induced impedance changes that any inappropriate shock 

terminated a spontaneously circulating rhythm. 

The results from this study support the changes in the current guidelines to give only 

single shocks, not up to three in a series.1,2 If all shocks delivered as number two or more 

in a series were avoided, this would theoretically reduce the no-flow times associated with 

defibrillation by 70 % in episodes with VF as initial rhythm, and possibly reduce the 

number of inappropriate shocks by ~50 %. We showed that AEDs are better at recognising 

VF/VT than paramedics and even residents, and the risks of imposing more NFT and 

possibly electrically induced post-resuscitation myocardial dysfunction due to unnecessary 

shocks,53,54 would favour a change to AED use in professional services as well. The pre 

shock pause of median 22 s (18, 28) induced by AEDs is not acceptable, however. Until 

the rhythm can be analysed during ongoing chest compressions, we suggest the use of an 

AED mode with chest compressions recommenced during defibrillator charging if this is 

allowed by the defibrillator and strict safety rules are applied.55

Further research 

The major implications of our research are: 

• We cannot trust CPR to be of uniform and good quality in any clinical trial. 

On the contrary, we found CPR performance to be highly variable, and of such poor 

quality that in many instances it is likely that the blood flow generated was very small and 

inadequate to support the vital organs and to improve chances for a successful 

defibrillation. In an experimental study Pytte et al. showed no hemodynamic effects of 

peripherally administered adrenaline (epinephrine) when chest compressions depth was 

similar to the present findings and with compressions half the time.56 A blood flow above a 

threshold may thus be needed to observe any effect of a drug. 



Jo Kramer-Johansen 

- 34 - 

This may indicate that most clinical drug trials should be redone with protocols that 

ensure uniform and good quality CPR which is adequately measured and reported. 

• There is still more to learn from clinical studies of quality and outcomes, and 

this requires a reasonable consensus of definitions.  

• Much research is needed to define an optimal automated feedback for use during 

clinical CPR. Different sites and settings may need different approaches.  

Based on the present findings we hypothesise that the main reasons for no flow time 

during clinical CPR are not interventions or ventilations, but perhaps lack of understanding 

the priorities or just the overwhelming stress and difficult working conditions in the out-of-

hospital cardiac arrest situation. To explore this further we probably need other methods 

than standard biomedical quantitative research methods. We need to explore why much 

scientific information is so poorly implemented, and for this we probably need to employ 

hermeneutic research tools and knowledge from quality improvement system strategies. 

Mechanical chest compression devices 

If the performance of professional rescuers is as poor as we have shown, why are not 

mechanical chest compression devices more successful than so far reported?57-59 Even if 

chest compressions devices are considered an adjunct to manual CPR during out-of-

hospital cardiac arrest, the situation where causal treatment cannot be provided on-scene 

occurs frequently. During transport and interventions in the radiology theatre (i.e. PCI), 

manual CPR may impose dangers to the rescuers and be ineffective for the victim.60

Mechanical CPR may be a safer alternative to bridge pre-hospital and causal treatment.57

Currently no commercially available mechanical chest compression device possesses all 

the necessary qualities: The compressed air driven LUCAS® is easy to apply but noisy 

during operation. Questions have been raised about its safety for the rescuers due to the 

massive noise and the use of Oxygen as compressed gas source in most instances.57 In the 

first clinical trial there was no survival benefit of the device.61 More concerning, perhaps, 

is the reports of massive injuries seen in autopsy materials, even if the reports so far have 

serious methodological flaws.62 On the other hand, AUTOPULSE® which works by the 

load-distributing band principle,63 powered by internal batteries, proposes no apparent 

hazards to rescuers or patients, but two clinical trials seem inconclusive as to whether this 

device can replace manual chest compressions.58,59 A potential problem with the 

AUTOPULSE® device has been its incompatibility with X-rays, but product development 

is expected to solve this to allow for continued CPR during PCI. 
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Manual chest compressions will always have to be the initial response to circulatory 

arrest and must be continued until a mechanical chest compression device can be operative. 

Lack of appreciation of this fact may be one reason for the conflicting results in the clinical 

trials so far. 

—

In the last part of the thesis, I will explore my views on the rationale for a uniform 

reporting of CPR quality and propose definitions for some of the quality variables. 

Why measure and report quality of CPR 

There are several good reasons to measure and report quality of CPR. Firstly, the process 

of debriefing, the retrospective critical review of an incident, is a powerful way of learning, 

and may be enhanced by accurate information. Any ambulance service or cardiac arrest 

team would like the opportunity to review their case, preferably shortly after. The efforts 

reported can be either a graphical representation of the episode, or a numeric presentation 

of key elements of quality. The focus must then be on variables with a documented impact 

on outcome, which are quantifiable, and, importantly, which can be improved by the team. 

This approach is not necessarily limited to professional rescuers, but also volunteers 

involved in a public AED programme or even the incidental bystander may want and profit 

from an objective review of the resuscitation efforts. The future availability of small stand-

alone devices that measure quality of CPR and provide real time feedback can be extended 

to include recording and playback functionality. Using the same technology for training 

and real use would have some pedagogical benefits. 

Secondly, the medical directors have a need for CPR quality reporting. The purposes 

can be; to be able to monitor the quality and the effects of any change in algorithms, 

standard operating procedures or devices, and to be able to compare the service to other 

providers.

Similarly, many clinical trials have recently failed to confirm promising results from 

experimental research. It can be speculated that if poor quality of CPR is the major 

determinant of survival in the studied cohorts, any differences from the studied 

pharmacological agent, intervention or device will be hard to demonstrate. Likewise, 

heterogeneous level of CPR quality between sites in multi-centre trials, differences in CPR 
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quality induced by the studied intervention in itself (e.g. prolonged no-flow time induced 

by a new intervention), or biased CPR performance that is dependent on the studied 

intervention in non-blinded trials (e.g. if the performers’ beliefs in and attitudes to the 

intervention induce differences in other parts of the treatment), could severely confound 

any otherwise well designed trial. Quality of CPR must therefore be accounted for in any 

clinical trial, and differences between groups should be dealt with in logistic regression 

analyses, if possible. The variables needed for such reporting should therefore be supported 

by data on outcome, be quantifiable, and be possible to enter in a regression analysis as a 

co-variate. It must be an integral part of every research protocol to describe how quality of 

CPR is going to be monitored and reported. 

Finally, the research community preoccupied with the study of the impact of CPR 

quality on outcome, needs precise definitions to be able to compare results across studies. 

The CPR research community have a long tradition of standardising reports from studies of 

CPR. Consensus papers based on scientific meetings at the Utstein Abbey outside 

Stavanger, have given definitions and recommendations on how to report a core set of 

information about the peri-arrest factors thought to influence outcome of out-of-hospital 

cardiac arrest.29,30 The concept has been transferred to in-hospital cardiac arrest,64 post-

resuscitation care,65 trauma research,66 and animal laboratory CPR research.67 These 

consensus papers have so far not been able to address quality of CPR, but recent 

technological advances, including, but not limited to, the technologies utilised in the 

current thesis, have made measuring and reporting CPR quality available for everyone. The 

commercially available devices have different methods to capture quality data. The 

researcher community needs to agree how we want to define and report on these variables, 

and make these definitions independent of manufacturer, devices, and currently available 

technology.

How to measure and report quality of CPR 

In the following sections, I will propose definitions of each variable of CPR quality and 

discuss how these best can be reported for the different purposes outlined above. I believe 

that the next revision of the Utstein template for reporting on cardiac arrest will include 

some form of definitions and recommendation to report quality of CPR. Meanwhile, a 

collaboration group from Ullevål University Hospital, University Hospitals of Chicago and 

Allgemeines Krankenhaus Wien have a review paper on this topic with the present author 

as the lead author in press.68
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Chest compressions 

Chest compressions are the circulation generating part of the CPR sequence. In the earliest 

reports of external chest compressions on human victims of Chloroform anaesthesia it was 

noted that deep and rapid compressions were needed to produce palpable carotid pulsations 

and pupillary constriction: 

„Man tritt an die linke Seite des Kranken, das Gesicht dem Kopf desselben 

zugewandt, und drückt mit raschen kräftigen Bewegungen die Herzgegend tief ein, 

indem der Daumenballen der geöffneten rechten Hand zwischen Stelle des 

Spitzenstosses und linken Sternalrand gesetzt wird. Die Häufigkeit der 

Compressionen beträgt 120 und mehr in der Minute.“ 69

The effect of the chest compressions is to create pressure differences between segments 

of the vascular bed and thus make blood flow possible. The highest pressure differences 

are found during open chest cardiac massage, but the invasive nature of this intervention 

has so far limited its use outside the operating theatre.3

The different aspects of a chest compression must all be optimized to provide the best 

flow to the brain and the heart. Research into the different aspects of chest compressions 

have been conducted on animals, mostly dogs and pigs. Most of the studies have been 

performed with different mechanical chest compression devises that have allowed studies 

of each aspect of chest compression quality separately. 

Chest compressions can be visible as electrical noise on ECG-printouts from the cardiac 

arrest. Sunde et al. used this method to be one of the first to report chest compression rates, 

pre shock pauses and delay from initiation of monitoring to the first chest compression.18

Van Alem et al. used similar technology and had the advantage of additional sound 

recordings when she studied interruptions in CPR during first responder use of 

semiautomatic defibrillators.19 The sound recordings add confidence about the presence of 

chest compressions when rescuers count out the compressions, and may add information of 

the reasons for pauses observed. Direct observations of chest compressions are also 

possible with a subjective rating of effectiveness by palpating pulsations 14,70,71 or only an 

assessment of number of compressions.20 Evaluation of trans-thoracic impedance can be 

used to automatically detect chest compressions, and this method is utilised on 

registrations of out-of-hospital cardiac arrest in an ongoing study in the Oslo and Akershus 

EMS.72

To measure chest compressions more accurately additional devices are needed. In our 

projects we have used a chest compression sensor fitted with an accelerometer and a force 
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sensor. The chest compression sensor was placed between the heel of the rescuers’ hands 

and the sternum and its movement considered equal to that of the sternum. The 

acceleration signal (m/s2) can be integrated twice to obtain the distance (m), and the signal 

from both the accelerometer and the force sensors can be used to count the chest 

compressions. The CPREzy™ is a stand-alone device similarly placed that measures the 

force applied to sternum, but to my knowledge, without recording capability. In some 

studies the depth and force of manual chest compressions have been extracted with an 

external device with a linear potentiometer and a force transducer.73

Chest compression rate 

International guidelines recommend chest compressions to be delivered at a rate of 100 

min-1.1,2 Animal experiments showed increase in systemic flow and aortic systolic pressure 

with increasing chest compression rate.74 When the coronary blood flow was measured in 

dogs chronically instrumented with electromagnetic flow probes on the circumflex artery, 

the shorter time in artificial diastole associated with higher chest compression rates 

resulted in decreasing values for coronary flow at rates above 120 min-1.75 As in normal 

physiology, the increase in rate in most experiments with mechanic chest compressions are 

due to a reduced decompression time, and this may explain why increasing the rate above a 

threshold can reduce venous return and cardiac filling and thus reduce cardiac output, 

however this effect was not found in dogs with a rate of 150 min-1.74,75 In a human study 

average end-tidal CO2 (ETCO2) increased from 1.7 to 2.0 kPa when manual chest 

compression rate was increased from 80 to 120 min-1.76

The chest compression rate is defined as the reciprocal of the time interval between two 

identical parts of the compression curve, much in analogue to the calculation of heart rate 

from R-R intervals. (See Figure 10) In contrast to calculation of heart rate, the reporting of 

chest compression rate is complicated by frequent interruptions. The minimum chest 

compression rate (i.e. the maximum time between two adjacent chest compressions 

considered to be part of a series of chest compressions) must be defined. To evaluate chest 

compression rates down to 40 min-1 the interval between two identical parts of a 

compression curve (e.g. the maximum of each compression) must be less than 0.025 

minute (which equals 1.5 s). Conversely, intervals longer than 1.5 s are regarded as pauses 

during which perfusion pressures and forward flow decline rapidly (see on page 46). 
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Figure 10 

The average chest compression rate is then the reciprocal of the average time interval 

for the whole episode, and this can be expressed for the purposes of immediate debriefing 

and research as a mean ± SD. It may also be possible to display graphically compression 

rate per one-minute segment during the episode to facilitate reflective learning in a quality 

improvement system. This number is also suitable as a summary for use in clinical trials. 

As discussed above, too low or too high compression rate is not good. The exact limits are 

not known for man but are assumed to be 100-120 min-1. To be entered in a logistic 

regression chest compression rate should probably be transformed to a binominal measure 

representing within or outside any set target values. 

While current resuscitation guidelines recommend a compression rate of 100 min-1, the 

actual number of compressions delivered per minute reflects both the compression rate as 

well as the pauses in compressions. The number of chest compressions delivered per 

minute may be especially useful in quality improvement efforts and team debriefing. In the 

first paper we recorded compression rates of 121 ± 18 min-1, but the mean number of 

compressions per minute was actually 64 ± 23 as a result of frequent interruptions [I]. 

Abella et al. found a correlation between number of registered chest compressions per 

minute and rate of short term survival during in-hospital resuscitation.20

Figure 10 shows time along the X-axis and the time differences ( t1-4) between corresponding points of 

the chest compression depth curve. The chest compression rate is then given by the formula: 

Chest compression rate = 1/ t
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Chest compression depth 

Compression depth is defined as the maximum posterior deflection of the sternum prior to 

chest recoil. It is important to note that accurate determination of compression depth by 

measuring only sternal movement is not possible without a non-compressible surface 

beneath the patient such as the floor or a backboard. 

I have described how we measured compression depth by the use of a combination of an 

accelerometer and a force sensor on page 12. In our study only vertical movement 

coincident with a force greater than ~2 kg on the force sensor and with a depth of more 

than 8 mm was considered to be a chest compression. These limits are such that very few 

intended compressions are excluded, and hardly any that would lead to generation of blood 

flow. 

It is not known whether it is the depth per se or the force applied that is the main 

component in the generation of forward blood flow. The relationship between applied 

force and thoracic deformation has recently been evaluated in humans with the same 

equipment that was used for the papers included in this thesis.32 The additional chest pad 

placed on the victims’ sternum was fitted with a more accurate force sensor and this 

allowed for a retrospective analysis of the relationship. The results showed a wide variation 

among individuals in the force needed to reach a limit of 38 mm; 29.8±14.5 kg and 

22.5±10.2 kg for males and females respectively, but 87/91 patients were compressed to 38 

mm or more with the use of a force less than 50 kg. Previous studies of this relationship 

have been limited by the number of cases and the methods of force and depth 

measurements.77,78

Current guidelines recommend that a force necessary to produce chest compression 

depth of 4-5 cm (1.5 to 2.0 inches).1,2 In animals both increased force up to 140 pounds 

(~63 kg)79 and increasing depth between 1.5 and 2.5 inches80 have been shown to improve 

systemic blood flow and systolic pressures. The thoracic cavities of four legged animals 

are keel-shaped whereas humans have broader chests with smaller anterior-posterior 

diameter. The compression depth noted in the animal papers equates to approximately one-

fifth of the human chest diameter in a recent human radiographic observational study.81

Compression depth was one of the CPR aspects that could be modified by automated 

feedback in both manikins21 and in our clinical trial [II]. In a quality improvement system 

chest compression depth would be one obvious measure to try to improve, and to report 

depth from clinical trials also seems reasonable. 
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For debriefing and improving quality the report should include the mean compression 

depth over an entire resuscitation episode and the fraction of the total minutes where mean 

compression depth was less than 38 mm, the lower end of guidelines recommendations. 

Adding a minute-to-minute analysis of mean depth allow rescuers to put quality measures 

into the context of the resuscitation event.  

For research requiring accounting of CPR quality, mean overall compression depth with 

standard deviation would be the minimum requirement to show equivalence between two 

groups. However, such investigations could also report fractions of minutes with a depth of 

less than 38 mm, and both of these measures could be entered into a regression analysis. 

We found an association between episodes with deeper chest compressions and short 

term survival in our study [II], but no prospective trial of compression depth have so far 

been conducted in humans, and based on the present data, one could argue that such a 

study would likely be unethical. Still, associations between chest compression depth and 

different outcome variables would be of interest and for all such research definitions would 

be useful. 

Chest compression incomplete release 

Complete release of pressure on the thorax in the decompression phase is believed to be 

essential to allow venous return and cardiac filling before the next compression. In a 

porcine model of cardiac arrest a residual compression depth of 1.2 cm increased mean 

intrathoracic pressure and reduced cerebral and coronary perfusion pressures.82 In humans 

the exact residual force or intrathoracic pressure that would not compromise 

hemodynamics is not known. 

We defined incomplete release as a residual vertical force of more than 4 kg on the 

chest pad between chest compressions. This was equivalent to the weight of the hands of 

one of the researchers. When the force sensor was replaced with a more accurate one for 

the third phases of the study, we found a mean residual force of 1.7 ± 1.0 kg.32

When this measure is reported the threshold value used must be reported. Incomplete 

release can be reported for each compression as a binary measure and the fraction of chest 

compressions can be summarized for the purpose of immediate debriefing. This fraction 

probably also should be reported from clinical trials, but more research is needed to 

associate this feature with changes in hemodynamics in humans.  
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Chest compression duty cycle  

In laboratory research duty cycle was coined as term describing how long the pressure 

from the compression piston was allowed to deflect the sternum. It was the ratio of 

compression time to total cycle time (Figure 11 a). During manual chest compressions, the 

force registrations may be ambiguous. The decision on when the upstroke phase starts is 

not as straightforward as with mechanical chest compression devises. The definition of 

duty cycle was therefore modified to describe the amount of chest compression cycle with 

a downward position of the sternum. This is calculated as the ratio of the area under the 

time-displacement curve divided by the product of cycle time and maximum deflection 

(Figure 11 b). The two calculations give similar results, but the latter is computationally 

easier. 

Figure 11 

In some animal experiments with constant chest compression rate the optimal 

compression duty cycle have been found to be 40-50 %.83,84 Others have found that a 

compression phase lasting 200-250 ms is necessary regardless of compression rate.74,75

Figure 11 shows time along the X-axis and sternal movement in the vertical direction on the Y-axis. The 

upper panel (a) shows calculation of duty cycle from mechanical chest compressions where the black 

arrow marks where force is applied and the white arrow the total length of the compression cycle. The 

lower panel (b) shows manual chest compressions where duty cycle is calculated as the area under the 

curve (hatched area) divided by the area of the deflection by cycle length square (thick lines). 



Quality of CPR 

- 43 - 

This would translate to a 50 % DC when chest compression rates are 120-150 min-1. No 

human studies have related this feature to survival, but higher arterial flow velocities were 

measured in 6 patients when increasing duty cycle from 30-40 % to 50-60 % with constant 

compression rate of 80 min-1.85

The evidence so far suggests that duty cycle during manual chest compressions is fairly 

constant and hardly modifiable (see on page 28). However, as duty cycle may be an 

important feature of CPR quality, and that the height and nature of the surface might 

influence duty cycle,51 it would be of interest in a systematic quality assurance program. 

For such purposes, a mean duty cycle for each episode would be sufficient and similarly 

mean and standard deviations would be needed in reports from clinical trials. For users of 

mechanical chest compression devices, it would be essential to describe the characteristics 

of the device used with regards to duty cycle and the method used to calculate this 

measure. 

Other features of chest compressions 

Many interventions and devices have been evaluated in the hope of improving the effect of 

chest compressions and survival. Examples include mechanical chest compression devices, 

active decompression CPR, the impedance valve and abdominal counter compressions or 

binding. It is beyond the scope of this review to go into details of all these and they have 

not been studied in the papers included in this thesis. However, their use should be 

registered and the effects they have on all aspects of quality and outcomes should be 

subject for quality improvement programs.  

For clinical trials that study these adjuncts or principles, it would be essential to have 

thorough description of the effects these devices and techniques have on other aspects of 

CPR quality and on surrogate measures of outcome such as ETCO2.

Ventilation 

The concept of artificial ventilation may have been partly understood through centuries, 

but its use as a resuscitation measure is linked with the treatment of victims of drowning. 

The first society for the recovery of drowned persons was founded in Amsterdam, and the 

ample presence of canals made the society in 1793 claim 990 rescues during their first 25 

years.86
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During cardiac arrest the primary objective is to circulate blood and in the case of 

primary arrhythmias the arterial blood is fully saturated with oxygen until chest 

compressions are started. When chest compressions start to circulate the blood, it will 

return from the systemic circulation to the heart with very low oxygen content and as a 

function of cardiac output and time, arterial saturation will decrease in the absence of 

alveolar replenishment of oxygen. In a porcine model near complete arterial desaturation 

occurred within two minutes of chest compressions without passive or active ventilation.87

Positive pressure ventilation increases the intrathoracic pressure, which according to the 

discussion on page 41 should decrease venous return and cardiac output during low-flow 

states such as CPR.88 As circulation ceases lower oesophageal pressure has been measured 

to drop rapidly from 20 cm H2O to near zero.89 This probably increases the risk of gastric 

inflation and subsequent regurgitation.90 Thus, during one-rescuer CPR and CPR before 

the airways are secured, chest compressions are withheld to allow for ventilations. This 

results in frequent pauses, during which perfusion pressures drop and forward blood flow 

fades quickly.91

Concerns about the aesthetic issues of mouth-to-mouth ventilation and bystander 

willingness to initiate CPR,92-94 and the detrimental effects of interruptions in chest 

compressions91 have given the impetus to study the effect of omitting ventilation during 

the first minutes of resuscitation. Animal studies have shown improved survival and 

hemodynamics with continuous chest compression CPR compared to standard CPR with 

interposed ventilation in a 15:2 pattern.91,95 Continuous chest compression CPR as the 

initial step during bystander and first responder CPR, has been evaluated and have been 

found to be easier to comprehend, shortening the delay to the first chest compression, in 

telephone-guided bystander CPR.96-98  In one clinical trial survival was similar if not better, 

in the group that received instructions to start chest compressions only.99

From the discussion above we understand that both too many and no ventilations would 

be harmful during CPR, but the exact number of ventilations needed per minute is less well 

characterized. If adequate perfusion of the respiratory centres of the medulla oblongata is 

maintained with good quality chest compressions, spontaneous gasping can probably 

continue for many minutes after cardiac arrest and such agonal respiration has been linked 

to improved survival.100

Ventilation may be monitored during resuscitation by impedance penumography, 

capnography, and spirometry. Clinically, the monitoring device must be easy to apply, 

accurate, and preferably not include vulnerable or bulky equipment. A recent review 
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describes the different methods that can be used,101 and I will discuss those most relevant 

for the main goal for clinical use; ability to provide real time information that can be used 

to modify therapy to the benefit of the victim. 

Impedance pneumography is based on measured impedance across the thorax, which 

changes as the lungs inflate and deflate.33 It is possible to filter out the impedance changes 

due to motion artefacts (mainly chest compressions) and the ventilation count and the 

impedance changes can be displayed on a screen in real time. The strengths of this 

technology are the applicability during all stages of resuscitation regardless of mode of 

ventilation (e.g. mouth-to-mouth/mask, bag-valve-mask, or via an endotracheal tube), it 

monitors changes in thorax volume continuously, possibly enabling detection of dislodged 

endotracheal tubes [III],102 and it does not require any extra equipment other than standard 

self adhesive defibrillation pads. The problems are the inter-individual variability in the 

relationship between impedance changes and tidal volume,103 and the vulnerability to 

movement artefacts caused by chest compressions. 

Capnography is the registration of CO2 in the exhaled air. It can be used either 

continuously or as a single use indicator to verify correct placement of endotracheal tubes, 

and capnography is considered an essential requirement for safe practice during intubation 

for anaesthesia.104 During low-flow states such as cardiopulmonary resuscitation, the 

concentration of CO2 in the exhaled air from the alveoli (ETCO2) is more dependent on 

pulmonary blood flow (i.e. the cardiac output) and the delivery of CO2 to the pulmonary 

capillaries, than the minute ventilation.105 Very low values of ETCO2 may therefore not 

unambiguously be interpreted as misplaced endotracheal tube under these 

circumstances.106 However, the level of ETCO2 may be used clinically as a non-invasive 

estimate of cardiac output.107,108 The measured ETCO2 have been related to short term 

survival, and ROSC can be detected by a marked increase in ETCO2.109,110 Measurements 

of ETCO2 are not restricted to intubated patients, but the interpretation of low values is very 

difficult if the patient does not have a secured airway. Another problem is the equipment 

that introduces another device or connection to apply during resuscitation. 

Spirometry can measure both airway pressures and volumes and can be attached to any 

secure airway or used in conjunction with a bag-valve-mask device. There are different 

technologies available, but so far, all requires bulky and/or vulnerable equipment. The 

measuring of airway pressures is appealing as this is a close estimate of intrathoracic 

pressure that may again be the culprit of decreased survival associated with increased 

ventilation rates.49
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Ventilation rate is easy to measure with all three methods mentioned. High ventilation 

rates have been described in some in-hospital and out-of-hospital settings and is shown to 

be detrimental.38,42,49 Lack of ventilation is probably also detrimental, especially after 

initiation of good quality chest compressions.87 After attempted intubation, no registration 

of ventilation should prompt a check for misplaced or displaced tube which is associated 

with very low survival.111 A report of number of ventilations per minute and a minute-by-

minute summary of ventilations would be useful in post-event reviews. For clinical trials 

both a mean number of ventilations and a fraction of time with high and zero ventilation 

count would be interesting. From available literature the high limit for acceptable 

ventilation rate may be set at 20 min-1.49

Other aspects of ventilation during cardiac arrest need further study, especially to 

elaborate how much ventilation that is really needed and the effects of changing tidal 

volumes, inflation rate (i.e. speed of inflation), and ventilation rate. How the different 

ventilation aspects are performed or changed may also serve as outcome in studies of 

airway interventions. For instance, the ability of the many alternative airway devices 

available to maintain adequate ventilation during continuous chest compressions have 

never been studied in humans, nor have the effects professional rescuers’ ability to perform 

ventilations with bag-valve-mask device before intubation been studied during real cardiac 

arrests. 

Pauses and interventions 

When there are no chest compressions, the perfusion pressures fall rapidly and forward 

flow ceases.91 Pauses will therefore add to the response time and decrease survival.112 It 

may even be that each pause and each chest compression segment introduces a small, 

incremental ischemia-reperfusion injury to the brain and myocardium. 

A plethora of interventions have been described and tried during CPR. The current 

guidelines focus on electrical defibrillation and medications in addition to chest 

compressions and ventilations. Each intervention may cause a pause in the delivery of 

chest compressions. The value of each intervention must be evaluated based on the “cost” 

of such interruptions and the “benefit” of the intervention when it comes to survival. 

Defibrillation 

It was the rising numbers of electrocuted linemen working for the power companies that 

sparked the sponsoring of Kouwenhoven and collaborators’ work that resulted in first the 
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concept of open-chest internal defibrillation and later the closed chest defibrillator.113 The 

first out-of-hospital “portable” defibrillator was used in the mobile intensive care unit in 

Belfast.114

The development of smaller defibrillators with automated ECG-analysis for detection of 

VF/VT has made defibrillators available nearly everywhere, and their use is no longer 

restricted to professional personnel. In cardiac arrest victims with an initial rhythm that can 

be defibrillated (e.g. VF/VT), the time delay to first defibrillation attempt has been found 

to correlate inversely with survival115 with the highest reported survival reported from Las 

Vegas casinos where security officers managed to defibrillate most patients within 5 

minutes.116 Increased survival by adding defibrillating capacity and improving B-CPR 

skills to a fire brigade based EMS was shown in the OPALS study.117

Automated ECG-analysis to determine whether a rhythm is shockable requires a pause 

in chest compressions,28 with the associated deleterious reduction in blood flow as 

discussed on page 46. Manual analysis may be quicker than the defibrillator software, but 

raises the question of analysis accuracy of man versus machine [IV]. 

Unsuccessful shocks still induce some no-flow time and each shock delivers electrical 

energy through the myocardium and possibly adds to the post-resuscitation cardiac 

dysfunction.53,54 The best would be to avoid unsuccessful shocks by having some non-

invasive method to assess CPP or myocardial metabolic status. Anecdotally, the coarseness 

of VF has been used during resuscitation as a predictor of defibrillation success. The best 

mathematical predictor currently seems to be based on wavelet analysis and have a 

specificity of ~60 % for a sensitivity of around 95 %, meaning that it will help avoid more 

than half of shocks that would not have resulted in ROSC.118

Medications 

No drugs administered during out-of-hospital cardiac arrest have been shown to improve 

survival, and retrospective analysis from the Swedish Cardiac arrest registry even suggests 

a reduced survival when adrenaline was used.50 There was no difference between 

adrenaline and vasopressin in a randomized, multi-centre study,119 and no effect of iv 

buffer during out-of-hospital cardiac arrest.120 Amiodarone was shown to improve short 

time survival when administered for persistent VF, but did not change survival to 

discharge.121 Trombolysis during CPR showed promising results in pilot studies, but a 

randomized multi-centre study was prematurely stopped because of futility.122
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Preceding the clinical trials, all these drugs have shown promising and spectacular 

effects in animal studies and pilot studies. The effect on surrogate measures such as 

coronary perfusion pressure has been very impressing for both adrenaline and vasopressin, 

how come they did not perform in the clinical environment? 

Two main reasons are conceivable. Firstly, the pharmacological effects may be different 

in animals and man. While this may be true for many drugs, pilot studies and case reports 

have to be positive for a drug to enter clinical trials. However, it is likely that the drug 

effects in patients with advanced cardiovascular disease may be less or even different from 

those seen in piglets and rats. Secondly, the process of securing an i.v.-line, breaking of 

ampoules, and administering drugs may take time and concentration away from the 

circulation generating chest compressions. In a survey among paramedics in London and 

Akershus, 2/3 believed it to be very important to secure an i.v.-line and intubate the 

patients, and one out of five admitted that they stopped chest compressions to perform such 

tasks.46 In randomized and blinded studies, this does not explain different outcomes 

between groups, but our findings of poor and highly variable quality of CPR [I and II] 

could indicate that CPR performed in these clinical trials does not circulate the drugs to 

their effect site56 or just that poor quality CPR may be the major determinant of survival, 

obscuring the effect of any intervention. 

Reporting pauses 

Reporting of pauses during CPR would serve to identify opportunities for improvement in 

the case of immediate debriefing and real-time feedback. Here it would be helpful to 

associate pauses to each interventions and summarize which part could be attributed to 

rescuer delay and this could be a target for rehearsal and continued improvement 

programme. 

In the case of reporting and comparing clinical trials, it is likely that accumulated no-

flow time can influence on survival or neurological status and it should be reported as a 

mean absolute time of no-flow and as the mean fraction of no-flow time to time without 

spontaneous circulation. It must be acknowledged that our understanding of the detrimental 

effects of no-flow time is not complete, and further clinical studies would be needed. 

VF-analysis has been shown to predict shock success,118,123 and may non-invasively 

measure myocardial metabolic status. As such, it would be suitable as a surrogate end-

point in studies of the effects of pauses associated with different interventions in patients 

with VF. 
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Target values and feedback 

We used a hierarchical system of prioritized target values to provide verbal feedback to 

rescuers, originally based on the training software for voice assisted manikin.21 The target 

values were found based on the current literature and international recommendations and 

are summarized in Table 1 in paper II. Current guidelines have changed with regards to 

recommended compression:ventilation ratio before intubation and regarding administration 

of shocks.1,2 Table 3 gives current targets for the CPR quality variables we have studied. 

Table 3 

CPR variable Target Paper 

No-flow time as low as possible  

 Before intubation 10 – 15 s per minute (i.e. NFR <0.25)  III 

 After intubation 5 s every 2 – 3 minute for rhythm 

checks (i.e. NFR <0.05) 

 III 

 Each rhythm check 5 s + possibly pulse check; 10 s  I, II 

 Each defibrillation attempt rhythm analysis + shock; less than 10 s  IV 

Compressions   

 Compression rate 100 min-1  I, II 

 Compressions per minute Before intubation: 60 – 75 

After intubation: 90 – 110 

 III 

 III 

 Compression depth 4 – 5 cm  I, II 

 Compression duty cycle 40 – 50 %  I, II 

 Incomplete release 0 %  

unknown threshold 

 I, II 

Ventilations   

 Ventilations per minute Before intubation: 4 – 6 

After intubation: 10 (?) 

 III 

 III 
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