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Abstract

Encapsulating cytostatics into lipid vesicles, i.e. liposomes, improves tumour drug 

accumulation and reduce adverse effects. Liposomal doxorubicin (DXR) has been used in the 

treatment of a variety of cancers and may also be suitable for combining with other treatment 

modalities. By modulating liposomal membranes, liposomes can be made ultrasound (US) 

sensitive releasing encapsulated drug in tumour tissue upon external US stimulation and may 

thereby improve therapeutic outcome. Moreover, as DXR is a potent radiosensitizer, 

liposomal DXR could enhance the effect of radiotherapy (RT) primarily in tumour tissue. 

This thesis evaluates multimodal cancer therapy combining liposomal DXR with US and RT 

in tumour-bearing mice. Also, the feasibility of using in vivo fluorescence optical imaging 

(OI) to study liposome tumour uptake was evaluated. Enhanced therapeutic effect of 

liposomal DXR was observed when combined with US applied to tumour. Liposomal DXR 

also improved therapeutic outcome of RT under radioresistant hypoxic conditions. The role of 

OI in quantitative assessment of liposome tumour uptake remains unresolved.  
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1. Introduction 

1.1 Cancer 

Each year more than 12 million people are diagnosed with and 7.6 millions die from cancers 

worldwide. The cancers most commonly diagnosed are lung, breast and colorectal cancers 

while the most common causes of cancer deaths worldwide are cancers of lung, stomach and 

liver [1]. In Norway one in three will develop cancer by the age of 75 [2]. 

Cancer cells derive from normal cells. Normal cells however, divide at a controlled rate and 

participate in constructing a variety of tissues and functions. By contrast, cancer cells have an 

uncontrolled cell division and are less differentiated than healthy cells, lacking the ability to 

perform their intended functions [3]. 

Transformation from healthy to malignant tissue is a step-wise process where tissues of 

intermediate appearances can be identified. A modest deviation from healthy tissues are 

hyperplastic growths in which cells deviate only minimal in appearance but the numbers of 

cells are increased. An equally minimal deviation from healthy tissues is termed metaplasia,

i.e. when one type of cell is displaced by an other cell type having normal appearance but not 

usually present at the location. A more abnormal growth is termed dysplasia. In this case the 

excessive numbers of cells also have abnormal appearances. All these growths are benign. 

However, if the transformation continues a malignant primary tumour may be the end 

product. Malignant tumours may grow invasively into neighbouring tissues and cancer cells 

may also spread by the bloodstream and lymphatic system forming metastases in sites far 

away from the primary tumour. Metastases are responsible for 90 % of deaths from cancer. 

Although there are exceptions, the transformation from healthy cells to cancer cells may 

progress over years or even decades. Most cancers are diagnosed at older age, indicating that 

tumour progression may be a long process. For a review see [3]. 

85 % of cancer cases involve solid tumours [4] characterized by a disorganized architecture 

with malfunctioning cells. Immature blood supply frequently fails to deliver oxygen and 

nutrients to rapidly dividing cells resulting in a tumour microenvironment characterized by 
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hypoxia and reduced pH. Reduced vascular functions represent a major obstacle for 

successful cancer treatment as therapeutic agents are not sufficiently delivered to less 

vascularised regions. Hypoxia also reduces the effect of treatment, i.e. radiotherapy (RT) and 

cytostatics. For a review see [5]. 

Causes of cancers may be numerous, i.e. genetics, physical and chemical carcinogens, 

lifestyles and infections [6]. However, as different cancers occur at very different frequencies 

between populations, numerous factors of both environmental and hereditary nature may 

participate in producing cancer [3]. 

Upon cancer diagnosis the most common treatment approach for solid tumours involve 

surgical removal of tumour tissue and if necessary followed by RT and/or chemotherapy. 

However, an increasing number of other therapeutic agents are also being used, e.g. 

immunotherapies and anti-angiogenic therapies [6].  

1.2 Prostate cancer 

The prostate gland is located at the neck of the bladder in males and contributes to the 

production of the seminal plasma. The glandular tissue is surrounded by a connective tissue 

capsule. Of the 26000 new cancer cases in Norway in 2008, 4200 were prostate cancer (PCa) 

making PCa the most common cancer among males in Norway [2]. PCa is classified clinically 

by the tumour size, lymph node involvement, and presence of metastasis according to the 

TNM-system (Table 1) [7] and histologically by the Gleason score [8]. Also, levels of 

prostate specific antigen (PSA) in the blood are used for diagnosis, deciding treatment 

strategy and treatment monitoring [9-11]. 
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Tumour, node, metastasis (TNM) classification of PCa

Primary tumour (T) Regional lymph nodes (N) Distant

metastasis (M) 

T0: No evidence of primary tumour N0: No positive regional 

lymph node(s) metastasis 

M0: No distant 

metastasis 

T1: Clinically inapparent tumour neither 

palpable nor visible by imaging 

N1: Metastasis in regional 

lymph node(s) 

M1: Distant 

metastasis 

T2: Tumour confined within prostate 

T3: Tumour expands through the prostate 

capsule

T4: The tumour has invaded other nearby 

structures

Table 1. TNM classification of PCa. 

Treatment of PCa depends on the stage of the disease, whether the intention of treatment is 

curative or palliative as well as the patient’s view on potential side effects. For curative 

treatment; surgery, external RT or brachytherapy, i.e. implantation of a radioactive source in 

the prostate, are being used. Further, external RT and brachytherapy or external RT and 

hormonal therapy, i.e. androgen deprivation therapy (ADT), may also be given in 

combinations [12]. Palliative treatments are commonly performed by administering 

combinations of ADT, surgery, RT and cytostatics. Taxanes is currently the cytostatics of 

choice [9,12]. Also, other innovative treatments such as high intensity focused ultrasound 

(HIFU) are being performed in localized and low or intermediate-risk PCa [13,14]. 

Radical prostatectomy is the only surgical technique performed with curative intentions. 

Other surgical procedures, like removal of metastases, are performed for palliative purposes. 

However, surgery involving the prostate may lead to significant side effects [12]. 

Radiation is administered both for curative and palliative intentions. It is either given by 

external RT or by brachiotherapy [12]. 
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PCa arise as an “androgen-dependent” form, i.e. it is dependent of androgens to grow and 

consequently ADT may inhibit tumour growth for periods up to several years. However, ADT 

never cure PCa and after a remissive period the disease may enter an “androgen-independent” 

form where tumour growth occurs without the presence of androgens. Androgen-independent 

PCa does not respond to ADT [15]. 

PCa often develops slowly and may, especially in older patients, never progress into clinical 

PCa before the patients die of other reasons. Curative PCa treatment may involve serious side 

effects limiting quality of life. Therefore, several aspects have to be considered when deciding 

upon treatment. In patients with low risk of disease progression, watchful waiting may be 

employed, a strategy where treatment is actively postponed and the patient is routinely 

examined for progression of the disease [16]. Even though a variety of treatments are 

available, the numbers of deaths due to PCa are increasing [2] indicating that new treatment 

strategies are needed. 

1.3 Liposomes 

Liposomes are simple colloidal vesicles with an aqueous interior enclosed by a membrane 

usually composed of phospholipid (PL) molecules. PLs, the major components of biological 

membranes, are amphiphilic compounds with a polar head group and lipophilic acyl chains. 

PLs can be classified according to type of polar head group, fatty acid chain length and degree 

of saturation [17]. Figure 1 illustrates the structures of dioleoylphosphatidylethanolamine 

(DOPE), distearoylphosphatidylethanolamine (DSPE) and distearoylphosphatidylcholine 

(DSPC), which are PLs used in this thesis. 

                                            DOPE: R1=R2= C18:1, R3= -CH2CH2
�NH3

                                            DSPE: R1=R2= C18:0, R3= -CH2CH2
�NH3

                                            DSPC: R1=R2= C18:0, R3= -CH2CH2
�N(CH3)3

Figure 1. General structure of PLs and the structures of DOPE, DSPE and DSPC. 
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When bilayer forming PLs are dispersed in aqueous media they will spontaneously align 

themselves in a manner to reduce interactions between the polar media and the hydrophobic 

fatty acid chains. Consequently, bilayered structures, i.e. liposomes, may be formed. 

Liposomes may consist of one or more bilayers (lamellae) and of sizes ranging from tens of 

nanometres to tens of micrometers in diameter. For a review see [17]. Liposomes are broadly 

classified into small unilamellar vesicles (SUV; single bilayer, size 10 - 100 nm), large 

unilamellar vesicles (LUV; single bilayer, size 100 - 1000 nm), multilamellar vesicles (MLV, 

several bilayers, size 100 nm - 20 um and multivesicular vesicles (MVV, size 100 nm - 20 

um) [18].  

Since liposomes were first described 45 years ago [19] they have gained interests for a variety 

of applications including drug delivery [20]. Liposomes used for drug delivery are usually 

about 100 nm in size and are made up of a single bilayer. As liposomes comprise an aqueous 

core sealed of by a PL membrane both hydrophilic and lipophilic drugs can be accommodated 

in their respective compartments [18]. Today there are about 15 liposomal drugs approved for 

clinical applications or undergoing clinical evaluation [20]. Figure 2 presents a schematic 

illustration of drug encapsulated in a liposome. 

Figure 2. Liposomal encapsulated drug. Epitarget©

1.4 Liposomes in cancer treatment 

Conventional cytostatics used in cancer treatment are small molecular weight molecules [4]. 

Such molecules distribute non-specifically to both healthy and tumour tissue resulting in 

therapy limiting toxicities. To increase the therapeutic-to-toxicity ratio cytostatics can be 

encapsulated into small liposomes (~100 nm), which accumulate in tumours due to the 
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enhanced permeability and retention effect [21]. Here, leaky tumour vessels allow 

macromolecules to extravasate into tumour tissue, whilst reduced lymphatic tumour drainage 

results in particle accumulation. 

First generation liposomes used for drug delivery suffered from fast clearance by cells of the 

monocyte phagocyte system (MPS). By coating liposomes with polyethylene glycol (PEG), 

i.e. pegylated liposomes, adhesion of plasma proteins and opsonins to liposomes are 

decreased. Consequently, immune system recognition is reduced, decreasing MPS uptake and 

prolongs circulation time [22]. Today, most liposomes used for drug delivery are pegylated. 

1.5 Liposomal doxorubicin 

The anthracycline anti-neoplastic drug doxorubicine (DXR) is active against a variety of 

tumours [23]. DXR is also very suitable for liposomal encapsulation due to the remote 

loading technique resulting in high drug-to-lipid levels [24]. Also, encapsulated DXR forms 

an insoluble gel contributing to stability [24]. Due to these unique properties liposomal DXR 

is on of the most studied liposomal drugs. 

During cancer therapy involving conventional DXR, adverse effects on cardiac functions are 

commonly encountered. In contrast, by encapsulating DXR into pegylated liposomes, i.e. 

pegylated liposomal DXR (PL-DXR), accumulation in the heart is reduced, enabling the 

administration of greater drug doses [25,26]. The PL-DXR formulation Caelyx® has been 

used in the treatment of several solid tumours [22,24], including PCa [27-30] for which only a 

modest benefit was reported. However, these studies were performed with patients having 

progressed cancer, i.e. metastatic androgen-independent PCa, and the results may therefore 

not be clinically relevant for less advanced PCa. 

1.6 Triggered drug release 

Upon liposome tumour accumulation encapsulated drug has to become bioavailable prior to 

exerting cytotoxic actions [31]. Therapeutic effect of stable, long circulating liposomes may 

be hampered by decreased drug release in tumour tissue [24,32]. Finding methods to 

destabilize liposomes within tumour tissue are therefore nontrivial and could lead to 
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substantial increase in drug bioavailability with concurrent improved therapeutic outcome 

[24].

Several approaches have been proposed to induce drug release from liposomes including 

hyperthermia [33], enzymatic [34] and pH [35] mediated strategies. However, a growing line 

of evidence suggests that ultrasound (US) may enhance liposomal drug release improving 

therapeutic efficacy [36-38]. 

1.7 Ultrasound mediated drug delivery 

US is defined as the transmission of pressure waves of frequencies above 20 kHz, which is 

the upper limit of human hearing [37]. US used in medical imaging employ frequencies 

between one and 20 MHz [39] delivered at low intensities (Watt/cm2) [40]. In contrary, 

therapeutic US is generally delivered at medium and high intensities, and broadly classified 

according to frequency employed; low frequency US (LFUS), i.e. 20 - 100 kHz, and high 

frequency US (HFUS), i.e. 1 - 3 MHz [40]. Therapeutic US are used for a verity of purposes 

[40], including non-invasive HIFU treatment of PCa [14,41] and uterine fibroids [42]. Here, 

focused US of frequencies typically between 1 - 3 MHz are used to ablate tissues. 

US can also be used for drug delivery purposes presumably due to acoustic cavitation, i.e. the 

oscillating movement of gas bubbles in a tissue exposed to US. A medium exposed to US will 

experience alternating intervals of high and low pressures. Under such conditions gas bubbles 

will expand at low pressures and contract at high pressures resulting in an oscillating 

movements of gas bubbles. When the oscillation is stable over several cycles it is termed 

stable cavitation. If, however, the US increases in magnitude the oscillating movements may 

result in collapse of gas bubbles, a process called inertial cavitation. During inertial cavitation 

neighbouring cell membranes or drug carrying vesicles can become transiently permeated, i.e. 

sonoporated [43,44]. Although not fully understood, cavitating gas bubbles in the vicinity of 

drug carriers are believed to be responsible for drug release. For reviews see [37,45,46]. 

In addition to inducing drug release from liposomes US may increase distribution of drugs in 

tumours, as well as increase cellular drug uptake [37]. US may also generate heat increasing 

extravasation of circulating drug carriers [47]. Consequently, US beneficial effects go beyond 

inducing drug release. 
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1.8 Sonosensitive liposomes 

To render carrier molecules US-responsive the presence of air have traditionally been viewed 

necessary, e.g. liposomes containing air [48,49] and liposomes linked to microbubbles [50,51] 

have been developed. These structures are however, in micron scale and too large to 

extravasate prior to US treatment, limiting their use in cancer therapy. However, by changing 

membrane lipid composition, small liposomes (~100 nm) have been made US-responsive [52-

54]. Such vesicles have the potential for both proper tumour accumulation and efficient drug 

release. Figure 3 illustrates a schematic representation of the treatment concept. 

Figure 3. US mediated drug delivery from liposomes. Epitarget©

1.9 Liposomal doxorubicin in chemoradiotherapy 

During tumour growth abnormal tumour vasculature frequently fails to supply sufficient 

levels of oxygen to tumour tissue, resulting in various degrees of hypoxia [55,56]. Tumour 

hypoxia is a well documented obstacle in achieving adequate response to RT as well as to 

other treatments including chemotherapy. Further, hypoxia is also known to promote 

malignant progression including metastatic development [57-59] and several strategies have 

been suggested to produce effective RT under hypoxic conditions [60,61].

Conventional cytostatics may also combine with RT, i.e. chemoradiotherapy (CRT), to 

enhance the effect or RT. Cytostatics may be used concurrent with RT, but also prior to, 

neoadjuvant, or after, adjuvant. Two such treatment modalities may interact positively and 

produce either additive or synergistic effects [62]. In strict sense a true “radiosensitizer” 
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should have no inherent cytotoxic activity [62]. However, the term is commonly used less 

strict and through this thesis it is used for any compound that enhances the effect of RT. 

DXR is an efficient radiosensitizer [63-65] and by enclosing DXR into liposomes, drug 

distribution to tumours may be enhanced. Consequently, radiation sensitization may primarily 

be located to tumour tissue, reducing toxicities in neighbouring healthy tissues where less 

sensitizing drug would have accumulated [66,67]. Both PL-DXR [66,68] and non-pegylated 

liposomal DXR [69] have reportedly increased the effect of RT in animal models. Also, 

promising results have been obtained from smaller clinical studies [67,70]. 
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2. Aim of thesis 

This overall aims of this thesis were to investigating the potential therapeutic benefits of 

combining PL-DXR with other treatment modalities, i.e. US and RT, in preclinical models. 

Also, assessing the feasibility of using small animal fluorescence imaging, i.e. optical imaging 

(OI), during the development of liposomal formulations. The specific aims were to: 

• Determine if the presence of DSPE in the liposomal membrane may render 

liposomes both US-responsive and stable in the blood stream. 

• Assess if LFUS treatment can enhance the therapeutic outcome of DSPE-based 

liposomal DXR in mice bearing prostate cancer xenografts. 

• Investigate how different levels of DOPE in the liposomal membrane influence US-

sensitivity and stability in vivo.

• Examine if liposome labelling with the carbocyanine lipophilic tracer 1,1’-

dioctadectyl-3,3,3’,3’,-tetramethylindotricarbocyanine,4-chlorobenzenesulfonat salt (DiD) is a 

suitable labelling technique for in vivo applications. 

• Investigate if OI is a suitable imaging modality for studying biodistribution of 

fluorochrome labelled liposomes. 

• Assess the impact of PL-DXR on vascular functions in prostate tumour xenografts. 

• Examine if therapeutic effect of RT on hypoxic prostate xenografts may be enhanced 

by the co-administration of PL-DXR. 
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3. Materials and methods 

3.1 Animals 

Male atymic nude Balb/c mice were provided by the Department of Comparative Medicine, 

Radium Hospital, Oslo University Hospital, Oslo, Norway. The mice were housed in 

transparent boxes with bedding material, fed ad libitum and kept under specific pathogen-free 

conditions. The temperature and relative humidity were kept constant at 20 – 21 °C and 60 %, 

respectively. At the end of the experiments all animals were euthanized by cervical 

dislocation. All procedures were performed according to protocols approved by the National 

Animal Research Authority and carried out in compliance with the European Convention for 

the Protection of Vertebrates Used for Scientific Purposes. The animals were 4 - 6 weeks old 

at time of tumour implantation (Paper I, III, IV and section 5.1 and 5.2).

3.2 Tumour models 

CWR22 human androgen dependent prostate adenocarcinoma, initially obtained from patients 

during surgery [71], were serially transplanted between mice. By blunt dissection through a 

skin incision above the caudal spine, a tumour fragment (~2x2x2 mm) was subcutaneously 

implanted on the flank (Paper I and section 5.2) or on the upper leg (Paper IV and section 

5.1). The skin incision was sealed with topical skin adhesive. 

22Rv1 human prostate adenocarcinoma (American Type Culture Collection, Manassas, VA, 

USA) is a cell line derived from CWR22 [72]. Cells were cultured in RPMI 1640 containing 

L-glutamine and NaHCO3 (Sigma Aldrich, Oslo, Norway) supplemented with 10 % foetal 

bovine serum (Fisher Scientific, Oslo, Norway) and 100 units/ml + 0,1 mg/ml of Penicillin-

Streptomycin (Sigma Aldrich, Oslo, Norway) at 37 °C in air containing 5 % CO2. 106 tumour 

cells suspended in 50 μl supplement free growth medium was mixed 1:1 (v:v) with Matrigel®

(VWR Oslo, Norway) and injected subcutaneously on the leg of mice and left to grow for 2-3 

weeks until start of experiment (Paper III and section 5.1). 
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LEW2AX human liposarcoma, initially obtained from patients during surgery, were serially 

implanted in nude mice to generate subcutaneous xenografts (section 5.2). LEW2AX grows 

slower and more homogenous than the prostate models also used in this thesis. 

3.3 Anaesthetics 

For anaesthesia of mice, a mixture of 2.4 mg/ml tiletamine and 2.4 mg/ml zolazepam 

(Zoletil® vet, Virbac Laboratories, Carros, France), 3.8 mg/ml xylazine (Narcoxyl® vet, 

Roche, Basel, Switzerland) and 0.1 mg/ml butorphanol (Torbugesic®, Fort Dodge 

Laboratories, Fort Dodge, IA, USA) in sterile water was prepared and used. The dosage used 

was 0.05-0.1 ml/animal (Paper I, II, III and IV, section 5.1 and 5.2). 

3.4 Ultrasound 

In vivo US treatment (Paper I) was performed with a 40 kHz ultrasonic processor (Model VC 

754, Sonic and Materials Inc., Newtown, CT, US) with a 19 mm diameter probe partially 

submerged into a cylinder containing deionized water, degassed by boiling, and cooled in ice 

bath. The bottom of the cylinder was sealed with a latex membrane in firm contact with the 

skin covering the tumour of an anesthetized mouse located on an adjustable plate. A thin layer 

of US gel was placed between the skin and the latex membrane. The US probe was run for a 

duration of four minutes and with a two cm distance between the probe and the skin. 

In vivo US treatment (section 5.1) was performed with a focused 1.13 MHz confocal, i.e. two 

US transducers, setup developed at Dr. Cyril Lafon’s lab, INSERM, Lyon, France. In brief, a 

tumour-bearing mouse was located on an adjustable plate with the xenograft facing upwards 

in firm contact with a latex membrane supported by a grid, creating a degassed water 

reservoir. The two US transducers and an imaging US probe were anchored to a metal rack 

(Figure 4). The metal rack was submerged into the water reservoir and positioned so that the 

cavitation zone was between the skin surface and the centre of the tumour. The correct 

positioning of the cavitation zone was assured by the US imaging probe. US treatment was 

performed for one minute with the animals under anaesthesia. 
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Figure 4. The two US transducers were anchored to a metal rack having identical focal spots. 

The presence of an imaging US probe ensured proper positioning of the cavitation zone 

within the tumour xenograft. INSERM©

In vivo US treatment (section 5.2) was performed using a 250 kHz focused US transducer 

(Model H115, Sonic Concepts, Bothell, WA, USA) connected to a cone shaped water 

chamber (C103 polycarbonate coupling cone for Model H115, Sonic Concepts, Bothell, WA, 

USA). A mouse bearing a tumour xenograft on the flank was located on an adjustable plate 

with an opening for the xenograft to be exposed downwards. The exposed xenograft was 

partially submerged into the water chamber containing degassed water that had been cooled in 

ice bath. US treatment was performed for five minutes with the mouse under anaesthesia. 

3.5 In vivo fluorescence optical imaging 

In vivo fluorescence imaging was performed with an IVIS® Imaging System 100 Series with 

XFO-6 Fluorescence Option (Xenogen corp., Alameda, CA, USA) (Paper III and section 5.1). 

All images were acquired using a Cy5.5 excitation filter (wavelength 615 - 665 nm), Cy5.5 

background excitation filter (wavelength 580 - 610 nm) and Cy5.5 emission filter (wavelength 

695 - 770 nm). Imaging data analysis was performed with Living Image® 2.5 software 

(Xenogen corp., Alameda, CA, USA) by subtracting the fluorescence background for each 

acquisition. Quantitative data for tumour fluorescence was obtained by manually drawing a 

region of interest (ROI) around the tumours visible margins. Average counts (sum of all 

counts inside ROI/no of pixels in ROI) were used during data interpretation. Prior to imaging, 
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the mice were sedated with 0.05 ml of anaesthetic agent sc. Figure 5 presents a representative 

image of tumour-bearing mice administered DiD labelled liposomes. 

Figure 5: In vivo fluorescence imaging. Mice bearing 22Rv1 prostate tumour xenografts 

administered DiD-labelled liposomes. Fluorescence intensity is highest in tumour and liver 

regions. The mouse to the left is untreated. 

3.6 Radiotherapy 

Mice bearing xenogtafts were irradiated using 60Co source (Mobaltron 80, TEM instruments, 

Crawley, UK) with a dose rate of 0.8 Gy/min. Each mouse were located in a custom designed 

vicryl tube containing an opening for the tumour-bearing leg to be stretched out and fixated 

horizontally. During the procedure only the tumour-bearing leg extended into the radiation 

field. The procedure was performed under sedation induced by 0.05 ml of anaesthetic agent 

(Paper IV). 

3.7 Dynamic contrast enhanced magnetic resonance imaging 

MRI acquisitions were performed as previously described [73], using a 1.5 T GE Signa LS 

scanner (GE Medical Systems, Milwaukee, WI), and a dedicated MRI mouse coil [74]. Prior 

to MRI, a heparinized 24 G catheter attached to a cannula containing 0.01 ml/g body weight 

of the contrast agent Dotarem® (Laboratoire Guerbet, Paris, France) diluted in heparinized 

saline to 0.06 M, was inserted into the animals’ tail vein. The animals were placed in an 

adapted cradle and put into the mouse coil, before being placed in the scanner. During image 

acquisition, the animal’s temperature was maintained at 38 °C. Dynamic contrast enhanced 

magnetic resonance imaging (DCE MRI) were performed by acquiring 5 baseline T1-
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weighted image acquisitions followed by contrast injection over a period of three seconds. 

Contrast kinetics was investigated by 20 minutes of post-contrast imaging. Figure 6 presents 

T1-weighted images of a mouse bearing prostate xenografts. 

Figure 6. Cross section T1-weighted images of a mouse bearing two CWR22 prostate 

xenografts. Varying xenograft signal intensities can be observed: A; pre, B; 1 minute post and 

C; 20 minutes post iv administration of Dotarem®.

Image analysis was performed using in-house developed software in IDL (Interactive Data 

Language v 6.2, Research Systems Inc., Boulder, CO). For the central slice of each tumour, a 

ROI was manually drawn in the T1-weighted images, excluding surrounding skin and 

connective tissue. The time-dependent relative signal intensity, RSI(t), was calculated for each 

image voxel according to Equation 1. 

Equation 1:
SI(0)

 SI(0)- SI(t)
RSI(t) =

where SI(0) refers to the pre-contrast signal intensity and SI(t) the post-contrast signal 

intensity in the voxel at time t.

Pharmacokinetic modelling was performed using the Brix model [75]. The Brix model is a 

two-compartment pharmacokinetic model where the contrast agent is assumed to distribute 

between two individually well-mixed compartments; the blood plasma and the extracellular 

extravascular space (EES) in the tumour. The iv injected contrast agent is transported into the

tumour by perfusion, where it diffuses between the plasma and the EES, before being 

eliminated at a constant rate. Using the RSI(t) for each voxel in the tumor ROI, the Brix model
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(Equation 2) was fitted using the Levenberg-Marquardt least-squares minimization method 

(MPFIT; http://purl.com/net/mpfit) [76].

Equation 2: )
telk-

e-
tep-k

e(
kk

Ak
RSI(t)

epel

ep�

where the parameter kep is the rate constant between plasma and EES, kel the clearance rate of

contrast agent from plasma, and A an amplitude parameter related to the size of the EES [77]

(Paper IV). Figure 7 portrays tumour uptake and elimination of Dotarem® in a CWR22

prostate xenograft. 

Figure 7. Mean RSI(t) from all voxels in a tumour ROI. The Brix model was fitted using the 

Levenberg-Marquardt least-squares minimization method. The plot illustrates a characteristic 

rapid tumour contrast uptake followed by gradual elimination from the tumour. 

3.8 Immunohistochemistry 

Hypoxia was determined by injecting 80 mg/kg pimonidazole hydrochloride (1-[(2-hydroxy-

3-piperidinyl)propyl]-2-nitroimidazole hydrochloride (Natural Pharmacia International, Inc.,

25



Burlington, MA, USA), dissolved in saline, ip to tumour-bearing mice. One hour later 

euthanasia was performed by cervical dislocation and tumours were excised and preserved in 

phosphate-buffered 4 % formalin until tissue sectioning. Tumour hypoxia was detected using 

a peroxidase-based immunostaining method. In brief, tissue sections were stained using the 

Dako EnVision™+ System-HRP (DAB) (K4011) and Dakoautostainer. Deparaffinization and 

unmasking of epitopes were performed using PT-Link (DAKO) and EnVision™ Flex target 

retrieval solution, high pH. To block endogenous peroxidase, sections were treated with 0.03 

% hydrogen peroxide for 5 min. The preparations were incubated 30 minutes with polyclonal 

rabbit antibodies to pimonidazole-protein adducts (1:10000 dilution). The sections were then 

incubated with peroxidase labeled polymer conjugated to goat anti-rabbit secondary 

antibodies for 30 minutes. Tissue was stained for 10 minutes with 3’3-diaminobenzidine 

tetrachloride (DAB) and counterstained with haematoxylin, dehydrated and mounted, and 

mounted in Diatex (Paper IV). 
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4. Summary of publications 

Paper I 

Ultrasound enhanced antitumour activity of liposomal doxorubicin in mice 

Eirik Hagtvet, Tove J. Evjen, Dag Rune Olsen, Sigrid L. Fossheim, Esben A. Nilssen 

Journal of Drug Targeting, published 

DSPE-based liposomes were evaluated as a potential US-sensitive delivery vehicle for DXR. 

In vitro characterization demonstrated 20 % DXR release from liposomes after four minutes 

of LFUS exposure in addition to high stability in serum assay. The biodistribution profile of 

the formulation was investigated by administering a drug dose of 3.5 mg DXR/kg to mice 

bearing prostate tumour xenografts. Approx 10 % of administered drug dose was accounted 

for in the blood 24 hours post injection indicating acceptable circulation time. High levels of 

DXR were also detected in liver and spleen. Tumour drug uptake reached plateau levels 

around 24 hours post injection. 

Therapeutic effect was assessed by administering a drug dose of 3.5 mg DXR/kg to tumour-

bearing mice. LFUS was delivered to the tumour 24 hours post injection by a 40 kHz US 

setup for a duration of four minutes. Therapeutic response was evaluated by tumour size 

measurements for 22 days. Neither DSPE-based liposomal DXR nor LFUS produced any 

growth inhibiting effect. However, DSPE-based liposomal DXR in combination with LFUS 

produced a significant reduction in tumour growth compared to the group administered only 

DSPE-based liposomal DXR. 

Levels of dissolved gases, viscosity, plasma proteins etc. might affect drug release and clearly 

varied between in vitro and in vivo experiments in current study. It can therefore not be 

concluded that similar drug release levels were achieved both in vitro and in vivo. It renders 

that the observed tumour growth inhibition might also result from other effects induced by 

LFUS, such as enhanced cellular drug uptake and improved liposomal extravasation. 
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Nevertheless, the study demonstrates that LFUS may enhance the effect of DSPE-based 

liposomal DXR. 

Paper II 

Sonosensitive dioleoylphosphatidylethanolamine-containing liposomes with prolonged 

blood circulation time of doxorubicin

Tove J. Evjen, Eirik Hagtvet, Esben A. Nilssen, Martin Brandl, Sigrid L. Fossheim 

European Journal of Pharmaceutical Sciences, published 

DOPE-based liposomes were evaluated as potential US-sensitive delivery vehicles for DXR. 

Liposome formulations containing DOPE levels between 12 and 62 mol % were evaluated for 

in vitro US-sensitivity by using a 40 kHz US setup. US sensitivity increased with increasing 

DOPE content, i.e. the formulations comprising 12 and 62 mol % DOPE experienced a drug 

release of 11 % and 91 % respectively. For liposomes to sufficiently accumulate in tumour 

tissues a prolonged circulation time is considered necessary. Hence, the kinetic profiles of the 

formulations were investigated by administering a drug dose of 7 mg DXR/kg to mice. The 

formulations with the highest DOPE content, i.e. 52 and 62 mol % experienced a fast DXR 

clearance. In contrary, the formulations containing 25 and 32 mol % had a kinetic profile 

similar to Caelyx®, with approximately 20 % of the administered DXR dose accounted for in 

the bloodstream 24 hours after iv injection. DXR content in liver and spleen indicated that the 

faster blood clearance for DOPE-rich formulations was not the result of enhanced uptake by 

MPS but due to increased leakage of DXR from the liposome carriers. It should not be 

excluded however, that the different blood clearance of liposomes comprising different DOPE 

levels could be due to accumulation in tissues not investigated in the study, such as the skin or 

paws.

The reduction in liposomal DOPE content to 25 and 32 mol % did not significantly reduce US 

mediated DXR release in vitro, indicating that DOPE is a potent modulator of sonosensitivity. 

The study suggested that by modulating the liposomal membrane it is possible to combine 

high US-sensitivity with prolonged circulation time. 
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Paper III 

Assessment of liposome biodistribution by non-invasive optical imaging: A feasibility 

study in tumour-bearing mice

Eirik Hagtvet, Tove J. Evjen, Esben A. Nilssen, Dag Rune Olsen 

Journal of Nanoscience and Nanotechnology, submitted 

The study evaluated the feasibility of using OI to study liposome accumulation in tumours. 

PL-DXR (Caelyx®) was labelled with DiD, a lipophilic carbocyanine tracer commonly used 

to label cells and liposomes for in vivo applications. No change in liposome size or serum 

stability was observed after the labelling procedure. Also, all administered dye appeared to be 

liposome associated in vitro.

The labelled liposomes were administered to mice bearing prostate xenografts at a dose of 14 

mg DXR/kg iv. Subsequently, the in vivo distribution of the labelled liposomes was followed 

over time by OI acquisitions. The results revealed a gradual increase in tumour fluorescence, 

indicating accumulation of the liposomes reaching plateau levels at 48 hours post injection. 

Parallel groups of animals were imaged at 24 or 48 hours post injection followed by sacrifice 

and tissue quantification of DXR and DiD. Blood sample analysis revealed that DiD levels 

where lower than DXR levels at both 24 and 48 hours indicating a faster elimination of DiD 

than DXR from the blood. The different elimination rates strongly suggest that DiD 

dissociated from liposomes in vivo. A similar scenario was seen in tumour tissue were more 

DXR than DiD were accounted for. This finding could presumably be explained by the 

dissociation of DiD from liposomes within the blood circulation resulting in more DXR than 

DiD being transported to tumour. Moreover, if DiD dissociated from liposomes in the 

circulation it will presumably, due to its highly lipophilic nature, associate with lipoproteins 

and other blood components leading to liver uptake. This may explain the significantly higher 

DiD levels in liver compared to DXR at both 24 and 48 hours post injection. 
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The fact that DiD seemingly dissociated from liposomes during circulation questions the 

suitability of DiD as a quantitative marker for liposomes in vivo. The results also indicate that 

in vivo cell application of carbocyanine dyes may have limitations. 

In vivo measured fluorescence intensity correlated only weakly (R2=0.59) with actual tumour 

DiD levels indicating that substantial scattering and absorption of in vivo fluorescent signal 

rendered it difficult to obtain reliable quantitative correlations between the biodistribution 

profile of the labelled liposomes. 

Paper IV 

Liposomal doxorubicin improves radiotherapy response in hypoxic prostate cancer 

xenografts

Eirik Hagtvet, Kathrine Røe, Dag Rune Olsen

Radiation Oncology, submitted 

Tumor hypoxia prevents effective RT and several strategies have been suggested to increase 

the effect of RT under hypoxic conditions. As DXR is known to enhance the effect of RT the 

current study examines the therapeutic benefit of combining PL-DXR (Caelyx®) with RT on 

radioresistant hypoxic tumours. PL-DXR was administered to mice bearing prostate 

carcinoma xenografts in combination with RT, both under normoxia and hypoxia, the latter 

being induced by clamping the tumour-bearing leg prior to and during RT. Treatment was 

assessed by tumour volume measurements for 29 days. RT alone had a profound antitumor 

effect, and literary stopped tumour growth. However, the effect of RT was significantly 

reduced when performed under hypoxic conditions. Moreover, concomitant administration of 

PL-DXR at a dose of 3.5 mg/kg significantly improved the therapeutic outcome of RT in 

hypoxic tumours. 

To assess therapy mediated changes to tumour vascular functions DCE MRI with subsequent 

pharmacokinetic analysis, was performed pre-treatment (baseline) and 8 days later. Further, 

parallel groups of animals were used to assess hypoxic fractions by immunohistochemistry of 

excised tumour tissue. The pharmacokinetic DCE MRI parameters and hypoxic fractions 
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suggested PL-DXR to induce tumour growth-inhibitory effects without interfering with 

tumour vascular functions. This feature is highly beneficial with respect to concomitant RT 

since well vascularised tumours may be more oxygenated and more likely respond better to 

RT. Moreover, PL-DXR appeared to reduce some of the vascular damaging effects produced 

by RT under hypoxic conditions. 
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5. Brief presentation of non-published studies involving 

DOPE-based liposomes

Incorporating DOPE in the liposomal membrane may be a promising approach for rendering 

liposomes US-responsive. This section presents in brief two animal studies performed with 

DOPE-based liposomes. The studies are not included in any publications. 

5.1 In vivo liposome sonosensitivity evaluated by optical imaging

When fluorochromes are encapsulated in high concentrations within liposomes the 

fluorescence signal emitted will be reduced, i.e. quenched [78,79]. Upon release of 

encapsulated substances fluorescence signal will increase and US mediated drug release may 

therefore be visualized by OI. 

To evaluate liposome sonosensitivity in vivo, liposomes encapsulating the near infrared (NIR) 

fluorochrome, Al(III) Phthalocyanine Chloride Tetrasulfonic acid (AlPcS4) [80] were 

produced. Two AlPcS4-liposome formulations were prepared; sonosensitive DOPE-based 

liposomes (DOPE:DSPC:DSPE-PEG 2000:Cholesterol 25:27:8:40 mol %) and non-

sonosensitive hydrogenated-soy-phosphatidylcholine (HSPC)-based liposomes (HSPC:DSPE-

PEG 2000:Cholesterol 57:5:38 mol %), the latter having the same membrane composition as 

Caelyx® [81]. 

10 μl liposome dispersion was injected directly into 22Rv1 prostate tumour xenografts 

implanted on the leg of nude mice. Fluorescent images were acquired pre and post tumour 

exposure to 1.13 MHz US for 1 min using a confocal US setup developed at INSERM, Lyon, 

France.

Figure 8 and 9 presents representative images of animals administered HSPC-based 

liposomes and DOPE-based liposomes, respectively. Tumour signal intensity was quantified 

by drawing a ROI around the tumour. The group receiving DOPE-based liposomes combined 

with US experienced a significant increase in signal intensity (110%, p<0.05). The group 

receiving HSPC-based liposomes and US did not experience a significant increase. Neither 
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did control animals, i.e. animals receiving no US between the two image acquisitions. The 

mean group relative increases in fluorescence signal for the different experimental groups are 

presented in Figure 10. 

Figure 8. Mouse administered intratumoral injection of AlPcS4-containing HSPC-based 

liposomes pre (A) and post (B) US treatment. The left animal is untreated control. 

Figure 9. Mouse administered intratumoral injection of AlPcS4-containing DOPE-based 

liposomes pre (A) and post (B) US treatment. The left animal is untreated control. 
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Figure 10. Mean group relative increase in fluorescence intensity. Group size and standard 

deviations are given. 

It should be added that iv administration of AlPcS4-containing DOPE-based liposomes with 

concurrent US treatment 5 or 24 hours later did not result in an increase in fluorescence 

intensity. This may be due to leakage in circulation, low tumour uptake, low assay sensitivity 

at lower concentrations or other reasons. It should also be emphasized that the current study 

included only a small number of animals. Firm conclusions may therefore not be made 

regarding in vivo sonosensitivity of current formulations. Nevertheless, the study provide 

support that US may induce drug release from liposomes in vivo.

5.2 Therapy study with DOPE-based liposomes 

Sonosensitive DXR containing DOPE-based liposomes (DOPE:DSPC:DSPE-PEG 

2000:Cholesterol 25:27:8:40 mol %), having identical membrane composition as DOPE-

based liposomes described in section 5.1 were administered as a single iv injection to mice 

bearing LEW2AX liposarcoma xenografts. The LEW2AX xenograft model was used since it 

grows more homogenously than the prostate xenografts used elsewhere in this thesis. A 

relatively high drug dosage of 14 mg DXR/kg was administered iv and US treatment was 
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performed 24 hours later by a focused 250 kHz setup for a duration of five minutes. US 

treatment alone did not produce any tumour growth inhibition in animals receiving saline. 

Neither did US enhance tumour growth inhibition in animals administered DOPE-based 

liposomal DXR (Figure 11). 

Figure 11. Tumour growth in mice. Group mean and standard deviations are given (n = 7 - 8). 

Paper II demonstrated that the current DOPE-based liposomes administered were highly 

sonosensitive in vitro as well as exhibiting prolonged circulation time, i.e. 17 % of 

administered drug were present in the blood 24 hours post injection. Consequently, it could 

presumably be anticipated that US would enhance the therapeutic effect of DOPE-based 

liposomal DXR. However, US did not have any enhancing effect. Numerous reasons may 

explain the absence of such effect including low US-sensitivity of liposomes in vivo, failure of 

US setup to deliver sufficient intensity in vivo or other reasons. However, the relatively high 

dose of liposomal DXR alone literary ceased tumour growth reaching therapy saturation 

levels. In retrospect, if US produced any additional effect it is unlikely that it could have been 

identified. Consequently, the study might illustrate that when assessing therapeutic response 
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in dual therapy modalities, administering excessive amounts of one agent renders it difficult 

to observed combined effects. 
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6. Discussion 

The ability of liposomes to transport therapeutic agents to tumour tissue may render 

liposomes an interesting drug delivery strategy for combining with other treatment modalities. 

By modulating the liposomal membrane composition, liposomes can be given special features 

like sonosensitivity. DXR have been used for treating several cancers and is also well suited 

for encapsulation into liposomes. Further, as DXR is a potent radiosensitizer liposomal DXR 

may be feasible to combine with RT. 

In this thesis preclinical evaluations of dual therapy combining liposomal DXR with US and 

RT have been assessed in immunocompromised mice bearing human tumour xenografts. 

Subcutaneous tumour xenografts differ in many aspects from clinical tumours, e.g. they grow 

in anatomically inappropriate sites, rarely metastasize and grow very rapidly following 

implantation. The ability of tumour xenografts to predict clinical efficacy is therefore 

somewhat disputed. However, all therapeutic agents used for treating cancers clinically have 

also demonstrated activity in preclinical models [82]. 

6.1 Preclinical evaluation of sonosensitive liposomes 

Tumour accumulation of liposomes is a slow process requiring prolonged circulation time to 

enable sufficient uptake in tumour tissue [24]. Consequently, liposome research has for the 

last decades focused on developing liposomes that minimize MPS recognition in addition to 

being stable in the blood stream so that any pre-emptive drug leakage prior to tumour 

extravasation is reduced. However, upon tumour accumulation encapsulated drug has to 

become bioavailable prior to exerting cytotoxic actions [31]. Liposomal drug release for 

stable, long circulating liposomes like Caelyx® is a long process and several mechanisms 

responsible for drug release have been suggested; including slightly acidic pH found in 

tumours, lipases from dying tumour cells and metabolization of liposomes by tumour 

macrophages with concurrent release of free drug [24]. Caelyx® was not approved because of 

increased therapeutic effect over free DXR, but due to reduced cardiac toxicities [32]. The 

high stability is assumed to explain the absence of improved therapeutic outcome [32]. 

Finding methods to destabilize liposomes within tumour tissue may therefore lead to 
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substantial increase in drug bioavailability with concurrent improved therapeutic outcome 

[24]. Several strategies have been suggested for this purpose, including rendering liposomes 

US-responsive [83-85]. 

The presence of air has for long been considered necessary to produce drug release from 

liposomes and different strategies have been suggested including air containing liposomes 

[48,49] and liposomes linked to microbubbles [50,51]. However, the large size of such 

structures hinders extravasation in tumours limiting their use in cancer therapies. A growing 

line of evidence suggests that small liposomes (~100 nm) can be made US-sensitive by 

manipulating membrane compositions [52,53,83-85] enabling both proper extravasation and 

sonosensitivity. However, US-sensitivity and high stability in blood circulation have to be 

counterbalanced.

The liposomal membranes of stable, long circulating liposomes like Caelyx® usually have 

phospatidylcholine (PC) phospholipids as a major component. Such liposomes do not respond 

well to US treatment as indicated in Paper II and section 5.1. However, by including the 

phosphatidylethanolamine (PE) phospholipid DSPE as a major fraction in the liposome 

membrane, liposomes can be made US-responsive (Paper I). Also, DSPE-based liposomes 

(Paper I) appeared to remain stable in the blood circulation as acceptable kinetic profiles were 

demonstrated, i.e. ~10 % of administered DXR dose was present in the blood 24 hours post 

injection. Such kinetic studies provide information of total DXR content in the blood and do 

not give direct information regarding liposome stability. However, liposome integrity is 

considered necessary to achieve prolonged circulation times of DXR [24] and therefore the 

presence of substantial DXR levels in blood 24 hours post injection indicate high stability. 

Paper I also indicated that LFUS can increase the therapeutic effect of DSPE-based liposomal 

DXR when applied to prostate tumour xenografts 24 hours post injection. In vitro studies 

showed that LFUS induced ~20 % drug release after four minutes US treatment, presumably 

by destabilizing the liposomal membrane [83-85]. However, assuming that similar 

mechanisms could explain the enhanced therapeutic outcome is not unproblematic. Levels of 

dissolved gases, viscosity, purity, etc would be different in tumour tissue and it has to be 

expected that it would affect drug release. Further, liposome sonosensitivity may also be 

influenced by interaction with plasma proteins, cells, etc within tumour tissue. The observed 

tumour growth inhibition may therefore also result from other effects induced by US such as 
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heat production with increased extravasation of circulating liposomes [47], increased drug 

distribution in tumour tissue and increased drug uptake by cancer cells [37]. 

Paper II demonstrated that DOPE, a PE phospholipid traditionally used in pH-sensitive 

liposomes [86,87], is also suitable for rendering liposomes US-sensitive. While six minutes 

US treatment of DSPE-based liposomes yielded approx 25 % drug release (Paper I), identical 

US exposure of DOPE-based liposomes resulted in approx 90 % drug release indicating that 

DOPE is an even more potent modulator of sonosensitivity than DSPE. Importantly, kinetic 

studies demonstrated similar circulation times for liposomes comprising 25 and 32 mol % 

DOPE as for Caelyx® (Paper II) suggesting high stability within the blood circulation. In vivo

liposome sonosensitivity evaluation (section 5.1) suggested that DOPE-based liposomes also 

expressed high US sensitivity in vivo. It has to be emphasised that this was a small study and 

robust conclusions should not be made. However, the inclusion of PE phospholipids, 

especially DOPE, appears to be a promising strategy for manufacturing sonosensitive 

liposomes that remains stable in the blood circulation as indicated by prolonged circulation 

times of DXR. 

During preclinical therapy studies with animals bearing tumour xenografts the tumour is 

superficially located and easy accessed by non-focused LFUS treatment. Hence, LFUS has 

been used in several preclinical studies to combine with liposomal cytostatics [38,88,89]. In

vitro studies have suggested that LFUS may be more efficient than HFUS for inducing 

liposomal drug release, presumably because US intensities needed to induce transient 

cavitation is lower at lower US frequencies [46]. Clinical implementation may, however, 

require non-destructive focused US of higher frequencies to enable focused deposition of 

acoustic energy [90,91]. Still, trends in liposome sonosensitivity have been demonstrated to 

be similar irrespective of US assessments have been performed with LFUS or HFUS [84,85]. 

Treatment of PCa is at present, among other treatment options, routinely performed by radical 

prostatectomy, a procedure associated with significant side effects [12]. Combining 

sonosensitive liposomal cytostatics with US has the potential to provide a non-invasive 

alternative for treating clinically localized PCa. Moreover, other localized cancers may 

perhaps also be treated using the technology. 
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6.2 Optical imaging in the development of liposomal formulations 

Drug development is a long, high-risk and costly process. Out of 10.000 compounds 

evaluated in preclinical studies, five enter clinical trials and one receives US Food and Drug 

Administration (FDA) approval. The mean time from synthesis of a new compound to FDA 

approval is 14.2 years. For a review see [92]. Advances in imaging technologies have the 

potential to considerably accelerate this process [93]. During preclinical research medical 

imaging technologies allow biological processes to be studied in vivo in the same animal over 

a longer time interval. Such studies may reduce the number of animals needed and could 

potentially replace time consuming end-point analysis. 

During development of new liposomal formulations assessment of tumour drug uptake is and 

important but time consuming process. Performing such studies with OI would enable several 

product candidates to be evaluated faster with less demand on animals. The biodistribution of 

several drug carriers have been assessed using this technology [94-101]. Such studies would 

in most situations require labelling with a NIR fluorochrome. 

Due to the semitransparent nature of mammalian tissue light of a certain wavelength can 

excite exogenous applied fluorochromes within the body of small experimental animals. Upon 

excitation, light of a longer wavelength is emitted and can be detected on the body surface, 

i.e. reflectance fluorescence imaging, generating a surface map of fluorescence distribution 

[102].

From a practical point of view OI is cheaper, faster and easier to operate than most other 

imaging technologies [93,103]. Also, there is no need for radioactive agents and several 

animals may be imaged simultaneously generating data rapidly. However, light that passes 

through a medium is subjected to absorption and scattering and OI may therefore only be used 

for imaging depths up to one cm [102]. As tissue absorption is lowest at higher wavelengths, 

NIR fluorochromes are best suited for in vivo applications [102]. OI has been used for a 

variety of purposes in medical research as reviewed elsewhere [102]. 

In Paper III the feasibility of using OI to study liposome accumulation in tumours were 

evaluated. DiD-labelled PL-DXR were administered to tumour-bearing mice and tumour DiD 

and DXR levels determined ex vivo at 24 and 48 hours post injection. Analysis revealed 
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higher levels of DXR than DiD in the blood at both 24 and 48 hours indicating dissociation of 

DiD from liposomes in the blood circulation. In vivo fluorescence acquisitions will under such 

circumstances not only image labelled liposomes but also dissociated dye. Moreover, only a 

weak association was observed between in vivo DiD tumour fluorescence intensity and actual 

tumour DiD levels (R2=0.59). The absence of a strong correlation was presumably due to 

absorption and scattering of in vivo DiD tumour fluorescence [102,104]. However, during 

image analysis the ROI is drawn manually along the edges of the tumour and poorly visible 

tumour margins may impede drawing of ROI. Also, fluorescence emitted from outside ROI 

may also preclude measurements. Consequently, several factors may have in combination 

reduced the sensitivity of the assay. 

Even if quantifying liposomal tumour uptake in absolute numbers may not be possible with 

OI, relative differences in tumour uptake between different liposomal formulations could 

perhaps be successfully evaluated on condition that there is no dissociation of the labelling 

fluorochrome within the blood circulation and that tumours are reasonably homogenous in 

size and shape. 

During development of drug containing sonosensitive liposomes sufficient drug release at 

target site should be evaluated. Extent of in vitro drug release from liposomes can be 

determined as described in Paper I and II. The extent of drug release in vivo is somewhat 

more complicated to evaluate. However, OI might be a promising method for this purpose as 

indicated in Section 5.1. 

6.3 Liposomal doxorubicin in combined chemoradioterapy 

During tumour growth impaired blood supply fail to deliver sufficient amounts of oxygen to 

growing tumours resulting in various degrees of hypoxia [55,56]. Hypoxia reduces the effect 

of RT and several strategies have been suggested to improve RT under hypoxic conditions 

[60,61].

Combining cytostatics with RT is used in the treatment of cancers to achieve increased 

efficacy [62,105]. DXR is a potent radiosensitizer and enhance the effect of RT presumably 

by inhibiting repair mechanisms following radiation induced DNA damage [64,65,106]. It has 

also been suggested that DXR reoxygenate tumours by reducing oxygen consumption in 
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tumour cells [107,108] rendering the tumour more sensitive to RT. Clinical studies have 

reported promising results by combining RT with conventional DXR in the treatment of 

various sarcomas [109-113]. However, as tumour tissue favours accumulation of liposomes, 

using PL-DXR in CRT may enhance efficacy primarily in tumour tissue [66]. 

Preclinical CRT studies, involving both PL-DXR [66,68] and non-pegylated liposomal DXR 

[69], have described enhanced therapeutic effects when combined with RT. Combining PL-

DXR with RT in clinical studies have also been performed. However, due to low number of 

patients and the simultaneous inclusion of other therapeutic agents in addition to PL-DXR and 

RT, assessing the beneficial effect of PL-DXR in some of these studies is somewhat difficult. 

Nevertheless, promising results are described for several cancers including breast cancer 

[114,115], sarcomas [67], non-small cell lung cancer [70,116,117], head and neck cancer [70], 

glioblastoma and metastatic brain tumours [118]. Also, less promising results are reported for 

non-small cell lung cancer [119] and glioblastoma [120]. However, according to my 

knowledge there has not been performed any major randomized trials with CRT involving 

PL-DXR.

Even though conventional DXR is reported to enhance the effect of RT, it is also reported to 

reduce tumour blood flow [121,122], presumably by inducing endothelial damage with 

concurrent vascular dysfunction [123-125]. In contrast, PL-DXR is reported to normalize 

tumour blood flow [126] indicating that PL-DXR may be beneficial in CRT not only by 

increasing the effect of RT primarily in tumour tissue but also by reducing DXR mediated 

adverse effects on tumour vascular functions. As suggested in Paper IV, PL-DXR produced 

therapeutic effect without significantly altering tumour vascular functions as judged by DCE 

MRI and immunohistochemistry. For co-administration with RT this is beneficial because 

well vascularised tumours may have less degree of hypoxia. The presence of oxygen in 

tumours is vital due to 1) the production of radicals and thus DNA damage and 2) to prevent 

DNA repair by fixating the damage [127]. DXR may therefore resemble oxygen in tumours 

exposed to RT. It has to be emphasised that this study was performed using a drug dose of 3.5 

mg DXR/kg and the result may not be valid for other drug doses. Other drug doses may, 

perhaps, produce vascular alterations limiting tumour blood flow. 

Hypoxia is a common feature of most tumours [127] and the ability to achieve effective RT 

under hypoxic conditions is therefore of great importance. Paper IV demonstrated that the 
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effect of RT is greatly reduced by hypoxia. Here, hypoxia was induced by clamping the 

tumour-bearing leg creating ischemia with concurrent hypoxia. It has to be anticipated that 

temporary episodes of acute hypoxia induced this way would differ from hypoxia in clinical 

tumours. However, the concomitant administration of PL-DXR improved therapeutic 

outcome indicating that PL-DXR may increase the effect of RT under hypoxic conditions. 

Overcoming hypoxia by administering radiosensitizing drugs may be of limited value as 

supply to hypoxic regions are commonly reduced by inadequate vascularisation. However, 

PL-DXR seems to have a positive effect on vascular functions as suggested in paper IV. Here, 

vascular alterations induced by hypoxic RT were apparently reduced by co-administration of 

PL-DXR as judged by DCE MRI. 

Data analysis of DCE MRI was performed by identifying three kinetic parameters A, Kep and 

Kel (Paper IV). However, the Kep parameter, which identifies the transfer rate between plasma 

and EES, had to be excluded from the study as non-physiological values were generated both 

pre and post treatment. Rapid contrast agent in-wash originating from high permeability 

and/or high perfusion could provide an explanation. Moreover, methodological limitations 

may also be suggested. I.e. registering contrast transfer between plasma and EES is influenced 

by the speed of contrast administration [75]. Also, limitations in time resolution could further 

explain why the kinetic model did not generate meaningful Kep values. Due to unsuccessful 

contrast administration or tumour sizes being too small to enable reliable DCE MRI analysis 

it was not possible to generate A and Kel values for all animals that entered the study. 

DXR exert cytotoxic effects by interfering with several cellular processes [128] and numerous 

mechanisms may explain the radiosensitizing properties of DXR. However, as all tumours 

have some degrees of hypoxia [129], the ability of PL-DXR to increase the effect of RT under 

hypoxic conditions could provide some explanation to why PL-DXR increase the effect of 

RT. For drugs that affect tumour vascular functions liposomes may be an interesting drug 

delivery technology for use in CRT. 

To my knowledge there have been no clinical studies on CRT involving PL-DXR on PCa. 

Even though results obtained from preclinical studies frequently fail in predicting clinical 

results [82], the ability of PL-DXR to increase the effect of RT under hypoxic conditions in 
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xenograft models are nontrivial as it is well documented that hypoxia reduces the effect of RT 

in PCa [57-59]. 
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6. Conclusions 

The work presented in this thesis suggests that PL-DXR can produce enhanced effects when 

combined with other treatment modalities, i.e. US and RT, as judged by assessment in 

preclinical models. Further, OI appears not to be promising for performing biodistribution 

studies of fluorescence labelled liposomes. The following conclusions can be made: 

• Including DSPE as a major fraction in the liposomal membrane can render liposomes 

US-sensitive with acceptable circulation time. 

• LFUS can enhance the therapeutic effect of DSPE-based liposomal DXR in mice 

bearing prostate cancer xenografts. However, the benefit of LFUS treatment appears to be 

modest but statistically significant. 

• DOPE appears to be a potent modulator for sonosensitivity. However, high DOPE 

content reduces liposome stability in the blood stream. 

• Dissociation of DiD from liposomes in the blood stream limits the suitability of DiD 

as a marker for liposomes in vivo.

• Scattering and absorption of light limits the usefulness of OI for assessing the 

biodistribution profile of fluorescence labelled liposomes. 

• PL-DXR induces antitumour effect apparently without influencing tumour vascular 

functions at a dose of 3.5 mg DXR/kg. Further, PL-DXR appears to reduce some of the 

vascular alterations induced in hypoxic tumours by RT.  

• PL-DXR increases the therapeutic effect of RT in radioresistant tumour xenografts. 
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7. Perspectives 

This thesis has demonstrated that antitumour effect of sonosensitive liposomal DXR in animal 

models can be enhanced by concurrent LFUS treatment. However, further manipulation of 

liposome membrane composition may generate sonosensitive liposomes with properties 

superior to those described in this thesis. Also, focused US of higher frequencies may be used 

to restrict acoustic cavitation to tumour tissue. Therapeutic assessment of DOPE-based 

liposomal DXR and US of higher frequencies (500 kHz - 1.13 MHz) will be tested in mice 

bearing prostate and breast cancer xenografts in near future. 

Studying liposomal biodistribution by OI demands strong bonding between liposome and 

labelling fluorochrome. As DiD appears to dissociate in vivo, finding stable labelling 

techniques may improve quality of assay. However, it has to be anticipated that liposomes at 

some time post injection will disintegrate. In such case the labelling fluorochrome will no 

longer label intact liposomes. Consequently, it has to be questioned whether OI is a suitable 

technique for studying the biodistribution profile of labelled liposomes. 

Several reports have demonstrated that PL-DXR increases the effect of RT, also under 

hypoxic condition as suggested in this thesis. However, using other drug doses or different 

time intervals between drug administration and start of RT may improve therapeutic outcome. 

As the biodistribution profiles of drugs are changed by liposomal encapsulation, 

encapsulating other radiosensitizing drugs may perhaps be an interesting drug delivery 

strategy.
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Abstract 

Background: Tumor vasculature frequently fails to supply sufficient levels of oxygen to 

tumor tissue resulting in radioresistant hypoxic tumors. To improve therapeutic outcome 

radiotherapy (RT) may be combined with cytotoxic agents.  

 

Methods: In this study we have investigated the combination of RT with the cytotoxic agent 

doxorubicin (DXR) encapsulated in pegylated liposomes (PL-DXR). The PL-DXR 

formulation Caelyx® was administered to mice bearing prostate carcinoma xenografts, in 

combination with RT performed under normoxic and hypoxic conditions. Treatment response 

evaluation consisted of tumor volume measurements and dynamic contrast-enhanced 

magnetic resonance imaging (DCE MRI) with subsequent pharmacokinetic analysis using the 

Brix model. Imaging was performed pre-treatment (baseline) and 8 days later. Further, 

hypoxic fractions were determined by pimonidazole immunohistochemistry of excised tumor 

tissue.  

 

Results: As expected, the therapeutic effect of RT was significantly less effective under 

hypoxic than normoxic conditions. However, concomitant administration of PL-DXR 

significantly improved the therapeutic outcome following RT in hypoxic tumors. Further, the 

pharmacokinetic DCE MRI parameters and hypoxic fractions suggest PL-DXR to induce 

growth-inhibitory effects without interfering with tumor vascular functions.  

 

Conclusions: We found that DXR encapsulated in liposomes improved the therapeutic effect 

of RT under hypoxic conditions without affecting vascular functions. Thus, we propose that 

for cytotoxic agents affecting tumor vascular functions liposomes may be a promising drug 

delivery technology for use in chemoradiotherapy.  
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Background 

During tumor growth abnormal tumor vasculature frequently fails to supply sufficient levels 

of oxygen to tumor tissue, resulting in various degrees of hypoxia [1,2]. Tumor hypoxia is 

known to cause treatment resistance and to promote metastatic disease progression [3-5]. To 

improve radiotherapy (RT) efficacy of radioresistant tumors, several approaches have been 

suggested [6,7]. One strategy is to combine conventional cytotoxic agents with RT to increase 

the therapeutic effects, i.e. chemoradiotherapy (CRT) [8,9]. 

 

The anthracycline chemotherapeutic drug doxorubicin (DXR) has been demonstrated to 

enhance the therapeutic effect of RT [10-13], presumably by preventing cells from repairing 

radiation-induced DNA damage [11-13]. DXR has also reportedly enhanced the effect of RT 

under experimental in vitro hypoxic conditions [14]. 

 

By encapsulating DXR in liposomes, DXR accumulation in the heart is reduced, resulting in 

less cardiac toxicities compared to conventional DXR [15,16]. Abnormal tumor vasculature 

also favors accumulation of liposomes due to the enhanced permeability retention effect [17]. 

Moreover, by incorporating polyethylene glycol (PEG) in the liposomal membrane, clearance 

by the cells of the reticulo-endothelial system is reduced, resulting in prolonged circulation 

time [18]. 

 

Liposomes accumulated in the tumor may act as depots for sustainable drug release, making 

them particularly beneficial during a course of CRT, since daily drug dosing would be 

needless [19]. Also, as liposomes avoid accumulation in healthy tissue, radiation enhancement 

may primarily be located to tumors, reducing toxicities in neighboring healthy tissues [19,20]. 

Pegylated liposomal DXR (PL-DXR) has been shown to increase the effect of RT in 
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preclinical studies [19,21] and promising results are also achieved in clinical applications 

[20,22]. 

 

The objective of this study was to evaluate the potential therapeutic benefit of administering 

PL-DXR (Caelyx®) to tumor-bearing mice receiving RT under hypoxic, radioresistant 

conditions. Therapy-mediated changes in tumor vascular functions and tumor hypoxia were 

assessed by dynamic contrast-enhanced magnetic resonance imaging (DCE MRI) and 

pimonidazole immunohistochemistry, respectively. 
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Methods 

Materials

The PL-DXR product Caelyx® was supplied by the pharmacy at the Norwegian Radium 

Hospital, Oslo, Norway (European distributor; Schering-Plough). Pimonidazole hydrochloride 

was supplied by Natural Pharmacia International, Inc., Burlington, MA, USA, and the 

contrast agent Dotarem® was from Laboratoire Guerbet, Paris, France. Dako EnVision™+ 

System-HRP (DAB) was supplied by Dako Corporation, DA, USA. 

 

For anaesthesia of mice a mixture of 2.4 mg/ml tiletamine and 2.4 mg/ml zolazepam (Zoletil® 

vet, Virbac Laboratories, Carros, France), 3.8 mg/ml xylazine (Narcoxyl® vet, Roche, Basel, 

Switzerland) and 0.1 mg/ml butorphanol (Torbugesic®, Fort Dodge Laboratories, Fort Dodge, 

IA, USA) was prepared and used. 

 

Experimental animals 

Male athymic nude Balb/c mice were provided by the Department of Comparative Medicine 

(animal facility), Oslo University Hospital. The CWR22 xenograft model, originating from a 

human, primary prostate carcinoma [23], was serially transplanted between mice. In brief, by 

blunt dissection through a skin incision tumor fragments (~2x2x2) mm3 were subcutaneously 

implanted on the upper leg (proximal to the knee joint) of 4 - 5 weeks old mice. The skin 

incision was sealed with topical skin adhesive. Approximately three weeks later a tumor 

xenograft of 5 - 10 mm in diameter developed. The mice were housed in transparent boxes 

with bedding material, fed ad libitum and kept under specific pathogen-free conditions. The 

temperature and relative humidity were kept constant at 20 - 21°C and 60 %, respectively. At 

the end of the experiments all animals were euthanized by cervical dislocation. All procedures 

were performed according to protocols approved by the National Animal Research Authority 
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and carried out in compliance with the European Convention for the Protection of Vertebrates 

Used for Scientific Purposes.  

 

Radiotherapy

RT was delivered at a dose of 2 Gy/day for five consecutive days (at experiment days 1 – 5) 

using a 60Co source (Mobaltron 80, TEM instruments, Crawley, UK) with a dose rate of 0.8 

Gy/min. The animals were located in a custom designed vicryl tube with an opening for the 

tumor bearing leg to be stretched out and fixated horizontally. During the procedure only the 

tumor bearing leg was extended into the radiation field, limiting radiation exposure to the 

remaining body. The procedure was performed under sedation induced by 0.05 ml of 

anesthetic agent. 

 

Hypoxic radiotherapy 

Tumor hypoxia was experimentally induced by placing the animals in a vicryl tube. A rubber 

band was clamped around the leg of the animal, proximal to the xenograft. The rubber band 

was left on for five minutes prior to and during RT (at experiment days 1 – 5). During 

clamping the animal’s leg temporary turned bluish, indicating stagnation of blood circulation 

with concurrent induction of acute hypoxia. The discoloration disappeared rapidly following 

removal of the rubber band and no animals became lame or experienced any adverse effects 

from the clamping. The procedure was performed under sedation induced by 0.05 ml of 

anesthetic agent. 

 

PL-DXR

PL-DXR was administered at a dose of 3.5 mg DXR/kg as a single i.v. bolus injection 

through the tail vein (at experiment day 0). The rationale for using the relatively low drug 
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dose was to avoid reaching therapy saturation levels where any additional effect produced by 

hypoxic RT would not be detected. 

Monitoring of treatment response 

Animals bearing tumor xenografts sized 5 - 10 mm in diameter were randomly allocated into 

different experimental groups of 8 - 10 tumors each (Table 1). At the start of the experiment 

all animals were imaged by DCE MRI with subsequent i.v. administration of PL-DXR to 

animals designated to the PL-DXR groups. RT treatment began 24 hrs later, enabling 

sufficient time for liposomal tumor accumulation. During daily RT sessions all animals, 

regardless of experimental group, were sedated. To assess therapy-induced changes in tumor 

vascular function all animals were subjected to an identical imaging protocol 8 days after the 

pre-treatment DCE MRI. 

 

Tumor volumes were estimated after measuring the tumors' shortest and longest diameters 

with four days intervals using a digital caliper (Model B220S, Kroeplin, Schlüchtern, 

Germany). The tumor volume was calculated according to the formula (�/6)*length2*width 

[24]. 

 

DCE MRI acquisitions 

MRI acquisitions were performed as previously described [25], using a 1.5 T GE Signa LS 

scanner (GE Medical Systems, Milwaukee, WI), and a dedicated MRI mouse coil [26]. Prior 

to MRI, a heparinized 24 G catheter attached to a cannula containing 0.01 ml/g body weight 

contrast agent (Dotarem®, diluted in heparinized saline to 0.06 M) was inserted into the 

animals’ tail vein. The animals were placed in an adapted cradle and put into the coil, before 

being placed in the scanner. During image acquisition, the animal’s temperature was 

maintained at 38 °C. First, the tumor was localized using axial fast spin-echo (FSE) T2-
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weighted (T2W) images (echo time (TEeff) = 85 ms, repetition time (TR) = 4000 ms, echo 

train length (ETL) = 16, image matrix (IM) = 256 × 256, field-of-view (FOV) = 4 cm, slice 

thickness (ST) = 2 mm). Second, DCE MRI was obtained with a dynamic fast spoiled 

gradient-recalled (FSPGR) T1W sequence (TE = 3.5 ms, TR = 180 ms, IM = 256 × 128, FOV 

= 6 cm, ST = 2 mm, and flip angle (FA) = 80°). Following 5 baseline T1W image 

acquisitions, contrast kinetics were investigated by injecting the contrast agent during 3 

seconds and performing 20 minutes of post-contrast imaging. The time resolution was 12 

seconds and the reconstructed voxel size was 0.23 × 0.23× 2 mm3. 

DCE MRI analysis 

Image analysis was performed using in-house developed software in IDL (Interactive Data 

Language v 6.2, Research Systems Inc., Boulder, CO). For the central slice of each tumor, a 

region of interest (ROI) was manually traced in T1W images, excluding surrounding skin and 

connective tissue. The time-dependent relative signal intensity, RSI(t), was calculated for each 

image voxel according to Equation 1. 

 

Equation 1:  
SI(0)

 SI(0)- SI(t)
RSI(t) =  

 

where SI(0) refers to the pre-contrast signal intensity and SI(t) the post-contrast signal 

intensity in the voxel at time t. Pharmacokinetic modeling was performed using the Brix 

model [27], with the RSI(t) for each voxel as input. The Brix model is a two-compartment 

pharmacokinetic model where the contrast agent is assumed to distribute between two 

individually well-mixed compartments; the blood plasma and the extracellular extravascular 

space (EES) in the tumor. The i.v. injected contrast agent is transported into the tumor by 
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perfusion, where it diffuses between the plasma and the EES, before being eliminated at a 

constant rate.

 

Using the RSI(t) for each voxel in the tumor ROI, the Brix model (equation 2) was fitted using 

the Levenberg-Marquardt least-squares minimization method (MPFIT; 

http://purl.com/net/mpfit) [28]. 

 

Equation 2:  )
telk-

e-
tep-k

e(
kk

Ak
RSI(t)

epel

ep�  

 

where the parameter kep is the rate constant between plasma and EES, kel the clearance rate of 

contrast agent from plasma, and A an amplitude parameter related to the size of the EES. 

 

Immunohistochemistry of tumor hypoxia 

In addition to the animals subjected to DCE MRI, parallel groups of animals were followed to 

harvest tumor tissue at the same time-point as the day 8 MRI acquisitions. Animals designated 

to immunohistochemistry examination received identical treatments as animals used for tumor 

growth assessment and DCE MRI (Table 1), with each group containing 8 tumors. Hypoxia 

was determined by injecting 80 mg/kg pimonidazole hydrochloride (1-[(2-hydroxy-3-

piperidinyl)propyl]-2-nitroimidazole hydrochloride, dissolved in saline i.p. One hour later 

euthanasia was performed by cervical dislocation and tumors were excised and preserved in 

phosphate-buffered 4 % formalin until tissue sectioning. Tumor hypoxia was detected using a 

peroxidase-based immunostaining method. In brief, tissue sections were stained using the 

Dako EnVision™+ System-HRP (DAB) (K4011) and Dakoautostainer. Deparaffinization and 

unmasking of epitopes were performed using PT-Link (DAKO) and EnVision™ Flex target 

retrieval solution, high pH. To block endogenous peroxidase, sections were treated with 0.03 
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% hydrogen peroxide for 5 minutes. The preparations were incubated 30 minutes with 

polyclonal rabbit antibodies to pimonidazole-protein adducts (1:10000 dilution). The sections 

were then incubated with peroxidase-labeled polymer conjugated to goat anti-rabbit 

secondary antibodies for 30 minutes. The tissue sections were stained for 10 minutes with 

3’3-diaminobenzidine tetrachloride (DAB) and counterstained with haematoxylin, dehydrated 

and mounted in Diatex. 

 

Statistical analysis 

By means of a multiple regression procedure differences in tumor growth between the 

experimental groups were operationally represented by three between group comparisons; 1) 

comparing the RT group with the hypoxic RT group, 2) comparing the RT group with the PL-

DXR group and finally, 3) comparing the hypoxic RT group with the PL-DXR + hypoxic RT 

group. Tumor growth was represented by linear and quadratic developmental trends. 

Group differences in DCE MRI parameters and hypoxic fractions were analyzed by 

student’s t-tests, and the Pearson correlation (r) test analyzed whether correlations between 

variables were significant using SPSS 16.0 (SPSS, Cary, NC). A significance level of 5 % 

was used for all statistical analyses.
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Results 

Tumor growth 

Tumor volume measurements were performed with four days intervals for 29 days, except for 

the control group where animals were euthanized at day 21 when the tumor diameters 

exceeded 20 mm, i.e. in accordance with internal regulations for animal experiments. Based 

on the 21 days observation period, the tumor growth of the control group was significantly 

enhanced as compared to all the groups receiving treatment (p<0.050). The differences in 

tumor growth between the remaining groups were analyzed on the basis of the 29 days 

observation period. Based on quadratic developmental trends the hypoxic RT group showed 

significantly less therapeutic effect than the normoxic RT group (comparison 1, p=0.006). 

The group receiving PL-DXR also presented significantly less therapeutic effect than the RT 

group (comparison 2, p=0.008). Interestingly, tumor growth in the PL-DXR + hypoxic RT 

group was significantly reduced compared to the hypoxic RT group (comparison 3, p=0.004). 

Tumor growth patterns are portrayed in Figure 1. No adverse effects were observed in any of 

the experimental groups.  

 

Treatment monitoring using DCE MRI 

Following Brix modeling of contrast kinetics, parametric images of A, kel and kep were 

produced. The kep parameter is a parameter mainly related to the in-wash of contrast agent 

from plasma to extravascular space. Due to a very rapid contrast agent in-wash, presumably 

caused by high permeability and/or high perfusion, some tumor voxels were saturated, 

precluding estimation of reliable mean tumor values of kep for subsequent intergroup 

comparisons. The kep parameters were therefore excluded. Also, due to unsuccessful injection 

of contrast agent or technically related issues, some of the tumors in the experiment were 

excluded from subsequent pharmacokinetic analysis. Further, some of the tumors were too 
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small to enable reliable DCE MRI analysis. The exact number of tumors that underwent MRI 

and image analysis is indicated in all relevant figures onwards.  

 

In Figure 2, the mean group relative change in the A parameter from day 0 to day 8 is 

presented. A reduction in the A parameter was observed for both the control (18 %) and the 

PL-DXR (26 %, p=0.030) groups. All groups receiving radiation experienced a relative 

increase from day 0 to day 8, being 4 % in the PL-DXR + hypoxic RT group, 20 % (p=0.002) 

in the hypoxic RT group and 29 % (p=0.046) in the RT group. No significant intergroup 

difference in the A parameter was observed when comparing the control tumors with tumors 

treated with PL-DXR. However, all groups receiving radiation experienced a significant 

increase in the A parameter compared to the control group; PL-DXR + hypoxic RT (p=0.019), 

hypoxic RT (p=0.001) and RT (p=0.006). Additionally, the group receiving PL-DXR + 

hypoxic RT also experienced an increase in the A parameter compared to PL-DXR (p=0.026) 

and a decrease compared to hypoxic RT (p=0.025) and RT (p=0.049). 

 

In Figure 3, the mean group relative change in the kel parameter from day 0 to day 8 is 

presented. Three groups experienced an increase in kel, being 45 % in the control group, 85 % 

in the PL-DXR group and 47 % in the PL-DXR + hypoxic RT group. Due to large intragroup 

variations, these increases were not significant. Both the hypoxic and normoxic RT groups 

experienced a 27 % decrease in the kel parameter with the change in the hypoxic RT group 

being significant (p=0.007). No intergroup differences in the kel parameter were observed 

when comparing the control tumors with the tumors that received PL-DXR or PL-DXR + 

hypoxic RT. However, both the hypoxic RT group and the RT group experienced significant 

reductions in the kel parameter compared to the control group, (p=0.015 and p=0.020, 

respectively). 
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Immunohistochemistry of tumor hypoxia 

Parallel to tumor growth and DCE MRI studies identically treated groups of tumors were 

excised and used to assess tumor hypoxia at day 8, coinciding with the time-point of post-

treatment MRI acquisitions. Figure 4 presents the hypoxic fractions of the different 

experimental groups. The mean hypoxic fractions were 23 % for the control tumors, 21 % for 

tumors treated with PL-DXR alone, 14 % for the tumors receiving both PL-DXR and hypoxic 

RT, 15 % for tumors receiving hypoxic RT, and 11 % for tumors receiving RT. Compared to 

the control group, only the RT group presented significantly reduced hypoxic fractions 

(p=0.041).  

 

Correlations 

Figure 5 shows the correlations between the mean group hypoxic fractions at day 8 (%) versus 

the mean group relative change in the A parameter from day 0 to day 8 (%) (Figure 5A), the 

mean group relative change in the kel parameter from day 0 to day 8 (%) (Figure 5B), and the 

mean group relative change in tumor volumes from day 0 to day 9 (%) (Figure 5C), 

respectively. The mean group hypoxic fractions showed a strong negative correlation to the 

mean group relative change in the A parameter from day 0 to day 8 (r=-0.93, p=0.022), a 

weaker and insignificant positive correlation to the mean group relative change in the kel

parameter from day 0 to day 8 (r =0.74, p=0.155), and a positive correlation to the mean 

group tumor volume change from day 0 to day 9 (r=0.94, p=0.019).  

 

Figure 6 shows the correlations between the mean group relative change in tumor volumes 

from day 0 to day 9 (%) versus the mean group relative change in the A parameter from day 0 

to day 8 (%) (Figure 6A) and the mean group relative change in the kel parameter from day 0 

to day 8 (%) (Figure 6B), respectively. Mean group tumor volume change correlated 

negatively to the mean group relative change in the A parameter (r=-0.91, p=0.030) from day 
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0 to day 8, and positively, but not significantly, to the mean group relative change in the kel

parameter (r=0.75). 
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Discussion 

Tumor hypoxia prevent effective RT [3-5], and several strategies to improve RT efficacy 

under hypoxic conditions have been described [6,7]. The ability of PL-DXR to enhance the 

therapeutic effect of fractionated and single dose RT has previously been reported [19,21]. In 

the current study we demonstrated that PL-DXR improves the therapeutic effect of RT also 

under hypoxic conditions. Moreover, as it is important to develop strategies to monitor 

treatment responses non-invasively, DCE MRI appears to be promising for this purpose. 

 

The current PL-DXR formulation accumulates slowly in tumors, reaching peak levels 2-3 

days post injection in tumor xenograft models [29,30]. Consequently, substantial levels of PL-

DXR in the tumors during the five days of RT were expected. Any RT-mediated changes in 

tumor vascular functions that could interfere with tumor liposome accumulation was expected 

to be minimal as RT previously has reported to not alter liposomal tumor uptake [31,32]. 

 

Free DXR is reported to decrease tumor blood flow [33,34], subsequently reducing the 

oxygen levels in tumors. In contrary, PL-DXR has been suggested to normalize tumor 

vasculature [35]. In the current study there was no significant difference between the control 

and the PL-DXR group in any of the DCE MRI derived kinetic parameters or hypoxic 

fractions, suggesting that PL-DXR did not alter vascular functions. Still, tumor growth was 

significantly inhibited indicating that PL-DXR may exert tumoricidal effects without 

interfering with tumor blood circulation. This feature is highly beneficial with respect to 

subsequent RT since well oxygenated and vascularized tumors more likely respond better to 

RT.  
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In contrary, RT induced changes in the tumor vasculature both in the hypoxic and normoxic 

tumors, as measured by an increase in the A parameter. This alternation may be related to an 

increased interstitial volume, and a reduced elimination rate of contrast agent, as indicated by 

the kel parameter. The increase seen in the A parameter may be related to radiation-induced 

necrosis and/or edema, and thus increased interstitial volume. Further, an increase in the A 

parameter may reflect disrupted membranes increasing the extracellular volume due to 

elevated membrane permeability. Finally, the observed reductions in the kel parameter may 

reflect radiation-induced endothelial cell death, making clearance of contrast agent less 

effective. Interestingly, when hypoxic RT was administered in combination with PL-DXR 

these changes became less evident, indicating that PL-DXR reduced some of the vascular 

effects caused by RT in hypoxic tumors. 

 

Figure 5A shows that the hypoxic fractions were significantly correlated to the changes in the 

A parameter from day 0 to day 8. A similar relation has also been found in a clinical DCE 

MRI study of cervical cancer, where a positive correlation between the A parameter and 

oxygen levels, as measured by Eppendorf pO2 histography, was evidenced [36]. This may 

suggest the A parameter as a candidate biomarker of tumor hypoxia, for further investigation. 

The kel parameter correlated less to hypoxia, as seen in Figure 5B. Moreover, hypoxic 

fractions correlated significantly (Figure 5C) with tumor volume changes and may explain 

why the measured hypoxic fractions were highest in the control tumors and lowest in the 

tumors receiving the most effective treatments. Hypoxia and tumor size have also previously 

been demonstrated to correlate strongly [37]. 

 

The treatment-induced changes in the A parameter correlated significantly and negatively to 

tumor volume changes (Figure 6A), and changes in the kel parameter correlated strongly and 
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positively, although not significantly, to these volume changes (Figure 6B). This is promising 

with respect to developing DCE MRI and pharmacokinetic image analysis as tools for non-

invasive monitoring of therapeutic effects. 

 

The presence of oxygen in tumors exposed to RT is crucial because oxygen 1) enhance the 

yield of radiation-induced radicals and thus DNA damage, and 2) prevent repair of induced 

DNA damage by fixation of the damage [38]. DXR enhances the therapeutic effect of RT 

presumably by preventing cells from repairing radiation-induced DNA damage [11-13]. DXR 

may therefore resemble the effect of oxygen in tumors exposed to RT. Hypoxia is a common 

feature amongst most clinical tumors [39]. Overcoming hypoxia by administration of 

radiosensitizing drugs may nevertheless be of limited success as supply to hypoxic regions 

commonly are hampered by inadequate vascularization. Liposomal DXR seems however to 

have a positive effect on the tumor vascular functions as shown in this study. 

 

 

Conclusion

The present study shows that PL-DXR improves the therapeutic effect of RT under hypoxic 

conditions and that PL-DXR does not affect tumor vascular functions. Interestingly, PL-DXR 

appeared to reduce some of the vascular alterations induced in hypoxic tumors by RT. Hence, 

for drugs that affect tumor vascular functions liposomes may be a promising drug delivery 

technology for use in CRT.
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Figures 

Figure 1 – Tumor growth patterns for the experimental groups  

Presented as mean ± SEM (n = 8 – 10 per group). The control group was removed from the 

study at day 21 due to tumor diameters exceeding 20 mm. 

 

Figure 2 – Relative change in the A parameter (mean ± SEM) from day 0 to day 8 for the 

experimental groups 

3.5 mg/kg PL-DXR was administered after pre-treatment DCE MRI. RT was delivered at a 

dose of 2 Gy/day for 5 consecutive days, starting 24 hours after the pre-treatment DCE MRI. 

Hypoxia was induced by clamping the tumor-bearing leg 5 minutes prior to and during RT. 

Significant differences (p<0.050) to the control or PL-DXR + hypoxic RT groups are 

indicated with # or ×, respectively.

Figure 3 – Relative change in the kel parameter (mean ± SEM) from day 0 to day 8 for 

the experimental groups 

3.5 mg/kg PL-DXR was administered after pre-treatment DCE MRI. RT was delivered at a 

dose of 2 Gy/day for 5 consecutive days, starting 24 hours after pre-treatment DCE MRI. 

Hypoxia was induced by clamping the tumor-bearing leg 5 minutes prior to and during RT. 

Significant differences (p<0.050) to the control or PL-DXR + hypoxic RT groups are 

indicated with # or ×, respectively. 

Figure 4 – Hypoxic fractions in the experimental groups at day 8 assessed from 

pimonidazole immunohistochemistry of tumor tissue sections  

Group mean and SEM are shown, with n = 8 per group. 3.5 mg/kg PL-DXR was administered 

24 hours prior to RT. RT was delivered at a dose of 2 Gy/day for 5 consecutive days. Hypoxia 
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was induced by clamping the tumor-bearing leg 5 minutes prior to and during RT. A 

significant difference (p<0.05) to the control group is indicated with #.

Figure 5 – Hypoxic fractions versus DCE MRI parameters and tumor volumes 

Correlations between the mean group hypoxic fractions (%) at day 8 versus the mean group 

relative change in the A parameter from day 0 to day 8 (%) (A), the mean group relative 

change in the kel parameter from day 0 to day 8 (%) (B), and the relative change in mean 

group tumor volumes from day 0 to day 9 (%) (C), respectively.

 

Figure 6 – Tumor volume changes versus DCE MRI parameter changes 

Correlations between the mean group relative change in tumor volumes (%) from day 0 to day 

9 (%) versus the mean group relative change in the A parameter from day 0 to day 8 (%) (A), 

and the mean group relative change in the kel parameter from day 0 to day 8 (%) (B), 

respectively. 
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Table 1. Overview of treatments administered to the different experimental groups. 

Experimental groups Treatment

Control No treatment 

PL-DXR 3.5 mg DXR/kg (day 0) 

PL-DXR + hypoxic RT 3.5 mg DXR/kg (day 0) + clamping + 2 Gy/day for 5 days (day 1 – day 5) 

RT 2 Gy/day for 5 days (day 1 – day 5) 

Hypoxic RT Clamping + 2 Gy/day for 5 days (day 1 – day 5) 
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Figure 1. 

Figure 2. 
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Figure 3. 

Figure 4. 
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Figure 5. 

Figure 6. 
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