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Introduction

Lung cancer

Epidemiology and etiology

Lung cancer is the leading cause of cancer-related mortality worldwide. The common
cause is by large tobacco smoking [1], but radon [2], asbestos [3], infectious agents [4],
second hand smoking [5], and exposure to cooking fumes [6] have also been recognized as
important risk factors. In addition, exposure to the various factors at working environment
(occupational factors) may play an important role. It has been estimated globally that 10% of
lung cancer deaths in men and 5% in women were attributable to exposure to a variety of
lung carcinogens such as asbestos, arsenic, nickel, chromium, cadmium, diesel fumes,
polycyclic aromatic hydrocarbons (PAHs), and silica which are often found in many working
environments [7]. In Norway, lung cancer is among the most common cancer types with
over 2500 diagnosed cases in 2008 and a 5-year survival of 11.0% for men and 14.3% for
women [8]. Lung cancers are divided into small cell lung cancer (SCLC) and non-small-cell
lung cancer (NSCLC). NSCLC is further divided into three major histological subtypes;
squamous cell carcinoma (SCC), adenocarcinoma (AC) and large cell carcinomas (LCC) [9]. All
histological types of lung cancer are associated with smoking, although the association is
strongest for SCLC and for SCC [10]. Approximately 15% of lifetime smokers develop lung
cancer, and it has been estimated that 10% of male and 20% of female lung cancer cases are
never smokers [11,12]. Lung cancer in never smokers is observed more frequently among
females with a higher proportion of ACs and an earlier age at diagnosis [9,12]. Studies have
shown that the etiology, clinical characteristics, and prognosis of lung cancer in never
smokers are different from those in smokers [13]. Although the causes of lung cancer in
never smokers are poorly understood, exposure to occupational and environmental factors,

second-hand smoke [5], hormones, and infection may be involved [9,13].

Chronic inflammatory lung diseases such as chronic obstructive lung disease (COPD),

asthma, emphysema, pneumonia and tuberculosis have to some extent been associated
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with increased risk of lung cancer [14]. COPD and emphysema are co-morbid conditions
often found in lung cancer patients [15]. The prospective and retrospective studies show
that spirometric evidence of COPD is found in 40-60% of smokers diagnosed with lung

cancer [16].

Lung carcinogenesis

Lung carcinogenesis is a multi-step process involving carcinogens, co-carcinogens and
tumor promoting factors [17-19]. Upon exposure to various factors (Figure 1), a single
initiated cell may acquire a mutation (initiation step) in critical genes leading to growth
advantage that may produce a clone of mutated cells which forms a premalignant mass
(promotion step). Some of the preneoplastic cells may acquire additional mutations and

become malignant (progression).
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NF-xB, etc.)
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Figure 1. Multi-stage carcinogenesis. Adopted with permission from [19].
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Cigarette smoke is a complex mixture containing over 4000 different compounds,
with more than 60 compounds classified as carcinogens. The major carcinogens include PAH,
nitrosamines, aromatic amines, aldehydes and other volatile organic compounds, metals and
reactive oxygen/nitrogen species (ROS/RNS) [20,21]. Most of the chemical carcinogens
require metabolic activation to form intermediates that are often more reactive than the
parent compound and can form DNA adducts [1]. Benzo(a)pyrene (BaP), an abundant PAH,
and an important constituent of tobacco smoke, is converted into 7,8-diol-9,10-epoxide
(BPDE) which is highly reactive and capable of forming BPDE-DNA adducts, especially with
guanine [22]. The nucleotide excision repair (NER) is the major DNA repair pathway
responsible for repairing bulky DNA adducts such as BPDE. If unrepaired, such lesions
increase the risk of somatic mutations and the induction of carcinogenesis [23]. Another
constituent of tobacco smoke, NNK (4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone) is
converted into NNAL (4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol), leading to the
formation of various methyl-DNA adducts [24]. The alkyl-DNA adducts are also mutagenic
and are repaired by the DNA alkyl transferases and specific DNA glycosylases [25].
Production of ROS/RNS through oxidative stress may lead to formation of 8-oxo-G, a highly
mutagenic DNA adduct. This mutagenic adduct is repaired by the 8-oxo-specific DNA
glycosylase, OGG1 [26]. The impact of DNA-adducts seems to be important in all stages of

lung carcinogenesis particularly during the initiation step [20].

Lung carcinoma displays multiple genetic alterations, however, aberrations such as
TP53 mutations, inactivation of the pathway that controls RB1 and LOH on chromosome 3p
are frequent in all histological types [27]. The tumor suppressor gene TP53 is mutated in
about 50% of NSCLC and in more than 70% of SCLC cases [28-30]. Loss of TP53 function is an
early event in lung tumorigenesis and has been observed in preneoplastic lesions, such as
bronchial epithelial dysplasia [31,32]. TP53 is regulated through multiple mechanisms, but
the E3 ligase MDM2, Ring Finger and WD repeat domain 2 (RFWD2) and Ring finger and CHY
zinc finger domain containing 1 (RCHY1) play important roles [33-35]. Alterations in RB are
commonly found with loss of RB in SCLC types of cancer (80%) compared to NSCLC (20%),
whereas p16™“*/CDKN2A the inhibitor of RB is more commonly altered in NSCLC.
Alterations of both genes lead to disruption of cell cycle control by the RB-pathway [36].

KRAS and EGFR are the two most frequently mutated genes in AC of the lung [37]. In lung
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AC, 15-25% of cases harbor a KRAS mutation and tumors from smokers are more likely to
have KRAS mutations than tumors from non-smokers [38]. It has been shown that in lung
cancer cells approximately 30% of GC to TA transversions occurs at hot spot codons 248 and
273 of the TP53 gene and at codons 12, 13 and 61 of the KRAS gene (85% of cases) [39,40]. A
similar mutation spectrum and pattern in the TP53 gene has been detected in vitro by Smith

et al. in bronchial epithelial cells [41].

The main epigenetic alterations associated with lung tumorigenesis [42] are DNA
promoter hypermethylation, DNA hypomethylation [43], posttranslational modification of
histones [44,45], chromatin remodeling, and microRNA silencing by DNA hypermethylation
[46,47]. The CpG island methylator phenotype (CIMP) involving methylation of any one of six
genes (hOGG1, RAR-B, SEMA3B, RASSF1A, BLU, or FHIT) on short arm of chromosome 3 (3p)
has been linked to increased risk of NSCLC. Methylation of at least three genes was found in
43.8% of peripheral blood mononuclear cell (PBMC) specimens from NSCLC patients and

only in 6.3% of normal PBMC samples [48].

About 3% of human genes encode for micro-RNAs (miRNAs) [49], and they are
estimated to regulate approximately 30% of the human genome primarily through
translational repression. miRNAs have the capacity to specifically inhibit translation initiation
or elongation as well as induce mRNA destabilization by targeting the 3'-untranslated
regions (UTR) of mRNA [49]. The miR-17-92 cluster composed of seven mature miRNAs (miR-
17-5p, miR-17-3p, miR-18a, miR-19a, miR-20a, miR-19b and miR-92-1), residing in intron 3 of
the C130rf25 gene at 13g31.3, is frequently overexpressed in lung cancers [50]. Findings in
the literature clearly point to crucial roles for let-7 and miR-17-92 in the pathogenesis and
progression of lung cancer, as they appear to affect the machinery of two key cellular
functions, stemness maintenance and cell-cycle regulation. Several relevant targets for let-7
and miR-17-92 have been identified, and are suggested to play roles in cancer development

[51].

Genetic polymorphisms
The most common genetic variations are single nucleotide polymorphisms (SNPs) and

have been estimated to occur at an average of every 100-300 bp in the human genome [52].
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The term SNP has also been used in the terms of simple nucleotide polymorphisms including
short insertions, deletions and repeats. SNPs in protein encoding genes can influence a
phenotype either by changing the function or quantity of the encoded protein [53,54]. The
variants of SNPs that are located within non-coding regions of the genome can impact gene
regulatory sequences such as promoters, enhancers, and silencers, and modulate sequences
within the 5’UTR and 3’UTR. Especially the SNPs residing within the regulatory regions of the
genome may result in altered regulation of gene transcription [53,55]. Recent research
suggests that about 50% of genes have one or more common regulatory SNPs (rSNPs)
[53,56-59]. Transcription factor (TF) binding sites are attractive regions to search for
functional rSNPs [55]. In some cases a SNP may increase or decrease the binding, leading to
allele-specific gene expression while in other cases, a SNP may generate a novel binding site
(Figure 2). Consequently, the gene can no longer be regulated by the original TF. Thus,
functional rSNPs in TF binding sites may lead to differences in gene expression and

phenotypes, and ultimately affect susceptibility to disease [55]. Human populations show

promoter-gene _

// \\\
TeTes e e S ey e

increased decreased novel
change binding binding blndlng binding
controfled
by other TF

expression

Figure 2. The impact of a SNP in a transcription factor binding site (TFBS). Adopted with permission
from [55].

extensive polymorphism, both additions and deletions, and in the number of copies of
chromosomal segments, known as copy number variation (CNV). CNVs are found in the

germline DNA or may arise as somatic copy number alterations [60,61]. Changes in copy
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number might change the expression levels of genes included in the regions of variable copy
number, allowing transcription levels to be higher or lower [60]. There are some studies

implicating CNVs on chromosomes 5p and 8p in lung tumors [62-64].

Susceptibility markers of lung cancer

The observation that approximately 15% of lifetime smokers develop lung cancer
suggests that individuals might differ in their susceptibility to environmental risk factors
[9,11]. Increased familial risk of lung cancer is an indication of a genetic contribution [65].
Bermejo and Hemminki estimated that the familial risk of lung cancer among offspring
would be expected to increase by about 20% with increased familial tendency to smoke [66].
Recent studies have mapped a major susceptibility locus influencing familial lung cancer risk
to chromosome 6q23-25. However, the specific susceptibility gene at this locus remains
unknown [67,68]. Through a combination of genetic fine mapping and association studies
the RGS17 gene has been identified as a major candidate susceptibility gene for familial lung
cancer risk [67]. However, the precise functional effect of this gene in lung cancer is

unknown [65].

The risk genetic variants that might affect lung cancer risk fall into three categories:
rare high-risk variants (risk of 10 or higher and prevalence of 1% or less), moderate-risk
variants (risk of around 2-5 and prevalence of not more than 5%), and common low-risk
variants (risk of between 1.1 — 1.5 and prevalence of more than 5%) [65]. It is believed that
alleles with high frequency (typically >10%) and low penetrance contribute substantially to

susceptibility to cancer [69].

Functional polymorphisms in the xenobiotic metabolism, DNA repair, inflammatory,
and cell cycle pathways may alter lung cancer susceptibility. The role of individual
polymorphisms has been evaluated for several genes including the CYP and glutathione S-
transferase super families, the DNA repair genes, tumor suppressor or cell cycle genes [70].
Epidemiological studies have demonstrated that low-penetrance, high-prevalence
polymorphic phase | and phase Il enzymes of the cytochrome P450 system may alter
susceptibility to lung cancer [70]. Polymorphisms in genes coding for DNA repair enzymes

active in BER (XRCC1, hOGG1), NER (ERCC1, ERCC6, XPD, XPA), double-strand break repair
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(XRCC3) and mismatch repair pathways have also been studied in relation to lung cancer risk
[11,71-76]. Suboptimal DNA repair capacity is characterized by a reduced capacity for
removal of DNA adducts and has been demonstrated to be associated with increased lung
cancer risk, in both smokers and non smokers [72,77,78]. Some ERCC6 polymorphisms in the
NER pathway have been shown to be associated with an elevated lung cancer risk. A more
extensive meta-analysis identified a slight increase in lung cancer risk for an

ERCC2 751GIn/GIn genotype [72].

Haplotypes are a combination of alleles at different markers along the same
chromosome that are inherited as a unit [79]. An understanding of haplotype structure
across segments of chromosomes that contain potential disease genes is likely to increase
the value of genetic association studies where haplotypes have been ascertained [79-81].
This may be especially true when genetic or epistatic interactions within a haplotype block

contribute to the development of the phenotype in question [82].

Nearly 600 Genome Wide Association (GWA) studies, covering 150 distinct diseases
and traits have been published [83]. These studies are carried out with high throughput
genotyping techniques designed to assay hundreds of thousands of polymorphisms, and
relate these variants to disease or health related traits [84]. Recently, 3 lung cancer GWA
studies identified 3 loci, 15q24-25.1, 5p15.33 and 6p21 associated with lung cancer risk. — A
common locus variant near rs1051730 and rs803419 on chromosome 15q contains 3 genes
encoding subunits of the nicotinic acetylcholine receptor (nAChR), CHRNA3, CHRNA5, and
CHRNB4 [85-87]. In addition, three haplotypes (delTTC, insATC, and insTGG) were recently
identified by sequence analysis in the 5' promoter region and three at the 3'-untranslated
region of the CHRNAS locus. Luciferase reporter assays in human lung cancer cell lines also
showed that the 5' region haplotypes were statistically significantly associated with changes
in CHRNAS promoter activity, whereas the 3'-untranslated region variants were not [88]. The
5p15.33 region contains the TERT and the CLPTMIL/CRR9 genes and the 6p21 region
contains the BAT3 and MSH5 genes [89-90]. Interestingly, some of these risk SNPs were
associated with a higher level of DNA-PAH adducts in normal lung tissue [90]. Li et al.
published recently a GWA study on never smokers. Several SNPs were identified and this

study identified the top SNP as rs2352028 at 13g31.3. A strong correlation was found
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between this SNP and alteration of the expression of the GPC5 gene in never smokers,

suggesting GPC5 as a candidate lung-cancer-susceptibility gene [91].

Recently, a novel class of functional polymorphisms in miRNAs (miRSNPs) was
reported and defined as a polymorphism present at or near microRNA binding sites of
functional genes that can affect gene expression by interfering with a miRNA function [92].
Hu et al. examined SNPs in four pre-miRNA sequences and found that the rs11614913 SNP

was associated with survival in early stage lung cancer patients [93].

Inflammation and lung cancer

A potential link between chronic inflammation and cancer has been suspected for a
long time and was initially suggested by Rudolf Virchow as early as 1863 when he postulated
that the “lymphoreticular infiltrate” reflected the origin of cancer at sites of chronic
inflammation [94]. Over the past two decades our understanding of the inflammatory
microenvironment of malignant tissues has supported Virchow’s hypothesis, and the links
between cancer and inflammation are starting to have implications for prevention and
treatment [94,95]. Epidemiological and clinical studies support Virchow’s notion indicating
that approximately 25% of all human cancers in adults result from chronic inflammation

[96].

Recently, the link between cancer and inflammation has become more evident and
inflammation has been proposed as the seventh hallmark of cancer [95]. Key features of
cancer-related inflammation include the infiltration of white blood cells such as tumor-
associated macrophages, the presence of polypeptide messengers of inflammation;
cytokines and chemokines, and the occurrence of tissue remodeling and angiogenesis [95].
Two pathways have been identified: the intrinsic pathway where genetic events causing
neoplasia initiate the expression of an inflammatory microenvironment and the extrinsic
pathway, where inflammatory conditions facilitate cancer promotion and progression [95].
Key orchestrators at the intersection of the intrinsic and extrinsic pathway include

transcription factors and pro-inflammatory cytokines [97,98].

Chronic inflammatory lung diseases may predispose to lung cancer. A recent meta-

analysis of the relationship between asthma and lung cancer risk suggests that the
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association might reflect a causal relationship between asthma-induced inflammation and
lung cancer [99,100]. Individuals with chronic bronchitis and emphysema may also have an
increased risk of lung cancer [101,102]. Joongho et al. suggests in a meta-analysis that HPV is
associated with 20%—25% of NSCLC [103]. Chlamydia pneumoniae (C. pneumoniae) causing
respiratory infection may lead to a high incidence of pneumonia where chronic C.
pneumoniae inflammation correlates with increased risk of lung cancer. According to some
studies, smoking assists C. pneumoniae to invade the lung [104]. Chronic pulmonary
inflammation may develop from unresolved symptomatic acute inflammation or may evolve
over time without apparent onset of clinical manifestations [105]. Several studies have
recognized the role of tobacco-driven inflammation in lung carcinogenesis. Chronic
inflammation is detrimental and will frequently predispose cells for an oncogenic
transformation by inducing genomic instability, altering epigenetic state of the genome,

increased angiogenesis, and increased cell proliferation [106].

Endotoxins are also recognized as a risk factor in lung carcinogenesis. A high level of
lipopolysaccharide (LPS) endotoxin is inhaled during active smoking. Environmental tobacco
smoke (ETS) also contains LPS. Larsson et al. showed that smoker’s environment contains
120 times higher level of endotoxin than the smoke free indoor air [107]. Various
mechanistic arguments have been advanced regarding exposure to endotoxin and
carcinogenesis, focusing largely on complex interactions between the innate and adaptive

immune systems [108,109].

Common inflammatory mediators including cytokines, chemokines, RNS, COX-2 and
Nuclear factor-kB (NF-kB) can lead to cellular conditions favorable for tumor promotion
(figure 3) [106,110]. Many effects of chronic inflammation are mediated by NF-kB, a
transcription factor that controls the expression of genes such as IL1B, IL6, IL8, MCP1, TNF-o,
EDN1, and ICAM 1 [111]. These genes are involved in inflammation, immune responses, cell
cycle, apoptosis, and angiogenesis in a variety of cell types, including epithelial cells, stromal
cells, and macrophages [112,113]. Oxidative and nitrative species have an impact on these
pathways; RNS can modulate survival signaling molecules such as c-Jun N-terminal kinase
and p38 mitogen activated protein (MAP) kinase [114]. Similarly, RNS such as nitric oxide
(NO) are able to cause DNA damage, leading to TP53 stabilization and engagement of

apoptosis pathways [115]. Inflammatory cells also release metabolites of arachidonic acid, or
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eicosanoids, including prostanoids or prostaglandins and leukotrienes [105]. COX1 is
constitutively expressed at relatively low levels, whereas COX2 is inducible [106]. COX2 is up
regulated in NSCLC and may play a role in the promotion stage [15]. Some polymorphisms in
the COX2 gene have been associated with increased risk of lung cancer [116]. The reciprocal
role between NF-kB and inflammatory cytokines makes NF-kB an important factor not only

for inflammation, but also for cancer development [117].
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Figure 3. Schematic representation of major events leading to inflammation and lung cancer.
Adopted with permission from [110].

Several different subunits of NF-kB have been identified: p65 (also called relA), p50,
rel, relB, v-rel, and p52. NF-kB subunits (usually heterodimers) form complexes with kB
(IkBa and IkBp) in the cytoplasm of unstimulated cells. More than 200 genes have been

identified as NF-kB-responsive genes [118] involved in inflammation, immunity, and cell
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survival [119]. NF-kB functions as an extrinsic promoter by inducing the influx of

inflammatory cells, thus potentiating lung carcinoma metastasis [119].

While the majority of evidence suggests that NF-«kB activity is associated with pro-
tumorigenic effects, opposite results were found in other studies, indicating a complex role
for NF-kB in carcinogenesis [120]. Some reports indicate a requirement for NF-kB activation
in KRAS-driven lung cancers [121-123]. A recent study by Deng et al. has shown that a loss of
the G-protein-coupled receptor C type 5a (Gprc5a) in mouse lung epithelial cells resulted in
NF-kB activation accompanied by aberrant cytokine and chemokine expression in vivo and in

vitro [124].

Cytokines are signaling molecules that are key mediators of inflammation or immune
response [106], and represent a family of biologic response modifiers including interleukins,
chemokines, interferons, growth factors, and leukocyte colony-stimulating factors [105]. The
cytokines are secreted by many cell types including leukocytes, connective tissue cells,
endothelial cells and also epithelial cells [105]. Chemokines consist of 8- to 10-kd proteins
that stimulate leukocyte recruitment and migration as part of the host response to antigenic
insults [105]. Cytokines can be generally classified as pro-inflammatory (including IL1, IL6,
IL15, IL17, IL23 and TNF-a) or anti-inflammatory (including IL4, 1L10, IL13, TGF-B and IFN-a)
[106].

The primary sources of IL-1p are the blood monocytes, tissue macrophages, and
dendritic cells (figure 4) [125]. However, many cell types including epithelial cells produce
and secrete IL-1B upon activation by environmental stumuli [133]. The role of IL-1B in
chemical carcinogenesis has been investigated. Krelin et al. examined the effect of 3-
methylcholanthrene (3-MCA) in an IL1 transgenic mouse-model. By applying 3-MCA to
wildtype and IL1 knock-out mice, i.e. IL-1 a’/’, lL-1,b’/', IL-1 a[)'/' (double knock out) or ILlRa'/’,
they assessed the role of host-derived IL-1 molecules with respect to susceptibility to
chemical carcinogens. In mice deficient in IL-13, 3-MCA-induced tumors developed after a

prolonged lag period indicating an independent role for IL-1p [134,135].

Another important pro-inflammatory property of IL-1B is its ability to increase the
expression of adhesion molecules such as intercellular adhesion molecule-1 of mesenchymal

cells and vascular cell adhesion molecule-1 of endothelial cells [125]. Together with the
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induction of chemokines, these properties of IL-1 promote the infiltration of inflammatory
and immunocompetent cells from the circulation into the extravascular space and then into
tissues where tissue remodeling is the end result of chronic IL-1-induced inflammation [125].
IL-1B is also an angiogenic factor [136] and plays a role in tumor metastasis and blood vessel

formation [125].
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Figure 4. Generalized steps in the synthesis and secretion of IL-1B induced by IL-1f. (1) The IL-1
receptor complex heterodimer is activated by IL-1p and recruits MyD88 pathway leading to (2-3)
transcription and translation of the IL-1f3 precursor. Activated monocytes/mactrophages (4) release
ATP into extracellular space activating the P2X7 receptor with a subsequent increase in intracellular
potassium levels (5a-5b). The fall in intracellular potassium levels triggers the assembly of the
components of the NALP3 inflammasome (6). The assembled components of the inflammasome
initiate the processing of procaspase-1, resulting in the formation of the active caspase-1. Active
caspase-1 processes the IL-1p3 precursor (7) in the cytosol or in the secretory lysosome, resulting in
the generation of the carboxy-terminal mature IL-1B. An influx of calcium into the cell (8) with an
increase in intracellular calcium levels provides a mechanism by which mature IL-18 is released from
the cell (9). Other pathways also exist for processed IL-1f to exit the cell. Adopted with permission
from [125].

IL1B is highly inducible by proinflammatory stimuli. Its promoter contains a TATA box
and the regulatory region also includes enhancer sequences distributed several thousand

base pairs upstream from the transcription start site [137]. There are large interindividual
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differences in IL1B expression, which may be explained genetically by several SNPs scattered
in its long regulatory region [82]. Among the best studied SNPs are two in the promoter (C-
511T and T-31C) and one in exon 5 (C+3954T) [138]. The C-511T and T-31C polymorphisms
are in near-complete linkage disequilibrium and T-31C is a TATA-box polymorphism that
markedly affects DNA-protein interactions in vitro [139,140]. These polymorphisms may
affect IL1B expression by changing affinity for transcription factor binding or creating new
binding sites for other transcription factors [82,141]. The SNPs may also interact with each
other forming various haplotype structures. Several studies have shown that studying SNPs

as haplotypes may better explain the interindividual differences in IL1B expression [82,141].

Of the anti-inflammatory cytokines, interleukin-10 (IL10) is of particular interest. The
major physiological function of IL10 is to regulate macrophages activated by pathogens and
their products. IL10 is required to regulate inflammation in both chronic and acute settings
[142]. Human [L10 gene spans about 4.7 kb on chromosome 1g21-32 and contains five
exons that are separated by four introns [143]. So far no splice variants are known of /L10
mRNA [144]. A number of homologs of IL10 have been found in the genomes of Epstein-Barr
virus (EBV), herpesviruses, a poxvirus, and primate cytomegaloviruses [144]. IL10 performs
an irreplaceable role in negatively regulating inflammation, primarily through selectively
blocking the expression of pro-inflammatory genes encoding cytokines, chemokines, cell-
surface molecules and other molecules involved in the propagation of inflammation. IL10
signals via JAK1 and then STAT3 which activates genes whose products may block
inflammatory signaling such as the pro-inflammatory cytokines IL-1B, IL6 and TNF-a
[142,145]. The production of IL10 is predominantly from T cell subsets, and from
macrophages and dendritic cells [142]. SNPs in the /L10 promoter region have been

associated with risk of NSCLC [146].

Expression of most matrix metalloproteinases (MMPs) is tightly regulated at the
transcriptional level by hormones, growth factors, cytokines, cell-to-cell and cell-to-matrix
interactions [147]. Activated MMPs can be inhibited by the plasma proteinase inhibitor a2-
macroglobulin and by the tissue inhibitors of metalloproteinases (TIMPs), specific inhibitors
that bind MMPs [147,148]. MMPs are additionally capable of modifying the function of TGF-
B and IL-1B cytokines involved in the destruction of lung tissue [149,150]. Chronic cigarette

smoking exposure causes increased production of MMPs by macrophages, and their
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augmented release may be responsible for lung tissue destruction [151,152]. The gelatinases
MMP2 and MMP9 are extensively studied in cancer, and immunohistochemical studies have
demonstrated expression of MMP2 and MMP9 in patients with NSCLC [153-156]. In addition,
an overexpression of MMP1 may be associated with an overall poor prognosis in lung
carcinoma [157]. The MMP1 enzyme is the most expressed interstitial collagenase involved
in degradation of extracellular matrix (ECM) during cancer progression [158]. An
immunohistochemical study demonstrated that MMP1 was strongly expressed in AC,
compared with SCC [159]. The promoter region of MMPI contains a guanine
insertion/deletion polymorphism at position -1607 relative to the transcriptional start site,
with one allele having a single guanine nucleotide (1G) and the other having two (2G) [160].
The -1607 2G/2G variant of the MMP1 has been shown to cause elevated expression of the
gene, more aggressive matrix degradation and early onset of lung cancer [158,160]. Analysis
of the promoter of the gene has identified an ETS1 binding site for the 2G variant along with
an increased transcriptional activity of the gene [160]. Recently, a cigarette smoke (CS)
responsive region in the MMP1 promoter has been identified, and the 2G variant reveals a

higher basal and CS-responsive activity than 1G-allele [161].

The selenoprotein S (SELS/SEPS1), found in the endoplasmic reticulum (ER)
membrane, is involved in the stress response within the ER [162]. SEPS1 participates in the
processing and removal of misfolded proteins from the ER to the cytosol, where they are
polyubiquitinated and degraded through the proteasome [163], and can induce ER-stress
[164]. ER-stress is defined as an imbalance between the cellular demand for ER function and
capacity of the organelle. It is characterized by a number of intracellular responses. These
responses include the ER overload response (EOR), the unfolded protein response (UPR), and
apoptosis [165]. A polymorphic variant of SEPS1 G-105A has been shown to affect serum
levels of secreted IL6, IL-18 and TNF-a upon ER-stress [166]. ER stress may be induced in
human lung cells by several factors, such as particulate matter and by cigarette smoke
[167,168]. The SEPS1 promoter is GC-rich and contains two NF-kB binding sites in addition to
a fully functional ER-stress response element (ERSE), a consensus-binding site for
transcription factors regulating ER-stress responses. It has been further demonstrated that
the ERSE element in the SEPS1 promoter is functional since the ERSE element could be

activated 2-3 fold by ER-stress [165,169]. The SEPS1 G-105A single nucleotide polymorphism
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is located in the putative ERSE. The A allele confers lower promoter activity than the G allele
in response to stimulation with tunicamycin. Furthermore, the A allele is associated with

higher cytokine levels [165].

The subset of caspases that cleaves selected substrates to produce the changes
associated with apoptosis, are known as ‘executioner caspases’. In mammals this subset is
represented by caspase-3, caspase-6 and caspase-7. In most instances, executive apoptotic
caspases are activated by ‘initiator caspases’ such as caspase-8 (CASP8). The mechanism of
activation of this initiator caspase depends critically on the engagement and activation of
recruitment platforms such as the death inducing signaling complex [170]. A novel role for
CASP8 enzyme in cleaving the pro-IL-1B protein into active IL-1B in response to TLR4
stimulation has also been described in macrophages [171]. Another role for CASP8 in NF-kB
activation has also been suggested where CASP8 may act as a scaffolding protein bringing
the IkK complex in close proximity to its activator TAK1, a MAPKKK activated protein during
IL1/TLR signaling [172]. A functional polymorphism (-652 del/ins) in the promoter of CASP8
gene has been found to be associated with risk of several cancers including lung cancer
[173]. The -652 del variant abolishes an SP1 transcription factor binding site and is
associated with decreased RNA levels, lower CASP8 enzyme activity and lower apoptotic

activity in T lymphocytes [173].
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Aims of the study

The main goal of the study was to explore genetic variants affecting inflammatory and

cellular stress related pathways and risk of lung cancer. More specifically we aimed to:

e Perform functional studies of the /L1B T-31C polymorphism in relation to exposure to
lung carcinogens.

e Investigate the role of haplotypes of IL1B enhancer-promoter polymorphisms in relation
to risk of lung cancer.

e Investigate the possibility of combinatory effects of several polymorphisms in genes

involved in inflammation and cellular stress.
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Summary of the papers

Paperl

Allele-specific induction of IL1B -31T/C promoter polymorphism by lung carcinogens.

Several polymorphisms in the IL1B gene have been identified, and some are associated with
increased risk for lung cancer. Especially, the /IL1B T-31C polymorphism has received
attention. We have investigated the effect of cigarette-smoke condensate (CSC) and
benzo[a]pyrene (BaP) on the promoters of the IL1B gene varying only at the site of the T-31C
polymorphism. The promoter fragments containing either C or T were cloned in luciferase
reporter vectors and transfected into human lung epithelial NCI-H2009 cells. The results
show that treatment of the transfected cells with CSC or B[a]P induced the promoter
significantly above the control level. Interestingly, the promoter with the wild-type allele T in
position -31 showed the stronger induction when compared with the promoter with variant
allele C in this position. Jn silico and DNA-protein analysis indicated the presence of a novel
transcription-factor binding site for the YY1 transcription factor and the formation of distinct

protein complexes at the C promoter.

Paper II

A specific interleukin-1B haplotype correlates with high levels of /L1IB mRNA in the lung
and increased risk of non-small cell lung cancer.

Our previous work showed that two promoter SNPs C-511T and T-31C modulated NSCLC
risk. In the present study, we show that G-3893A and G-1464C located in the enhancer
region of the IL1B gene may also affect this risk, with odds for developing NSCLC being 0.69
[95% confidence interval (Cl), 0.52-0.92] for -3893 A-allele and 0.63 (95% Cl, 0.47 - 0.83) for

-1464 C-allele. The associations were particularly prominent in patients with TP53 mutations
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in the lung tumor. Inference of the haplotype structures showed that -3893 G, -1464 G, -511
C and -31 T formed a specific haplotype (GGCT) with near complete linkage disequilibrium in
lung cancer patients but not in controls. Furthermore, the risk haplotype (GGCT) was present
in 65% of cases compared with 36% of controls. Quantitative analysis of RNA in normal lung
tissue of the patients showed that the risk haplotype was correlated with significantly higher
IL1B messenger RNA (mRNA) levels compared with the non-risk haplotype (ACTC). These
data suggest that a specific IL1B haplotype associated with increased /L1B gene expression

increases the risk of NSCLC.

Paper III

A combination of functional polymorphisms in the CASP8, MMP1, IL10 and SEPS1 genes
affects risk of non-small cell lung cancer.

In the present study we have investigated whether a combination of potential functional
polymorphisms in genes related to inflammation may modulate risk of NSCLC. Eleven
functional polymorphisms in nine genes were analyzed for association with risk of NSCLC in
subjects from the Norwegian population. The results showed that individuals carrying
combination of three functional polymorphisms in the CASP8, MMP1, IL10, and SEPS1 genes
had two-fold increased risk of NSCLC (OR 2.06 (95% Cl, 1.19-3.47) whereas individuals with
four risk genotypes had 4.62-fold increased risk (OR 4.62, 95% Cl, 1.69-12.63). These results

highlight the need to investigate the combinatory effects of multiple SNPs.
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Discussion

The carcinogenic process may be influenced by both environmental factors and
genetic variations in genes controlling various cellular processes. For instance, SNPs in the
genes controlling metabolism and detoxification of carcinogens, DNA repair, apoptosis,
cellular stress and inflammation have been found to modulate the risk of lung cancer
[70,174,175]. Furthermore, the risk may also be modified by gene-gene interactions and
interaction with environmental factors. Although the link between inflammation and lung
cancer is documented in several reports, the role of polymorphisms in the key inflammatory

genes has not been well studied.

IL-1B is a key pro-inflammatory cytokine that has been extensively studied in several
diseases including cancer [125,134,135,176]. An association between /L1B C-511T and T-31C
SNPs and risk of gastric cancer has been reported and confirmed in a recent meta-analysis
[139,177]. The association between these IL1 polymorphisms and risk of lung cancer was
first reported by Zienolddiny et al. [178]. Previous studies have shown that /L1B T-31C and
C-511T are in almost complete LD. Subsequent investigations showed that the risk allele (T
allele) of the T-31C polymorphism was in fact associated with an increased basal activity of
the IL1B promoter in human lung cells [140]. We questioned whether lung carcinogens such
as BaP and CSC could affect the promoter activity in human lung cells. We found that both
BaP and CSC led to higher induction of the promoter with the T allele in a luciferase
promoter assay system. Further molecular studies of the nuclear extracts from carcinogen-
treated lung cells indicated presence of two C allele-specific DNA-protein complexes. The in
silico search for possible transcription factors that may be bound differentially to T and C
alleles suggested a novel binding site for the YY1 transcription factor to the -31 C promoter
variant. One study has provided further support for the functional properties of the T-31C
polymorphism. The expression of gastrin is modulated by the altered expression of /L1B due
to the T-31C polymorphism. The gastrin promoter assays showed that IL1B inhibits gastrin
expression at the transcriptional level and part of this inhibitory process is mediated via
activation of NF-kB and involvement of histone deacetylases (HDACs) [179]. A recent study

has indicated that BPDE stimulates an inflammatory response mediated through a TP53 and
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JNK mediated pathway. Real time RT-PCR and ELISA revealed a time and dose-dependent-
induced expression and production of COX2, PGE2, IL1B, IL6 and /L8 [180].

The IL1B gene expression is also regulated by enhancer elements outside of the
proximal and core promoter regions. A recent study has shown that some of the
polymorphisms located in the enhancer region may be functional and that haplotypes
including several polymorphisms from the enhancer and proximal promoter regions may be
more important than any polymorphism alone [82]. We therefore investigated the IL1B
polymorphisms from the enhancer region and the haplotypes including the proximal
promoter polymorphism and risk of lung cancer. We found that the risk alleles -3893 G and -
1464 G from the enhancer region were associated with decreased risk of lung cancer and the
associations were particularly prominent in patients with TP53 mutations in the lung tumor.
The mutational pattern showed a trend toward insertions or deletions that are specific types
of mutations often detected in cancers with a strong inflammatory component [181,182].
Interestingly, a specific haplotype including risk alleles of the SNPs from the enhancer region
and the proximal promoter was more frequent in lung cancer cases than healthy controls.
Furthermore, individuals with this haplotype had higher expression of the /L1IB mRNA in the
lung (Paper Il) [82,141]. The noteworthiness of the associations was examined applying False
Positive Report Probability (FPRP) and Bayesian false-discovery probability (BFDP) tests,
[183,184]. Associations for G-1464C and G-3893A were found noteworthy by both FPRP and
BFDP, suggesting that chance alone is unlikely to explain these findings. On the basis of
“noteworthiness”, the G-1464C and G-3893A SNPs were included in our haplotype study. A
specific haplotype, GGCT, was found in 65% of cases compared to only 36% in the control
group. The LD contrast test [185] was performed on the /IL1B SNP haplotype blocks with
200,000 permutations yielding a P < 0.001, indicating a robust finding. The second most
common haplotype, G/ACTC, was evenly distributed between cases and controls. Data on
larger IL1B haplotype blocks exist for control groups in Taiwan Chinese, US Caucasians and
African-American populations [186,187]. This suggests that there are differences between
ethnic groups that should be investigated in future studies. African-Americans carrying an
IL1B -511T/-31C/+3954T haplotype, were more likely to be diagnosed with intestinal
metaplasia or dysplasia than those carrying a common T-C-C haplotype. Carriage of IL1B

+3954T allele was suggested to be the key factor, but this association was not significant for
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Caucasians [188]. However, a recent GWA study investigating 10 potential lung cancer
susceptibility variants failed to replicate this association [189], adding support to the lack of

association for SNP +3954 in our data.

It is likely that polymorphisms in several genes in the inflammation and cellular stress
pathways may interact to modify the risk of lung cancer. We hypothesized that SNPs that
may not confer a risk individually, may increase or decrease the risk in combination with
other SNPs. The results published in paper Ill suggest that among the genes identified with
weak to moderate associations, a significant increase in the risk of NSCLC may require a
combination of at least three functional polymorphisms in the SEPS1, MMP1, CASP8 and IL10
genes. We also found noteworthiness in FPRP and BDFP tests for this combination which
further strengthens the results, however, since the number of cases or controls that carry all
four risk alleles is low, the data should be interpreted with caution. Increasing the number of
samples and relevant SNPs in this type of combinatory analysis may help to further
strengthen the data, and may also aid in identifying potential subgroups. A recent meta-
analysis of 50 studies including more than 38,000 individuals examining polymorphisms in
the MMP1 and MMP3 genes showed that MMP1, -1607 2G/2G genotype carriers had an
increased risk of colorectal, head and neck, and renal cancer [190]. Furthermore, a recent
meta-analysis of 55 studies including more than 100,000 individuals examining
polymorphisms in the CASP8 gene showed that the minor alleles of D302H and -652 6N del
were significantly associated with overall decrease in cancer risk [191]. The 6N ins/del
polymorphism generates a new Spl binding site, resulting in differential levels of CASP8
gene expression. In assays where tumor-infiltrating lymphocytes encounter tumor cells, the
median apoptosis rate of T lymphocytes with the CASP8 -652 6N del allele was significantly
lower. Whether the 6N del variant also present in the tumor cells may be expected to reduce
apoptosis and thus be associated with increased cancer risk is currently not known [173].
The SNPs /L10 -592 and -819 are in almost complete LD [192]. The /L10 -819 has been
reported positively associated with lung cancer among never smokers [193]. The association
of IL10 -592 with lung cancer was a significant main effect from our study found noteworthy
by both FPRP and BDFP tests. Data suggest that a primary effect of IL10 on lung cancer cells
may be to increase metastatic potential by promoting angiogenesis and resistance to

apoptosis [194]. One study reported that the /L1B C-511T SNP may interact with SEPS1 G-
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105A SNP affecting risk of rheumatoid arthritis [162]. We found a similar trend in our data,
albeit not statistically significant, for the /L1B -31 T/T and SEPS1 -105 G/G genotypes and
increased expression levels of I[L1B mRNA. The lack of significance may be due to insufficient
number of samples available and should be investigated in a larger study. SEPS1 is a gene
involved in stress response in the endoplasmic reticulum and inflammation control [166].
Previous reports have provided evidence for activation of NF-kB, a major regulator of ER
stress. However, recent investigation also suggested that preceding ER stress suppresses
activation of NF-kB by subsequent exposure to inflammatory stimuli [195]. The molecular
mechanisms are not very well understood, but potential triggers of ER stress during
inflammation have been suggested to be bacteria, virus, ROS, NO and cytokines such as IL-

1B, IL6, and TNF-a [195].

Concluding remarks

The results presented in this thesis provide further evidence for involvement of
inflammation in lung carcinogenesis. The results from paper | provide evidence for
differential induction of the /L1B -31 T/C variants by typical lung carcinogens found in
tobacco smoke, work place and the environment. However, the results need verification in a
larger panel of lung cell lines including normal bronchial epithelial cells as well as cells from
other tissue types. The putative binding of YY1 to the C allele should be verified by detailed
molecular studies. Results from Paper Il and Ill suggest that a combination of SNPs in the
IL1B and also four other genes involved in inflammation and cellular stress may lead to
increased risk of lung cancer for carriers of three or more risk alleles. These results need
confirmation in a larger sample size and also other ethnic groups. Furthermore, the effect of

IL1B haplotypes should be investigated in vitro in human lung cells.
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