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Introduction 
In order to survive and maintain proper homeostasis, eukaryotic cells must continuously 

synthesize new proteins, as well as eliminate unwanted and excessive proteins. It therefore 

may be unsurprising that under disease conditions, a common cytopathological feature is the 

appearance of intracellular misfolded aggregate-prone proteins, reflecting an imbalance 

between protein synthesis and degradation and a disruption in homeostasis. In light of this, 

knowledge about the molecular mechanisms involved in protein aggregation and degradation 

is important in order to target various diseases with specific drugs. Autophagy has proven to 

be important for degradation of aggregate-prone proteins associated with cancer as well as 

neurodegenerative diseases. How protein disaggregation is achieved and whether survival is 

solely dependent on autophagy-mediated elimination of aggregates remain to be elucidated. In 

this thesis I will describe and discuss my contributions to this field of research.  

 
 

Protein degradation in eukaryotes 
The existence of proteolytic activities was detected in yeast as early as 1898 (Hahn, 1898). 

Later, the discovery of the acidic organelle, the lysosome, by de Duve and coworkers in the 

1960s was a major breakthrough (De Duve, 1963). In the following years, it was observed 

that protein degradation can occur outside lysosomes in an energy-dependent process, 

(Etlinger and Goldberg, 1977) and the proteasome, found to be located in the cytoplasm and 

nucleus of all eurokaryotic cells, was later found to be responsible for this non-lysosomal 

protein degradation (Coux et al., 1996; Hilt and Wolf, 1996; Hochstrasser, 1995; Peters, 1994; 

Rivett, 1990; Rivett, 1993; Rubin and Finley, 1995). Proteasome-dependent degradation is 

responsible for selective removal of ubiquitinated, short-lived and aberrant proteins 

(Heinemeyer et al., 1991) and is therefore often referred to as the ubiquitin-proteasome 

system (UPS) (Fig.1). As many short-lived proteins have important regulatory functions, 

proteasome-mediated proteolysis plays a key role in various cellular processes like cell cycle 

regulation, gene expression and response to oxidative stress (Attaix et al., 2001; Hershko et 

al., 2000).   

Unlike the UPS, autophagy is involved in the removal of long-lived proteins and was 

originally considered a bulk degradation mechanism responsible for protein turnover during 

periods of nutrient limitation (Klionsky and Emr, 2000). Although the UPS and autophagy 
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degrade cytoplasmic proteins under different conditions, both pathways have been implicated 

in the removal of incorrectly folded or damaged proteins and can target and degrade similar 

cargoes, such as the neuronal α-synuclein (Webb et al., 2003). Recently, ubiquitin has been 

implicated to also act as a signal for autophagy, further indicating that the activity of the UPS 

and autophagy might be connected (referred to as proteolytic cross-talk) (Pandey et al., 2007). 

For example, autophagy has been found to act as a compensatory degradation system when 

the UPS is blocked (Korolchuk et al., 2009). In contrast, blocking autophagy seems to inhibit 

the function of the UPS as well, through sequestration of ubiquitinated proteins by the 

autophagy receptor p62 (Rubinsztein et al., 2009). However, the mechanisms underlying this 

proteolytic cross-talk are not clear and much remains to be learned about the selectivity of a 

particular protein substrate for degradation in a particular pathway. 

 
 

Autophagy 

General function and mechanism 

The term autophagy (auto phagin from greek meaning Self-Eating) was first introduced in the 

mid-sixties by Christian De Duve to describe digestion of endogenous material within cells. 

Autophagy is an evolutionarily conserved process in eukaryotes whereby intracellular 

cytoplasmic material is delivered to lysosomes for degradation. There are three major types of 

autophagy in eukaryotes: chaperone-mediated autophagy (CMA), microautophagy and 

macroautophagy (Fig.1).  

Chaperone-mediated autophagy (CMA) has so far only been characterized in higher 

eukaryotes. It involves a direct translocation of cytosolic proteins across the lysosomal 

membrane. Proteins containing a pentapeptide motif (KFERQ or similar sequences) are 

recognized by Hsc70, which facilitates protein unfolding and delivery of the protein to the 

CMA receptor lysosome-associated membrane protein type-2A (LAMP2A), a lysosomal 

membrane protein. LAMP2A functions as a receptor and pore for translocation of the protein 

across the lysosomal membrane (Chiang et al., 1989; Cuervo, 2010; Cuervo and Dice, 1996; 

Cuervo et al., 1995; Dice et al., 1990).  

Microautophagy, characterized mainly in yeast, is the process by which cytoplasmic 

material become sequestered through a direct invagination of the vacuole membrane (the 
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yeast equivalent of the lysosome) (Ahlberg and Glaumann, 1985; Xie and Klionsky, 2007). It 

is generally thought that microautophagy accounts for the basal rate of intracellular protein 

degradation in normal non-stimulated conditions (Cuervo and Dice, 1998), though later 

discoveries in yeast showed that this pathway can also be induced by various conditions 

(Dubouloz et al., 2005). Microautophagy has the capacity to sequester large structures such as 

entire organelles through both selective and non-selective mechanisms. Moreover, certain 

cargo, e.g. mitochondria can be degraded both by micro- and macroautophagy, but how this 

selectivity is regulated is not known (Lemasters, 2005). Very recently, a microautophagy-like 

process was characterized in eukaryotic cells (Sahu et al., 2011), involving delivery of 

cytosolic materials to the intraluminal vesicles of late endosome/multivesicular bodies 

(MVBs) in an ESCRT (Endosomal sorting complex required for transport)-dependent manner. 

Macroautophagy, hereafter referred to simply as autophagy, is the best characterized 

form of autophagy. It was first identified and characterized in mammalian cells by electron 

microscopy (EM) studies (Seglen et al., 1986). This process involves nucleation of a 

membrane, named the phagophore or isolation membrane (IM), which expands to form a 

double-membrane vesicle called the autophagosome. The autophagosome either fuses directly 

with the lysosome or with endocytic vesicles, generating an amphisome, that eventually fuses 

with the lysosomal compartment resulting in the formation of an autolysosome where the 

sequestered material becomes degraded by lysosomal hydrolases.  
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UPS          Autophagy 

 

Non-Lysosomal degradation                         Lysosomal degradation 

Fig.1. In eukaryotic cells, intracellular proteins can be degraded via two main proteolytic 
systems: the ubiquitin-proteasome system (UPS) and the lysosomal autophagy pathway. 
Delivery of cytoplasmic material to the lysosomes by autophagy can occur by three different 
pathways; (1) macroautophagy, which involves the sequesteration of cytoplasmic components 
by a membrane forming an autophagosome, which fuses with the lysosome (2) 
microautophagy, which invovles engulfement of small volumes of cytoplasma by a direct 
invagination of the lysosomal membrane (3) chaperone-mediated autophagy (CMA), a 
process by which soluble substrates associated with a specific chaperone complex are 
translocated into the lysosome through the LAMP-2A lysosome receptor. Proteins tagged 
with a polyubiquitin chain can be targeted by both the UPS and autophagy. Adapted from 
(Nedelsky et al., 2008). 

 
 

Autophagy was initially characterized as a survival mechanism induced in response to 

nutrient deprivation (starvation), leading to production of metabolites required to synthesize 

essential molecules and ATP that are needed for cell survival (Kuma et al., 2004; Lum et al., 

2005). Starvation-induced autophagy is considered a nonspecific process, involving random 

sequestation of cytoplasmic components (Kopitz et al., 1990). Autophagy is also induced by 

other physiological stimuli, such as growth factors and oxidative stress, as well as by 

pathogen invasion. However, autophagy can also proceed at basal levels, performing 

important quality control functions by selectively removing damaged organelles, pathogenic 

inclusions or invasive bacteria. Cargo-specific names have been given to describe these 
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various forms of selective autophagy (e.g. mitophagy and pexophagy to describe degradation 

of mitochondria and peroxisomes, respectively) as illustrated in Fig.2 and summarized in 

table 1 (Klionsky et al., 2007; Mizushima et al., 2008). The cytoplasm to vacoule targeting 

(Cvt) pathway (Fig.2, table1) is a form of selective autophagy, described in yeast, which 

involves delivery of lysosomal hydrolases to the yeast vacolue (Harding et al., 1995). 

 
 
 

 
 
Fig.2. Summary of lysosomal degradative pathways of yeasts and higher eukaryotes, showing 
that a particular protein or organelle can be delivered to the vacoule/lysosome for final 
degradation by a variety of specific pathways. See also table 1 for details. Adapted from 
(Klionsky et al., 2007). 

 

The identification of about 30 autophagy-related (Atg) genes in the last decade, using yeast 

genetic screens, have made it possible to elucidate the core molecular mechanisms of 

autophagy (Harding et al., 1995; Thumm et al., 1994; Tsukada and Ohsumi, 1993). Many of 

the Atg genes encode proteins that are required for autophagy and are conserved from yeast to 
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man (Klionsky et al., 2003), although there are some rare exceptions such as the mammalian- 

specific Atg101 which is not found in yeast (Hosokawa et al., 2009b). Most Atg proteins are 

localized to the spot(s) in the cytosol where the autophagosome forms, the pre-

autophagosomal structure (PAS) in yeast and the expanding phagophores/IMs in mammals 

(Suzuki et al., 2001). The Atg proteins predominantly make up the core autophagic machinery 

which is required for autophagosome formation. These  include four major multi-protein 

complexes: (1) the autophagy-specific class III phosphatidylinositol 3-kinase (PI3K)/Vps34 

complex (containing the catalytic Vps34 and regulatory Vps15/p150 subunits, as well as 

Atg6/Beclin-1 and Atg14), (2) the Atg1/ULK-1 kinase complex (also including Atg13, 

FIP200, Atg101, Atg17, Atg29 and Atg31), (3) the Atg12 and Atg8 conjugation systems 

(Atg7-Atg10-Atg12-Atg5- Atg16 and Atg4-Atg7-Atg3-Atg8, respectively) and (4) the Atg9 

cycling pathway. These protein complexes, as well as proteins needed for autophagosome 

maturation, involving fusion of the autophagosome with endocytic vesicles, are described in 

more detail below.  

The discovery of the Atg genes initiated an exciting era in research and has provided a 

growing understanding of the complex process of autophagy and its role in various 

physological and pathological conditions, including starvation responses, anti-aging, 

immunity, differentiation, lipid metabolism, development and protection from cell death 

(Mizushima, 2005). Furthermore, autophagy is associated with various diseases, including 

cancer, neurodegeneration (clearance of intracellular aggregate-prone proteins,) and infectious 

diseses (removal of pathogens). However, there is still much to be learned about the 

mechanism underlying autophagy, a process that can be broken down into several steps; (A) 

induction, (B) nucleation, (C) expansion and (D) maturation. Our current understanding of 

each step will be described in more detail below. 
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A. Induction  

Insufficient autophagy, as well as excessive levels may be harmful (Komatsu et al., 2007; 

Kuma et al., 2004), therefore it is unsuprising that autophagy is a tightly regulated process in 

all eukaryotes, likely involving a complex network of various stimulatory and inhibitory 

inputs. Autophagy can be induced by several conditions, including nutrient limitation 

(starvation), energy depletion and lack of growth factors (insulin/IGF) (Yang and Klionsky, 

2010). It can also be induced by various cellular stressors as heat and oxidative stress. It is 

still unclear how many of the major signaling pathways that regulate autophagy directly 

influence the autophagy machinery, although it is clear that the mammalian target of 

rapamycin (mTOR) plays a major role in integrating various signals. Inhibition of mTOR 

leads to activation of autophagy likely through the release of mTOR-mediated inhibitory 

phosphorylation of Atg1 orthologues (ULK-1/2) in mammalian cells (Ganley et al., 2009; 

Hosokawa et al., 2009a; Jung et al., 2009). In addition, PI3Ks have been found to be 

important regulators of autophagy (Blommaart et al., 1995; Lindmo et al., 2008). The class I 

PI3K inhibits autophagy through activation of mTOR, whereas the activity of the class III 

PI3K/Vps34 is required for induction of autophagy (Lindmo and Stenmark, 2006). 

Identification of the inhibitory action of 3 methyladenine (3-MA) (Seglen and Gordon, 1982), 

provided the first evidence for a regulatory effect of protein kinases and phosphatases in 

autophagy (Holen et al., 1992) and it was later found that 3-MA is a PI3K inhibitor (Lindmo 

and Stenmark, 2006). 

 

1. Class I PI3K and mTOR signaling  
mTOR is a nutrient and energy-sensing kinase that coordinates cell growth, cell-cycle 

progression and protein synthesis (Klionsky and Emr, 2000). mTOR is activated by signaling 

from the insulin receptor, insulin-receptor substrates 1 and 2 (IRS1/2), phosphoinositide-

dependent protein kinase-1 (PDK1) and protein kinase B (PKB)/AKT (Zoncu et al., 2011) 

(Fig.3). mTOR activity is controlled by the heterodimer TSC complex, TSC1-TSC2, which 

acts as a GTPase-activating protein (GAP) for the small GTPase Rheb (Ras homolog) (Zoncu 

et al., 2011). mTOR is stimulated by the active GTP-bound form of Rheb, thus the TSC 

complex acts to inhibit mTOR function (Huang and Manning, 2008). Activation of insulin 

receptors activates PKB which phosphorylates and inhibits TSC1-TSC2 complex, leading to 

the activation of mTOR signaling and inhibition of autophagy (Meijer and Codogno, 2004). 
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TOR forms two functionally distinct protein complexes, TOR complex 1 and 2 (TORC1 and 

TORC2), where TORC1 is primary involved in regulation of autophagy (Loewith et al., 

2002).  

mTOR targets include a number of proteins of the translational machinery. In 

particular, phosphorylation and activation of 4E-BP1 and ribosomal subunit S6 kinase (S6K) 

are stimulated by serum, insulin and growth factors in an mTOR-dependent manner. p70S6K 

exerts a negative feedback on mTOR signalling by phosphorylating IRS1 to downregulate 

insulin signaling, leading to a decline of phosphatidylinositol 3,4,5P3 (PI3,4,5P3), an inhibitor 

of autophagy (Yang and Klionsky, 2010). This feedback regulation may ensure a basal level 

of autophagy that is important for homeostasis even under nutrient rich conditions (Klionsky 

et al., 2005).  

Recently, mammalian Atg13, FIP200 (Atg17), ULK1 and ULK2 have been identified 

as direct targets of mTOR (Chan et al., 2009; Hara and Mizushima, 2009; Hara et al., 2008; 

Hosokawa et al., 2009a; Jung et al., 2009; Mizushima, 2010). The yeast Atg1 kinase and its 

mammalian homologue ULK1 function downstream of TOR1/mTOR to induce 

autophagosome formation. During nutrient-rich conditions, active mTOR is associated with 

the ULK1 complex and can thereby phosphorylate ULK1, FIP200 and Atg13, acting as a 

negative regulator of the ULK1 complex and autophagy. In contrast, absence of amino acids 

or treatment with the drug rapamycin (Jung et al., 2010) stimulate autophagy through  

inactivation of mTOR, and thereby activation of the Atg1/ULK1 complex leading to 

nucleation of autophagic membranes (Chan and Tooze, 2009). Recently, ULK1 was observed 

to become activated upon glucose starvation in an AMP-activated protein kinase (AMPK) 

dependent manner (Kim and Guan, 2011). Energy depletion leads to activation of AMPK, 

which mediates phosphorylation and activation of TSC1–TSC2, leading to inactivation of 

TOR and induction of autophagy. ATP has been shown to be required for both the autophagic 

sequestration step (Plomp et al., 1987) and for the fusion of autophagosomes with other 

organelles (Reunanen and Nykanen, 1988).  
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Fig.3. Regulation of autophagy in mammalian cells. Autophagy occurs at a basal level and 
can be induced in response to environmental signals including nutrient, energy deprivation 
and also microbial pathogens. Insulin regulates growth by binding to the insulin receptor, 
causing activation of class I PI3K signalling and phosphorylation of plasma membrane lipids. 
The regulation of autophagy is complex and far from understood. The best characterized 
regulatory pathway includes class I PI3K and TOR, which act to inhibit autophagy. The class 
III PI3K/Vps34 is needed for activation of autophagy. TOR activity is probably regulated in 
part through feedback loops to prevent insufficient or excessive autophagy. 3 methyladenine 
(3-MA) and wortmannin (Wm) also inhibit class I phosphatidylinositol 3 kinases (PI3K), but 
the overall effect of these compounds is a block in autophagy (because they inhibit the 
downstream class III PI3K that produces PI3P, which is needed for autophagy). Adapted from 
(Klionsky and Yang, 2009). 

 
 
 

2. Clas III PI3K and Atg6/Beclin1 signaling  
The induction and  nucleation of autophagy additionally requires the class III PI3K, an 

ortholog of the only PI3K found in yeast, Vps34 (commonly referred to as Vps34 hereafter) 

(Odorizzi et al., 2000). In the context of autophagy, Vps34 forms two distinct complexes, 

complex I and II, where complex I functions in autophagosome formation, whereas complex 

II plays a role in autophagosome maturation and endocytosis (described later). The two 
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complexes have three common components, p150 (the homolog of yeast Vps15), Vps34 and 

Beclin-1 (the homolog of yeast Vps30/Atg6) (Kihara et al., 2001; Yue et al., 2003). In 

addition, complex I contains Atg14L (mammalian homologue of yeast Atg14), whereas yeast 

Vps 38 (and the putative mammalian homologue ultraviolet irradiation resistance-associated 

gene, UVRAG) is specific for complex II. In yeast, Atg14 can direct the Vps34 complex I to 

the PAS (Obara et al., 2006) and the mammalian ortholog Atg14L  have been found to recruit 

at least a subset of Vps34 to the sites of autophagosome nucleation, called omegasomes, in the 

ER (Itakura et al., 2008; Matsunaga et al., 2010). The regulatory kinase Vps15/p150 is 

required for Vps34 membrane association and activity (Stack et al., 1995). The Vps34 

complex I can be activated by various Beclin-1 interacting proteins, UVRAG, AMRA-1 and 

Bax-interacting factor 1 (Bif-1), and inhibited by another Beclin-1 interacting partner, Bcl-2 

(B-cell lymphoma 2) (Itakura et al., 2008; Liang et al., 2006; Takahashi et al., 2007; Zhong et 

al., 2009). Interestingly, Vps34 can activate mTOR during amino acid rich condition leading 

to inhibiton of autophagy in mammalian cells (Byfield et al., 2005; Nobukuni et al., 2005). 

Thus, depending on its binding partners, Vps34 is subjected to different modes of regulation, 

leading to activation or inhibition of autophagy, but how this is regulated is not understood. 

Disruption of the association of Bcl-2 and Bcl-XL with Beclin-1, however, seems to be 

critical for the activation of the Vps34 complex I and stimulation of autophagy (Pattingre et 

al., 2005; Wei et al., 2008). 

 

B. Nucleation  

Ever since the discovery of autophagy, the precise origin of the autophagosomal membranes 

has been under intense debate. In mammalian cells, autophagy is initiated by the formation 

and elongation of the phagophore/isolation membrane (IM). In yeast, the IM arises from the 

PAS (Suzuki et al., 2001) whereas the IM in mammalian cells has been suggested to arise in 

different areas in the cytoplasm.  

 Four models have been proposed for the autophagosome formation: (1) de novo 

delivery of lipids either by lipid transfer proteins to sealed bilayers or to open bilayers that are 

stabillized by a putative capping protein; (2) vesicular trafficking through heterotypic vesicle 

fusion; (3) cisternal assembly through homotypic vesicle fusion; and (4) membrane 

remodelling/extension (Longatti and Tooze, 2009). Models 2 and 3 occur via a maturation 

process, involving vesicle-mediated transport of membrane from pre-existing membranes, 
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whereas model 4 propose that the IM is derived directly from a compartment, such as the 

endoplasmic reticulum (ER).  

In the maturation model various candidates have been proposed to be the origin of the 

phagophore membrane including Golgi structures (Locke and Sykes, 1975), endocytic 

compartments (Dunn, 1990) and mitochondria (Luo et al., 2009). Recently, the plasma 

membrane was also proposed to contribute to the formation of the IM (Ravikumar et al., 

2010).  

Several recent studies provide good evidence for a role of the ER in autophagosome 

formation, suggesting that the IM originates from membranes of pre-existing organelles. 

Named after their shape, the omegasomes are PI3P-positive structures that form from the ER 

upon induction of autophagy. The PI3P effector DFCP1 (double FYVE domain-containing 

protein 1) localizes to these spots in the ER and is therefore used as an omegasome-marker. 

Omegasomes are also found to be positive for the core autophagy proteins Atg8 and Atg5, 

and newly formed autophagosomes seem to escape from these structures (Axe et al., 2008). It 

has also been shown that the ER has a similar thin type of membrane (6-7 nm) and a number 

of ER proteins have been identified both on the IM and the autophagosome (Ueno et al., 

1991). Furthermore, studies by electron microscopic tomography have revealed that ER is 

associated with the IM in mammalian cells (Hayashi-Nishino et al., 2010; Yla-Anttila et al., 

2009).  

In mammalian cells, the two transmembrane proteins mAtg9  (Noda et al., 2000; 

Yamada et al., 2005) and vacuolar membrane protein 1 (VMP1) (Dusetti et al., 2002) are 

proposed to contribute to the formation of the autophagosomes.   

VMP1 localizes predominantly to the ER. Overexpression of VMP1 was shown to 

induce autophagosome formation even under nutrient-rich conditions and this seems to 

depend on its binding to Beclin-1. Recently, a novel VMP1-interacting protein, called tumor 

protein 53-induced nuclear protein 2 (TP53INP2), was shown to be essential for autophagy 

(Nowak et al., 2009). It translocates from the nucleus to autophagosomes upon induction of 

autophagy, where it binds to one of the mammalian homologs of yeast Atg8, microtubuli-

associated protein 1 (MAP1) light chain 3 (LC3). Therefore, this protein was proposed to act 

as a scaffolding protein recruiting other Atg proteins to the IM.  

In yeast, Atg9 is transported to the PAS from a compartment in close proximity to the 

mitochondria (Mari et al., 2010) and as Atg9 is required for PAS formation, it is likely that it 

mediates transport of at least part of the lipids required to create this structure (Longatti and 
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Tooze, 2009; Nazarko et al., 2005; Reggiori et al., 2005b; Reggiori et al., 2004). The sorting 

mechanism for the shuttling of Atg9 from mitochondria to the PAS is unknown, but seems to 

require actin (Reggiori et al., 2005a). mAtg9 however cycles from the trans-Golgi network 

(TGN) to a peripheral Rab7-positive endosomal pool and is present on autophagosomes after 

starvation (Young et al., 2006), in a ULK1-dependent manner (Chan et al., 2007; Webber et 

al., 2007). The yeast ULK1 homologue, Atg1, is also responsible for the recruitment of other 

Atg proteins to the PAS (Cheong et al., 2008; Kawamata et al., 2008). The role of Atg1/ULKs 

in autophagy induction has not yet been properly characterized, however, the activity of ULK 

kinase increases during starvation, and kinase-dead mutants of ULK exert a dominant-

negative effect on autophagosome formation (Hara et al., 2008). Atg13 is a phosphoprotein 

that becomes dephosphorylated when mTOR is inactivated and can bind to ULK1/2, which 

leads to their interaction with FIP200. It was observed that ULK and FIP200 localize to the 

IM, suggesting that the complex play an essential role in the early stages of autophagosome 

formation (Hara et al., 2008). Interestingly, ULK1/2 and mAtg13 has been observed to form a 

tight association with membranes (Chan et al., 2009).  

The Vps34-associated protein BIF-1 has been shown to be required for autophagy and 

to localize to autophagic membranes. BIF-1 has a BAR domain, known to facilitate 

membrane curvature, suggesting that BIF-1 mediates bending of autophagic membranes (Itoh 

and De Camilli, 2006). Interestingly, BIF-1 was proposed to interact with mAtg9 (Takahashi 

et al., 2008b).  

Vps34 phosphorylates phosphatidylinositol (PI) at the 3-position of the inositol ring to 

create phosphatidylinositol-3-phosphate (PI3P) (Lindmo and Stenmark, 2006; Simonsen and 

Tooze, 2009). The role of PI3P in autophagy is not clear, although it is likely to recruit PI3P-

binding proteins that are important for autophagosome formation. PI3P has been found to 

recruit PX (phox homology) and FYVE (conserved in Fab1, YOTB, Vac1 and EEA1) 

domain-containing proteins such as Atg20, Atg24 and Atg13 (Gillooly et al., 2001; Nice et 

al., 2002; Obara et al., 2008a; Wishart et al., 2001). In yeast, PI3P is preferentially localized 

to the inner autophagosomal membrane (Obara et al., 2008a; Obara and Ohsumi, 2008), 

where it recruits Atg18  (orthologue of mammalian WIPI-1) and Atg2 (Obara et al., 2008b). It 

has been shown that Atg18 associates with PI3P directly (Obara et al., 2008b). Moreover, a 

siRNA screen revealed that the lipid phosphatase Jumpy affects autophagy (Vergne et al., 

2009). Jumpy can dephosphorylate PI3P and thereby inhibit autophagy by acting at an early 

stage on autophagosome formation. 
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C. Expansion 

The process of membrane elongation and completion to form the autophagosome requires the 

two ubiquitin-like proteins Atg12 and Atg8 and their conjugation systems (Fig.4) (Ichimura et 

al., 2000; Mizushima et al., 1998). Several Atg8 homologues exist in mammalian cells, 

generally divided in two families, the MAP1-LC3 family and the GABARAP family. MAP1-

LC3B is the best studied homolog, and will be herein referred simply as LC3. Both 

conjugation systems are evolutionary conserved from yeast to humans. In brief, Atg12 and 

LC3 are activated by an E1-like enzyme (Atg7) and conjugated by an E2-like enzyme (Atg10 

and Atg3, respectively) to Atg5 or phosphatidylethanolamine (PE), respectively (Mizushima 

et al., 1998; Ohsumi and Mizushima, 2004). 

The Atg12-Atg5 conjugate associates with a small coiled-coil membrane-bound 

protein, Atg16L (an ortholog of yeast Atg16), to form an Atg12-Atg5-Atg16L complex 

(Mizushima et al., 2003). Atg16L directs the Atg12-Atg5 complex to the IM, and this 

complex has been proposed to work in an E3-like fashion for the conjugation of LC3 (Hanada 

et al., 2007; Mizushima et al., 2001). The Atg12–Atg5–Atg16L complex also determines the 

sites of LC3 lipidation (Fujita et al., 2008). 

Before conjugation to PE, the carboxy-terminal residue of LC3 is cleaved off by the 

cystein protease Atg4, exposing a critical Glycine residue at the C terminus (Kirisako et al., 

2000) which become covalently conjugated to PE (Ichimura et al., 2000). Soluble LC3 is 

called LC3-I whereas the membrane bound, autophagosome associated form is referred to as 

LC3-II. LC3-II is inserted into both leaflets of the forming autophagosome. Whereas LC3-II 

on the outer leaflet is retrieved through delipidation by Atg4, LC3-II on the inner leaflet 

remains bound to autophagic membranes throughout the pathway and thus serves as an 

important biomarker of autophagy (Kabeya et al., 2000; Kirisako et al., 2000; Klionsky et al., 

2008). LC3 can mediate membrane tethering and may contribute to autophagosome 

membrane expansion. LC3 might also assist the final fusion to close the autophagosome, a 

poorly understood step (Nakatogawa et al., 2007).  

Recently, autophagosome-like structures were found in Atg5 knock out mouse cells 

indicating that an Atg5- and Atg7-independent form of autophagy may exist (Nishida et al., 

2009). Exposure to etoposide was an apparent trigger for this event. It is not known to what 

extent this form of autophagy contributes to protein catabolism under normal physiological 

situations, or during disease. Recently, mammalian Atg12 was also shown to conjugate to 



20 

 

Atg3, which is not involed in starvation-induced autophagy, but is rather important for 

regulation of mitochondrial homeostasis and cell death (Radoshevich et al., 2010). 

 
 

 
 

Fig.4. The Atg12 and Atg8 ubiquitin-like conjugation pathways are required for 
autophagosome formation. Atg4 encodes a cysteine protease that cleaves Atg8. Atg7 is 
similar to an E1-like protein, and Atg10 and Atg3 encode E2-like proteins. Atg5, Atg12 and 
Atg16 are physically associated with the isolation membrane, whereas Atg8 is directly 
conjugated to the lipid phosphatidylethanolamine (PE) that is inserted in the isolation 
membrane. Adapted from (Geng and Klionsky, 2008). 
 
 

D. Maturation 

After the final closure of the autophagosome, it matures by fusion with endocytic 

compartments, creating amphisomes (Gordon and Seglen, 1988), prior to fusion with 

lysosomes, creating the autolysosome in which the cargo is degraded (Fig.1) (Tooze et al., 

1990). In yeast, the autophagosome fuses directly with the vacuole which indicates a higher 

complexity of this process in higher eukaryotes. Endocytosis is the process whereby 

extracellular material is internalized by an invagination of the plamsa membrane (Besterman 

and Low, 1983). Several factors have been reported to be important for the convergence of 

autophagic and endocytic vesicles, such as the coat protein complex I (COPI) and the 

endosomal sorting complex required for transport (ESCRT) (Filimonenko et al., 2007; Lee et 
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al., 2007; Razi et al., 2009; Rusten and Simonsen, 2008). COPI is found at early endosomes 

which function as a sorting station for endocytic cargo, whereas ESCRTs are required for 

formation of MVBs and sorting of endocytic cargo targeted for lysosomal degradation into 

MVBs (Simonsen and Tooze, 2009). As described above, the Vps34/class III PI3K complex 

II, containing UVRAG can also regulate the maturation of autophagosomes (Simonsen and 

Tooze, 2009). Recently, the endosomal PI3P 5-kinase PIKfyve has been shown to be involved 

in maturation (de Lartigue et al., 2009), indicating that also endocytic membrane lipids are 

important for proper autophagosome maturation.  

In mammalian cells, the fusion of autophagosomes with lysosomes is facilitated by 

microtubules and seems to require dynein, structures which are not required for fusion of 

yeast autophagosomes with the vacuole (Aplin et al., 1992; Fass et al., 2006; Fengsrud et al., 

1995; Kirisako et al., 1999; Kochl et al., 2006; Punnonen and Reunanen, 1990; Ravikumar et 

al., 2005; Webb et al., 2004). One possibility is the involvement of LC3 in this regulation, as 

it was originally identified as microtubule-associated protein light chain 3. Moreover, 

members of the Rab family of small GTPase, such as Rab7, Rab5 and Rab11, are involved in 

maturation of the autophagosome (Gutierrez et al., 2004; Stein et al., 2005). Interestingly, the 

Rab7-, PI3P- and LC3-binding protein FYCO1 was found to promote microtubule plus end-

directed transport of autophagosomes (Pankiv et al., 2010a), thereby connecting transport of 

autophagosomes to the fusion with lysosomes.  

The Class C Vps/HOPS (homotypic vacoule fusion and protein sorting) complex is 

known to regulate tethering and fusion of endosomes with the vacoule/lysosome (Haas et al., 

1995; Seals et al., 2000) by serving as a guanine-nuclotide exchange factor (GFF) for Rab7 

(Ostrowicz et al., 2008; Rieder and Emr, 1997; Wurmser et al., 2000). Recently, it was found 

that the mammalian HOPS complex binds to the complex II subunit UVRAG, which is a 

Beclin-1 binding protein (Liang et al., 2008) and colocalizes with Rab9 positive endosomes 

(Itakura et al., 2008). Moreover, SNARE (soluble N-ethylmaleimide-sensitive fusion protein 

attachement receptors) proteins have been found to be involved in the fusion process both in 

yeast and mammalian systems (Furuta et al., 2010; Ishihara et al., 2001; Kihara et al., 2001).  
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Selective autophagy 

Autophagy was long considered to be a nonselective bulk protein degradation system, but 

recent work clearly indicates that it can also be a highly selective process. Selective 

autophagy relies upon specific cargo-recognizing autophagy receptors and adaptor proteins 

that link the cargo with the core autophagic machinery. Cargo-specific names have been given 

to describe the various types of selective autophagy, such as aggrephagy (aberrant protein 

aggregates and disease-related inclusions), mitophagy (mitochondria), pexophagy 

(peroxisomes) and xenophagy (invasive pathogenes) (Klionsky et al., 2007) (Table 1, Fig.2). 

Selective autophagy was first described in yeast, where it was named as the cytoplasm to 

vacoule targeting (Cvt) pathway. Selective autophagy is believed to perform a quality control 

function, and must therefore have the ability to distinguish its substrate, such as aggregation-

prone proteins or dysfunctional mitochondria, from their normal counterparts. The signals 

involved in recognition of selective cargo for autophagy is largely unknown. The best studied 

example involves recognition of ubiquitinated cargo by the ubiqutin binding protein p62.  

p62 can directly interact with both ubiquitin and LC3 (Ichimura et al., 2008; Komatsu 

et al., 2007; Pankiv et al., 2007) and thereby facilitate autophagic degradation of ubiquitinated 

cargo, such as intracellular bacteria (Zheng et al., 2009), protein aggregates (Bjorkoy et al., 

2005), the midbody remnant formed after mitosis (Pohl and Jentsch, 2009), peroxisomes (Kim 

et al., 2008; Platta and Erdmann, 2007) and mitochondria (Geisler et al., 2010). In lines with 

these studies, many inclusions found in autophagy-deficient cells are positive for both 

ubiquitin and p62. Interestingly, loss of p62 combined with impaired autophagy greatly 

reduces the formation of ubiquitin inclusions in mice and flies (Komatsu et al., 2007; Nezis et 

al., 2008), indicating that p62 also plays a role in protein aggregate formation.  

Other examples of autophagy receptors are NIX for mitochondrial clearance (Novak et 

al., 2010), NDP52 for cytosolic bacteria (Thurston et al., 2009) and NBR1(neighbour of 

BRCA1 gene 1) which is required for removal of ubiquitinated protein aggregates (Kirkin et 

al., 2009). NBR1 have a very similar domain structure as p62 and both are themselves 

substrates of autophagy and continuously degraded (Bjorkoy et al., 2005; Kirkin et al., 2009; 

Lamark et al., 2009; Pankiv et al., 2007). In yeast, the autophagy receptor Atg32 was recently 

found to target mitochondria for degradation by autophagy (Kanki et al., 2009; Okamoto et 

al., 2009). The autophagy receptors all contain two key domains: an LC3-interacting region 

(LIR) or LC3-recognition sequence (LRS) that allows interaction with Atg8 family members 
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(Atg8/LC3, GABARAP, GEC1/GABARAPL1 and GATE-16/GABARAPL2), and a cargo 

recognition domain, as for p62 an UBA (ubiquitin-associated) domain (Pankiv et al., 2007; 

Vadlamudi et al., 1996). The autophagy receptors might also interact with specificity 

adaptors, which function as scaffolding proteins that bring the cargo-receptor complex in 

contact with the core autophagic machinery to allow sequestration of the substrate. In addition 

to the autophagy receptors and specificity adaptors, selective autophagy in general relies on 

the same molecular core machinery as non-specific autophagy. 

 
Aggrephagy Selective macroautophagic sequestration of protein aggregates 
Crinophagy    Is the “uptake” of secretory proteins in lysosomes, either by fusion of 

lysosomes and secretory vacuoles, or by translocation of secretory 
proteins from the trans-golgi network (TGN) to lysosomes (Ahlberg 
et al., 1987; Marzella et al., 1981).   

Reticulophagy Selective macroautophagy of endoplasmic reticulum (ER) 
Pexophagy 
 

Involves the sequestration and degradation of peroxisomes through 
macroautophagy or microautophagy. It has been identified in yeast 
but also observed in hepatocytes (Luiken et al., 1992; Sakai et al., 
2006). 

Xenophagy 
 

When microbes (e.g., bacteria, fungi, parasites and/or viruses) are 
removed by selective macroautophagy 

Vid pathway 

(Vacoule import and 

degradation) 

 

Selective uptake of cytosolic fructose-1,6-biphosphatease, and 
possibly other proteins, within 30 nm single membrane vesicles, 
followed by fusion with the vacoule  

Cytoplasm to vacoule 
targeting (Cvt) 
 

Is a biosynthetic pathway in yeast that transports resident hydrolases 
aminopeptidase I (prApe1) to the vacoule through a selective 
macroautophagy-related process as illustrated in Fig.2. The 
phagophore assembly site (PAS) either becomes the sequestering 
vesicle or generates it. The precursor form (prApe1) forms oligomers 
in the cytosol, and is targeted through the action of a receptor, Atg19, 
and the adaptor or scaffold protein Atg11 to allow selective cargo 
recognition and packaging. The completed vesicle fuses with the 
vacuole, the yeast analogue of the mammalian lysosome (Klionsky et 
al., 2007). 

Piecemeal 
microautophagy of 
the nucleus (PMN) 
 

Intrusion of portions of the nucleus into the vacuole, by interaction 
between the vacoule membrane protein Vac8 and the outer-nuclear 
membrane protein Nvj1, followed by scission and degradation (Kvam 
and Goldfarb, 2007). 

Table 1. Suggested definitions of selective types of autophagy (Klionsky et al., 2007) (Fig.2) 
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Aggrephagy 

The term aggrephagy was coined by Seglen and co-workers to describe autophagy-mediated 

clearance of protein aggregates (Overbye et al., 2007). The ability of proteins to aggregate is a 

fundamental process through which proteins exert their normal function. However, the 

maturation of misfolded or unfolded protein into protein aggregates is also a 

cytophathological feature of many disorders. Generally, protein aggregation is caused by an 

abnormal protein conformation, leading to the formation of oligomeric intermediates (Merlini 

et al., 2001), which can further mature into small protein aggregates. These small protein 

aggregates can again form into a wide variety of structures (Dobson, 2003), termed 

histologically as intracellular inclusions, bodies, tangles or threads (Grune et al., 2004; 

Kopito, 2000). Larger cytoplasmic inclusions can evolve further and coalesce into an 

aggresome, a pericentriolar, membrane-free cytoplasmic inclusion formed specifically at the 

microtubule organizing center (MTOC) containing misfolded, ubiquitinated proteins caged 

within intermediate filaments such as vimentin or keratin (Johnston et al., 1998; Kopito, 

2000). It has been proposed that the aggresome is a protective structure, formed to sequester 

proteins that cannot be degraded by the proteasome and packaged for degradation by 

autophagy (Johnston et al., 1998; Kopito, 2000). However, not all kinds of protein inclusions 

or aggresomes are degraded by autophagy. It was demonstrated that aggresomes generated in 

cells expressing mutant huntingtin or mutant tau, or co-expressing synphilin-1 and alpha-

synuclein, were removed by autophagy, while inclusions produced in AIMP2 (p38)- or 

mutant desmin-expressing cells were resistant to autophagic clearance (Wong et al., 2008). 

Protein aggregates can form inside the cell as a result of various cellular stressors, such as 

abnormal protein expression, defective proteasomes, mutations, oxidative stress, aging or 

protein misfolding (Kopito, 2000). 

Misfolded proteins generally become poly-ubiquitinated. Whereas such proteins are 

normally degraded by the UPS, aggregate-prone proteins may be poor substrates for 

proteasomal degradation as they are highly insoluble and too big to pass through the narrow 

barrel-shaped proteasome (Stefanis et al., 2001; Verhoef et al., 2002). K48-linked ubiquitin 

chains are a classical signal for degradation via the UPS and it has been suggested that 

autophagic subtrates are modified by K63-linked ubiquitin chains (Tan et al., 2008). In line 

with this, the autophagy receptors p62 and NBR1 have been shown to preferentially recognize 

K63-linked ubiquitin chains (Kirkin et al., 2009; Long et al., 2008; Wooten et al., 2008) and 
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inclusions labelled with K63-linked ubiquitin chains have been associated with autophagic 

degradation (Tan et al., 2008). Moreover, the ubiquitin-binding histone deacetylase 6 

(HDAC6) is required to recruit ubiquitinated, misfolded proteins to the aggresome (Iwata et 

al., 2005b; Kawaguchi et al., 2003; Olzmann et al., 2007). In addition to ubiquitination, it was 

reported that acetylation of mutant aggregate-prone Huntingtin (Htt) enhances its degradation 

by autophagy and an acetylation-deficient mutant strongly accumulated in the cells (Jeong et 

al., 2009).  

The molecular mechanisms of aggrephagy are reminiscent of the yeast Cvt pathway. 

The substrates preApe1 and Ams1 bind specifically to the receptor protein Atg19, which 

possesses a classical LIR (Noda et al., 2008). However, prior to binding to Atg8, the prApe1-

Atg19 complex binds directly to the adaptor Atg11, which transports the complex to the PAS 

(Monastyrska and Klionsky, 2006). Atg11 also interacts with other core Atg proteins (He and 

Klionsky, 2006; Yorimitsu and Klionsky, 2005), suggesting that it acts as a scaffolding 

protein. Interestingly, Atg11 is also involved in other forms of selective autophagy, like 

mitophagy and pexophagy, but is not required for non-selective autophagy. 

In paper I and II we show that the large protein Alfy (autophagy-linked FYVE protein) 

has a similar function to the specificity adaptor Atg11. Alfy is ubiquitously expressed and 

evolutionarily conserved. Alfy contains a PI3P-binding FYVE domain at its C-terminus 

which is preceded by five WD40 repeats and a PH-BEACH domain. Alfy was previously 

found to be recruited from the nucleus to cytoplasmic ubiquitin-positive structures under 

cellular stress such as starvation or exposure to proteasome inhibitors (Simonsen et al., 2004). 

Alfy interacts with the ubiquitin autophagy receptor p62, and possibly NBR1, and assists in 

specific degradation of ubiquitinated protein aggregates by recruiting Atg5 and LC3 to the 

complex, as well as PI3P-containing membranes (Paper I and II). Moreover, Alfy is not 

required for starvation-induced autophagy (Paper II) and is probably degraded by autophagy 

only when associated with p62-bodies or other types of aggregates (Paper I and II). 

Drosophila lacking the Alfy homologue Blue Cheese (bchs) has been shown to have a 

reduced life span and accumulate Ub-positive inclusions and display neurodegenration 

(Finley et al., 2003). 
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Ubiquitin-binding proteins in autophagy 

p62 and NBR1 
p62 also known as sequestesome 1 (SQSTM1) is a component of the ubiquitin-positive 

inclusion bodies found in some neurodegenerative and liver diseases (Kuusisto et al., 2001; 

Zatloukal et al., 2002). In addition to being a cargo receptor for protein aggregates, both p62 

and NBR1 have been proposed to be required for the formation of ubiquitinated protein 

aggregates, also called p62 bodies, sequestosomes or aggresome-like inducible structures 

(ALIS) (Bjorkoy et al., 2005; Szeto et al., 2006) (Paper I). Accordingly, overexpression of 

p62 lead to accumulation of ubiquitinated protein aggregates (Bjorkoy et al., 2005; 

Seibenhener et al., 2004). There are two important studies indicating that p62 is crucial for 

formation of protein aggregates and their clearance by autophagy.  First, the formation of 

aggresome-like inclusion bodies is significantly impaired in p62 deficient cells (Pankiv et al., 

2007) (Paper I). Consistent with this, it was also demonstrated that large ubiquitin-positive 

protein aggregates, which accumulate in Atg7 knock-out (KO) mice or Atg8 mutant flies, no 

longer persist in the absence of p62 (Komatsu et al., 2007; Nezis et al., 2008). Secondly, p62 

was found within double membrane vesicles by electron microscopy (EM) (Bjorkoy et al., 

2005). Both p62 and NBR1 possess an oligomerization domain (PB1) through which they can 

homo- or hetero-oligomerize and thereby mediate formation of protein aggregates (Bjorkoy et 

al., 2005; Lelouard et al., 2002; Szeto et al., 2006). In addition, the PB1 domain of p62 

enables it also to interact with the protein kinases PKCζ, PKCλ/ι, MEKK3 and MEK5 

(Lamark et al., 2003; Nakamura et al., 2010; Sanchez et al., 1998; Wilson et al., 2003). NBR1 

and p62 also have a ZZ Zinc finger domain, a C-terminal UBA domain and a LIR domain 

(Kirkin et al., 2009; Pankiv et al., 2007) and can therefore link ubiquitinated protein 

aggregates to the core autophagic machinery.  

Recently, it was shown that localization of p62 and NBR1 to the autophagosome 

formation site requires their PB1 domain, but not their interaction with LC3 (Itakura and 

Mizushima, 2011). Moreover p62 colocalizes with early autophagy proteins, such as ULK1 

and VMP1, suggesting that p62 and NBR may contribute to determine where the 

autophagosomes are nucleated. This raises the question of whether also Alfy is located there.  

Interestingly, p62 interacts with the E3 ligase TRAF6 (Geetha and Wooten, 2002), and 

may also via its interaction with KEAP1 facilitate recruitment of the E3 ligase cullin 3 (Lau et 

al., 2010). Ub ligases are present in most protein inclusions and p62 might recruit E3 ligases 

to these structures to facilitate ubiquitination, leading to recruitment of more p62. Mutations 
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of the p62 UBA domain are associated with increased osteoclastogenesis in Paget disease of 

the bone(Duran et al., 2004; Kurihara et al., 2007; Yip et al., 2006). p62 can also act as 

regulator of the oxidative stress response. The level of p62 increases in response to oxidative 

stress (Nagaoka et al., 2004), which is thought to be a protective response against oxidative 

damage to the cell. Under normal conditions, the p62 level is low and Nrf2 is bound to 

KEAP1 and rapidly degraded by the proteasome. But upon oxidative stress, the level of p62 

increases and it then binds to KEAP1, leading to dissociation of Nrf2, which translocates to 

the nucleus and stimulates an anti-oxidant response, including  induced expression of p62, 

thus creating a feedback loop (Jain et al., 2010; Komatsu et al., 2010; Lau et al., 2010).  

HDAC6  
Unlike most members of the histone deacetylase (HDAC) family, HDAC6 is localized to the 

cytoplasm and contains an ubiquitin-binding domain (BUZ finger). It associates with both 

microtubules and the actin cytoskeleton (Gao et al., 2007; Hubbert et al., 2002; Kawaguchi et 

al., 2003; Matsuyama et al., 2002; Seigneurin-Berny et al., 2001; Zhang et al., 2003). Because 

it can bind both to ubiquitinated misfolded protein aggregates and to the microtubuli motor 

protein dynein it was proposed that HDAC6 can facilitate transport of aggregates to the 

MTOC to form the aggresome (Kawaguchi et al., 2003). Moreover, large aggresomes do not 

form in HDAC6 deficient cells, rather dispersed microaggregates throughout the cytoplasma 

are observed, suggesting a failure to transport the protein aggregates to the MTOC. The 

accumulation of these toxic species in the MTOC region facilitate their clearance by 

autophagy, as autophagic vesicles and lysosomes have been found concentrated around the 

aggresome (Iwata et al., 2005c; Lee et al., 2010). In line with this, ubiquitinated protein 

aggregates were observed in neurons of HDAC6 KO mice (Lee et al., 2010). This is in 

contrast to p62 deficient cells, where no protein microaggregates are observed (Komatsu et 

al., 2007). This suggests that p62 might act upstream to HDAC6 to concentrate misfolded 

proteins into aggregates, whereas HDAC6 directs their dynein-dependent transport to the 

aggresome. In addition, HDAC6 is proposed to be required for the maturation step of 

autophagy by recruiting a cortactin-dependent actin remodeling machiney (Lee et al., 2010). 

By activating cortactin via deacetylation (Zhang et al., 2007), it promotes the formation of an 

F-actin network that stimulates the fusion of autophagosomes with lysosomes (Lee et al., 

2010). 
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HDAC6 exist in a complex with the ATPase p97, also called valosin-containing protein 

(VCP). Like HDAC6, this protein is also required for the formation of the aggresome and for 

autophagosome maturation. Mutations in these proteins are known to cause inclusion body 

myopathy associated with Paget`s disease of the bone and frontotemporal dementia 

(IBMPFD), a disease characterized by protein aggregate accumulation, neurodegeneration and 

muscle defects (Watts et al., 2004).  

 
 

Autophagy and neurodegenerative diseases 

Under normal conditions, autophagy is present at basal levels to maintain protein 

homeostasis. The demand for cellular quality control through autophagy is particularly 

important in post-mitotic cells, such as neurons and myocytes (Hara et al., 2006; Komatsu et 

al., 2007; Komatsu et al., 2005; Nakai et al., 2007) and dysfunctional autophagy has been 

linked to neuronal death in many neurodegenerative disorders. A major quality control 

function of autophagy in neurons involves the clearance of misfolded proteins which might 

become cytotoxic and cause neuronal dysfunction or death if not properly removed 

(Rubinsztein, 2006). Thus, enhancing autophagy to eliminiate protein aggregates would be a 

logical therapeutic approach in neurodegenerative disease. However, others argue that the 

soluble oligomers are more toxic and that sequestration of misfolded proteins into aggregates 

might prevent the misfolded proteins from harming the cell until they become degraded by 

autophagy or the proteasome (Arrasate et al., 2004; Szeto et al., 2006; Takahashi et al., 2008a; 

Tanaka et al., 2004).   

There is growing evidence that autophagy has a protective role against 

neurodegeneration, but how autophagy can prevent neurodegeneration is not completely 

understood. Indeed, we know that autophagy has the capacity to selectively eliminate protein 

aggregates or inclusion bodies, via the adaptor proteins Alfy and p62 (Paper I and II). 

Moreover, proper turnover of p62 by autophagy is critical to prevent spontaneous aggregate 

formation (Komatsu et al., 2007). A role of autophagy in disorders such as Alzheimer’s 

disease (AD; Nixon et al., 2005;Cataldo and nixon, 1990), Parkinson’s disease (PD; Anglade 

et al., 1997), polyglutamine expansion disorders (e.g.Huntington’s diseases,HD); Ravikumar 

et al., 2002) and in different forms of ataxia (Berger et al., 2006) has been described. 

Accumulation of intracellular protein aggregates are commonly observed in these diseases. 
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These aggregates consist of misfolded or aggregate-prone mutated versions of normal 

proteins, exemplified by the cytotoxic polyglutamine-expanded huntingtin (Htt) protein 

causing HD.  

 

Polyglutamine neurodegenerative diseases 

Several neurodegenerative diseases, commonly known as the polyglutamine (polyQ) 

expansion disorders, are caused by an expansion of a CAG trinucleotide repeat, encoding 

glutamine, in the disease-associated proteins. They are all progressive, typically beginning in 

adulthood and culminating in death over a 10 to 30 year period. Although quite different in 

their pathophysiology, the presence of ubiquitin-positive intra-nuclear and/or cytoplasmic 

aggregates is a hallmark of all polyQ diseases. The polyQ expansion leads to abnormal 

protein folding and conformation resulting in aggregation-prone proteins. In all polyQ 

diseases, except SCA6, the longer the polyglutamine tract, the more severe and the earlier age 

of disease onset. In general, a stretch of 37 glutamine repeats is non-pathogenic, but 

expansions larger than this are strongly associated with disease (Hughes and Olson, 2001). 

Furthermore, fragments of Htt containing a polyQ stretch of more than 40 repeats are 

insoluble whereas fragments carrying non-pathogenic repeat lengths are soluble in SDS 

(Gatchel and Zoghbi, 2005).  

HD is the most common and best studied of the polyQ diseases. It is an autosomal 

dominant disease and is caused by a polyQ expansion in exon 1 of the gene encoding Htt. HD 

involves neuronal loss in the striatum and cortex leading to gradual loss of voluntary 

movement coordination and eventually death of the patient. Previous studies of aggregation 

have revealed that elimination of the accumulation-prone proteins permits symptomatic 

reversal in a HD mouse model (Yamamoto et al., 2000). The disappearance of the aggregates 

often correlates with regression of symptoms. Autophagy is specifically important for the 

degradation of aggregate-prone mutant Htt and not wild-type soluble Htt (Ravikumar et al., 

2002; Yamamoto et al., 2006) and may help re-establish normal cellular function. Recent 

study has shown that the turnover of cytosolic components is impaired in HD cells (Martinez-

Vicente et al., 2010). Furthermore, it has also been demonstrated that autophagy is essential 

for the elimination of cytoplasmic but not nuclear aggregated forms of mutant Htt and ataxin-

1 (Iwata et al., 2005a).  
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Autophagy and cancer 
Both non-selective and selective autophagy are important in human health and disease. It was 

only some years ago that scientists established a link between autophagy and disease, and  

cancer was one of the first diseases genetically linked to impaired autophagy. It was found 

that mice having only one copy of the Beclin1 gene develop spontanous tumors (Liang et al., 

1999; Yue et al., 2003). Moreover, monoallelic deletion of this gene occurs in 40-75% of 

human ovarian, breast and prostate cancers (Aita et al., 1999). These studies suggested that 

autophagy is a tumour suppressor pathway. By contrast, autophagy can also be deleterious, as 

when it is activated in more advanced stages of cancer to facilitate survival of cells in low-

vascularized tumors (Mathew et al., 2007). This paradox can be explained by two hypotheses, 

first, in apoptosis-defective cells, when tumour cells cannot die by apoptosis upon exposure to 

metabolic stress, autophagy may prevent death by necrosis, a process that might enhance local 

inflammation and thereby increase tumour growth rate (Degenhardt et al., 2006). Second, 

stressed autophagy-defective tumor cells accumulate p62, damaged mitochondria, reactive 

oxygene species (ROS) and protein aggregates, which might cause DNA damage leading to 

oncogene activation and tumorigenesis (Mathew et al., 2007; Mathew et al., 2009). Thus, 

autophagy probably functions to prevent cancer initially, but once tumor develops, the cancer 

cells utilize autophagy for their own cytoprotection.  

 

Acute promyelocytic leukemia  

The disease acute promyelocytic leukemia (APL) was first identified in 1957 and is a distinct 

subtype of acute myeloid leukemia (AML), a cancer of the blood and bone marrow. It  

represents 10-15% of the AML cases and the median age of patients with APL is 

approximately 40 years, which is considerably younger than the other subtypes of AML (70 

years). The majority of AML cases are associated with non-random chromosomal 

translocations that often result in gene rearrangements (Look, 1997). APL is charactarized by 

a specific chromosomal translocation, t(15;17)(q22;q11-12) involving the genes encoding the 

promyelocytic leukemia protein (PML) on chromosome 15 and that encoding retinoic acid 

receptor alpha (RARA) on chromosome 17 (Martens and Stunnenberg, 2010; Nasr et al., 

2009). The PML/RARA fusion protein is a product of this translocation and exhibits a 

transcription and differentiation block at the promyelocytic stage of granulocytic maturation, 

leading to accumulation of abnormal promyelocytes in the bone marrow (Melnick and Licht, 
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1999). RARA is a retinoic acid (RA)-responsive transcription factor and the tumor supressor 

protein PML is known to form distinct nuclear foci referred to as PML-nuclear bodies (PML-

NBs). A number of proteins involved in different cellular processes, such as transcription, 

DNA repair, cell cycle regulation and apoptosis localize to PML-NBs (Bernardi and Pandolfi, 

2007; Dellaire and Bazett-Jones, 2004; Zhong et al., 2000). Moreover, misfolded proteins, as 

well as proteasomes, have been found to localize to PML-NBs (Fu et al., 2005; Rockel et al., 

2005). In paper I we found that both p62 and Alfy are localized to PML-NBs, but the 

functional significance of this is not known.  

Previous studies have shown that the differentiation block and the transcriptional 

repression induced by PML/RARA involve RARA homodimerization (Sternsdorf et al., 

2006), PML sumoylation (Zhu et al., 2007), binding to the nuclear receptor RXR (Zeisig et 

al., 2007), and recruitment of the polycomb complex (Villa et al., 2007). The RARA/RXR 

complex binds DNA and recruit corepressor complexes leading to repressed transcription of 

its target genes (Nasr et al., 2009). Moreover, PML/RARA has been shown to also disrupt the 

PML-NBs (Dyck et al., 1994; Koken et al., 1994), raising the question whether other 

molecular mechanisms than transcriptional repression may be implicated in APL 

leukogenesis.  Without treatment, APL is rapidly fatal, however with appropiate therapy it is 

the most frequently cureable subtype of adult AML (Parmar and Tallman, 2003). APL is 

sensitive to two clinically active therapies, all-trans retinoic acid (ATRA) and arsenic trioxide 

(ATO). ATRA-based treatment is commonly employed as the frontline therapy for APL 

patients, whereas ATO predominantly is being used for treatment of patients that have 

relapsed or that are irresponsive to ATRA (Nasr et al., 2009). Serveral lines of evidencde have 

shown that the synergistic effect of the ATRA/ATO combination for APL treatment strongly 

promote PML/RARA degradation and clinical remission, thus avoiding the need for 

chemotherapy (Estey, 2003; Ravandi et al., 2009; Warrell et al., 1993). Both agents represents 

major advances in the treatment of this disease and cause clinical remission by targeting 

PML/RARA-mediated transcription repression and protein stability through stimulating 

proteolytic degradation of the PML/RARA oncoprotein. ATRA targets both RARA and 

PML/RARA for degradation and induce activation of RARA responsive genes and 

granulocytic differentiation (Gianni et al., 2000; Liu et al., 2000). ATO also causes proteolytic 

degradation of PML, although probably by a different mechanism than ATRA, as well as 

disease remission by contacting a cysteine-rich motif present within the PML protein (Zhang 

et al., 2010). ATO treatment causes PML and PML/RARA sumoylation, ubiquitination and 
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proteolytic degradation (Lallemand-Breitenbach et al., 2008; Tatham et al., 2008). Recently, 

studies of PML/RARA catabolism revealed that degradation of this disease-related mutant 

protein is highly dependent on autophagy, in addition to the ubiquitin-proteasome system 

(Wang et al., 2011) (Paper III).  

 

 

 

Aims of the study 
The main purpose of this thesis has been to contribute to a better understanding of the 

function and dynamics of autophagy and to understand its relation to disease. We were 

particularly interested in investigating the role of Alfy in autophagy, and how autophagy 

contributes to degradation of protein aggregates. Because the autophagy receptor p62 was 

found to colocalize extensively with Alfy, we wanted to identify a possible functional 

interaction between these proteins. Finally, we asked whether aggregate-prone proteins 

associated with cancer also can be degraded by autophagy. The specific aims of the papers 

were as follows: 

Paper I:  Investigation of a possible interaction between Alfy and p62 and how they 
contribute to formation and clearance of ubiquitinated protein aggregates.  

 We had previously reported that Alfy, a PI3P-binding protein, is recruited from the 

nucleus to cytoplasmic ubiquitin-positive protein aggregates which also colocalize 

with the autophagic markers Atg5 and LC3 upon cellular stress. We then found that 

the ubiquitin-binding protein p62 colocalize extensively with Alfy and decided to 

investigate whether Alfy and p62 interact to facilitate the formation of ubiquitinated 

aggregates and their degradation by autophagy. Moreover, we asked whether p62 

plays a role in the nucleocytoplasmic shuttling of Alfy.  

 
Paper II:  To elucidate the specific role of Alfy in degradation of disease-associated 

protein aggregates by autophagy.  
Drosophila lacking the Alfy homologue blue cheese show a neurodegenerative 

phenotype with the presence of ubiquitin-positive aggregates in their brain. Having 

identified a link between Alfy and autophagy, we hypothesized that Alfy/bchs might 

be involved in autophagic clearance of aggregate-prone proteins. Using mouse and fly 

models of Huntington's disease we aimed at elucidating the mechanism(s) by which 
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Alfy mediates autophagic degradation of protein aggregates and to investigate whether 

Alfy functions both in aggrephagy and starvation-induced autophagy. 

 
Paper III:  To contribute to the understanding of the therapy-induced degradation of 

the oncoprotein PML/RARA.  
Previous studies had indicated that the ubiquitin-proteasome pathway is the main 

mechanism involved in therapy-induced PML/RARA degradation. However, 

proteolytic degradation of PML/RARA by caspases, neutrophil elastase and lysosomal 

proteases had also been reported, suggesting the existence of multiple proteolytic 

pathways with a potential to target PML/RARA for degradation. The PML/RARA 

fusion protein is known to be prone to aggregation, a feature that makes it a good 

substrate for autophagic degradation and we therefore wanted to study a possible role 

of autophagy in PML/RARA catabolism. 

 
 

 

Summary of included papers 
 

Paper I. p62/SQSTM1 and Alfy interact to facilitate the formation of 
p62 bodies/ALIS and their degradation by autophagy 

Accumulation of ubiquitinated protein aggregates in the cytoplasm and/or nuclear inclusions 

are hallmarks of several neurodegenrative disorders, as well as other human diseases 

including those affecting muscles, heart and liver. The Ub-binding protein p62 accumulates in 

Ub-positive inclusions in several diseases and it has recently become evident that p62 can 

target ubiquitinated aggregate-prone proteins for degradation by autophagy. p62 

homopolymerizes through its PB1 domain and contains an LC3-interacting region (LIR), 

which explains how p62 can function as a cargo receptor facilitating the degradation of 

ubiquitinated protein aggregates by autophagy. From the literature it was known that p62 is 

required for the formation of ubiquitinated protein aggregates, also called p62 bodies, 

sequestomes or aggresome-like inducible structures (ALIS).  

Alfy (autophagy linked FYVE protein) becomes recruited from the nucleus to 

cytoplasmic ubiquitinated protein aggregates and co-localizes with autophagic markers upon 
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cellular stress such as starvation. Both Alfy and p62 localize to PML-NBs, which, in addition 

to several other functions, have been found to contain misfolded proteins. In this work we 

wanted to deepen our molecular understanding of how p62 and Alfy interact to regulate 

formation and degradation of misfolded ubiquitinated protein aggregates.  

Since the Alfy-positive bodies appear very similar to those formed by p62, we first 

asked if these structures are p62 bodies. Confocal immunofluorescence microscopy revealed 

that p62 is a major constituent of all Alfy positive cytoplasmic bodies. Furthermore, siRNA-

mediated depletion of p62 severely inhibited the starvation-induced redistribution of Alfy 

from the nuclear region into cytoplasmic bodies. Moreover, Alfy and p62 accumulated in 

PML-NBs when nuclear export was blocked by the exportin-1 inhibitor leptomycin B (LMB). 

Interstingly, we observed that Alfy was not localized to PML-NBs in cells transfected with 

siRNA against p62 and vice versa, accumulation of p62 in NBs was strongly reduced in Alfy-

depleted cells treated with LMB.  

We next wanted to study whether Alfy, like p62 is required for the formation of 

cytoplasmic p62 bodies. Surprisingly, we observed a reduction of the number of p62 bodies in 

HeLa cells depleted of Alfy. Furthermore, western blot analysis revealed that the insoluble 

fraction of p62 was reduced after knockdown of Alfy, indicating that Alfy is important for 

aggregation of p62. Next, we studied redistribution of Alfy when p62 was ectopically 

expressed. The only region of p62 that appear to be required for cytoplasmic redistribution of 

endogenous Alfy was the the region of p62 that contains nuclear localization and nuclear 

export signals that are essential for shuttling of p62 between the cytoplasm and the nucleus. 

This suggest that p62 needs to enter the nucleus in order to redistribute Alfy. We also 

demonstrated that endogenous p62 and LC3 was efficiently co-immunoprecipitated with 

endogenous Alfy from HeLa cell lysates, indicating that these proteins are in the same 

complex in vivo. We next set out to map the regions in Alfy important for its interaction with 

p62 and recruitment into endogenous p62 bodies. Confocal immunofluorescence analysis 

revealed that only Alfy constructs containing the PH-BEACH domain of Alfy were efficiently 

recruited into p62 bodies. Moreover, pulldown assays established a direct interaction between 

this part of Alfy and p62. In line with these results we found that the Drosophila p62 

homologue Ref(2)P accumulates in Ub inclusions in the brains of flies carrying mutations in 

the Alfy homologue Blue cheese (bchs), indicating that Alfy is required for formation of p62-

bodies that become substrates for autophagy. Taken together,  p62 and Alfy interact and 

colocalize both in cytoplasmic and nuclear protein bodies. p62 is required to recruit Alfy from 
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the nucleus to the cytoplasmic Ub-positive bodies and both proteins are required for formation 

of cytoplasmic bodies and their degradation by autophagy.  

 
 

Paper II. The Selective Macroautophagic Degradation of Aggregated 
Proteins Requires the PI3P-Binding Protein Alfy 

Aggregate-prone proteins are poor substrates for proteasomal degradation due to their 

insolubility and large size. Instead, such aggregate-prone proteins have been found to be 

degraded by autophagy. However, it was unclear whether their degradation is selective and 

the molecular machinery involved was not characterised. We hypothesised that Alfy is 

essential for the macroautophagy-mediated clearance of aggregation-prone proteins and that 

Alfy might be invovled in selective autophagy (aggrephagy). 

 The first approach towards this aim was to examine whether Htt inclusions could be 

found in autophagosomes. Using EM and biochemical analysis we detected inclusions within 

isolated autophagosome (AV) fractions from cells stably expressing an exon1 fragment of Htt 

containing a polyQ stretch of 103 fused to mCFP (Htt1 103Q-mCFP cells). Moreover, we  

show that Alfy colocalizes with Htt-polyQ inclusions and is found in the AV fraction.  Alfy is 

required for autophagy-mediated clearance of these aggregated proteins; filter trap assays and 

immunofluorescence quantifications revealed that Alfy depletion significantly inhibited 

aggregate-clearance in two different tet-regulatable cell lines (HeLa and Neuro2a) expressing 

exon1-Htt with a pathogenic stretch of 65 or 103 glutamine repeats. We observed the same 

effect when autophagy was suppressed using siRNA against Atg5 or inhibited by 3-MA, 

confirming the involvement of autophagy in degradation of these inclusions.  

To explore this further, we turned to a non-polyQ protein known to form cellular 

aggregates, �-synuclein (�-Syn), with and without the aggregation-prone mutation, A53T. 

Although the soluble form of �-Syn can be degraded by chaperone-mediated autophagy 

(Cuervo et al., 2004; Vogiatzi et al., 2008), its aggregated form may be degraded by 

macroautophagy (Sarkar et al., 2007). Consistent with the polyQ aggregate clearance data, 

filter trap analysis revealed that Alfy KD inhibited the ability of the cells to eliminate the 

SDS-insoluble �-Syn proteins, and co-IP analysis found that Alfy and Atg5 precipitated with 

the ��synuclein proteins. Therefore, Alfy is required for the removal of different types of 

protein aggregates. 
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To determine whether Alfy is required for general starvation-induced macroautophagy we 

examined the degradation of long-lived proteins (LLPs) in both HeLa and Neuro2a cells 

subjected to serum and amino acid withdrawal. We found that, as with treatment with 3-MA, 

knock down of Beclin-1 inhibited LLP degradation, but depletion of Alfy had no effect. The 

level of lipidated LC3-II and the amount of GFP-LC3 puncta formed in stably transfected 

Hek293 cells was also unaffected upon treatment with siRNA targeting Alfy. To further 

explore the role of Alfy in starvation-induced autophagy we examined autophagosome 

formation, using Lyso Tracker Red staining, in the  larval fat body of Drosophila  lacking the 

Alfy homologue bchs. Upon starvation WT and bchs mutants showed a similar increase in 

autolysosome formation, while larvae expressing a dsAtg1-RNAi construct in the fat body had 

significantly fewer red puncta. Taken together, Alfy/bchs are essential for the 

macroautophagy-mediated clearance of aggregation-prone proteins (aggrephagy), but are not 

required for starvation-induced autophagy. 

We next sought to determine whether Alfy interacts with the polyQ inclusions. 

Immunoprecipitation of the htt polyQ protein revealed that endogenous Alfy, as well as both 

N- and C-terminal parts of Alfy interacts with the inclusions. Based on the findings in paper I, 

where we found that Alfy makes a complex with p62 and LC3, we wanted to examine 

whether Alfy interacts directly with any of the Atg proteins. Using various techniques, we 

found that Alfy interacts directly with Atg5 and that the C-terminal WD-40 repeat region of 

Alfy are required for this interaction. Furthermore, we could show that the complete complex 

containing Alfy, Atg5, p62, LC3-I and -II and full length mutant Htt was immunoprecipitated 

from HD patient lysates, but not from age-matched control patients. In a primary neuronal 

model of HD, we showed that over-expression of an Alfy C-terminal fragment led to a 

significant reduction of protein aggregates in the neurons. Similarly, we observed a 

neuroprotective effect of over-expressing full length Bchs or its C-terminal in a Drosophila 

eye model of polyglutamine toxicity, an effect which was abrogated when autophagy was 

inhibited by Atg8 RNAi.  
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Paper III. Autophagy contributes to therapy-induced degradation of 
the PML/RARA oncoprotein 

Several pathways have been implicated in therapy-induced degradation of PML/RARA, 

including cleavage of the PML moiety by proteases and a SUMO-dependent ubiquitin-

mediated proteasome degradation process. Knowing that PML/RARA is highly prone to 

aggregation, a feature that makes it a preferable substrate for autophagic degradation, we 

wanted to investigate whether autophagy contribute to the degradation of PML/RARA.  

To test this, we monitored the expression levels of the oncoprotein in the APL cell line 

NB4, which contains the t(15;17) chromosomal translocation that results in expression of the 

fusion protein, under conditions that stimulate or inhibit autophagic degradation. Stimulation 

of autophagy by amino acid deprivation (starvation) caused a decrease in PML/RARA levels, 

whereas inhibition of this degradation pathway by 3-MA or Bafilomycin A1 (BafA1) resulted 

in accumulation of PML/ RARA. In line with these results we found that treatment with the 

mTOR inhibitor rapamycin increased autophagy-mediated degradation of PML/RARA. In 

order to further explore whether autophagy contributes to clearance of the oncoprotein, we 

used siRNA to supress the unc-51-like kinase 1 (ULK1), a protein kinase required for 

induction of autophagy, in HeLa cells that transiently expressed the fusion protein. Whereas 

PML/RARA levels decreased significantly in starved cells treated with control siRNA, 

ULK1-depleted cells displayed an accumulation of PML/RARA. Two clinically active 

therapies, all-trans retinoic acid (ATRA) and arsenic trioxide (ATO), cause clinical remission 

by stimulating proteolytic degradation PML/RARA. We therefore next confirmed the ability 

of ATRA and ATO to induce PML/RARA degradation, both alone and in combination. 

Interestingly this effect was considerably reduced in the presence of the autophagy inhibitor 

BafA1. We further found that the level of phosphorylated p70S6K decreased significantly in 

both ATRA- and ATO- treated cells, indicating that ATRA and ATO activate autophagy via 

an mTOR-dependent pathway. Finally, since APL therapy strongly associates with 

differentiation, we investigated whether autophagy plays a role in granulocytic differentiation 

of APL cells. Using flow cytometry we were able to monitor the expression of the 

granulocyte surface marker protein CD11b. Interestingly, we observed that inhibition of 

autophagy significantly prevented ATRA-induced differentiation of APL cells and that 

stimulation of autophagy by rapamycin promoted the differentiation of APL cells. Overall, 

our results identify autophagy as a new pathway involved in therapy-induced PML/RARA 

degradation and differentiation along the granulocytic linage. 
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Discussion 
The papers included in this thesis contribute towards our understanding of the degradation of 

aggregate-prone proteins by autophagy. Dysfunctional autophagy has been linked to many 

diseases such as cancer and neurodegeneration. Nevertheless, several questions regarding the 

role of autophagy in disease remain to be answered. Through the work presented here we 

have attempted to shed light on some of these questions. We have investigated the 

mechanisms by which aggregate-prone proteins are targeted for autophagy and found that the 

proteins Alfy and p62 are important for this selective process by linking ubiquitinated proteins 

to the core autophagy machinery (Paper I and II). Moreover, we found that autophagy is 

involved in degradation of aggregate-prone proteins associated with neurodegenerative 

disease (e.g huntingtin inclusions, Paper II) and cancer (PML/RARA oncoprotein, Paper III), 

indicating an important role of this pathway in human health.   

 
 

Autophagy and neurodegeneration 

The intracellular accumulation and aggregation of proteins is a common theme across many 

age-related neurodegenerative diseases. These include Alzheimer’s disease (AD), 

Huntington’s disease (HD), taupathies, the spinocerebellar ataxia (SCA), Parkinson’s disease 

(PD), Amyotrophic Lateral sclerosis (ALS) and prion disease (Yamamoto and Simonsen, 

2010). Many of these neurodegenerative disorders are caused by mutations resulting in 

production of misfolded proteins that are specific for each disease. Typically, at an early stage 

of disease damaged proteins remain soluble and they can undergo proteolysis by the UPS 

when marked by ubiquitin. Therefore the ubiquitin-dependent degradation of misfolded 

proteins by proteasomes constitutes a critical part of a cytoprotective quality control 

machinery, as defects in this system lead to the accumulation of the misfolded proteins. 

However, at later stages of disease mutant proteins tend to form aggregates. Continous 

production of damaged proteins might exceed the capacity of the UPS or it is possible that a 

dysfunctional UPS plays an additional role in pathogenesis. Moreover, most large aggregate-

prone proteins cannot be processed by the UPS due to the size of the narrow barrel of the 

proteasome where polypeptides are digested (Verhoef et al., 2002). In fact, protein aggregates 

can inhibit the UPS activity by clogging the proteasomes, resulting in further accumulation of 
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protein aggregates (Bennett et al., 2007; Snyder et al., 2003). Thus, autophagy may serve as a 

back-up mechanism allowing cells to get rid of toxic protein aggregates. In this regard α-

synuclein can be degraded by both the UPS and CMA (Webb et al., 2003), but is removed by 

macroautophagy when it is mutated (Cuervo et al., 2004) (Paper II). Furthermore, the mutant 

variant of huntingtin (Htt) inhibits UPS function and induces autophagosome formation 

(Kegel et al., 2000; Venkatraman et al., 2004). Therefore degradation of protein aggregates by 

autophagy could have evolved as a mechanism to preserve the function of the UPS and 

several studies indicate that cells compensate for impairment of one form of proteolysis by 

elevating an alternate form of protein degradation (referred to as proteolytic cross-talk) 

(Pandey et al., 2007). The cross-talk between the UPS and autophagy seems to be both at the 

gene regulatory level and at the substrate selection level. At the gene regulatory level, some 

transcription factors (FoxO3 and Nrf2) activate genes involved in both UPS and autophagy. In 

addition to misfolded proteins, other substrates can be shared by the UPS and autophagy, 

including the ubiquitin-interacting proteins p62 and Ubiquillin-1 (Bjorkoy et al., 2005; 

Ichimura et al., 2008; Ko et al., 2004; Korolchuk et al., 2010; Lamark and Johansen, 2010; 

Pankiv et al., 2007; Rothenberg et al., 2010; Seibenhener et al., 2004; Wong and Cuervo, 

2010). Moreover, the protective effect of the compensatory upregulation of autophagy in 

proteasome-inhibited cells has been suggested to depend on HDAC6 and p97/VCP (Ding and 

Yin, 2008; Pandey et al., 2007). During proteasomal impairment, p97/VCP and HDAC6 are 

responsible for the accumulation of misfolded proteins in aggresomes (Kawaguchi et al., 

2003), which may allow them to be degraded more efficiently by autophagy (Iwata et al., 

2005c). In contrast, inhibition of autophagy, leading to accumulation of p62, was shown to 

delay the delivery of ubiquitinated proteins to the proteasomes (Korolchuk et al., 2009), 

suggesting that these pathways not only have a compensatory effect on each other, but that 

impairement of one pathway can cause inhibition of the other degradative pathway. However, 

further studies are required to understand how this is regulated.   

The presence of ubiquitinated inclusions in the nucleus and/or cytoplasma is a 

diagnostic hallmark of several neurodegenerative diseases. Unfortunately such inclusions are 

detected at a late stage of disease or post portem and their impact during early phases of the 

disease is poorly understood. Nonetheless, the elimination of such inclusions has become a 

major effort in therapeutic development, largely due to studies showing that symptomatic 

reversal in mouse models of neurodegenerative disease is tightly associated with clearance of 

the aggregated protein (DiFiglia et al., 2007; Lin et al., 2009; Mallucci et al., 2003; Regulier 
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et al., 2003; Southwell et al., 2009; Wang et al., 2008; Xia et al., 2004; Yamamoto et al., 

2000; Zu et al., 2004). Unfortunately, these studies have not created a definitive link between 

protein aggregation and pathogenesis thus several key questions remain unanswered. For 

example, why protein aggregates form in the brain remains unclear. Equally debated is 

whether the inclusions are causative or crucial to the disease process or whether they are 

protective. Increasing evidence supports the notion that in general aggregates confer toxicity 

and disturb neuronal function by hampering axonal transport, synaptic integrity, 

transcriptional regulation and mitochondrial function. To understand the relationship between 

neuronal pathology and autophagy, protein aggregation was studied in conditional Atg7 and 

Atg5 knock-out mice (Hara et al., 2006; Komatsu et al., 2006). Interestingly, neuron-specific 

Atg7 and Atg5 gene deletion in mice evokes progressive motor deficit, neurodegeneration and 

formation of inclusion bodies, without corresponding defects in proteasome function, 

indicating that dysfuntional autophagy alone set off a neurodegenrative cascade. Similar 

results were obtained in cell culture studies and in Drosophila lacking core autophagy genes 

(Juhasz et al., 2007; Lindmo et al., 2008; Simonsen et al., 2008) (PaperII). These finding 

suggest that autophagy plays a pivotal role in preventing accumulation of protein inclusions 

causing neurodegeneration through its contribution to intracellular quality control and 

turnover of aggregate-prone proteins. Impairment of autophagy by inhibitors or by depletion 

of essential Atg genes also prevents clearance of aggregate-prone proteins. For example, the 

autophagy inhibitors BafA1 (inhibiting the lysosomal proton pump) or 3-MA (inhibiting PI3K 

and thus autophagosome formation) led to decreased clearance of aggregate-prone proteins 

such as mutant Htt or mutant forms of α-synuclein (causing familial PD) (Qin et al., 2003; 

Ravikumar et al., 2002; Webb et al., 2003) (Paper II). There is evidence that Htt aggreggates 

can be removed by autophagy despite activation of mTOR, which normally inhibits 

autophagy when active (Yamamoto et al., 2006). Although an mTOR-independent autophagy 

pathway clearly exist (Sarkar et al., 2005), mTOR signalling plays an important role in the 

disposal of protein aggregates by autophagy. Studies have found that mTOR becomes trapped 

in inclusion bodies, thereby promoting autophagy and clearance of toxic aggregates in a 

mouse HD model (Ravikumar et al., 2004). Moreover, the TOR inhibitor rapamycin was 

found to protect against the cytotoxic effects of different aggregate-prone proteins, including 

polyglutamine containing proteins and mutant Tau (Berger et al., 2006). Clearance of mutant 

Htt was also found to depend on expression of Atg6/Beclin 1 (Shibata et al., 2006; Yamamoto 

et al., 2000).  
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Degradation of aggregates by autophagy is somehow contradictory to the hypothesis claiming 

that generation of protein aggregates is a protective mechanism. However, it is still possible 

that autophagy can protect cells from toxic proteins at at least two levels; i) by degradation of 

misfolded proteins in soluble or oligomeric states and 2) by clearance of protein aggregates, 

which are themselves not toxic, but which might become toxic if not properly removed. 

Accordingly, it has been suggested that the primary target of autophagy seems to be diffuse 

cytosolic proteins, not inclusion bodies themselves, indicating that inclusion body formation 

in autophagy-deficient cells is a secondary event to impaired general protein turnover (Hara et 

al., 2006). In line with this theory, the cells have developed a selective pathway, aggrephagy 

(discussed in more detail below), to mediate clearance of such aggregate-prone proteins.  

Conditional mouse models of HD (Yamamoto et al., 2000), prion disease (Mallucci et 

al., 2003) and SCA1 (Zu et al., 2004) have shown that elimination of the expression of the 

toxic protein leads to a concomitant clearance of accumulated proteins and symptomatic 

reversal. However, these observations do not clarify whether it is the aggregated form of the 

protein or the soluble form that contributes towards pathogenesis. Unfortunately examination 

of this question has been difficult to address, as smaller, more toxic subspecies may still exist 

even if inclusions are no longer visible. Moreover, if the efficacy of the conditional models 

lies on the elimination of the soluble protein, the clearance of the aggregated proteins may 

simply be a passive by product that does not impact the reversal of symptoms. Nonetheless, 

the correlation between the length of the polyglutamine repeat in mutant Htt, which in turn 

lead to greater protein aggregation,  and the earlier onset of the associated disease (Perutz and 

Windle, 2001), strongly suggests that the aggregates may be the cytotoxic species. Moreover, 

in mammalian cell culture, there is a strong correlation between aggregate formation and 

cellular toxicity (Paper II). In many cases, the formation of aggregates precede cell death 

(Wyttenbach et al., 2000), although microscopic monitoring of survival of cells containing 

aggregates has suggested that large microscopically visible inclusions may be protective 

(Arrasate et al., 2004). It does not rule out the possibilty that the smaller oligomeric 

precursors of these aggregates, or the process of aggregation itself, may in fact be toxic.  

If aggregate-removal can be beneficial, it is important to understand the mechanism 

invovled in clearance of these aggregate-prone proteins. In our study (Paper II) we used an 

aggregation-prone protein model of Htt; the protein fragment encoded by exon1 containing 

different polyQ repeat lengths, 25Q being non-aggregating or 65Q and 103Q forming 

aggregates. Aggregates were detected after transient tranfection or in HeLa and N2a cells with 
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inducible expression of Htt-25Q, -65Q or -103Q. Moreover, primary rat cortical neurons were 

transduced with lentivirus expressing Htt-72Q. In order to rule out over-expression artefacts, 

we also used fibroblasts obtained from control or HD patients in our study. We observed that 

Htt-65Q or -103Q inclusions were indeed sequstered by autophagic membranes, as they 

colocalized with autophagic markers (IF) and by EM were found to be surrounded by a 

double membrane. Moreover, inclusions were found in the autophagic vesicle fraction 

obtained by fractionation of cells expressing Htt-polyQ. Thus, our data strongly indicate that 

aggregation-prone protein inclusions can be found within autophagosomes. Whether entire 

protein aggregates are directly degraded by autophagy, or if autophagy rather degrades 

soluble aggregate precursors is still debated. Autophagy has also been implicated in the 

dissolution of larger neuronal inclusions into smaller aggregates (Rideout et al., 2004). We 

report that protein aggregates larger than 1 μm are observed inside autophagic membranes 

(Paper II), indicating that the autophagic machinery can degrade entire aggregates. However, 

the observed aggregate pool was heterogenic and whereas most of the smaller aggregates 

were surronded by a double membrane, most of the larger aggregates (larger than 1 μm ) were 

membrane free. We and others have found that increased levels of autophagy is 

neuroprotective in Drosophila and mice HD models (Simonsen et al., 2008; Williams et al., 

2006) (Paper II), and our data might suggest that the observed protective role of autophagy 

may be caused by degradation of smaller aggregates to eliminate their toxicity.  

Supporting the idea of aggregates being toxic species which need to undergo 

proteolysis not to harm cellular function, the autophagy receptor p62 is found to be a 

component of protein aggregates associated with several neurodegenratative diseases (Gal et 

al., 2009; Holm et al., 2007). Interestinlgy,  where inclusions found in autophagy-deficient 

cells are positive for both ubiquitin and p62, loss of p62 combined with a deficiency in 

autophagy greatly reduces the formation of ubiquitin inclusions in mice and flies (Komatsu et 

al., 2007; Nezis et al., 2008). These findings indicate that p62 is involved in formation of the 

observed aggregates. In line with the in vivo data, p62 has been shown to be required for the 

formation of ubiquitinated protein aggregates, also called p62 bodies, sequestosomes or ALIS 

(Bjorkoy et al., 2005; Szeto et al., 2006) (Paper I). These structures contain misfolded 

ubiquitinated proteins and can be experimentally induced by addition of the translational 

inhibitor puromycin (Lelouard et al., 2004) (Paper I). The role of p62 in formation of 

ubiquitin positive protein aggregates depends on its polymerization domain (PB1), through 

which it can homo- or heteropolymerize or interact with other binding partners, as well as its 
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C-terminal UBA domain, responsible for binding to ubiquitinated proteins.  The protein 

NBR1 has a very similar domain structure to p62 and has also been found to mediate 

formation of protein aggregates and their degradation by autophagy. The latter requires their 

interaction with LC3 through a LIR (LC3 interaction) motif. In addition to p62, Alfy 

(Simonsen et al., 2004) was found to be required to recruit ubiquitinated proteins into 

aggregates that become degraded by autophagy (Paper I). However, we did not conclude 

whether the aggregates are sequestered by preexisting autophagic membranes or if the 

autophagic machinery is recruited to the aggregates to mediate local assembly of autophagic 

membranes around the aggregates. Alfy is a large (400kDa) scaffolding protein containing 

several domains which can facilitate recruitment of the autophagic machinery to the protein 

aggregates; a p62-interacting BEACH domain (Paper I), a PI3P-binding FYVE domain 

(Simonsen) and WD40-repeats engaged in interaction with Atg5 (Paper II). In paper I we 

show that p62 and Alfy interact and colocalize both in cytoplamsic and nuclear protein bodies 

(NBs). Both proteins cooperate to sequester ubiquitinated proteins into p62 bodies, but it is 

not clear how these proteins work together in this process. Aggregation of the cargo may, 

therefore, be one of the first steps toward degradation, and inhibition may confer toxicity 

because the protein can no longer be eliminated (Paper II). We observed an accumulation of  

the Drosophila p62 homologue Ref(2)P in ubiquitin positive inclusions in the brains of flies 

carrying mutations in the Alfy homologue Blue cheese (bchs), demonstrating that Alfy is 

required for the degradation of p62-associated ubiquitinated proteins in vivo. Interestingly, 

bchs did not accumulate in flies lacking the p62 homologue Ref(2)P, indicating that p62 

might assist aggregate-prone proteins to form microaggregates that can be combined and 

deposited into larger aggregates by Alfy. The large size of Alfy suggests that it works as a 

major scaffolding protein involved in the assembly of p62 bodies, promoting the subsequent 

degradation of these protein aggregates by autophagy. 
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Selective autophagy - aggrephagy 

Autophagy has generally been considered a non-selective degradative pathway activated by 

nutrient starvation to efficiently recycle cellular components and support cell survival until 

nutrients are replenished. It has, however, become evident that autophagy also proceeds at 

basal levels, and that it has an important quality control function by disposing of protein 

aggregates, damaged organelles and other substrates that are toxic or no longer needed 

(Klionsky et al., 2007). In contrast to the classical non-selective starvation-induced 

autophagy, this form of autophagy must have the ability to distingiush aberrant protein 

aggregates and damaged organelles from their normal counterparts. The characterization of 

the two cargo receptors, p62 (also called SQSTM1) and NBR1, has revealed that, similar to 

proteasome-mediated protein degradation, an ubiquitin-dependent system can confer the 

substrate specificity for autophagy (Kirkin et al., 2009; Pankiv et al., 2007). As mentioned 

above, p62 and NBR1 contain an LIR, mediating interaction with Atg8/LC3 family members 

(LC3/GABARAP/GATE-16) and a ubiquitin-binding UBA domain (Bjorkoy et al., 2005; 

Pankiv et al., 2007) and therefore have the ability to deliver the cargo to the autophagic 

machinery. In addition to being a cargo receptor for protein aggregates, p62 has been 

proposed to act as a cargo receptor for other ubiquitinated substrates, such as intracellular 

bacterial (Zheng et al., 2009), protein aggregates (Bjorkoy et al., 2005), the midbody remnant 

formed after mitosis (Pohl and Jentsch, 2009), peroxisomes (Kim and Guan, 2011; Platta and 

Erdmann, 2007), soluble protein (Gao et al., 2010; Kim et al., 2008) and mitochondria 

(Geisler et al., 2010). 

In our studies we observed that p62 and NBR1 closely colocalize with Alfy on 

cytoplasmic ubiquitinated Htt polyQ aggregates and that p62 and Alfy are present in the same 

Htt-associated complex (Paper II). Importantly, we found that endogenous Alfy did not 

accumulate in aggregates formed by the point mutant of NBR1 (D50R) which is unable to 

interact with p62. This suggests that Alfy is recruited to protein aggregates via p62 in a 

NBR1-independent manner. Moreover, this complex also contains the autophagic markers 

LC3 and Atg5. Interestingly, Atg5 and LC3 did not co-immunoprecipitate with the aggregated 

Htt when Alfy was depleted. This suggests that aggregate-prone polyQ proteins can interact 

with p62 and/or NBR1, and that Alfy may target these proteins for degradation by autophagy. 

In line with this, Alfy depletion resulted in a significant decrease of aggregate clearance, both 

in HeLa and N2a cells expressing either Htt-Q65 or –Q103. The effect of Alfy depletion was 
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similar to cells treated with the autophagy inhibitor 3-MA or depleted of Atg5. Moreover, 

double knock down of Alfy and Atg5 did not result in further inhibition of clearance, 

suggesting that they function in a common autophagy pathway. The turnover of Htt inclusions 

was measured by the filter trap assay, a technique which can be used to observe accumulation 

of SDS-insoluble material (Wanker et al., 1999). In contrast, Alfy depletion had no effect on 

clearance of non-aggregated SDS soluble Htt-Q25 proteins, indicating that Alfy is specifically 

required for turnover of aggregate-prone Htt proteins. This is consistent with earlier 

observations in Drosophila lacking bchs. Bchs mutant flies are adult viable but have a reduced 

life span due to an accelerated accumulation of ubiquitin-positive inclusions and neuronal 

degeneration (Finley et al., 2003).  

But how can Alfy contribute to aggregate clearance by autophagy? Alfy has the 

potential to bind to proteins via its C-terminal BEACH or WD40 repeats domains and to 

membrane lipids through its PI3P-binding FYVE-domain and possibly through the PH 

domain. Considering also the big size of this protein, Alfy probably acts as a scaffold protein 

for the autophagic machinery to build or target autophagosomal membrane onto the protein 

aggregates. Consistent with this, we found that Alfy directly interacts with Atg5 through its 

C-terminal WD40 repeats and that it can bind to Htt-PolyQ via its N-terminal part. However, 

we do not know whether Alfy can recognize the ubiquitinated aggregates directly or if it is 

recruited indirectly, e.g through its interaction with p62. Interestingly, depletion of Alfy 

prevented efficient recruitment of Atg5, as well as LC3, to the Htt inclusions. In GST-

pulldown experiments we observed an interaction between the Alfy C terminus and Atg5, but 

not with LC3, suggesting that Alfy might aid the stabilty of the interaction between LC3 and 

p62 or that LC3 interacts through another region of Alfy. Atg5 has been shown to act as an 

ubiquitin E3-ligase-like protein for the lipid conjugation of LC3 (Hanada et al., 2007). Thus, 

Alfy may bring Atg5 to the inclusion to act as part of a greater E3 ligase-like complex for 

LC3, which allows formation of autophagosomal membrane around the inclusion. This 

scenario fits with the general concept of selective autophagy which implies that each cargo is 

specifically recognized followed by formation of the autophagic membrane closely to the 

target, thus excluding bulk cytoplasm.  

We propose that Alfy is required for the autophagic elimination of aggregation-prone 

proteins (a process named aggrephagy), but not for autophagic degradation of bulk cytosol in 

response to starvation. We assessed the degradation of LLP, formation of LC3 puncta and 

LC3 lipidation under starvation conditions in cells depleted for Alfy and found no difference 
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from control cells. In contrast, general inhibition of autophagy by 3-MA or depletion of 

Beclin-1 or Atg7 inhibited induction of autophagy during nutrient deprivation, as analyzed by 

LLP degradation and decrease of GFP-LC3 positive autophagosomes, in line with previous 

studies (Shibata et al., 2006). 

We have previously shown that Alfy is ubquitously expressed in mouse tissues, with 

the highest levels in brain (Simonsen et al., 2004). Consistent with this, bchs seems to be 

selectively expressed in Drosophila brain (Finley et al., 2003). This suggests that Alfy/bchs 

may be especially important in nondividing cells, in which removal of toxic aggregated 

proteins is essential for cell survival. As tissue expression levels of Alfy (highest in brain and 

lowest in liver) inversely correlate with responsiveness to starvation it is tempting to speculate 

that regulation of the Alfy level of might be a way for the cell to regulate starvation-induced 

autophagy versus aggrephagy (Yamamoto and Simonsen, 2011). Alfy would be an ideal 

candidate for such a regulator, as it shuttles between the nucleus and the cytoplasm. As Alfy 

interacts with the core autophagic machinery (Atg5 and PI3P), increased cytoplasmic Alfy 

levels may lead to toxicity under conditions where non-selective autophagy may be necessary, 

and keeping Alfy in the nucleus would be a way of avoiding this. In line with this hypothesis 

we find that Alfy is mostly localized in the nucleus under normal conditions and becomes 

recruited to the cytoplasm during conditions favoring formation of protein aggregates, e.g. 

puromycin treatment (paper I).  Moreover, we find that p62 is required for Alfy to leave the 

nucleus (paper I), which could indicate that this autophagic receptor signals when aggrephagy 

should be activated.  

It seems that the role of Alfy in aggregate clearance can be extended to other 

aggregating proteins as Alfy depletion also inhibits clearance of mutant α-synuclein A53T and 

co-IP experiments revealed that α-synuclein is detected in the same complex as Atg5 and 

Alfy. Furthermore, Alfy, as p62, seems to be involved in selective autophagy of other 

ubiquitinated structures, such as the midbody ring structure (Isakson et al, unpublished). Alfy 

is localized to the midbody region during cytokinesis and to ubiquitinated midbody remnants 

and is required for their proteolysis by autophagy. Moreover, we have evidence that Alfy is  

involved in autophagic clearance of the oncoprotein PML/RARA (Isakson, unpublished), and 

recently a role for p62 in PML/RARA degradation was also reported (Wang et al., 2011) 

(Paper III). The function of p62 and Alfy in selctive autophagy of ubiquitinated cargo is 

highly similar to the role of Atg19 and Atg11, respectively in the yeast Cvt pathway. In the 

Cvt pathway, the LIR-containing autophagy receptor Atg19 binds the cargo (the vacuolar 
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hydrolase aminopeptidase 1 (ApeI)), followed by interaction with the adaptor Atg11, which 

transports the complex to the pre-autophagosomal structure (PAS) to allow binding to Atg8 

and formation of the autophagic membrane around the cargo.  

Our data stronlgy indicates that Alfy contributes to aggrephagy. But since Alfy and 

selective autophagy normally exist, why are then aggregates formed in human disease? In 

physiological situations, it is important to maintain a balance between the level of newly 

sythesized protein and their degradation.  It is tempting to suggest that increased levels of 

autophagy can diminish the level of misfolded protein and thereby have a protective effect in 

models of neurodegenerative diseases. Indeed, studies in Drosophila and mice models of HD 

have revealed that enhanced levels of autophagy promote aggregate clearance and reduced the 

disease-like symptoms (Lindmo et al., 2006; Ravikumar et al., 2004; Simonsen et al., 2008). 

Taking this into account, we speculated that by increasing Alfy expression levels we may 

increase aggregate clearance. Since Alfy is a very large protein it is difficult to achieve 

overexpression of the full-length protein. We therefore expressed different regions of Alfy 

and thus found that overexpression of the C-terminal part of Alfy, containing the WD40 

repeats and the FYVE domain, had a neuroprotective effect in primary neurons expressing 

Htt-polyQ. Moreover, overexpression of either full length or a C-terminal part of bchs in a 

Drosophila eye model of polyglutamine toxicity was protective. Interstingly, when the WD40 

repeats were mutated in that context, Alfy could no longer rescue aggregate clearance, 

indicating that this effect is due to its interaction with Atg5 and that the neuroprotective effect 

correlates with decreased amounts of protein aggregates. It will be very interesting to learn 

whether overexpression of Alfy in the brain of HD mouse models may increase the rate of 

aggregate clearance and prevent their accumulation and toxic effects. Such studies are 

currently in progress (Yamamoto, unpublished). 
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Autophagy in acute promyelocytic leukemia  

Acute promyelocytic leukemia (APL) is a well-characterized subtype of myeloid leukemia 

(AML). The genetic hallmark of APL is a translocation t(15;17)(q22;q11-12), leading to the 

fusion of the gene encoding promyelocytic leukemia (PML) on chromosome 15 to the retionic 

acid receptor alpha (RARA) gene on chromosome 17, generating the PML/RARA fusion gene 

and protein (Nasr et al., 2009). PML/RARA is a transcriptional repressor that binds RARA 

response elements, resulting in both dominant-negative and gain-of-function properties. This 

leads to a differentiation block at the promyelocytic stage of granulocytic maturation and 

thereby an abnormal accumulation of immature granulocytes named promyelocytes in the 

bone marrow  (Melnick and Licht, 1999). Although more than 97% of APL patients have the 

t(15;17) translocation, several rare variant translocations that always involve RARA are 

observed in the remaining APL patients. The most common is the t(11;17) translocation that 

fuses the promyelocytic leukemia zinc finger (PLZF) gene to RARA (Chen et al., 1993). 

Three distinct proteasome-dependent pathways are known for therapy-induced 

PML/RARA degradation. The first one includes all trans-retinoic acid (ATRA)-induced 

cleavage by proteases of the PML moiety of PML/RARA (Nervi et al., 1998). The second is 

also ATRA-mediated and involves a direct activation of proteasome-dependent degradation of 

DNA-bound, hormone-activated RARA or PML/RARA (Zhu et al., 1999). Finally, arsenic 

trioxide (ATO) targets the PML part of the fusion protein and specifically induces a SUMO-

dependent ubiquitin-mediated degradation process (Tatham et al., 2008). In paper III we 

identified autophagy as a new pathway for therapy-induced PML/RARA degradation. To 

study the PML/RARA catabolism we used the APL cell line NB4, which contains the t(15;17) 

chromosomal translocation which result in expression of the fusion protein (Lanotte et al., 

1991). We found the PML/RARA fusion protein to be highly prone to aggregation as it was 

mainly found in the extraction fraction of 8M UREA. Other extraction buffers containing 

0.5% Triton X-100 or 2% SDS were not efficient in extracting the fusions protein. 

Interestingly, both the normal PML and RARA were found to be considerably more soluble to 

extraction by Triton compared with PML/RARA, suggesting that the fusion protein is more 

aggregate-prone than its respective fusion partners expressed from non-rearranged alleles. As 

mentioned previously, abnormal or aggregation-prone proteins form aggregates that are 

preferable substrates for autophagy. Thus, other oncogenic fusion proteins may share similar 

features of poor solubility and may also be targets of autophagy.  
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We demonstrated that inhibition of autophagy in NB4 cells by inhibitors such as 3-MA or 

BafA1 resulted in an accumulation of PML/RARA, whereas activation of autophagy by 

starvation or treatment with the mTOR inhibitor rapamycin resulted in a decreased level of 

PML/RARA. This suggests that the basal turnover of this oncoprotein is regulated by 

autophagy. However, inhibitors such as 3-MA are not specific to autophagy, as it also 

interferes with other PI3K-dependent intracellular trafficking pathways (Mizushima, 2004; 

Punnonen et al., 1994). To specifically address the role of autophagy in degradation of 

PML/RARA, HeLa cells with ectopic expression of PML/RARA were treated with siRNA 

against ULK1, which also caused an accumulation of the oncoprotein, further indicating that 

PML/RARA is degraded by autophagy.  

APL is a one of the rare malignancies that can be cured by targeted agents, without 

DNA-damaging chemotherapies (Estey et al., 2006; Ravandi et al., 2009; Sanz et al., 2009; 

Wang and Chen, 2008; Warrell et al., 1993). The two clinically active therapies, ATRA and 

ATO, both induce the degradation of the PML/RARA fusion protein and several studies have 

shown that a combination of ATRA and ATO has a synergistic effect on PML/RARA 

degradation (Kogan, 2009; Nasr et al., 2008; Tallman and Altman, 2009). Moreover, patients 

treated with a combination of ATRA and ATO have a more rapid and complete clearance of 

leukemia cells, and have a significantly longer period of relapse-free survival (Hu et al., 2009; 

Shen et al., 2004; Wang et al., 2004). Indeed, APL mouse models have shown synergistic 

effects of both drugs in prolonging survival and even cure leukemia (Jing et al., 2001; 

Lallemand-Breitenbach et al., 2005; Rego et al., 2000). 

We confirmed that both ATRA and ATO induce PML/RARA degradation and have a 

synergistic effect (Paper III). Importantly, we observed that the ATRA and ATO induced 

PML/RARA proteolysis was considerably reduced in the presence of the autophagy inhibitor 

BafA1, indicating again that autophagy is required for effective PML/RARA clearance. 

Interestingly, both drugs were also found to induce autophagy, as measured by the level of the 

lipidated form of LC3 and by quantification of LC3 and p62 positive dots in NB4 cells upon 

treatments with ATRA and ATO.  

mTOR is generally inactivated upon activation of autophagy and the phosphorylation 

state of its substrates can therefore be used to monitor the autophagic activity (Yang and 

Klionsky, 2010). We found that the level of p70S6K kinase (p-p70S6K) decreased 

significantly in both ATRA- and ATO- treated cells, indicating that ATRA and ATO activate 

autophagy via an mTOR-dependent pathway. This is consistent with previous findings 
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showing that blocking mTOR signaling, by the rapamycin analog RAD001, induce 

differentiation of APL cells (Nishioka et al., 2008). Moreover, PML is shown to suppress 

tumor progression via inhibition of mTOR (Bernardi et al., 2006; Bernardi et al., 2011). Thus, 

modulation of autophagy in APL could have important therapeutic consequences. Use of 

mTOR inhibitors may be a promising treatment strategy for individuals with a subset of 

human leukemia. This approach could be particularly promising in leukemias or sarcomas 

caused by fusion proteins. In fact, in solid tumors such as breast cancers, degradation of key 

transcritional activators such as estrogen receptor, have been of clinical use (Raina, 2004). 

However, autophagy can have a double-edged sword function in cancer and drug-induced 

autophagy induction should therefore be used with care. Induction of autophagy in tumor cells 

have been observed to promote tumor cell survival in response to starvation, hypoxia, 

oxidative damage or other stress (Shintani and Klionsky, 2004). In this case, inhibition of 

autophagy for example by specific gene inactivation might prevent tumorigenesis. Along this 

line, it was shown that the combination of a tyrosine kinase inhibitor with inihibitors of 

autophagy resulted in elimination of chronic myeloid leukemia (CML) stem cells (Bellodi et 

al., 2009).  

Treatment-induced PML/RARA degradation allows differentiation and APL 

remission. It was therefore important to study if autophagy plays a role in the drug-induced 

differentiation. Although ATRA and ATO cooperate to induce PML/RARA degradation 

(Nasr et al., 2008; Quignon et al., 1997; Zhu et al., 2001) they do not synergize to induce 

differentiation (Chen et al., 1996; Chen et al., 1997; Shao et al., 1998) and only ATRA 

treatment has been found to stimulate terminal granulocytic differentiation. Interestingly, we 

observed that inhibition of autophagy significantly prevents ATRA-induced differentiation of 

APL cells and that stimulation of autophagy by rapamycin promotes the differentiation of 

APL cells. Contradictory to our study, it was reported that the mTOR/p70s6K pathway is 

activated by ATRA in NB4 cells (Lal et al., 2005). Activated mTOR is associated with the 

ULK1 complex leading to inhibition of autophagy. However, it has been shown that the 

differentiation-inducing effects of ATRA are not dependent on class I PI3K/mTOR signaling 

and that mTOR signaling rather plays a role in basal and ATRA induced cell survival 

mechanisms in APL (Billottet et al., 2009).  

Our study also raises interesting questions as to the possible links between autophagy 

and PML, which is highly stress-sensitive and may also assemble into cytoplasmic bodies 

(Jul-Larsen et al., 2010). In addition to a role in leukemia, PML has also been linked to other 
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cancers (Gurrieri et al., 2004), and down regulation of PML in a number of cancers has been 

observed (Gurrieri et al., 2004; Zhang et al., 2003). The PML protein forms distinct nuclear 

foci referred to as PML nuclear bodies (NBs). Expression of the fusion protein PML/RARA 

leads to disruption of these structures formed by the normal PML protein in the nucleus 

(Melnick and Licht, 1999). Interestingly, in addition to misfolded proteins and PML/RARA, 

several proteins of the autophagic machinery, such as Beclin1 (Liang et al., 2001) and p62 

(Pankiv et al., 2010b) are known to localize to PML-NBs and to undergo nucleocytoplasmic 

shuttling. However, very little is known about how this nucleocytoplasmic shuttling affects 

autophagy and it is not clear why these autophagy related proteins shuttle through the nucleus 

and localize to PML-NBs. Also Alfy is found in PML bodies in the nucleus and shuttle 

between the nucleus and the cytoplasm (Paper I). The fact that they all localizes to both 

nuclear and cytoplasmic aggregated proteins raise the question of whether Alfy and p62 are 

involved in degradation of nuclear aggregates. In the nucleus, p62 is proposed to recruit 

proteasomes to nuclear aggregates to facilitate their degradation (Pankiv et al., 2010b).  

In paper II we found that localization of Alfy to cytoplasmic Htt inclusion involved 

recruitment of Alfy from the nucleus, as it was blocked by the nuclear export inhibitor, 

leptomycin B (LMB). Similar Alfy relocation can be initiated by other stress factors as 

starvation, resulting in localization of Alfy to Ub and p62-positive cytoplasmic bodies. As 

mentioned previously p62 and Alfy are required for the sequestration of misfolded proteins 

into p62 bodies and both proteins are involved in selective autophagy. In paper I we have 

shown that p62 is required to recruit Alfy from the nucleus to the cytoplam. It is therefore 

likely that p62 and/or Alfy are required to recruit PML/RARA from the nucleus to the 

cytoplasm. Another possibility is that Alfy and p62 might facilitate recognition of nuclear 

aggregates by the autophagic machinery when the nuclear envelope is disassembled during 

mitosis.  

If and how nuclear aggregates are degraded by autophagy is currently not know. 

Autophagy has been shown to eliminate cytoplasmic polyglutamine-containing aggregates 

more efficiently than nuclear aggregates (Iwata et al., 2005a) and this differential efficiency of 

degradation could explain why nuclear aggregates are more cytotoxic than cytoplasmic ones. 

Post-translational modifications, like ubiquitination, acetylation and phosphorylation, have 

been shown to specifically enhance the degradation of the aggregate-prone proteins by 

autophagy. Huntingtin is also found in the nucleus, and aggregate-prone mutant versions of 

huntingtin must be exported to the cytoplasm to be degraded by autophagy. This might be 
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regulated by acetylation and phosphorylation of huntingtin (Jeong et al., 2009; Thompson et 

al., 2009). Acetylation of mutant aggregate-prone huntingtin located in the nucleus enhances 

its degradation by autophagy (Jeong et al., 2009). In contrast, mutant huntingtin that is 

resistant to acetylation strongly accumulates in the expressing cells. Interestingly, it has 

recently been shown that PML exists as an acetylated protein in HeLa cells (Hayakawa et al., 

2008). Moreover, increased acetylation of PML is associated with increased sumoylation of 

the protein in vitro and in vivo. It will be interesting to learn whether the PML part of 

PML/RARA becomes acetylated, and if this facilitates its degradation by autophagy.  

 

 

 

 

Experimental considerations 
In this section I will discuss some of the advantages, pitfalls and limitations of the techniques 

used in this thesis. 
 

Cell lines 
Cultured human cells has been used to address several fundemental questions in cell biology 

which has led to the generation of a vast amount of knowledge. In this thesis we have used 

multiple cell lines. In paper I and II we used HeLa cells as our main experimental system. 

HeLa cells originate from cervical cancer cells taken from Henrietta Lacks, a woman of 

African American origin who was diagnosed with cancer in 1951, and were the first human 

cells to be continuously grown in cell culture. HeLa cells are extensively used in laboratories 

around the world, and display a number of useful properties as a laboratory model. They are 

robust and fast growing, expression and depletion of proteins by transfection can easily be 

performed, and in our specific context, their autophagosomal structure can easily be detected 

by microscopy. It is however worth noting that these cells have a non-human number of 

chromosomes (82 chromosomes).  

In Paper III we used NB4 cells, a cell line derived from the bone marrow of a patient 

with acute promeolytic leucemia (APL) (Lanotte et al., 1991), to study PML/RARA 

catabolism. This cell line is characterized by the t(15;17) (q22;qll-12) chromosomal 
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translocation that result in expression of endogenous PML/RARA fusion protein. Moreover, it 

mimics several features of clinically isolated APL blast cells, including the ability to undergo 

ATRA-stimulated differentiation along the granulocyte linage. These features make this cell 

line a remarkable tool for leucemia studies. However, the NB4 cells have proven difficult to 

transfect. In order to deplete autophagy-specific genes we tried to transfect the NB4 cells 

using different liposome-based transfection reagents, as well as the Amaxa nucleofector, 

without success.  

In paper II we used immortalized mouse embryonic fibroblast (MEF) cells, human 

embryonic kidney 293 (HEK293) cells and N2a cells (murine neuroblastoma cell line) to 

study the role of Alfy in autophagy. We used Atg5 knock-out MEFs (Kuma et al., 2004) 

which allowed us to analyse the effects of depletion of autophagy. These cells are better to use 

than siRNA against Atg5 because the siRNA-mediated Atg5 depletion is not always 

complete. However, one should consider that even though autophagy is inhibited in the Atg5 

KO MEFs, depletion of Atg genes could lead to implications that are distinct from autophagy; 

for example, Atg5 has been implicated in cell death pathways (Luo and Rubinsztein, 2007). 

Moreover, the impairment of autophagy ultimately hinders flux through the UPS, the other 

major catabolic route in cells. Another problem with the knock-out cells is that they might 

upregulate a redundant pathway to compensate for the one lost. This is most often not seen in 

knock down situations where the effect exists for shorter time.  

We also used HEK 293 cells stably expressing GFP-tagged LC3 (Chan et al., 2007). 

This cell line allowed us to monitor the level of autophagsome formation, analyse the 

autophagosome formation and determine colocalization of proteins with LC3. Although GFP-

LC3 is a broadly used tool to visualize autophagy, caution should be used to misinterpret the 

results, as GFP-LC3 overexpression may cause artefacts. It was reported that overexpressed 

GFP-LC3 may form protein aggregates independent of autophagy, as GFP-LC3 positive 

structures were seen in autophagy-deficient cells (Kuma et al., 2007). A lipidation deficient 

mutant of LC3 (Tanida et al., 2008) and EM analysis can be used to avoid false results.  

To study a neuronal disorder such as Huntingtons disease, we used cell lines 

expressing a shorter form of the mutant protein, Huntingtin (Htt). In paper II, we used HeLa 

and N2a cells with stable conditional expression of the exon1 of Htt witt either 25, 65 or 103 

glutamin repeats, fused to mCFP (Htt-Q25/65/103-mCFP) (Yamamoto et al., 2006). The 

expression of the mutant protein is regulated by a Tet-off system, meaning that protein 

expression can be turned off by addition of tetracycline or the tetracycline analogue 
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Doxycyclin (Dox) in the media. Aggregates formed upon expression of Htt-Q65/103-mCFP 

are degraded in 5 days after Dox treatment (Yamamoto et al., 2006). This model system 

allowed us to specifically monitor aggregate clearance without interference of newly 

synthesized proteins. However, in physiological situations, proteins are continuously 

produced and an effect on their clearance will depend on the balance between newly 

sythesized protein and their degradation.  
 

Transient transfection and overexpression of  proteins 
Transient expression of proteins in eukaryotic cells is a widely used tool to study their 

interaction partners, localisation and intracellular trafficking and this method has been used  

in all studies included in this thesis. Several advantages are offered by this technique. It 

allows the study of intracellular proteins whose endogenous amounts are below the detection 

level. Moreover,  if the transiently expressed protein carry a tag (e.g GFP or myc) one can 

easily detect proteins when protein-specific antibodies are lacking. One can also analyse the 

effect of a deletion or point mutant of the protein of interest, exemplified  by the transient 

expression of mCherry-p62ΔUBA lacking the UBA domain responsible for binding of p62 to 

ubiquitin (used in paper I). Use of this method made it possible to analyse aggregate clearance 

by a rescue assay where the disease-phenotype is reversed by reintroducing parts of the 

protein Alfy into the cells.  

The primary rat cortical neurons were transduced with a lentiviral model that 

expresses an exon1 fragment of Htt with 72Q (exon1Htt72Q) tagged to GFP. By using this 

sytem we could facilitate a stable expression of Htt. Lentiviruses have been adapted as gene 

delivery vectors because of their ability to integrate into the genome of non-dividing cells. To 

obtain a lentivirus, several plasmids, such as transfer vector plasmid, the packaging plasmid 

and a plasmid with the heterologous envelope gene (ENV) of a different virus, are transfected 

into a packaging cell line (Amado and Chen, 1999). For safety reasons lentiviral vectors never 

carry the genes required for their replication. The lentiviral vector conatins sequences 

necessary for the vector to infect the target cell and for gene transfer. The viral genome in the 

form of RNA is reverse-transcribed when the virus enters the cell to produce DNA. The DNA 

is then inserted into the genome at a random position by the viral integrase enzyme. A 

problem with lentivirus is that it can disturb the function of cellular genes and lead to cancer. 
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Although a greatly appreciated technique, there are also disadvantages that should be 

concidered. The level of the expressed protein is generally higher than the endogenous 

protein, which may cause artefacts such as altered protein localization and protein 

aggregation. Thus, transient expression should be used with caution in the context of 

aggregate studies. In this study, when looking at overexpressed proteins by 

immunofluorescence, we tried to select cells which expressed moderate amounts of protein 

and which had a normal morphology.  

 

Gene silencing 
Small interfering RNA (siRNA) mediated downregulation of a specific protein is used 

throughout this thesis. Cells are transfected with 21 nucleotide long siRNA oligos, which 

assemble into endoribonuclease-containing complexes known as RNA-induced silencing 

complexes (RISCs), resulting in unwinding, cleavage and destruction of complementary RNA 

molecules (Filipowicz, 2005). This effect can also be achieved by introducing vectors 

expressing short hairpin RNA (shRNA) into cells. The vector normally contain of an U6 or 

H1 promoter to ensure that the shRNA is always expressed. A shRNA is a sequence of RNA 

that makes a tight hairpin turn that can be used to silence gene expression via RNA 

interference. In paper II, we used lentivirus sh-RNA to mediate a constitutive gene knock 

down of Alfy.  The use of siRNA also has drawbacks, one problem is the possibility of off-

target effects. The introduced siRNA may bind to a partially complementary mRNA  

molecules, leading to problems interpreting the results, and to potential toxicity. To validate 

our results we used more than one single oligo per gene in our experiments. To prove the 

specificity of the knockdown, protein expression levels and size were studied by Western 

blotting. The knockdown efficiency can vary from experiment to experiment and must 

therefore be checked each time. A complete gene silencing is difficult to achieve, but is 

required in some cases to inhibit the function of proteins that can sustain a cellular function 

even at very low expression levels (e.g. Atg5). In such cases, the use of cell lines derived from 

knockout animals is a better alternative and Atg5 KO MEFs were used in paper II. However, 

animal technology is costly and time consuming.  
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Drosophila model  
The fruit fly Drosophila melanogaster has become a powerful genetic model organism to 

study the process of autophagy and its relation to disease since both cancer and 

neurodegenration can be modeled in this organism. The study of specific genes can be 

achieved either by using loss of function mutants or by overexpression of proteins using the 

UAS/Gal4 system. This techinque was used in paper II where we show that the Alfy homolog 

Blue Cheese (bchs) can rescue the neurodegenerative phenotype in a Drosophila eye model of 

polyglutamine toxicity (Kazemi-Esfarjani and Benzer, 2000). The system has two parts: the 

GAL4 gene, encoding the yeast transcription activator protein Gal4, and the UAS (Upstream 

Activation Sequence), a short section of the promoter region, to which Gal4 specifically binds 

to activate gene transcription. For overexpression studies the gene of interest is inserted 

behind an UAS sequence in a transposable “P”-element vector, followed by insertion into the 

genome and generation of an UAS-containing stock. Various promoter-specific Gal4 stocks 

exist, called driver lines, where Gal4 is specifically expressed in some cells or tissue (e.g in 

the eye retina in paper I or brain in paper II). This inducible system is adapted from yeast, 

which provides an advantage, as Gal4/UAS are not normally present in Drosophila. Thus, 

their expression does not interfere with other processes in the fly cells (Toba et al., 1999).  

In paper II, we used an established fly model where polyQ127 is expressed 

specifically in the eye using the eye-specific driver GMR-Gal4. These flies have a 

recognizable disrupted eye phenotype with a reduced size, loss of pigmentation and neurotic 

patches corresponding to damaged photoreceptor cells of the ommatidia. By achieving co-

expression of full length (GMR-Gal4, UASpolyQ127, UAS-FL-Bchs) or a C-terminal fragment 

of bchs (GMR-Gal4, UAS-polyQ127, UAS-bchs-C1000) we observed a reduction of these 

symptoms. Moreover, we could show that the bchs-mediated rescue of the polyQ-induced 

symptoms was autophagy dependent, as the symptoms were not reversed when autophagy 

was suppressed by co-expression of Atg8a RNAi (GMR-Gal4, UAS-polyQ127, UAS-bchs-

C1000, UAS-dsAtg8-RNAi). 

 As an alternative approach to analyse neuronal dysfunction and clearance of 

aggregate-prone proteins we used differential detergent extraction of proteins from fly head 

extracts followed by Western blotting for insoluble ubiquitinated proteins (IUP). It has 

recently been shown that Drosophila blue cheese mutants show neural degeneration and 

accelerated formation of Ub-positive protein aggregates in the central nervous system (CSN) 



57 

 

(Finley et al., 2003). In paper I we show that the Drosophila p62 homolog Ref(2)P 

accumulates in flies carrying mutations in the Alfy homologue blue cheese.  

The Drosophila larva fat body (equivalent to hepatic/adipose tissue in mammals) is an 

especially useful tissue in studying autophagy. Autophagy can be induced by starvation in 

early larval stages and is also induced developmentally in late larval stages (Scott et al., 

2004). The fat body functions as the organism's nutrient sensor, and is responsible for 

providing nutrients to the organism during starvation and during metamorphosis (Aguila et 

al., 2007; Colombani et al., 2003; Geminard et al., 2009; Lee and Park, 2004; Liu et al., 

2009). Fat body cells are large, making it easy to visualize sub-cellular compartments such as 

autophagosomes and lysosomes. Using flies expressing GFP-LC3 in the fat body, in 

combination with Lysotracker red, a red dye that labels acidic organelles, one can distinguish 

autophagosomes (green) from autolysosomes (yellow) and lysosomes (red). However, 

Lysotracker can also be used alone to measure the level of autophagy in the larval fat body, as 

large lysotracker-positive structures are induced upon induction of autophagy and not in flies 

expressing RNAi of Atg5 (Scott et al., 2004) or Atg1 (Scott et al., 2007). In paper II we show 

that starvation-induced autolysosomal formation is not dependent on Alfy, as the amount of 

red dots in the fat body of  two different Bchs mutant was similar to wild type, whereas the 

lysotracker-red structures was depleted when Atg1 was supressed by expression of Atg1-

RNAi using the fat body driver Cg.  

 
 

Confocal  microscopy  

Immunofluorescence microscopy (IF) was used throughout this thesis to visualise the 

infrastructure of the cell, to study the localization of proteins involved in autophagy and to 

perform quantitative analyses. This method was also used for primarily measurments of p62 

or/and LC3 positive dots per cell in different conditions that stimulate or inhibit autophagy. 

These studies are feasible using confocal microscopy, in contrast to the conventional 

fluorescent microscopy. While conventional microscopy illuminates the entire specimen, 

confocal laser-scanning microscopy only detects the fluorescence within the focal plane, 

excluding background information above and below the focal plane (Saggau, 2006). The 

image represents a thin cross-section of the specimen/cell, which allows the visualisation of 

proteins stained with fluorochrome-labeled antibodies or fused to intrinsic fluorescent 
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proteins like GFP. The localization of individual proteins in eukaryotic cells is often 

determined by IF, a procedure requiring fixation and permeabilization of the cells before 

antibodies can be applied. The high level of cytosolic protein following ectopic expression of 

a protein can cover the signal arising from the specific cellular structures like autophagosomes 

and protein aggregates. This can be avoided by depleting the cells of cytosol prior to fixation. 

Permeabilization (before or after fixation) is usually achieved by extracting membrane lipids 

with mild detergents like saponin, which preserve better the cellular architecture. Neverthless, 

resulting images might still contain some background staining that may interfere with the 

immunostaining proper. The antibody specificity is another issue to consider when detecting 

endogenous proteins, as the antibodiy may bind to other proteins. To control for this, staining 

of specific cellular structures should disappear when the protein of interest is depleted with 

siRNA. Analysis of the PML/RARA fusion protein was studied by an anti-RARA antibody in 

most of experiments in paper III. Using this antibody for IF makes it impossible to distinguish 

the normal RARA protein from the fusion protein. However, these problems could be solved 

with methods such as Western blot or ectopic expression of this oncoprotein.  

One can also use dyes specific for various subcellular compartments, e.g.Draq5 which 

stains the nucleus (paper II) and Lysotracker, as described above. The method is dependent on 

high quality, thin-section confocal images in order to co-detect two, or even three (paper II) 

proteins. Excitation wavelengths of each fluorophore have been carefully defined and care has 

been taken to avoid bleed-through from one channel to another, by optimising the microscpy 

settings when producing multicoloured images. Such bleed-through could potentially cause 

false positives leading to the incorrect conclusion of a co-localization. There is also a risk of 

bleaching the fluorochrome and pictures should be taken before the sample is significantly 

bleached. When using confocal IF images for quantification of e.g. the number of spots, it is 

important to select the cells as randomly as possible and measure a large number of cells to 

increase the statistic strength of the results.  

 
 

Electron microscopy 
Morphological detection of autophagsomes by EM is the most reliable method for studing 

autophagy. It uses a beam of highly energetic electrons that enable the examination of objects 

on a very fine scale (nanometer level). The autophagosome appear as double membrane 

vesicle and generally contain cytoplasmic material, but as it can later fuse with endocytic 
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structures it can be difficult to distinguish the different types of autophagic and endocytic 

vesicles solely by morphology (Liou et al., 1997). Using immuno-EM, a technique which 

allows immunostaining with specific antibodies conjugated to gold particles of different sizes, 

we were able to study whether protein aggregates (HttQ65/103-mCFP labeled with anti-GFP 

antibodies) could be detected inside the autophagosomes (Paper II) and we could also 

determine the distribution of p62 in HeLa cells treated with puromycin (Paper I). 

 
 
 
 
 

Degradation of long-lived proteins in response to amino acid 
deprivation  
The ubiquitin-proteasome system is responsible for the highly selective degradation of short-

lived proteins whereas autophagy is responsible for the turnover of long-lived proteins 

(LLPs). By measuring the rate of degradation of LLP one can monitor the rate at which 

proteins are transported via the autophagic pathway to the lysosomes (autophaic flux). The 

method is based on a pulse-chase approach, were cells are incubated in media containing 

isotopically labeled amino acid ([14C]valine) to label all cellular proteins, then washed and 

chased to allow degradation of short-lived proteins. Finally, the cells are incubated in nutrient 

rich or deprived media in the prescence or absence of an autophagy inhibitor (e.g. 3-MA) for 

4 hrs and the level of LLP degradation is measured by counting the amount of TCA-soluble 

(degraded material) vs TCA-precipitated (intact protein) radioactivity. The chase is done in 

the prescence of cold valine to prevent reutilization of the radiolabeled amino acids for 

protein synthesis.  

Over all, protein turnover is not directly correlated with autophagy or lysosomal proteolysis; 

we therefore monitor LLP turnover during starvation induced in the prescence of 3-MA or 

compare with results in cells depleted for autophagy (Paper II). However, it shall be 

considered that amino acids can acts as inhibitors of autophagy and radioactive valine is 

therefore used, as this amino acid does not inhibit autophagy (van Sluijters et al., 2000).  
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Evaluation of aggregate clearance  
The filter trap assay is widely used to evaluate the accumulation of insoluble protein 

aggregates in various diseases. The assay is based on the finding that the polyglutamine-

containing protein aggregates are insoluble in SDS and are retained on a cellulose acetate 

membrane with pore size 0,2 μm, whereas the monomeric forms or microaggregates of the 

protein  do not bind to this filter membrane (Scherzinger et al., 1997; Wanker et al., 1999).  

We used this technique to determine whether Alfy is required for clearance of polyglutamine-

containing protein aggregates (huntingtin and a-synuclein aggregates in paper II). The level of 

aggregates can be analysed by immunoblotting as a quantitative alternative to confocal 

microscopy. To ensure that the detected clearance is due to autophagy, we included inhibitors 

of autophagy or siRNAs targeting Atgs in our experiments. Additionally, we also checked that  

the proteasome activity was similar in all conditions to exclude activation of the UPS. This 

technique do not allow detection of inclusions smaller than 0,2 μm. However, 

microaggregates are also targeted by autophagy and therefore it is important to study their 

turnover in the context to Alfy. To solve this problem we used a PVDF and a cellulose acetate 

sandwich approach, which allow also smaller SDS-insoluble aggregates to be detected by the 

dot-blotter technique. 

 

Protein-protein interaction 
Protein-protein interactions form the basis of most cellular processes and many biochemical 

methods exist to detect such interactions. In this thesis we used various techniques, such as 

immunoprecipitation (IP), the yeast-two hybrid (Y2H) system and glutathione S-transferase 

(GST) pull down to reveal interactions between Alfy and p62 (Paper I) and Aly and Atg5 

(paper II). Each approache has its own strengths and weaknesses, especially in variation of 

their sensitivity, efficiency, and rapidity. Thus, using a combination of these techniques gives 

more reliable results and decrease the possibility of mis-interpretation. 

 Pull-down assays are widely used for the detection of protein-protein interactions and exist in 

many variations. In general, the protein of interest is attached either covalently to a pre-

activated resin or non-covalently through a high affinity interaction between the protein and 

the resin. The protein of interest is often expressed as a recombinant protein fused to 

gluthathione S-transferase (GST) or maltose-binding protein (MBP), as in paper I (interaction 
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between Alfy and p62) and paper II (interaction between Alfy and Atg5).  The fact that two 

recombinant proteins interact strongly indicate that there is a direct interaction between these 

two proteins.  

The Y2H system is used to investigate the interaction between artificial fusion proteins 

inside the nucleus of yeast. This approach can be used on a screening scale to identify 

potential interaction partners. It is based on activation of downstream reporter gene(s) by the 

binding of a transcription factor onto an upstream activating sequence (UAS). The 

transcription factor is split into two separate parts, called the binding domain (BD), which is 

responsible for binding to the UAS, and an activation domain (AD), which is responsible for 

gene activation. Two plasmids are used in this technique; one that expresses the BD fragment 

fused to a protein, commonly called the bait protein,  while  the other plasmid encodes the AD 

fragment fused onto another protein, the prey protein. If the bait and prey interact, the AD and 

BD of the transcription factor are indirectly connected, which activate the transcription of a 

reporter gene (LacZ or HIS3). We used the yeast reporter strain L40 (Vojtek et al., 1993) 

which was cotransformed with the BD-vector pLexA-hAtg5 and the AD-vector pGAD-Alfy 

(Paper II). A positive interaction was scored by measuring β-galactosidase activities, the 

product of the reporter gene LacZ. A weakness of this approach is the high number of false 

positives and negatives that can be observed. Another concern is that aberrant folding or post-

translational modifications of the mammalian proteins can occur because they are expressed 

in yeast which can lead to false positives or negatives. Another problem that arised was that 

the bait vector pLexA-hAtg5 caused some gene activation in the absence of the AD-Alfy 

protein. To solve this problem we added 5 mM 3-amino-1,2,4-triazole (3-AT), a competitive 

inhibitor of the HIS3-gene product which provide a weaker sensitivity of the AD. 

 Co-immunoprecipitation is considered to be the gold standard assay for protein–

protein interactions, as it can be performed with endogenous proteins within the cell. The 

protein of interest is isolated from a cell lysate with a specific antibody and putative 

interaction partners are identified by Western blotting. However, this method can not verify 

direct interactions and is not a screening approach.  

 

Autophagic markers (LC3 and p62) 

One important tool for assessing autophagy is the use of autophagic markers. LC3, a 

mammalian homologue of yeast Atg8, is the only known mammalian protein that associates 
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with the autophagic membranes throughout the pathway. The two forms of the protein, the 

cytosolic LC3-I (18 kDa) and the membrane-bound LC3-II (16 kDa) can easily be detected by 

Western blotting The amount of LC3-II and the LC3I/LC3II ratio correlates well with the 

number of autophagosomes (Kabeya et al., 2000). When working with LC3 one should know 

that the protein is easily degradaded during the preparation of the cell lysate and its therefore 

important to use protease inhibitors and keep the samples on ice. Use of higher concentration 

of tritonX-100 (2%) is necessary for its efficient extraction (Sou et al., 2006). We generally 

used 1% tritonX-100 in our lysis buffers and got well recognized bands, but addition of 0.05% 

SDS in our lysis buffer might have assisted that. LC3 itself is degraded by autophagy when 

the autophagosome fuses with the lysosome, so its overall protein level depends on the 

lysosomal turnover and autophagic activity. Thus, induction of autophagy by starvation will 

first cause increased LC3-II formation with subsequent decrease. LC3 II has a short half-life 

because autophagosomes are transient structures. In line with this, an LC3 blot can be difficult 

to interpret, but by comparing LC3-II levels in the presence or absence of lysosomal inhibitors 

(e.g. BafilomycinA1, BafA1) it is possible to get more accurate information about the 

autophagic flux. If autophagy is upregulated by a treatment, the LC3-II level is expected to be 

higher in the presence of lysosomal inhibitors than in control cells treated with the same 

inhibitor. In contrast, if the treatment inhibits autophagy then the level of LC3-II will be the 

same as in control cells in the presence of lysosomal inhibitors. In paper II we investigated 

whether Alfy is required for LC3 lipidation. LC3-II levels analysed from control and Alfy-

depleted cells that were starved for 4 hrs in the presence of BafA1, showed that neither 

starvation-induced nor basal lipidation of LC3 was affected by Alfy depletion.  

The cytosolic protein p62 is degraded by autophagy (Bjorkoy et al., 2005) and was therefore 

used as a biochemical marker for autophagic activity in this thesis. p62 binds to LC3 and to 

ubiquitinated cargo and thereby serves as a receptor for autophagy  (Pankiv et al., 2007). p62 

is also a common component of Ub-positive inclusions and various types of poly-

ubiquitinated protein aggregates, including Lewy bodies (alfa-synuclein, PD), neurofibrillarity 

tangles (tau, AD) (Kuusisto et al., 2003; Nagaoka et al., 2004) and huntingtin aggregates (Htt, 

HD) as we also show in our study (Paper II). The p62 level is increased in cells depleted for 

autophagy, such as Atg5 knock out MEFs, compared to wild type MEFs. Another way to 

monitor autophagy is to use a double fluorescently-tagged (Cherry-GFP) LC3 or p62. The 

protein will be visualized as yellow (both green and red) in early autophagosomal structures, 
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while only red fluorescence will be detected when p62 reaches acidic compartments (late 

endosomes and/or lysosomes), as the mCherry tag is acid stable whereas GFP is quenched in 

the acidic enviroment. Using this method in paper I, we demonstrate that autophagic 

degradation of p62 is not dependent on Alfy. As expected, a construct lacking the LC3-

interacting (LIR) motif, displayed yellow flourescence and this was also the only construct 

that did not accumulate in autophagic structures upon Baf A1 treatment. However, the level of 

p62 is also influenced independent of autophagy, for exemple by apoptosis or protesomal 

inhibition (Kuusisto et al., 2001). It is therefore important to evaluate p62 levels in 

combination with other methods to study autophagy.  

 
 

Drugs and inhibitors  
Inibitors and drugs are widely used in therapy to treat patients. Many of them have improved 

treatment of various disorders, however, a note of cation is that drugs may exhibit side-

effects. A drug can interfere with another pathway (s) than expected and this can result in 

undesirable secondary effects. Therefore it is important to take a skeptical view of the drug of 

interest. In order to minimize the secondary effects it is important to determine the optimal 

dosage of the drug. 

3-methyladenine blocks autophagic protein degradation (Seglen and Gordon, 1982) by 

inhibiting the PI3Ks (Petiot et al., 2000). However, it should be kept in mind that this 

inhibitor (Blommaart et al., 1997) also interferes with other PI3K-dependent intracellular 

trafficking pathways (Mizushima, 2004; Punnonen et al., 1994).  We used BafA1 to inhibit 

autophagy in many experiments. This inhibitor prevents the autophagosome-lysosome fusion 

by blocking the H+ vATPase proton pump (Ohkuma et al., 1993). Evaluation of LC3 levels in 

the prescence of BafA1 indicate whether autophagy is upregulated or disrupted (as mentioned 

in the section above). 

Puromycin was used in paper I to study the formation of cytoplasmic bodies. 

Treatment with puromycin causes premature chain termination of amino acids during 

translation, resulting in a large increase of prematurely terminated misfolded proteins that 

transiently accumulate in cytoplasmic bodies (named p62 bodies or ALIS; aggresome-like 

inducible structures) (Lelouard et al., 2004; Szeto et al., 2006). 
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Leptomycin B blocks exportin 1 (XPO1), a protein required for nuclear export of proteins 

containing a nuclear export sequence (NES) (Kudo et al., 1999). Leptomycin B treatment 

made it possible for us to adress the localization of Alfy and p62 to PML nuclear bodies 

(NBs) (Paper I). 

In paper III we used the drugs ATRA and ATO to determine whether autophagy 

contributes to ATRA and ATO–mediated PML/RARA degradation in the APL cell line NB4. 

ATRA is known to cause disease remission in APL patients by acting on the transcriptional 

activity and cause granulocyte differentiation of APL cells (Melnick and Licht, 1999; Nasr et 

al., 2009). ATO, another effective agent used to cure APL, induce disease regression mainly 

by causing  degradation of PML/RARA (Nasr et al., 2009). Arsenic-mediated proteolysis 

involve small ubiquitin-like modifier (SUMO)–ylation of PML/RARA.  
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