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Aims of the study 
The majority of patients with locally advanced cervical cancer are treated with 

chemoradiotherapy. Approximately 55% of these patients show progressive disease within 5 

years after diagnosis, and side effects in organs within the pelvis after radiation treatment 

are frequent. It is therefore a lot to gain on finding biological characteristics of the disease 

that can be used to predict the outcome more accurately than the clinical information 

currently used. Chromosomal alterations, like gains and losses, are frequent in cervical 

cancer. Such DNA copy number alterations may deregulate the expression of affected genes 

and change cell behavior, however, their biological significance in cervical cancers have not 

been clarified.

The overall aim of this work was to explore the potential of DNA copy number alterations 

as biomarkers for identification of patients at risk for failure or for development of targets 

for therapeutic intervention. The preferred technique for detecting copy number alterations 

is array comparative genomic hybridization (aCGH). This technique provides relative copy 

numbers, which are influenced by tumor ploidy and the normal cell content of the clinical 

specimen, leading to unreliable results when data are compared across patients. An 

improvement of the current analysis methods was therefore required to handle these 

problems. The specific aims of the work were to: 

� Develop a tool for genome-wide calculation of absolute DNA copy numbers from 

clinical aCGH data that enabled comparisons across patients despite differences in 

tumor ploidy and normal cell content of the clinical specimens.  

� Explore the importance of DNA copy number alterations for the carcinogenesis and 

chemoradioresistance of cervical cancers by aCGH analysis.  

� Investigate the functional role of selected DNA copy number alterations by 

integrating the data with gene expression and ontology information of the same 

patients.  

� Evaluate the usefulness of DNA copy number alterations and their target genes as 

biomarkers for the clinical outcome. 



VIII

List of papers 

I Lyng H, Lando M, Brøvig RS, Svendsrud DH, Johansen M, Galteland E., 
Brustugun OT, Meza-Zepeda LA, Myklebost O, Kristensen GB, Hovig E, Stokke T 
(2008). GeneCount: genome-wide calculation of absolute tumor DNA copy numbers 
from array comparative genomic hybridization data. Genome Biol 9(5):R86. 

II  Lando M, Holden M, Bergersen LC, Svendsrud DH, Stokke T, Sundfør K, Glad IK, 
Kristensen GB, Lyng H (2009). Gene dosage, expression and ontology analysis 
identifies driver genes in the carcinogenesis and chemoradioresistance of cervical 
cancer. PLOS Genetics, 5(11):e1000719. 

III Lando M, Snipstad K, Clancy T, Halle C, Holden M, Stokke T, Sundfør K, Holm R, 
Kristensen GB, Lyng H. Microarray based analysis of gene expression and pathways 
associated with loss on chromosome 3p in cervical cancer. Manuscript.



1

Introduction

Cervical cancer

Epidemiology  

Cervical cancer is the second most common cause of cancer-related death among women 

globally, and the number-one cause of cancer-related death in women in developing 

countries (Lehoux, D'Abramo, and Archambault 2009). From 2004-2008, 284 new cases 

were diagnosed in Norway each year (Cancer Registry of Norway 2010). International 

Agency for Research on Cancer (IARC) estimated 493,000 new cases in 2002 worldwide, 

and the number of deaths was 274,000 (Parkin et al. 2005). The peak incidence of the 

disease occurs in women over 40 years of age. The introduction of the Pap smear has 

reduced the overall death rate by approximately 74% since the tests were first implemented 

(Cervical Cancer Statistics 2007). Therefore 80% of the incidences are occurring in 

developing countries, where cervical cancer prevention programs are not available.  

Risk factors 

The primary risk factor for cervical cancer is the Human Papilloma Virus (HPV). There are 

several types of HPV, which vary in their ability to transform the cervical epithelium 

(Cannistra and Niloff 1996). Low-risk varieties, such as HPV 6 and 11 are commonly 

associated with CIN I, which do not usually progress to invasive disease. The high-risk 

types, such as HPV 16, 18, 31, 33, and 35 are often associated with moderate dysplasia 

(CIN II) and severe dysplasia (CIN III) or carcinoma in situ and are observed in more than 

99% of patients with invasive cervical cancer (Lehoux et al. 2009). The highest incidence of 

HPV infection is between the age of 20 and 30, suggesting a long latency period between 

infection and cancer appearance (Lazo 1999). Other risk factors have been identified, 

including poverty, high parity, sexual intercourse at an early age, multiple sexual partners, 

smoking, eating habits, and weakened immune system (Hulka 1982;Reeves, Rawls, and 

Brinton 1989).

Histological subtypes 

The three major histological types of invasive cervical cancer are squamous cell carcinoma 

(SCC), adenocarcinoma (AC), and adenosquamous carcinoma (ASC), where SCC 

comprises 80-85% of the cases and AC and ASC together comprise approximately 15% of 
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the cases (Baalbergen et al. 2010). SCC arises from the multilayered squamous epithelium 

of the ectocervix and transformation zone, whereas AC arises from the glandular epithelium 

of the endocervix (Szalmas and Konya 2009). 

Staging

Staging of invasive cervical cancer is usually described in terms of the FIGO (International 

Federation of Gynecology and Obstetrics) system based on clinical criteria like size, depth 

of penetration within the cervix, and spread within and beyond the cervix (Fig. 1) (Koyama, 

Tamai, and Togashi 2007). Stage I tumors are limited to the cervix, and are divided into 

stage 1A, 1B1, and 1B2 depending on the penetration depth. Stage II tumors extend beyond 

the cervix to the upper two thirds of the vagina (IIA) or the parametrial tissue (IIB), but not 

to the pelvic side wall. Stage III tumors have spread to the lower third of the vagina (IIIA) 

or to the pelvic side wall (IIIB). Stage IV tumors have invaded the mucosa of the bladder or 

rectum (IVA) or have spread to distant sites outside the pelvis (IVB). 

Fig. 1: Staging of cervical cancer according to FIGO. Adapted from (Camis�o et al. 2007). 
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Treatment and prognosis 

The choice of treatment for invasive cervical cancer depends primarily on tumor stage, 

although factors like the location of the tumor within the cervix, histology, patient age, 

general health, childbearing plans, and pregnancy also affect the therapeutic options (Health 

MD: How is Cervical Cancer Treated? 2010). At stage IA, hysterectomy or conization is 

performed. The five-year survival rate for these patients exceeds 95%. Patients with stage 

IB or early stage IIA receive either surgery or chemoradiotherapy, which produces 

equivalent results with a five-year survival rate of 80%. At the locally advanced stages IIB, 

III, and IVA, chemoradiotherapy is the treatment of choice. Both external irradiation and 

brachytherapy are given, combined with adjuvant cisplatin-based chemotherapy, which has 

shown to increase the effect of the radiotherapy (Eifel 2006). The five-year survival rates 

are 65, 40, and less than 20% for stage IIB, III, and IVA. Patients with stage IVB may also 

benefit from local radiotherapy, which is combined with carboplatin and 5-FU-based 

chemotherapy. At this stage the disease is generally not considered to be curable.

Biomarkers 

Standard diagnostic procedures for cervical tumors are currently based on clinical data, 

which, in most cases, provide precise information on tissue origin, tumor type, stage, grade, 

and the possibility for complete surgical tumor removal (Dietel and Sers 2006). Up to now, 

these data are the rational basis for therapy design. However, they do not fully reflect the 

aggressiveness of the disease and two patients harboring the apparently “same” type of 

tumor in a seemingly “identical” stage often show different therapeutic outcome. It is 

therefore a considerable need for biomarkers that can be used in addition to the standard 

clinical information, to predict the therapeutic outcome and thereby aid the clinical decision-

making (Dietel and Sers 2006). Biomarkers for design of targeted therapeutics, directed 

towards the treatment resistant cells and/or interfering with key signaling pathways in the 

tumor response, are also required, in particular for the patients receiving 

chemoradiotherapy. Development of novel radiosensitizing agents can enable reduction in 

the radiation dose and thereby side effects while retaining the tumor control probability. 

General characteristics of cancer

Cancer is characterized by a group of cells displaying uncontrolled growth, invasion and 

destruction of adjacent tissues, and sometimes spread to other locations in the body 
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(metastasis) (Alberts et al. 2002). These are malignant features and distinguish cancers from 

benign tumors, which are self-limited and do not invade or metastasize. Cancers are 

classified according to the tissue and cell type from which they arise. The main types are 

carcinoma (epithelial tissue), glioma (brain tissue), sarcoma (soft tissue and bone), and 

leukemia/lymphoma (haematopoietic tissue). 

Cancer development 

Cancer is, in essence, a genetic disease, and alterations in oncogenes, tumor suppressor 

genes, and stability genes are responsible for the initiation and progression of the disease in 

a process called carcinogenesis (Vogelstein and Kinzler 2004). Both genetic and epigenetic 

alterations are involved, leading to changes in the gene expression and thereby cell 

behavior.

Carcinogenesis is a multi-step process, typically a progression from benign lesions to 

malignant tumors (Fig. 2) (Stewart and Kleihues P. 2003). All living cells will 

probabilistically suffer from errors in the genome. Normally the body is protected against 

their potentially lethal effects. However, the cellular correction machinery may fail, 

especially in environments that make errors more likely to arise and propagate. The 

progressive errors then slowly accumulate until the cell begins to act contrary to its function 

in the organism and a malignant lesion is formed.     

Fig. 2: Tumor initiation and progression

Malignant tumors are generally believed to be monoclonal, meaning that each tumor arises 

from a single cell (Nowell 1976). This cell will acquire sequential accumulation of genetic 

and epigenetic alterations in genes responsible for the control of cellular proliferation, cell 
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death and the maintenance of genetic integrity. Selective clonal expansion will then lead to 

progression towards cancerous growth.  

Tumor progression is not only a process of alterations in cancer cells, but also the 

environment contributes substantially to the malignancy. This was hypothesized already in 

1889 by Paget in his “seed and soil” hypothesis, suggesting that the cancer cells (seeds) 

need specific organ microenvironments (soils) in order to proliferate (Paget 1989). Tumor 

progression is the product of an evolving crosstalk between different cell types within the 

tumor and its surrounding supporting tissue, called the tumor stroma. Cancer cells can alter 

their stromal environment by producing growth factors and proteases to form a permissive 

and supportive environment for tumor progression (Mueller and Fusenig 2004). Such 

alterations involve induction of angiogenesis, degradation and remodeling of the 

extracellular matrix, inflammation and production of a range of factors that promote cell 

proliferation.  

Genetic and epigenetic alterations  

Genetic alterations include subtle sequence changes, amplifications, deletions, and 

translocations (Fig. 3). The genetic alterations may either be random, leading to no growth 

advantage, or important for the malignant progression, driving the tumor towards a more 

aggressive state (Ried et al. 1999). Subtle sequence changes involve base substitutions or 

deletions or insertions of nucleotides. The simplest alteration is a point mutation, where a 

single nucleotide is exchanged for another. If mutations in key regulatory genes are not 

repaired, the cells will alter their behavior and cancer may arise. Humans with defects in 

repair mechanisms, such as nucleotide-excision repair or mismatch repair, are shown to be 

more susceptible to certain types of cancers (Lengauer, Kinzler, and Vogelstein 1998). 

Amplification is a copy number increase of a restricted region of a chromosome arm, or of 

the whole chromosome arm, and is often associated with overexpression of some of the 

affected genes. Amplifications can be divided into small chromosomal segments that may 

be present at high level, usually denoted high-level amplification or just amplification, and 

larger chromosomal regions generally present at lower levels, called gains. Deletion is a 

copy number loss of a chromosome arm or of a region of the chromosome arm. It may 

involve a loss on one of the chromosomes in a pair, called a heterozygous deletion, or loss 

of the same region on both chromosomes, called a homozygous deletion.  
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A consequence of severe changes in the copy number of chromosomes is aneuploidy, which 

is caused by mitotic abnormalities (Munger 2002). Aneuploidy occurs during cell division 

in cases where the chromosomes do not separate properly between the two cells. Cancer 

cells are frequently aneuploid and can contain either less or more than two copies of the 

chromosomes. The importance of gene copy number alterations and aneuploidy for the 

carcinogenic process is not clear and probably varies substantially between tumors. Due to 

differences in the mechanisms by which tumors are initiated, either in the individual 

genotype or in the particular cell type in which the tumor arises, some tumors accumulate a 

number of alterations, whereas others may evolve by mechanisms that result in little 

chromosomal changes (Albertson et al. 2003).

Translocations are caused by rearrangement of parts between nonhomologous 

chromosomes. They can involve two or more chromosomes and are either balanced, 

involving an even exchange of material, or unbalanced, where the exchange of 

chromosomal material is unequal, resulting in extra or missing chromosomal regions 

(Lengauer et al. 1998). Chromosomal translocations can result in the generation of new 

gene products, either by the fusion of genes or by bringing genes close to enhancer or 

promoter elements, hence leading to their altered expression (Nambiar, Kari, and Raghavan 

2008). Translocations are considered the primary cause of many cancers, including 

lymphoma, leukemia, and some solid tumors. 

Fig. 3: Genetic alterations found in cancer cells

Epigenetic alterations are changes in gene expression caused by mechanisms other than 

changes in the DNA sequence itself. A key mechanism in epigenetic regulation of gene 
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expression is DNA methylation (Wajed, Laird, and DeMeester 2001). This is an enzyme-

induced chemical modification of the DNA structure where a methyl group is added to the 

DNA, mostly at CpG sites, to convert cytosine to 5-methylcytosine.  Epigenetic alteration 

also involves post translational modification of histone proteins (Herceg and Hainaut 2007). 

If the amino acids that make up the histones are changed, this can lead to a modified shape 

of the histone sphere and an incomplete unwinding of the DNA during replication.

Genetic instability 

Genetic instability is the rate of alterations observed in a cell population at a certain time 

point, and is seen primarily at the chromosomal level (Lengauer et al. 1998). Due to genetic 

instability, subpopulations with different genetic alterations may emerge successively and 

coexist within tumors, reflecting clonal divergence (Fig. 4) (Georgiades et al. 1999). 

Assessment of this intratumor heterogeneity provides important clues of the genetic steps 

involved in carcinogenesis. Since the heterogeneous alterations have emerged after the 

homogeneous ones, the chronological order of the alterations indicates how the tumor has 

evolved (Lyng et al. 2004). Aneuploidy may be a consequence of high genomic instability, 

although it may also arise from a single genetic event.  

The intratumor heterogeneity in genetic alterations is a major challenge in the treatment of 

cancer since different subpopulations may have different capacities for growth, 

differentiation and metastasis formation, as well as sensitivity to radiation and 

chemotherapeutic agents (Barranco et al. 1994;Vogelstein and Kinzler 1993).  Treatment 

results in selective killing of sensitive populations, whereas the resistant ones survive 

(Barranco et al. 1988). Continued treatment may lead to total resistance, not only to the 

initial agent or combination, but to other agents as well (Rothenberg and Ling 1989). 

Knowledge of the genetic heterogeneity within tumors may therefore be crucial for the 

handling of the disease.
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Fig. 4: Schematic diagram showing the evolution of the subpopulations A, B, and C with 

different genetic alterations. Subpopulation B has evolved from subpopulation A, and 

subpopulation C has evolved from subpopulation B.  

Cancer genes 

In the last decades, many genes involved in carcinogenesis of various cancers have been 

discovered. The regulation of these genes facilitates signal transduction, mediates cell 

division, differentiation or cell death, and maintains the integrity of genetic information by 

DNA repair and similar processes (Stewart and Kleihues P. 2003). The genes are believed to 

be targets for the genetic alterations and fall into three major categories; oncogenes, tumor 

suppressor genes, and stability genes. In addition, microRNA (miRNA) is a recently 

discovered class of small non-coding RNAs that regulate gene expression post-

transcriptionally. 

Oncogenes are genes that, when mutated or expressed at high levels, are capable of 

transforming a normal cell into a tumor cell and therefore contribute to the formation of 

cancer (Vogelstein and Kinzler 2004). The normal gene counterparts are referred to as 

proto-oncogenes. An activating somatic mutation in one allele of an oncogene is generally 

sufficient to confer a selective growth advantage on the cell, and the activation of an 

oncogene is therefore dominant. Oncogene activations can result from chromosomal 

translocations, gene amplifications, or from subtle intragenic mutations affecting crucial 

residues that regulate the activity of the gene product. The RAS family of oncogenes was 

among the first that was recognized as being mutated in a variety of human cancers, 

whereas the MYC oncogene is frequently overexpressed by gene amplification (Stewart and 

Kleihues P. 2003).
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Tumor suppressor genes protect the cell from becoming a tumor cell. Their alteration during 

carcinogenesis results in the loss of functional property essential for the maintenance of 

normal cell proliferation (Vogelstein and Kinzler 2004). The loss of function of a tumor 

suppressor gene is a recessive mechanism, implying that both alleles must be affected to 

switch it off. Inactivation of tumor suppressor genes can arise from missense mutations, 

deletions, insertions, or from epigenetic silencing. TP53 is the most commonly altered 

tumor suppressor gene in human cancers, being altered in over 50% of most tumor types 

(Stewart and Kleihues P. 2003).

Stability genes keep genetic alterations to a minimum, and when they are inactivated, 

mutations in other genes occur at a higher rate. Stability genes are involved in DNA repair 

and include mismatch repair genes (MLH1, MSH2, PMS2), nucleotide-excision repair genes 

(XPA, DDB2), and base-excision repair genes (MUTYH), which are responsible for 

repairing mistakes occurring during normal DNA replication or induced by mutagenic 

exposure (Vogelstein and Kinzler 2004).  Stability genes are also involved in control 

processes, such as mitotic recombination and chromosomal segregation (ATM, BRCA1,

BLM, RECQL4). As with tumor-suppressors, both alleles need to be inactivated to have full 

effect.

MicroRNAs are evolutionarily conserved, small, single-stranded molecules that do not 

encode proteins, but instead suppress the expression of protein-coding genes by blocking 

translation, degrading mRNA, or both (Anglicheau, Muthukumar, and Suthanthiran 2010). 

More than 700 miRNAs have so far been identified in the human genome. A single miRNA 

can regulate the expression of hundreds of mRNAs or proteins, and each mRNA can be 

targeted by multiple miRNAs that can interact with each other, either by synergism or 

competition. It is believed that most protein-coding genes are regulated by miRNAs, and it 

has been shown that miRNAs play an important role in diverse biological processes like 

development, differentiation, cell proliferation, apoptosis, and oncogenesis (Valencia-

Sanchez et al. 2006). Up- or down-regulation can be due to amplification, deletion, 

regulation of a transcription factor, or methylation/demethylation. miRNA genes can 

function either as oncogenes or tumor suppressor genes depending on their targets in a 

specific tissue (Croce 2008), and many miRNAs have been shown to locate to chromosomal 

regions that undergo rearrangements, deletions, and amplifications in cancer cells (Calin et

al. 2004). Dysregulated expression of miRNAs has already been associated with several 
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cancers. Of interest, miR-127 has been shown to be overexpressed in cervical cancer 

patients with lymph node metastasis (Lee et al. 2008). Moreover, anti-miR-199a has been 

shown to inhibit cervical cancer cell growth, suggesting miR-199a as a potential therapeutic 

target for cervical cancer therapy (Lee et al. 2008). 

Carcinogenesis in cervical cancer 

The multistep process 

Cervical cancers progress in a multistep process, from preinvasive cervical intraepithelial 

neoplasia (CIN) to invasive stages (Grubisic et al. 2009). The majority of cervical cancers 

originate from the squamous epithelium near the opening of the cervix (Alberts et al. 2002), 

where the proliferation normally occurs only in the basal layer (Fig. 5A). The newly 

generated cells move towards the surface, differentiate, and form flattened, keratin-rich, 

non-dividing cells that are sloughed off as they reach the surface. It is not unusual to find 

patches in which this organization is disturbed in a way that suggests the beginning of a 

cancerous transformation, called cervical intraepithelial neoplasia (CIN). These changes can 

be low-grade (CINI), moderate (CINII), or severe (CINIII) (Szalmas and Konya 2009).  

In the low-grade lesions, dividing cells are no longer confined to the basal layer, but occupy 

the lower third of the epithelium (Fig. 5B). Most of these lesions will spontaneously regress; 

however, about 10% might progress to become high-grade lesions. Most of the epithelial 

layers will then be occupied by undifferentiated dividing cells, which are usually highly 

variable in cell size and shape (Fig. 5C). If remained untreated, the abnormal tissue may 

persist and stop progressing or it may regress spontaneously. However, in almost half of the 

cases, progression will occur, giving rise to an invasive carcinoma where cells cross or 

destroy the basal lamina, invade the underlying tissue, and metastasize (Fig. 5D).  
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Fig. 5: The stages of progression in the development of squamous cell cervical carcinoma. 

Adapted from (Alberts et al. 2002).

HPV infection 

Infection with high-risk HPV (HR-HPV) is a necessary, but insufficient, contribution to 

cervical cancer, with additional viral and host genetic events required to drive cells to the 

malignant phenotype (Pett and Coleman 2007). HR-HPV is detected in 99.7% of the cases 

and also in the vast majority of high-grade neoplasia (Lehoux et al. 2009). HPV 16 and 18 

are the most prevalent types, accounting for about 70% of all cases. In the normal viral life 

cycle, HPV genomes exist in a circular or episomal state and are thought to be retained in 

basal cells of the squamous epithelium at approximately 50-100 copies per cell (Fig. 6)  

(Bedell et al. 1991;Stanley et al. 1989). In the episomal form, the expression of the viral 

oncogenes E6 and E7 is tightly regulated. However, in most cervical cancers (90%), 

truncated viral genomes are integrated into host DNA, resulting in deregulation of viral 

oncogene expression (Pett and Coleman 2007). Integration is not a part of the HR-HPV life 

cycle and represents a by-product of viral infection, leading to increased expression and 

stability of transcripts encoding the E6 and E7 proteins. This effect is restricted to HR-HPV. 

Integrated HPV may be viewed as selectable because it represents a form of the virus that is 

resistant to host mechanisms of viral clearance, enabling infected cells to maintain viral 

oncogene expression and avoid cell death. 
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Fig. 6: Significance of HR-HPV integration events detected in cervical carcinomas. Adapted 

from (Pett and Coleman 2007). 

The viral proteins E6 and E7 produced by HR-HPV types are critical for malignant 

transformation, due to their ability to bind and inactivate the tumor suppressor proteins 

TP53 and RB1 (Cannistra and Niloff 1996). E6 inactivates the function of wild-type TP53 

by enhancing its degradation, resulting in prevention of apoptosis. It can also interfere with 

cellular apoptotic pathways by a TP53-independent mechanism by binding to the tumor 

necrosis factor receptor TNFRSF1A and FAS-associated death domain protein FADD, 

leading to the degradation of FADD and the caspase CASP8 (Garnett and Duerksen-Hughes 

2006). E7 binds to RB1, relieves its repression of the E2F transcription factors, and causes 

the cell to reenter S-phase.   

The mechanism by which HPV integrates is not fully understood, but there is a clear 

predilection for integration at chromosomal common fragile sites (CFSs) (Thorland et al.

2003;Thorland et al. 2000;Wentzensen, Vinokurova, and von Knebel 2004;Yu et al. 2005), 

which are DNA regions of profound genomic instability that span from several hundred 

kilobases to greater than 9 Mb (Richards 2001). The most frequently observed integration 

site, particularly in cervical cancers positive for HPV 18, is the region of the MYC oncogene 

at chromosomal band 8q24 (Durst et al. 1987;Peter et al. 2006;Wentzensen et al.



13

2002;Ferber et al. 2003b). Another active CFS is the FRA3B locus at 3p14.2, which is 

frequently altered in cervical cancers. Recurrent integration has also been observed at the 

TERT (Ferber et al. 2003a) and FANCC (Wentzensen et al. 2002;Ferber et al. 2003b) loci, 

at chromosomal bands 5p15 and 9q22, respectively.  

HR-HPV infection also leads to genomic instability, which is reflected in the high 

proportion of aneuploid cervical tumors. The HPV E6 and E7 proteins disturb the 

centrosome replication during cell division, leading to increased centrosome numbers, 

aberrant mitotic spindle pole formation, and aneuploidy (Duensing et al. 2000). In fact, 

abnormal, tripolar mitoses have been described as diagnostic markers of HR-HPV positive 

lesions. E6 expressing cells show mostly gene amplifications, abnormalities consistent with 

TP53 loss, whereas E7 expressing cells often displays gains and losses of entire 

chromosomes and are aneuploid (White, Livanos, and Tlsty 1994). Hence, in addition to 

containing compromised surveillance functions, HR-HPV E6 and E7 expressing cells 

constantly produce mitotic abnormalities even when expressed from viral episomes, which 

greatly increases genomic instability and the probability of malignant progression 

(Duensing et al. 2001).

Genetic alterations in cervical cancer 

Genome wide screening of chromosomal alterations in cervical cancer has revealed genetic 

changes on all chromosomes, and identified several chromosomal regions that are 

recurrently affected. The most frequent alterations are gain of 1q, 3q, 5p, and 20q and loss 

of 2q, 3p, 4p, 4q, 11q, and 13q (Heselmeyer et al. 1997;Lyng et al. 2004;Rao et al.

2004;Ried et al. 1999;Umayahara et al. 2002). The gain of 3q and loss of 3p are especially 

frequent, where the former has been found to define the transition from preinvasive to 

invasive cervical carcinoma (Heselmeyer et al. 1996;Umayahara et al. 2002). The gain of 

20q has been described by a number of studies (Dellas et al. 1999;Kirchhoff et al.

1999;Narayan et al. 2003;Umayahara et al. 2002) and has in other solid tumors, such as 

breast, colon, and gastric carcinomas been associated with a selective growth advantage and 

a more aggressive metastatic phenotype (Hermsen et al. 2002;Hodgson et al.

2003;Kallioniemi et al. 1994;Muleris et al. 1994;Weiss et al. 2003). 

Cervical cancers also show substantial intratumor genetic heterogeneity due to the high 

chromosomal instability (Ried et al. 1999). Loss of 3p and gain of 3q are seldom 
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heterogeneous and are therefore believed to play a role in early development of the disease 

(Guo et al. 2001;Lyng et al. 2004). On the other hand, loss of chromosome 4 and 6q, and 

gain of 2p have been shown to be both frequent and heterogeneous, indicating that they lead 

to a significant growth advantage and that they are important for tumor progression at a later 

stage (Lyng et al. 2004).

Although several genetic alterations have been suggested to play a role in the carcinogenesis 

of cervical cancer, most of the target genes are unknown and the biological meaning of the 

alterations is poorly understood. The low resolution of the CGH-technique used in many of 

the studies, have led to difficulties in limiting the gained and lost regions. This has made it 

difficult to distinguish between the genes playing a functional role during carcinogenesis 

and those that are passengers. Moreover, the number of samples included in the studies has 

often been limited, reducing the statistical reliability of the analyses and therefore the ability 

to discover genetic alterations important for the clinical outcome. Application of the aCGH 

technique on a large sample set of tumors may therefore lead to novel insight into the 

genetic alterations of cervical cancers and their potential as biomarkers. 

Biological consequences of genetic alterations
Changes in the cancer genome are believed to manifest essential alterations, known as 

cancer hallmarks, associated with tumor cell phenotype and physiology that collectively 

promote malignant growth. These cancer hallmarks are self-sufficiency in growth signals, 

insensitivity to antigrowth signals, evasion of apoptosis, limitless replicative potential, 

sustained angiogenesis, and tissue invasion and metastasis (Hanahan and Weinberg 2000). 

Also metabolism and endocytosis are considered hallmarks of physiological changes in 

cancer cells. The genomic instability is a way of evolving populations of pre-malignant and 

malignant cells to reach these biological endpoints in the process of carcinogenesis. 

Self-sufficiency in growth signals implies that the tumor cells generate many of their own 

growth signals by altering extracellular growth signals, transcellular transducers of those 

signals, or intracellular circuits that translate the signals into action (Mees, Nemunaitis, and 

Senzer 2009). This is in contrast to normal cells which require mitogenic growth signals to 

move from an inactive state into an active proliferative state (Hanahan and Weinberg 2000). 

Tumor cells are therefore less dependent on exogenous growth stimulation.  
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Insensitivity to antigrowth signals implies that cancer cells have the ability to evade 

antiproliferative signals, such as soluble growth inhibitors and immobilized inhibitors, in 

order to progress (Hanahan and Weinberg 2000). These signals block proliferation by either 

forcing the cells out of the active proliferative cycle into the G0 phase of the cell cycle, or by 

inducing the cells to permanently give up their proliferative potential by making them enter 

into postmitotic states. At the molecular level, most antiproliferative signals are funneled 

through RB1 and its two relatives, RBL1 and RBL2. Disruption of the RB1 pathway allows 

proliferation, causing cells insensitive to antigrowth factors that normally operate along this 

pathway to block progression (Weinberg 1995).  

Evasion of apoptosis is, in addition to proliferation, important for the tumor cell population 

to expand in number. Apoptosis, programmed cell death, is triggered by a variety of 

physiologic signals, and will unfold in a precisely choreographed series of steps, including 

disruption of cellular membranes, breakdown of cytoplasmic nuclear skeletons, degradation 

of chromosomes, and fragmentation of the nucleus (Fulda 2009). Apoptosis is essential to 

all types of cancer and the apoptotic program is present in a latent form in almost all cell 

types in the body.

Limitless replicative potential is a characteristic of most cancer cells, which is due to their 

ability to maintain their telomeres, the ends of chromosomes, at a length above critical 

threshold. Telomeres are composed of several thousand repeats of a short 6 bp sequence 

element. In normal cells, DNA polymerases are unable to completely replicate the 3’ ends 

of chromosomal DNA, resulting in progressive shortening of the telomeres. Telomeres will 

thereby lose their ability to protect the ends of chromosomal DNA, which eventually leads 

to death of the affected cell, a process called senescense (Counter et al. 1992). Most cancer 

cells maintain their telomeres by upregulating the expression of the telomerase enzyme, 

which adds hexanucleotide repeats onto the ends of telomeric DNA, while the remainder is 

activating a mechanism which maintains telomeres through recombination-based inter-

chromosomal changes of sequence information (Bryan and Cech 1999).  

Sustained angiogenesis is the process by which cancer cells induce and sustain the growth 

of new blood vessels. Oxygen and nutrients are crucial for cell function and survival, and 

are supplied by the vasculature. Cells within aberrant proliferative lesions initially lack the 

angiogenic ability, reducing their capability to expand. Cancer cells on the other hand 
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overcome this restriction by inducing and sustaining angiogenesis (Hanahan and Folkman 

1996). This is done by activating the angiogenic switch by changing the balance of 

angiogenesis inducers and countervailing inhibitors, increasing the expression of pro-

angiogenic factors like the vascular endothelial growth factor, VEGF, or reducing the 

expression of anti-angiogenic factors like thrombospondin-1 (Volpert, Dameron, and Bouck 

1997;Singh et al. 1995).

Although cancer cells are able to regulate angiogenesis, the blood vessels they develop are 

aberrant and have poor blood flow. Tumors therefore often become hypoxic (Harris 2002), 

and cells that do not manage to adapt to oxygen and nutrient deprivation undergo cell death 

by apoptosis, necrosis, and/or autophagy (Zhou et al. 2006). Tumor cells mostly respond to 

reduced oxygen levels through activation of hypoxia inducible factors (HIFs), although the 

responses may also be HIF-independent (Harris 2002). Paradoxically, hypoxia can also 

affect tumor growth positively by inducing genetic and adaptive changes (Zhou et al. 2006). 

This will allow the cancer cells to survive and proliferate in a hypoxic environment, 

resulting in a more aggressive and treatment resistant tumor phenotype. 

Tissue invasion and metastasis is a capability of cancer cells to move out from the primary 

tumor mass, invade adjacent tissues, and travel to distant sites where they settle down and 

found new colonies, called metastases. This is partly achieved through alteration of proteins 

involved in the tethering of cells to their surroundings in a tissue, including cell adhesion 

molecules (CAMs) and members of the immunoglobulin, cadherin, and integrin families. 

Energy metabolism is required at a high rate in cancer cells due to increased proliferation 

rate and the motile nature of cancer cells, resulting in the lack of oxygen and nutrition 

(Furuta et al. 2010). Persistent glucose metabolism and generation of lactate is therefore 

thought to be an adaptation of tumor cells to hypoxia. Alteration in the expression of genes 

involved in metabolic pathways like glycolysis and lipogenesis, contribute to the 

progression of tumor cells to become more aggressive phenotypes. Transformed cells are 

distinguished from normal cells in the constitutive activation of growth factor signaling 

pathways, which directly control cellular metabolism (Yalcin et al. 2009). 

Endocytosis is the process by which cells absorb molecules from outside the cell by 

engulfing them with their plasma membrane. A mechanism shared by tumor-initiating and 
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metastasizing cells is an aberrant tendency to disassemble signaling and adhesion complexes 

and sort them for either degradation or re-assembly, following vesicular trafficking 

(Mosesson, Mills, and Yarden 2008). Aberrant endocytosis thereby contributes to malignant 

transformation and is therefore looked upon as a crucial target of the processes driving 

cancer initiation and progression.

Clinical consequences of genetic alterations 
The biological tumor characteristics caused by genetic alterations promote aggressive 

phenotypes and may, in turn, lead to chemoradioresistance and poor clinical outcome.  

Radiotherapy and some types of chemotherapy cause damage of the DNA. The most serious 

DNA damage induced by radiation is DNA double-strand breaks, whereas 

chemotherapeutics like cisplatin, causes cross-linking of DNA (Borst, Rottenberg, and 

Jonkers 2008). In cervical cancer treatment, cisplatin is used in small doses in combination 

with radiotherapy to increase the cells sensitivity to radiation. However, the benefit of 

cisplatin is minor (Sundfor et al. 1996) and radiotherapy is therefore the most significant 

treatment for achieving local tumor control.  

DNA damage caused by radiotherapy initiates several cellular responses, like inducing cell 

cycle arrest, promoting apoptosis or mitotic catastrophe, initiating DNA repair, and stopping 

transcription (Huerta, Gao, and Saha 2009;Sakata et al. 2007). Tumors can develop 

resistance to radiotherapy by deregulation of cell cycle, by evasion of apoptosis, or by 

adaptation to hypoxia.

Cell cycle delay or arrest occurs after exposure to radiation due to the activation of cell-

cycle checkpoints (Kastan and Bartek 2004). When the check points are functional, they 

block further proliferation of the cells and suppress cancer development. In tumor cells, 

however, the checkpoints are often disabled because of genetic changes in cell cycle control 

genes like TP53 or BRCA1, resulting in loss of apoptotic mechanisms during progression. 

Also tumors that retain a functional TP53 pathway still frequently lose the basic apoptotic 

mechanisms and acquire resistance to apoptosis (Igney and Krammer 2002). This is 

probably due to enhanced expression of anti-apoptotic genes like BCL2 or inactivation of 

pro-apoptotic genes like BAX and APAF1. Mitotic catastrophe is therefore the major cell 

death mechanism following radiation therapy (Eriksson and Stigbrand 2010). This is a 
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delayed type of cell death executed days after treatment initiation, and may be induced 

either as a consequence of DNA damage and deficient cell cycle checkpoints or through 

hyperamplification of centrosomes (Eriksson et al. 2007;Kawamura et al. 2004).

Hypoxia leads to resistance to both chemo- and radiotherapy. Cells in a hypoxic 

environment harbor a range of genetic changes that make them more invasive, more likely 

to metastasize, and eventually harder to treat. Moreover, hypoxia increases radioresistance 

due to the requirement of oxygen during irradiation to produce maximal DNA damage 

through the creation of free radicals (Koch, Kruuv, and Frey 1973). It has been shown that 

severely hypoxic cells require a 2-3 fold higher dose of radiation to achieve the same level 

of cell killing compared to well-oxygenated cells (Karar and Maity 2009). Hypoxic cells 

have also been found to be resistant to chemotherapy, possibly because drugs do not 

penetrate into regions with low vascularity, because the cells are slowed in their progression 

through cell cycle, or because of difficulties in the uptake and metabolism of drugs by 

hypoxic cells (Moulder and Rockwell 1987;Kennedy et al. 1980).

Microarray technology 
For the past two decades, the development of genomic technology has revolutionized 

modern biological research (Chen, Jorgenson, and Cheung 2009). Genome wide analyses 

have made it possible for biologists to analyze genetic events on a global scale, and they 

have been used in gene discovery, biomarker determination, drug target identification and 

disease classification, as well as in understanding carcinogenesis. One of the genomic tools 

for high-throughput and large-scale genomic analysis is microarray technology. This 

technology allows the simultaneous analysis of thousands of variables in a single sample in 

a simple hybridization experiment (Jares 2006).  

Microarrays were first described in 1995 and were originally designed for depositing DNA 

onto solid support for gene expression profiling (Schena et al. 1995). Since then, the 

technology has been extended to DNA copy number analysis (Pinkel et al. 1998;Snijders et 

al. 2001), protein measurements (Kingsmore 2006), microRNA analysis (Yin, Zhao, and 

Morris 2008), SNP genotyping (Gunderson et al. 2005), DNA methylation profiling (van 

and Henikoff 2003), and protein-DNA interactions and chromatin modifications using 

ChiIP-microarrays (Buck and Lieb 2004). In cancer research, the technology has resulted in 
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numerous of novel opportunities, for example detailed genomic comparison of different 

tumor types, discovery of novel aberrant chromosomal regions, and sub-classification of 

tumors according to differences in their gene expression (Rew 2001). Microarrays have also 

offered new approaches to drug development and therapeutic efficacy, for example by 

characterizing each cell, tissue, and tumor in terms of the mechanism of drug action, its 

predicted drug sensitivity, and side-effect profile to a number of reagents. These novel 

opportunities have aimed in understanding the initiation and development of the disease.  

Principle 

DNA microarrays consist of a solid matrix where thousands of known nucleic acid 

fragments (BACs, cDNAs, oligonucleotides) which constitute the microarray probes, are 

synthesized or spotted to a glass support (Jares 2006). The principle of DNA microarrays 

relies on the ability of single-strand nucleic acid fragments to hybridize with high specificity 

to a second complementary single strand to generate a double-stranded DNA molecule (Fig. 

7). The sample or target is labeled by using either radioactivity or fluorescent dyes and 

hybridized to the array surface. After stringency washes have been performed, the 

complementary target-probe complexes remain tightly bound and the amount of the retained 

labeled target is quantified by fluorescent detector systems, followed by a data analysis 

process.

Fig. 7: The principle of two-channel microarray technology 

Platforms

The microarray probes are large-insert clones like bacterial artificial chromosomes (BACs) 

(150-350 kb), P1-derived artificial chromosomes (PACs) (100-300 kb), formid clones (40 
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kb), cosmid clones (37-52 kb), smaller insert clones (1.5-4.5 kb), cDNA clones (0.5-2 kb), 

genomic PCR products (100 bp-1.5 kb), and oligonucleotides (25-80 bp). BACs are used for 

DNA copy number detection and provide the most comprehensive coverage of the genome 

as well as producing robust hybridizations with low noise. However, the resolution is 

generally only about 1 Mb and it is difficult to identify single copy number differences 

smaller than 50 kb (Carter 2007). Oligonucleotides provide the highest potential resolution 

for array CGH, with the possibility of achieving more than 2 million oligonucleotides per 

array (NimbleGen, WI). For gene expression analysis, the two most common spotted arrays 

are cDNA microarrays and oligo-based arrays. 

Alternatives to the in-house produced arrays are commercial microarray platforms. The 

most common platform is the GeneChip system from Affymetrix (Santa Clara, CA). 

GeneChips are made by synthesizing matched sets of short oligonucleotide pairs, one that 

matches perfectly and one with a single mismatch, on a silicon-based substrate using a 

photolithographic process (Ness 2007;Pease et al. 1994). Other common platforms are 

Agilent (Santa Clara, CA) and Illumina (San Diego, CA). Agilent arrays are synthesized 

following the same principles as Affymetrix, whereas Illumina uses designed 

oligonucleotide probes attached to beads that are deposited randomly in a support. These are 

created by either impregnating beads with different concentrations of fluorescent dye, or by 

some type of barcoding technology. The beads are addressable and used to identify specific 

binding events that occur on their surface.  

Array comparative genomic hybridization 

CGH has been widely used as a genome-wide screening method to search for DNA copy 

numbers (Kallioniemi et al. 1992). The first approach was introduced in 1992, where total 

genomic DNA from a test and a reference cell population were co-hybridized to normal 

metaphase chromosomes. This limited the detection of events involving small regions of the 

genome, and the resolution was only of about 5-10 Mb (Carter 2007). The limitation has 

been resolved by the introduction of microarrays in the late 1990s (Pinkel et al.

1998;Solinas-Toldo et al. 1997). aCGH combines microarray technology with the CGH 

approach and the metaphase chromosomes have been replaced by defined nucleic acid 

fragments. The resolution is therefore limited only by the number, distribution and the 

length of the sequences spotted onto the array. A higher resolution allows a precise mapping 

of the boundaries of the detected genomic rearrangements.  
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Limitations in clinical applications of aCGH 

Despite the improvements in the aCGH technique in the last decade, only relative copy 

numbers have been achieved. Absolute copy numbers have only been obtained on a single 

gene basis using fluorescence in situ hybridization (FISH). This may cause problems when 

using aCGH for analysis of clinical samples. The relative values are influenced by the 

ploidy, the normal cell fraction in the sample, the experimental bias, and the DNA copy 

numbers (Pinkel and Albertson 2005). The tumor ploidy and normal cell content often vary 

considerably among the samples, making comparison across the tumors unreliable. This is 

also the case for the intratumor heterogeneity in the DNA copy numbers of some tumors.  

Different approaches to correct for the confounding effect caused by the normal cell content 

of the samples have been attempted, such as excluding these samples from the analysis or 

handling them separately (Weir et al. 2007), correcting the ratio levels based on histological 

examinations of the tumor sections (Chin et al. 2007), or reducing the normal cell fraction 

using laser capture microdissection (Hunt and Finkelstein 2004). Corrections based on 

histological examinations are not satisfactory since a different part of the biopsy is used, 

whereas microdissection is often expensive, difficult to perform, and time consuming. This 

has led to difficulties in interpreting the data and limited the clinical usefulness of the 

technique.
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Summary of papers 

Paper I: GeneCount: genome-wide calculation of absolute tumor DNA copy numbers 

from array comparative genomic hybridization data 

In this paper, GeneCount is presented, a method for genome-wide calculation of absolute 

DNA copy numbers from clinical aCGH data. GeneCount estimates and corrects for the 

proportion of normal cells in the samples, corrects for tumor ploidy, and considers possible 

intratumor heterogeneity in DNA copy numbers. Inputs to the model are tumor ploidy, 

experimental bias, and aCGH ratios. Predetermined measures of tumor ploidy and 

experimental bias are therefore needed. The absolute DNA copy numbers were compared 

with FISH data and showed 97% consistency. The data were used to generate gene dosage 

(copy number/ploidy) profiles that could be compared across patients regardless of ploidy 

and normal cell content. Significant improvements compared to existing methods for 

exploring gene dosages in cancers were demonstrated. In particular, we showed a higher 

sensitivity in the detection of cervical tumors with copy number changes. GeneCount was 

implemented in software packages to be used downstream of statistical methods for 

breakpoint detection, like GLAD and CGH-Explorer.  

Paper II: Gene dosage, expression and ontology analysis identifies driver genes in the 

carcinogenesis and chemoradioresistance of cervical cancer

Integrative analysis of gene dosage, expression, and ontology (GO) data was performed to 

discover driver genes in the carcinogenesis and chemoradioresistance of cervical cancers. 

Microarray techniques were used to generate gene dosage and expression profiles of 102 

patients. Twenty-nine recurrent gains and losses and 3 losses (on 3p, 13q, 21q) associated 

with poor outcome after chemoradiotherapy were identified. The 3 predictive regions 

showed low intratumor heterogeneity, indicating that they had emerged prior to many other 

alterations and probably were early events in carcinogenesis. The genetic alterations were 

correlated with gene expression, which identified the genes regulated by the alterations. 

Correlation with GO data resulted in five biological processes; apoptosis, metabolism, 

macromolecule localization, translation, and transcription, that were overrepresented among 

the gene dosage regulated genes. Four genes on 3p (RYBP, GBE1) and 13q (FAM48A,

MED4) correlated with survival at the gene dosage and expression level and were 

satisfactorily validated in the independent cohort. Fifty-seven candidate driver genes of 24 
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genetic events were identified by these integrated analyses, including novel loci responsible 

for chemoradioresistance. Further mapping of the connections among genetic events, 

drivers, and biological processes suggested that each individual event stimulates specific 

processes in carcinogenesis through the coordinated control of multiple genes. These results 

show that genetic alterations play a significant role in carcinogenesis, and may provide 

novel therapeutic opportunities of both early and advanced stage cervical cancers. 

Paper III: Microarray based analyses of gene expression and pathways associated with 

loss on chromosome 3p in cervical cancer  

In this paper, microarray data was used for identification of genes and pathways affected by 

the frequent loss on chromosome 3p in cervical cancer. Pretreatment tumor samples from 

160 cervical cancer patients who received chemoradiotherapy were included. Pairwise gene 

dosage (aCGH) and expression (Illumina beadarrays) analysis in 77 patients identified 

candidate target genes of the 3p loss. Gene expressions associated with the 3p loss were 

subjected to pathway, gene ontology, and gene set analyses. Protein expression was assessed 

by immunohistochemistry in 150 patients and cervical cancer cell lines. Loss of 3p11.2-

p14.2 was the most frequent 3p event and was associated with poor clinical outcome. 

Fourteen candidate targets of the loss were identified within the region, and three of the 

genes, RYBP, TMF1, and PSMD6, generated large networks of interaction partners 

differentially expressed between patients with and without 3p loss. Apoptosis (RYBP) and 

cellular metabolism (TMF1, PSMD6) were the biological processes overrepresented in the 

networks. Gene set analysis showed that the pro-apoptotic gene set, involving several genes 

in the RYBP network, was downregulated in patients with 3p loss. Nuclear RYBP protein 

expression was found to be downregulated in tumors with 3p loss and was also associated 

with clinical outcome in stage 1 and 2 cancers (p=0.034). These results indicate that 

multiple target genes and their interaction partners are affected by the frequent 3p11.2-p14.2 

loss in cervical cancer. Repression of one of these genes, RYBP, leads to evasion of 

apoptosis and disease progression.
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Experimental considerations 

Patients

The tumor material used in these studies was collected at the Norwegian Radium Hospital 

since 2001. The clinical protocol was approved by the regional ethical committee and 

informed consent was obtained from all patients. The samples were obtained from the 

primary tumors at the time of diagnosis and made anonymous by using a letter code 

followed by inclusion number. One to four biopsies were taken from different locations of 

the tumor, and for the microarray experiments, the biopsies were pooled. Squamous cell 

carcinoma, adenosquamous carcinoma, and adenocarcinoma were included in paper I and II, 

whereas paper III only included the squamous cell carcinomas. In paper II and III, only 

patients who received curative radiotherapy were included, involving tumors with stage 1b-

4a, whereas paper I also included stage 4b.

There are several strengths of this tumor material. First, up to 156 tumor samples were 

included, making the statistical analysis more reliable in comparison to other studies with 

less samples. Second, all the patients received the same treatment, contributing to a more 

homogenous patient group, which reduces confounding effects caused by variation in 

efficiency of different treatments. Third, the long observation time ensured that most 

failures already had been detected, and fourth, up to four biopsies were pooled from each 

tumor, accounting for the possible intratumor heterogeneity of the samples. 

A limitation of this tumor material is that in paper I and II, patients with different histology 

were included. This may have influenced the biological findings of paper II, since tumors 

with different histology might show distinct patterns of gains and losses. This was, however, 

accounted for in the supplementary material of the paper. In paper I, the difference in 

histology did not play a significant role, due to the methodological character of the study. 



25

Microarray techniques 

aCGH

BAC-arrays were used for the aCGH experiments (papers I-III). These arrays cover the 

whole genome and provide a high signal to noise ratio compared to oligoarrays, increasing 

the reliability of the data. The resolution of BAC-arrays is, however, limited. Moreover, 

only the average gene dosage of each DNA segment is obtained, and each segment may 

cover several genes. This may result in undetected gains and losses if the alterations involve 

short DNA segments. On the other hand, in cervical cancer, most gains and losses seem to 

include large chromosomal regions like the whole p- or q-arm (Wilting et al. 2008), 

resulting in the detection of most alterations although the start and stop positions may be 

inaccurate. Furthermore, in paper II and III we focused on chromosomal gains and losses 

with altered expression of the corresponding genes, increasing the reliability of the detected 

copy number changes.    

Gene expression arrays 

In paper I and II, cDNA expression arrays were used. These arrays do not cover the whole 

genome, incorrect annotation is often encountered, and for genes with different isoforms, an 

average expression value is given. Illumina gene expression bead arrays include all genes in 

the genome, provide separate data for most isoforms, and thereby give more accurate 

results. This technique was therefore applied in paper III and for validation in paper II.

Downstream analysis of microarray data 

Instead of looking at individual genes, methods such as Network Analysis, Gene Ontology 

(GO) analysis, and Significant Analysis of Microarrays for Gene Sets (SAM-GS) take 

whole gene sets into account, incorporating biological knowledge regarding gene function 

and how genes work together. Analyses like these are useful when working with datasets 

containing a large number of genes.  

Network Analysis allows genes to generate a network of their protein interactions from an 

integrated set of protein interaction databases (Stark et al. 2006;Keshava Prasad et al.

2009;Kerrien et al. 2007). In this work, we selected the genes that were differentially 

expressed between patients with and without 3p-loss, and generated second degree of 

interaction networks for the 3p genes that were significantly regulated by gene dosage. In 
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this way, we could provide evidences that several interaction partners of the candidate target 

genes RYBP, TMF1, and PSMD6 were deregulated in tumors with 3p-loss. 

GO is a collection of controlled vocabularies; molecular function, cellular component, and 

biological process, describing the biology of a gene product in any organism. The GO 

categories of two or more gene lists can be compared with statistical tests. eGOn (explore 

Gene Ontology) is a tool that can be used to annotate, display, and perform statistical 

hypothesis testing to assess the degree of similarity of GO categories between different gene 

lists (Beisvag et al. 2006). eGOn has advantages over other annotation databases in that it 

enables filtering of annotations by evidence code, it allows the entry of new annotations, 

and it provides a series of robust, statistical tests that are thoroughly validated and 

documented. In paper II, we used the eGOn to identify biological processes that were 

associated with the recurrent and predictive gene dosage alterations. These biological 

processes were closely related to known cancer hallmarks, and by using eGOn, we therefore 

provided evidences that genetic alterations lead to carcinogenesis. In paper III, eGOn was 

used to identify biological processes that were associated with the interaction networks of 

RYBP, TMF1, and PSMD6, pointing to the phenotypes resulting from the 3p-loss.   

SAM-GS determines whether a defined set of genes shows statistically significant, 

concordant differences between two biological states (Liu et al. 2007;Dinu et al. 2007). 

Testing gene sets rather than genes moves the analysis towards biological themes, thus 

accelerating the discovery process. Further, the number of tests is reduced and thereby the 

multiple testing concerns. SAM-GS considers all of the genes in an experiment, not only the 

genes above an arbitrary cutoff in terms of fold-change or significance. In this work, SAM-

GS showed that the pro-apoptotic signaling pathway was significantly downregulated in 

tumors with 3p-loss.  
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Discussion

Tool for DNA copy number determination in cervical cancers 

GeneCount was developed to enable genome-wide calculation of absolute DNA copy 

numbers from clinical aCGH data. This method corrects for the normal cell fraction and 

tumor ploidy, and considers intratumor heterogeneity in DNA copy numbers, making it 

highly valuable when working with tumor samples. Especially cervical cancers show a high 

frequency of aneuploidy and by correcting for this and the normal cell content, GeneCount 

enabled reliable comparisons across experiments, as demonstrated in paper II and III. 

The importance of taking tumor ploidy, normal cell content, and the genetic intratumor 

heterogeneity into account in analysis of aCGH data has also been noticed by others, and 

several statistical methods dealing with these aspects have later been developed. The 

ASCAT algorithm dissects allelic-specific copy numbers from SNP arrays (Van et al.

2010). A mathematical modeling approach is applied to estimate both the normal cell 

content and the tumor ploidy, which are utilized in the calculation of the copy numbers. A 

similar approach has also been proposed by Yau and colleagues (Yau et al. 2010).

To obtain absolute copy numbers by GeneCount, predetermination of tumor ploidy is 

required. This was performed by flow cytometric analysis, which is highly accurate in 

determining the ploidy. The mathematical models mentioned above estimate the tumor 

ploidy in addition to copy numbers and normal cell content. GeneCount may therefore result 

in more accurate copy numbers since fewer parameters have to be modeled. Allelic specific 

data achieved from SNP arrays are useful, and only minor modifications of GeneCount are 

required to use this method on the same SNP arrays.   

Some of the new methods have also considered the intratumor heterogeneity in the copy 

number changes. Both Yau and colleagues (Yau et al. 2010) and Letouzé and colleagues 

(Letouze et al. 2010) have developed statistical methods that attempt to tackle intratumor 

heterogeneity. These methods may have advantages over GeneCount in that they are made 

for SNP arrays, which have high resolution. Even though GeneCount can be used to 

determine absolute DNA copy numbers from SNP arrays, tests need to be carried out to see 
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whether the signal-to-noise ratio of these arrays is satisfactory for determining heterogeneity 

in the copy numbers by GeneCount.   

DNA copy number alterations in carcinogenesis 

Until now, the overall importance of copy number alterations in cervical carcinogenesis and 

their relationship to known cancer hallmarks have remained unknown. In paper II we 

demonstrated how the recurrent gains and losses in cervical carcinoma were affecting the 

expression of certain genes that, in turn, were associated with five biological processes: 

apoptosis, metabolism, macromolecule localization, translation, and transcription. These 

processes were closely related to the known cancer hallmarks; evasion of apoptosis, 

metabolism and endocytosis. This was further supported by the findings in paper III, where 

candidate target genes of the loss on 3p were involved in apoptosis and cellular metabolism, 

indicating an association between the 3p-loss and the biological processes. This work 

therefore indicates that DNA copy number alterations play a significant role in reaching the 

hallmarks of cancer and thereby promote carcinogenesis in cervical cancer. The importance 

of copy number alterations for evasion of apoptosis in cervical cancer has also been 

demonstrated by Imoto and colleagues (Imoto et al. 2002). They showed that amplification 

of 11q21-q23 correlated with overexpression of the antiapoptotic gene BIRC2, resistance to 

apoptosis, and poor survival after radiotherapy.

To explore whether the recurrent genetic alterations were early or late events in 

carcinogenesis, the heterogeneity analysis in GeneCount was used. The recurrent alterations 

seemed to be early events since they showed minor intratumor heterogeneity compared to 

the other genetic alterations. This indicates that the hallmarks associated with these 

alterations arise early in the carcinogenesis and may be candidate biomarkers also in early 

stages of the disease. The more heterogeneous alterations, which arise later in the 

carcinogenesis, may either be associated with other hallmarks or they may be associated 

with the same hallmarks as the earlier events, reinforcing their effect and providing the 

tumor with alternative strategies to progress. 



29

DNA copy number alterations and chemoradioresistance 

In paper II it was shown that loss on 3p, 13q, and 21q were associated with 

chemoradioresistance. As mentioned earlier, tumors can develop resistance to radiotherapy 

by deregulation of cell cycle, evasion of apoptosis, or adaptation to hypoxia. In paper III it 

was suggested that loss of RYBP led to downregulation of other pro-apoptotic genes, and 

thereby evasion of apoptosis, which may have promoted chemoradioresistance and a more 

aggressive phenotype. Hence, a poorer clinical outcome was observed for patients with 

RYBP downregulation. Neither of the other 14 gene dosage regulated genes on 3p in paper 

III have been directly associated with any of the known biological processes leading to 

chemoradioresistance. A few of the genes, such as FOXP1, GBE1, LRIG1, RYBP, TMF1,

and SHQ1 have, however, shown reduced expression in different types of cancer, and have 

therefore been implicated as potential tumor suppressor genes. 

The target genes on 13q and 21q are still unknown, and therefore also the mechanisms of 

their association to the clinical outcome. Two candidates on 13q, MED4 and FAM48A, were 

suggested in paper II, but their potential role in chemoradioresistance is not clear. FAM48A

is known to be required for activation of the MAPK p38 pathway, which represses cell 

proliferation, and may therefore be involved in deregulation of cell cycle, whereas loss of 

MED4 may impair transcription of genes with anti-cancer effect. However, the use of cDNA 

expression arrays in paper II limited the number of genes included, and the targets of the 

alterations may not have been included in the data set. More studies are therefore needed to 

determine the target genes of 13q and 21q and their role in chemoradioresistance.
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Future perspectives 

Implementation in the clinic 

Biomarkers can either be used in diagnosis to select patients for different treatment 

strategies, or in development of targeted therapeutics to improve the effect of the standard 

radiation treatment. This work proposes novel candidate biomarkers that may be used 

clinically, both in diagnosis and in therapy. To implement the candidate biomarkers in the 

cervical cancer clinic, stringent clinical and biological validation is needed (Chin and Gray 

2008).

Diagnosis   

Before the DNA copy numbers, gene expression or protein expression can be used for risk 

stratification and therapy decision, clinical validation in independent patient groups is 

needed to ensure reproducibility. This should preferably be carried out using multicenter 

trials. Multicenter trials have the benefits of recruiting a large number of patients at different 

geographic locations, enabling the inclusion of a wider range of population groups and the 

ability to compare results among different medical institutions. This will increase the 

generalizability, since significant variations between population groups with different 

genetic and environmental background may exist. Successful validation of the biomarkers 

proposed in this work, would be an important step towards implementing the copy number 

alterations on 3p, 13q, or 21q, RYBP gene expression, or RYBP protein expression as 

predictive, diagnostic biomarkers in cervical cancer. By adopting similar strategies on 13q 

and 21q as was used on 3p to find the target genes, even more biomarkers at the 

gene/protein expression level could be candidates for implementation. All three levels could 

potentially be used, but alterations at the DNA level might have the largest potential as 

biomarkers due to the stability of copy number alterations. Moreover, even though the three 

genomic alterations could be used separately, paper II suggests that it is more to gain if 

information about all three regions is combined. To date, no diagnostic biomarkers exist for 

cervical cancer, but other cancer types, like breast cancer, have the benefit of using for 

example the amplification of the HER2 gene, to predict the response to trastuzumab and 

lapatinib (Esteva et al. 2010).
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Therapy 

To use biomarkers in therapy, pre-clinical and clinical trials are required to collect safety 

and efficacy data for health interventions. A better understanding of the gene or protein 

function and the effect of manipulation is also needed. Pre-clinical trials, starting with in 

vitro studies and continuing with in vivo studies on animal models, form a major part of the 

biological validation and are necessary before starting the clinical trials (Chin and Gray 

2008;Yap et al. 2010). All phases of clinical trials will normally be carried out, starting with 

obtaining information regarding efficacy and toxicity, then assessing safety, tolerability, and 

how well the drug works. Finally, randomized, controlled multicenter trials on large patient 

groups have to be completed.  

Targeting oncogenes can be accomplished by inhibition of oncogene transcription, reduction 

of mRNA translation, or by interference with oncoprotein interactions, transportation, and 

function (Hughes 2004). In this work, however, the candidate biomarkers have tumor 

suppressor function, and mechanisms for targeting suppressor genes are often more 

complicated. One strategy is to restore gene expression using adenoviral vectors. This has 

been tested in tumor cell lines for several tumor suppressor genes, including RYBP (Novak 

and Phillips 2008). Infecting cells with a generated adenovirus expressing RYBP resulted in 

induction of apoptosis. The effect was seen only in tumor cell lines, whereas normal cells 

were unaffected, suggesting that RYBP has a potential as a cancer gene therapy agent 

(Danen-van Oorschot et al. 2004).
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Abstract

Absolute tumor DNA copy numbers can currently be achieved only on a single gene basis by using
fluorescence in situ hybridization (FISH). We present GeneCount, a method for genome-wide
calculation of absolute copy numbers from clinical array comparative genomic hybridization data.
The tumor cell fraction is reliably estimated in the model. Data consistent with FISH results are
achieved. We demonstrate significant improvements over existing methods for exploring gene
dosages and intratumor copy number heterogeneity in cancers.

Background
Array comparative genomic hybridization (aCGH) is widely
used for genome-wide mapping of DNA copy number
changes in malignant cells [1,2]. Genetic gains and losses
impact gene expression levels, and thereby promote tumor
growth and progression [3-5]. Numerous clinical studies have
been performed to find tumor characteristics and to classify
patients with respect to their prognosis based on the copy
number changes [6,7]. The usefulness of the aCGH data is
limited, however, because only relative and not absolute copy
numbers are achieved, making the interpretation of the data
and comparisons across experiments difficult. Absolute DNA
copy numbers can be obtained only on a single gene basis by
the use of fluorescence in situ hybridization (FISH). Develop-

ment of genome-wide methods for this purpose would enable
generation of universal gene copy number databases of indi-
vidual diseases that could be utilized more widely, as is the
goal of several public repositories like the Mitelman Database
of Chromosome Aberrations in Cancer [8].

The relative values achieved in aCGH experiments are influ-
enced by the total DNA content (ploidy) of the tumor cells, the
proportion of normal cells in the sample, and the experimen-
tal bias, in addition to the DNA copy numbers. The values are
presented as intensity ratios between tumor and normal DNA
[2]. The data are normalized so that the ratio of 1.0 is the
baseline for the analysis, and corresponds to two DNA copies
in near diploid (2n) tumors. The copy number changes are
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identified from the ratios deviating from the baseline, using
statistical methods for ratio smoothing and breakpoint detec-
tion [9-12]. To assign an absolute copy number to each ratio
level identified by the statistical analysis and thereby score
genetic aberrations are, however, challenging. In aneuploid
tumors with gross alterations in the DNA content, the base-
line represents a copy number other than 2, like 3 or 4 in tri-
or tetraploid tumors, or a non-integer value when the DNA
content differs from n, 2n, 3n, ... mn [13]. The presence of
normal cells within the sample and experimental bias reduce
the ratio dynamics. Moreover, in many tumors, several sub-
populations of malignant cells with different genetic charac-
teristics exist, leading to intratumor heterogeneity in the DNA
copy numbers [14-16] and increased complexity in the data.
Unreliable results occur, therefore, when common ratio levels
are used to score gains and losses in tumors with different
ploidy and normal cell content.

The confounding effect caused by normal cells within tumor
samples is recognized as a problem in aCGH analyses and has
been handled by excluding low purity samples [17,18] or cor-
recting the ratio levels based on histological examination of
tumor sections [6]. The latter approach is not satisfactory
because only the proportion of connective tissue surrounding
the tumor parenchyma, and not the infiltrating immune cells,
is precisely quantified. Moreover, the measurements cannot
be performed on exactly the same tissue as used in the aCGH
experiment and may, therefore, not be representative. A
model including the CGH ratios, ploidy, and experimental
bias has been proposed for estimation of absolute DNA copy
numbers in tumor cell lines [19]. To our knowledge, no
method exists that also considers the normal cell content and,
thus, is suited for analyses of clinical tumor samples.

We here present a new model, GeneCount, where the propor-
tion of normal cells is estimated and corrected for and possi-
ble intratumor heterogeneity in DNA copy numbers is
considered. Inputs to our model are the DNA index (DI,
where DI = 1/2·tumor ploidy), tumor cell fraction, experi-
mental bias, and aCGH ratios. Predetermined measures of
tumor ploidy, determined either by flow or image based
cytometry, are needed. The tumor cell fraction can be deter-
mined by, for example, flow cytometry on the same part of the
sample as used in the aCGH experiment. In cases of unknown
normal cell content, the tumor cell fraction is estimated in the
model. The experimental bias is determined from the X-chro-
mosome ratio in aCGH experiments where male and female
DNA is compared. Smoothed ratio levels from any existing
statistical analysis tools for breakpoint detection can be used.

We show that the model enabled automatic and genome-wide
calculation of DNA copy numbers from aCGH data of both
hematopoietic and solid tumors. The feasibility of GeneCount
was demonstrated by analysis of 94 lymphomas, for which
the DNA index and tumor cell fraction had been determined
by use of flow cytometry and an extensive exploration of DNA

copy numbers had been performed by the use of FISH in pre-
vious studies [20-25]. The GeneCount results, both based on
the pre-determined tumor cell fraction and that determined
by the model, were compared with the FISH data of 362 genes
with and without gains and losses, showing 97% consistency
in both cases. In particular, we explored the copy numbers
achieved in the t(14;18) translocated chromosomal region
involving BCL2. We further demonstrated the potential of
GeneCount in analysis of solid tumors without pre-deter-
mined tumor cell fractions by relating the copy number of
selected genes in 93 cervical cancers to gene expression and
treatment outcome. By use of GeneCount we obtained a
higher sensitivity in detecting cervix tumors with copy
number changes than was obtained in analysis based directly
on the ratio levels. Finally, we identified intratumor heteroge-
neity of DNA copy numbers in the lymphomas and cervical
cancers, and showed how this information could be used to
draw conclusions about the evolution of the genetic aberra-
tions in the tumors. GeneCount was implemented in a soft-
ware package to be used downstream of statistical methods
for breakpoint detection, and results based on both the GLAD
and CGH-Explorer packages are presented [9,11]. We supply
our method through the open-source and free web-based
database BioArray Software Environment (BASE) [26].

Results
Basis of GeneCount
Our model utilizes the fact that the normalized aCGH ratio
increases with increasing DNA copy number in a stepwise
manner, where the step size is dependent on the DI, the
tumor cell fraction, and the experimental bias (Figure 1). In
near diploid tumors (DI = 1) without a contribution from nor-
mal cells or affected by experimental bias, an increment of 1
in the copy number increases the ratio by a value of 0.5, lead-
ing to a normalized ratio of 0.5, 1, 1.5, 2, and so on (-1, 0, 0.69,
1 on a log2 scale) for a copy number of 1, 2, 3, and 4, respec-
tively (see Equation 2 in Materials and methods). The corre-
sponding increase in tetraploid tumors (DI = 2) is 0.25,
whereas an increase between 0.25 and 0.5 occurs in tumors
with a DI between 1 and 2. Baseline, at a log2 ratio of 0, corre-
sponds to 2, 3, and 4 DNA copies in near diploid (Figure 1a),
triploid, and tetraploid (Figure 1b) tumors, respectively. For
DIs between 1 and 1.5 or between 1.5 and 2, baseline repre-
sents a copy number between 2 and 3 (Figure 1c) or between
3 and 4. The presence of normal cells within the tumor sam-
ple reduces the increase in aCGH ratio with incremental copy
number (Equation 3), as can be seen when comparing the
ratios of two near diploid lymphomas with different tumor
cell fractions (Figures 1a,d). Using common ratio levels for
scoring gains and losses in tumors like those presented in Fig-
ures 1a-d leads, therefore, to different results with respect to
copy number changes.

A further reduction in the ratio dynamics occurs due to exper-
imental bias (Equation 4). The bias, as represented by the
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Figure 1 (see legend on following page)
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dynamic factor, q, can be determined from control experi-
ments, where normal DNA from males and females is cohy-
bridized (Figure 1e). Theoretically, the X-chromosome ratio is
0.5 (-1 on a log2 scale), but the experimental bias reduces the
ratio dynamics, leading to a ratio level closer to zero. The
absolute value of the log2-transformed ratio level was used as
a measure of q (Figure 1e). This value differed little among the
slide series used here, ranging from 0.75-0.85 with a mean ±
standard deviation of 0.80 ± 0.04 based on 8 control experi-
ments. A q-value of 0.8 and range of 0.7-0.9 was used in the
GeneCount calculations in the cases of known and unknown
tumor cell fraction, respectively.

To enable automatic calculation of the copy number associ-
ated with each array probe, we implemented GeneCount in a
program to be run on top of statistical analysis packages for
aCGH ratio smoothing and breakpoint detection (Additional
data file 1). A separate algorithm was developed for samples
with unknown tumor cell fraction, where the fraction was
estimated based on two ratio levels and DI (panel B in Addi-
tional data file 1), as described in Materials and methods. One
decimal was included in the calculated DNA copy numbers
when evaluating the results in comparison with FISH data.
Otherwise, the numbers were rounded off to the nearest inte-
ger values.

GeneCount copy numbers in comparison with FISH 
data
We compared the GeneCount results of 94 lymphomas with
previously published FISH data from the same tumors [20-
25]. The FISH probes were located at chromosomal regions
with frequent copy number changes (Figure 1 and Additional
data file 2), and copy numbers within the range of 0-8 had
been measured. The DIs, ranging from 0.95-2.23, and the
tumor cell fractions, ranging from 27% to 98%, were used as
inputs to GeneCount, together with the smoothed aCGH
ratios from the GLAD and CGH-Explorer packages. CGH-
Explorer applied a more extensive ratio smoothing than
GLAD, and this led occasionally to differences in the ratio lev-
els and breakpoint detection between the two programs.

GeneCount with known tumor cell fraction
In most cases, we found an excellent agreement between the
DNA copy number determined by GeneCount and FISH,

Illustration of the stepwise increase in aCGH ratios with increasing DNA copy numberFigure 1 (see previous  page)
Illustration of the stepwise increase in aCGH ratios with increasing DNA copy number. Frequency histograms (% array probes) of aCGH ratios (left 
panels) and plot of aCGH ratio versus chromosomal location (right panels) are shown for a lymphoma with a DNA index (DI) of (a) 1.02, (b) 1.94, (c) 
1.21, and (d) 1.05, and (e) for normal DNA comparing male and female. The tumor cell fraction, measured by flow cytometry, is indicated for each tumor. 
DNA copy numbers estimated by GeneCount are marked; those in black were consistent with FISH data, whereas those in red have not been subjected 
to FISH measurements in the specific tumors shown. The arrows in the right panels point to the locations of the FISH probes. At a DI close to 1 and 2 
(a,b,d,e) the ratio distribution shows a major peak at a median log2 value of approximately zero, representing the most frequent DNA copy numbers of 2 
and 4, respectively. At a DI of 1.21 (c) the baseline at a log2 ratio of 0 represents a number between 2 and 3 DNA copies. Note the smaller increase in the 
ratios with increasing DNA copy number at a tumor cell fraction of 70% (d) than of 96% (a). In (e), determination of the dynamic factor, q, as the absolute 
value of the X-chromosome log2 ratio level is indicated.

GeneCount calculations with known tumor cell fractionFigure 2
GeneCount calculations with known tumor cell fraction. DNA copy 
number calculated by GeneCount is plotted against the corresponding 
FISH result for 9 genes in 94 lymphomas. The smoothed aCGH ratios 
from (a) GLAD and (b) CGH-explorer, a q-value of 0.8, and a DI and 
tumor cell fraction determined by flow cytometry were inputs to 
GeneCount. Grey and blue columns represent GeneCount results that 
were consistent and inconsistent with the FISH data, respectively, after 
rounding off the GeneCount number to the nearest integer value. 
Frequency distributions are shown for each copy number, containing 1, 25, 
246, 66, 15, 5, 4, and 1 value at a FISH copy number of 0, 1, 2, 3, 4, 5, 6, 
and 8, respectively.
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regardless of whether GLAD or CGH-Explorer was used for
breakpoint detection (Figure 2). The correlation between the
data sets was considerably better than when the ratio levels
were used in the comparison (Additional data file 3). Based
on GLAD, 350 out of 362 GeneCount values were consistent
with the FISH data (97%), whereas the corresponding
number based on CGH-Explorer was 340 out of 362 (94%)
(Figure 2). The few discrepancies between the GeneCount
and FISH results occurred mainly for two reasons. First,
GLAD and/or CGH-Explorer failed to detect the ratio change
of some of the genes that had a copy number change by FISH
(panel A in Additional data file 4). Second, the ratio level, and
therefore the copy number, was inaccurately determined for
some aberrations involving only a few array probes (panel B
in Additional data file 4). This was primarily the case for aber-
rations with less than three probes, like the homozygote dele-
tion involving two probes that covered RB1 in one of the
tumors (FISH copy number of 0 in Figure 2 and panel B in
Additional data file 4). The discrepancies between the Gene-
Count and FISH data were related, therefore, to the software
used for breakpoint detection and not due to errors in the
GeneCount algorithm.

GeneCount with unknown tumor cell fraction
The tumor cell fraction could be estimated for 55 and 43 out
of 94 lymphomas based on GLAD and CGH-Explorer,
respectively. The remaining tumors lacked aberrations or two
different ratio levels that could be used for the estimation
(Materials and methods). The estimated tumor cell fractions
correlated significantly with those measured by flow cytome-
try (Figure 3). Moreover, the estimates had a coefficient of
variance (CV) of less than 11% (Figure 3), and were therefore
fairly stable. The mean q-value determined in the calculation
differed little across the tumors, ranging from 0.73-0.84
(GLAD) and 0.74-0.82 (CGH-Explorer) (data not shown).

The consistency between the GeneCount and FISH data (Fig-
ure 4) was comparable to when the known tumor cell fraction
was used (Figure 2) and much better than when the ratio lev-
els and FISH data were compared (Additional data file 3).
Based on GLAD, 218 out of 231 DNA copy numbers were in
agreement with the FISH data (94%), whereas the corre-
sponding numbers based on CGH-Explorer were 173 out of
179 (97%) (Figure 4). Most differences between the Gene-
Count and FISH results occurred for the same reasons as
when the known tumor cell fraction was used (Additional
data file 4). Additionally, a discrepancy was seen for some of
the highest copy numbers based on GLAD (Figure 4), due to a
large discrepancy between the estimated and measured
tumor cell fraction in one of the cases (Figure 3a).

DNA copy numbers in translocated chromosomal regions
The relationship between the GeneCount estimates and FISH
data in translocated chromosomal regions was explored by
using BCL2, which is involved in the translocation t(14;18) in
lymphomas, as an example. The aCGH probe covering BCL2

is located telomeric of the breakpoint. The aCGH data and
GeneCount results of BCL2 were therefore not affected by the
translocation. For FISH analysis, we selected a BCL2 probe
covering the breakpoint. The probe signal was split in tumors
with translocation, leading to a signal from both
der(14)t(14;18) and der(18)t(14;18), although BCL2 is located
on the former chromosome. The FISH signal was therefore
higher than the actual BCL2 copy number, and differed from
the GeneCount result in all 38 tumors with translocation (Fig-
ure 5a). After recalculating the FISH copy numbers as
described [22], the consistency in the data was excellent,
except in one case at a corrected FISH value of five copies
(Figure 5b). This discrepancy was due to failure of GLAD and

GeneCount estimations of tumor cell fractionFigure 3
GeneCount estimations of tumor cell fraction. Tumor cell fraction of 
lymphomas estimated by GeneCount is plotted against tumor cell fraction 
measured by flow cytometry. Each point represents mean ± standard 
deviation based on the values achieved for q within the range 0.7-0.9. The 
smoothed aCGH ratios from (a) GLAD and (b) CGH-explorer, the q 
range 0.7-0.8, and a DI determined by flow cytometry were inputs to 
GeneCount. The calculations were based on 55 (a) and 43 (b) tumors for 
which suitable ratio levels for the calculations existed. Correlation 
coefficients and P-values from Pearson product moment correlation 
analyses are indicated.
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CGH-Explorer in detecting a narrow amplicon involving
BCL2 (panel C in Additional data file 4).

GeneCount analysis of solid tumors
The feasibility of our method for analysis of solid tumors
without information of tumor cell fraction was explored in 99
cervical cancers, for which the DI ranged from 1.00-3.16. The
tumor cell fraction could be estimated for 93 and 89 tumors
based on GLAD and CGH-Explorer, respectively, fulfilling the

requirements for this estimation (Materials and methods).
The tumor cell fractions were poorly correlated with the val-
ues determined by analysis of histological sections (Addi-
tional data file 5). In most cases, the histology result was
higher than the GeneCount estimate, probably because
immune cells infiltrating the tumor parenchyma were not
properly quantified by the histological examination. In a few
cases, however, the histology result was higher, probably
reflecting that different parts of the sample were used in the
aCGH and histology analyses. The tumors for which the
tumor cell fraction could be estimated by GeneCount were
included in the further analyses.

A higher number of genetic aberrations were generally found
in the cervical cancers than in the lymphomas. High level
amplifications with more than 2.5-fold increases in gene
dosage (that is, copy number, N, relative to total DNA content
given by two times the DNA index (N/(2.DI)), were found in
about half of the tumors and most frequently on chromo-
somes 5p and 11q. GeneCount analysis showed copy numbers
within the range of 5-80 in these regions, which were often
surrounded by gains at lower levels.

The GeneCount results were compared with the outcomes of
existing analysis methods, where gains and losses were
scored from the smoothed ratio levels and breakpoints
obtained by GLAD and CGH-Explorer. The log2 transformed
ratio levels of ± 0.2 (that is, approximately two times the ratio
standard deviation (Additional data file 6)) were applied as
cut-off levels for scoring aberrations. We selected genes that
were shown to be affected by gains and losses in previous
studies on a subgroup of the patients [27]. Some of the genes
showed only a small variation in the aCGH ratios, often
within the level of ± 0.2, and only a few tumors with aberra-
tions were identified (Figure 6a and panel A in Additional
data file 7). A higher number of patients with changes in gene
copy numbers and in the corresponding gene dosages were
identified with GeneCount, using the cut-off levels of ± 0.2 for
scoring gene dosage changes (Figure 6b,c and panels B and C
in Additional data file 7). The gene dosage correlated signifi-
cantly with gene expression (Figure 6c and panel C in Addi-
tional data file 7), making the copy number changes
determined by GeneCount plausible.

The copy number changes of MRPS23 have previously been
shown to correlate with survival probability [27]. Survival
analysis based on the GeneCount data of MRPS23 identified
more patients with poor outcome than the corresponding
analysis based on ratio levels (Figure 6d,e). Hence, 15 high
risk patients were identified based on the GeneCount results,
whereas only 5 patients were classified with high risk based
on the ratio levels. Nine of the ten patients that were not iden-
tified based on ratio levels (blue curve in Figure 6d) had ane-
uploid tumors with a DNA index ranging from 1.10-1.92. The
remaining diploid tumor had a relatively low tumor cell frac-
tion of 23%.

GeneCount estimations with unknown tumor cell fractionFigure 4
GeneCount estimations with unknown tumor cell fraction. DNA copy 
number calculated by GeneCount, using a q-value within the range 0.7-0.9, 
a DI determined by flow cytomery, and the tumor cell fraction estimated 
by GeneCount in Figure 3, is plotted against the corresponding FISH result 
for 9 genes in (a) 55 and (b) 43 lymphomas. The smoothed array CGH 
ratio derived from GLAD and CGH-explorer was used in (a) and (b), 
respectively. Grey and blue columns represent GeneCount results that 
were consistent and inconsistent with the FISH data, respectively, after 
rounding off the GeneCount value. Frequency distributions are shown for 
each copy number, containing 1, 19, 134, 56, 11, 5, 4, and 1 value at a FISH 
copy number of 0, 1, 2, 3, 4, 5, 6, and 8, respectively, based on GLAD. The 
corresponding numbers based on CGH Explorer were 1, 15, 98, 48, 7, 5, 
4, and 1.
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Intratumor heterogeneity in DNA copy numbers
Some tumors had genome regions for which the aCGH ratio
was clearly different from that corresponding to an integer
copy number. This probably reflected intratumor heterogene-
ity in the DNA copy numbers, that is, the existence of subpop-

ulations with copy number changes that are not common for
all tumor cells in the sample. The common aberrations can
thus be considered homogeneous. Lymphomas and cervical
cancers with heterogeneous DNA regions had ratio levels that
fell in between, and were significantly different from, those

GeneCount estimations in the t(14;18) translocated region involving BCL2Figure 5
GeneCount estimations in the t(14;18) translocated region involving BCL2. BCL2 copy number estimated by GeneCount, using a q-value of 0.8 and a DI and 
tumor cell fraction determined by flow cytometry, is plotted against the corresponding FISH result in 94 lymphomas. The smoothed array CGH ratios 
derived from GLAD and CGH-explorer were used in the left and right panels, respectively. Grey and blue columns represent GeneCount calculations that 
were consistent and inconsistent with the FISH measurements, respectively, after rounding off the GeneCount value. (a) Uncorrected FISH data are 
plotted; (b) these data were corrected as described in [22]. Frequency distributions are shown for each copy number, containing 1, 38, 33, 13, 5, and 1 
value for a red spot FISH copy number of 1, 2, 3, 4, 5, and 6. The corresponding number of measurements for the corrected FISH data of 1, 2, 3, 4, 5, and 
6 were 1, 69, 14, 4, 2 and 1.
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corresponding to integer values (Figure 7). The actual ratio
level reflected the proportion of cells with that aberration
(Equation 1).

Nineteen (20%) lymphomas and 44 (50%) cervical cancers
had one or more heterogeneous DNA regions with copy num-
bers 1&2, 2&3, or 3&4 (Additional data files 8 and 9). Reliable
detection of heterogeneity required tumor cell fractions above
24% (Additional data file 10) and 5 out of 93 cervical cancers
were therefore excluded from this analysis. Lymphoma
L309/89 (Figure 7) had previously been identified as hetero-
geneous by FISH, showing one population with three and
another with four copies of MYC and centromeres 8 and 17
[20]. Moreover, several of the heterogeneous aberrations in
the cervical cancers, such as loss on chromosome 4 and X and
gain on 11q and 17 in C005/01, loss on 6q and gain of 11q in
C006/01, and loss on 4 in C023/01, were similar to those
detected earlier by conventional CGH [14]. The previous
study was, however, based on a different set of biopsies,
which probably explains the lack of consistency for some of
the tumors.

In a few of the heterogeneous tumors, two different ratio lev-
els were identified between one and two copies (Figure 8 and
Additional data file 11). Thus, it appeared that the corre-
sponding aberrations were present in different fractions of
the tumor cell population. Lymphoma L008/92 had two
intermediate ratio levels between one and two copies, corre-
sponding to 70% and 30% of the tumor cells (Figure 8b, blue
and red ratios, respectively), leading to the possible tumor
evolutionary schemes depicted in Figure 8c. As the sum of the
two fractions did not exceed 100%, the heterogeneous aberra-
tions may be found in non-overlapping subpopulations of the
tumor, where the subpopulations have evolved differently
from a predicted common population containing the homog-
enous aberrations (parallel sequence). A serial sequence,
where the populations have evolved in a linear manner from
a common population, was also possible. In C024/01, how-
ever, the heterogeneous ratio levels corresponded to 78% and
44% of the tumor cells, and a serial sequence was the only one
suggested (panel C in Additional data file 11).

Discussion
We have shown that GeneCount is a reliable method for
genome-wide calculation of DNA copy numbers in clinical
tumor samples. Such data are biologically interesting in
themselves but may also lead to improved prediction of
treatment outcome and aid in the identification of novel
tumor suppressors and oncogenes. We applied the method to
lymphomas, for which accurate measures of tumor cell frac-
tion and DNA copy numbers have been obtained by other
techniques that could be compared with the GeneCount
results. We further used the method on cervical cancers, for
which tumor cell fractions representative of the aCGH data
are more difficult to achieve by a separate technique. The

GeneCount analyses in cervical cancersFigure 6
GeneCount analyses in cervical cancers. (a) Frequency histogram (number 
of tumors) of smoothed aCGH ratios (GLAD) for MRPS23 (BAC clone ID 
RP11-19F16). Dotted lines indicate the cut off ratio levels of ± 0.2, 
identifying 5 tumors with genetic gain and 3 tumors with loss. (b) 
Frequency histogram (number of tumors) of MRPS23 copy number 
calculated by GeneCount. The GLAD ratio levels, the DI measured by flow 
cytometry, and the tumor cell fraction estimated by GeneCount were 
used in the calculation. Similar results were achieved based on the CGH-
Explorer ratio levels. (c) Plot of gene expressions against gene dosage; 
that is, the MRPS23 copy number divided by the total DNA content (N/
(2·DI)). Increased gene dosage with more than 15% of the total DNA 
content (log2 transformed gene dosage of at least 0.2) were seen in 15 
tumors (red and blue symbols). Red symbols represent the five tumors 
with gain in (a), whereas blue symbols represent the remaining ten tumors 
with increased gene dosage that were not identified in (a). The correlation 
coefficient and P-value from Pearson product moment correlation analysis 
are indicated. (d) Kaplan Meier analysis based on GeneCount results for 
MRPS23. Plots of the survival probability are shown for 5 patients with 
high gene dosage in (c), who also had gain in (a) (red line), 10 patients with 
high gene dosage in (c) and without gain in (a) (blue line), and 78 patients 
with low gene dosage in (c). (e) Kaplan Meier analysis based on the 
MRPS23 ratio levels. The survival probability of 5 patients with gain in (a) 
(red line) and 88 patients without gain in (a) (black line) is plotted. Only 
five high risk patients were identified in (e), whereas ten more patients 
were identified by GeneCount in (d). P-value in log-rank test is indicated in 
(d,e). Panels (a,b,d) are based on 93 tumors, for which the tumor cell 
fraction could be estimated by GeneCount. Panel (c) is based on 89 of 
these tumors, for which both DNA copy number and gene expression 
were available.
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GeneCount model is simple, due to the use of normal cells
with two DNA copies throughout the genome as a reference
sample. Moreover, the estimated copy numbers are restricted
to positive integers, increasing the robustness of the method.
A requirement for achieving the absolute quantification for-
mat is the use of pre-determined tumor ploidies, whereas the
tumor cell fractions, if not known, and experimental bias can
be estimated from the aCGH data.

The experimental bias is mainly caused by signals from
unsuppressed repetitive sequences and nonspecific hybridi-
zation [2]. The bias influences the test and reference sample
equally and independently of the DNA copy number, since it
is generated by sequences distributed throughout the
genome. The bias could, therefore, be summed up in an array
specific factor, q, representing the dynamics of the log-trans-
formed ratios. Mohapatra et al. [19] included the bias as a
constant factor affecting the absolute, rather than the log-
transformed, ratios in their model for pure tumor cells. Our
approach seems justified because the noise (width) of the log-
transformed ratios was independent of the ratios and, there-
fore, of the DNA copy numbers (Additional data file 6). We
allowed for a small variation in q when calculating the tumor
cell fraction to account for minor differences in the bias
across the tumors. This q-value, optimized for each tumor,
was highly similar to the mean q determined from control
experiments, indicating that the bias was stable across exper-
iments. Moreover, the discrepancies between the GeneCount
and FISH results were related to the specific genetic aberra-
tion involved and, therefore, to the breakpoint detection
algorithm, rather than to possible uncertainties in q. Recent
developments in array CGH technology, utilizing oligonucle-
otides rather than bacterial artificial chromosome (BAC)
clones, led to improved ratio dynamics and reduction in the
experimental bias due to less repetitive sequences [28].
Ongoing work in our laboratory shows that by using oligoar-
rays, GeneCount can be applied with a q value close to 1.

Inclusion of the tumor cell fraction is a prerequisite for the
calculation of absolute DNA copy numbers in clinical tumor
samples. The lymphoma data were based on single cell sus-
pensions made from the entire lymph nodes. A tumor cell
fraction representative of the lymph node could, therefore, be
determined with high accuracy by a separate technique like
flow cytometry. In solid tumors such as cervical cancers, the
normal cells consist of stroma, which is highly heterogene-
ously distributed within the tissue, and immune cells, which
infiltrate the tumor parenchyma. A measure of the tumor cell
fraction achieved by, for example, histological examination,
which is based on a part of the sample different from that
used for the aCGH experiment and/or fails to quantify the
proportion of immune cells accurately, is, therefore, not pre-
cise enough for the calculation of DNA copy numbers.
Histology data may, however, be useful for preselecting
tumor enriched samples for the aCGH analysis. Fairly stable
estimates of the tumor cell fraction, consistent with the values

GeneCount identification of DNA copy number heterogeneity within tumorsFigure 7
GeneCount identification of DNA copy number heterogeneity within 
tumors. (a) Frequency histogram (% array probes) of aCGH ratios in a 
heterogeneous lymphoma, including data for the entire genome. (b) 
aCGH ratios are plotted against chromosomal location, showing the 
heterogeneous regions on chromosomes 8, 9, and 17 with a DNA copy 
number of 3&4 in blue. (c) Frequency histogram (% array probes) of 
aCGH ratios for two homogeneous DNA regions with a copy number of 
3&4 (upper panel) and the heterogeneous region depicted in (b) with a 
copy number of 3&4 (lower panel). The ratio distributions of copy number 
3, 4, and 3&4 were significantly different (p < 0.001, ANOVA). DNA copy 
numbers estimated by GeneCount from the DI and tumor cell fractions 
measured by flow cytometry are marked; those in black were consistent 
with FISH experiments, whereas those in red have not been subjected to 
FISH measurements in the specific tumors shown. The arrows in (b) point 
to the locations of the FISH probes. Note that the 3&4 copy number of 
the heterogeneous region has been confirmed with FISH.
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measured by flow cytometry, were achieved by the use of
GeneCount. The estimates led to DNA copy numbers in agree-
ment with the FISH data, suggesting that the accuracy of the
tumor cell fractions was sufficient for reliable data analysis.
Selection of appropriate ratio levels for the estimation was
crucial for achieving this accuracy. We required that the
tumors had at least two aberrations with different copy num-
bers and with more than ten array probes each to reduce
errors caused by poorly defined ratio levels and breakpoints.
Moreover, only ratio levels deviating more than 0.15 (log2
scale) from the baseline were selected, implying that tumor
fractions higher than 24% (diploid) and 36% (tetraploid)
were needed when copy numbers were changed to 3 or 5 cop-
ies, respectively (Additional data file 12).

The few discrepancies between the GeneCount and FISH data
were not related to our model, but rather to the ability of the
statistical methods to detect some of the aberrations. Hence,
the consistency between the GeneCount and FISH results was
similar to the reliability of GLAD in detecting breakpoints in
simulated data [9]. The highest accuracy of the GeneCount
results was obtained for well defined aberrant regions con-
taining at least three array probes. In these cases a ratio level
representative of the corresponding copy number was
achieved and the probability of detecting the aberration was
high. The increased uncertainty in the results of narrow aber-
rations implies that they should be confirmed by a separate
technique like FISH. Moreover, to ensure sufficient ratio
dynamics and, therefore, a high probability of breakpoint
detection, a tumor cell fraction higher than a certain value,
which depends on the experimental noise and tumor ploidy,
is needed. With the noise of our experiments (Additional data
file 6), a tumor cell fraction above 23% in diploid, and some-
what higher in hyperdiploid cases, enabled separation of an
aberration with more than three array probes (Additional
data file 13). This fraction also enabled detection of heteroge-
neous DNA copy numbers involving more than ten array
probes (Additional data file 10). In experiments with more

Figure 8
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Evolution

Evolutionary sequences of subpopulations in heterogeneous tumorsFigure 8
Evolutionary sequences of subpopulations in heterogeneous tumors. (a) 
Frequency histogram (% array probes) of aCGH ratios in a heterogeneous 
lymphoma is shown, including data for the entire genome. (b) The aCGH 
ratios are plotted against chromosomal location. The heterogeneous 
regions on chromosomes 2q, 5p, 7q, 9p, 13q, 20q, and Xp with a DNA 
copy number of 1&2 and on chromosomes 2p, 4q, 6p, 11q, and 18 with a 
DNA copy number of 2&3 are shown in blue and red. The blue and red 
colors represent aberrations that are present in different fractions of the 
tumor cells; 70% and 30%, respectively. The heterogeneous aberrations 
are listed in Additional data file 8 except those with a copy number of 2&3, 
since the lack of 3 DNA copies in this tumor prevented statistical analysis 
to identify 2&3 heterogeneity. (c) Schematic diagram of two possible 
evolutionary sequences for the aberrations, one parallel and one serial 
sequence, are shown. The blue and red circles represent the blue and red 
aberrations in (b). The percentages indicate the fractions of tumor cells 
with the listed aberrations, as calculated by GeneCount, showing that the 
aberrations in blue and red are present in 70% and 30% of the tumor cells, 
respectively.
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noise, caused by, for example, poor DNA quality, higher
tumor cell fractions are required. In comparison, at least 50%
tumor cells is suggested for optimal detection of gains and
losses by conventional CGH [29].

The DNA copy number of genes involved in translocations
cannot be directly assessed by FISH when a probe covering
the breakage region is used, because signals from both the
original chromosomes are detected in the translocated
derivatives. Correction of the probe signal to achieve the true
copy number requires knowledge of the breakpoint and genes
involved in the translocation. Reliable FISH analysis in solid
tumors, where the translocations are not well identified and
may occur throughout the genome [30] is, therefore, particu-
larly challenging. By aCGH, the probe signal is measured
independently of the actual genome organization of the DNA
covered by the probe. Hence, in the case of balanced translo-
cations, a correct result will be obtained even if the probe cov-
ers the breakpoint. If the probe is located at the start or end of
an amplified or deleted region (unbalanced translocation),
the aCGH ratios of the adjacent probes ensure that the correct
copy number is calculated. Our model therefore provides a
novel method for assessment of copy numbers both in bal-
anced and unbalanced translocated regions and without
knowing that the translocation exists.

Current methods for analysis of aCGH data generally score
genetic gains and losses based on ratio levels [31-36]. The
breakpoints in individual tumors can be detected with high
accuracy by use of statistical algorithms like GLAD and CGH-
Explorer. However, the existing downstream analyses, using
common ratio levels for scoring aberrations across tumors,
fail to identify gains and losses in cases of high ploidy and
normal cell content. By the use of GeneCount, the ratio levels
are replaced with the absolute copy numbers relative to the
total DNA content as measures of gene dosage, which can be
compared across tumors regardless of ploidy and normal cell
content. Hence, copy number changes that were not detected
by analysis based on ratio levels, but showed significant cor-
relation with gene expression, were found in cervical cancers,
suggesting that improved results were achieved. Moreover,
many patients with poor outcome that had MRPS23 gain by
GeneCount had no gain based on ratio levels. In the latter
case, the gain was masked by high content of normal cells or
high ploidy, showing that GeneCount is more sensitive in
detecting patients with genetic aberrations. The finding fur-
ther demonstrates that GeneCount applies well to solid
tumors for which the tumor cell fraction is generally unknown
and must be estimated by the method. Advances in current
statistical analysis methods may utilize adjustable ratio levels
for scoring gains and losses, optimizing the cut-off ratios for
each tumor based on a mathematical evaluation of the ratio
dynamics. Such methods may account for varying ploidy and
normal cell content across diploid, triploid, and tetraploid
tumors. However, the strategy is not useful for tumors with an
intermediate ploidy like 1.25 (Figure 1c). In contrast, the

absolute DNA copy number relative to the total DNA content,
or gene dosage, is comparable also across such tumors.

We also showed that GeneCount can provide genome-wide
and high resolution information of intratumor heterogeneity
in the DNA copy numbers. Such heterogeneity has previously
been detected only on a single gene basis by FISH or at low
resolution by conventional CGH analyses [14,15,20,37,38],
probably reflecting a high genomic instability [39]. Detection
of heterogeneity involving two DNA copies by the use of FISH
is challenging, since the heterogeneous tumor population is
difficult to distinguish from normal cells. The probability to
detect heterogeneity with GeneCount depends on the fraction
of tumor cells with the heterogeneous aberration. Obviously,
the probability is largest at a fraction of 50%, but fractions
higher than 70% and lower than 30% were also identified.
Heterogeneity in low copy numbers, like 1&2 and 2&3, are
more easily detected, since the separation between the log-
transformed ratio levels are larger. At higher copy numbers,
the possibility to detect heterogeneity decreases, depending
on the ploidy and normal tissue content. However, we also
identified heterogeneous regions with copy number 3&4 in
several tumors and 4&5 in one tumor. Finally, the probability
to detect heterogeneity also depends on the proportion of the
genome that is affected. In our data severe heterogeneity
affecting up to 40% of the genome could be analyzed with
GeneCount (C002/01; Additional data file 9). With an
increasingly larger part of the genome affected, difficulties in
finding breakpoints and even homogeneous aberrations
eventually occur, leading to unreliable results regardless of
analysis method.

The heterogeneity data led to insight into the evolutionary
sequence of the copy number changes. The homogeneous
aberrations had probably occurred prior to the heterogeneous
ones [14]. Moreover, in cases where the heterogeneous aber-
rations appeared to be present in different fractions of the
tumor cell population, these aberrations could be ordered
chronologically in a serial and/or parallel sequence. It was
not always possible to identify the correct sequence among
the proposed ones, as could be done by comparing data for
several biopsies from the same tumor [14]. However, identifi-
cation of the heterogeneous as well as the homogeneous aber-
rations suggests a further possible investigation of the exact
combination of aberrations in each subpopulation, employ-
ing, for example, triple-color FISH with one probe for a
homogeneous aberrant region and two for the heterogeneous
ones.

In the heterogeneity analysis we assumed that the ploidy was
the same for all subpopulations of malignant cells. This
assumption was justified because no cases were observed
with two aneuploid populations by flow cytometry. A possible
difference in the ploidy of two aneuploid populations within a
tumor was therefore probably smaller than 10%, leading to
less than 10% uncertainty in the copy numbers calculated by
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GeneCount (Equation 4; data not shown). The same uncer-
tainty also applied to near diploid and heterogeneous cervical
cancers. These tumors often showed a broad G1 peak with a
CV up to 10% by flow cytometry, probably reflecting the exist-
ence of several subpopulations with ploidy within the range of
1.0-1.1. Moreover, few or no light chain positive cells were
observed in the diploid population of the aneuploid lympho-
mas, suggesting that the diploid population contained prima-
rily normal cells. It is possible, however, that the diploid
population of the aneuploid cervical cancers contained
malignant cells, as we have previously shown for aneuploid
colorectal cancers [40]. This might have led to larger uncer-
tainties in the heterogeneous copy numbers due to the use of
an erroneous DNA index of the diploid population. The data
of such tumors can be improved by sorting the diploid and
aneuploid fractions by flow cytometry [40] for separate aCGH
and GeneCount analyses.

Conclusion
GeneCount provides reliable DNA copy numbers, both when
based on the tumor cell fractions determined by flow cytome-
try and those estimated by the method. Accurate data are also
achieved in translocated chromosomal regions, as demon-
strated for the t(14;18) translocation involving BCL2. Our
method is the only one to provide genome-wide information
of absolute DNA copy numbers. Moreover, the method repre-
sents a significant improvement compared to existing meth-
ods in the study of gene dosages and intratumor copy number
heterogeneities. The robustness of GeneCount implies that
the method can be utilized widely in the genomic exploration
of both hematopoietic and solid tumors, addressing DNA
copy number aspects in a reliable manner, regardless of pos-
sible translocations. This may lead to improved assays for dis-
ease classification and outcome prediction and aid the
identification of efficient targets for new cancer therapies.

Materials and methods
Tumor samples, DNA index, and tumor cell fraction
Samples from 94 patients with B-cell non-Hodgkin's lym-
phoma and 99 patients with squamous cell carcinoma of the
uterine cervix were analyzed. We used fresh frozen lym-
phoma cell suspensions for which the tumor subtype, stage,
patient treatment, and follow-up have been presented previ-
ously [25]. The cervical cancers were of FIGO (Fédération
Internationale des Gynaecologistes et Obstetristes) stage 1b-
4b, treated with radiotherapy. Tumor biopsies taken before
the start of treatment were used.

The DI of the lymphomas and cervical cancers and the tumor
cell fraction of the lymphomas were determined by use of flow
cytometry, and most of these data have been published earlier
[14,23,25]. The lymphoma cells were labeled with phyco-
erythrin-labeled antibodies to the tumor characteristic light
chains for identifying the tumor cells and Hoechst 33258 for

assessment of DNA content. The DI was determined from the
G1 peak position of the light chain positive cells relative to the
light chain negative cells. Tumor cell fraction was determined
as the fraction of light chain positive cells. The DI of the cer-
vical cancers was assessed by preparing clean nuclei, stained
with propidium iodide, using the detergent-trypsin method
[41]. Cells from a diploid cell line were used as an internal ref-
erence. Samples showing two distinct G1 peaks in the DNA
histogram were classified as aneuploid, and the DI was deter-
mined from the position of the G1 peak of the aneuploid cells
relative to the corresponding peak of the diploid cells. Sam-
ples with a single G1 peak were classified as near diploid. An
estimate of the tumor cell fraction was achieved for each cer-
vical cancer sample by histological examination of hematoxy-
lin and eosin stained sections derived from the middle part of
the biopsies. These values were used to compare with the
tumor cell fractions estimated by GeneCount.

Array CGH
Genomic array slides produced by the Microarray Facility at
the Norwegian Radium Hospital were used [42]. The arrays
contained 4,549 unique genomic clones of BACs and P1 arti-
ficial chromosomes (PACs) (Wellcome Trust Sanger Institute,
Cambridge, UK) that covered the whole genome with a reso-
lution of approximately 1 Mb. The 1 Mb clone collection was
supplemented with tiling path probes between 1q12 and 1q25,
using overlapping BACs and PACs. The clones were from the
RPCI-11 (BAC) and the RPC1-1, -3, -4, and -5 (PAC) libraries.
Each clone was printed in 4-8 array spots. The genes covered
by the clones were found from Ensembl [43].

Genomic DNA was isolated from the lymphoma cell suspen-
sions and cervical cancer biopsies according to a standard
protocol, including proteinase K, phenol, chloroform, and
isoamylalcohol [44]. DNA (1 �g) was digested overnight,
using DpnII endonuclease (New England Biolabs, Beverly,
MA, USA), and purified using the QIAquick PCR Purification
Kit (Qiagen, Valencia, CA, USA). Digested and purified DNA
and normal reference DNA (0.5 �g each) were labeled by a
random primer reaction (BioPrime DNA Labeling System,
Invitrogen, Carlsbad, CA, USA) with Cy3-dCTP and Cy5-
dCTP (Perkin-Elmer Life Sciences, Foster City, CA, USA),
respectively, and co-hybridized to the array slides [42]. Scan-
ning and image analysis were performed by use of an Agilent
scanner (Agilent Technologies Inc., Palo Alto, CA, USA) and
the GenePix 6.0 image analysis software (Axon Instruments
Inc., Union City, CA, USA). The microarray management and
preprocessing software BASE [26] was used for spot filtering
and ratio normalization. The mean value of the 4-8 spots of
each genomic clone was used, provided that the standard
deviation was less than 0.2. Lowess normalization was per-
formed so that the mean log-transformed ratio of all clones
was equal to 0. The GLAD and CGH-Explorer algorithms
were used for ratio smoothing and breakpoint detection
[9,11]. Default values of 8 (GLAD) and 1.5 (CGH-Explorer) for
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the statistical penalty, �, were used. The smoothed ratios were
inputs to GeneCount.

Principle of GeneCount
For a heterogeneous test sample consisting of several cell
populations, like normal cells and distinct populations of
malignant cells, the DNA of each cell population contributes
to the aCGH ratio. Ideally (that is, in cases of no experimental
bias), the normalized ratio of each array probe is given by:

where Rideal is the aCGH ratio of a sample with n cell popula-
tions, and Ni, DIi, and Fi are the DNA copy number, DNA
index, and tissue fraction of cell population i, respectively. We
assume that: the reference sample is normal DNA with a copy
number of 2 throughout the genome, except for the X and Y
chromosomes in males; sex-matched hybridizations are per-
formed; and DI is given relative to the DNA content of normal
cells.

In cases of a homogeneous sample with a single cell popula-
tion, for example, a cancer cell line, Equation 1 is reduced to:

In clinical samples with two cell populations, that is, malig-
nant and normal cells, the ratio is given by:

where NT, DIT, and FT are the DNA copy number, DNA index,
and fraction of malignant cells in the sample, respectively. 1 -
FT represents the fraction of normal cells, which have a DI of
1 and DNA copy number (N) of 2.

It was clear from experiments where normal male DNA was
hybridized against female DNA that the ratio dynamics were
somewhat reduced (Figure 1e). A dynamic factor, q, was
included in Equation 3 to compensate for this effect. Since the
experimental noise was independent of the logarithm of the
ratio (Additional data file 6), Equation 3 was rewritten to
account for the reduced dynamic in the following way:

The dynamic factor represents the systematic, non-random
reduction in the log-transformed ratios caused by the experi-
mental bias and has a value between 0 and 1, where the latter
value occurs in the ideal situation without any reduction in
the ratio dynamics. The factor is a characteristic of the array
slide series and the laboratory protocol and was determined
from the ratio of the X chromosome in a control experiment
hybridizing male versus female normal DNA (Figure 1e).
Equation 4 was used in GeneCount to calculate FT and NT
from the ratio profile of the sample.

Intratumor heterogeneity in the DNA copy numbers, that is,
the cases of several populations of malignant cells in addition
to the normal cells, was identified by selecting the tumors for
which one or more of the aCGH ratio levels were different
from that corresponding to an integer value by visual inspec-
tion. The ratio distributions of the potential heterogeneous
regions were compared to the distributions of the adjacent
homogeneous aberrations by ANOVA analysis, and a P-value
of 0.05 was required to classify the aberration as heterogene-
ous. The fraction of tumor cells with a heterogeneous aberra-
tion was calculated, employing the more general Equation 1.
The DI was assumed to be the same for all subpopulations of
malignant cells.

Implementation of GeneCount in BASE
We used BASE as a platform for GeneCount and linked the
algorithm to the output of the GLAD and CGH-Explorer pack-
ages, which were implemented in our BASE version. The
method can also be developed as a separate program or inte-
grated in other aCGH analysis packages. The algorithm con-
sists of three major steps: data input for all samples;
estimation of tumor cell fraction in the cases when this
parameter is unknown; and estimation of DNA copy number
for each array probe (panel A in Additional data file 1). The
smoothed aCGH ratios served as input, together with the DI,
the q-value from control experiments with its lower and
upper limits (qmin, qmax) and, if available, the tumor cell
fraction.

In cases of unknown tumor cell fraction, this value was esti-
mated in a simulation procedure based on two selected ratio
levels, using the tumor cell fraction and DNA copy numbers
as independent and q as dependent variables. The copy num-
bers and tumor cell fraction were increased in steps of 1 and
0.01, respectively, and the corresponding q-value was calcu-
lated (panel B in Additional data file 1). To ensure high accu-
racy in the estimated fractions, it was required that the
absolute value of the selected ratio levels was larger than 0.15.
This implied that samples with a tumor cell fraction lower
than 24% in diploid and 36% in tetraploid tumors could not
be analyzed when only aberrations involving one copy
number change existed (Additional data file 12). Moreover, a
minimum absolute difference of 0.2 - that is, approximately
two times the standard deviation of the log-transformed ratio
levels (Additional data file 6) - between the two selected ratio
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levels was needed. To further increase the reliability of the
estimation, only ratio levels with more than ten probes were
selected. We optimized q for each tumor by allowing the value
to vary within the limited range of qmin to qmax, typically q ±
10%, leading to fairly stable estimates of the tumor cell frac-
tion. The mean tumor cell fraction based on these estimates
and the corresponding mean q-value was used in Equation 4
to estimate the DNA copy numbers of the tumor. In cases of
known tumor cell fraction, this fraction and q from control
experiments were used in Equation 4. The source code of the
module is provided by communication to the authors. A demo
version of GeneCount in BASE is also available [45].

Fluorescence in situ hybridization
GeneCount estimates for the lymphomas were compared with
direct assessments of gene copy numbers by use of FISH. All
FISH analyses have been published previously [20-25]. Dual-
color FISH was applied to all 94 tumors. We used spectrum
orange labeled locus-specific propidium iodide DNA probes
for genes commonly aberrant in lymphomas (CCND3, BMP6,
PIM1, MYC, CDKN2A, RB1, TP53, PMAIP1, and MALT1) and
spectrum green labeled centromer probes (centromere 1, 6, 8,
17, and 18) (Vysis Inc., Downers Grove, IL, USA) for assessing
the quality of the experiment. For exploring DNA copy
number calculations in translocated chromosomal regions,
BCL2, which is frequently involved in the translocation
t(14;18)(q32;q21) in lymphomas, was considered. A dual-
color translocation probe involving BCL2 and covering the
breakpoint region was used (LSI IGH Spectrum Green/LSI
BCL2 Spectrum Orange, Vysis Inc.). Due to splitting of the
probe signal in cases of translocation, erroneous high BCL2
copy numbers were derived directly with this probe. The
BCL2 copy number was therefore corrected based on the sig-
nals from the IGH and centromere 18 probes, as described
[22].

Gene expression microarrays
Gene expressions were determined by microarray analysis of
89 of the cervical cancers and related to the GeneCount esti-
mates. We used array slides produced at the Microarray Facil-
ity at the Norwegian Radium Hospital, containing 15,000
cDNA clones. The data from 48 of the patients, with a detailed
description of the experimental procedures, have been pre-
sented [27]. Cy3- and Cy5-labeled cDNA was synthesized
from total RNA by anchored oligo(dT)-primed reverse tran-
scription and co-hybridized with a reference sample (Univer-
sal Human Reference RNA, Stratagene, La Jolla, CA, USA) to
the array slides overnight at 65°C. Scanning and image anal-
ysis were performed with an Agilent scanner and the GenePix
4.1 image analysis software, respectively. Data preprocessing,
including correction of saturated intensities, filtering of weak
and bad spots, and lowess normalization, was performed in
BASE. All hybridizations were performed twice in a dye-swap
design, and the average expression ratio based on the two
experiments was used in the further analyses.

ArrayExpress accession
The array CGH raw data have been deposited to the ArrayEx-
press repository (E-TABM-398, E-TABM-399).
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tional data file 3 is a figure comparing FISH DNA copy num-
bers and smoothed aCGH ratio levels in non-Hodgkin's
lymphomas. Additional data file 4 is a figure illustrating dis-
crepancies between GeneCount and FISH DNA copy num-
bers. Additional data file 5 is a figure comparing tumor cell
fractions derived by histological examination and by Gene-
Count estimation in cervical cancers. Additional data file 6 is
a figure showing the standard deviation (noise) of the log-
transformed aCGH ratios. Additional data file 7 is a figure
comparing results from ratio level and GeneCount analyses in
cervical cancers. Additional data file 8 is a table listing regions
with DNA copy number heterogeneity in non-Hodgkin's lym-
phomas. Additional data file 9 is a table listing regions with
DNA copy number heterogeneity in cervical cancers. Addi-
tional data file 10 is a figure showing tumor cell fraction
required for detection of heterogeneous copy number
changes. Additional data file 11 is a figure illustrating analysis
of the evolutionary sequence of subpopulations in heteroge-
neous tumors. Additional data file 12 is a figure showing the
minimum tumor cell fraction that can be calculated in Gene-
Count. Additional data file 13 is a figure showing the tumor
cell fraction required for detection of homogeneous copy
number changes.
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A

STEP 1

Data Input                                                

� Array CGH ratio (R)

� DNA index (DIT)

� Dynamic factor (q, qmin, qmax)

� Tumor cell fraction, FT (optional)

For each tumor

� Is tumor cell fraction known?

STEP 2

� Estimate tumor cell fraction, FT

as described in (B)

STEP 3

For each array probe

� Estimate DNA copy number, NT

from Equation 4

YES

NO

STEP 1

Select two ratio levels (R1, R2)

� Abs (log2 R1, R2) > 0.15

AND

� Abs (log2 R1 - log2 R2 > 0.2) 

AND

� Number of array probes in each level > 10 

STEP 2

For N1 = 1 to 6 and N2 = 1 to 20, in steps of 1.0 

For FT = 0 to 1, in steps of 0.01     

� Calculate q from Equation 4

B

STEP 3

For q within range (qmin, qmax)

� FT = FT mean

Calculation steps in GeneCount.
Float diagrams of the entire GeneCount procedure (A) and the estimation of tumor cell fraction 
(B) are shown. Data input in (A) includes the aCGH ratio levels, R, derived from statistical 
analysis tools, the DNA index (DIT) of the tumor cells, the dynamic factor, q, of the experiment, 
and the tumor cell fraction, FT. FT can either be measured by a separate technique like flow 
cytometry, or estimated by the procedure in (B). In the former case, a fixed q-value, as 
determined from control experiments, is used. Otherwise, q is estimated for each tumor as 
indicated in (B), allowing for a deviation of typically 10% (range qmin - qmax) from the value 
determined in control experiments. To calculate tumor cell fraction, two ratio levels, R1 and R2,
are selected, and the DNA copy numbers N1 and N2, corresponding to R1 and R2, respectively, 
are predicted in a stepwise manner by increasing N1 from 1 to 6 and N2 from 1 to 20 in steps of 
1. R1, R2, and the incremental values of  N1 and N2 are used in a simulation procedure based 
on Equation 4, allowing FT to vary from 0 to 1 in steps of 0.01, and calculating the 
corresponding q. The FT values obtained for q within the range qmin – qmax are used to 
calculate a mean FT representative of the tumor. The mean FT is further used as input to the 
algorithm in (A) to calculate the DNA copy numbers of all array probes. The criteria used to 
select R1 and R2 for estimation of tumor cell fraction are described in the Materials and 
methods section of the paper. The source code of the GeneCount module is available by 
communication to the authors. 
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L358/87. Tumor cell fraction: 89%; DNA index: 1.94

Example of FISH probe locations.
ACGH ratios are plotted against chromosomal location on chromosomes 6, 13, and 18 
in a tetraploid lymphoma with a tumor cell fraction of 89%. FISH probes for BMP6,
PIM1, CCND3, centromere 6, RB1, PMAIP1, BCL2, and centromere 18 were used in 
this particular tumor, and their location is marked. The copy numbers determined with 
FISH were 3 (RB1), 4 (PMAIP1, BCL2), and 6 (BMP6, PIM1, CCND3).
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Additional data file 3

FISH DNA copy numbers in relation to smoothed aCGH ratio levels. 
Smoothed aCGH ratio levels derived from GLAD (A) and CGH-Explorer (B) is plotted 
against the corresponding FISH results for 9 genes in 94 lymphomas. Frequency distributions 
are shown for each copy number, containing 1, 25, 246, 66, 15, 5, 4, and 1 values at a FISH 
copy number of 0, 1, 2, 3, 4, 5, 6, and 8, respectively. 
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RP11-38F1: BCL2
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C
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RP11-305D15: RB1

RP11-174I10: RB1

L458/88

RP11-305D15: RB1

RP11-174I10: RB1

Smoothed ratio by CGH-Explorer

Smoothed ratio by GLAD

Discrepancies between GeneCount and FISH DNA copy numbers.
(A) shows a deletion involving RB1 that was detected by GLAD but not by CGH-Explorer. The 
GeneCount estimate was 1.1 and 1.9 based on GLAD and CGH-Explorer, respectively. The RB1 copy 
number determined by FISH was 1. (B) shows a homozygote deletion involving RB1, where the ratio 
level was inappropriately determined since the deleted region contained only two array probes. The 
GeneCount estimate was 0.5 and 1.9 based on GLAD and CGH-Explorer, respectively. The RB1 copy 
number determined by FISH was zero. (C) shows a gain involving BCL2, which was not detected by 
GLAD or CGH-Explorer. The GeneCount estimate was 2.3 and 2.1 based on GLAD and CGH-Explorer, 
respectively. The BCL2 copy number determined by FISH was 5. There was no t(14;18) translocation in 
this tumor.
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Histological examination and GeneCount estimation of tumor cell fraction.
Plots of tumor cell fraction of cervical cancer samples estimated by GeneCount versus tumor cell 
fraction measured by histological examination of tumor sections. Each point represents mean ±
SD based on the values achieved for q within the range 0.7 – 0.9. The smoothed aCGH ratios 
from GLAD (A) and CGH-explorer (B), the q range 0.7 – 0.8, and a DI determined by flow 
cytometry were inputs to GeneCount. The calculations were based on 93 (A) and 89 (B) tumors, 
for which suitable ratio levels for the calculations existed. Correlation coefficients and P-values 
from Pearson product moment correlation analyses are indicated.
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Standard deviation (SD) versus mean of the log-transformed ratio distributions achieved for 
94 lymphomas (A) and 99 cervical cancers (B) is shown. The individual ratio levels 
determined by the breakpoint detection algorithm in GLAD were considered. The median 
and mean SD is indicated. Note that the SD was independent of the mean ratio and 
therefore of the DNA copy number.

Additional data file 6



-0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6

0

10

20

30

40

50

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

r = 0.37

P < 0.001

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30

40

50

60

-1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30

40

50

60

Ratio level and GeneCount analyses in cervical cancers.
In (A) frequency histogram (number of tumors) of smoothed aCGH ratios (GLAD) is shown 
for ANXA4 (BAC clone ID RP11-304A15) (left panel) and MGC14151 (RP11-144K9) (right 
panel). Stippled lines indicate the cut off ratios of ±0.2, identifying 7 (ANXA4) and  17 
(MGC14151) tumors with genetic gain or loss. In (B) frequency histogram (number of 
tumors) of DNA copy number calculated by GeneCount is shown for ANXA4 (left panel) and 
MGC14151 (right panel). The GLAD ratio levels, the DI measured by flow cytometry, and 
the tumor cell fraction estimated by GeneCount were used in the calculation. Similar results 
were achieved based on the CGH-Explorer ratio levels. In (C) plot of gene expressions 
against  gene dosage; i.e., the ANXA4 (left panel) and MGC14151 (right panel) copy number 
divided by the total DNA content (N/(2·DI)), is shown. The gene dosage was changed; i.e.,
higher than 0.2 or lower than -0.2, in 26 (ANXA4) and 40 (MGC14151) tumors; i.e., in 
considerable more tumors than when only the ratio levels were used. Correlation coefficient 
and P-value from Pearson product moment correlation analysis are indicated. Panels A and B 
are based on 92 (ANXA4) and 91 (MGC14151) tumors, for which GeneCount data existed. 
Panel C is based on 85 of these tumors, for which both DNA copy numbers and expression 
were available.
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Table 1. DNA copy number heterogeneity in non-Hodgkin’s lymphomas 
Patient DNA index DNA region

a
DNA copy number 

L122/84 1.23 17q24-ter 1&2

L255/85 1.04 12p 1&2

L358/87 1.94 9pter-q21, 9q31-ter 3&4

L47/88 1.00 11q14-22 1&2

L154/88 0.95 4 1&2

L399/88 1.00 11q13-14, X (male) 1&2

22 2&3

L064/89 1.26 17 2&3

L309/89 1.83 8, 9, 17q21-ter 3&4

L339/89 1.00 17q21-25 2&3

L034/90 1.16 X (male) 1&2

L472/90 1.16 X 2&3

L577/90 1.97 4 2&3

11 3&4

3 4&5

L382/91 1.02 13q32-ter 1&2

L383/91 0.97 11q22-23, 15q25-ter 1&2

L436/91 1.04 Xq26-ter (male) 1&2

L462/91 1.00 3pcen-14, 3p21-22, 3p24-ter, 15qcen-15, 17p11-ter 1&2

L008/92 1.00 2q, 5p13-ter, 7q31-ter, 9p21-23, 13q14-31, 20q13-ter, Xp22-ter  1&2

L037/92 1.00 19 1&2

L117/92 1.00 4 1&2

a
The aCGH ratios of the heterogeneous DNA region were significantly different from those of the 
homogeneous regions in all cases, as verified from ANOVA analysis. 
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Table 2.  DNA copy number heterogeneity in cervical cancers 
Patient DNA index DNA region

a
DNA copy number 

C002/01 1.00 1p34-ter, 10, 16, 17, 19, 20 1&2

2pter-q33, 5p14-q14, 6, 7p11-ter, 8, 12pter-q23, X 2&3

C003/01 1.90 5pter-q12, 6, 11pter-q12, 12, 13q21-31, Xp 3&4

C004/01 1.00 17q23-ter, X 2&3

C005/01 1.70 1p33-ter, 4, 7q,  Xpter-q27  2&3

3q, 6q13-ter, 7p, 10pter-q24, 11pter-q22, 17, 18, 20  3&4

C006/01 1.30 6q24-ter 1&2

1p32-ter, 11q12-13, 17q, 18, 19, 22q 2&3

C008/01 1.00 9q 2&3

C014/01 1.94 3p 3&4

C023/01 1.00 2q33-ter, 4, 8p 1&2

1p32-qter, 3, 7q21-ter 2&3

C024/01 1.00 1p31-ter, 2q21-ter, 4p, 8p, 13qcen-34 1&2

6p 2&3

C025/01 1.00 21qcen-21, X 1&2

9 2&3

C028/01 1.00 X 1&2

9 2&3

C041/01 1.34 8 3&4

C045/01 1.00 3p 1&2

C053/01 1.00 1p34-ter 1&2

C054/01 1.00 2q33-ter, 9qcen-22, Xq22-ter 1&2

15 2&3

C078/02 1.70 5q, Xpter-q28 3&4

C092/02 1.00 3p, 8p12-ter, 17, 19, 20, 22 1&2

1p34-ter, 2p13-ter, 8p12-q11, 8q13-ter, 13q, 18 2&3

C093/02 2.00 17pter-q25, 18 3&4

C101/02 1.50 2, 4, 20q11-ter 2&3

1, 3p 3&4

C115/03 1.00 2p21-11, 17q21-ter, 18q21-ter 2&3

C120/03 1.00 22 1&2

8, 18, X 2&3



C130/03 1.60 4, 5qcen-14,  7, 17pter-q21  2&3

12q, Xq 3&4

C136/03 1.40 4p15-ter, 19pter-q13 1&2

6p12-ter, 8q22-ter, X  2&3

C138/03 1.90 7p11-22, 12, 15 3&4

C141/03 1.10 5q23-ter, 20q12-ter 2&3

C142/03 1.00 3q24-ter, X 2&3

C144/03 1.50 3p, 19 2&3

3q, 4q13-ter,  7, Xp22-q21 3&4

C152/03 1.00 3q 2&3

C162/04 2.16 10q, 12q, 18q, 21 3&4

C169/04 1.00 18q12-ter, 21qcen-21 1&2

C174/04 1.95 1p32-ter, 16, 19, 20, 22 3&4

C178/04 1.00 5q, 17p, 21 1&2

1q, 13q22-ter, 16, 20 2&3

C180/04 1.92 11p, 18q11-21, 2&3

3p, 7, 13q32-ter, 18q21-ter 3&4

C184/04 1.39 3p, 14, 17p, Xpter-q25 2&3

1pter-q32, 8q21-ter 3&4

C188/04 1.00 2, 5q, 6pter-q25, 10, 11, 15, 18 1&2

9q22-ter, 12p11-ter, 12q13-ter, 16 2&3

C189/04 1.50 4q, Xp11-ter 1&2

17pter-q24 2&3

C190/04 1.00 3p, 4, 8, 13 1&2

C193/04 1.00 1pcen-31, 3p, 4p15-qter, 5, 6p21-q24, 8, 14qcen -21, 18 1&2

C194/04 1.00 5q, 9p, 11p15-q13, 18p12-ter, 22q13-ter 1&2

16q, 19p, 20 2&3

C195/04 1.90 1p32-q12, 2p11-ter, 12q, 14, 15 3&4

C196/04 1.00 2q12-q33, 4p13-qter, 17p, X 1&2

C202/04 1.00 13q21-q32 1&2

C206/04 1.00 4, 13q21-q31 1&2

1p31-ter, 19, 22 2&3

C215/04 1.00 11p, 13q21-ter 1&2

1p31-ter 2&3

a
The aCGH ratios of the heterogeneous DNA region were significantly different from those of the 
homogeneous regions in all cases, as verified from ANOVA analysis. 
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Measured in lymphomas

Calculated in cervical cancers

Tumor cell fraction required for detection of heterogeneous copy number changes.
The tumor fraction needed for statistically significant separation of a heterogeneous chromosomal 
region involving more than ten (solid lines) or three (stippled lines) array probes from a 
homogeneous region without aberration is shown as a function of the DNA index (DI). The curve 
for heterogeneous gain (copy number 2·DI + 0.5) and loss (copy number 2·DI - 0.5) is shown in 
green and red color, respectively. A Student t-test and a standard deviation of 0.1 for the log-
transformed ratio distributions were used to estimate the curves. It was assumed that the 
heterogeneous gain and loss affected 50% of the tumor cells in the sample. Data showing the tumor 
cell fraction of 94 lymphomas (closed symbols) and 93 cervical cancers (open symbols), as 
determined by flow cytometry (lymphomas) and estimated by GeneCount from the GLAD ratio 
levels (cervical cancers) are included.
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ratios are plotted against chromosomal location. The heterogeneous regions on 
chromosomes 1p, 2q, 4p, 8p, and 13q with a DNA copy number of 1&2 and on 6p 
with a DNA copy number 2&3 are shown in blue and red. The blue and red colors 
represent aberrations of two different fractions of the tumor cells, 78% and 44%, 
respectively. The heterogeneous aberrations are listed in Additional Data File 9. In (C) 
schematic diagram of the possible evolutionary sequence for the aberrations are shown. 
The blue and red aberrations refer to the blue and red aberrations in (B). The 
percentages indicate the fractions of tumor cells with the listed aberrations, as 
calculated by GeneCount, showing that the aberrations in blue and red are present in 
78% and 44% of the tumor cells, respectively. 
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Abstract

Integrative analysis of gene dosage, expression, and ontology (GO) data was performed to discover driver genes in the
carcinogenesis and chemoradioresistance of cervical cancers. Gene dosage and expression profiles of 102 locally advanced
cervical cancers were generated by microarray techniques. Fifty-two of these patients were also analyzed with the Illumina
expression method to confirm the gene expression results. An independent cohort of 41 patients was used for validation of
gene expressions associated with clinical outcome. Statistical analysis identified 29 recurrent gains and losses and 3 losses
(on 3p, 13q, 21q) associated with poor outcome after chemoradiotherapy. The intratumor heterogeneity, assessed from the
gene dosage profiles, was low for these alterations, showing that they had emerged prior to many other alterations and
probably were early events in carcinogenesis. Integration of the alterations with gene expression and GO data identified
genes that were regulated by the alterations and revealed five biological processes that were significantly overrepresented
among the affected genes: apoptosis, metabolism, macromolecule localization, translation, and transcription. Four genes on
3p (RYBP, GBE1) and 13q (FAM48A, MED4) correlated with outcome at both the gene dosage and expression level and were
satisfactorily validated in the independent cohort. These integrated analyses yielded 57 candidate drivers of 24 genetic
events, including novel loci responsible for chemoradioresistance. Further mapping of the connections among genetic
events, drivers, and biological processes suggested that each individual event stimulates specific processes in
carcinogenesis through the coordinated control of multiple genes. The present results may provide novel therapeutic
opportunities of both early and advanced stage cervical cancers.
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Introduction

Cervical cancer is one of the most common malignancies

affecting women worldwide and a major cause of cancer death for

women globally [1]. Radiotherapy combined with cisplatin is the

treatment of choice at the locally advanced stages [2]. Improved

therapy is needed, since more than 30% of the patients show

progressive disease within 5 years after diagnosis and treatment

related side effects to organs within the pelvis are frequent. Tumor

stage, size, and lymph node involvement are the most powerful

markers of aggressive disease, but do not fully account for the

observed variability in outcome and are not biologically founded.

A better handling of the disease may be provided by the discovery

of efficient biomarkers for therapeutic planning and intervention,

but requires more insight into the mechanisms underlying cervical

carcinogenesis and treatment relapse.

During carcinogenesis, genetic and epigenetic alterations drive

the evolution of tumor towards increased malignancy and

treatment resistance. The changes enable tumor cells to overcome

microenvironmental constraints, sustain proliferation, and invade

adjacent tissues and distinct organs [3–5]. Gene dosage alterations

like gains and losses regulate the expression of genes and are

motive forces for this evolution [6,7]. Tumor cells bearing an

increasing number of gains and losses successively emerge and are

selected for based on the growth advantage caused by the genetic

changes. Discovery and functional assessment of gene dosage

alterations involved in carcinogenesis are therefore essential for

understanding the biology of the disease.

At the locally advanced stages of cervical cancer, numerous

gene dosage alterations and severe aneuploidy are frequently seen

[8–10]. Moreover, pronounced intratumor heterogeneity in the

gains and losses exists within the tumors, reflecting a high genetic

instability [9]. The consequences of these alterations for the tumor

phenotype are difficult to predict, since large chromosomal regions

involving multiple genes are generally affected and some

aberrations may be random events without biological significance

[11]. Genome wide screening of DNA copy numbers in a decent

number of patients enables identification of recurrent gene dosage
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alterations; i.e., alterations characteristic of the disease, and

alterations associated with the clinical outcome [12], which are

likely to be important in carcinogenesis and treatment resistance.

Combining the data with expression profiles of the same tumors

reveals the genes that are regulated primarily by the genetic

events. The potential of this integrative strategy was recently

demonstrated in a study on 15 early stage cervical cancers, where

genes affected by aberrations on 1q, 3q, 11q, and 20q were

reported [13]. Genetic events promoting tumor evolution and

treatment resistance have, however, not been explored on a

genome wide scale, and their biological meaning has not been

addressed.

The present work was conducted to discover candidate driver

genes and assess their function in the carcinogenesis and

chemoradioresistance of cervical cancers. Genome wide screening

of DNA copy numbers and expressions was performed in 102

patients with locally advanced disease. Of these, pairwise data

were available for 95 patients. Reliable comparison of gains and

losses across the patients was ensured by using the tumor ploidy, as

determined by flow cytometry, and the GeneCount method to

correct for the normal cell content of the samples and extract the

absolute copy numbers and thereby the gene dosages [14]. The

use of GeneCount also enabled mapping of the intratumor

heterogeneity in the gene dosage alterations, providing informa-

tion of the chronological order in which they had occurred during

tumor evolution [14]. The recurrent gene dosage alterations, the

alterations associated with outcome after chemoradiotherapy, and

the genes that were regulated by these alterations were identified.

Further analysis of gene ontology (GO) categories [15] was

performed to identify biological processes that were overrepre-

sented among the affected genes and therefore probably regulated

by the gene dosage alterations. Such large scale and combined

genomic, transcriptional, and functional analysis is powerful in

detection of driver genes and their biological meaning, but has not

been presented before. We demonstrate the potential of this

approach by the identification of five biological processes in

carcinogenesis that were associated with recurrent and predictive

gains and losses of a set of genes. The set included four genes

within the predictive losses for which repressed expression was

related to poor outcome in the patient group and in an

independent cohort of 41 patients. The genes are candidate

drivers of the genetic events and novel biomarkers of cervical

cancers.

Results

Recurrent Gene Dosage Alterations
Cervical cancer patients subjected to curative chemoradiother-

apy were included in the study (Table 1). Most cases were

squamous cell carcinoma and human papillomavirus (HPV)

positive. Aneuploidy was seen in about half of the tumors,

including some of the adenosquamous carcinomas and HPV

negative cases (Figure S1A, S1B). Based on 97 patients, we

generated an absolute gene dosage profile of the cancer genome by

the use of array comparative genomic hybridization (aCGH) and

Author Summary

Genetic gains and losses, i.e. changes in gene dosages, are
common abnormalities of human cancers. Discovering
these defects and understanding the biological meaning
can lead to improved therapeutic opportunities. This
paper reports a large scale screening of gene dosage
alterations in cervical cancer and gives a broader
exploration of the expression and function of genes with
gains or losses. We have focused on the most frequent
gene dosage alterations and the alterations associated
with survival after chemoradiotherapy, since these defects
are likely to be of major importance for developing
disease. The most notable finding was the discovery of a
set of biological processes that are known hallmarks of
cancer and were associated with gains and losses of
specific genes. Moreover, novel loci associated with
chemoradioresistance independent of existing clinical
markers were found, and the genes involved were
depicted. Our results indicated that gene dosage alter-
ations play a causative role in the carcinogenesis and
chemoradioresistance of cervical cancer and pinpointed
candidate biomarkers of the disease.

Table 1. Patient and tumor characteristics.

Characteristic
Basic cohort
(n =102)

Validation
cohort (n =41)

Histology (n)

Squamous 96 40

Adenocarcinoma 1 0

Adenosquamous carcinoma 5 1

HPV status (n)a,b

HPV16 65 35

HPV18 7 0

HPV16+18 11 1

HPV other 10 4

HPV negative 8 1

FIGO stage (n)

1B 6 2

2 57 27

3 35 9

4A 4 3

Tumor sizec: vol (cm3)d, diameter (cm)e

Median 45.1, 4.4 36.6, 4.1

Range 2.8–321, 1.8–8.5 8.7–192, 2.5–7.2

Pelvic lymph node statusc (n)

Positive 37 12

Negative 65 29

Age (years)

Median 56 55

Range 28–85 25–81

Observation time (months)

Median 42 31

Range 21–71 24–46

Relapse 32 12

aPCR on DNA was performed, using the primers listed in [9]. The products were
detected by polyacrylamide gel electrophoresis or the Agilent DNA 1000 kit
(Agilent Technologies Inc., Germany).
bHPV status was not determined for one patient in the basic cohort due to lack
of DNA for analysis.

cTumor size and lymph node status were determined from pretreatment
magnetic resonance (MR) images.
dVolume was calculated based on 3 orthogonal diameters (a,b,c) as (p/6)*abc.
eDiameter was calculated from tumor volume (4p/3)*r3.
doi:10.1371/journal.pgen.1000719.t001
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the GeneCount analysis tool (Figure 1A). All chromosomes were

affected with gains and losses, however, some regions were more

frequently found to be aberrant than others (Figure 1B). Clustering

of the patients based on gene dosages revealed no clear groups

with characteristic aberrations.

The recurrent gains and losses were identified by considering

both the amplitude and frequency of each alteration in Figure 1B

[16]. Hence, a larger weight was given to high-amplitude events

that are less likely to be random aberrations without biological

significance. The recurrent alterations comprised more than 42%

of the genome, and consisted of 14 regions (528 Mb) with gain and

15 (734 Mb) with loss (Figure 1C). Most of these alterations were

also seen in the adenosquamous carcinomas and the HPV

negative tumors (Figure S1C, S1D). The most common alterations

were gain on 1q, 3q, 5p, 20q, and Xq and loss on 2q, 3p, 4p, 11q,

and 13q, each involving 44–76% of the patients (Figure 1C,

Table 2). High level amplification (seven regions) and homozygote

deletion (six regions) helped to depict the peak of five recurrent

gains and two recurrent losses (Table 2, Table S1). The frequency

of the homozygote deletions was low (1–3%, Table S1), and none

Figure 1. Gene dosage alterations of locally advanced cervical cancers. (A) Absolute gene dosage profile of 97 patients. Patients are shown
in columns and gene dosages are ordered by DNA location in rows. The color scale ranges from green (loss) through black (neutral) to red (gain). Grey
indicates missing values. (B) Frequency of patients with gains (red) and losses (green) along chromosome 1 to X for the patients in (A). Gene dosage
alterations above 1.1 and below 0.9 were classified as gains and losses, respectively. (C) Score of recurrent gains (red) and losses (green) along
chromosome 1 to X for the patients in (A). Peak regions, defined in Table 2, are shown in darker colors. (D) Intratumor heterogeneity in gene dosage
alterations along chromosome 1 to X for the patients in (A). The heterogeneity index is shown for gains (above the zero line) and losses (below the
zero line) separately, and was calculated as the number of heterogeneous cases relative to the total number of cases with alteration at each DNA
location. The peak regions shown in (C) are marked in red (recurrent gains) and green (recurrent losses). The predictive losses are indicated in light
blue.
doi:10.1371/journal.pgen.1000719.g001

Driver Genes in Cervical Cancer

PLoS Genetics | www.plosgenetics.org 3 November 2009 | Volume 5 | Issue 11 | e1000719



Table 2. Gene dosage alterations and correlating genes in locally advanced cervical cancer.

Peak regiona Peak regiona Freq.b
Max./min. gene
dosagec Correlating genesd

(Cytoband) (MB) (%) (copy no.)

Recurrent gain

1p36.21-pter 0–14.6 38 2 (4) SLC35E2, UBE4B, AGTRAP

1p32.1-p34.3 37.3–59.9 40 2 (4) C1orf149, YRDC, RLF, EBNA1BP2, TACSTD2

1q21.1-q22 148.0–153.7 61 2.5 (6) SF3B4, ENSA, GOLPH3L, ARNT, LASS2, ANXA9, POGZ, CGN, SNX27, C1orf77, ILF2,
DENN4B, SLC39A1, UBE2Q1, EFNA1, KRTCAP2, MUC1, FDPS

3q26.1-qtere 166.2–199.5 75 4.5 (9) PDCD10, PHC3, ZNF639, FXR1, PARL, DVL3, ABCF3, ALG3, EIF4G1, SFRS10, DGKG,
EIF4A2, RFC4, CCDC50, PPP1R2, PAK2, NCBP2, DLG1, BDH1, FLYTTD1

5p15.2-ptere 1.0–12.1 47 4 (15) CLPTM1L , MED10, FASTKD3, CCT5, DAP

8q24.13-22 125.7–134.1 37 2 (4) None

8q24.3-qter 144.5–146.3 38 2 (4) TSTA3, FAM83H, CYC1

9p24.1-2e 2.7–6.0 22 13.5 (27) KIAA0020, RCL1

9q34.2-qter 135.6–138.2 35 3.5 (7) MRPS2

11q22.1-2e 100.2–102.0 14 36 (72) YAP1, BIRC3, BIRC2

19q13.11-qter 40.3–63.8 36 10 (29) SPINT2, PSMD8, CAPN12, MRPS12, RPS16, AP2S1, KDELR1, NUP62, ATF5, NKG7,
ZNF787

20q11.21-22e 30.0–33.0 45 3.4 (9) POFUT1, KIF3B, MAPRE1, SNTA1, EIF2S2, AHCY

Xp11.22-pterf 0–54.1 38 2.5 (5) SLC25A6, CD99, ARSD, PNPLA4, PRPS2, PIR, CXorf15, PHKA2, PDHA1, RPS6KA3,
PRDX4, EIF2S3, USP9X, DDX3X, NDUFB11, UBA1, EBP, PLP2, JARID1C, SMC1A,
HUWE1

Xq28-qter 148.5–154.9 47 4 (8) NSDHL, BCAP31, IDH3G, IRAK1, TAZ, LAGE3, UBL4A, FAM34, MTCP1

Recurrent loss

2q33.3-qter 206.2–243.0 54 0.26 (1) NDUFS1, SPAG16, MREG, SMARCAL1, AAMP, WNT10A, ZFAND2B, ANKZF1,
STK11IP, FARSB, ACSL3, HRB, SP100, EIF4E2, COPS8, HDAC4, MTERFD2, PPP1R7

3p12.3-p14.2 60.9–81.6 61 0.26 (1) RYBP, GBE1

4p13-p16.1 8.3–42.3 58 0.42 (1) WDR1, UBE2K, PDS5A

5q13.2g 67.4–71.7 38 0 (0) SMN2

5q14.2-q15 82.5–96.9 35 0.5 (1) COX7C, TTC37, GLRX

6q12-q23.2 67.0–132.9 42 0.43 (1) LMBRD1, MYO6, HMGN3, SYNCRIP, MAP3K7, CCNC, C6orf203, FOXO3, AMD1,
HDAC2, NT5DC1, DSE, NUS1, ECHDC1

7q34-qter 139.3–158.8 35 0.43 (1) PDIA4

8p12-pter 0–31.9 32 0.34 (1) XPO7, BIN3, BNIP3L, EPHX2, CCDC25, DCTN6, PPP2CB

10q23.31g 88.2–92.1 38 0 (0) None

11p14.3-pter 0–24.4 40 0.5 (1) COPB1, PSMA1, GTF2H1, TSG101

11p12 37.8–40.2 37 0.5 (1) None

11q22.3-qter 105.1–134.5 63 0.35 (1) PPP2R1B, C11orf57, TIMM8B, REXO2, C11orf60, TRAPPC4, H2AFX, POU2F3,
ARHGEF12, SC5DL, ZNF202, CHEK1, APLP2, ZBTB44, SNX19

13q12.2-q21.32 27.5–67.4 46 0.33 (1) ALG5, FAM48A, COG6, KIAA1704, GTF2F2, MED4, RNASEH2B

17p11.2-pter 0–19.1 38 0.27 (1) SPAG7, MPDU1, LSMD1, CYB5D1, COPS23

21q21.1-3 18.3–28.6 35 0.28 (1) ATP5J

Predictive loss

3p11.2-p14.1 67.0–87.6 58 0.26 (1) RYBP, GBE1

13q13.1-q21.1 30.0–56.5 46 0.41 (1) ALG5, FAM48A, COG6, KIAA1704, GTF2F2, MED4, RNASEH2B

21q22.2-3 38.0–46.4 23 0.28 (1) PCP4, RIPK4, PDXK

aPeak region of the recurrent gains and losses is the minimum shared region surrounded by at least three patients. In cases of recurrent high level amplification or
homozygote deletion, this event determines the peak region. Peak region of the predictive losses is the region selected by LASSO.
bFrequency is the median percentage of tumors with the alteration.
cGene dosage is absolute DNA copy number divided by ploidy. Maximum (gain) or minimum (loss) gene dosage and corresponding copy number are listed.
dGenes within the peak region showing a correlation between gene dosage and expression are ordered by DNA location.
eRecurrent high level amplification detected within recurrent gain. Peak region is the region with more than 25% higher amplitude than surrounding region.
fProbably two different peak regions.
gHomozygote deletion within recurrent loss. Peak region is the region with a gene dosage of zero.
doi:10.1371/journal.pgen.1000719.t002
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of the tumors had more than one of them. Homozygote alteration

is therefore probably not a common mechanism of gene regulation

in cervical cancers, in contrast to the highly frequent heterozygote

deletion. The highest gene dosage of 36 was found in a diploid

tumor with a copy number of 72 on 11q22.1-2 (Table 2).

Intratumor heterogeneity of the recurrent alterations.

Intratumor heterogeneity in one or more of the gene dosage

alterations was seen in about half of the patients [14]. The ploidy

and genetic alterations of the heterogeneous tumors were similar

to that of the homogeneous ones (Figure S2). It is reasonable to

assume that homogeneous alterations have emerged before the

heterogeneous ones during tumor evolution [9]. To order the

recurrent alterations chronologically in relation to the less

common alterations, we therefore mapped the intratumor

heterogeneity along the chromosomes based on the absolute

data achieved with GeneCount [14]. The heterogeneity was low

for the recurrent alterations compared to others, like gain on 2q

and 13q and loss on 1q, 19q, and 20q (Figure 1D). The recurrent

aberrations had therefore probably occurred prior to many of

these less common events.

Gene Dosage Alterations in Relation to Outcome after
Chemoradiotherapy
Gene dosage alterations responsible for poor clinical outcome

may not be as common as the recurrent ones. All alterations in

Figure 1B were therefore included in the survival analysis. The

LASSO method identified three regions with loss, 3p11.2-p14.1,

13q13.1-q21.1, and 21q22.2-3, which jointly showed the strongest

association to progression free survival (Table 2). The 3p11.2-

p14.1 and 13q13.1-q21.1 regions overlapped with the recurrent

3p12.3-p14.2 and 13q12.2-q21.32 losses, whereas the predictive

loss of 21q22.2-3 was distal of the recurrent loss of 21q21.1-3. The

predictive losses were not correlated and were related to poor

outcome also when analyzed separately (Figure 2A–2C). The

intratumor heterogeneity of the losses was low and similar to that

of the recurrent losses (Figure 1D).

Most patients had more than one of the predictive 3p, 13q, and

21q losses. We therefore investigated whether there was an

increased risk of relapse in cases of two or three losses. Kaplan-

Meier plots for patients with different combinations of the predictive

losses revealed three major groups with different outcome (Figure

S3). Patients without any of the losses had a low risk of relapse and a

survival probability of 91% (Figure 2D). Patients with 3p and/or

13q loss, without 21q loss, had an intermediate survival probability

of 68%, whereas those with 21q loss had the lowest survival

probability of 44%. The risk of relapse therefore seemed to be

particularly high when loss of 21q22.2-3 was involved.

The predictive impact of the 3p, 13q, and 21q losses were

assessed by multivariate analysis together with tumor size, stage,

and lymph node status. Histological type, HPV status, and

heterogeneity status showed no correlation to outcome in

univariate analysis and were therefore not included. The losses

and tumor size had independent predictive value (Table 3),

showing that the gene data contained information of the

progression free survival that was not covered by tumor size.

Since tumor size is a strong predictor (Figure 3A), we also

investigated the predictive impact of the three losses for small and

large tumors separately. About 20% of the patients with tumor size

less than the median had relapse and all of them had one or more

of the losses (Figure 3B). In the cases of tumors larger than the

median, about 47% of the patients progressed and all except two

of them had one or more of the losses (Figure 3C). None of the

patients with loss involving 21q were disease free after 28 months,

suggesting a particularly high risk of relapse in cases of a large

Figure 2. Gene dosage alterations and outcome after chemor-
adiotherapy. Kaplan-Meier curves of progression free survival for
cervical cancer patients with (green) and without (black) loss of 3p11.2-
p14.1 (A), 13q13.1-q21.1 (B), 21q22.2-3 (C), and for patients with
different combinations of the three losses (D). P-values in log-rank test
and number of patients are indicated. Data of the most significant
genomic clone within each region were used; i.e, BAC clone ID RP11-
118O11 (3p), RP11-408L13 (13q), and RP1-128M19 (21q). Total number
of patients in (A, B) is less than 97 due to missing gene dosage data. (A–
C) The lost DNA region is indicated on the chromosome (left). (D) Group
1: patients without loss of 3p11.2-p14.1, 13q13.1-q21.1, or 21q22.2-3,
group 2: patients with loss of 3p11.2-p14.1 and/or 13q13.1-q21.1, but
not 21q22.2-3, group 3: patients with loss of 21q22.2-3 only or loss of
21q22.2-3 combined with loss of 3p11.2-p14.1 and/or 13q13.1-q21.1.
The groups were determined from data of each possible combination
of the losses (Figure S3).
doi:10.1371/journal.pgen.1000719.g002
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tumor bearing loss of 21q22.2-3. There was no difference in tumor

size for patients with and without loss in Figure 3B or in Figure 3C

(data not shown). The gene data therefore enabled identification of

high and low risk patients both in cases of a small and a large

tumor.

Integration of Gene Expression
To find genes regulated by the recurrent and predictive gene

dosage alterations, we used cDNA microarrays and generated a

cancer gene expression profile. The profile was based on 100

patients, including 95 of those analyzed with aCGH. Expression

data were available for 1357 of the about 4000 known genes

within the altered regions, and a significant correlation to gene

dosage was found for 191 of them (Table 2). Several correlating

genes were identified for each region, except for 8q24.13-22,

10q23.31, and 11p12, where no genes were found. Typical

examples of correlation plots are shown in Figure S4. The results

were confirmed with the Illumina gene expression assay on 52

patients. Although the Illumina analysis was based on a lower

number of patients, an excellent correlation between the Illumina

and cDNA data and between the Illumina and gene dosage data

was found for almost all of the genes, as demonstrated in Table S2.

We also performed a second cDNA analysis, including only

tumors with more than 70% tumor cells in hematoxylin and eosin

(HE) stained sections. Totally 179 of the genes (94%) were

identified, suggesting few false positive results due to normal cells

in the samples. The observations supported our conclusion that

the genes in Table 2 were gene dosage regulated. The latter

analysis identified 26 genes that were not depicted when all

patients were considered. These genes were not considered

further, since the results were based on only half of the data set.

Expression of known oncogenes and tumor suppressor genes

within the depicted regions, like MYC (8q24.21), BRCA2 (13q13.1),

RB1 (13q14.2), and TP53 (17p13.1), was not significantly

correlated to gene dosage. These genes are therefore probably

not regulated primarily by gains and losses. The TP53 and RB1

results were consistent with the high frequency of HPV positive

tumors (Table 1).

The predictive losses on 3p and 13q involved the same

correlating genes as the corresponding recurrent ones, whereas

PCP4, RIPK4, and PDXK were correlating genes within the

Figure 3. Gene dosage alterations and outcome after chemor-
adiotherapy for patients with different tumor size. (A) Kaplan-
Meier curves of progression free survival for cervical cancer patients
with tumor size above (green) and below (black) median. Ninety-two
patients with tumor size determined from diagnostic MR images were
included. Median size was 45.1 cm3, corresponding to a diameter of
4.4 cm. (B,C) Kaplan-Meier curves for patients in (A) with tumor size
below median (B) and above median (C). Group 1: patients without loss
of 3p11.2-p14.1, 13q13.1-q21.1, or 21q22.2-3, group 2: patients with loss
of 3p11.2-p14.1 and/or 13q13.1-q21.1, but not 21q22.2-3, group 3:
patients with loss of 21q22.2-3 only or loss of 21q22.2-3 combined with
loss of 3p11.2-p14.1 and/or 13q13.1-q21.1. The groups were deter-
mined from data of each possible combination of the losses (Figure S3).
P-values in log-rank test and number of patients are indicated.
doi:10.1371/journal.pgen.1000719.g003

Table 3. Cox regression analysis of genetic losses and clinical
variables.

Univariate analysisa Multivariate analysisa

Covariate P HR 95% CI P HR 95% CI

Loss of 3p11.2-p14.1b 0.003 0.27 0.11–0.66 0.018 0.33 0.13–0.83

Loss of 13q13.1-q21.1b 0.006 0.32 0.14–0.72 0.015 0.35 0.14–0.82

Loss of 21q22.2-3b 0.004 0.34 0.16–0.71 0.019 0.32 0.12–0.84

Tumor sizec 0.001 4.5 1.9–10.5 0.001 5.5 1.9–15.5

FIGO staged 0.004 2.9 1.4–5.9 0.072 - -

Total lymph node statuse 0.030 0.46 0.22–0.93 0.285 - -

aP-value (P), hazard ratio (HR), and 95% confidence interval (CI) are listed.
bSemi-discrete gene dosage data of the most significant genomic clone within
each region were used.

cTumor size was divided in two groups based on the median size of 45.1 cm3,
corresponding to a median diameter of about 4.4 cm.
dFIGO stage was divided in two groups; 1b–2b and 3a–4a.
eTotal includes pelvic and para aortal lymph nodes.
doi:10.1371/journal.pgen.1000719.t003
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predictive 21q region (Table 2). To depict the correlating genes

that most probably were involved in development of chemor-

adioresistance, we required that the gene was significantly

associated with clinical outcome both at the gene dosage and

expression level. Moreover, a clear difference in the survival curves

should also be seen in an independent cohort of 41 patients when

based on the Illumina gene expression data. The criteria were

fulfilled for four genes; RYBP and GBE1 on 3p and MED4 and

FAM48A on 13q, which were termed predictive genes (Figure 4).

Two more genes, GTF2F2 and RNASEH2B on 13q, were

correlated to outcome based on the cDNA data, but were not

considered further since the tendency based on the Illumina data

was weak (p.0.15). The relationship to outcome was not strong

enough for PCP4, RIPK4, and PDXK on 21q to be included among

the predictive genes either.

Gene Ontology Analysis
Biological processes associated with the recurrent and predictive

gene dosage alterations were found by comparing the GO

categories of the affected genes with those of all genes in the data

set [15]. One or more biological processes were annotated to 155

of the correlating and predictive genes and to 5824 of all genes.

The categories apoptosis, carbohydrate metabolism, translation,

and RNA-protein complex biogenesis and assembly were

significantly overrepresented among the correlating genes within

the recurrent gains, whereas macromolecule localization, gener-

ation of precursor metabolites and energy, transcription from

RNA polymerase II promoter, and establishment or maintenance

of chromatin architecture were overrepresented among those

within the recurrent and predictive losses (Table 4). Fifty-six genes

were included in the significant categories and were candidate

drivers of the biological processes. In addition, we included the

predictive gene FAM48A, which was not associated to any process

in the GO database, as a potential driver of chemoradioresistance

together with RYBP and MED4 (transcription) and GBE1
(generation of precursor metabolites and energy).

We generated a map to visualize the connections between

genetic events, affected genes, and biological processes (Figure 5).

The processes carbohydrate metabolism and generation of

precursor metabolites and energy were combined in metabolism,

translation and RNA-protein complex biogenesis and assembly

were combined in translation, and transcription from RNA

polymerase II promoter was combined with establishment or

maintenance of chromatin architecture in transcription. The

combined categories were closely related, justifying this strategy.

All but six of the recurrent alterations were associated with a

process and represented in the map. The predictive 3p and 13q

losses were merged with the corresponding recurrent losses, since

the regions overlapped, and linked to metabolism (GBE1) and
transcription (RYBP, MED4) in addition to chemoradioresistance.

The predictive 21q loss was not connected to any known gene, but

associated with chemoradioresistance. The map revealed features

that seemed to be characteristic of recurrent and predictive

alterations in cervical cancer. First, many of the genetic events

were associated with clusters of genes in the same biological

Figure 4. Gene expressions and outcome after chemoradiotherapy. Kaplan-Meier curves of progression free survival for cervical cancer
patients with low (green) and high (black) expression of RYBP (A,E), GBE1 (B,F),MED4 (C,G), and FAM48A (D,H). cDNA data of 100 patients is used in (A–
D), and Illumina data of an independent cohort of 41 patients is used in (E–H) for validation. P-value in log-rank test and number of patients are
indicated. The number of patients in each group was chosen to achieve the largest difference in survival between the groups, approximately
reflecting the number of patients with and without loss in (A–D). Total number of patients is less than 100 in (B) due to missing gene expression data.
doi:10.1371/journal.pgen.1000719.g004
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process. For example, gain on 3q affected three genes in apoptosis

and three in translation, gain on 5p was linked to tree apoptosis

genes, and loss on 6q was associated with four genes in

transcription. Second, several events, like gain on 3q, 19q, 20q

and loss on 2q, 6, and 11q, were connected to more than one

biological process, either through the regulation of several genes or

because some genes had multiple functions.

Discussion

This work presents the first coupling of gene dosage and

expression profiles in a large sample set of cervical cancers. We

based our study on absolute gene dosages, which are more

sensitive than the commonly used aCGH ratios in detecting gains

and losses and enable comparisons across tumors with differences

in ploidy and normal cell content [14]. This strategy and the large

number of patients ensured reliable identification of recurrent

gene dosage alterations, events associated with clinical outcome,

and their intratumor heterogeneity. Further analysis based on GO

categories provided an objective way of organizing the numerous

correlating genes into biological meaningful information. We

demonstrate a large potential of the integrative approach by the

discovery and functional assessment of candidate driver genes that

represent novel biomarkers of the disease. In particular, novel loci

associated with clinical outcome were identified, providing the first

evidence that gene dosage can be responsible for developing

chemoradioresistance in cervical cancers.

The recurrent gene dosage alterations were consistent with

earlier reports on advanced stage cervical cancer based on

conventional CGH [8,9,17]. However, a more precise definition

of the altered regions was achieved here due to the improved

resolution of the array technique. The high frequency of the

alterations suggests that they play a causative role in carcinogen-

esis. Hence, many of the alterations are common also in other

squamous cell carcinomas, like head and neck cancers [18,19].

Moreover, the recurrent loss on 3p and 13q overlapped with the

losses associated with poor clinical outcome, strengthening the

hypothesis of a central role in tumor evolution. Less frequent

alterations can, however, also be crucial for tumor evolution, as

was demonstrated by the recurrent gain on 11q22 in 14 patients

and predictive loss on 21q in 23 patients.

The low intratumor heterogeneity of the recurrent and

predictive gene dosage alterations indicated that they had

occurred prior to many of the other alterations. The result was

consistent with our previous cervical cancer study based on

conventional CGH [9], showing a homogeneous intratumor

distribution of the frequent gains on 3q, 5p, and 20q and losses

on 3p and 11q14-qter. Moreover, regions overlapping with the 1p,

1q, 3q, 8q, 9q, and 20q recurrent gains and 2q, 3p, 4p, 11q, and

17p losses have been found to be altered in precancerous cervical

intraepithelial lesions [17,20–23], suggesting that the events had

occurred at an early stage. It is therefore likely that the alterations

identified here, and the consequently control of biological

processes and development of chemoradioresistance, emerge early

during carcinogenesis. It should be noted that a low heterogeneity

was seen for some of the less common alterations as well, implying

that they had occurred early. The affected genes in these regions

may also be crucial for tumor evolution, however, other

mechanisms than gene dosage alterations, such as epigenetic

events or mutations, probably play the major role in their

regulation. Moreover, some of the highly heterogeneous alter-

ations may be important for disease progression a later stage, being

a result of the continuing tumor evolution towards increased

aggressiveness.

The gene dosage alterations were associated with specific

biological processes that are closely related to known cancer

Table 4. Biological processes overrepresented among the correlating genes within recurrent and predictive regions.

GO number GO category
No. correlating
genes

No. genes
on the array p-value Correlating genes

Gains

GO: 000815 Biological process 93a 5824a

GO: 0006915 Apoptosis 13 (14.0%) 434 (7.5%) 0.026 UBE4B, BIRC2, BIRC3 , ATF5, BCAP31,
CLPTM1L, DAP, FASTKD3, FXR1, NUP62,
PAK2, PDCD10, SLC25A6

GO: 0005975 Carbohydrate metabolism 7 (7.5%) 198 (3.4%) 0.038 PPP1R2, ARNT, PHKA2, POFUT1, PDHA1,
TSTA3, IDH3G

GO: 0006412 Translation 7 (7.5%) 163 (2.8%) 0.015 EIF4G1, EIF4A2, EIF2S2, MRPS12, RPS16,
EIF2S3, MRPS2

GO: 0022613 RNA-protein complex biogenesis and assembly 7 (7.5%) 89 (1.5%) 0.001 EIF4G1, EIF4A2, EIF2S2, EIF2S3,
EBNA1BP2, NCBP2, RCL1

Losses

GO: 000815 Biological process 62a 5824a

GO: 0033036 Macromolecule localization 10 (16.1%) 427 (7.3%) 0.022 BIN3, COPB1, COG6, XPO7, HRB, MYO6,
PDIA4, SNX19, TIMM8B, TSG101

GO: 0006091 Generation of precursor metabolites and energy 4 (6.5%) 117 (2.0%) 0.035 ATP5J, COX7C, GBE1, NDUFS1

GO: 0006366 Transcription from RNA polymerase II promoter 10 (16.1%) 357 (6.1) 0.004 RYBP, FOXO3, GTF2F2, GTF2H1, MED4,
MYO6, POU2F3, SMARCAL1, ZNF202,
HDAC4

GO: 0006325 Establishment or maintenance of chromatin
architecture

5 (8.1%) 140 (2.4%) 0.016 DSE, H2AFX, HDAC2, SMARCAL1,
HDAC4

aGenes with GO annotation (biological process).
doi:10.1371/journal.pgen.1000719.t004
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hallmarks [3–5], indicating that the genes involved are drivers of

carcinogenesis. Hence, gain of the genes in apoptosis, including

the anti-apoptosis genes BIRC2, BIRC3, and ATF5, can help

carcinoma cells to evade apoptosis [3]. Aberrations of the genes in

metabolism, like gain of ARNT and IDH3G in carbohydrate

metabolism, and loss of COX7C and ATP5J in oxidative

phosphorylation, can be part of a metabolic reprogramming

towards increased glycolysis and decreased mitochondrial function

to meet the high energy demand linked to tumor growth [4]. In

particular, gain of ARNT may increase hypoxia and hypoglycemia

tolerance by signaling through the HIF1A pathway [24]. Loss of

the genes in molecular localization, including HRB and TSG101,

can lead to abnormal protein internalization and recycling and

thereby abrogated degradation of proteins like growth factor

receptors [25,26]. Finally, aberrations of the genes in translation

and transcription, such as gain of the translation initiation factors

EIF4A2, EIF4G1, EIF2S2, and EIF2S3 and loss of the transcrip-

tional repressors HDAC2 and HDAC4, can be a way to control the

formation and activity of essential proteins. The EIF-proteins are

central in adaptation to hypoxia and can stimulate MYC

translation and thereby oncogenic processes like cell proliferation

[27,28]. Improper function of HDAC2 and HDAC4 may also

increase proliferation [29]. Many of the genes, including BIRC2,

BIRC3, ATF5, NUP62, FASTKD3, IDH3G, and POFUTI, have

been found to be regulated by gains or losses in previous cervical

cancer studies [30–33]. Our findings link each gene to one or more

specific biological processes, and thereby indicate the functional

meaning of the genetic events in carcinogenesis.

Loss and down regulation of GBE1 and RYBP on 3p and MED4

and FAM48A on 13q were associated with poor clinical outcome,

suggesting that the genes are drivers of chemoradioresistance. The

mechanisms underlying these findings and possible associations to

known aggressive phenotypes like hypoxia and rapid proliferation

[34–36] are not clear, but a tumor suppressor function of the genes

has been indicated. GBE1, which plays a role in carbohydrate

metabolism, has been found to be down regulated in ovarian

cancers [37]. Loss of the transcriptional repressor RYBPmay impair

death receptor-mediated apoptosis [38,39], and the encoded

protein has been shown to be down regulated in many tumor

types, including cervical cancer [40]. Loss of the transcriptional

activatorsMED4may impair transcription of genes with anti-cancer

effect, like the vitamin D receptor [41,42]. The function of FAM48A

is less clear, but some studies indicate that loss of this gene can

promote aggressiveness. Hence, FAM48A is required for activation

of the MAPK p38 pathway [43], which represses cell proliferation

[44]. We found no candidate driver gene of chemoradioresistance

within the predictive loss on 21q. Only a few tumor suppressor

genes have been identified in this region. One candidate is the

transcriptional regulator PRDM15, which was not included in our

cDNA data set [45]. Our data showed, however, no correlation

between PRDM15 expression, assessed with the Illumina method in

52 patients, and gene dosage (data not shown), suggesting that the

gene is not regulated by genetic loss. Further investigation with

denser microarrays or possibly microRNA screening would be

needed to find the drivers in this region.

The connection between genetic events, genes, and biological

processes may provide insight into more general aspects of cervical

carcinogenesis. Several genes were often associated with a single

genetic event, supporting the hypothesis that there can be multiple

drivers of an event that coordinately promote tumor evolution

[11]. In cases of genes in the same biological process, like the anti-

apoptosis genes BIRC2 and BIRC3 on 11q22, a broad and

therefore efficient control of the process may be obtained. Hence,

BIRC2 and BIRC3 may play complementary roles in apoptosis

Figure 5. Genetic events, correlating genes, and biological
processes in carcinogenesis and chemoradioresistance of
cervical cancers. Recurrent and predictive gene dosage alterations,
correlating genes, and biological processes overrepresented among the
genes are listed. Only the genetic events associated with a process or
chemoradioresistance (*) are included; six of the recurrent alterations
are therefore not shown. The genes are ordered by DNA location.
Correlating genes connected to chemoradioresistance were associated
with clinical outcome both at the gene dosage and expression level and
validated in an independent patient cohort. Gains and losses are
indicated with red and green color, respectively.
doi:10.1371/journal.pgen.1000719.g005
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evasion, since upregulation of BIRC3, but probably not BIRC2,
may impair hypoxia induced apoptosis [46,47]. In cases of genes

in different biological processes, such as metabolism (NDUFS1),

macromolecule transport (HRB), and transcription (SMARCAL1,
HDAC4) on 2q, the collective control of these processes through a

single event is likely to give a growth advantage that is selected for

in carcinogenesis. One or more genes in all biological processes

were affected in most tumors due to the high frequency of the

recurrent gene dosage alterations. All processes were therefore

probably important, and the control of them through gains and

losses seems to be a common feature of the disease.

The candidate driver genes represent novel biomarkers that

may be utilized in the handling of cervical cancers. Diagnostic

assessment of the biomarkers may help to understand the

evolutionary status and therefore the biology of the cancer in

individual patients. In particular, the predictive biomarkers may

be used in addition to tumor size for classification of patients into

risk groups in a personalized treatment regime. The biomarkers

also open for the possibility to specifically repress biological

processes in carcinogenesis by molecular targeting, and thereby

interfere with tumor evolution. The use of drugs to inhibit

translation by interaction with EIF-proteins has shown promising

results [48] and been suggested as a tool to target tumor hypoxia

[49]. The approach may be applied at all stages of the disease,

since the genetic events probably emerge early. Moreover,

improved outcome after chemoradiotherapy might be achieved

by targeting the predictive biomarkers. Hence, viral-mediated

delivery of RYBP has been shown to induce apoptosis in a number

of cancer cell lines [38], and could be a useful strategy for the

patients with loss of this gene.

Materials and Methods

Patients
A cohort of 102 patients was included for basic analyses to

identify gene dosage alterations with aCGH (97 patients), affected

transcripts with cDNA microarrays (100 patients), and to confirm

the affected transcripts with the Illumina method (52 patients)

(Table 1). An independent cohort of 41 patients was used to validate

relationships between gene expression and outcome with the

Illumina method (Table 1). All patients received external irradiation

and brachytherapy combined with adjuvant cisplatin and were

followed up as described previously [50]. Eighteen patients received

extended radiation field due to enlarged common iliac and para-

aortal lymph nodes. Progression free survival, defined as the time

between diagnosis and the first event of locoregional and/or distant

relapse, was used as end point. Six patients died of causes not related

to cancer and were therefore censored. Tumor samples were

collected at the time of diagnosis. One – four biopsies, approxi-

mately 56565 mm in size, were taken at different locations of the

tumor, immediately snap-frozen in liquid nitrogen and stored at

280uC until used for analyses. The study was approved by the

regional committee of medical research ethics in southern Norway,

and written informed-consent was achieved from all patients.

Array Comparative Genomic Hybridization
The aCGH experiments and generation of absolute gene dosage

profiles have been described previously for all 97 patients

(ArrayExpress accession no. E-TABM-398) [14]. The array slides

were produced at the Microarray Facility at the Norwegian

Radium Hospital and contained 4549 unique genomic BAC and

PAC clones that covered the whole genome with a resolution of

approximately 1 Mb. Genomic DNA was isolated from the

biopsies, labeled, and co-hybridized with normal female DNA to

the array slides. DNA from different biopsies of the same tumor

was pooled. The biopsies of all except two patients had more than

50% tumor cells in HE stained sections from the middle part of the

sample. Median tumor cell fraction was 70% (range 30–90%).

After array scanning, image analysis, spot filtering, and ratio

normalization, the GLAD algorithm was applied for ratio

smoothing and breakpoint detection [51].

Absolute gene dosages. The smoothed ratios were

transferred to absolute DNA copy numbers in GeneCount by

utilizing tumor ploidy data and correcting for the normal cell

content of the samples [14]. The tumor ploidy was determined

from a separate piece of the biopsy by flow cytometry, and tumor

cell fraction was estimated by the program prior to the copy

number calculations. The ploidy data and tumor cell fractions

have been presented previously [14]. The tumor cell fractions,

ranging from 27% to 84%, were in general lower than the results

based on HE stained sections, probably because the amount of

immune cells infiltrating the tumor parenchyma are difficult to

quantify by histological examination [14]. The copy numbers were

rounded off to the nearest integer values.

The absolute gene dosage profile of each tumor was generated by

dividing each copy number by the ploidy. A gene dosage of 1

therefore implied no change in the copy number. The gene dosage

thresholds for scoring gains and losses were 1.1 and 0.9, respectively,

taking into account an uncertainty in the ploidy measurement of

approximately 10%. For scoring high level amplification, a gene

dosage of 2.5 or higher; i.e. 5 DNA copies in diploid tumors, was

required. Homozygote deletions had a gene dosage of 0.

Intratumor heterogeneity. The intratumor heterogeneity in

the copy numbers was assessed by comparing the aCGH ratio

distributions of the possible heterogeneous regions with the

distributions of the adjacent homogeneous regions by ANOVA

analysis [14]. Totally 86 patients had a tumor cell fraction

sufficiently high for reliable detection of heterogeneity, and the

remaining eleven patients were excluded from this analysis. The

heterogeneous regions have been listed previously [14]. A

heterogeneity index was calculated for gains and losses

separately, as the number of heterogeneous cases relative to the

total number of cases with alteration at each DNA location. The

copy number of the heterogeneous region was 0.5 above (gain) or

below (loss) the nearest integer value.

The GeneCount method has been extensively validated based on

the cervical cancer samples included in this study and a cohort of 94

lymphoma samples [14]. In particular, we used lymphoma samples

to show that the estimated tumor cell fractions correlate significantly

with the highly accurate values determined by flow cytometry [14].

cDNA Microarrays
The cDNA microarray experiments have been presented

previously for 48 of the 100 patients [50]. The array slides were

produced at the Microarray Facility at the Norwegian Radium

Hospital and contained more than 12000 unique cDNA clones,

including most known oncogenes and tumor suppressor genes.

Total RNA was isolated from the biopsies, labeled, and co-

hybridized with reference RNA (Universal Human Reference

RNA, Stratagene, La Jolla, CA) to the array slides. RNA from

different biopsies of the same tumor was pooled. Only biopsies

with more than 50% tumor cells in HE stained sections were

utilized. Median tumor cell fraction was 70% (range 50–90%). All

hybridizations were performed twice in a dye-swap design

(ArrayExpress accession no. E-TABM-817). After array scanning,

image analysis, spot filtering, and ratio normalization, the average

expression ratios were calculated from the two data sets and used

in the further analyses. The gene expressions were mapped to the
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gene dosages based on the exact chromosomal position of the

cDNA and genomic clones, as derived from Ensembl (http://

www.ensembl.org/Homo_sapiens/searchview).

Illumina Gene Expression Beadarrays
Results based on cDNA data were validated with Illumina gene

expression beadarrays in 52 of the patients subjected to aCGH

and in the independent cohort of 41 patients. HumanWG-6 v3

beadchips (Illumina Inc., San Diego, CA) with 48000 transcripts

were used. RNA was isolated from the biopsies as described above

and amplified using the Illumina TotalPrep RNA amplification kit

(Ambion Inc., Austin, TX) with 500 ng of total RNA as input

material. cRNA was synthesized overnight (14 hr), labelled, and

hybridized to the chips at 58uC overnight, according to the

standard protocol. The hybridized chip was stained with

streptavidin-Cy3 (AmershamTM, PA43001, Buckinghampshire,

UK) and scanned with an Illumina beadarray reader. The scanned

images were imported into BeadStudio 3.1.3.0 (Illumina Inc.) for

extraction, quality control, and quintile normalization. The

annotation file HumanWG-6_V3_0_R0_11282955_A was used.

Statistics
The recurrent gene dosage alterations were identified based on

a score that was calculated for each genomic clone by multiplying

the average gene dosage amplitude with its frequency [16]. Gains

and losses were considered in two separate procedures. Semi-

discrete data were used, for which amplitudes lower than 1.1 were

set to 1 when searching for gains and amplitudes higher than 0.9

were set to 1 when searching for losses. The score significance was

assessed by comparison to similar scores obtained after data

permutation [16], adjusting the p-value by a multiple testing

procedure to control the false discovery rate (FDR) [52].

Recurrent alterations with an FDR q-value ,5% were reported.

Gene dosage alterations associated with clinical outcome were

identified with the LASSO method in the Cox proportional

hazards model [53], as implemented in [54]. The LASSO is a

method for variable selection and shrinkage in regression models

when the number of covariates is larger than the number of

individuals. By performing shrinkage in addition to selection, the

LASSO is more stable than stepwise procedures where variables

are either retained or discarded from the model sequentially, one

at a time. In groups of highly correlated variables the LASSO

tends to select only one variable in the group [55], and reported

therefore one representative of each DNA region that jointly

explained the outcome. Each region was thereafter found by

selecting neighbouring genomic clones with strong correlation

(r.0.9) to the one reported. Survival curves were generated by

Kaplan-Meier analysis and compared by using log-rank test.

Spearman’s rank correlation analysis with an FDR q-value ,5%

was used to search for significant correlations between gene dosage

and expression. The analysis was based on semi-discrete data,

retrieved as described above. To identify biological processes that were

overrepresented among the correlating genes, the GO categories of

the genes were compared with those of all genes on the array by using

the master-target procedure with the Fisher’s exact test in the eGOn

software [15]. The GO categories were found in eGOn from public

databases, based on the gene reporter EntrezGeneID.

Supporting Information

Figure S1 Tumor ploidy and gene dosage alterations in relation

to histological type and HPV status. (A) Ploidy distribution of 97

patients. Tumors with a ploidy within the range of 1.8–2.2 were

considered as near diploid. (B) Ploidy of patients with adenosqua-

mous carcinoma or HPV negative tumor. (C, D) Frequency of

patients with gains (red) and losses (green) along chromosome 1 to

X for patients with adenosquamous carcinoma (C) and HPV

negative tumor (D). Gene dosage alterations above 1.1 and below

0.9 were classified as gains and losses, respectively. (A–D) Tumors

in the basic cohort subjected to aCGH analysis were included.

Found at: doi:10.1371/journal.pgen.1000719.s001 (0.30 MB TIF)

Figure S2 Tumor ploidy and gene dosage alterations in

homogeneous and heterogeneous tumors. (A) Ploidy distribution

of patients with homogeneous (left) and heterogeneous (right)

tumors. (B,C) Frequency of patients with gains (red) and losses

(green) along chromosome 1 to X for patients with homogeneous

(B) and heterogeneous (C) tumor. Gene dosage alterations above

1.1 and below 0.9 were classified as gains and losses, respectively.

Totally 86 patients with a tumor cell fraction sufficiently high for

reliable detection of heterogeneity were included in the analysis.

Found at: doi:10.1371/journal.pgen.1000719.s002 (0.29 MB TIF)

Figure S3 Clinical outcome for patients with different combi-

nations of predictive losses. Kaplan-Meier curves showing

progression free survival after chemoradiotherapy of 97 cervical

cancer patients with different combinations of 3p11.2-p14.1,

13q13.1-q21.1, and 21q22.2-3 loss. The different combinations

and number of patients in each group are listed (right). P-value in

log-rank test is indicated.

Found at: doi:10.1371/journal.pgen.1000719.s003 (0.24 MB TIF)

Figure S4 Correlations between gene dosage and expression.

Typical correlation plots of gene dosage and expression for 9

correlating genes within the recurrent and predictive regions; 6 with

gain and 3 with loss. Spearman’s rank correlation analysis on semi-

discrete data was performed, for which amplitudes lower than 1.1

were set to 1 for gains and amplitudes higher than 0.9 were set to 1

for losses. Correlation coefficient (R) and p-value are indicated.

Found at: doi:10.1371/journal.pgen.1000719.s004 (0.27 MB TIF)

Table S1 Recurrent high-level amplifications and homozygous

deletions in locally advanced cervical cancer.

Found at: doi:10.1371/journal.pgen.1000719.s005 (0.03 MB PDF)

Table S2 Relationships among Illumina, cDNA, and gene

dosage data for correlating genes.

Found at: doi:10.1371/journal.pgen.1000719.s006 (0.07 MB PDF)
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Supplementary Figure 1
Tumor ploidy and gene dosage alterations in relation to histological type and HPV status. (A) 

Ploidy distribution of 97 patients. Tumors with a ploidy within the range of 1.8–2.2 were 

considered as near diploid. (B) Ploidy of patients with adenosquamous carcinoma or HPV 

negative tumor. (C, D) Frequency of patients with gains (red) and losses (green) along 

chromosome 1 to X for patients with adenosquamous carcinoma (C) and HPV negative 

tumor (D). Gene dosage alterations above 1.1 and below 0.9 were classified as gains and 

losses, respectively. (A–D) Tumors in the basic cohort subjected to aCGH analysis were 

included.
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Supplementary Figure 2
Tumor ploidy and gene dosage alterations in homogeneous and heterogeneous tumors. (A)p y g g g g ( )

Ploidy distribution of patients with homogeneous (left) and heterogeneous (right) tumors. 

(B,C) Frequency of patients with gains (red) and losses (green) along chromosome 1 to X for 

patients with homogeneous (B) and heterogeneous (C) tumor. Gene dosage alterations 

above 1.1 and below 0.9 were classified as gains and losses, respectively. Totally 86 patients 

with a tumor cell fraction sufficiently high for reliable detection of heterogeneity were included 

in the analysis.
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Supplementary Figure 3
Clinical outcome for patients with different combinations of predictive losses. Kaplan-Meier curves showing 

progression free survival after chemoradiotherapy of 97 cervical cancer patients with different combinations of 

3p11.2-p14.1, 13q13.1-q21.1, and 21q22.2-3 loss. The different combinations and number of patients in each 

group are listed (right). P-value in log-rank test is indicated.
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Supplementary Figure 4
C l ti b t d d i T i l l ti l t fCorrelations between gene dosage and expression. Typical correlation plots of gene 

dosage and expression for 9 correlating genes within the recurrent and predictive 

regions; 6 with gain and 3 with loss. Spearman's rank correlation analysis on semi-

discrete data was performed, for which amplitudes lower than 1.1 were set to 1 for gains 

and amplitudes higher than 0.9 were set to 1 for losses. Correlation coefficient (R) and 

p-value are indicated.



Table S1. Recurrent high level amplifications and homozygous deletions in locally advanced cervical cancer.

Peak region
a

Peak region
a

Freq.
b Max./min.

 gene dosage
c Correlating genes

d

(Cytoband) (MB) (%) (copy no.) 

Recurrent high level amplification 

3q26.1-qter 166.2-199.5 8 4.5 (9) 
PDCD10, PHC3, ZNF639, FXR1, PARL, DVL3, ABCF3, ALG3, 
EIF4G1, SFRS10, DGKG, EIF4A2,  RFC4, CCDC50, PPP1R2, 
PAK2, NCBP2, DLG1, BDH1, FLYTTD1 

5p15.2-pter 1.0-12.1 8 4 (15) CLPTM1L , MED10, FASTKD3, CCT5, DAP 
9p24.1-2 2.7-6.0 4 13.5 (27) KIAA0020, RCL1 
11q13.2-3 68.6-70.6 4 10 (20) FADD
11q22.1-2 100.2-102.0 5 36 (72) YAP1, BIRC3, BIRC2 
20q11.21-22 30.0-33.0 5 3.4 (9) POFUT1, KIF3B, MAPRE1, SNTA1, EIF2S2, AHCY 
21q22.11-2 32.9-39.6 4 7.5 (15) TTC3, BRWD1 
Homozygous deletione

5q13.2 67.4-71.7 1 0 (0) SMN2 
6p21.1-p12.1 44.1-54.1 1 0 (0) -

8q24.23 136.6-139.3 1 0 (0) -

9p21.1-3 22.6-29.6 1 0 (0) MOBKL2B
10q23.31 88.2-92.1 3 0 (0) -

13q34 111.7-114.1 1 0 (0) -
a
Peak region of high level amplifications is the region with more than 25% higher amplitude than surrounding region. Peak region of 

homozygote deletions is the region with a gene dosage of zero.  
b
Frequency is the median percentage of tumors with the alteration. 

c
Gene dosage is absolute DNA copy number divided by ploidy. Maximum (gain) or minimum (loss) gene dosage and the 

corresponding copy number are listed. 
d
Genes within the peak region showing a correlation between gene dosage and expression are ordered by DNA location. 

e
Homozygote deletions were seen in only few tumors and were not detected as recurrent in statistical analysis. 



Table S2. Relationships between Illumina, cDNA, and gene dosage data for correlating genes
a
.

Reporter
ID IlluminaID Gene

cDNA vs gene 
dosage

cDNA vs gene 
dosage cDNA vs Illumina 

Illumina vs gene 
dosage

95 patients 52 patients 
R p R p R p R p

129563 ILMN_1762582 ARNT 0.407 0.000 0.403 0.004 0.412 0.003 0.411 0.003

814158 ILMN_1669113 ATF5 0.347 0.001 0.520 0.000 0.812 0.000 0.488 0.000

825312 ILMN_1772929 ATP5J 0.369 0.002 0.421 0.007 0.611 0.000 0.368 0.010

877832 ILMN_1853837 BCAP31 0.327 0.001 0.225 0.111 0.866 0.000 0.280 0.047

782748 ILMN_1708485 BIN3 0.502 0.000 0.577 0.000 0.345 0.013 0.415 0.003

34852 ILMN_1768194 BIRC2 0.475 0.000 0.467 0.000 0.697 0.000 0.573 0.000

201890 ILMN_2405684 BIRC3 0.476 0.000 0.445 0.001 0.636 0.000 0.237 0.091

249618 ILMN_1752802 CLPTM1L 0.367 0.001 0.484 0.002 0.517 0.000 0.701 0.000

343352 ILMN_1779530 COG6 0.403 0.000 0.510 0.000 0.622 0.000 0.451 0.002

897971 ILMN_1699112 COPB1 0.345 0.001 0.579 0.000 0.468 0.000 0.556 0.000

884480 ILMN_1798189 COX7C 0.500 0.000 0.341 0.017 0.609 0.000 0.407 0.004

814381 ILMN_2112493 DAP 0.404 0.000 0.565 0.000 0.790 0.000 0.621 0.000

487082 ILMN_1706498 DSE 0.378 0.000 0.365 0.010 0.586 0.000 0.444 0.002

22918 ILMN_1768127 EBNA1BP2 0.293 0.004 0.242 0.086 0.696 0.000 0.352 0.012

469151 ILMN_1798014 EIF2S2 0.508 0.000 0.571 0.000 0.444 0.001 0.439 0.001

810237 ILMN_1665717 EIF2S3 0.427 0.000 0.248 0.076 0.492 0.000 0.320 0.021

307532 ILMN_1685722 EIF4A2 0.434 0.000 0.459 0.000 0.633 0.000 0.552 0.000

25988 ILMN_2370772 EIF4G1 0.468 0.000 0.314 0.038 0.636 0.000 0.446 0.002

809453 ILMN_1802376 FAM48A 0.415 0.000 0.349 0.016 0.492 0.000 0.344 0.018

133158 ILMN_1750160 FASTKD3 0.619 0.000 0.782 0.000 0.645 0.000 0.608 0.000

82171 ILMN_1687940 FOXO3 0.335 0.002 0.315 0.033 0.618 0.000 0.359 0.015

289551 ILMN_2389273 FXR1 0.435 0.000 0.530 0.000 0.752 0.000 0.554 0.000

127509 ILMN_1789702 GBE1 0.347 0.001 0.271 0.057 0.465 0.000 0.365 0.009

754085 ILMN_1745798 GTF2F2 0.344 0.001 0.473 0.000 0.700 0.000 0.480 0.000

811942 ILMN_2157957 GTF2H1 0.341 0.001 0.323 0.021 0.449 0.000 0.215 0.130

256664 ILMN_2200331 H2AFX 0.388 0.000 0.305 0.036 0.495 0.000 0.332 0.021

502669 ILMN_1767747 HDAC2 0.439 0.000 0.471 0.000 0.521 0.000 0.652 0.000

1606829 ILMN_1764396 HDAC4 0.357 0.001 0.397 0.005 0.395 0.004 0.301 0.036

843319 ILMN_1792497 HRB 0.425 0.000 0.466 0.000 0.292 0.036 0.415 0.002

810942 ILMN_1802706 IDH3G 0.428 0.000 0.486 0.000 0.789 0.000 0.275 0.051

795282 ILMN_1664641 MED4 0.568 0.000 0.502 0.000 0.445 0.001 0.446 0.003

131653 ILMN_2371964 MRPS12 0.455 0.000 0.521 0.000 0.785 0.000 0.548 0.000

810979 ILMN_1815043 MRPS2 0.365 0.001 0.333 0.018 0.495 0.000 0.507 0.000

470216 ILMN_1727080 MYO6 0.373 0.000 0.219 0.122 0.298 0.032 0.373 0.007

26711 ILMN_1720442 NCBP2 0.494 0.000 0.442 0.002 0.590 0.000 0.682 0.000

753457 ILMN_1728810 NDUFS1 0.431 0.000 0.405 0.004 0.383 0.005 0.476 0.000

795439 ILMN_2323491 NUP62 0.318 0.002 0.438 0.002 0.281 0.044 0.451 0.001

134439 ILMN_1712687 PAK2 0.304 0.003 0.245 0.093 0.414 0.002 0.568 0.000

137836 ILMN_2269002 PDCD10 0.588 0.000 0.646 0.000 0.775 0.000 0.705 0.000

80374 ILMN_1772369 PDHA1 0.327 0.001 0.177 0.214 0.743 0.000 0.207 0.144

248454 ILMN_1815261 PDIA4 0.357 0.001 0.289 0.049 0.621 0.000 0.445 0.002

454475 ILMN_1814074 PHKA2 0.470 0.000 0.298 0.036 0.656 0.000 0.418 0.003

112131 ILMN_1776076 POFUT1 0.303 0.003 0.476 0.000 0.662 0.000 0.457 0.000

2191807 ILMN_1773613 POU2F3 0.399 0.000 0.257 0.113 0.295 0.052 0.120 0.431

769657 ILMN_1683044 PPP1R2 0.524 0.000 0.551 0.000 0.558 0.000 0.637 0.000

125148 ILMN_1813766 RCL1 0.603 0.000 0.492 0.000 0.719 0.000 0.515 0.000

853151 ILMN_1651850 RPS16 0.440 0.000 0.418 0.002 0.042 0.766 0.169 0.236

795453 ILMN_1721842 RYBP 0.494 0.000 0.606 0.000 0.522 0.000 0.480 0.000

450131 ILMN_1752111 SMARCAL1 0.437 0.000 0.614 0.000 0.521 0.000 0.625 0.000

295255 ILMN_1788211 SNX19 0.422 0.000 0.417 0.006 0.671 0.000 0.440 0.003

884657 ILMN_1738938 TIMM8B 0.432 0.000 0.649 0.000 0.717 0.000 0.587 0.000

878744 ILMN_1747146 TSG101 0.538 0.000 0.554 0.000 0.632 0.000 0.549 0.000

739126 ILMN_1697777 TSTA3 0.387 0.000 0.336 0.020 0.336 0.000 0.222 0.128

346292 ILMN_1675674 UBE4B 0.304 0.003 0.460 0.001 0.661 0.000 0.367 0.011

206545 ILMN_2174884 XPO7 0.400 0.000 0.434 0.001 0.742 0.000 0.614 0.000

126702 ILMN_1792990 ZNF202 0.333 0.001 0.355 0.013 0.289 0.038 0.387 0.006
a
Data for the genes in Figure 5 are shown, except for SLC25A6 which was not included in the Illumina data set.
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