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Preface

Medical artificial intelligence is an interdisciplinary subject. A fundamental
difficulty with such an interdisciplinary subject matter, is that the ‘medical’
part may be accessible to a medical audience, who may find the ‘artificial
intelligence’ part inaccessible; whereas an informatics or artificial
intelligence audience may find the AI part understandable, but may not feel
at home in the medical parts. To make this thesis more accessible to the
potential reader, I have included background and Appendices that may be
longer than what would be considered necessary in a text aimed at a
homogeneous audience. I have tried to start out at a level that may not be
totally fundamental, but hopefully understandable to an enlightened reader
from either an informatics or a medical (or any other) background. The
price to pay for such an approach is that the medical reader may feel the
medical part is too basic, and the informatics reader may feel the
informatics part is too basic. I hope that, on the contrary, some readers
may find the Appendices useful, and that those readers who do not find
them useful feel free to skip them.

The text was written in Emacs and typeset with the LATEX document
formatting and typesetting system.

Oslo, March 2010

Øivind Braaten
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Chapter 1

Theme and aims

1.1 The thesis’ theme

The theme of this thesis is the application of artificial intelligence methods
to medical genetics. In a broader perspective, the theme is artificial
intelligence in medicine.

1.2 Aims of the thesis

1.2.1 Investigate the applicability of AI to medical
genetics

A major aim of this project was to investigate whether artificial intelligence
could be applied to medical genetics to produce sensible and useful results.

1.2.2 Procreate new AI methods

Another major aim was to develop new artificial intelligence methods that
could be applied to medical genetics; or to adapt existing methods to the
task.

1.2.3 Contribute to objective diagnostic systems in
syndromology

The lack of a criterion standard for syndrome diagnosis, and the need for
objective diagnosis, are fundamental problems for syndromology, and by
extension, for medicine as a whole. This project aimed to illuminate these
problems, and to contribute objective methods of diagnosis.

3
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1.2.4 Create search methods for uncharted parts of
the genome

The ninety eight per cent or more of the human genome that is still termed
‘junk DNA’, is becoming a major research area. This project aimed at
developing and testing methods of searching such unknown DNA sequences.

As an undercurrent of a unifying theme for the whole thesis, runs
the search for patterns in very large search spaces.

1.3 Overview

There would be no point in applying artificial intelligence methods to a
field such as medical genetics, unless it would imply improvement in some
respect, i.e. doing things in a better way or doing things with less resources
in terms of time, money or people. The applications in this thesis attain
solutions that would have been difficult to achieve by other methods.

There are areas in medical genetics, and in medicine and biology in general,
where research question arise that cannot easily be handled by conventional
methods. An example of this is many of the sequence searching problems of
bioinformatics. Some search problems are straightforward and readily
solved by existing methods. Some searches, however, cannot be solved by
either statistical-mathematical methods, or by all-encompassing (so called
‘brute force’) informatics algorithms.

This type of problem is addressed in the part of this thesis regarding the
genetic algorithm.

Medical artificial intelligence is definitely an interdisciplinary field. When
such new fields arise, often fundamental questions of philosophy of science
are uncovered. The established sciences rarely question their basic
assumptions. In burgeoning fields, researchers may have to confront
fundamental dogmas in their science, to challenge such dogmas, and
possibly to redefine what are valid research questions and what direction
research should take.

On a more mundane level, examples of this would be the lack of a criterion
standard of diagnosis in syndromology, and its consequences. Similarly, the
lack of objective diagnosis in fields of medicine does have implications for
medicine as a scientific discipline.

This type of problem is addressed in the part of this thesis regarding the
ID3 algorithm and the feature vector.
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1.3.1 The subject matter: Medical genetics
applications

The artificial intelligence methods were applied to two areas of medical
genetics: Syndromology, and bioinformatics sequence searching.

1.3.1.1 Syndromology

When a child is born with a set of clinical traits that appear abnormal,
such traits often delineate a syndrome. Syndromes often do not have a
criterion standard of diagnosis (‘a gold standard’). There is therefore often
no objectively verifiable diagnosis in syndromology. That is a practical and
a philosophical problem.

1.3.1.2 Bioinformatics

Bioinformatics - the use of computers and algorithms to extract
information and knowledge from biological data - is entwined with medical
genetics. Searching biological sequences is fundamental in bioinformatics.

1.3.2 The methods

Artificial intelligence methods are exemplified in this thesis by two versions
of the genetic algorithm; the ID3 - an identification tree algorithm; and two
basic methods - a feature vector method and a set method.

1.3.2.1 The genetic algorithm

The genetic algorithm is a computer algorithm based on evolution in
nature. It can usually search large search spaces, and may provide solutions
to problems where other methods cannot cope. It is not guaranteed to find
the best solution to a problem, but it will often find a good solution.

1.3.2.2 The ID3 identification tree

The ID3 is an algorithm that will divide a search space - e.g. all clinical
signs used to diagnose certain syndromes - by the element (e.g. clinical
sign) that succeeds best in dividing it into equal parts. It will proceed until
all elements (clinical signs) have been used. In this process it creates a tree,
called an identification tree or a decision tree. This tree can be used later
as a guide through the search space.
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1.3.2.3 The feature vector and the set method

The feature vector method and the set methods are two basic artificial
intelligence methods. These are used to illustrate how objective diagnosis
can be attained for a field such as syndromology.



Chapter 2

The articles

2.1 Preamble

Two of the articles that form part of this thesis apply artificial intelligence
methods to the area of syndrome diagnosis. The two other articles deal
with bioinformatics.

The two articles concerned with syndromes both originate from the lack of
objective diagnosis in syndromology.

In article I, an identification tree is applied to a set of artificially generated
patients. An identification tree is an objective method where the basic
assumptions can be evaluated. It is also transparent in that all parts of
the algorithm can be examined and adjusted if necessary. It is
straightforward to repeat the runs, and with small to medium data sets the
results are repeatable.

Article II is also focused on objective diagnosis. The methods applied here
are basic methods. The advantage of such basic methods is that the
methods are readily comprehensible. These methods are also - like the
identification tree method - transparent and repeatable. Examples of
methods that are not transparent, are for instance neural networks, and, to
some degree, genetic algorithms. These methods are also only repeatable
up to a certain point. I do argue in favour of non-deterministic methods in
the sections on the genetic algorithm, where I hold that these methods
should be judged by whether they attain good solutions. When it comes to
objective diagnosis in an area such as syndrome diagnosis, however, it is a
highly desirable quality that the methods are transparent and repeatable,
since the problem is the very lack of objectivity.

The two bioinformatics articles both apply the genetic algorithm.

The genetic algorithm’s strength is the ability to search large search spaces.

7
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A quality that some find disquieting, is the fact that it will not necessarily
produce the same solution in every run - the repeatability concern. At best,
the genetic algorithm will find good solutions. but not necessarily the best
solution - if one single ‘best’ solution exists. The search spaces in
bioinformatics are often vast, and all-enumerating or all- examining
methods break down. In some cases heuristics can limit the search space,
but for many problems there simply are no alternatives.

2.2 Article summaries

The article numbering in roman numerals refers to the list of articles on
page xi.

2.2.1 Article I

This study applies the identification tree (ID3) method to a set of
artificially generated patients. The ID3 finds clinical signs that can be used
in syndrome diagnosis. The ID3 is an example of an objective diagnostic
method.

2.2.2 Article II

This study focuses on the lack of objective methods in syndrome diagnosis.
It applies a vector method and a set method to artificially generated
patients. A cluster analysis, a naive Bayes’ calculation, and an
identification tree method were run as controls, with good correlation to
the basic methods. In this study, sets of clinical signs are elicited. These
sets in principle must occur together to be diagnostic. The study concludes
that consistent diagnoses are feasible with the use of basic artificial
intelligence methods.

2.2.3 Article III

In this study, a genetic algorithm is applied to the problem of finding RFLP
haplotypes in the LDL receptor gene. The method finds haplotypes
associated with high cholesterol values. Runs with added ‘noise’ and mix-in
of ‘misleading’ haplotypes show the genetic algorithm still can discern the
high cholesterol haplotypes.
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2.2.4 Article IV

This study was motivated by the wish to search unknown DNA sequences
for patterns, without preformed notions of what are interesting patterns. It
features a new genetic algorithm, with diploidy, parthenogenesis, ‘paths’ -
to help give the genetic algorithm a memory, and ‘packs’ - to help the
genetic algorithm individuals match longer sequences of input DNA. It
shows a slightly inferior performance compared to the control program
MEME, when searching for patterns in artificially generated DNA. It finds
interesting sequences not found by MEME when applied to a set of four
related human genes.

2.3 Introduction

In the following pages, the deliberation splits in two, according to the two
application areas for the artificial intelligence methods; syndromology and
bioinformatics.

2.3.1 The syndromology studies

The syndromology studies, articles I and II, were motivated by the lack
of a criterion standard of diagnosis in syndromology, and the
consequent lack of objective diagnoses.
’Proper syndromes’ do not have a known biochemical, chromosomal or
other genetic cause. A syndrome is a phenotype or disease condition
defined only by its clinical signs [1]. As discussed in article II, this implies
there is no external criterion standard for the diagnosis. This is a scientific
problem, since syndrome diagnoses cannot be verified against an objective
external standard. For a condition that is its own criterion standard, some
of the indices discussed later, like sensitivity and specificity, lose their
meaning. The consistency/ repeatability/ precision of syndrome delineation
and diagnosis thus takes on even more importance.
The predictive value of any test in medicine - and any clinical sign in
syndrome diagnosis - is strongly dependent on the prior probability of the
diagnosis. Thus, an additional problem in syndrome diagnosis, as in medical
diagnosis in general, is the fact that many diagnostic methods do not take
into account the effect that the prior probabilities of a diagnosis has
on the predictive value of a clinical sign (A more formal discussion of
elements of clinical epidemiology is given in Appendix B.1 on page 131.)
A common syndrome with an unusual presentation, may be a more
plausible diagnostic suggestion than an extremely rare syndrome with its
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standard presentation.
These problems are well recognised and treated in clinical epidemiology
texts [2], but not always recognised among clinicians. Among those who
examine the effects on clinical performance of ignoring these principles, are
Cahan et al [3] and Richardson [4]. Clinical experience does not ameliorate
the problem of misjudging prior probabilities [5].
To use the concept of predictive value sensibly, the frequency of the
syndrome has to be known. The frequency of a given clinical sign among
those who have the syndrome, also has to be known. Snowman et al
critically evaluate clinical assessments of frequency estimates, and conclude
that the qualitative terms used to denote frequency by clinicians, are
misleading [6].

2.3.2 General principles of diagnostic value of clinical
signs in syndromology

A good clinical sign for diagnostic use is a sign that can be used to single
out from all others the patients with a specific diagnosis. ‘All others’ are
those with other diagnoses, plus those who are not affected.
A clinical sign that dramatically reduces the number of possible diagnoses,
or that could even represent a one-step diagnosis, is often referred to as a
‘handle’ or a pivot sign.
A seemingly obvious way to find a good clinical sign would be to look for a
sign present in many of the affected persons. However, this alone is not
enough to be a good clinical sign, since the sign will be virtually useless if it
is also found in many other conditions.

There are two main diagnostic situations:

• The basic or first diagnosis

• The differential diagnosis

Some underlying principles apply to both situations. A good clinical sign
should be found in a large number of patients with the diagnosis in
question. A sign found in ten per cent of patients might be useful when
found, but would still be of limited practical value.
The most important point when searching for a clinical sign to discriminate
groups is this: As few as possible of the others should have the sign. Again,
‘others’ are all normals, plus those with other diagnoses.
For the first diagnosis/ the basic situation, the above principles apply
without modification.



2.3. INTRODUCTION 11

A special situation of ‘first diagnosis’ is the screening test situation. The
patients coming for a screening test are either low risk patients or persons
who have no known risk, i.e. they are from the general population. For
syndrome diagnosis, the general population may be the general population
of newborns seen by a paediatrician doing a newborn examination. This
situation carries the particular risk of false positives, i.e. misdiagnosing
healthy newborns as having a syndrome. In a screening situation, there is a
risk of diagnosing very few who are actually affected, and misdiagnosing a
large number of healthy persons as affected. Thus, in a screening situation,
it is essential to use signs that only very few of the ‘others’ have. (The
particular risk of misdiagnosing healthy people as affected in screening,
comes from the low prior probability of disease. To try to counteract this,
signs should have a very high specificity. The concepts prior probability
and specificity are discussed on page 131).
A high specificity in this situation means extremely few of the others
should have the sign.
In the differential diagnosis situation, the number of possible diagnostic
categories may be only two or three-four. The problem now is either to
refute one or two less plausible diagnoses, or to confirm the number one
diagnosis.
The ‘others’ group is different. A test that would have been previously
discarded could now be valuable.
For a confirmation diagnosis, it is even more important that very few of
the others have the sign for the diagnostician to accept one diagnosis with
confidence.
To refute a diagnosis, conversely, a sign is needed that occurs reasonably
frequently among the others, but rarely among those with the diagnosis in
question (the diagnosis to be refuted). If this sign is found, the diagnosis
can be refuted.

2.3.3 Strategies for using clinical signs

One strategy is to find clinical signs that can immediately lead to the
diagnosis. Another strategy is one that resembles a binary search strategy.
Such an approach would ideally halve the universe of possible diagnoses
with each sign, e.g. if the patient does not have the clinical sign in
question, about half the diagnoses can be ruled out and the other half is
still under consideration. An identification tree approach [7] might yield
signs of this type.
Ideally, such a strategy could always be used and would potentially be very
effective. If one did not reach a diagnosis, a secondary goal would be to find
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the optimal test to order. Consequently, clinical signs could be used that
guided the diagnostician in the right direction as far as test ordering is
concerned. Some clinical signs might point to a chromosomal aberration,
other clinical signs might lead in the biochemical direction and so on.
Certainly, some such signs do exist. However, methods such as the
identification tree method might find clinical signs that would be more
rewarding in this kind of directed diagnostic search.

This overview has centred on individual clinical signs. In practice, a
diagnosis would be based on several co-occurring signs. Although this
makes the situation more complicated, the basic principles outlined here
still apply.

2.3.4 General overview of syndrome terminology

Most syndromes are rare, but there is a large number of syndromes.
Syndromes will affect the patient, the family, and society. Thus, numerous
people will be affected by a child born with a syndrome.

A syndrome diagnosis is important for prognosis, possible treatment and
educational measures, in many cases for genetic counselling, and for the
parents’ need to know.

Syn means together and dramein means to run, i.e. a syndrome literally is
something that runs together.

A number of mechanisms underlie the clinical signs that are observed in
syndrome patients - the dysmorphological traits.

A malformation is a morphological defect of an organ, part of an organ,
or a larger region of the body resulting from an intrinsically abnormal
developmental process. Malformations thus occur if something has not been
formed properly from the start.

A deformation is an abnormal form or position of a part of the body
caused by non-disruptive mechanical forces. Deformations, then, are the
result of mechanical forces acting on the fetus. Deformations need not be
very extensive or serious. They are exemplified by development that has
not been wrong from the start, but later modified. ‘Club foot’ or pes
equinovarus is an example of a deformation.

Disruptions are examples of a development that was normal, but has then
been destructively transformed. Amniotic bands may cause disruptions.

Dysplasia refers to an abnormal growth of a particular tissue (aplasia/
hypoplasia/ hyperplasia) or a disorganization of cells within a tissue.

A polytopic field defect involves distantly located anatomic structures
that are developmentally related [8].
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The word polytopic comes from poly many, and topos place. A single
noxious agent may affect several separate tissues or organs. This may be
effected by influence on a postulated ‘developmental field’, a set of tissues
or organs being developed in concert.

An association is a non-random occurrence in two or more individuals of
multiple anomalies not yet known to be a polytopic field defect, sequence or
syndrome [8, 9, 10].

A ‘proper syndrome’ may be defined as a condition where diseases with a
known etiologic 1 mechanism have been ruled out, and where the diagnosis
is based upon physical signs. For a proper syndrome as opposed to an
association though, there is implicitly a postulated etiologic mechanism,
not yet discovered. More formally, a syndrome is ‘a pattern of multiple
anomalies thought to be etiologically related and not known to represent a
single sequence or a polytopic field defect’ [8].

A Sequence is a pattern of multiple anomalies from a single known or
presumed prior anomaly or mechanical factors [8].

An example of this is the Potter sequence. The basic problem here is a lack
of amniotic fluid (e.g. because the fetus has no kidneys, renal agenesis).
The Potter sequence consists of a flat, ‘squashed’ face, a ‘compressed’
pattern of limb positioning defects, in severe cases undeveloped lungs, etc.
The physical traits found in a baby with Potter sequence all result from the
lack of amniotic fluid.

The mechanism behind syndromes is poorly understood. For some
syndromes there is a known genetic defect, but often there is no obvious
link between the diverse set of clinical signs in a syndrome and the genetic
defect. The expression ‘pleiotropic’ is often used to denote that one gene
affects several tissues and organs, and as an explanation of different disease
manifestations in different people. Heterogeneity, on the other hand, is used
for the situation where different ‘causes’, e.g. different genes, lead to the
same clinical picture.

‘Genetic field defects’ are proposed as potential causes for syndromes. The
‘field’ is seen as governed by an organizing element that commands a set of
successive operations during embryological development, and when the
genetic organizer is deranged, a set of clinical and morphological
consequences will follow.

Findings such as these are often explained by a ‘final common pathway’.
This, however, is more of a theoretical postulate than an explanation. In

1Etiologic here meaning ‘pertaining to the cause of the disease’, whereas pathogenic
refers to the development of the disease, i.e. the pathogenesis succeeds the etiological
factor(s)
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fact, it might prove more fruitful to reason from clinical signs to genes
instead of reasoning from gene to syndrome. This approach has been
advocated by for example Brunner [11].

Some syndromes are the result of a noxious agent - a teratogen - exerting
its influence on the embryo and the foetus.

2.3.5 Approaches to syndrome classification

The most basic form of classification of syndromes is regarding each
syndrome as a single entity based on its clinical signs.

The traditional medical approach is considering a syndrome entity as
consisting of clinical signs, symptoms, and a ’pathological’ disturbance.
Pathological in this connection is used in a broad sense, including possible
genetic changes and/ or biochemical disturbances, or conditions involving
several components of a metabolic system.

Exciting recent work in syndromology revolves around syndrome families.
The concept of families of syndromes and genetic diseases is established in
medical genetics. Brunner and van Driel systematise this, and takes it
further by suggesting using the groups of syndromes to postulate which
genes are involved in causing the syndrome [11]. Pondering the fact that
different genes (or alleles of different genes) can cause very similar
phenotypes, they consider similarity between proteins involved. Through
common knowledge/ literature searches they conclude that such cases do
exist. They move further on by considering not the protein as the basic
unit, but the metabolic network that the protein participates in. In
syndromes having dysfunctional proteins that are part of the same
gene-protein-metabolic-interactomic network, may have the same clinical
sign. Conversely, syndromes with the same clinical appearance may point
to causation by malfunctioning of such common networks.

The construction of networks had already begun in bioinformatics, and has
lead to an upsurge in the use of the artificial intelligence techniques of data
mining and text mining [12, 13].

Oti and Brunner elaborated on the ideas of ’modules’ of genetic diseases
[14]. They identified possible ’modules’ as for instance a multiprotein
complex, a cell’s organelle, or a metabolic pathway.

There are many ontologies created that appease bioinformatic research by
standardising terms and concepts. To facilitate research on phenomes and
networks, a Human Phenotype Ontology has been created [15]. The Human
Phenotype Ontology contains 8000 terms, and is cross referenced with
Online Mendelian Inheritance in Man.
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Loscalzo and co-workers argued for a new disease classification in medicine
based on biological networks [16]. Schadt et al argue along the same lines,
and also extend the point of view to suggest that with data from the next
generation genomic analysis, the network classification will be necessary to
develop new therapeutic agents [17].
Jiang et al [18] provided more evidence for the existence of modules, adding
data from HugeIndex of tissue-selective genes, and DrugBank, a Food and
Drug Administration databank of 1700 drug targets.
The ideas of interrelatedness are taken even further by including diseases
that were thought to be distinct in a landscape of human diseases [19, 20].
The natural extension to phenome networks have given rise to more
elaborate networks that include different elements of information and
knowledge, primarily data generated by bioinformatics, and to a large
extent based on experimental and laboratory work.
Interesting examples of such networks are a phenome-interactome network
of protein complexes studied by Lage et al [21]. The authors used a text
mining tool (MetMapTransfer) that maps to the thesaurus of terms in
UMLS (Unified Medical Language System), and parses OMIM (Online
Mendelian Inheritance in Man). They linked the phenome information thus
extracted to information about protein complexes. By using a Bayesian
predictor they could detect possibly disease causing proteins and genes.
An earlier work by Oti et al [22] had used protein-protein interaction data
to suggest candidate genes for genetic diseases and syndromes.
These are instances of building on the phenome networks. Since the subject
of the syndromology part of this thesis is strictly clinical, the multitude of
interesting network applications are not pursued further.
The causation of syndromes have been debated for years. Syndromes and
syndrome conditions seem to be caused by chromosome aberrations,
deletions/ duplications, mutated alleles of genes, teratogens, and physical
forces during embryological development. As far as the genetic causes are
concerned, it can sometimes be hard to conceive of how the multitude of
diverse clinical consequences can result from a single deranged gene. One
possibility is that a supergene is affected, a gene that controls the effect of a
number of other genes that act in concert during development. This is true
for homeobox genes, e.g. the DIx homeobox [23]. A deranged gene could
also affect a whole system of body development. Again there are numerous
examples of this, e.g. development of the pharyngeal arches [24]. Another
traditional explanation is the ’developmental field’ for instance as reviewed
by Volpe et al for disorders of prosencephalic development [25]. With the
advent of gene-interactome-phenome networks, both the developmental
field and the systems of body development are explanations that may need
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rethinking in light of the network approaches.

2.3.6 Approaches to measurement and recording of
clinical signs

A syndrome diagnosis is in many cases based both on clinical and molecular
biological grounds. As discussed in article II, this is a problem when
patients are diagnosed differently with the two approaches. An example is
Marfan syndrome which is diagnosed clinically by a set of clinical criteria.
It is diagnosed by molecular biology methods by finding mutations in the
FBN1 gene. Exact correlations between genotype and phenotype prove
hard to establish [26, 27]. Similarly, the phenotypic findings may not be
consistent for submicroscopic deletions or duplications found by array
Comparative Genome Hybridization (aCGH), e.g. as described by Dhar et
al for the 22q13.3 syndrome [28].

People change with age, and so do syndrome patients. However, the clinical
signs that were diagnostic at a young age, may change in such a way as to
make the clinical sign much less conspicuous, or even useless as a finding to
discriminate between those who have the syndrome in question and others.
Garavelli et al [29] give a description of how the facial dysmorphology of
patients with Mowat-Wilson syndrome changes.

A problem in diagnostic work is when different diagnosticians do not use
the same definition of the diagnostic entity. This is also a problem in
syndromology. Breugem asked a number of experts about their definition of
the Pierre-Robin sequence. Sixty five experts gave 29 different descriptions
of the condition [30]. The problem is probably universal.

Similarly, diagnosticians may disagree as to whether a specific clinical sign
is present or not. An important further step in the work concerning
international standardization of terms and definitions in syndromology was
done through the work of Judith Hall [31] and the article series in the
American journal of Medical Genetics in 2009 [32, 33].

Anthropometric exact measurements, often done from pictures of patients,
are a way to minimise interobserver and intraobserver disagreement. It also
makes it easier to make consistent definitions of syndromes. A seminal
early work in this area was done by Cohen, e.g. [34]. (There is a further
general discussion of inter- and intra-observer variation in Appendix B.1 on
page 135.)

Ward et al [35] studied 278 individuals with different syndromes where
craniofacial signs are apparent (although not being ’craniofacial syndromes’
in a stricter sense). They found that a summary score of anthropometric
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measurements agreed with clinicians’ evaluations.

Douglas, Mutsvangwa et al used standardised facial image analysis, doing
morphometric analyses on pictures of children with fetal alcohol syndrome
[36, 37]. They also compared pictures taken at different ages (at 5 and 12
years of age, respectively), and found the clinical features less distinct and
with less predictive value at the older age. A problem with their approach
was that they compared children with fetal alcohol syndrome with normals
only. In this way they avoided the potential real life problem of similar
syndromes to the fetal alcohol syndrome making the diagnosis more
difficult.

Hammond et al in 2005 studied localised facial features with a so called
’dense surface model’ [38]. This study made use of three dimensional
computer generated models of syndrome patient faces, a project started a
few years earlier (e.g. [39]). The face models were based on 3D images. To
distinguish between the phenotypes of four different syndromes, and a
normal control group, they used three classifier algorithms, e.g. a support
vector machine (SVM). Again, a problem with this approach is that few
syndromes were included. Prior probability - outside of the confined
universe of the study - were not taken into account.

Hammond summarises this work in [40]. Of course, from an artificial
intelligence point of view, it is an exciting possibility to combine database
models of craniofacial - or whole body - three dimensional models of a large
number of patients with syndrome conditions. Thus, a 3D real time image
taken of a patient with a suspected syndrome, could be compared to the
database models and possibly render a diagnosis automatically.

The previous approaches are in line with the objectivity criterion advocated
in article I and II of this thesis. Anthropometric measurements will make
an objective diagnostic method all the more powerful, since it lowers the
risk of observer variation. It will increase consistency, although it will not
have an effect on the problem of no external criterion standard of diagnosis.
It will not in itself take care of the problems posed by not taking into
account prior probabilities of the syndromes.

2.3.7 Mathematical-statistical diagnostic approaches
to syndrome diagnosis

In the search for objective methods of diagnosis, mathematical-statistical
approaches would seem to be good candidates. The next pages give an
account of such methods in syndromology.
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Cluster analysis Cluster analysis is a statistical method of classifying or
partitioning a set of elements by its features, for example classifying a
number of syndromes by the clinical signs found in the syndrome. The
hierarchical cluster analysis procedure will start with a number of elements,
with a set of features to each element. It will classify the elements into
groups, based on their features. The groups will have a distance calculated
to the other groups that are formed. The most common is hierarchical
agglomerative clustering, starting with single elements and joining them
into clusters. The closeness of two elements is decided by the distance
measure. In classifying people by height, this could simply be the difference
in height in centimeters between two people. The cluster analysis uses a
procedure for joining either of several clusters of elements to an existing
cluster. The most commonly used method is single linkage or ‘nearest
neighbour’, where the cluster is considered closest that has the closest
element to the existing cluster. The furthest neighbour method, or
complete linkage, considers the two clusters closest that have the shortest
distance between the two features that are furthest apart. Average linkage
uses more information in calculating the average of distances between all
pairs of features in the two clusters.
As in any statistics or other classifying scheme, it is important which
variables or features of the elements are selected for inclusion in the
analysis.
In medicine and biology cluster analysis is attractive because it does not
rest on as many basic assumptions as do the other multivariate methods.
Discriminant analysis
Discriminant analysis will group a set of elements according to a set of
variables or features. To use discriminant analysis, the group membership
must be known. Discriminant analysis can identify variables or features
that can be used in predicting group membership for new, unknown cases.
Group membership is a categorical variable (group1, group2 etc).
Discriminant analysis will perform optimally only with elements taken from
multivariate normal populations. The input variables/ features to
discriminant analysis should be continuous. For categorical variables
discriminant correspondence analysis can be used. Ross used a discriminant
analysis approach to establish neurocognitive profiles in Turner syndrome
[41], Loesch used it on carriers of fragile X syndrome [42], Moore et al [43]
applied anthropometric measurements analysed by discriminant analysis to
the task of diagnosing fetal alcohol syndrome. They found the method
could group the patients into fetal alcohol syndrome, partial fetal alcohol
syndrome and normals. Discriminant analysis of children with fetal alcohol
syndrome was also the subject of Astley’s study [44]. Murdoch-Kinch and
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Ward used discriminant analysis to data from measurements of metacarps
in people with Crouzon syndrome.
Principal component analysis and factor analysis both find a set of
factors that explain the group membership of the elements. This set of
factors ideally is smaller than the set of features or variables in the original
data set. Principal component analysis has been applied to syndromes, e.g.
[45, 46]. Volk et al found subgroups among ADHD patients using principal
component analysis [47, 48]. Haley used factor analysis to find syndromic
disease entities in groups of soldiers who participated in the Gulf war. The
appropriateness of the approach is discussed in [49].
Multiple regression
Multiple regression is the basis method among the multivariate methods. It
models the relationship between a dependent variable and one or more
independent variables. It rests on the assumption of multinomial normal
distributions.
Loesch analysed body shape in fragile X patients using multivariate
analysis [50]. Preus was one of the pioneers of so called numerical taxonomy
and the use of multivariate methods [51, 52, 53, 54]. One of the early
proponents of objective methods and numerical analysis was Verloes [55].
Logistic regression
Logistic regression predicts an event (group membership, or occurrence of
the event) from a set of variables. The variables may be categorical, in
contrast to several of the other multivariate methods. Basically, it predicts
one event. The extension to predict several groups or events is called
multinomial logit modelling.
Non-negative matrix factorization
Non-negative matrix factorization is related to principal component
analysis. It takes the data set, a matrix of variables and values, and
transforms it into other matrices, a feature matrix and a weight matrix,
which are transposed matrices made from the input. By matrix
multiplication and transposing, the input set of data may be reduced to a
smaller set of features that still explains the data. The goal is thus to
reduce the input set of observations (e.g. clinical signs found in syndrome
patients) to a smaller set that captures the common features.
Zhang et al [56] extended a non-negative matrix factorization method to
what they called a topology preserving NMF or TPNMF. They found they
could recognize faces taken from a database of 1200 face images, where the
images were taken under different conditions of lighting, facial expression
and pose. Face recognition is a separate research area, not involved with
diagnosis in any way, but does hold obvious resemblances to recognising
traits of facial dysmorphology.
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Non-negative matrix factorization is a more recent method than the
classical statistical methods. Some consider it an artificial intelligence
method [57].

2.3.7.1 Summing up on the mathematical-statistical approaches

Two problems make it difficult to apply the multivariate statistical
methods to syndrome diagnosis. First, most of the methods are based on
the assumption of multinomial normal distributions. This implies binary
variables are not readily acceptable, although the various methods show
different degrees of vulnerability to violation of this assumption. In many
syndrome diagnostic situations, the diagnostician will record a clinical sign
as present or not present, i.e. not on a quantitative scale.
Secondly, these methods are often vulnerable when it comes to missing
values for variables. Many syndromes have a list of signs that may be
present or not. A data set from a syndrome survey will typically contain
signs present, signs not present, and signs not recorded as present or not
present - i.e. missing values.
Several of these mathematical-statistical methods are used in machine
learning, and the boundary between artificial intelligence and statistics may
be blurred. Non-negative matrix factorization may be considered an
artificial intelligence method.
The artificial intelligence techniques used in the artificial intelligence tool
support vector machines, bear a resemblance to the methods discussed
above [58].

2.3.8 Artificial intelligence diagnostic approaches to
syndrome diagnosis

This section refers some studies that use of the artificial intelligence
techniques utilised in the syndromology articles, or revolves around
syndrome diagnosis by artificial intelligence.

2.3.8.1 Identification trees: ID3/ C4.5

The identification tree algorithm used in the syndromology articles, called
ID3, has evolved into the program C4.5 [7], and later into C5.0. The first
versions were freeware programs, from C5.0 the program is commercial.
(The term ’decision tree’ that is often used, is a bit unfortunate, since it is
also used about the trees made from a decision analysis, a means to assist
in choosing between alternatives, with weighting the eventual outcomes).
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C4.5 has the ability to handle continuous variables (by creating a threshold
and splitting the data into those above and those below the threshold), and
also features automatic pruning of the resultant identification tree.
CART - classification and regression trees - are identification trees that use
a multivariate approach [59, 60]. The algorithm produces smaller
identification trees, but is slower and the trees are harder to interpret.
Podgorelec et al concluded that identification trees in medicine showed a
high classification accuracy [61]. There are few applications of identification
trees to syndromology.
There are quite a few applications, though, of identification trees in other
branches of medicine.
Forsström [62] used an ID3 algorithm on a data set from patients with
thyroid illness. The patients classified differently by clinicians and the ID3
algorithm were reported back to clinicians. These patients appeared to be
’special cases’ and the reporting helped clinicians in quality control.
Forsström [63] further applied an ID3 algorithm to patients suspected of
having thyroid illness. The accuracy of classification result were considered
good, but the performance of the algorithm deteriorated when a number of
patients with missing values were included.
In forensic medicine, it may be desirable to determine gender from
radiological measurements. McBride et al [64] used an ID3 algorithm
repeatedly on a sample of data with 31 attributes from radiographic
measurements. They left different variables/ attributes out in different
runs, to determine which attributes could be ignored. They found a correct
classification rate of 93 % , and an agreement between the ID3 and
radiological experts of 90 %. The number of variables/ attributes could be
reduced to three, still with a high correct classification rate.
Lamy et al [65] applied a C4.5 algorithm to a decision support system for
clinical guidelines, to save extensive testing otherwise required.
Attempting to predict chronic fatigue syndrome based on genetic data
(SNPs, single nucleotide polymorphisms), Huang et al [66] applied both
C4.5, a support vector machine, and a naive Bayes’ method to their data
set. They used these methods as supplied by the Weka Machine Learning
Workbench [59]. They found the naive Bayes’ approach with a ’wrapper
based feature selection’, that is, a program that first selects a subset of the
features, outperformed the other programs. The comparatively low overall
performance of the methods - sensitivity of about 65 % and specificity of
about 50 - 55 % , may stem from the complexity of their data set.
Tanner et al [67] used a C4.5 algorithm to differentiate between dengue
fever patients and other patients with fever. They quote a diagnostic
accuracy of 84.7 % . The authors state that the algorithm can be used in
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other locations (with other prior probabilities of dengue fever), but this
does not seem sufficiently substantiated.
A problem with the applications of identification tree algorithms referred to
above, is that the prior probability of diagnosis is not taken into account.
This may not be a problem if the system developed will be used at the
institution where it was developed. Implicitly, one would then assume the
prior probability of the condition would not change considerably. The prior
probability would then be built into the system by induction. If employed
at another institution, however, the algorithm would be expected to perform
at a lower level if prior probabilities of the conditions were different.

2.3.8.2 Case based reasoning, CBR

Case based reasoning (see also page 124) is based on the simple idea that if
a problem has previously been successfully solved, that solution can be used
the next time a similar problem arises. The seeming simplicity is disturbed
by the formalism surrounding how to decide whether two cases are alike,
and to what extent differences will make the previous solution
inappropriate for the present problem.
Evans and Winter applied case based reasoning to syndrome diagnosis
[68, 69]. Their aim was to go beyond the earlier systems (BUSCA,
GenDiag, and others) that were computer based diagnostic aids, to actual
computer diagnostic systems. They used a weighting system from a (then
future) version of London Dysmorphology Database, where clinical signs
with a high specificity were given a high weight (e.g. ’severe rib
shortening’) and less specific signs were given a lower weight. They used
three such classes. The algorithm traverses a tree of signs, passing high
level signs first. If a match is made with several signs from the case to be
diagnosed, the system enters the subtree through that node. If a sufficiently
similar case is met, a diagnosis is made. In addition, the new case is entered
and becomes part of the diagnostic tree. The authors found the algorithm
performed well in subsets of syndrome diagnoses, for instance diagnoses
falling in the ’acrocephalosyndactyly family’. They concluded that there
were still problems to overcome as far as general syndrome diagnosis was
concerned. Interobserver non-conformity was one of the difficulties, as was
the lack of a clear hierarchical model of syndrome diagnoses.
Loos et al [70] used gray-scaled 2D pictures of people with syndrome
diagnoses as the raw material for their study. They used a method from
general face recognition, called the bunch graph matching algorithm, which
is based on graphs of lines between defined landmarks in the human face.
The authors state that clinical geneticists who were shown the photographs



2.3. INTRODUCTION 23

classified the syndrome patients correctly in 62 % of cases. This implies
there existed an external criterion standard against which a geneticist’s
diagnosis could be deemed correct or not. The criterion standard was
agreement on diagnosis by two independent geneticists. In general, claiming
agreement between two examiners, will lower sensitivity and increase
specificity, when one considers the two examinations as one ’test’. This will
lead to a selection bias, where untypical cases tend to be excluded.
Based on all landmarks, the system attained an overall correct recognition
rate of 58 % . Reanalysis after keeping only the most predictive landmarks,
gave an overall recognition rate of 76 % .
Hammond et al’s study using dense surface models of 3D models of faces
[39], utilised thousands of points in the face landscape. They used a
cross-validation against a set of other statistical and artificial intelligence
methods: nearest mean, C5.0 decision trees, neural networks, logistic
regression, and support vector machines. There was a reasonable agreement
between all the methods used. The authors examined a select group of
syndrome diagnoses, and did not adjust for prior probabilities of diagnoses.

2.3.8.3 Other approaches

Schorderet was one of the first to use a computer in syndrome diagnosis [71],
alongside the clinical databases POSSUM and the London Dysmorphology
Database. Schorderet’s used a pseudo-bayesian algorithm, and attained a
high correct classification rate. This may have been judged too leniently,
since the computer diagnosis was considered correct if the correct diagnosis
appeared among the top three suggestions by the algorithm.
Douglas, Mutsvangwa et al in their studies using morphometric analyses
from pictures of children with fetal alcohol syndrome [36, 37], applied
generalized Procrustes analysis, as well as regression and discriminant
function analysis. They included 34 subjects, 17 with fetal alcohol
syndrome. They compared children with fetal alcohol syndrome only with
normal children.

2.3.9 Conclusion

Two major problems in the study of syndrome diagnosis is the lack of a
criterion standard of diagnosis, and not taking into account the effect of the
prior probability of diagnosis on the predictive value of clinical signs.
Recent work in syndromology has reintroduced the concept of syndrome
families. This has lead to the construction of bioinformatics based
networks, such as phenome-interactome-gene networks.
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Syndromology faces some problems as a scientific discipline, among which
are inter- and intraobserver variation, non-repeatable rendering of clinical
signs, disagreement over phenotype definitions, and non-congruent
classification of the same syndrome based on clinical or laboratory
methods. These problems have recently been addressed.
Mathematical-statistical methods are one solution to the question of
objective syndrome diagnosis. This is problematic because basic
assumptions for the use of such methods are often violated in syndrome
diagnostic studies.
The artificial intelligence methods applied to syndrome diagnosis often do
not take the effect of prior probability into account. The studies are often
done only on a select group of patients, in many cases not including normal
controls. The criterion standard of diagnosis is often not explicitly stated.

2.3.10 The bioinformatics studies

The bioinformatics studies, articles III and IV, both confronted the
challenge of large search spaces in DNA searches, searches that are hard to
accomplish with most methods.
If new DNA pattern search methods could be found, one might gain new
insights about DNA function.
The RFPL haplotype problem of article III, must be considered against the
backdrop of the existing limited success of correlating phenotypes with
RFLPs at that time. (RFLP meaning restriction fragment length
polymorphism. A restriction enzyme binds to a certain short DNA
sequence, typically 4-6 bases. If this sequence is present the restriction
enzyme will cut, and a given length of DNA will be cut in two shorter
fragments. If the sequence recognised by the restriction enzyme is not
present, the restriction enzyme will not cut, and the DNA sequence will
remain as one uncut sequence. There is thus a potential for telling the
difference between different DNA sequences, based on whether they have a
restriction enzyne cutting site or not. This is a polymorphism, in this case
a restriction fragment length polymorphism or RFLP).
One was searching for DNA markers such as RFLPs to predict levels of
serum cholesterol in people with familial hypercholesterolemia and normals.
Single RFLPs had proven inadequate, partly because linkage disequilibrium
in the region of the LDL receptor locus meant there were a number of
uninformative markers [72].
Statistical methods had not given satisfactory results. Sing et al [73] had
tried cladistic analysis but this had also proven inadequate.
There was thus a need for new methodological approaches.
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Instead of using only single RFLPs, one wanted to try haplotypes, or sets of
RFLPs.
Genetic algorithms do not rest upon basic assumptions that some statistical
methods do. A genetic algorithm can handle a haplotype, and can also
treat a haplotype as a regular expression, that is it can for instance let
presence of a cutting site be represented by 1, absence by 0, and if the
presence or absence is of no consequence, let this be represented by e.g. a
’X’ as was chosen here.
The DNA search problem of article IV is more sophisticated.
The motivation for this study was the desire to construct a search tool that
may find patterns in the parts of DNA that is ’unknown’. Finding such
patterns might lead to new insights about function of DNA that at present
has no known function.
Large parts of DNA are termed ’junk DNA’, and has been considered
unfunctional. In recent years years it has been recognised that the
assumedly non-functional DNA contains genes or putative genes for non
coding RNA [74] non coding conserved regions [75, 76], highly conserved
non coding regions (HCNs)/ genomic regulatory blocks (GRBs)[77], and
so-called pyknons [78, 79, 80], as well as repeating patterns in ‘disease
genes’ [81]. There is therefore reason to believe that not all of the DNA
that has been termed ’junk’ actually is non-functional.
One fundamental way of trying to extract meaning from the seemingly
meaningless, is to search for patterns.
The goal of article IV was to construct a search tool that would be
independent of existing knowledge about what are considered interesting
DNA sequences.
This, of course, blocks such a tool from using very much of the amassed
knowledge about DNA. There is a priori reason to believe that such a
tabula rasa approach will put the search tool at a disadvantage, and slow
down the search considerably compared to search tools that do use
knowledge about binding sites, repeats, known motifs, gene structure, etc.
The potential reward - finding new and unexpected patterns - was
considered so great that this approach was chosen, regardless of the obvious
disadvantages.
There are a host of DNA search programs, each serving a different purpose.
Only a limited number of those are possible contenders against the genetic
algorithm based search program presented in article IV, since their purpose
is to solve different search problems.
In the following pages, an expose is given first of some search programs that
search for patterns, some multiple alignment programs, and some DNA
motif searching programs.
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Then, some existing genetic algorithm based multiple alignment programs
are reviewed.
Obviously, pattern matching is not the only way to find novel features of
DNA. One traditional method, but still an exciting area of research, is to
try to find conserved regions. Several projects, for instance, utilise a
comparative genomics approach for tracing conserved elements in non
coding regions [82, 83].
Searching for patterns in medicine/biology in general, many of the basic
artificial intelligence methods become crucial. It is often not possible in
biology to crisply divide data into two or more distinct groups. This is an
area where so called fuzzy sets can be very useful. Fuzzy sets will assign a
degree of membership to a group. A man of 40 may be assigned to ’middle
aged’ with a value of .5, to ’young’ with a value of .25, and to ’old’ with a
value of .25. Khatibi and Motazer used fuzzy sets in pattern recognition/
similarity evaluation on a problem of bacteria recognition [84]. Information
theory/ entropy calculation, which is used e.g. in identification trees, was
employed by [85]. Using their ’entropic profiler’ they could detect
over-represented and under-represented segments of DNA sequences.

2.3.11 General approaches to DNA pattern searching

A basic division among DNA pattern searching, and also between multiple
sequence alignment programs, are between those using exact methods, and
those applying some sort of heuristic. A heuristic is a method to disregard
part of the search space, to make the search faster. There is a cost with this
however, as the use of the heuristic may lead the search to a local optimum,
and failure to find the globally optimal solution. However, a strict exact
method is so computationally intensive as to preclude its use in all but the
simplest cases.
One example of an exact method is the use of suffix trees [86].
A Gibbs sampler (a type of a Markov chain Monte Carlo model) is a
technique built into many programs. This method requires a large number
of input sequences to build the model. It has a propensity to end up at
local optima [87].
A large group of programs that apparently do the same kind of search as
the genetic algorithm of article IV, are motif finding programs. These are
often more limited in scope, however, in being aimed at finding
comparatively short sequences of less than 10 - 20 bases.
Chan et al [88] introduce a de novo motif finding program for transcription
factor binding sites, named GALF-G. It uses a genetic algorithm for the
subproblem of finding several overlapping motifs at the same time.
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Multiple sequence alignment programs try to find high similarity
subsequences among a set of input sequences. Usually, the multiple
sequence alignment programs will expect the input sequences to have a
high degree of similarity, and the successful output will often have aligned
the input sequences for large proportions of their lengths.

Though multiple sequence alignment is not pattern finding, the aligned
parts are similar subsequences shared by a number of input sequences -
which amounts to a pattern.

Multiple sequence alignment was recently reviewed by Kemena and
Notredame [89]. They state the fact that many multiple sequence
alignment programs are based on comparing protein sequences, either direct
protein-protein comparisons, or DNA translated to proteins, and
back-translated to DNA. This may pose a problem when comparing
sequences that either cannot or would not naturally be translated into
proteins. They further argue that multiple sequence alignment programs
have become faster and better because more information about DNA
structure is incorporated into the algorithms. This is undoubtedly true.
With new techniques using both protein and DNA data - such as ChIp-chip
(chromatin immuno-precipitation with micro array technology, ChIp/ chip
respectively) multiple sequence alignment becomes more powerful. These
are not necessarily valid arguments, however, when using multiple sequence
alignment for the specialised purpose of detecting novel patterns, especially
not when applying the algorithms to sequences of unknown DNA.

Multiple sequence alignment algorithms can be classified based on the
heuristics they use.

Clustal [90] and T-Coffee[91] implement the progressive method of Feng
and Doolittle [92]. It starts with two by two comparisons and thus finds
starting points for possible elongation of aligned subsequences. The
problem is that once underway, this process cannot be reversed. This
means the algorithm may find a local optimum.

The exact method of Lipman and Altschul [93] will find the optimal
solution, but is in practice to computationally intensive.

The iteration based method, is the one used e.g. in searches based on
hidden Markov models. The iterative method proposes an alignment and
applies successive attempts at improving the original alignment.
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2.3.12 Genetic algorithm approaches to DNA pattern
searching

Two multiple alignment programs based on genetic algorithms are referred
to in article IV, SAGA [94, 95] and MSA-GA’ [96]. Article IV argues
against the elitist strategies employed by SAGA (overlapping generations
where the best individuals are kept, and fitness proportionate selection).
Such strategies in general would be expected to lead to premature
convergence, possibly to a local optimum [97].

’MSA-GA’, [96] operates on an objective function of alignment scoring in
the same manner that SAGA uses an objective function.

Both programs use sequences as their genetic algorithm individuals. It
might have been desirable to separate the actual genetic algorithm and the
input data/ the sequences.

Article IV also comments on a program using evolutionary programming
techniques to perform multiple sequence alignment [98] (Chellapilla and
Fogel). Applied to dissimilar sequences, this program attained better
results than ClustalW. In this program tournament selection was chosen in
place of the elitist fitness proportionate selection of SAGA and MSA-GA.

2.4 Material and methods

2.4.1 Methods

2.4.1.1 Identification trees: ID3/ C4.5

Identification trees organise data by building a tree. The data set consists
of instances or elements, all having characteristics (also called features or
attributes). It finds the attribute that will split the instances in two groups
that are as homogeneous as possible. The identification tree will split the
data set according to values of the characteristics, and will assign the
elements of the original data set to the leaves, i.e. the end points of the
branches of the tree. When applied to a database of artificially generated
syndrome patients, it finds the clinical sign that divides the patients into
two groups that are as homogeneous as possible. When applied to
syndromes, it builds a tree with syndromes as the end points or ‘leaves’ of
the tree.

Several methods can be used to calculate how homogeneous the subgroups
of an identification tree is. The CART algorithm [59, 60] uses what is called
a Gini index or a Gini measure of impuritiy [57]. The ID3 algorithm of
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article I and II, uses a measure of entropy, which minimizes the degree of
’disorder’ in the subgroups, i.e. how mixed the subgroup is.

2.4.1.2 The genetic algorithm

The genetic algorithm is a general search and optimization method, based
on evolution. Its advantage is that it can usually perform searches with
extensive search spaces, that is, problems of such a magnitude that many
search algorithms cannot find a solution. The genetic algorithm is
non-deterministic and will not necessarily return the same solution in every
run. It will often find a good solution, but not necessarily the supposedly
best solution.
The genetic algorithm used in article III and article IV are the same
program, but the article IV version is considerably enhanced.
This program is 5000 lines of code, written in the Lisp programming
language. It is written by the author of this thesis, without use of any
modules or plug-ins. It is conceptually based on the ideas behind genetic
algorithms as laid down in general texts [99, 100, 101, 102], and conforms
with this tradition, but is an independently written program.
This genetic algorithm uses diploid individuals, thus segregation is an
important operator to assure diversity of the populations. It also uses
mutation and recombination. Since the algorithm uses diploid individuals,
recombination is actual recombination between chromosomes/ genes of a
pair, not the recombination between different haploid individuals used in
the ’simple genetic algorithm’ (SGA). This genetic algorithm also uses
dominance. In a diploid algorithm, some mechanism has to decide which of
the two genes should be expressed. This was solved by a dominance
operator contained in the gene. The dominance operator was also subject
to mutation, so a ’recessive’ gene could change to a ’dominant’ gene.
Selection is by ’tournament selection’ instead of the more elitist fitness
proportionate selection.
The genetic algorithm in its basic form has no memory. An individual
containing a good solution may perish, and that particular solution may
never come into existence again.
One remedy for this is to keep some individuals through two or more
generations. This has been solved by overlapping generations. This is
rooted in the nature that inspired the genetic algorithm, but the analogy
breaks down if individuals persist for a number of generations. My solution
to this problem was to let a small number of individuals procreate by
parthenogenesis (’virgin birth’, one parent only), making the offspring
individual an exact copy of the parent individual. Overlapping generations
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and parthenogenesis are both elitist strategies.

Another solution introduced in article IV, was the use of ’paths’. This does
not amount to anything more than keeping a record of the short DNA
sequences found by the genetic algorithm individuals (n-mers, e.g. a
sequence of 8 bases). It also kept record of where in the input sequence
such a subsequence n-mer was found. Thus, it would implicitly keep a
record of where different individuals had found adjacent subsequences/
n-mers. In the ’natural’ terminology of genetic algorithms, this was called a
’path’, since it would contain records of where more individuals had found
subsequences - as in an ’oft-trodden path’.

Finally, the concept of a ’pack’ was introduced. Again, this is not a change
in any way to the genetic algorithm. It is a means to join the subsequences/
n-mers into longer sequences. A pack combined their individually found
subsequences into one or more areas, a subset of adjacent sequences. The
nature analogue is that of individuals hunting together - a ’pack’. To join a
pack an individual will have to have found a subsequence that is adjacent
to the collective sequence of a pack, or being close. What ’close’ is, is set in
the *close* parameter, 30 bases in these runs.

(More details of the programming of the genetic algorithm are given in
section A.7 on page 116.)

The genetic algorithm was used to search through haplotypes at the LDL
receptor locus in article III and to search for recurring DNA patterns in
article IV.

2.4.1.3 Feature vector/ set method

The feature vector method (article II) is presented with a patient and a
database of patients. It calculates the ‘distance’ between the patient and
each patient in the database. The distance is the number of clinical signs
the patient and each database patient do not have in common (‘the
exclusive or’). Ties were resolved by assigning the case to the most
prevalent of the two diagnoses in the database when two diagnoses were
deemed equally close to the case.

The set method is applied to the database of artificially generated patients.
For each syndrome the set method finds a list of signs common to a
diagnostic group - a syndrome. It does this by finding the intersection of
clinical signs for all pairs of patients, then the intersection of these
intersections of clinical signs again. This produced sets of lists of clinical
signs for each syndromes. These were then searched to produce prototypes.
These prototypes were the result presented by the set method.
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2.4.1.4 Cluster analysis

Two of the articles used cluster analysis. Cluster analysis does not require
basic assumptions of for example multinomial normal distributions. Neither
does it require knowledge of classification groups before analysis.
Different distance measures can be used for ‘closeness’ of clusters, as
discussed on page 18.
In article I the distance measure was the cosines of differences between
corresponding variables. In this study complete linkage was used.
In article II a binary distance measure was used (Sokal and Sneath 5), and
average linkage.
The reason for this difference is that in article I the unit of the cluster
analysis was a syndrome, whereas in article II the basic unit was a clinical
sign. The variables for syndromes were continuous (e.g. 32 per cent of
patients with a certain syndrome might have a certain clinical sign), and
the variables for clinical signs in individual syndrome patients were binary
(the patient either had or did not have the clinical sign).
The cluster analyses in article I and II both used the SPSSX statistical
package.

2.4.1.5 Näıve Bayes’ calculations

A naive Bayes’ calculation was also used as a reference method in article II.
This will take into account both the sensitivity and the specificity, as well
as the prior probability of the syndrome. The ’naive’ in ’naive Bayes”
implies the algorithm assumes the clinical signs are independent.

2.4.1.6 MEME

MEME [103] was used as a comparison program in article IV. MEME is a
motif finding program. The web server based program has limitations in
the allowable length of the motif, the acceptable length of the input
sequences etc. Therefore a local installation was done on the laptop used
for the genetic algorithm runs. MEME is based on the expectation
maximization algorithm, which is an iterative method. By using an
heuristic for finding the starting point for the EM algorithm, it performs a
greedy search for motifs [104, 105].

2.4.1.7 Training set/ test set

The ID3 algorithm of article I created an expert system, based on the ID3
tree. This expert system could be constructed using a training set of
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artificially generated patients, and validated against a test set. The test set
and training sets were generated anew for each run with the expert system.

2.4.1.8 The POSSUM patient records

In article I, a database of patients was used for comparison. The database
POSSUM (Pictures of Standard Syndromes and Undiagnosed
Malformations, now at www.possum.net.au) lists a number of patients with
different syndromes, and their clinical findings.

2.4.1.9 Computer

The programs of article I and III were run on a Sun workstation
The programs of article II were run on a dual core 1.73 GHz T2250 laptop
computer with 2Gb of RAM and 2Gb of swap, running the Linux/ Ubuntu
operative system.
The genetic algorithm of article IV was run on a laptop computer with duo
2.53 GHz T9440 processors, 3 GB of RAM, under Linux/ Ubuntu 9.10.

2.4.1.10 Programming languages

The genetic algorithm of article III and IV was programmed in Lisp (by
Braaten Ø), the programming language used in a large number of artificial
intelligence programs. Both the Austin Kyoto Common Lisp and the
CMUCL (Carnegie Mellon Common Lisp, versions 19a and 19f)
interpreters/ compilers were used. Both conform to the ANSI common Lisp
standard.
The feature vector and sets programs of article II were programmed in Lisp
by the co-author of article II, Friestad J.
Some short scripts used as convenient helper programs for article IV were
programmed in Perl and Python (by Braaten Ø). The Perl module for
approximate string comparison (StringApprox) was downloaded from
cpan.org.
Some summary statistics and figure drawings were performed using the ’R’
statistical package.

2.4.2 Material

2.4.2.1 Artificially generated patients.

Artificially generated patients were generated by using figures for
prevalence of each syndrome and frequency of each clinical sign for each
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syndrome, from ‘Birth Defects Encyclopedia’. The figure for prevalence for
a given disease in Birth Defects Encyclopedia was converted to a fraction,
and multiplied by an arbitrary figure, e.g. 100 000. This would give a
number of patients of this type.

The listed frequency of presence of clinical signs for each syndrome was
used to randomize whether a sign would be present in an artificially
generated patient or not.

An artificial syndrome patient in these runs would consist of a label for the
syndrome name, and a list of signs present and signs not present. The signs
were present or not present were represented by a list of ones and zeroes,
thus FAS 1 1 0 1 0 . . .

In the runs of article II, six thousand artificial patients were generated.

2.4.2.2 Artificially generated DNA sequences

Artificially generated DNA was generated by generating strings of A, C, G
and T. The bases were generated with uniform probabilities. In article IV,
the genetic algorithm (and the comparison program MEME) was tested
against two kinds of artificial DNA sequences. First five sequences each 10
000 bases long had a sixty base stretch of A’s introduced with an editor in
three of the sequences. Secondly, seven sequences of 10 000 random bases
were generated. Into sequence 1, 2, 5 and 7, a similar sequence of 150 bases
was introduced in each. This 150 base sequence had five per cent of its
bases (i.e. 8 bases) randomly changed in sequence 2, 5 and 7, so that each
of these four 150 base sequences was slightly dissimilar from the others.

2.4.2.3 Randomization

The randomization procedure was not considered crucial, neither when
generating artificially generated patients nor artificially generated DNA.
Although there is an extensive literature on randomization, no such
sophisticated randomization procedures were used.

2.4.2.4 LDL receptor haplotypes

The LDL receptor haplotypes of article III resulted from RFLP haplotyping
of 114 people from families with familial hypercholesterolemia, and 61
normals. Altogether, this gave 175 people and 350 haplotypes.
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2.4.2.5 Human DNA sequences

In addition to the randomly generated DNA, four human DNA sequences
were chosen as test sequences. These were chosen because they are known
to contain so called kringle structures [106, 107]. These sequences thus
contain patterns of DNA that a pattern searching program would be
expected to find. These DNA sequences used in article IV were downloaded
from EMBL, build 36.

2.5 Results

2.5.1 The syndromology studies

The syndromology studies, article I and II, found clinical signs that may
be used by clinicians, or in machine diagnosis.
Article I presented the syndromes as the leaves of an identification tree, and
as a dendrogram from a cluster analysis.
Article II presented the results as sets of clinical signs. The cluster analysis
in article II also provided a dendrogram of clinical signs.
There was a good correspondence between the artificial intelligence
methods employed in article II - the feature vector method and the set
method - and the reference methods - the ID3 identification tree, the
cluster analysis, and the naive Bayes’ calculation.
The methods of article II are robust and can be applied to a large number
of patients, with a large number of clinical signs.
These studies show that artificial intelligence methods can provide objective
diagnostic methods in syndromolgy.
In article I, the ID3 tree was compared to a cluster analysis as a reference
method. Groups found by the ID3 algorithm were also found in the cluster
analysis. Both grouped FAS (fetal alcohol syndrome), Williams syndrome
and de Lange syndrome together, as they did the Noonan, Klippel-Feil and
Turner syndromes. The Prader-Willi, Zellweger and Beckwith-Wiedemann
syndromes were also grouped together by both algorithms, though the ID3
also included other syndromes in this group.
The clinical signs long philtrum, short palpebral fissures, low set ears and
hepatosplenomegaly were found high in the identification tree, indicating
these clinical signs would be best at dividing the universe of syndromes
under consideration into two different groups that would be the most
homogeneous.
Rerunning the ID3 a number of times with slightly different values for
prevalence of the different syndromes did not change the identification tree
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significantly. Neither did small changes to the frequencies of the clinical
signs change the resultant tree.
The ID3 algorithm would produce an expert system. When using this on a
training set first and then checking against a test set, the medians of the
correct classification rates were 92.1 % - 98.1 % , in 20 runs each against
419, 836, and 4180 patients. The higher correct classification rates were
attained with more patients in the sets.
The expert system produced was tested against clinical cases from
POSSUM. This achieved a low correct classification rate, consistently about
20% .
In article II the main results were that the feature vector method had a low
diagnsotic error rate, and that the set method attained a high predictive
value for most of the sets of clinical signs.
There was a high degree of correspondence between the artificial
intelligence methods and the reference methods.
The feature vector method attained predictive values of between 94.9 and
100 % , the lowest being fragile X syndrome, which has few discerning
clinical signs in the newborn period. The Smith-Lemli-Opitz syndrome had
a low sensitivity of 69.6 % as did Zellweger syndrome (86.7% ).
The feature vector method only made diagnoses, and did not report the
clinical signs used.
The set method reported sets of clinical signs to diagnose specific
syndromes. These lists of signs were pruned, so that overly long lists are
not reported, although they may have had higher predictive values.
With the set method, several signs are reported that must be present
simultaneously. Theoretically, this should lower sensitivity and increase
specificity. The sets of sign all had high specificities and lower sensitivities,
when compared to the other methods. The sensitivities were still
acceptable, but with Smith-Lemli-Opitz syndrome at a low of 15 % in
sensitivity. This set of signs would therefore not be very useful in diagnosis.
Among the reference methods, the naive Bayes calculation attained the
lowest global error rate, although the difference to the other methods was
not great.
The cluster analysis grouped clinical signs. This grouping was consistent
with what would be expected clinically. Again, Smith-Lemli-Opitz
syndrome seemed to be difficult to single out with the data set used here.
There was a good correspondence between comparable methods, when
comparing test methods and reference methods.
When comparing the vector method versus the set method versus ID3, it
was found that they did equally well, as judged from the global error rate.
The methods performed on an equal level in all syndrome groups.
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Cluster analysis is a well documented statisitcal method. It was therefore
chosen as a comparison method against the set method. The outputs from
the two methods are not identicaL. The set method produced lists of
clinical signs, the cluster analysis grouped clinical signs. The grouping of
signs from the cluster analysis has a qualifying element in that the distance
along the axis leading to each clinical sign indicates how closely related the
signs are. The cluster analysis only renders the grouping, and does not
name syndromes. Given these restrictions, the sets and groups matched
reasonably well. The set method listed short palpebral fissures and midface
hypoplasia as signs indicating fetal alcohol syndrome. The cluster analysis
grouped short palpebral fissure, long philtrum and midface hypoplasia. The
set method found flat face, upslanting palpebral fissures, and flat occiput in
Down syndrome. The cluster analysis found a tight group of flat face,
upslanting palpebral fissures, and flat occiput.

2.5.2 Bioinformatics studies

In the bioinformatics studies, article III shows that the genetic
algorithm found RFLPs in the LDL receptor that were associated with high
cholesterol values.
The genetic algorithm found the restriction sites 1, 2 and 7, and to a lesser
degree, site 3 to be associated with the highest cholesterol values.
It demonstrated that the algorithm could find the RFLPs in human DNA
as well as in artificially generated haplotypes. The genetic algorithm still
found the RFLPs when presented with an artificially generated data set
with noise and ‘false leads’ added.
In article IV, the genetic algorithm was compared to the program MEME
[103, 104, 105, 108], which performs an iterative search based on the
expectation maximization algorithm. MEME is a mature, well established
program.
Both the genetic algorithm and MEME found the stretch of 60 A’s
introduced into three of five 10 000 base sequences of randomly generated
DNA. Next, the search problem was to find slightly dissimilar subsequences
in four of seven sequences, each 10 000 bases long. These subsequences were
150 bases long. The 150 bases were originally identical, but three of the
four sequences had been changed in five per cent of the bases, randomly
chosen. Both MEME and the genetic algorithm found these subsequences.
The genetic algorithm did not find them in all runs. Thus, the genetic
algorithm performed slightly inferiorly to the comparison program MEME
when it comes to finding the patterns in artificially generated DNA, and
was also generally slower.
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When searching DNA sequences from the four human genes lipoprotein(a),
hepatocyte growth factor, plasminogen, and macrophage stimulating factor,
it found longer, and more, sequences than the control program. The
findings were corroborated by the database searching programs BLAT and
Paralign.

These studies - especially the study of article IV - contributed novel
features to the genetic algorithm. It introduced the path - which gives the
genetic algorithm a memory, and the pack - which increases the ability of
the genetic algorithm to search longer sequences.

2.6 Discussion

2.6.1 Syndromology studies

In the syndromology studies, article I and II, there are two main
findings. First, the studies found clinical signs to be used by clinicians or in
machine diagnosis. Secondly, the studies demonstrate that methods from
artificial intelligence can provide objective diagnosis in the sense that
diagnoses are consistent. Given an input database of real patients, artificial
intelligence methods will provide objective diagnoses, limited only by the
quality of the input data.

A main premise for these articles is the lack of a criterion standard of
diagnosis for syndromes. In fact, quite a few syndromes now have a
criterion standard in the sense that other medical diagnoses have criterion
standards. The criterion standard may be a chromosomal aberration or a
DNA alteration, such as a mutation or a deletion. There are a large number
of diagnoses, however, where the problem persists. It may also be argued
that in practice the problem of no criterion standard of diagnosis extends to
medicine in general. If, for example, the criterion standard is a post
mortem examination by a pathologist, this will not be available during the
course of the illness while the patient is alive.

In both article I and II, artificially generated patients are used. There are
obvious arguments against using artificially generated patients.

However, given the rarity of most syndromes [109], two aspects of using
’real’ patients are apparent. A prospective study will be close to infeasible.
For a syndrome with a birth prevalence of 1/ 20 000, even in a national
study, in a country such as Norway, it would take 5 - 15 years to recruit
enough patients. The clinical signs of syndrome patients and, not least
important, the normals who might have similar looking features, would be
recorded by health personnel not trained in dysmorphology. Some newborns
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may die shortly after birth, and the diagnosis may not be recorded.
In retrospective studies, the typical study is the one-syndrome-review [110].
Patients included will tend to have the typical, classical form of the
syndrome. There is thus a selection bias operating. For syndromes defined
by its clinical signs, a patient may be included in the study on the basis of
having clinical signs A, B and C. The study may conclude that patients
with this syndrome are characterised by having clinical signs A, B and C.
For syndromes with a universally accepted external criterion of diagnosis,
one may feel the situation is different. However, some of the patients who
have the syndrome in question may not have the typical mutation or
deletion that is routinely checked in the laboratory. These patients may be
considered not having the syndrome. Some patients may look so atypical
for the syndrome that the investigation is never done. In a syndrome
review study, these patients will not be included. Again, there is a selection
bias operating.
These difficulties do not imply that one should not strive to improve the
quality of patient registries, but it is a case for not writing off the use of
artificially generated patients.
The choice of syndromes taken from the Birth Defects Encyclopedia, could
be critisised. For instance, a syndrome such as Smith-Magenis might have
been included. This was not included, being a ’chromosomal’ condition.
This decision is not consistent however, since trisomies were actually
included. Such a critique would affect the findings of clinical signs to be
used in syndrome diagnosis. It would not however, be a valid critique
against the objective methods themselves.
In the same way, a strong argument could be made for including normals.
Some normal children will have one or more clinical signs that could be
confused with those of children with syndromes. The main reason for not
including normals, is that data are even more difficult to find than data on
syndrome children. The inclusion of normals would have had an effect on
the prior probabilities, but not on the relative prior probabilities between
the syndromes.
The set of syndromes chosen constitutes what is called a ’closed universe’.
If all other syndromes are ruled out, the diagnosis will have to be the last
syndrome in the set. This may lead to diagnostic errors when using clinical
signs that are found, on real patients. In the field of artificial intelligence,
this problem is often discussed explicitly. In other situations, the problem
may be present, but is not explicitly discussed. One syndromology example,
is the one-syndrome-review, which is an extreme form of the ’closed
universe’.
Other artificial intelligence methods than those used, might have been
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considered for the syndromology studies. Three such methods are artificial
neural nets, support vector machines, and Bayesian classifiers.
Neural nets have been extensively used in medical applications. Grossi et al
have used neural nets in classification of dyspepsia [111] and for finding the
initial symptoms of Alzheimer’s disease [112]. Eken applied neural nets to
patients with renal colic [113], and Joo [114] used neural nets in diagnosis
of solid breast tumors. Pace reviewed the use of neural nets in
gastroenterology [115]. Neural nets could certainly be used in classification
and diagnosis of syndromes. A major problem with neural nets, is that they
are ’black boxes’ [116, 117]. The artificial neural network will accept input,
it will produce output, but it does not report how the classification was
done, or how the diagnosis was reached. This may or may not be a
problem. The same objection applies to the genetic algorithm, although not
to the same degree since intermediary results can be examined. The
identification tree/ ID3 and cluster analysis, on the other hand, are
transparent, and the process can be retraced. Especially in syndrome
diagnosis, it is desirable to have methods that are transparent.
In some cases, one wants the option of being able to use incremental
learning. Incremental learning means that once a classification of a data set
has been done, a new small data set may be fed to the classifier, and these
data are included in the classification. A method that cannot learn
incrementally, would have to add the new data set to the old data set, and
perform the classification anew. A neural network is an example of a
system that can learn incrementally. An ID3 algorithm would have to do
the classification a second time.
Like for the genetic algorithm, there are no hard and fast rules about how
to set the parameters of adjusting a neural network. This means that using
a neural net system requires experimenting with the setting of the
parameters. (Often, a genetic algorithm is used to as a helper program to
choose the appropriate parameters.) The problem of parameter setting is
also evident for a genetic algorithm. Thus, neural networks as well as
genetic algorithms are both an art and a craft. For this reason, many
scientists would prefer traditional, reliably repeatable methods where that
is possible. However, these methods have their place when the problem is
beyond the scope of other methods.
One method that could have been used for the syndromology studies, is the
support vector machine (SVM). This is a method that builds a predictive
model by finding the dividing line between two categories. If no such
straight dividing line can be found, the support vector machine can use
some form of polynomial transformation [59]. With transformations, and
more groups, the dividing line will be a hyperplane in multidimensional
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space.
The support vector machine is a fast and effective algorithm, with many
applications in medicine and bioinformatics [118]. Laurikkala et al [119]
used support vector machines, along with other methods, such as a genetic
algorithm, to classify urinary incontinence in women. Huang et al [120]
examined ion channel proteins to predict potential drug targets.
Three problems in my opinion make the support vector machine less
appropriate than the methods chosen in the syndromology articles.
The support vector machine is a black box method - it will not reveal the
data behind the choice of dividing lines. With transformed data, this might
also have been very difficult to comprehend.
The support vector machine may need different transformations for
different problems, and the search for a proper transformation can be time
consuming.
Finally, a support vector machine works better with large data sets, and
less well with small data sets. In some cases, this will be a problem in
syndromology applications.
A Bayesian classifier - such as the one used in article II - could be used in
place of the identification tree or a cluster analysis. A Bayesian classifier,
however, cannot deal with interdependent clinical signs. Since many of the
clinical signs found in syndrome patients are dependent on each other, this
makes the Bayesian classifier less appropriate.
Compared to these other possible choices of simple methods, the
identification tree and the feature vector methods’ main advantages are
that they are easy to interpret, and they can handle large data sets.
A main result of article I were that the signs long philtrum, short palpebral
fissures, hepatosplenomegaly and low set ears were found high in the
identification tree. The importance of the first two clinical signs (in fetal
alcohol syndrome) is corroborated by the findings of Douglas and
Mutsvangwa [36, 37]. Many clinicians would hold that e.g. low set ears is a
too unspecific sign to be of diagnostic value. However, since this sign is
found in many patients, it is a sign that may be used to divide the universe
of possible diagnoses in two. This actually is a powerful search method,
similar to the one used in binary searches - and identification trees. A
finding of a sign such as short palpebral fissures is consistent with Bayesian
theory. This is a sign that is frequent in a syndrome with a high prevalence.
There was poor agreement between the expert system produced by the ID3
algorithm and the POSSUM database. This may reflect problems with the
signs found by the ID3 algorithm. It may, however, also reflect problems
with distorted prior probabilities caused by selection bias in the database.
As a main result of article II, it was found that the methods advantages
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were robustness, simplicity, power, and scalability. The robustness means
that the methods do not require normal distributions of variable values,
they do not require statistical independence of signs, they can handle binary
variables, and they can handle missing values. The methods are simple in
that they are easy to understand. The methods are powerful in being able
to handle large amounts of data compared with competitior methods. They
are also very fast. These methods possess scalability in that they can
handle tens of thousands of features from hundreds of thousands of patients.
An important issue is the question of validation of the methods. A premise
of these articles was that ’proper’ syndromes do not have an external
criterion standard of diagnosis. This does not hold true for all the
syndromes included. Still, in the set up chosen here, with a large number of
artificial patients, it would not have been possible to validate the findings
against some criterion standard.
It would have been possible to compare the findings to what has been found
in other syndrome investigation studies. Findings were indeed corroborated
by e.g. [36, 37]. Having critisised this type of studies for possible selection
bias, for not using objective diagnostic methods, and for misleadingly
consider only one syndrome at a time, it appears inconsequential to use
such data as an external criterion standard.
Missing an external objective means the important point of validation
becomes the internal consistency between the objective methods. The
methods used did display a high degree of internal consistency, although no
quantitative measure of consistency was used. One possibility might have
been to use the kappa measure used to compare human observers.

The main contribution to the field of syndromology by articles I
and II was emphasizing the importance of objective methods, and the
demonstration that it is feasible to apply objective methods from artificial
intelligence to syndromology. The search for objective diagnostic measures
advocated in these articles can in retrospect be seen to be part of a
tradition from the early attempts at a numerical nosology [55] and
systematization of the description of syndromes [31] [34], to recent attempts
at standardising measurements and descriptions [32, 33] and Orphanet’s
effort to produce reliable figures for the prevalence of rare conditions [109].

2.6.2 Bioinformatics studies

In the bioinformatics studies, in article III the main findings were the
RFLP haplotypes associated with high cholesterol. In article IV, the main
findings was that the genetic algorithm could find patterns in unknown
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DNA on par with a widely used program such as MEME. The other
important point was the study’s contribution to the genetic algorithm (the
path and the pack).
The genetic algorithm is a non-deterministic algorithm, and may not
produce the same results in every run. The advantage of the genetic
algorithm is its ability to search large search spaces.
The genetic algorithm used in articles III and IV is a diploid genetic
algorithm. This is not a new invention, and not a rarity in the genetic
algorithm literature [100, 101], but many applications use some form of the
simple genetic algorithm, which is haploid.
Uyar and Harmanci [121] investigated the consequences of using a diploid
genetic algorithm. They found the diploid genetic algorithm to be superior
over a set of test functions. These authors found the diploid set up adds
diversity to the genetic pool. They stress the effect of recessive genes that
can survive in the population to be expressed later, preventing traits that
may prove to be useful, from being lost.
It is interesting to consider the parallels between natural systems and
artificial systems such as the genetic algorithm. Rice and Chippindale [122]
wanted to test the theoretic claim that sexual recombination will increase
the power of selection. They set up a D melanogaster model system. They
found that recombination increased the selection in the population.
In article III, the genetic algorithm found the restriction sites 1, 2 and 7,
and to a lesser degree, site 3, to be associated with the highest cholesterol
values.
This draws on the genetic algorithms propensity for searching for
’schemata’. It will search for combinations of sites present or not present,
without regard to the actual haplotype. Thus, also a multiplicative model
would be expected to be discovered by the genetic algorithm, say, if the
combination of restriction site 1 and 7 would give a much higher cholesterol
value than expected from values for 1 and 7 individually.
At the time of the study, both statistical methods and cladistics had been
applied to this problem without success. There was therefore no obvious
external validation of the genetic algorithm findings at hand (apart from
what could be read from an inspection of the haplotypes and cholesterol
values of the raw data).
The genetic algorithm was run against artificial data containing noise and
false leads, and extracted the correct RFLP’s even with a high degree of
noise and false leads. The algorithm proved robust, and gave consistent
results in repeated runs.
In article IV, the genetic algorithm and the comparison program MEME
found subsequences in artificially generated DNA. This showed the genetic
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algorithm could consistently pick out subsequences from a set of input
sequences. This amounts to a validation of the genetic algorithm’s ability
to find such patterns or subsequences. Though this was a set of randomly
generated DNA, the search is not trivial.
These random sequences were made with a uniform probability random
DNA generator. A choice was made not to use e.g. a random generator
based on a hidden Markov model, since the genetic algorithm was intended
to be able to search sequences of DNA of unknown function. Using a
hidden Markov model based on well known/ functional DNA might
therefore be misleading.
Next, the genetic algorithm was applied to four sequences of human DNA;
lipoprotein(a), plasminogen, hepatocyte growth factor and macrophage
stimulating factor. These are known to contain kringle domains.
The reason the genetic algorithm did not perform as well as the comparison
program MEME, may be that these input sequences contained too many
similar subsequences. Thus, the MEME program may have had an
advantage.
The main point in this study, was that the genetic algorithm actually
performed on par with MEME, one of the most widely used programs for
motif/ pattern finding. At the same time, some of the potential limitations
of MEME, such as problems with starting anew if an elongation from an
initially found short sequence did not prove optimal, does not hold to the
same degree for the genetic algorithm.
Full scale testing of the genetic algorithm against real sequences of DNA of
unknown function would of course be interesting. That was, however,
considered beyond the scope of this primarily methodological study.
There is an argument for testing the genetic algorithm against a benchmark
database of test sequences, such as Balibase [123]. However, such databases
are made for a specific purpose - as far as Balibase is concerned, multiple
sequence alignment - and it would be inappropriate to draw conclusions
from such tests.
There are several examples of genetic algorithms [124, 125] having been
applied to DNA searches - notably the SAGA program [126] and MSA-GA
[96]. These programs, however, are often adjunct programs to other search
programs, use other varieties of genetic algorithm, and perform the searches
differently. They are therefore not directly comparable to the genetic
algorithm used in this project.
Some of the problems of bioinformatics - such as the one presented here, of
finding unknown patterns in unknown DNA - present an algorithm with
very large search spaces. Although a number of DNA search programs
exist, few are fit for the task of finding such patterns. The genetic
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algorithm introduced here, may be an important supplement to existing
search algorithms.
Exciting development along the lines of thinking behind the genetic
algorithm, are algorithms based on the behaviour of the social insects, such
as ants. These algorithms use aspects of the ant hill, the behaviour of ants,
pheromone tracks etc to search through large search spaces. These methods
are being applied in medicine and bioinformatics [127, 128][129].
The main contributions of articles III and IV was to point to the
need for new search methods for finding patterns in DNA - especially in the
sequences of the human genome that are unknown or deemed
’uninteresting’ by common consent - and to propose a genetic algorithm
with some novel fetaures that could be one such tool.

2.7 Implications

The syndromology studies of this project may contribute to an increased
focus on problems with the lack of a criterion standard of diagnosis and of
objective diagnoses. These problems may be more acute in syndrome
diagnosis, but extends to medical diagnosis in general. Objective,
consistent diagnoses are necessary both in bedside diagnostic work by
clinicians, and in machine diagnostic systems or computer aided diagnosis.

It could be argued that it is hubris on the part of the international research
community to write off ninety eight per cent of our genome as ‘junk’. This
is changing, but calls for a new set of mind - and it calls for new techniques.
The bioinformatics studies of this project have furnished the genetic
algorithm as a tool for searching for unknown patterns in DNA sequences.
It would be valuable if the study could also contribute to the prevalent
trend of curiosity and interest in the ‘uninteresting’ parts of DNA.



Part II

Articles

45





2.8. ARTICLE I: ARTIFICIAL INTELLIGENCE IN PEDIATRICS 47

2.8 Article I: Artificial intelligence in

pediatrics

Reprinted in
Yearbook of medical informatics



2.9. ARTICLE II: DIAGNOSIS: HUMAN INTUITION ORMACHINE INTELLIGENCE?57

2.9 Article II: Diagnosis: Human intuition

or machine intelligence?



 The Open Medical Informatics Journal, 2008, 2, 149-159 149

 1874-4311/08 2008 Bentham Open

Open Access 

Syndrome Diagnosis: Human Intuition or Machine Intelligence? 
Øivind Braaten* and Johannes Friestad 

Department of Medical Genetics, Ullevål University Hospital, Oslo, and Institute of Medical Genetics, University of 
Oslo, Norway 
Institute of Informatics, University of Oslo, Norway 

Abstract: The aim of this study was to investigate whether artificial intelligence methods can represent objective methods 
that are essential in syndrome diagnosis. Most syndromes have no external criterion standard of diagnosis. The predictive 
value of a clinical sign used in diagnosis is dependent on the prior probability of the syndrome diagnosis. Clinicians often 
misjudge the probabilities involved. Syndromology needs objective methods to ensure diagnostic consistency, and take 
prior probabilities into account. We applied two basic artificial intelligence methods to a database of machine-generated 
patients - a ‘vector method’ and a set method. As reference methods we ran an ID3 algorithm, a cluster analysis and a na-
ive Bayes’ calculation on the same patient series. The overall diagnostic error rate for the the vector algorithm was 0.93%, 
and for the ID3 0.97%. For the clinical signs found by the set method, the predictive values varied between 0.71 and 1.0. 
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1. INTRODUCTION 

 This study aims to investigate whether artificial intelli-
gence methods can represent objective methods in syndrome 
diagnosis. Such methods are essential because most syn-
dromes lack a criterion standard of diagnosis, and because 
clinicians often misjudge the effect that prior probabilities 
have on the predictive value of diagnostic handles, such as 
clinical signs. 
 When a child is born with malformations, it is devastat-
ing for the parents. To quickly find a diagnosis is important 
for possible treatment, prognosis, and for the parents’ need 
to know. 
 The child’s malformations may represent a syndrome. 
But syndrome diagnosis is beset with difficulties, e.g. the 
lack of an external validation of the diagnosis for most syn-
dromes. 
 We argue that objective methods are essential in syn-
drome diagnosis, and, indeed, necessary in all forms of clini-
cal diagnosis. 
 We show that simple artificial intelligence (AI) methods 
may be such objective methods, capable of establishing di-
agnostic criteria in syndrome diagnosis. 

1.1. Syndromes: No Criterion Standard of Diagnosis 

 In this article the word ‘syndrome’ means ‘congenital 
malformation syndrome’. (For example Table 6 in the results 
section gives examples of syndromes and the associated 
clinical signs or features). A syndrome is a clinical delinea-
tion based on the presence of a set of clinical signs. The  
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standard method in clinical syndrome diagnosis is the ‘pat-
tern recognition’ method where the clinician looks for the 
clinical signs that make up a certain syndrome. 
 For most syndromes, there is no ‘gold standard’ or ‘crite-
rion standard’ of diagnosis. There may thus be no biochemi-
cal, radiological, DNA diagnostic or chromosomal investiga-
tion to verify the diagnosis. The accuracy (validity, ‘correct-
ness’) of the diagnosis may for many syndromes have to be 
relinquished because of this lack of a criterion standard of 
diagnosis. Still, the sine qua non of scientific method - con-
sistency - remains a fundamental goal. 

1.2. The Effect of Prior Probability on Predictive Value 
Confuses the Issue 

 The predictive value of clinical signs is strongly depend-
ent on how common the syndrome is, the ‘prior probability’. 
Tables 1, 2 and 3 show the striking effect of the prior prob-
ability on a clinical sign’s worth as a diagnostic measure. 
Clinicians do not always estimate the prior probability of a 
disease correctly [1-3] -- the standard prevalence figures do 
not necessarily apply in a differential diagnostic situation. 
This often leads to confusion about the diagnostic value of a 
particular diagnostic sign. 
Table 1. Clinical Indices 

Syndrome Present Syndrome Not Present 

Positive test  TP  a b  FP

Negative test  FN  c d  TN
TP, true positives, FN, false negatives, FP, false positives, TN, true negatives. In the 
context of this article, positive test means clinical sign present, and negative test means 
clinical sign not present. Sensitivity is a/a+c, the probability of having the clinical sign, 
given that you have the disease, specificity is d/ b+d, the probability of not having the 
clinical sign, given that you do not have the disease. Predictive value is a/ a+b, the 
probability of having the disease, given that you have the clinical sign. 
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Table 2. Predicitive Value, High Prevalence 

Syndrome  
Present 

Syndrome  
Not Present 

Positive test  95 10

Negative test  5  90 

  100  100 200
Sensitivity 0.95, specificity 0.90, prevalence 0.50. Positive predictive value 95/ 95 + 10 
= 0.90, i.e. the probability that the patient has the syndrome if this sign is present, is 
ninety per cent. 

Table 3. Predictive Value, Low Prevalence 

Syndrome  
Present 

Syndrome  
Not Present 

Positive test  95 990

Negative test  5  8910 

  100  9900 10000
Sensitivity 0.95, specificity 0.90, prevalence 0.01. Positive predictive value 95/ 95 + 
9900 = 0.087, i.e. the probability that the patient has the syndrome if this sign is pre-
sent, is still less than nine per cent. 

1.3. The Philosophical-Scientific Issue 

 The lack of objective methods has a philosophical-
scientific, and a practical aspect. 
 The question may seem a problem of marginal impor-
tance, of interest to those involved in the mathematical side 
of medicine. On the contrary, it is a major, though not much 
recognised problem. Objective methods are necessary in the 
reductionist philosophy of science that medicine claims to be 
a part of. The question is at the foundation of medicine as a 
scientific discipline. If diagnoses cannot be validated against 
a criterion standard, and are not even consistent, it is not 
possible to consider medicine a scientific discipline. 
 It could be argued that the problem of ‘no criterion stan-
dard’ of diagnosis extends to virtually all areas of medicine. 
Both clinical diagnosis and laboratory diagnosis may vary 
from one medical practitioner to another. Even for diseases 
such as diabetes, hypertension or peptic ulcer, doctors may 
differ in what the definition of the disease is. Although pro-
fessional bodies establish diagnostic criteria, these may not 
be congruent with what an individual doctor uses. For clini-
cal diagnoses there may be no agreed-upon diagnostic crite-
ria. Since a diagnosis links to information about prognosis 
and treatment, vague diagnostic criteria may be harmful both 
in medical practice and in medicine as science. 

1.4. The Consequences of Diagnostic Errors 

 A false positive diagnosis may lead to the patient receiv-
ing unnecessary and potentially harmful treatment. It may 
mean fear and worry for the patient and her or his relatives. 
 A false negative diagnosis may mean the patient will 
forgo life-saving or disease modifying treatment, or impor-
tant educational measures. 

 Depending on the situation, both false positive and false 
negative diagnoses may lead to further unnecessary, poten-
tially harmful, and costly investigations. 

1.5. Objective Methods are Needed to Establish Diagnos-
tic Criteria 

 It is obviously important to avoid the diagnostic errors 
and their consequences. The prevalent intuitive pattern rec-
ognition approach to syndrome diagnosis is open to misdiag-
noses. Objective methods can act as a corrective to the intui-
tive approach and help remedy some of its shortcomings. 
 We approach this by trying to establish diagnostic criteria 
to be used by clinicians. 

1.6. Objective Methods: Mathematical--Statistical Ap-
proaches 

 Mathematical-statistical methods might represent meth-
ods that could establish diagnostic criteria. But there are 
problems with using statistical methods, primarily because 
basic assumptions often are not met. A number of statistical 
classification methods have been applied to syndromology, 
such as factor analysis/ principal component analysis [4,5], 
discriminant analysis [6-10], log-linear analysis [11], latent 
class analysis [12], and cluster analysis [13,14]. 
 Most multivariate statistical methods are parametric, and 
require multinomial normal distributions of the variables, as 
well as continuous variable values. These basic assumptions 
can rarely be met. Missing values for one or more variables 
is often an additional problem. 

1.7. Objective Methods: Sophisticated AI Methods 

 Several artificial intelligence and informatics methods 
could be used to tease out the clinical signs with the highest 
predictive value in syndrome diagnosis. Neural nets, support 
vector machines, and non-negative matrix factorization 
[15,16] are examples of such methods. 
 Case based reasoning [17,18] and the ID3 algorithm [19] 
have previously been tried as alternatives to statistical meth-
ods. 
 Problems with the more sophisticated AI methods are 
that they may seem so complex and unfamiliar as to alienate 
clinicians who would be the ones to use the results of the 
analyses. Especially with small data sets there is also the 
problem of using too much sample specific information and 
not getting generalizable results, i.e. overfitting. 

1.8. Objective Methods: Our Approach 

 We hold that some fundamental artificial intelligence 
techniques can successfully be applied to the problem of 
establishing diagnostic criteria. 
 We introduce a feature vector method, a set method, and 
also apply other artificial intelligence methods. 
 The techniques we propose are variants of known meth-
ods rather than basically new. What we argue is that the 
situation in syndrome diagnosis warrants objective methods, 
i.e. these methods are a necessity, and the methods we pro-
pose represent a possible practical solution. The application  
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of these methods to syndrome diagnosis is new, and, in our 
opinion, an example of a type of approach that is necessary. 

1.9. Conclusion 

 In syndrome diagnosis there is often no criterion standard 
of diagnosis. 
 In syndrome diagnosis as in medical diagnosis in general 
there is a need to be alert to the strong effect of prior prob-
ability on the predictive value of diagnostic indicators, such 
as clinical signs. Objective methods can help counteract the 
misdiagnoses that can be caused by neglecting this. The hu-
man intuitive approach is not very good at estimating and 
taking into account the probabilities involved. 
 Objective methods are warranted as a corrective to the 
intuitive approach to syndrome diagnosis. 
 Using mathematical-statistical approaches entails prob-
lems with the basic assumptions of these methods. 
 Using the more sophisticated AI methods may also vio-
late basic assumptions. The complexity of these methods 
may alienate clinicians. 
 We apply two simple informatics/ artificial intelligence 
methods to see whether these methods can help establish 
diagnostic criteria for syndromes. 

2. MATERIAL AND METHODOLOGY 

 We created a database of machine-generated patients. 
 We applied ‘the vector method’ and the set method as 
well as one artificial intelligence reference method - the ID3 
-, and two mathematical reference methods -- cluster analysis 
and the naive Bayes -- to this patient series. 
 The Birth Defects Encyclopedia (BDE) [20] -- a classical 
catalogue of clinical syndromes -- lists the occurrence 
(prevalence or incidence) of syndromes along with the clini-
cal signs found in the syndrome. It also lists the frequency of 
these clinical signs in each syndrome. 
 In this study, we included syndromes with a listed occur-
rence of one per fifty thousand or more. Some conditions 
were excluded, such as isolated neural tube defect, as well as 
several groups of syndromes, for example the arthrogry-
poses. 
 We generated ‘artificial patients’ based on the BDE. 
 The data from the BDE was transformed into artificial 
patients in the following manner: For each syndrome the 
figure for occurrence, e.g. 1/ 20 000, was multiplied by a 
common arbitrary figure, e.g. 100 000. This gave the number 
of artificial patients, in this case five artificial patients. For 
each artificial patient, the algorithm had to decide whether 
each clinical sign was to be present or not. For this, it used 
the listed frequency of the clinical sign for this syndrome. 
For each sign, a random number between zero and one was 
generated. If the random number was smaller than the listed 
frequency of the sign, it was decided that this sign would be 
present in this particular artificial patient. If the random 
number was larger than the listed frequency of the sign, it 
was decided that this sign would not be present in this artifi-
cial patient. 

 Each artificial patient therefore consisted of a syndrome 
name and a list of signs present (‘1’) or not present (‘0’). 
 We generated six thousand artificial patients. This gave a 
reasonable number of patients even for the least common 
syndromes. 
 The list of artificial patients had the syndromes in ‘true 
proportion’ to their occurrence as given in the BDE. The 
clinical signs had the same overall frequency as listed in the 
BDE. Any non-random co-existence of clinical signs was 
lost by the randomization process. 

2.1. The ‘Vector Method’ 

 The vector method algorithm starts with a set of patients 
with known diagnoses on the one hand and a patient to be 
diagnosed on the other hand. 
 In our context, the database of patients with known diag-
noses was the artificially generated patients. 
 When presented with a new case - the patient to be diag-
nosed - the main procedure of the vector method algorithm 
compared the new case to all existing cases. For each indi-
vidual case in the database, it calculated the ‘distance’ be-
tween the patient to be diagnosed and the database case. The 
algorithm assigned a new case to the syndrome diagnosis 
where the ‘distance’ was smallest. 
 Basically, the ‘distance’ is the number of clinical signs 
that two patients do not have in common, i.e. those signs that 
either of the patients has and the other does not have. 
 The algorithm calculated this distance by finding the ‘ex-
clusive or’ for a pair of patients, i.e., the signs present in one 
syndrome patient but not the other. 
 This represents the difference or the dissimilarity or the 
distance between the two cases. 
2.1.1. Ties 

 In some instances, two cases or more in the database had 
equally small distances to the case that was to be diagnosed. 
In this situation, the new case was assigned the diagnosis of 
the database case belonging to the most prevalent of the syn-
dromes with the same distance. 

2.2. The Set Method 

 The vector method algorithm would diagnose a new pa-
tient, but did not give information about which signs were 
used in diagnosis. 
 To present such a list of clinical signs, we applied a set 
method to the database of artificial patients as well. 
 The approach of the set method is similar to the one used 
by the vector method algorithm, but with the set method 
there were no individual patients to be diagnosed. The set 
method finds a list of clinical signs common to each syn-
drome group - a ‘feature vector’. 
 The algorithm first found the intersection of the lists of 
clinical signs for all pairs of patients for a given diagnostic 
group. We thus got all sets of features common to at least 
two patients. The algorithm then proceeded by intersecting 
all pairs of these sets again, producing sets of clinical signs  
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common to at least four patients, and so on. We repeated this 
cycle until no more feature sets were produced. In this way, 
we found the most common sets of features for each syn-
drome. 
 However, the most common set of features may not be 
the most predictive. The clinical signs that are common in 
one syndrome, may be common in another syndrome as 
well. This set of features then cannot be used to distinguish 
between diagnostic groups. 
 We therefore searched for prototypes - feature vectors 
which were common to a large number of the patients in a 
given diagnostic group, but which differed from common 
feature vectors of other diagnostic groups. The algorithm 
also identified subclasses within diagnostic groups. If a large 
subclass existed within a syndrome, the algorithm rendered 
the feature vector for that subclass. 
2.2.1 Computer and Programming Language 

 We used the Lisp programming language. The programs 
were run on a PC with the Linux operating system. 

2.3. The Reference Methods 

 As a reference for basic artificial intelligence methods, 
we used the ID3 algorithm, cluster analysis, as well as a ‘na-
ive Bayes’ ‘calculation’. 
2.3.1. The ID3 Identification Tree Method 

 The ID3 starts by dividing the patients into two sub-
groups, where each subgroup is as homogeneous as possible. 
Homogeneous in our context means that the patients have 
the same clinical signs. After the first division into sub-
groups, each subgroup is subdivided into two new sub-
groups, and so on. This procedure builds a tree, where the 
original group is the root/ trunk, subgroups are branches, 
subsubgroups are twigs, and the basic unit of analysis is a 
leaf. The basic unit of analysis is e.g. an individual patient or 
a syndrome. The signs used to discriminate between groups, 
are the branching points in the tree. 
 To decide how homogeneous a group is, the ID3 algo-
rithm uses an information theory formula: 

where nb is the number of instances in branch b, nt is the 
total number of instances in the whole tree, and nbc is the 
total of instances in branch b of type c. In our context, ‘type 
c’ stands for ‘syndrome patients who have a certain clinical 
sign’. At each branching point in the tree, the remaining syn-
drome patients are divided into two groups, those who have 
the clinical sign and those who do not have the clinical sign. 
2.3.2. Cluster Analysis 

 With the cluster analysis runs, we used the same data sets 
as we used for the runs using the basic artificial intelligence 
methods. 
 We ran cluster analyses using average linkage between 
groups, and nearest neighbour as the clustering method. 
Since our data were binary, we used a binary measure of 
similarity (‘Sokal and Sneath 5’, the squared geometric mean 

of conditional probabilities of positive and negative 
matches). Clinical signs were used as the basic unit of analy-
sis. 
2.3.3. ‘Naive Bayes’ Calculations 

 Theoretically, the optimal way of finding which clinical 
signs have the largest predictive value, is using a calculation 
based on Bayes’ formula. This formula takes into account 
the sensitivity as well as the specificity of the clinical sign, 
and the prior probability of the syndrome. 
 There are two problems with using ‘Bayes’ formula. 
First, it assumes that clinical signs are independent. This 
does not always hold true. ‘Upward slanting palpebral fis-
sures’ as a sign clearly is not independent mathematically 
from ‘downward slanting palpebral fissures’. ‘Low set ears’ 
and ‘upward slanting palpebral fissures’ probably occur to-
gether more often than expected by chance, etc. 
 Secondly, the figures that go into Bayes’ formula are 
often not readily available. 

2.4. Runs Using Artificial Intelligence Methods 

 In these runs, the results presented for the vector method 
algorithm, the set method, the ID3 and the ‘naive Bayes’ ‘ 
are all averages of ten runs with six thousand artificial pa-
tients in each run. The vector method algorithm was directly 
applied to ten consecutive batches of six thousand patients, 
i.e. with no training phase. The ID3 and set methods were 
first trained on a set of six thousand patients, and then tested 
with the ten batches of six thousand patients each. Each 
batch of six thousand patients for the test runs was new, in 
that it was generated anew. However, the batches were all 
made using the same procedure for generating patients. 

3. RESULTS 

3.1. General Observations 

3.1.1. Feasibility of the Artificial Intelligence Approach 

 The vector method had a low diagnostic error rate. This 
holds true for the global error rate, as well as for the error 
rates of the individual syndromes. The set method attained a 
high predictive value for most of the sets of clinical signs. 
 These basic artificial intelligence methods were easy to 
implement, rapid, and showed consistent results in repeated 
runs. 
3.1.2. Correspondence Between Artificial Intelligence 
Methods and Reference Methods 

 There was a good correspondence between comparable 
methods. 
 The set method on the one hand, and the cluster analysis 
using clinical signs as the basic unit on the other hand, gave 
signs or groups of signs that match. 

3.2. The Artificial Intelligence Methods 

3.2.1. The Vector Method Algorithm 

 With the vector method algorithm, there was no learning 
phase. This algorithm directly diagnosed the patients. 
 As seen in Table 4, the predictive values were high, with 
the lowest being 94.9 for fragile X syndrome. Fragile X syn-
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drome does not have many distinguishing features in the 
newborn period. 
Table 4. Vector Method/ Nearest Neighbour Run 

Syndrome  
Name 

No of  
Cases Sensitivity Specificity Predictive  

Value 

FAS 3597 99.9 99.5 99.7 

Trisomy 21 702 100.0 100.0 100.0 

Fragile X 355 99.4 99.7 94.9 

Noonan 299 99.7 100.0 99.7 

Congenital CMV 221 94.6 99.8 95.4 

Trisomy 18 208 99.0 99.8 95.8 

Turner 123 94.3 100.0 98.3 

Trisomy 13 93 90.3 100.0 98.8 

deLange 81 97.5 100.0 100.0 

Williams 66 97.0 100.0 98.5 

Beckwith 56 96.4 100.0 100.0 

Prader-Willi 55 100.0 100.0 98.2 

Meckel 38 94.7 100.0 100.0 

Cri du chat (5p-) 30 100.0 100.0 100.0 

Zellweger 30 86.7 100.0 100.0 

Klippel-Feil 23 95.7 100.0 100.0 

SLOS 23 69.6 100.0 100.0 
FAS, fetal alcohol syndrome, SLOS, Smith-Lemli-Opitz syndrome. Average of ten 
runs of 6000 artificial patients in each run. On average correctly diagnosed 5944, 
global error rate 0.93%.  

 The global error rate is satisfactory. However, quite low 
sensitivities were observed for some syndromes, with Smith-
Lemli-Opitz syndrome (SLOS) at a low of 69.6%. 
 The vector method did not produce any output other than 
diagnoses. Thus, the algorithm did not have to make any 
concessions for the sake of readability. The algorithm could 
therefore use all available information without doing any 
pruning. (‘Pruning’ here means removing twigs on an ID3 
tree, or parts of other search results which do not cover many 
cases, but which contribute to making it more complex). The 
nearest neighbour algorithm attained very high specificities, 
at one hundred per cent, or close to a hundred per cent. 
3.2.2. The Set Method 

 The set method table (Table 6) lists the sets of signs 
found by the set method, along with their clinical indices. It 
should be stressed that these are sets of signs, i.e. either the 
full set listed is present, or it is not. This theoretically should 
have the effect of lowering sensitivity and increasing speci-
ficity. The impression from the tables is definitely that the 
specificity is higher than is usual, in many instances 100%. 
 Yet, the sensitivity does not seem to be dramatically low-
ered, though e.g. Smith-Lemli-Opitz syndrome (SLOS) with 
the set method is down to a 15% sensitivity. Although the 
predictive value is very good, this particular set will there-
fore not be a very useful set of signs in diagnosis. 

Table 5. ID3run 

Syndrome  
Name 

No of  
Cases Sensitivity Specificity Predictive  

Value 

FAS 3597 99.7 99.5 99.7 

Trisomy 21 702 100.0 100.0 100.0 

Fragile X 355 93.2 98.9 98.2 

Noonan 299 100.0 100.0 100.0 

Congenital CMV 221 94.6 99.7 98.3 

Trisomy 18 208 100.0 100.0 99.5 

Turner 123 94.3 99.8 90.6 

Trisomy 13 93 98.9 100.0 100.0 

deLange 81 100.0 100.0 100.0 

Williams 66 97.0 99.8 87.7 

Beckwith 56 100.0 100.0 100.0 

Prader-Willi 55 100.0 100.0 100.0 

Meckel 38 100.0 100.0 100.0 

Cri du chat (5p-) 30 100.0 100.0 100.0 

Zellweger 30 100.0 100.0 100.0 

Klippel-Feil 23 95.7 99.9 88.0 

SLOS 23 100.0 100.0 100.0 
FAS, fetal alcohol syndrome, SLOS, Smith-Lemli-Opitz syndrome. 
Average of ten runs of 6000 artificial patients in each run. On average correctly diag-
nosed 5942, global error rate 0.97%.  

 The lists of signs found by the set method have been 
pruned to make them more accessible to a human reader. We 
have tried to strike a balance between two concerns. The lists 
of clinical signs that we present are few per syndrome, and 
fairly short, in some instances the list of signs is just one 
single clinical sign. The sensitivity and specificity are still in 
general quite acceptable. The signs found make sense from a 
clinical point of view. The most cumbersome diagnoses are 
trisomy 13 and Zellweger syndrome. In trisomy 13 four lists 
of three clinical signs each are presented. In Zellweger syn-
drome, the longest list has four clinical signs that have to be 
present simultaneously. 
 On the other hand, ten of the seventeen syndromes have 
fairly predictive lists of only one sign. 
 The clinical sign ‘short palpebral fissures’ has a predic-
tive value of one hundred per cent. It has a sensitivity of 
89%, so this is a useful clinical sign. 

3.3. The Reference Methods 

3.3.1. The ID3 

 As seen in Table 5, the global error rate is low for the 
ID3 run, at about the same level as the vector method. 
3.3.2. Cluster Analysis 

 Table 7 shows a dendrogram, after a cluster analysis has 
been run, where the clinical signs were used as the basic 
measure of analysis. 
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Table 6. Sets of Clinical Signs Versus Syndromes, ‘Set Method’ Results 

Syndrome Name 
Set of clinical signs Sensitivity Specificity Predictive Value 

FAS 
Short palpebral fissures 
Midface hypoplasia 

0.89 
0.79 

1.0 
0.98 

1.0 
0.98 

Trisomy 21 
Flat occiput 
Upward slanting palpebral fissures 
Flat face 

0.77 
0.79 
0.90 

1.0 
0.99 
0.99 

1.0 
0.97 
0.93 

Fragile X 
Large ears  0.88 0.98 0.76 
Noonan 
Down slanting palpebral fissures 
Hypertelorism Low set ears 

0.96 
0.87 

0.99 
0.98 

0.87 
0.74 

Congenital CMV 
Hepatosplenomegaly 0.89 0.99 0.71 
Trisomy 18 
Large ears Cryptorchidism 
Prominent calcaneus Cryptorchidism 
Polydactyly Cryptorchidism 
Polydactyly 

0.32 
0.65 
0.86 
0.86 

0.99 
0.99 
0.99 
0.98 

0.78 
0.78 
0.71 
0.65 

Turner 
Oedema of hands and feet 
Micrognathia Low hair line 

0.38 
0.61 

1.0 
0.99 

1.0 
0.70 

Trisomy 13 
Hypertelorism Polydactyly Cryptorchidism 
Polydactyly Microcephaly Cryptorchidism 
Hypertelorism Microcephaly Cryptorchidism 
Hypertelorism Simian crease Cryptorchidism 

0.69 
0.59 
0.56 
0.66 

1.0 
1.0 
1.0 

0.99 

1.0 
1.0 
1.0 
0.95 

deLange 
Synophrys 
Long eyelashes 
Long philtrum Clinodactyly 

0.82 
0.76 
0.58 

1.0 
1.0 
1.0 

1.0 
1.0 
1.0 

Williams 
Broad nasal tip 
Broad nasal bridge Long philtrum 
Broad nasal bridge 

0.74 
0.61 
0.59 

1.0 
1.0 

0.82 

1.0 
1.0 
0.99 

Beckwith 
Macroglossia Midface hypoplasia 
Macroglossia Cryptorchidism 
Macroglossia Hepatosplenomegaly 

0.84 
0.79 
0.73 

1.0 
1.0 
1.0 

1.0 
1.0 
1.0 

Prader-Willi 
Flat face Cryptorchidism 
Hypogenitalism 

0.69 
0.97 

1.0 
0.99 

1.0 
0.92 

Meckel 
Polydactyly Hepatosplenomegaly Stillbirth 
Occipital encephalocoele Stillbirth 

0.86 
0.86 

1.0 
1.0 

1.0 
1.0 

Cri du chat (5p-) 
Cat like cry 1.0 1.0 1.0 
Zellweger 
Hepatosplenomegaly Hypotonia 
Low BW Hypotonia Upward slant palp fissures 
Micrognathia Low BW Hypotonia Cryptorchidism 

0.80 
0.5 
0.25 

1.0 
0.99 
0.99 

1.0 
0.83 
0.73 

Klippel-Feil 
Short neck Low hairline Microcephaly 0.29 1.0 1.0 
SLOS 
Polydactyly Microcephaly Micrognathia Low BW 0.15 1.0 1.0 

FAS, fetal alcohol syndrome, SLOS, Smith-Lemli-Opitz syndrome. Low BW, low birth weight, Upward slant palp fissures, upward slanting palpebral fissures. 
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 The triad of long eyelashes, synophrys and hirsutism is 
characteristic of Cornelia de Lange syndrome. Hepatosple-
nomegaly and omphalocoele are less distinctive, but point to 
Beckwith-Wiedeman syndrome. The hepatosplenomegaly 
alone also fits with Zellweger syndrome or congenital cy-
tomegalovirus infection (CMV). Though not syndrome spe-

cific, this sign could be seen as pointing to this group of syn-
dromes. ‘Cat like cry’ and round face are hallmarks of ‘Cri 
du chat’ or monosomy of the short arm of chromosome five. 
Williams syndrome is characterized by broad nasal tip/ broad 
nasal bridge. The single sign occipital encephalocoele is a 
strong pointer to Meckel syndrome. 

Table 7. Dendrogram from a Hierarchical Cluster Analysis Using Single Linkage, Showing the Relationship Between Clinical 
Signs 

Distance along the axis is a relative measure of dissimilarity. Occipital enceph, occipital encephalocoele, Downslanting palp, downslanting palpebral fissures, Prominent calc, promi-
nent calcaneus, Upward slant palp, upward slanting palpebral fissures, Short palp fiss, short palpebral fissures.  
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 Three syndromes have several similarities as far as clini-
cal signs are concerned: Noonan syndrome, Turner syn-
drome and Klippel-Feil syndrome. The next group of clinical 
signs, hypertelorism, downward slanting palpebral fissures, 
short neck, and low hairline fit these syndromes. It can be 
seen from the arbitrary scale of the dendrogram that hypere-
lorism and downward slanting palpebral fissures are closely 
related, and in comparison stand apart from short neck and 
low hairline. This may distinguish Noonan syndrome from 
Turner syndrome and Klippel-Feil syndrome. Turner syn-
drome patients when newborn also have edema of hands and 
feet, found as a single clinical sign at line nine from the bot-
tom of the dendrogram. 
 A large group of clinical signs, from polydactyly to sim-
ian crease, denote the trisomies (trisomy 21, 18 and 13). The 
first and smallest subgroup of this group fits trisomy 13 and 
18, with the signs polydactyly, prominent calcaneus, cryp-
torchidism and micrognathia. The second, larger subgroup of 
clinical signs here is consistent with trisomy 21 (Down syn-
drome). 
 Because of the relatively high prevalence of the tri-
somies, some clinical signs seem to have been ‘stolen’ from 
the less prevalent syndromes. An example of this is the 
Prader-Willi syndrome (hypotonia, cryptorchidism). 
 No individual syndrome springs to mind for hypogenital-
ism as a single sign. In this context, however, hypogenital-
ism would strongly suggest Prader-Willi syndrome. Simi-
larly, large ears strongly indicate Fragile X/ Martin-Bell 
syndrome. 
 Short palpebral fissures, long philtrum, and midface hy-
poplasia define fetal alcohol syndrome. 
 This leaves the signs microphtalmia, low birth weight 
and microcephaly as signs with no associated syndrome. 
 The syndromes that have not been taken into account are 
Smith-Lemli-Opitz syndrome (SLOS) and to a certain degree 
Zellweger syndrome and congenital cytomegalovirus infec-
tion. Smith-Lemli-Opitz syndrome (SLOS) seems to be dif-
ficult to diagnose for several of the methods with the data 
used here. 
3.3.3. ‘Naive Bayes’ Calculations 

 The results for the ‘naive Bayes’ ‘calculations are listed 
in Table 8. Although the difference is not large, the naive 
Bayes’ calculations attain the lowest global error rate of di-
agnosis. Like in the vector method runs, the naive Bayes’ 
calculation uses all available information, and does not have 
to compromise to satisfy a demand for human readability. 

3.4. Comparing the Methods 

3.4.1. The Vector Method Versus the Set Method Versus 
ID3 

 These three methods did roughly equally well as judged 
by the overall error rate. None of the methods did very badly 
in any of the syndrome groups. (It would have been possible 
to have a good overall performance, even with a poor per-
formance in the smaller syndrome groups). 
 Small variations in specificity could lead to relatively 
large variations in predictive value. 

Table 8. ‘Naïve Bayes’ Calculation 

Syndrome  
Name 

No of  
Cases Sensitivity Specificity Predictive  

Value 

FAS 3597 99.9 99.5 99.9 

Trisomy 21 702 100.0 100.0 100.0 

Fragile X 355 99.4 99.7 95.7 

Noonan 299 100.0 100.0 100.0 

Congenital CMV 221 95.5 99.9 97.7 

Trisomy 18 208 100.0 99.9 98.1 

Turner 123 95.9 100.0 99.2 

Trisomy 13 93 95.7 100.0 100.0 

deLange 81 100.0 100.0 100.0 

Williams 66 97.0 100.0 100.0 

Beckwith 56 100.0 100.0 100.0 

Prader-Willi 55 100.0 100.0 98.2 

Meckel 38 97.4 100.0 100.0 

Cri du chat (5p-) 30 100.0 100.0 100.0 

Zellweger 30 100.0 100.0 100.0 

Klippel-Feil 23 95.7 100.0 100.0 

SLOS 23 100.0 100.0 95.8 
FAS, fetal alcohol syndrome, SLOS, Smith-Lemli-Opitz syndrome. Average of ten 
runs of 6000 artificial patients in each run. On average correctly diagnosed 5971, 
global error rate 0.48%. 

3.4.2. The Set Method Versus Cluster Analysis 

 These two methods are comparable in that they both ren-
dered lists or clusters of clinical signs. We chose cluster analy-
sis as a reference method since it is a mainstream mathematical 
method. The cluster analysis with clinical signs as the basic 
unit is most appropriate for comparison with the set method. 
This analysis did not name syndromes, it just grouped clinical 
signs. Given this restriction, the clinical signs grouped by the 
cluster analysis, and the sets of signs found by the set method 
match reasonably well. For example, Table 6 shows, from the 
top, that FAS (fetal alcohol syndrome) according to the set 
method has the signs short palpebral fissures, and midface hy-
poplasia. Table 7, the cluster anaysis, shows in line 5, 4 and 3 
from the bottom, that short palpebral fissures, long philtrum, 
and midface hypoplasia are grouped closely together. Next, for 
trisomy 21 (Down syndrome) in Table 6 the set method found 
the signs flat occiput, upward slanting palpebral fissures, and 
flat face. In Table 7 (the cluster analysis) in the middle of the 
figure finds a narrow grouping of flat face, upward slanting 
palpebral fissures, and flat occiput. 

4. DISCUSSION 

 The principal aim of this study was to demonstrate that 
our vector method and other basic artificial intelligence 
methods represent objective methods that are essential in 
establishing diagnostic criteria in syndromology. 

4.1. The Artificial Intelligence Methods 

 The vector method attained high rates of correct diagno-
ses. The set method did find a set of clinical signs for each 
syndrome diagnosis. These findings were corroborated by 
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the results of the cluster analysis. The clinical signs teased 
out by the set method are also reasonable from a clinical 
point of view. 
 In contrast to many other studies, our study had a data set 
with correct proportions between the different syndrome 
diagnoses. 
 Thus, the study has dealt with the problem of prior prob-
abilities. 
 If the artificial intelligence methods can successfully be 
applied to data from artificially generated patients, it seems 
valid to infer that they could be used on data from real pa-
tients. 
 The algorithms found clinically useful signs, signs that 
may be used both by clinicians, and for machine diagnosis. 
 The vector method and set method’s main advantages
are 
• Robustness 
 These methods are robust in that: 
- They do not require normal distributions of variable 

values. 
- They do not require statistical independence of signs. 
-  They can handle binary variables. 
- They can handle missing values. 
• Simplicity 
- The methods are basic and easy to understand. 
• Power 
- The methods are powerful in that they can handle 

larger amounts of data than most of its competitor 
methods. They are also very fast. 

• Scalability  
- Some methods which are useful with a small number 

of cases/ patients do not scale up to large numbers. 
The vector method should be able to manage tens of 
thousands of features and hundreds of thousands of 
patients. In practice this means the limiting factor will 
be how many patients the researcher is able to collect. 

 The term predictive value used for the vector method 
algorithm is to a certain degree a misnomer, since there was 
no clinical sign or set of clinical signs that could be evalu-
ated for predictive value. The ‘predictive value’ here is cal-
culated post hoc. The term has been kept for consistency. 
 The time used by the vector method algorithm increases 
linearly with the number of cases (O(n)), while the time in-
creases as the square of the number of cases for the set 
method (O(n*n)). 

4.2. Cluster Analysis 

 In this study, we used cluster analysis as a control, to see 
if the findings by the set method could be substantiated. The 
cluster analysis lends support to the set method findings. 

4.3. Details of Our Study -- Discussion of Validity of Re-
sults 

4.3.1. General Considerations 

Using Randomly Generated Patients
 Doctors as well as informaticians often prefer using ‘real 
patients’ to e.g. machine generated patients. Syndromes are 
rare, so it would in practice be a prohibitive task to find a 
representative number of patients for each syndrome group. 
Furthermore, biases may be introduced when using selected 
groups of ‘real patients’, e.g. by the inclusion of only the 
‘classical cases’ in the patient series. Thus, it may actually be 
the better option to use machine-generated patients. 
 In a situation with no criterion standard, it would be po-
tentially misleading to directly compare the performance of 
the artificial intelligence methods with clinicians’ perform-
ance. If either approach - AI or clinical - were chosen as the 
reference standard, that approach by definition would outper-
form the other. 
 There are overwhelming practical and methodological 
problems with doing a prospective study encompassing all 
syndromes to establish the frequency of clinical signs in each 
individual syndrome and in the patient group at large. 
 Our primary goal was to demonstrate that the artificial 
intelligence methods could be used to pick out the most pre-
dictive clinical signs in syndrome diagnosis. We were not 
concerned with diagnosis of individual syndrome patients. 
We therefore chose the scheme described using figures from 
the Birth Defects Encyclopedia, and randomly generated 
artificial patients. 
 Our randomization procedure generated a small number 
of ‘patients’ with very few clinical signs just by chance. 
Since it was set up to generate a clinical sign in an individual 
patient with a probability of 0.9 if 90% of patients were 
listed in BDE to have the sign, 1 in 10 would not have the 
clinical sign in question. The probability that a given artifi-
cially generated patient would lack both of two such signs, 
would be 0.1*0.1, or one in a hundred. When a large number 
of patients were generated, the occasional patient would have 
very few signs altogether. 
 This will obviously make the diagnostic task more diffi-
cult, for an artificial intelligence method, as well as for any 
other method. 
 Any co-existence of clinical signs would be lost by the 
randomization procedure. This may be a source of error 
when the methods are applied to artificially generated pa-
tients, but the first order predictive value of signs is probably 
greater than the second order or combined effect of two indi-
vidual clinical signs. 
4.3.2. The Set Method 

Pruning and Prototyping
 The original lists of clinical signs found by the set 
method are obviously the best to use to arrive at a diagnosis. 
The set method, though, may also be counter-intuitive,  
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stating that the patient should have all the signs listed. Prun-
ing and prototyping will simplify matters for a clinician as 
the less important signs are removed, and the remaining list 
is more manageable. We have arbitrarily pruned by remov-
ing lists of clinical signs that contain more than 3-4 signs. 
 When it comes to machine diagnosis, however, pruning 
is unnecessary and will only lower the diagnostic perform-
ance. 

4.4. General Considerations in Syndrome Diagnosis with 
Respect to our Study 

4.4.1. Accept old Diagnoses or form New Ones? 

 Most studies on syndrome diagnosis accept established 
diagnoses. Diagnoses in single patients may be questioned, 
but the diagnostic groups themselves are often considered 
untouchable. 
 Using methods such as the vector method or cluster 
analysis, it is an option to challenge the existing diagnostic 
groups. Set up in this way, it is conceivable that the nearest 
neighbour algorithm could suggest lumping or splitting of 
diagnostic groups, that new groups with different boundaries 
should be formed, or that totally new groups should be estab-
lished. 
 ‘New’ syndromes As far as establishing new diagnoses 
is concerned, an objective method has advantages compared 
to the pattern recognition method. 
 The pattern recognition method would be dependent on a 
single clinician seeing enough cases of a new syndrome to 
realize it was actually a new syndrome. 
 The syndromologist would then have to report it, other 
syndromologists would have to read the report and recognize 
the syndrome themselves. This obviously works in many 
cases, since new syndromes are regularly reported. 
 It is a disturbing fact, though, that we cannot know how 
many syndromes are not reported. It is reasonable to think 
that an international central database of syndromes would be 
useful for awareness to detect new syndromes. One impor-
tant group would be teratogenic syndromes, e.g. possibly 
caused by the mother living close to a nuclear plant, caused 
by estrogen-like pollutants in the environment, caused by 
maternal drug abuse etc. 
4.4.2. Using One Sign Versus Using a Set of Signs 

 The solution provided by the set method is a set of clini-
cal signs that have to be present simultaneously. 
 This is different from the single-sign method, where one 
sign, when found, increases the probability of the syndrome, 
the next sign may increase or decrease the probability etc. 
 In general, the requirement for several signs to be present 
at the same time, increases specificity and decreases sensitiv-
ity. 
 This is reflected in the tables of the Results section, 
where several lists of signs have a very high specificity, of-
ten one hundred per cent. Once found, these clinical signs 
(the set of clinical signs) will be better predictor variables. 
 A very long list of signs that have to be present simulta-
neously, may not be of value to a human diagnostician. Such 

a list would make perfect sense in machine diagnosis, 
though. 
4.4.3. Using the Sign to Find a Diagnosis Versus Using the 
Sign to Partition the Universe of Possible Diagnoses 

 The most common approach with syndrome diagnosis 
based on clinical signs, is to use single signs to get closer to 
a diagnosis. With other methods, like the ID3 method, one 
partitions the ‘universe’ of possible diagnoses and thus con-
tinually circles in the few diagnoses that remain. In artificial 
intelligence, this way of searching is common, whereas in 
clinical thinking it may not seem that natural (although many 
diagnosticians use this way of thinking, perhaps uncon-
sciously). 
4.4.4. The ‘Closed World Assumption’ 

 In artificial intelligence, it is common to make explicit 
the concept of the ‘closed world’. Many studies make this 
assumption, but do not state it explicitly. In the closed world 
of our study, there were only seventeen syndromes. Thus, if 
sixteen of the syndromes could be ruled out, the diagnosis 
would have to be the seventeenth syndrome. This may be 
unrealistic in a real-world situation. 
4.4.5. Inclusion of Negative Signs 

 Syndromologists often speak of ‘handles’, i.e. clinical 
signs with a high positive predictive value. We kept to this 
standard approach of using positive signs, i.e. signs present. 
 Of course, signs not present may help single out diagno-
sis just as effectively. Conversely, a sign may have a high 
negative predictive value, i.e. if this sign is present, the diag-
nosis becomes much less likely. 
4.4.6. Clinical Phenotype or DNA Based Diagnosis? 

 DNA diagnosis and diagnosis based on the clinical phe-
notype could either give the same result, or different results. 
In some cases the problem is small, since there is no alterna-
tive to clinical classification and diagnosis. 
 In other cases, one might ask which would be the ‘cor-
rect’ classification. 
 The clinical classification may be more practical. The 
DNA diagnosis is easier, more clear cut, and may have a 
higher status [21]. 
 However, clinical classification is not outdated, and 
never will be. What is of interest, is ultimately the pheno-
type, the human being. If the overlap between a phenotypic 
classification and a DNA classification is little, so is the in-
terest in the DNA ‘defect’. 

5. CONCLUSION 

 For most syndromes there is no criterion standard of di-
agnosis. 
 In many cases, one will therefore have to forgo an accu-
rate diagnosis. It is therefore of paramount importance to 
have a consistent set of diagnostic criteria. Thus, there is a 
need for objective methods of diagnosis. Traditionally, these 
have been various statistical methods. However, statistical 
methods have certain weaknesses, e.g. they require basic 
assumptions that often cannot be met. 
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 The vector method and the set method used here, are ob-
jective methods that are robust, simple and powerful. This 
study has shown they can successfully be applied to a data-
base of clinical signs and syndrome diagnoses. In this study, 
we used these basic methods to elicit objective clinical signs 
with high predictive value; signs that can be used by clini-
cians. 
 These methods may also be used in computer assisted 
diagnostic systems. 
 In conclusion, the two basic methods used here, can em-
body the objective methods that are mandatory in syndrome 
diagnosis, and necessary in all forms of medical diagnosis. 

SUPPLEMENTARY MATERIAL 

 This article is accompanied by an overview slide presenta-
tion and it can be viewed at www.bentham.org/open/tominfoj 

REFERENCES 
[1] Cahan A, Gilon D, Manor O, Paltiel O. Probabilistic reasoning and 

clinical decision-making: do doctors overestimate diagnostic prob-
abilities? QJM 2003; 96: 763-9. 

[2] Cahan A, Gilon D, Manor O, Paltiel O. Clinical experience did not 
reduce the variance in physicians’ estimates of pretest probability 
in a cross-sectional survey. J Clin Epidemiol 2005; 58: 1211-6. 

[3] Richardson WS. Five uneasy pieces about pre-test probability. J 
Gen Intern Med 2002; 17: 882-3. 

[4] Haley RW, Kurt TL, Hom J. Is there a Gulf War Syndrome? 
Searching for syndromes by factor analysis of symptoms. JAMA 
1997; 277: 215-22. 

[5] Kosaki K, Jones MC, Stayboldt C. Zimmer phocomelia: delinea-
tion by principal coordinate analysis. Am J Med Genet 1996; 66: 
55-9. 

[6] Ross JL, Kushner H, Zinn AR. Discriminant analysis of the Ull-
rich-Turner syndrome neurocognitive profile. Am J Med Genet 
1997; 72: 275-80. 

[7] Loesch DZ, Scott D. Application of the anthropometric discrimi-
nant functions in estimation of carrier probabilities in Martin-Bell 
syndrome. Clin Genet 1989; 36: 145-51. 

[8] Loesch DZ, Wilson SR. Multivariate analysis of body shape in 
fragile X (Martin-Bell) syndrome. Am J Med Genet 1989; 33: 200-
8. 

[9] Murdoch-Kinch CA, Ward RE. Metacarpophalangeal analysis in 
Crouzon syndrome: additional evidence for phenotypic conver-
gence with the acrocephalosyndactyly syndromes. Am J Med 
Genet 1997; 73: 61-6. 

[10] Astley SJ, Clarren SK. A fetal alcohol syndrome screening tool. 
Alcohol Clin Exp Res 1995; 19: 1565-71. 

[11] Neel JV, Julius S, Weder A, et al. Syndrome X: is it for real? Genet 
Epidemiol 1998; 15: 19-32. 

[12] Volk HE, Henderson C, Neuman RJ, Todd RD. Validation of popu-
lation-based ADHD subtypes and identification of three clinically 
impaired subtypes. Am J Med Genet B Neuropsychiatr Genet 2006; 
141B: 312-8. 

[13] Preus M. The Williams syndrome: objective definition and diagno-
sis. Clin Genet 1984; 25: 422-8. 

[14] Verloes A. Numerical syndromology: a mathematical approach to 
the nosology of complex phenotypes. Am J Med Genet 1995; 55: 
433-43. 

[15] Kotsia I, Zafeiriou S, Pitas I. A novel discriminant non-negative 
matrix factorization algorithm with applications to facial image 
characterization problems. IEEE Trans Forensic Security 2007; 2: 
588-95. 

[16] Pascual-Montano A, Carmona-Saez P, Chagoyen M, et al. bi-
oNMF: a versatile tool for non-negative matrix factorization in bi-
ology. BMC Bioinform 2006; 7: 366. 

[17] Evans CD. A case-based assistant for diagnosis and analysis of 
dysmorphic syndromes. Med Inform (Lond) 1995; 20: 121-31. 

[18] Evans CD, Winter RM. A case-based learning approach to group-
ing cases with multiple malformations. MD Comput 1995; 12: 127-
36. 

[19] Braaten O. Artificial intelligence in pediatrics: important clinical 
signs in newborn syndromes. Comput Biomed Res 1996; 29: 153-
61. 

[20] Buyse M. Birth Defects Encyclopedia. Dover: Center for Birth 
Defects Information Services, Inc 1990. 

[21] Biesecker LG. Lumping and splitting: molecular biology in the 
genetics clinic. Clin Genet 1998; 53: 3-7. 

�

�

Received: August 21, 2008 Revised: September 21, 2008 Accepted: October 21, 2008 

© Braaten and Friestad; Licensee Bentham Open.
This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-
nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited. 



2.10. ARTICLE III: THE GENETIC ALGORITHMAPPLIED TOHAPLOTYPE DATA69

2.10 Article III: The genetic algorithm

applied to haplotype data



2.11. ARTICLE IV: FINDING DNA PATTERNSWITH THEGENETIC ALGORITHM79

2.11 Article IV: Finding DNA patterns with

the genetic algorithm



Part III

Appendices

109





Appendix A

Artificial intelligence

A.1 Introduction

This appendix is a brief overview of some artificial intelligence methods and
techniques. The emphasis is on methods used in medicine, with the focus
especially on the methods used in this thesis, the identification tree
algorithm and the genetic algorithm.

A.2 Expert systems

Many of the artificial intelligence system that have been used in medicine,
are expert systems. This was especially true of the early years of medical
artificial intelligence, but expert systems are still advocated [130].
Expert systems in artificial intelligence traditionally are built from a
number of rules. These rules are usually of the form

if some antecedent condition(s) is/ are met
then some consequent action(s) is/ are carried out

Such rules are known as if-then-rules, production rules or
antecedent-consequent-rules.
To find the appropriate rules for a certain problem area (‘domain’), one
relies on the process of ‘knowledge acquisition’, see also section C.4 on
page 143 on ‘tacit knowledge’. This basically consists of extended interviews
with a person knowledgeable in the area in question – a ‘domain expert’.
Such a knowledge extraction process may run into what is classically known
as ‘the bottleneck problem’: On one side the domain expert with her/ his
knowledge, on the other side a ‘knowledge engineer’ ready to build an
expert system – and between them the bottleneck of knowledge acquisition.
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Partly to overcome this problem, one turned to induction. Using inductive
learning from a set of examples, a system would learn the expert knowledge
indirectly.

An ID3 tree is an example of induction. Conversely, an ID3 tree can be
transformed into an expert system.

A.3 Neural nets

Neural nets have been widely used in medical applications of artificial
intelligence [131, 117] for a wide range of problems in medicine; from
selecting markers for Alzheimer’s disease [112] to diagnosing
gastroenterologic disease [115] to evaluating images in cancer diagnosis
[114, 132]. The reason for this appeal to the biomedical research
community may be because its biological basis - neurons and synapses - is
familiar to biologists and doctors.

A neural net consists of layers of neurons that are interconnected. The
neural networks are most often used for problem solving, but could also be
used to gain insight into biological neural systems.

Neurons in an artificial neural network are organized in layers, where each
neuron in one layer has a number of connections to neurons in the next
layer. The first layer is usually a layer capable of perceiving, e.g. ‘seeing’ an
image. The neurons or nodes in a neural network will change their
characteristics depending on input from the previous layer. A neuron in an
artificial neural network will fire - send an impulse to neurons in the next
layer - if the excitatory input exceeds a pre-set threshold. In some cases a
genetic algorithm is used to train the neural net and set the optimal level of
thresholds for firing.

Typically, a neural network is dedicated to learning, e.g. to recognise a
written letter. During the learning phase, the neural network minimises a
‘cost function’. The cost function is a measure of how far away the present
solution is from an optimal solution.

Although the approach is different, this has a number of analogies to the
genetic algorithm.

A.4 Machine learning

Machine learning is a broad topic in artificial intelligence, and there are
numerous methods and algorithms of machine learning in use in medical
artificial intelligence. These methods are applied in bioinformatics
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[133, 134, 135] as well as in clinical medicine [136].
The area of machine learning can be divided along different lines, for
instance between deductive and inductive learning. A common division is
between supervised and unsupervised learning.

A.4.1 Supervised learning

In supervised learning, the learning algorithm is presented with a set of
exemplars or examples, as well as the classification of these exemplars. In
the next phase, the algorithm’s task is to classify new, unknown specimen.

A.4.2 Unsupervised learning

In unsupervised learning, there are no known classification - such as for
example diagnoses - and the learning algorithm has to learn by induction.

A.4.3 Data mining and text mining

Two areas that may be considered part of machine learning, are data
mining and text mining. Like machine learning in general, these are
subjects with a long tradition, in an artificial intelligence context. Both
data mining and text mining apparently are being used to an increasing
degree in biomedicine[137, 138, 139, 140].

A.5 Identification trees

The identification tree, or induction tree algorithm ID3 was introduced in
artificial intelligence by Quinlan [7]. These trees are also called decision
trees. 1

The ID3 algorithm, like other inductive methods, requires a set of examples
or exemplars to start with.
The algorithm uses the examples to build an identification tree. The tree
building proceeds by partitioning the elements into two groups, based upon
one of the characteristics.
The raw material
The raw material/ the raw data for an ID3 algorithm to work on, consists
of individual cases or instances with common features. These features or
characteristics can take on different values. In the syndrome diagnosis

1I prefer the term identification trees, since decision trees can be confused with the
trees of decision analyses.



114 APPENDIX A. ARTIFICIAL INTELLIGENCE

problem, the individual cases would be newborns with a syndrome. The
characteristics would be the clinical signs found. In syndrome diagnosis the
values would typically be ‘present’ and ‘not present’. The algorithm
assumes discrete classes, i.e. no instance belongs to several classes. A
newborn cannot be classified as having two or more syndromes.
The algorithm
The most common algorithm, and the one used in this project, tries to
divide the instances into two groups, where each group is as homogeneous
as possible; then to divide each of these subgroups into two homogeneous
groups again, and so on. To this end, it uses information theory.
In information theory, the log to the base of 2 is used to find the number of
bits necessary to represent a piece of information.
Less mathematically, one could consider two bowls of a thousand objects
each. One bowl contains 1000 identical 1 cm in diameter white marble
balls. In the other bowl, the first object is a red tetrahedron with 1 mm
black stripes, the second is a 1 cm in diameter black plastic ball, the third
is a die, white with black spots, etc. Clearly, a description of the first set of
instances - the 1000 white marbles - will represent far less information than
when the other bowl is to be described. Put another way, the instances - or
white marble balls - of the first bowl as a whole are far more homogeneous.
To decide how homogeneous a group is, the ID3 algorithm uses an
information theory formula:

∑

b

(
nb

nt

)× (
∑

c

−nbc

nb

log2
nbc

nb

)

In this formula nb is the number of instances in branch b, nt is the total
number of instances in the whole tree, and nbc is the total of instances in
branch b of type c.
Advantages of identification tree approaches are that they are simple,
especially simple to interpret. Most types of data can be used without
transformations. The identification trees are robust.
The algorithm has developed into C4.5, and later C5.0 (which is a
commercial program, and not open source).
A problem with identification trees is that the approach is open to
fragmentation. This happens when a characteristic can take on a large
number of values. (A continuous characteristic or variable does not
necessarily lead to this problem, if the values can be grouped e.g. into
‘high’, ‘medium’ and ‘low’).
To counteract these problems, an extension of identification trees/ decision
trees is the decision graph.
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A similar approach to an identification tree is a regression tree. For
regression trees the outcome is a figure, e.g. number of days of a hospital
stay. The CART - Classification and regression tree - combines the two
methods.

A.6 AI search strategies

As artificial intelligence came into being, informatics already had a set of
techniques to solve search problems. Therefore one tried to cast problems
in the form of searches.

The most basic search strategies in artificial intelligence are traditional
informatics searches.

A search is often envisaged as a traversing of a search tree. Such a tree is
either balanced or unbalanced (i.e. symmetric or unsymmetric). A binary
tree is a tree where all branches to the left of the root have elements that
are of smaller values than the root, and all elements to the right are of
larger value. This knowledge makes it far simpler to find the element one
wants to find. In a binary tree with the elements A-B-C-D-E-F-G, D would
be the root. The left branch would have B as the new root or main branch,
and B would have A as the left branch and C as the right branch.

A breadth first search search would go through or traverse the tree with
the main branches first: D-B-F, and then the next level, A C E G

Conversely, a depth first search would go to the bottom of the search
tree along one set of branches, then backtrack and go down the next
branch, D-B-A, etc.

A search space can be envisioned as a landscape with peaks, ridges, and
valleys. In a search space such as this, the peaks will be good solutions, i.e.
points where certain variable values are at an optimum. The highest peak
will represent the best solution.

The algorithm called ‘hill climbing’ will move in this landscape, always
going in the direction that is ‘steepest’. In an otherwise flat landscape -
meaning there is one and only one solution - this approach will find the
highest peak, or optimum solution. In a landscape with several peaks -
several good solutions - it might get stuck at the second or third highest
peak, i.e. a local optimum. The hill climbing algorithm would then not find
the highest peak - the global optimum.

This way of thinking applies directly also to the genetic algorithm.
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A.7 The genetic algorithm, general

introduction

The most commonly used term now is evolutionary computation2, which
includes a number of methods and techniques inspired by evolution, among
those are genetic algorithms, genetic programming, evolutionary
programming, plus hybrid systems. An example of hybrid systems is
GANN, genetic algorithm/ neural net, where a genetic algorithm is used to
optimise parameter settings for the neural net.

Evolution has been a success in producing ever better-fit individuals/
species. The basic idea underlying the genetic algorithm is to extract the
basic principles of evolution, model the algorithm based upon these
principles, and apply the algorithm in computer-based problem solving.

Thus, the genetic algorithm is an abstraction that mimics nature: One
considers a population of individuals, each individual having a certain
genetic make-up. The individuals struggle for survival in an environment,
and succeed or fail according to their fitness, relative to the other
individuals in the population. Those individuals with the highest fitness
reproduce. During reproduction there is possibly a recombination or
crossing over of the chromosomes. Occasionally a mutational event
takes place.

A.7.1 Review of biological terms and concepts

It may be said that natural selection is daily and hourly scrutinising,
throughout the world, every variation, even the slightest; rejecting that
which is bad, preserving and adding up all that is good; silently and
insensibly working; whenever and wherever opportunity offers, at the
improvement of each [. . . ] being in relation to its organic and inorganic
conditions of life. Charles Darwin, page 133, The Origin of Species [141]

Fitness in natural genetics is defined as the probability of transmitting
one’s genes to the next generation. One simple way to calculate fitness is to
take the number of offspring produced on average by some subgroup of the
population and divide this by the average number of offspring in the
‘normal’ population.

It is important to realize that ‘survival of the fittest’ means survival of the
fittest genes.

2The GECCO 2009, Genetic and Evolutionary Computational Conference, combines
the 18th International Conference on Genetic Algorithms (ICGA), and the 14th Annual
Genetic Programming conference (GP) (www.sigevo.org/gecco-2009).
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The gene is the unit of heredity. For genetic algorithm purposes, it is
enough to think of a gene as part of a chromosome. Each individual
carries several chromosomes.
All chromosomes taken together constitute the material of heredity for the
individual in question.
Genetic algorithms often use haploid organisms , i.e. organisms with one
set of chromosomes. These genetic algorithms rely heavily on
recombination to maintain population diversity.
In a diploid organism there are two sets of chromosomes, consisting of
pairs of homologous (not identical) chromosomes. When producing sex
cells, the diploid organism will send along a haploid set of chromosomes,
randomly choosing one chromosome from each of the pairs of homologous
chromosomes. This is the process of segregation. Thus, in diploid
organisms there is a shuffling, or random selection of chromosomes from one
individual pairing up with a random selection of chromosomes from another
individual to form the chromosome set of an offspring individual.
Segregation to a large part is responsible for keeping up population
diversity in diploid organisms.
Additional genetic operators are recombination, mutation, and
inversion.
When two homologous chromosomes pair up in meiosis (reduction division
to create sex cells) they may both break at equivalent points, and exchange
material. This is called recombination (or ‘crossing over’).
The smallest unit of DNA are the bases C, G, A, and T. The change of, say,
an A to a T represents a (point) mutation. This is a random, lasting
change to DNA (and consequently to the gene and to the chromosome).
If a single chromosome breaks, and the broken part turns on itself, and
then reattaches to the same chromosome, this is known as inversion.
The real-world phenomena of evolution need to be transformed into an
abstraction. The basic units to be put into an abstract form are the gene
and the chromosome.
A chromosome is often represented as a binary string, an ordered list of 0’s
and 1’s.
A gene is a sequence of a certain length of this list.
An individual is seen primarily as a ‘container’ for the chromosomes.
For each of the two individuals involved, a mating will consist of taking a
random pick of a chromosome from each of its chromosome pairs, going
through the set of chromosomes. A copy of a chromosome from one
individual is joined with a copy of a chromosome from another individual,
the process repeating along the chromosome sets of each of these parent
individuals to make a new diploid chromosome set for an offspring



118 APPENDIX A. ARTIFICIAL INTELLIGENCE

individual.

A generation could be limited by e.g. a pre-set number of matings. To keep
a population stable, one would let the number of matings (i.e. the number
of offspring) equal the number of individuals in the present generation.

This genetic algorithm differs from the mainstream variety in that it deals
with diploid organisms.

In the CLOS (the Lisp programming language, the object oriented version,
Common Lisp Object System) setting it seemed natural to let the
individuals be represented as objects. The two chromosome sets are two
slots in an individual. The chromosome sets are lists of lists. The ‘inner’
lists are the individual chromosomes.

A general genetic algorithm could be written as the following simple piece
of pseudocode:

Set the generation counter to zero

Make a random population

Evaluate fitness

Test for termination criterion

While not terminated do

Increase the generation counter by one

Perform recombination, mutation and inversion

Select individuals to reproduce (based on fitness)

Perform mating, build the new population

Let the present population ‘die’,

let the new population become the present population

Evaluate fitness

end of while-loop

end of genetic algorithm

The first step in the genetic algorithm run is the creating of a random
population of individuals, each individual coding for a solution to the
real-world problem by way of its chromosome string set-up. Some of these
problem solutions will be inferior, quite a few will be mediocre, and a few
will be superior.

‘Individuals’ coding for superior solutions will mate more often. Parts of
their chromosome sets will appear in the subsequent generation.

Through several generations the best chromosomes/ chromosome parts will
be retained, inferior ones will be lost. After many generations there will be,
relatively speaking, few inferior individuals; there will be some mediocre
individuals, and some superior and exceptional individuals.
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A.7.2 The initial population

The first generation of the genetic algorithm is made by generating a
pre-determined number of individuals. Each individual carries a set of
chromosomes, also made by generating random numbers within the range
decided. As the chromosomes code for a problem solution, this solution can
be evaluated, and fitness apportioned.

Each individual with its chromosomes can be seen as a starting point for a
search in solution space.

A.7.3 Fitness

Fitness in the genetic algorithm is in a way the reverse of natural genetic
fitness. In nature, an individual or group of individuals have a higher
fitness the more offspring they produce, no matter what the reason for the
fecundity might be.

In the genetic algorithm fitness is assigned on the basis of how well an
individual performs in the artificial world. Based on this, it is decided how
many chances of begetting offspring the individual will have.

A.7.4 Mating

Based on fitness, individuals are allowed to mate. High-fitness individuals
mate more often than low-fitness individuals. A simple way to arrange this
is by the so-called ’fitness proportionate’ or ’roulette wheel’
selection:

All fitnesses are summed up. Each individual is allotted a slice of the total
fitness, in proportion to its individual fitness. A random number between
zero and total fitness sum is generated. If that random number falls in the
interval of the running sum of the individual fitnesses allotted to a specific
individual, that individual is allowed to mate.Roulette wheel selection is
thus a fitness proportional selection. A problem with the fitness
proportional selections is that as many individuals in the population attains
comparable fitnesses, there is little drive to cover the final distance up to
the optimum solution.

In tournament selection some individuals are drawn from the
population. A fitness-based ‘tournament’ is arranged between them, and
the best individual is allowed to mate. This favours the best individuals,
although they may have only marginally higher fitnesses than their
contenders.
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It is desirable to prevent in-breeding (sibling matings) (not to mention
self-matings: An individual mating with itself). This could be done by
keeping a list of each individual’s parents (and, if deemed necessary,
grandparents) and reject matings by individuals descending from the same
parent/ ancestor.

On the other hand, it may be desirable to assure that exceptional
individuals be kept in the population of the next generation. This can be
achieved by parthenogenesis (‘virgin birth’), where an individual is a
direct replica of one single parent individual.

A.7.5 Recombination, mutation, and inversion

Two basic type pitfalls to the genetic algorithm are ‘Greedy
exploitation’ and premature convergence. Greedy exploitation, i.e.
setting up the algorithm to go for the apparent solution too fast, may give
a suboptimal solution (local maximum).

Premature convergence results when all individuals close in on the same
solution early in the run. To prevent premature convergence,
recombination, mutation, and inversion are used. This will disrupt some of
the stable solutions building up in the population.

Over-using these genetic operators will result in chaos, with stable solutions
never showing up.

Figure, recombination

Chromosome A Chromosome B Chromosome A Chromosome B
1 0 0 1
1 0 0 1

1 0 � 0 1
1 0 1 0
1 0 1 0
1 0 1 0
1 0 1 0

Figure A.1: Recombination
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Figure, inversion

Chromosome Chromosome
before inversion after inversion
1 0
1 0
0 1

0 � 1
1 1
1 1
1 1

Figure A.2: Inversion

Figure, mutation

Chromosome Chromosome
before mutation after mutation
1 0
1 1

1 � 1
1 1
1 1
1 1
1 1

Figure A.3: Mutation

A.7.6 The population – the concept of generation

There are several ways of deciding what constitutes a population.

The simple method used for this genetic algorithm is known as the
generational method.

This consists in making a new population with the same number of
individuals each time. No mating is allowed across generations.

A.7.7 The fitness function

The fitness function is the genetic algorithm equivalent of natural genetics
fitness. Natural genetics ‘fitness’, of course, is only a concept used to
describe the reproductive ability of a certain group of individuals.
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The genetic algorithm fitness function is more of a driving force. It
transforms an ability of an artificial individual to solve a real world problem
into a chance for mating. The high performance individual will be given a
high probability of mating.

The fitness function of the genetic algorithm consists of the following steps:

1. Decode the individual’s chromosome set, rendering it into a problem
solution

2. Compare the decoded solution to real-world solution
OR let the decoded version try to solve the real-world problem

3. Assign fitness based on the quality of the solution

Assigning fitness is usually done by some mathematical method. The
method could be either ‘fair’ or biased. An example of a method that is not
‘fair’, is the so-called ‘elitist’ strategy. This will give extra credit to the best
individuals of the population (in addition to the fitness fairly allotted to
them for being the best). Such an elitist strategy may speed up finding the
best solution, but may fall prey to the ‘greedy exploitation’ dangers by
finding a local maximum in solution space.

Choosing a reasonable fitness function requires knowledge of the real-world
problem to be solved. Obviously, one has to know the problem area to be
able to tell a good solution from a bad one. Besides, it is important to be
familiar with problem area background information e.g. to tell whether a
certain fitness scaling would make sense.

Schema theorem

The schema theorem has been proposed as a theoretical explanation for
the success of genetic algorithms. A schema is a part of a chromosome in a
genetic algorithm. This could be a contiguous part, such as ‘1 1 0 0 0 1’. It
could also be defined as a subset of this part, such as ‘1 1 * * * 1’. The
schema would code for a part solution. This might help select for the
schema itself, irrespective of the intermediary parts of the chromosome (the
* * * in ‘1 1 * * * 1’). Schemas would be broken up by the genetic
operators, such as mutation, inversion, recombination. It is possible to
quantify this with probabilistic methods. The schema theorem has been the
subject of long debates, and although the debate has centred on the simple
genetic algorithm, doubt has been cast on the schema theorem in general.
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A.8 Genetic programming

Genetic programming (www.gp-field-guide.org.uk) [142] is a area that has
evolved to represent a large part of the whole field that is called
‘evolutionary programming’ , i.e. programming based on the principles of
natural evolution.
In genetic programming the individual does not contain a set of
chromosomes, but is a short actual program. The program is usually
represented as a tree consisting of operators that can be read as program
text. A basic example might be the program to find a solution to 5x2. This
might be e.g. (2 + 3) * x * x. The tree would then have e.g. the
multiplication operator * as its root, and a left branch operator +, with the
leaves 2 and 3. The right branch operator would be *, with the leaves x and
x. Such a program tree mutates by removing, shifting or implanting
branches and twigs on the tree. The first left branch might mutate to (10 /
2), giving the same result.

A.9 Complex adaptive systems

The study of so-called complex adaptive systems [143] builds on the ideas
of genetic algorithms.
Complex adaptive systems are formed by a number of autonomous elements
working in concert to create a system that has qualities that would not be
obvious from study of the individual elements.
Examples of such systems are cells growing to form an organism, ants in a
colony, the stock market, a flock of birds, or the immune system.
Such systems show emergent behaviour or emergence, the behaviour that
the whole system demonstrates and that transcends that of the individual
element. An example is an ant hill, which is not planned by any individual
ant, but that is still built by the ants together. A related term is swarm
intelligence.
A prerequisite for this emergence is the self organization of the elementary
units of the system.
Artificially created systems of this type are used similarly to the genetic
algorithm in problem solving [127].

A.10 Fuzzy logic

A basic tenet of classical predicate logic is that a phenomenon cannot both
be A and not A.
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Fuzzy logic, on the contrary, holds that a ‘truth value’ can vary between 1
and 0. Though it does have similarities to probabilistic reasoning, fuzzy
logic is more intuitive. Fuzzy logic seems well fit for many medical
applications[144, 145], partly because medical systems have to confront the
problem of uncertain knowledge.

A.11 Case based reasoning

Case based reasoning (CBR) is founded on the idea that if a similar problem
has been solved before, one could re-use the solution for a new problem.
There are numerous applications of case based reasoning [146, 68, 69].
This seemingly simple idea entails two difficulties: Deciding to what extent
two cases are similar, and having a large enough case base.
To resolve the similarity issue, one could use for instance the basic nearest
neighbour methods advocated elsewhere in this thesis.
As far as the case base is concerned, there is a need to cover all possible
cases in the ‘domain area’. Thus, it is necessary to include even rare cases.
However, this must not lead to a situation where the rarities appear to be
general cases.
Again, this is analogous to the line of thought concerning prior probabilities
and predictive diagnostic value of clinical signs.

A.12 Data mining

Data mining is long established in artificial intelligence. Data mining
algorithms extract information from data, either in databases, structured
text, or from raw text. There seems to be an upsurge for data mining in
bioinformatic research [135, 136, 147]. One data mining application is text
mining [138, 140, 139, 148], both classification and cross-referencing of
research articles and databases, and attempts at natural language
processing, i.e. attempting to get directly to the meaning of the written
article.

A.13 The semantic web

The semantic web [149, 150, 151] is the term used for the internet or the
World Wide Web, when seen as a medium for search and interchange of
data, information, and knowledge. To facilitate this, definitions and
ontologies for the content are necessary. In bioinformatics the GO or gene
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ontology (www.geneontology.org) is an important example, with its
comprehensive system of terms, definitions and relationships between the
entities. In medicine in general, UMLS (the Unified Medical Language
System) (www.nlm.nih.gov/research/umls) serves a similar purpose with its
set of vocabularies and thesauri. There are an increasing number of
XML-derived projects. XML - eXtensible Markup Language - by describing
the content of a document, for example a web page, is essential in the
transformation of the web for research purposes. A number of the XML
projects that exist are within biomedicine, such as Systems Biology Markup
Language, SMBL (www.smbl.org), Cell Markup Language, CellML
(www.CellML.org) and MicroArray Gene Expression Markup Language,
MAGE-ML (www.mged.org/Workgroups/MAGE/mage-ml.html).

A.14 The ‘closed universe’

Many real world problems are open ended, there are no confines within
which the solution to a problem has to exist.

As opposed to this, many artificial intelligence methods operate within a
‘closed universe’. First, a set of possible solutions are defined, then the
search for the optimal solution is launched.

Many expert systems assume a so-called ‘closed universe’, a static world
where things do not change over time. This is not true of syndromology. On
the contrary, new syndromes are ‘discovered’ all the time. This obviously
has consequences for a diagnostic system. Either it has to be dynamic and
incorporate new information, or its performance will deteriorate.

A.15 A summary history of artificial

intelligence in medicine

Artificial intelligence seems to have been steadily increasing in medical
research since 1990, as shown by the increasing number of publications,
figure A.4 and figure A.5.

One remarkable trait when one considers the development over the years of
artificial intelligence in medicine, is to what degree the same subjects are
represented. That does not mean there is no development. But still there is
a tradition where the early methods do not die out, and where the
beginnings of the new methods seem to have been there for a long time.

More poetically put [152]:
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computational methods are edging into higher-level
interpretation of clinical data and into diagnosis. We may have
thought this would happen with a sensational breakthrough.
Instead, it seems to be happening slowly, everywhere, all the
time, like the tide rising.

In artificial intelligence in general there were the ’AI winters’, starting
around 1974 and 1987 respectively. After periods of enthusiasm there were
periods of drought.

That does not dampen the impression of a steady rise in artificial
intelligence in medicine, as illustrated in the figures of Medline publications.

The artificial intelligence methods most often applied are artificial neural
networks [131, 115, 112, 111, 153, 117, 114] genetic algorithms
[95, 154, 124, 126, 125, 129] and hybrid systems with these two methods
[155, 132]. Almost all artificial intelligence techniques are being used in
medicine, noteworthy examples are case based reasoning (CBR) [68, 146]
and fuzzy systems [144, 145].

The most general trend is the change from the knowledge intensive
applications, often standalone diagnostic systems such as expert systems
installed on a PC, to the data driven, data intensive systems of today [156].
The current systems and computers are networked, involved in data
collection, information extraction and interpretation.

Machine learning, and text mining, apparently are gaining momentum in
medical artificial intelligence [147, 136, 135]. Both data mining [137] and
text mining [140, 138] are growing because of the need to handle the ever
expanding body of text and information both in PubMed itself, and in
databases and data repositories reachable through the internet. Databases
hold bioinformatics information, clinical information (though usually with
restricted access), and text, often in the form of medical publications and
books.

With the possibilities of collecting data from accessible data sources, there
was a need to either collect information in a standardised form, or to
understand text that was not standardised. The existence of different
classifications, different terms used for the same entities, and different
diagnoses for the same conditions, hampered progress.

Standardization, and later the development of ontologies [157] remedied the
situation. Ontologies then prepared the ground for the most recent
development, the networks [158, 159]. Networks are gaining ground
especially in bioinformatics, but the nets are encompassing also the clinical
areas of medicine.
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The other data collecting force is text mining, and natural language
processing (NLP).

Data mining, text mining and network construction, are the triad of present
day artificial intelligence in medicine.

The programs of the last two of the biannual artificial intelligence in
medicine conferences, AIMED’07 and AIMED’09 [160, 161], show the most
prevalent subjects are machine learning, guidelines and work flow systems,
decision support systems, natural language processing, agent based systems
and ontologies.

Machine learning can be mediated by so called intelligent agents [162],
programs or ‘software entities’ that can react to what it finds or senses in
the environment. On the internet, machine learning can be through
specialised web crawlers, spiders or robots; small pieces of program code
that are sent out on the net to retrieve specific pieces of information.

Networks - in the sense of interconnected computers - and networks - in the
sense of mash-ups of internet information collected through data mining -
are in the forefront. But traditional artificial intelligence methods are still
being used extensively, and are important in medicine.
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Figure A.4: A plot showing the number of artificial intelligence references in
PubMed 1990-2007. (Figure made with the “R” statistical package.)
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Figure A.5: A plot showing the number of artificial intelligence references in
PubMed 1990-2007, as proportion of total number of references.
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Appendix B

Elements of clinical
epidemiology

B.1 Introduction

This appendix introduces some concepts of clinical epidemiology, with a
focus on the predictive value of clinical signs, based on Bayes’ theorem.
There is also a brief discussion of quality of data in syndromology.
The discussion relates to syndromology, although the principles are
generally applicable to medicine.
A major point made here, is that the theory developed for biochemical
tests, is also valid for for clinical ‘tests’, i.e. the finding or eliciting of
clinical signs, and the clinical history or anamnesis.

B.1.1 Concepts and indices of clinical epidemiology

B.1.1.1 Sensitivity

The sensitivity is the probability that a diseased person has a positive test
result. It can also be seen as the proportion of diseased people who have a
positive test.

B.1.1.2 Specificity

The specificity is the probability that a non-diseased person has a
negative test result. (Non-diseased would be not having the disease in
question, either being disease-free, or having another disease).
The specificity is also the proportion of non-diseased people with a negative
test.
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The specificity and sensitivity are useful when evaluating a test. These
clinical indices or test indices, however, do not predict the probability of
the person tested being ill.

Predictive value To arrive at the predictive value, the number of affected
persons with a positive test (e.g. the clinical sign is present) is divided by
the total number of persons with a positive test.

The predictive value is heavily influenced by the prior probability of disease.

The prior probability of disease is the probability that the patient has the
disease, before the test is done. In a screening situation, or in general
practice, this probability may be low. At a local hospital the prior
probability is higher, because some dubious cases have been filtered out and
are not admitted to hospitals. At a third or fourth line specialist referral
centre the prior probability is typically high, since several lines of doctors
have seen the patients, and only those likely to have the disease remain.

Likelihood ratio

Likelihood ratios are used to calculate the risk that a patient has the
disease, after a test has been performed. The likelihood ratio itself is not
dependent on the prior probability of disease.

A desirable quality of the likelihood ratio is that it can take the post-test
probability (the posterior probability) of one test as its pre-test (prior)
probability for a second test. In this way several test results and likelihood
ratios can be multiplied to give the end result of a set of tests.

A technical inconvenience with the likelihood ratio is that pre-test
probabilities have to be converted to odds, and the post-test odds that
result from a chain of probability and likelihood ratio multiplications, have
to be converted back to probabilities.

Example of the effect of prior probability

In the following example, the prior probability is set at 40% , and it is
assumed that 1000 people are ‘tested’, i.e. examined for a clinical sign.

Syndrome present Syndrome not present
Positive test
Negative test

400 600 1000

If the sensitivity is 0.9 and the specificity is 0.95, the figures in the table
below follow:
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Syndrome present Syndrome not present
Positive test 360 30
Negative test 40 570

400 600 1000

Syndrome present Syndrome not present
Positive test 360 30 390
Negative test 40 570

400 600 1000

To arrive at the predictive value, the figure representing patients who have
the clinical sign, and who are affected, is divided by the figure representing
all those with the clinical sign, affecteds and unaffecteds alike. In this
example, the predictive value becomes 360/ 390 = 0.92. Thus, in this
example, if a person has a positive test (clinical sign present) there is a 92
per cent or 0.92 that he has the disease.

To re-examine this example using likelihood ratios, the prior probability is
converted to a prior odds. The prior odds are 0.4/ 0.6 = 0.67. (The prior
probability for being affected is 0.40, the prior probability for not being
affected is 1 - 0.40 = 0.60, and the prior odds are 0.4/ 0.6 = 0.67).

The prior odds are multiplied by the likelihood ratio. The likelihood ratio is
sensitivity/ (1 - specificity), or 0.9 / 0.05 = 18. So, to get the posterior
odds, the prior odds are multiplied by the likelihood ratio, 0.67 * 18 = 12.

Finally, to get the posterior probability the formula odds / 1 + odds is
used: 12/ 1 + 12 = 0.92.

B.1.2 False and true, two by two table

Two by two table showing TP, FN, FP, TN

Affected Not affected
Positive test True positives TP a b FP False positives
Negative test False negatives FN c d TN True negatives

‘Signal to noise ratio’

Another way to consider the false negatives/ false positives, is the signal to
noise ratio. This index contrasts true positives (the signal) with false
positives (the ‘noise’). As proportions this is the sensitivity or true positive
rate divided by 1 minus specificity (the false positive rate).
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The receiver operating curve generalises this approach by plotting possible
values of false positive rates against true positive rates.

B.2 Receiver operating curve

The concept of ROC curves or receiver operating curve is taken from
engineering. With a radio transmitter, there is a signal that the receiver
wants, and noise that obscures the signal.

To receive the signal in the clearest way, one strives to maximize the signal
to noise ratio. The ‘signal’ in medical diagnosis is the true positives. The
noise is the false positives. A receiver operating curve can be constructed by
plotting the true positives versus the false positives. An ROC curve will tell
where the mathematically best cut-off point is, if the goal is to maximize
the number of true positives, while minimizing the number of false positives.

In medical diagnosis the consequences of false negative and false positive
diagnoses also have to be taken into account.

An example might be suspected child abuse. A false positive diagnosis of
child abuse implies falsely accusing parents of mistreating their own child.
A false negative diagnosis means the child abuse is not detected, and that
abuse of the child might continue.

B.3 Syndrome-diagnostic approaches

B.3.1 Consistency

Two further aspects of clinical signs are:

• It should be easy to recognize

• Clinicians should agree as to whether the sign is present or not
(consistency, inter-observer and intra-observer variation)

B.3.1.1 Aspects of consistency

Accuracy For high accuracy one often uses the metaphor of being centred
on the target. Though individual hits may be off mark, as a group the hits
centre around the bull’s eye.

Precision Similarly, precision means that hits closely centre on a point,
though possibly off target.
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Inter-observer variation Clinicians - or, more generally, observers - do
not necessarily agree. One clinician may consider a sign present, another
may say it is not.
If this type of disagreement between observers is substantial, the clinical
sign loses its value. It is conceivable that signs that are measured (as
opposed to being classified as present/ not present) would be more reliable.
Intra-observer variation
Intra-observer variation would give the same kind of problems as
inter-observer variation. In intra-observer variation, the observer disagrees
with what she or he found on a previous occasion. (It is assumed that the
clinical sign is not a sign that changes).
Kappa
Obviously, different situations may give rise to different degrees of
disagreement between observers. This can be quantified by the measure
Kappa. If two observers both find a clinical sign in most of the patients,
there is less scope for disagreement between them.
Kappa is an attempt at quantifying the degree of disagreement beyond that
expected by chance.
Kappa is the proportion of agreement observed minus the proportion of
agreement expected by chance, divided by one minus the proportion of
agreement expected by chance alone. Complete agreement results in Kappa
= 1. For agreement beyond that expected by chance, Kappa is greater than
zero.
The coincidental sign
Some clinical signs are common. This means such a sign may be present by
coincidence in a child with a syndrome where this signs supposedly is not
present. In this way, coincidental signs may ‘pollute’ a clear clinical picture.
Negative signs
Both in the clinic and in machine diagnosis, it would be possible to use
negative signs.
‘Negative signs’ could be interpreted as the negative predictive value of
signs that are present.
It could also mean the predictive effect of signs that are not present.
More than one sign
In practice, a clinician will rely on more clinical signs.
If more than one sign has to be present for a diagnosis to be made, fewer of
the affected will fill the criteria. Thus, sensitivity falls. Conversely, the
number of false negatives will increase.
On the other hand, the false positive rate will fall as well, and since the
true negative rate is 1 - false positive rate; the true negative rate (and
specificity) will go up.
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Repeated testing
When many tests are performed, the probability that one or more test will
be falsely positive, increases. A false positive rate of 0.05 or five per cent,
means the risk it will falsely show that an unaffected patient is diseased, is
five per cent. For more tests, it is less intricate to calculate the probability
of not having a false positive. If there is a five per cent risk of a false
positive result, there is a ninety five per cent probability of not having a
false positive test.
The probability that two tests will not give a false positive result is
0.95*0.95.
With, for example, thirteen tests, the probability that no false positive tests
occur, is 0.95*0.95*0.95. . . , or 0.95 to the power of thirteen. With thirteen
tests there is a risk that one or more of the tests is a false positive, is given
by 1 - 0.51 = 0.49.
Cut off points
The cut off point is a value that divides between affecteds and not
affecteds. This concept fits best with continuous measurements, but in
principle applies to all clinical situations.
If one sets the cut off point to minimize e.g. the number of false positives,
this will give an increased number of false negatives, other things being
equal.
Receiver operating curves can aid in choosing the best cut off points. Often
these considerations on a mathematical basis have to be adjusted by which
consequences the false positives and the false negatives will have. It may
not be a catastrophe to falsely diagnose someone with allergy, but falsely
diagnosing cancer may be.
Prior probabilities in rare diseases
In a differential diagnostic situation with three very rare diseases, the prior
probability for each may be 0.33.
If, however, there might be another possible diagnosis, this might severely
change the prior probabilities. Since the three diagnoses were very rare, the
other contender diagnosis might attain a prior probability which were much
higher.
Non-mathematically, this should bring to mind that in a diagnostic
situation with very rare diseases one should also consider a rare phenotype
of a more common condition.

B.3.1.2 Bayes’ formula

Bayes’ formula deals with conditional probabilities. In medicine, it is often
used in a form that considers two possibilities, affected and not affected.
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The Bayes’ formula reads:

P (syndrome|sign) = P (sign|syndrome)× P (syndrome)

P (sign)

P = probability, ‘|’ = given that, on the condition that,
thus the whole formula reads: The probability that the child does have the syndrome if
he has this particular clinical sign, is the probability of having this sign if one has the
syndrome, multiplied by the probability of having the syndrome, divided by the
probability (in the general population of children) of having the sign.

B.4 Using a diagnostic test in a different

setting

A diagnostic system developed in a specific setting, need not perform well
when applied in a different setting.

If the system is developed at a tertiary centre - with high prior probabilities
- it may fail in a setting with low prior probabilities and a different
spectrum of diseases.

An illustration of the effect of probability can be given by considering two
situations, one with a medium and one with a high prior probability, in both
cases using a clinical sign with a sensitivity of 0.95 and a specificity of 0.99.

• Prior probability 0.50

• Prior odds 0.50/ (1 - 0.5) = 1

• Likelihood ratio 0.95/ (1 - 0.99) = 95

• Posterior odds 1 * 95 = 95

• Posterior probability 95/ 1 + 95 = 0.9896

Thus there has been a huge increase in the probability for the disease,
doing the test has given a lot of information.

Then, one might use the same sign in a diagnostic situation where the prior
probability of disease is already very high, like in a tertiary care centre.
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• Prior probability 0.95

• Prior odds 0.95/ (1 - 0.95) = 19

• Likelihood ratio 0.95/ (1 - 0.99) = 95

• Posterior odds 19 * 95 = 1805

• Posterior probability 1805/ 1 + 1805 = 0.9994

At the tertiary care centre, the probability has been moved a mere four -
five per cent. The decisions to treat may not have been changed by the
test. The reason to test in this situation would be if an extreme degree of
certainty was necessary, e.g. if the treatment were potentially very harmful.

Problems with using the Bayes’ approach in syndromology are that the
prior probabilities of syndromes may be just estimates, that the frequency
of a sign in a certain syndrome or in the general population may not be
known with certainty, and that signs are not independent.

An extension of a Bayes’ formula approach, is a Bayesian network. In a
Bayesian network, the nodes are interconnected and if one node is updated,
this spreads throughout the network.

Training data for methods such as neural nets and case based reasoning can
have cases where the numbers sum up to correct prior probabilities. Such a
system would still have to be retrained to handle a new environment.

B.5 Quality of data

B.5.1 Ascertainment bias

Ascertainment is a problem in medical research in general. It is often a
problem in medical genetics.

The problem with ascertainment is how to handle the affecteds who
brought a family to the attention of the health care system or the
researcher, and avoid an exaggerated number of affecteds.

Additionally, the chance of finding a family with more affected children is
greater than the chance of finding a family with fewer affecteds.

Ascertainment bias may lead to risk figures and prevalence figures that are
incorrect, and may distort the input that is to be used in designing and
training an artificial intelligence system.
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B.5.2 Other methodological issues

Selection bias
It is less complicated to search for patients at for example a clinic or an
outpatient clinic, than in the general population. If looking for patients
with cystic fibrosis at a lung clinic or a hepatology department, one may
find a presumably falsely elevated figure for the frequency of severe lung or
liver problems. This is a problem in purely clinical research. It is also a
problem for artificial intelligence systems that build on such figures.

B.5.3 Changing definitions of disease entities

Diagnoses may be considered fixed. In fact there is often in practice a
change of diagnostic criteria, e.g. when a new test is introduced. This may
give rise to problems of classification.
The general case
In general, if A represents the patients classified by the old definition, B
represents the patients by the new definition, and C represents the patients
where the old and the new definitions agree, the following holds:

A C��
��

B��
��

Figure B.1: Venn diagram: ‘Old disease’ A, ‘new disease’ B, agreement be-
tween ‘old’ and ‘new’ disease definition C (A ∩ B)

• A: Had the disease by the old definition, does not have it now (‘Old
disease’)

• B: Did not have the disease by the old definition, does have it now
(‘New disease’)

• C: Agreement between old and new disease definition
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If A and B are both small, practical problems may be insignificant. If A or
B is large, this may cause problems. A diagnosis is a tag, a carrier of
information. If the disease is no longer the same, the information will be
wrong.

B.5.4 Clinical signs used in diagnosis

An artificial intelligence system will need information on what clinical signs
to use in diagnosis.
This information may come from various sources.
The prospective investigation
Ideally, one would want to do a prospective investigation, examining all
newborns in an area over a certain period. This would give figures both for
the frequency (birth prevalence) of the different syndromes, and for the
clinical signs associated with these syndromes. However, such an
investigation would probably prove prohibitive both in terms of time and
labour.
Even for common syndromes with a birth prevalence of one in ten
thousand, an investigation would have to last for years in most hospitals to
have numbers large enough to give statistical significance.
The one-syndrome review
The one-syndrome review is undertaken by investigators who searches a
large uptake area for cases of a single syndrome.
A potential problem with the one-syndrome review is the circular argument
that follows from the lack of an external validation. The investigator may
decide on a set of clinical signs as inclusion criteria for a syndrome research
project. The findings are recorded, and the conclusion is that in this
syndrome, these very clinical signs frequently occur.
For siblings with genetic syndromes, it would seem highly reasonable to
assign all siblings to the same diagnostic group, even if one or two of the
siblings lacked one clinical sign. This may lead to a bias, though, when
comparing with a sporadic or non-genetic condition.
The one-syndrome investigation does not say anything about the frequency
of a particular clinical sign in the general population of newborns, or in
groups of patients with syndromes that might be considered in the
differential diagnosis.
One-syndrome investigations are likely to mix syndrome patients of
different age groups. This may be a problem with clinical signs hat change
with time.
One-syndrome investigations in addition are prone to selection bias.



Appendix C

Philosophical background

C.1 Introduction

This appendix briefly presents a few of the philosophical issues that underlie
syndrome diagnosis, and to some extent, medical diagnosis in general.

Relative to scientific fields such as physics, artificial intelligence is a very
young science.

Because of its lack of an established philosophical foundation, philosophical
issues that more established disciplines have left behind them, often emerge
to the surface. The new field also faces and has to come to grips with,
philosophical questions that older disciplines such as medicine take for
granted, and does not consider topics for discussion. An example of this is
the lack of a criterion standard of diagnosis. In everyday clinical work, this
may seem unproblematic. As discussed in earlier sections, however, it does
have consequences that are far reaching, and eventually has consequences
for medicine’s standing as a scientific discipline.

Clinical syndrome diagnosis is based upon the assumption that signs found
by physical examination of a newborn could be used to assign the newborn
to the appropriate diagnostic group.

Diagnoses are labels, and carriers of links to information about prognosis
and treatment.

In modern medicine, many consider the distinction between disease, illness
and sickness reasonable. The disease is seen as a natural phenomenon. The
illness is what the disease does to a person, the clinical manifestations. The
sickness is how the sick person experiences his illness.

In this distinction, the disease is a ‘universal’, which has a set of qualities
that is always seen. This concept is based upon the ‘ideas’ or ‘forms’
described by Plato.
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C.2 Nominalism versus essentialism

Essentialism and an essentialist view of disease, is congruent with this line
of thinking. Essentialism holds that there is an ‘essence’, a part of Nature,
that researchers can discover. ‘Truth’ can be disclosed more or less
perfectly, but that does not change truth, which exists irrespective of what
we do or believe. Diagnosticians can diagnose a disease correctly, and in
that case they have found the disease or diagnosis [163, 164]

Nominalism In nominalism, diseases do not exist as separate entities.
Disease diagnoses are labels that are attached to people who exhibit a set of
clinical signs [165, 166], to facilitate communication about diagnoses, and
the managing of sick people.

C.3 Categories

From the roots of Aristotelian philosophy, categories have been important
in Western philosophy. In Nature no two things are identical, not even two
grains of sand. Categorization is an attempt at bringing order to chaos.

A syndromes is recognised as a pattern by a clinician, and is categorized by
being given a name. However, it is not obvious that the syndrome is
something that ‘exists in Nature’. Later others may think this may be
nearly the same as another syndrome, that the new syndrome should
actually be split into two sub-syndromes, or that there are intermediate
forms between this and another syndrome.

In the words of philosopher-novelist Robert Pirsig:

. . . there is a knife moving here.

A very deadly one; an intellectual scalpel so swift and so sharp
you sometimes don’t see it moving. You get the illusion that all
those parts are just there and are being named as they exist.
But they can be named quite differently and organized quite
differently depending on how the knife moves. Robert M
Pirsig [167]

Several artificial intelligence methods do not rely on predefined categories,
e.g. neural nets, identification tree techniques [168]. Likewise, some
mathematical methods like cluster analysis do not need predefined
categories.
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C.4 Tacit knowledge

As discussed on page 111, the process of knowledge acquisition tries to
extract information through interviews with an expert, for example a
syndromlogist. What will often happen is that the expert does not render
expert advice. She may even fall back on what she was taught herself as a
novice.
Polanyi, in his book ‘The tacit dimension’ [169], suggests this is because the
expert does not know what she knows, she is not aware of what her expert
knowledge consists in. Such ‘tacit knowledge’, then, according to Polanyi, is
knowledge that an expert masters without being conscious of it.
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Appendix D

Code: Lisp code for the genetic
algorithm

I had intended to include all the code for the genetic algorithm Lisp
program.
However, the program’s 5000 lines of code would have added an extra 100 -
150 pages to this thesis, even with smaller than normal font. It was
therefore decided not to include the program code.
The program consists of modules in different files. The different program
parts are two small files for loading and compiling the other files, and the
program proper. The modules of the genetic algorithm program are the
following: There is a population module for building the random first
generation, and for taking care of mating. An ‘individual module’ creates
and maintains individuals of the genetic algorithm, and applies mutation,
inversion and recombination. The DNA module handles the input DNA
sequences and builds the hash table of short (n-mer) DNA sequences. A
module called ‘area’ keeps track of the areas that are being formed, and
that consist of he joined n-mer sequences from the genetic algorithm
individuals. The pack and path modules handle their respective parts of
the program. The rawdna module is used as a container for the input
sequences to the program. There is a utilities module for smaller utility
functions used in other parts of the program. What is included below, is
the first few lines of the program.
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;================================================================

;=== GENETIC ALGORITHM PROGRAM ===

;=== ===

;=== AUTHOR ===

;=== OIVIND BRAATEN ===

;=== ULLEVAL UNIVERSITY HOSPITAL ===

;=== OSLO ===

;=== NORWAY ===

;=== ============================================================

;;; ============================================================

;;; ‘GLOBAL’ VARIABLES, PROCEDURE MAIN ;;;

;;; ============================================================

(defvar *number-of-generations* 0)

(defvar *halfway-through-generations* 0)

(defvar *verbose* nil)

(setf *verbose* nil)

(defvar *no-of-runs*)

(defvar present-no-of-runs)

(setf *gc-verbose* ’())

(defun initialize ()

(load "load-files.lsp")

(activate-dna-module)
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(activate-individual-module)

(activate-population-module)

(activate-pack-module)

(activate-utilities-module)

(activate-paths-module)

(setf *number-of-generations* 16)

(setf *halfway-through-generations*

(floor (/ *number-of-generations* 2)))

)

(defun main ()

(print-time)

(print-settables)

(dotimes (outer-counter *number-of-generations*)

(generational-report outer-counter)

(fitness-calculation *population*)

(if (>= outer-counter *halfway-through-generations*)

(progn

(form-packs *population*)

(expand-packs *population*)

(calculate-fitness-all-packs *population*)

(check-merge-all-packs *population*)

(go-through-packs-update-paths *population*)

)) ; progn & if
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(print-fitnesses-file present-no-of-runs)

(mutation)

(recombination)

(inversion)

(mating *population*)

(setf *population* *new-population*)

(setf *new-population* ’() )

) ; dotimes

; (compute-fitness-and-print-population *population*)

(print-paths)

(print-sequences)

(print-sequences-file)

(print-time)

) ; main

(defun generational-report (gen-ctr)

(format t "~& Entering generation number ~a , run number ~a ~3% "

(+ gen-ctr 1) present-no-of-runs)

)

;;; ============================================================= ;;;

;;; ================= MAIN RUN ======================== ;;;

;;; ============================================================= ;;;

(setf *no-of-runs* 1)

(setf present-no-of-runs 1)
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(dotimes (cnt *no-of-runs*)

(format t ";;; =================================================== ;;;")

(format t "~& Run no ~a ~%" (+ cnt 1))

(format t ";;; =================================================== ;;;")

(initialize)

(main)

(setf present-no-of-runs (+ present-no-of-runs 1))

)

(print-seq-counts-multiple-runs)

(end-of-run-text)

;;; ============================================================= ;;;

;;; ============== END OF MAIN RUN ==================== ;;;

;;; ============================================================= ;;;

...
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(format t "~& ====================================== ~%")

(format t "~& LOADING FILES OF THE GENETIC ALGORITHM ~%" )

(format t "~& ====================================== ~3%")

(load "rawdna")

(load "utilities")

(load "dna")

(load "ind")

(load "pop")

(load "area")

(load "pack")

(load "path")



Appendix E

Sample output from the genetic
algorithm

E.1 Output showing the first five

individuals of a population

===== THE POPULATION =====

Population id: 0

Individual-ID: 0

Parents: (1222 468)

Generation number: 5

Chromosome set 1: ((0 1 0 0 0 1 1 0 1 0 1 0 1 0 1 1 1)

(1 1 1 0 0 0 0 1 1 1 0 0 1 0 0 0 0))

Chromosome set 2: ((0 0 1 0 1 1 1 0 1 0 0 0 1 0 1 0 1)

(1 0 0 1 1 0 0 0 1 1 1 1 0 0 1 0 1))

Sequence position: 656

Sequence identifier: HGF

All sequence positions:

HGF : (656 2423)

PLA : (376 496 1012 1291 1318)
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LPA : (240 267 609 951 1293 1635 1977 2319 2661 3003 3345 3687 4029 4371

4713 5055 5397 5739 6081 6423 6765 7107 7449 7791 8133 8475 8817 9159

9501 9843 10185 10527 10842 10869 11211 11529 11871 12186 12213 12528

12555)

Short DNA strings: ((A A C T A C))

Fitness: 143

Individual-ID: 1

Parents: (2 1054)

Generation number: 5

Chromosome set 1: ((1 0 1 0 1 0 1 0 1 1 1 1 1 1 0 1 0)

(0 0 1 0 0 0 0 0 1 0 0 1 1 0 0 1 1))

Chromosome set 2: ((1 0 1 0 0 0 1 1 1 0 1 0 0 1 1 0 0)

(1 1 0 0 1 0 1 1 0 0 1 1 1 0 0 0 1))

Sequence position: 9774

Sequence identifier: LPA

All sequence positions:

HGF : (3323)

PLA : (1249)

LPA : (198 540 882 1224 1566 1908 2250 2592 2934 3276 3618 3960 4302 4644

4986 5328 5670 6012 6354 6696 7038 7380 7722 8064 8406 8748 9090 9432

9774 10116 10458 10800 12144 12486 13360)

Short DNA strings: ((T G G T C A))

Fitness: 110

Individual-ID: 2

Parents: (815 1347)

Generation number: 5

Chromosome set 1: ((0 1 1 1 1 1 0 1 0 0 0 0 1 0 1 1 0)

(1 0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1))

Chromosome set 2: ((0 1 1 0 1 0 1 1 1 0 0 0 0 0 0 1 0)

(0 1 0 1 1 1 0 0 1 0 0 1 0 1 0 0 0))

Sequence position: 1311

Sequence identifier: HGF

All sequence positions:

HGF : (1311 5243)

PLA : (1077 1383 1748)

LPA : (332 674 1016 1358 1700 2042 2384 2726 3068 3410 3752 4094 4436 4778

5120 5462 5804 6146 6488 6830 7172 7514 7856 8198 8540 8882 9224 9566

9908 10250 10592 10934 11936 12278 12620 12985)

Short DNA strings: ((G T G G G A))

Fitness: 122
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Individual-ID: 3

Parents: (142 1313)

Generation number: 5

Chromosome set 1: ((0 1 0 1 1 0 1 0 0 1 1 0 1 1 1 1 1)

(1 1 0 1 1 1 0 1 1 1 1 1 0 1 0 1 0))

Chromosome set 2: ((0 1 0 0 1 0 1 0 1 0 1 0 0 1 0 0 1)

(1 1 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0))

Sequence position: 12158

Sequence identifier: LPA

All sequence positions:

HGF : (601 850 1550 2308 2848)

PLA : (1225 1263 1363)

LPA : (212 231 554 896 1238 1580 1922 2264 2606 2948 3290 3632 3974 4316

4658 5000 5342 5684 6026 6368 6710 7052 7394 7736 8078 8420 8762 9104

9446 9788 10130 10472 10814 11156 11474 11493 11816 12158 12500)

Short DNA strings: ((A C C A C A))

Fitness: 140

Individual-ID: 4

Parents: (882 1373)

Generation number: 5

Chromosome set 1: ((0 0 1 0 1 0 1 1 0 1 0 1 1 1 1 0 1)

(0 1 1 1 1 0 1 1 1 0 1 0 1 0 0 1 1))

Chromosome set 2: ((0 0 0 0 0 0 0 1 1 1 0 1 1 0 1 1 1)

(1 0 1 1 1 0 0 0 0 0 0 1 0 1 0 1 0))

Sequence position: 1261

Sequence identifier: PLA

All sequence positions:

HGF : NIL

PLA : (794 1282 1370 1597)

LPA : (163 505 573 847 915 1189 1257 1531 1599 1873 1941 2215 2283 2557 2625

2899 2967 3241 3309 3583 3651 3925 3993 4267 4335 4609 4677 4951 5019

5293 5361 5635 5703 5977 6045 6319 6387 6661 6729 7003 7071 7345 7413

7687 7755 8029 8097 8371 8439 8713 8781 9055 9123 9397 9465 9739 9807

10081 10149 10491 10765 10833 12177 12519 12607)

Short DNA strings: ((A C T C G A) (A C T C C A) (A C C C G A) (A C C C C A))

Fitness: 134
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E.2 Output showing part of a ‘path’

----- ----- ----- ----- -----

THE SEQUENCE: PLA

----- ----- ----- ----- -----

Sequence: PLA Base: G Base no 1166: 315 ********************************

Sequence: PLA Base: G Base no 1168: 316 ********************************

Sequence: PLA Base: G Base no 1169: 320 ********************************

Sequence: PLA Base: T Base no 1170: 324 ********************************

Sequence: PLA Base: C Base no 1171: 325 ********************************

Sequence: PLA Base: C Base no 1172: 327 *********************************

Sequence: PLA Base: A Base no 1173: 328 *********************************

Sequence: PLA Base: G Base no 1174: 328 *********************************

Sequence: PLA Base: G Base no 1175: 329 *********************************

Sequence: PLA Base: A Base no 1176: 332 *********************************

Sequence: PLA Base: C Base no 1177: 333 *********************************

Sequence: PLA Base: T Base no 1178: 335 **********************************

Sequence: PLA Base: G Base no 1179: 337 **********************************

Sequence: PLA Base: C Base no 1180: 338 **********************************

Sequence: PLA Base: T Base no 1181: 339 **********************************

Sequence: PLA Base: A Base no 1182: 339 **********************************

Sequence: PLA Base: C Base no 1183: 340 **********************************

Sequence: PLA Base: C Base no 1184: 341 **********************************

Sequence: PLA Base: A Base no 1185: 341 **********************************

Sequence: PLA Base: T Base no 1186: 341 **********************************

Sequence: PLA Base: G Base no 1187: 342 **********************************

Sequence: PLA Base: G Base no 1188: 342 **********************************

Sequence: PLA Base: T Base no 1189: 342 **********************************

Sequence: PLA Base: G Base no 1190: 343 **********************************

Sequence: PLA Base: A Base no 1191: 342 **********************************

Sequence: PLA Base: T Base no 1192: 344 **********************************

Sequence: PLA Base: G Base no 1193: 344 **********************************

Sequence: PLA Base: G Base no 1194: 344 **********************************

Sequence: PLA Base: A Base no 1195: 344 **********************************

Sequence: PLA Base: C Base no 1196: 344 **********************************

Sequence: PLA Base: A Base no 1197: 344 **********************************

Sequence: PLA Base: G Base no 1198: 344 **********************************

Sequence: PLA Base: A Base no 1199: 344 **********************************

Sequence: PLA Base: G Base no 1200: 343 **********************************

Sequence: PLA Base: C Base no 1201: 343 **********************************
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Sequence: PLA Base: T Base no 1202: 343 **********************************

Sequence: PLA Base: A Base no 1203: 344 **********************************

Sequence: PLA Base: C Base no 1204: 344 **********************************

Sequence: PLA Base: C Base no 1205: 345 **********************************

Sequence: PLA Base: G Base no 1206: 345 **********************************

Sequence: PLA Base: A Base no 1207: 345 **********************************

Sequence: PLA Base: G Base no 1208: 345 **********************************
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E.3 Output showing the n-mer hash table

The output shows the n-mer (here 8 bases), the sequence names, and the
start point of that n-mer (that 8 base sequence) in that sequence.

(A C G C A A A A) = ((ENSG00000180509) (ENSG00000053918 294501 12860)

(ENSG00000183873) (ENSG00000145362 238759 112415)

(ENSG00000008086) (ENSG00000169057) (ENSG00000055118))

(C C G C A A A A) = ((ENSG00000180509) (ENSG00000053918 28941)

(ENSG00000183873) (ENSG00000145362 304411)

(ENSG00000008086 117230) (ENSG00000169057 22795)

(ENSG00000055118))

(G C G C A A A A) = ((ENSG00000180509) (ENSG00000053918)

(ENSG00000183873 72406) (ENSG00000145362)

(ENSG00000008086) (ENSG00000169057) (ENSG00000055118))

(T C G C A A A A) = ((ENSG00000180509) (ENSG00000053918) (ENSG00000183873)

(ENSG00000145362 50245) (ENSG00000008086 80403)

(ENSG00000169057) (ENSG00000055118))

(A G G C A A A A) = ((ENSG00000180509 31550 14676 12499)

(ENSG00000053918 388660 359647 324708 323314 307619

208949 204518)

(ENSG00000183873 72732 71144 14052 7030)

(ENSG00000145362 304625 303714 287732 263295 159985

132442 67911 51205 49937 1324)

(ENSG00000008086 218181 134845 127535 122634)

(ENSG00000169057 33594) (ENSG00000055118))

(C G G C A A A A) = ((ENSG00000180509) (ENSG00000053918 338367)

(ENSG00000183873) (ENSG00000145362 122073)

(ENSG00000008086 178328) (ENSG00000169057)

(ENSG00000055118))
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E.4 Output showing a ‘pack’

The output shows the ‘areas’ found in the long DNA sequence, and the
individuals that make up the pack.

===== THE PACK =====

Pack id: 88

Pack fitness: 9.0

Common DNA strings: ((T C A G C C C C) (G G T A A A A T) (T A A A A T T G))

--- --- --- --- ---

Areas:

AREA-ID: AREA

Sequence type: SEKV5

Start: 31

Stop: 48

Area fitness: 9/25

Sequences: (31 46 48)

The SEKV5 sequence from 31 to 56 :

(T C A G C C C C A A A A G A A G G T A A A A T T G C)

AREA-ID: AREA

Sequence type: SEKV4

Start: 31

Stop: 48

Area fitness: 9/25

Sequences: (31 46 48)

The SEKV4 sequence from 31 to 56 :

(T C A G C C C C A A A A G A A G G T A A A A T T G C)
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AREA-ID: AREA

Sequence type: SEKV3

Start: 60

Stop: 77

Area fitness: 9/25

Sequences: (60 75 77)

The SEKV3 sequence from 60 to 85 :

(T C A G C C C C A A A A G A A G G T A A A A T T G C)

AREA-ID: AREA

Sequence type: SEKV2

Start: 60

Stop: 77

Area fitness: 9/25

Sequences: (60 75 77)

The SEKV2 sequence from 60 to 85 :

(T C A G C C C C A A A A G A A G G T A A A A T T G C)

AREA-ID: AREA

Sequence type: SEKV1

Start: 60

Stop: 77

Area fitness: 9/25

Sequences: (60 75 77)

The SEKV1 sequence from 60 to 85 :

(T C A G C C C C A A A A G A A G G T A A A A T T G C)

--- --- --- --- ---

Individual-ID: 127

Parents: (270 469)

Generation number: 11

Chromosome set 1: ((0 0 0 1 1 0 0 0 0 1 0 0 0 1 0 1 0)

(0 1 0 0 1 0 0 1 1 0 0 0 1 0 1 0 1))

Chromosome set 2: ((1 1 0 1 1 1 0 1 1 1 0 0 0 0 1 1 1)
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(0 1 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0))

Sequence position: 48

Sequence identifier: SEKV5

All sequence positions:

SEKV5 : (48)

SEKV4 : (48 908 8159)

SEKV3 : (77)

SEKV2 : (77)

SEKV1 : (77)

Short DNA strings: ((T A A A A T T G))

Fitness: 34

Individual-ID: 609

Parents: (685 667)

Generation number: 11

Chromosome set 1: ((1 1 0 1 1 1 0 1 1 1 0 0 0 0 1 1 1)

(0 1 1 1 1 0 0 0 1 0 0 1 0 1 1 1 0))

Chromosome set 2: ((1 1 0 0 0 1 0 0 1 1 0 1 0 0 1 1 1)

(1 1 1 1 0 0 0 1 1 1 1 0 1 0 0 1 0))

Sequence position: 1193

Sequence identifier: SEKV5

All sequence positions:

SEKV5 : (46 1193)

SEKV4 : (46)

SEKV3 : (75)

SEKV2 : (75)

SEKV1 : (75)

Short DNA strings: ((G G T A A A A T))

Fitness: 29

Individual-ID: 750

Parents: (469 822)

Generation number: 11

Chromosome set 1: ((1 1 0 1 1 1 0 1 1 1 0 0 0 0 1 1 1)

(0 0 0 0 0 0 1 1 1 1 0 0 1 0 1 1 1))

Chromosome set 2: ((0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 1)

(1 0 0 1 0 0 0 0 0 0 0 0 1 1 0 1 0))

Sequence position: 31

Sequence identifier: SEKV5

All sequence positions:

SEKV5 : (31)
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SEKV4 : (31)

SEKV3 : (60)

SEKV2 : (60)

SEKV1 : (60 2054)

Short DNA strings: ((T C A G C C C C))

Fitness: 29
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Scripts: Script code text

F.1 Perl code

#! /usr/bin/perl

use strict;

use warnings;

use String::Approx ’amatch’, ’aindex’;

use DBI;

my $database = ’oivindb_private’;

my $server = ’mysql.cbs.dtu.dk’;

my $user = ’oivindb’;

my $password = ’$ENV{HOME}/.my.cnf’;

my $oivindb_private = DBI->connect("dbi:mysql:$database:$server",

$user, $password, {RaiseError=>1});

### The variables that must be set for each run:

my $ClinSign = "Retinitis pigmentosa%";

my $ClinSignName = "RetPigmentosavsDNA";

###

my $sqlcmd ;

my $sql ;

161



162 APPENDIX F. SCRIPTS: SCRIPT CODE TEXT

$sqlcmd = qq{CREATE TABLE $ClinSignName (GeneCode VarChar(20) NOT NULL,

DNASeq longtext NOT NULL) };

$sql = $oivindb_private->prepare($sqlcmd);

$sql->execute();

$sqlcmd = qq{INSERT INTO $ClinSignName (GeneCode, DNASeq)

SELECT DISTINCT gene, sequence

FROM mim2gene AS a

INNER JOIN OBClinSign AS b

ON (a.mim=b.Syndrome)

WHERE b.ClinSign LIKE "$ClinSign%"}; ### This expression ‘ClinSign’

### must be set manually

### on occasion

$sql = $oivindb_private->prepare($sqlcmd);

$sql->execute();

$sqlcmd = qq{select GeneCode, DNASeq FROM $ClinSignName};

$sql = $oivindb_private->prepare($sqlcmd);

$sql->execute();

open (OUTFILE, ">FromSQLRaw");

while (my $row = $sql->fetchrow_arrayref) {

print OUTFILE join("\t", @$row), "\n";

}

close OUTFILE;

$oivindb_private->disconnect;

### Making two files by transforming from the raw format: .fa and .lsp,

### a fasta file and a lisp format file respectively.



F.1. PERL CODE 163

### The input file is the file made from the SQL search in the database.

open (OUTFILE, ">fil.fa");

open (INFILE, "<FromSQLRaw");

while (my $line=<INFILE>) {

# if (s/([ACGT])/$1 /g)

chomp($line);

$line =~s/([ACGT])/$1 /g;

$line =~s/(ENSG)\s+(\d+)/>$1$2 \n/g ;

# {print OUTFILE "$line \n ";}

print OUTFILE "$line \n";

}

close INFILE;

close OUTFILE;

open (OUTFILE, ">fil.lsp");

open (INFILE, "<fil.fa");

while (my $line=<INFILE>) {

# if (s/([ACGT])/$1 /g)

$line =~s/>(ENSG\d+)/\)\) \($1 \( /g ;

# {print OUTFILE "$line \n ";}

print OUTFILE "$line \n";

}

close INFILE;

close OUTFILE;

# s/([ACGT])/$1 /g

# s/(ENSG)\s+(\d+)/\)\) \($1$2 \( \n/g

# Legge inn topp- og bunntekst fra .lsp-fil

exit;

### End of the file transforming operation
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#! /usr/bin/perl

use strict;

use warnings;

use String::Approx ’amatch’, ’aindex’;

my @inputs;

# @matches = aindex("xyzzy", @inputs);

#print "@matches \n ";

# my @catches = amatch("plugh", [’2’], @inputs);

# use LWP;

&get_seqs; # Calling the procedure get_seqs

# which will go through the

# results file and pick out

# sequences and place them in @inputs

# print "@inputs \n ";

### Calling procedures from the package StringApprox

### These procedures will match strings that are not

### identical, but with a given percentage of dissimilarity

# my @matches = amatch("TTTTTTTTTTGAGA", [’5%’], @inputs);

# my @matches = amatch("TTTTTTTTTTGAGA", [’10%’], @inputs);

my @matches = amatch("TTTTTTTTTTGAGA", [’10%’], @inputs);

# my @indmatches = aindex("CCTGGGTGACAGAGCGAGACTCTGTCTCAA", @inputs);

# print "@indmatches \n ";

# print "The matches found: @matches \n ";
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### Print out the matches found by the approximate

### search for sequences

print "The individual matches: \n ";

foreach my $match (@matches) {print "Match: $match \n ";};

my $matchlength=@matches;

print "The number of matches: $matchlength \n ";

############ procedure get_seqs ##################

sub get_seqs {

open (RESFILE, "<resRecUVI"); ## Example results file

while (<RESFILE>) {

if (/\(([ACGT]+)\)/g)# {print "Found sequence: $1 \n ";#}

{push (@inputs, $1);}

}

close RESFILE;

}

############ procedure get_seqs ##################

### Print matches to file

open (UTFIL, ">sekv.fa");

# print UTFIL "> \n ";

# foreach my $match (@matches) {print UTFIL " $match ";};

foreach my $match (@matches) {$match =~ s/([ACGT])/$1 /g};

foreach my $match (@matches) {print UTFIL ">Sekv \n $match \n \n";};

# print UTFIL "> \n ";

# foreach my $match (@matches) {print UTFIL " $match \n ";};

close UTFIL;
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F.2 Python code

#! /usr/bin/env/ python

import os

### Run the lisp program

lisp = os.popen(’lisp -dynamic-space-size 1500 > GALogg’, ’w’)

lisp.write("""

(load "comp.lsp")

(load "main")

""")

lisp.write("""

(quit)

""")

lisp.close()

print ’\n\n Finished lisp run \n’

####################################################

# OR:

# lisp.write("""

# (load "detcmds.lsp")

# """)

#

# WHERE detcmds.lsp says

#

# (load "comp.lsp")

# (load "main")

#

####################################################
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### Use Python to rearrange the output file

### by running a Python command file

pycmd = ’python rearrfitns.py’

os.system(pycmd)

### Get the Python module for the ‘R’ statistical package

from rpy import *

### Use Python to run an ‘R’ command file

### to make boxplots, and turn the boxplot figure

### into an encapsulated postscript file

r.source(’rcom.R’)
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#! /usr/bin/env/ python

import re

# Open the DNA sequence input file

rawfile=open(’rawdna.lsp’,’r’)

# rawfile=open(’longQT.fasta’,’r’)

# rawfile=open(’SeqCntsMultRuns’,’r’)

#rawfile=open(’Results/lpaIVSeqs’,’r’)

raw=rawfile.read()

# print raw

# Compile the pattern to search for in the input file

seq= re.compile(

#r’\([ACGT\s]*(G T T T G T T T)[ACGT\s]*\)’,re.MULTILINE

# r’(A T T A C T G C C G A A A T C C A G A T G)’

r’(A [ACGT] T [ACGT])’ # Test case

)

# Collect the short sequences found

# print re.findall(seq,raw)

seqfnd = []

seqfnd = re.findall(seq,raw)

# Enter the sequences found into

# a dictionary/ hash table, add

# a count for each different sequence variation

# (if any variation exists)

seqcnt = {}
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for elt in seqfnd:

seqcnt.setdefault(elt,0)

seqcnt[elt]+=1

# Print out the sequences found, and their counts

for elt in seqcnt: print elt, ’ ’, seqcnt[elt]
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#! /usr/bin/env/ python

import os, re

############################################################

# Calling Lisp functions

############################################################

# sequence length, no of sequences

lisp = os.popen(’lisp -dynamic-space-size 1200 ’, ’w’)

##### Parameters to random-dna-seq:

# Length of individual (randomly generated) DNA sequence

# and the Number of such sequences

lisp.write("""

(load "rndDNA.lsp")

(random-dna-seq 10000 5)

""")

lisp.write("""

(quit)

""")

lisp.close()

print ’\n\n Finished lisp part \n’

############## End, calling Lisp functions ############

############################################################
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# Pyhton proper

############################################################

innfil= open("randDNA.fasta",’r’)

innfiltxt = innfil.read()

pattern= re.compile(

r’[()]’,re.MULTILINE

)

###### Remove parentheses

rmvparthns = re.sub(pattern, ’ ’, innfiltxt)

innfil.close()

import time

utfil = open("frandDNA.fasta",’w’)

utfil.write(rmvparthns)

utfil.close

########### Write to rawdna.lsp

utfil = open("tmprawdna.lsp",’a’)

### Write header info

header = "\n\n;;;; Random DNA sequences, file created on " \

+ str(time.localtime()[2]) + ’ ’ + str(time.localtime()[1])+ ’ ’

+ \ str(time.localtime()[0]) \

+ " at " + str(time.localtime()[3])

+ str(time.localtime()[4]) + " ;;;;; \n\n\n"

utfil.write(header)
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innfil= open("startlspraw",’r’)

innfiltxt = innfil.read()

utfil.write(innfiltxt)

innfil.close()

### Write sequences

innfil= open("randDNA.lsp",’r’)

innfiltxt = innfil.read()

utfil.write(innfiltxt)

innfil.close()

### Write tail

innfil= open("endlspraw",’r’)

innfiltxt = innfil.read()

utfil.write(innfiltxt)

innfil.close()

utfil.close()
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#! /usr/bin/env/ python

import re

RunGen = []; fitns = [] # store data pairs in lists x and

### Open output file from the genetic algorithm

fitnfile=open(’fitness.dat’,’r’)

### Compile patterns to match variable names

### and values

pattern = re.compile(r’(?P<Var>Run\d+Gen\d{1,3})’)

pattern2 = re.compile(r’(?:(?P<Ftns>-?\d{1,4}) )+’)

### Read output of fitnesses from the genetic algorithm

### and look for vaiable names and fitness values

### Save what is found

while True:

line = fitnfile.readline()

if not line: break

match = re.search(pattern,line)

match2 = re.search(pattern2,line)

if match:

RunGen.append(match.group(’Var’))

fitns.append(match2.group())

cfitns = []

for elt in fitns:

fftn = elt.split()

cfitns.append(fftn)
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fitnfile.close()

outcnt = len(cfitns[1])

incnt = len(RunGen)

### Open file for writing rearranged variable names

### and fitness values

out=open(’rfitness.dat’,’w’)

### Write the variables ad values to file,

### now with variables as column headers

### and values as columns

for name in RunGen:

out.write(name)

out.write("\t")

out.write("\n")

for inner in xrange(outcnt):

out.write("\n")

for outer in xrange(len(RunGen)):

out.write(cfitns[outer][inner])

out.write("\t\t")

out.close()
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F.3 ‘R’ code

ftndata = read.table("rfitness.dat", header=T)

attach(ftndata)

postscript(file= ’RPlotFitnesses.eps’,

horizontal=TRUE, paper=’a4’,

title= "BoxPlot of fitnesses", width = 8.0,

height = 6.0)

boxplot(ftndata,xlab=’Generations’,ylab=’Fitness’)

dev.off()
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