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Abbreviations, technical terms and definitions 

Adult respiratory 
distress syndrome 

A syndrome characterized by progressive life-threatening 

respiratory insufficiency in the absence of known lung diseases, 

usually following a systemic insult such as surgery or major trauma. 

ARDS Adult respiratory distress syndrome. 

Beam hardening The change of the spectral distribution of polychromatic radiation 

when passing through matter.** 

Biomechanics The mechanical laws and the action of forces in living structures. 

BMD 
 
Bone 

Bone mineral density. 

A specialized connective tissue that is the main constituent of the 

skeleton. The principle cellular component of bone is comprised of 

osteoblasts; osteocytes; and osteoclasts, while fibrillar collagens 

and hydroxyapatite crystals form the bone matrix. 

Bone density The amount of mineral per square centimeter of bone. This is the 

definition used in clinical practice. Actual bone density would be 

expressed in grams per milliliter. It is most frequently measured by 

x-ray absorptiometry or tomography, x-ray computed. Bone density 

is an important predictor for osteoporosis.  

Bone strength The load that causes the bone to fail [unit: newton (N) or pound-

force (lbf)].* 

Calibration Measurement for determining the individual detector channel 

sensitivity for each detector element of a CT system.** 

Computed 
tomography 

Tomography using x-ray transmission and a computer algorithm to 

reconstruct the image.  

CT Computed tomography. 

CT number The final result of the CT measurement and is given in Hounsfield 

units.** 

Display window Freely selectable range within the CT number scale displayed on 

the monitor screen and making use of the full range of brightness 

levels of the display unit; usually the display window is defined 

according to its window width and the window center; all pixels of 

the image matrix with a CT number above the window center plus 

one half of the width are displayed as white, while those below the 

center minus one half of the window width are displayed as black.** 
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Dual-energy x-ray  
absorptiometry 

A non-invasive method for assessing body composition. It is based 

on the differential absorption of x-rays (or gamma rays) by different 

tissues such as bone, fat and other soft tissues. The source of (x-

ray or gamma-ray) photon beam is generated either from 

radioisotopes such as gadolinium 153, iodine 125, or americum 241 

which emit gamma rays in the appropriate range; or from an x-ray 

tube which produces x-rays in the desired range. It is primarily used 

for quantification of bone mineral content, especially for the 

diagnosis of osteoporosis, and also in measuring bone 

mineralisation.  

DXA Dual-energy x-ray absorptiometry. 

EF External fixation. 

Elastic modulus Also called modulus of elasticity; Numerical expression indicating 

the measure of stiffness in a material. It is defined by the ratio of 

stress in a unit area of substance to the resulting deformation 

(strain). This allows the behavior of a material under load (such as 

bone) to be calculated. 

Elasticity Elasticity is the “stiffness” of the material.*  

Resistance and recovery from distortion of shape.  

External fixator External device which hold wires or pins that are placed through 

one or both cortices of bone in order to hold the position of a 

fracture in proper alignment. These devices allow easy access to 

wounds, adjustment during the course of healing, and more 

functional use of the limbs involved. 

Fibula The bone of the lower leg lateral to and smaller than the tibia. In 

proportion to its length, it is the most slender of the long bones. 

Fracture Breaks in bones. 

Fracture energy Also called toughness, work to fracture and deformation energy. 

The amount of work done by the deforming load.* 

Fracture fixation The use of metallic devices inserted into or through bone to hold a 

fracture in a set position and alignment while it heals. 

HA Hydroxyapatites. 

Hounsfield unit Unit of the CT number scale; the Hounsfield unit expresses the 

relative deviation of the measured linear attenuation coefficient from 

that of pure water, multiplied by 1000. 
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HU Hounsfield unit. 

Hydroxyapatites A group of compounds with the general formula M10(PO4)6(OH)2, 

where M is barium, strontium, or calcium. The compounds are the 

principal mineral in phosphorite deposits, biological tissue, human 

bones, and teeth. They are also used as an anticaking agent and 

polymer catalysts.*** 

IMN Intramedullary nailing. 

Internal fixator Internal device used in osteosynthesis to hold the position of the 

fracture in proper alignment. By applying the principles of 

biomedical engineering, the surgeon uses metal plates, nails, rods, 

etc., for the correction of skeletal defects. 

Intramedullary 
nailing 

A type of internal fixators where the device is a bone nail. 

Load Load is a general term describing the application of force and/or 

moment to a structure.* 

Magnetic resonance 
imaging 

Non-invasive method of demonstrating internal anatomy based on 

the principle that atomic nuclei in a strong magnetic field absorb 

pulses of radiofrequency energy and emit them as radiowaves 

which can be reconstructed into computerized images. The concept 

includes proton spin tomography techniques.  

Micro-computed 
tomography 

X-ray computerized tomography with resolution in the micrometre 

range.  

MRI Magnetic resonance imaging. 

Partial volume 
artefact 

Artefact caused by severe inhomogeneities of the materials within 

the beam of the corresponding attenuation measurement (e.g. bone 

and air).** 

Phantom Object to test or evaluate the imaging quality of a CT scanner.** 

Pixel Abbreviation of picture element.** 

QCT Quantitative computed tomography. 

Quantitative 
computed 
tomography 

Clinical examinations with the purpose of quantitatively measuring 

geometrical, density, functional or other tissue or organ 

parameters.** 

Radiography Examination of any part of the body for diagnostic purposes by 

means of x-rays or gamma rays, recording the image on a 

sensitized surface (such as photographic film). 

Region of interest Subset of pixels which lie within an arbitrary (circular, rectangular 
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etc.) geometrical shape at a freely selectable position within a 2D 

image.** 

ROI Region of interest. 

Stiffness Stiffness is the resistance offered by a structure when it is subjected 

to external loads.* 

Strain Strain (normal and shear) is the ratio of the change in length to the 

original length in a structure. It is specific to a point and a direction 

in the structure.* 

Stress Stress (normal and shear) is the force per unit area in a structure. It 

is specific to a point and a direction in the structure (unit: Pascal 

(Pa) or newtons per square meter (N/m2) ).* 

Tibia The second longest bone of the skeleton. It is located on the medial 

side of the lower leg, articulating with the fibula laterally, the talus 

distally, and the femur proximally. 

vBMD Volumetric bone mineral density. 

Volumetric bone 
mineral density 

Bone density. 

Voxel Synonym for volume element, for two-dimensional CT images the 

voxel volume is defined by the width of the side of the pixels and the 

slice width.** 

Wolff’s law The principle that every change in the form and the function of a 

bone or in the function of the bone alone, leads to changes in its 

internal architecture and in its external form [Julius Wolff (1836-

1902)]. 

X-ray absorption Basic physical ability of a material to absorb x-rays and transform 

their energy into other forms of energy, such as visible light, heat or 

fluorescence; in diagnostic imaging this process is dominated by 

Compton scatter and photoelectric absorption.** 

X-ray attenuation The physical law which quantitatively describes the attenuation of 

the incident x-ray intensity, I0, when passing through a homogenous 

object of thickness, d, and linear attenuation coefficient, �.** 

X-ray tube Source of x-rays for nearly all CT systems; the x-ray tube consists 

of an anode and a cathode enclosed in an appropriate vacuum 

vessel.** 

�CT Micro computed tomography. 
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All definitions from the U.S. National Library of Medicine’s controlled vocabulary, MeSH, 

except when marked with *, from Panjabi and White ‘Biomechanics in the Musculoskeletal 

System’ (Churchill Livingstone 2001); **, from Kalender ‘Computed Tomography’ 

(Publicis Corporate Publishing 2005); or ***, from The American Heritage Stedman’s 

Medical Dictionary (Houghton Mifflin Company 2002). 
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1 Introduction 

Tibial diaphyseal fracture healing is a complicated concept. This thesis addresses 

issues concerning the fundamental knowledge of bone healing of tibial shaft fractures 

(herein the term ‘tibial fractures’ refers to tibial diaphyseal, or shaft, fractures). Everyone 

has probably experienced a bone fracture personally or among close family or friends. 

According to a UK survey, fractures of the tibial shaft represent around 2% of hospital-

treated fractures, with an average patient age of 40 years [47]. Tibial fractures display a 

typical bimodal age distribution curve, being more common in young (usually males) and 

old (usually females) subjects. Tibial fractures range from closed, undisplaced fractures that 

can be successfully treated with a cast and orthosis, to open high-energy fractures with 

severe bone and soft-tissue damage that require complex surgical treatment, which can be 

followed by numerous complications and often a poor outcome [31,46,183,259]. Even 

though recent bone and fracture research has focused intensely on biomechanical [107], 

pharmaceutical [133], genetic [72] and molecular-biological [53] enhancement of fracture 

healing, these approaches have rarely been applied in the clinic. The role of the orthopaedic 

surgeon is still limited to preparing and supporting the built-in repair processes of the body 

by preventing deformity and avoiding impairment of fracture healing. To help to explain 

the purpose of the study and the questions raised within it, bone, bone healing and tibial 

fracture treatment and evaluation are briefly introduced below. 

1.1 Bone 

Bone is a highly specialized support tissue that is characterized by its rigidity and 

hardness, and it is the main component of the skeleton. Its tensile strength nearly equals that 

of cast iron, but it is three times lighter and ten times more flexible [26]. It has four main 

functions: providing mechanical support, permitting locomotion, providing protection and 

acting as a metabolic reservoir [128,134,224]. Its main components are the supporting cells 

(osteoblasts and osteocytes), a non-mineral matrix of collagen and glycosaminoglycans 

(osteoid), inorganic mineral salts deposited within the matrix and remodelling cells 

(osteoblasts and osteoclasts). Bone is constantly being remodelled in response to changing 

demands (via mechanical stress) and to maintain its structure. The remodelling process is 

coordinated by osteoclasts (which erode formed bone) and osteoblasts (which synthesize 
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new osteoid). Moreover, bone is remodelled during the normal repair of a fracture. The 

deposition of mineral salts in the osteoid gives bone its characteristic rigidity and functional 

strength [225]. The main salt constituent is a crystalline complex of calcium and phosphate 

hydroxides called hydroxyapatites (HA) (Ca10(PO4)6(OH)2). 

The collagen of the osteoid is the marker of the two histological (microscopic) types 

of bone: woven and lamellar. When osteoblasts produce collagen rapidly and with a lack of 

order, they form woven bone, which is biomechanically weak. Woven bone is present 

initially in all fetal bones, in the callus formed early after fracture, and in Paget’s disease. 

Osteoblasts can form parallel sheets of collagen (lamellae), and the organized, lamellar 

bone is biomechanically strong. Virtually all bone in the healthy adult is of the lamellar 

type [225]. The human body includes five macroscopic types of bone: long bone (e.g. the 

tibia, which is the focus of this thesis), short bone (e.g. the scaphoid), flat bone (e.g. the 

scapula), irregular bone (e.g. the vertebrae) and sesamoid bone (small bones within 

tendons) [127]. The outer zone of most bones is called the cortical zone, or the cortex. The 

inner region in the middle portion of long bones (the middle portion is called the diaphysis 

or shaft) includes the yellow bone marrow, and the trabecular or spongy region is present at 

the epiphyseal ends, with a trabecular meshwork and red bone marrow. 

1.2 Fracture healing 

Fracture healing is a unique biological event or process in which a broken bone fully 

recovers [60]. This event is not fully understood and is so complicated that it is usually 

divided into different processes for teaching purposes. The three most important 

subprocesses are (1) inflammation, (2) repair and (3) remodelling. 

The immediate response at a fracture site is a fracture haematoma that is crucial to the 

subsequent repair process. Experiments have shown that its removal by the surgeon impairs 

healing and leads to a weaker bone [85,86]. An inflammatory injury response is also 

induced, which lasts for several days. 

The first repair step of the fracture haematoma involves osteoclastic resorption of 

dead bone tissue on the bony fragments. Osteogenesis is initiated by cells appearing in the 

granulation tissue that replaces the haematoma [26]. Bone forms in two ways. In the central 

regions of the bone, a soft callus is formed by chondrocytes that produce cartilage, calcium 

and calcification-promoting enzymes, in which bone subsequently and gradually replaces 

cartilage (enchondral ossification). Vascularization and neovascularization are essential for 
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bone healing, and it has been shown that there is a vascular invasion in these areas of 

enchondral ossification [156]. Secondly, a hard callus is formed in the peripheral outer 

regions, in the periosteal area, where bone forms directly without the cartilage stage 

(intramembranous ossification) [59].  

The remodelling phase involves the activation of remodelling units comprising 

osteoclasts and osteoblasts. Woven bone and unnecessary callus are resorbed by osteoclasts 

and chondroclasts, and osteoblasts produce bone with the above-mentioned characteristic 

Haversian, lamellar, strong structure [60]. The overall purpose of the bone healing process 

is to consolidate the fragments and remodel them back into sound bone. The ability of bone 

tissue to recover fully from injury (regeneration) is fundamentally different from that of 

skin tissue wounds, for example, which involve the formation of inferior scar tissue. 

These subprocesses occur concurrently. Although the molecular mechanism 

underlying fracture healing is not fully understood, several of the involved growth factors 

and cytokines have been identified [60]. Even though fracture healing is a process that is 

considered mainly to affect the fracture site, it has been documented that it leads to 

significant changes in other parts of the affected bone and in other bones in the body, which 

are probably changes other than those predicted by Wolff’s law [67,129,246]. In addition, 

other concurrent severe injuries to the patient, such as head injuries, must be considered 

when choosing a specific treatment for a tibial fracture, for example [78].  

The outcome of the repair process depends on four mechanobiological factors: the 

fracture itself, gap conditions, blood supply and the biomechanical fracture environment 

[42,193,265]. For instance, a comminuted fracture heals more slowly than a simple oblique 

fracture, and bone healing is hampered if the gap exceeds a critical size. Animal studies 

have demonstrated that moderate soft-tissue trauma only temporarily impairs bone healing 

[41]. However, host comorbidity and severe soft-tissue damage affect the blood supply, and 

they must be assessed since they can substantially influence the healing of a fracture 

[241,243] and the optimal choice of treatment [239]. 

Four biomechanical stages of fracture healing have been described based on the 

results of torsional testing of the bone [258]: (stage 1) bone failure at the original fracture 

site; (stage 2) bone failure at the fracture site despite the characteristics of the failure 

indicating a high-stiffness, hard-tissue pattern; (stage 3) bone failure partly at the original 

fracture site and partly at previously intact bone with a high-stiffness, hard-tissue pattern; 

and (stage 4) no failure at the original fracture site, indicating that the new tissue that has 
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formed at the fracture site at least replicates the mechanical properties of the uninjured 

tissue. 

1.2.1 Biomechanical fracture milieu and stimuli 

The effect of the biomechanical fracture milieu on fracture repair has been studied in 

numerous animal experiments. Both enhancing and impairing effects have been found, 

often when using technically complicated set-ups [75,95,132,150,192]. There is abundant 

evidence that fracture healing is influenced by mechanical loading [3,32,107,193,265]. 

Even though the subprocesses in bone healing are robust, they are sensitive to movement, 

stress and spatial relationships [4]. 

The timing, magnitude and direction of the biomechanical fracture stimuli exert 

crucial effects on the healing process. More specifically, limited interfragmentary 

movement (micromotion) in the early phase has a demonstrated positive effect on callus 

formation and may increase biomechanical stability, whereas the same movement during 

the late phase inhibits union, especially in fractures with relatively flexible fixation 

[80,107,124]. Seventeen minutes of daily cyclic load in sheep tibial fractures with external 

fixation (EF), starting 1 week post-operatively, was found to increase callus formation, 

fracture and torsional stiffness, and fracture gap bridging with more-mature bone tissue 

[81]. However, very early fracture loading [75] and early full weight-bearing of fractures 

with relatively flexible fixation [10] reportedly impair fracture healing, while the effect of 

early dynamization of externally fixed fractures is more questionable [4,40,56,146]. In one 

dog study, a group of axially dynamized externally fixed fractures had healed similarly to a 

non-dynamized group at 13 weeks post-operatively [83]. The combination of temporary 

axial distraction and compression from post-operative days 7 to 19 in sheep tibial 

diaphyseal osteotomies increased both fracture stiffness and callus formation [38]. Animal 

experiments have shown that the optimal axial interfragmentary movement seems to be 

within the range 0.2–1.0 mm [43]. Qualitative analyses have suggested that especially shear 

movements may impair the healing process [265]. Shear movements can substantially delay 

experimental bone healing with reduced callus formation [6,66,207], and are generally 

considered unfavourable in clinical fracture treatment.  

Experimental fracture healing research is no longer limited to biomechanical or 

simple pharmacological set-ups. The number of research results and progress reports related 

to translation research has recently grown substantially, and such research is now 
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considered of significant importance to basic and clinical research [61]. Bone healing 

research now comprises genetics, immunology, molecular-biology, and advanced 

mathematics and computational models based on physics principles 

[53,70,117,130,214,222,226]. The fracture problems and technological advances both 

necessitate and facilitate interdisciplinary research teams [35,37,108]. 

1.2.2 Primary and secondary bone healing 

Bone healing and fracture treatment are obligatorily intertwined, since the choice of 

fracture treatment provides the framework for bone healing. The different surgical 

techniques employed provide different biomechanical stability and stiffness as well as 

different complication profiles. Two of the most important fracture treatment principles are 

providing apposition and aligning bone fragments, and subsequently a certain level of 

stability to support bone tissue healing [39]. It was documented over half a century ago that 

fracture healing is influenced by the mechanical fracture milieu [122,265], but the optimal 

combination of biomechanical factors for bone healing remain unclear. 

Two distinctly different morphological fracture healing patterns have been identified 

as being connected to biomechanical factors: primary and secondary bone healing. The 

common case of bone fragments being aligned and relatively moderate interfragmentary 

movements usually produces the pattern of secondary bone healing, which comprises a 

combination of intramembranous and endochondral ossification characterized by the 

formation of a visible external callus on an x-ray [43,81,193,217,221,264]. Such 

development of immature bone reduces the relative movement between the fragments, with 

the increased stability resulting in cortical bridging [170,198]. 

Primary bone healing occurs in the less-common situation of the internally rigidly 

fixed fracture with minimal or no fracture gap and little or no interfragmentary movement 

[60]. The main process in this case is remodelling by osteoclasts and osteoblasts units. The 

second histological subprocess of healing is absent, and an external callus is not evident on 

an x-ray. It was demonstrated early on that such absolute rigidity could be achieved with 

internal compression, for example, without degradation or necrosis of bone at contact areas, 

since bone can withstand a substantial amount of stress for a long time without 

complications [193]. 

These different healing patterns have been explained by Perren’s interfragmentary 

strain theory, which proposes that the type of tissue formed in bone healing (fibrous, 
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cartilage or bone) is dictated by the actual strain imposed and the ability of the tissue to 

tolerate this strain [193]. This was commented on by Carter et al., who hypothesized that 

the type of mechanical stress also dictated what type of tissue is formed at a fracture site 

[28]. Consistent with this, the bone–implant stiffness has been shown to exert significant 

effects on healing in animal experiments. Destabilization of the external-fixator stiffness 

exerts healing effects similar to dynamization [2]. A change to a more flexible nail in rat 

femora after 30 days resulted in greater callus production but reduced the ultimate bending 

load [244]. Greater callus and higher stiffness were also observed with increased fixator 

frame stiffness in externally fixed fractures in sheep [82]. 

1.2.3 Non-union 

An intuitive assumption is that bone healing will be hampered and may even fail if 

reduced stability results in excessive movement between the bony fragments. Even though 

most fractures at different sites of the skeleton normally heal within 3 to 4 months, delayed 

union or, in the worst case, non-union may result for several reasons, including tobacco use, 

poor metabolic and nutritional status, or excessive interfragmentary movement [26,44,168]. 

Excessive mechanical manipulation of a fracture during healing has been used as an 

experiments model of non-union [240]. Infection, which is especially frequent in open 

fractures, can also disturb bone healing so as to result in delayed union or even non-union 

[109,180]. 

Treatments of fracture non-union that were previously impossible have now become 

possible. If primary union fails, the orthopaedic surgeon often manages to create a bony 

union after one to three revision procedures using exchange nailing or plating with or 

without bone grafting, but this represents a formidable challenge [50,110]. No generally 

accepted definition of union exists [44,73,161], but the Weber-Cech classification is widely 

applied to non-unions as a basis for selecting the most appropriate surgical treatment plan 

[112].  
 

1.3 Tibial fracture treatment in the clinic 

The tibia is the second largest of the 206 bones in the human body. It is part of the 

appendicular skeleton and it is located on the medial side of the lower leg, articulating with 

the fibula laterally, the talus distally and the femur proximally. It is a long bone 

characterized by a middle part called the shaft, or diaphysis. Of special interest to the 
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healing of tibial fractures are the organization of the surrounding soft tissue and the lack of 

a soft-tissue envelope on the anteromedial side of the bone. As explained above (see 

Section 1.1), the fracture healing process is dependent on many factors, including the 

characteristics of the surrounding soft tissue, and a tibial fracture can therefore be among 

the most difficult types to treat. 

Classifying tibial fractures is not a purely academic procedure – accurate fracture 

classification is generally necessary for a correct diagnosis and for the development and 

standardization of the best treatment and accurate determination of the prognosis. As for 

other bones, numerous fracture classifications have been proposed. The OTA (Orthopaedic 

Trauma Association) classification of tibial diaphysis fractures is presented in Figure 1 

[162]. In 1976, Gustilo and Anderson [88] classified open fractures into three types: (type I) 

an open fracture with a wound shorter than 1 cm and clean; (type II) an open fracture with a 

laceration longer than 1 cm but without extensive soft-tissue damage, flaps or avulsions; 

and (type III) an open segmental fracture, an open fracture with extensive soft-tissue 

damage, traumatic amputation, gunshot injury or farm injury, or any open fracture with 

accompanying vascular injury that requires repair. The main difference between types II 

and III is they reflect low- and high-energy injuries, respectively. In 1984 [89], type III was 

further subdivided into three subtypes: (type IIIA) adequate soft-tissue coverage of a 

fractured bone despite extensive soft-tissue laceration or flaps, or high-energy trauma 

irrespective of the size of the wound; (type IIIB) extensive soft-tissue loss with periosteal 

stripping and bone exposure (this is usually associated with massive contamination); and 

(type IIIC) open fracture associated with arterial injury requiring repair. As mentioned 

above (see Section 1.2), open fractures have a worse prognosis than closed fractures, and 

adequate attention to the soft tissues is therefore essential to obtaining a satisfactory 

outcome [69]. Soft-tissue injuries have been classified by Tscherne and Oestern [236], 

among others.  

Many different surgical techniques have been promoted in recent decades [27,45], but 

there is still considerable controversy regarding the optimal method of skeletal stabilization 

in open tibial fractures [113]. Surgical techniques may include internal fixation by screws, 

plating or intramedullary nailing (IMN) with or without reaming [177], or EF implemented 

by different arrangements of pins and frames. Severe comminution of bone or bone 

segment defects may additionally require the use of bone graft techniques. Plate fixation 

has been associated with implant failures [74], non-unions and deep-infection rates as high 
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as 35%, and requires a long period of non-weight-bearing [12]. Often the surgeon has to 

choose between stabilizing the tibial fracture by IMN or by EF [102,106,182]. 

1.3.1 External fixation 

The external fixator was first presented as a concept in the mid-19th century [248]. 

Several different pin-and-frame configurations and constructions with different 

biomechanical qualities have been used and promoted [57,167,219]. The stiffness of the 

bone–implant system has a documented effect on fracture healing [34,264], and the 

surgeon’s competence and knowledge of (especially) biomechanics and principles for 

successful application significantly affect the outcome of EF treatment [79]. EF has been 

promoted numerous times in clinical studies since its refinement and improvement in 1938 

by R. Hoffmann [14,33,119,120,140,145,247], and tibial fractures are now the main area of 

application of EF. In cases with an unstable fracture and severe soft-tissue damage with an 

increased risk of infection, the use of EF provides advantageous soft-tissue management, 

relatively stable fixation without additional soft-tissue stripping, early range of motion of 

both the knee and ankle, and unique adaptability to diverse fracture patterns [22,237]. This 

has recently led to EF being called the gold-standard treatment for open tibial shaft 

fractures [101]. 

The disadvantages of EF are unfavourable cosmesis, frequent pin-tract problems (e.g. 

infection), the potential for neurovascular injury during pin insertion, pin loosening and the 

potential for fracture through a pin tract [84,195]. In addition, the reduced compliance of 

many patients combined with the long time to achieve union may interfere with care of the 

pin tract and fixator durability [49]. In temporary initial EF, pin-site granulation and the 

possibility of pin-tract infection are arguments in favour and against secondary IMN, 

respectively [163,257]. Whilst planned early conversion to locked IMN is regarded to be a 

safe treatment [154], reconstructive secondary nailing1 has strict contraindications [233]. 

The main target of (temporary) EF, which has recently been advocated by several 

publications on damage-control surgery [96,173,197,205], is to identify severely damaged 

patients (borderline and unstable) and postpone traumatic definitive surgery for 4–6 days to 

lower the risk of life-threatening complications, such as ARDS (adult respiratory distress 

syndrome) [186,188]. Even though the additional complications of IMN in major trauma 

cases have proved difficult to reproduce and investigate [260], a recent trauma-bank study 
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in the United States indicated that delayed internal fixation of femoral fractures in 

multisystem-trauma patients reduced mortality by approximately 50% [171]. The use of EF 

in long-bone leg fractures of such patients seems to be non-traumatic, effective, time-saving 

and safe as an initial fracture treatment, and research data suggest that EF significantly 

reduces pulmonary complications [92,178,189–191,228]. Many questions remain 

unanswered concerning the definitive treatment for a temporary externally fixed fracture 

[54]. However, a secondary conversion to IMN after a short period when adequate soft-

tissue coverage is acquired is often the definitive treatment of choice [1,19,51,216,267].  

1.3.2 Intramedullary nailing 

Intramedullary implantation of the classical Küntscher nail after reaming provides 

good stability against bending and shear forces perpendicular to its long axis, but this 

method is rather inefficient against torque and is unable to prevent axial shortening. 

Improvements in nail design [15,99,223], such as the use of locking, provide better stability 

to torsional and axial loading [21,48,123]. The clinical advantages of interlocked 

intramedullary fixation include high patient acceptance, favourable cosmesis, access for 

soft-tissue care, secure control of alignment and rotation, early mobilization and the 

potential for biomechanically safe early weight-bearing [138,139,229]. IMN has become 

the standard of treatment for closed, unstable, but otherwise uncomplicated femoral and 

tibial shaft fractures [126,263]. 

Frequent arguments against IMN of open tibial fracture are based on the potential for 

the spread of infection throughout the medullary canal and the further disruption of 

intramedullary bone circulation, especially when reaming is performed [136,194,208]. 

Anterior knee pain has also been reported following nail insertion. The reaming of the long-

bone marrow canal can lead to heat-induced cortical damage (thermal necrosis) [13] and 

has significant unwanted effects on the physiology of fracture healing, especially the 

coagulation system and pulmonary permeability [97]. The tibia bears weight without having 

the extensive soft-tissue envelope of the femur, which makes it more vulnerable to infection 

that may lead to delayed union or non-union. However, the impact of these factors has 

lessened with the development of the unreamed locked intramedullary nail [36,206,268] 

and the documented efficacy of early bone grafting and muscle flap coverage when needed 

                                                                                                                                                                                 
1 Reconstructive secondary nailing is indicated in patients with EF for an extended period with delayed union, 
malunion or non-union. 
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[234,235]. Although still debated [68], clinicians now seem to prefer unreamed tibial nails 

to reamed ones in open tibial fractures [71,113,114,121,144,213].  

Despite the complications, many recent authors have stated that the locked 

intramedullary nail has become the standard treatment for open tibial fractures, since IMN 

appears to be associated with a higher bone union rate and a shorter time to full weight-

bearing compared to EF [17,113,232,261]. 

1.4 Experimental fracture enhancement 

Several experimental protocols for potential mechanical and biological fracture 

enhancement have been investigated in fracture research. In experiments, researchers can 

control and manipulate the variables either in vivo or ex vivo, with the study object being 

either human or non-human.  

Constantly compressed healing dog tibial osteotomies showed the same maximum 

torque but increased stiffness compared to non-compressed osteotomies [91]. Osteotomies 

in rabbits exposed to cyclic loading performed better than those with constant compression, 

but only temporarily [185,262]. Biological enhancements include autografts, allografts, 

calcium ceramics, the use of demineralized bone matrix, platelets, growth factors such as 

bone morphogenic proteins, parathyroid hormone and bone-marrow injection [100,252], of 

which demineralized bone matrix is the most commonly used in the clinic today [111]. 

Growth factors are osteoinductive and promote fracture healing [142]. Even though animal 

experiments have demonstrated that the local application of growth factor does not alter the 

normal long-term healing process [209], pharmacological substances are not routinely used 

for fracture repair enhancement in the clinic. 

1.5 Evaluation of fracture healing 

Usually the most important biomechanical parameter that needs to be restored after a 

fracture is the bone strength. The gold standard for evaluating mechanical fracture healing 

is mechanical testing of the bone to failure. Of course, such mechanical testing is not an 

option in the clinic, with instead the orthopaedic surgeon having to rely on surrogate 

parameters to monitor the fracture healing. The ageing populations of Japan, Europe and 

North America with osteoporosis together with economic developments in South East Asia, 

South America and Africa imply that more fractures will need to be treated in the future. 

Osteoporosis and diabetes are considered to complicate fracture treatment [166,181], while 
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the surgeon often faces pressure to remove patient restrictions and fracture fixation implants 

early. These factors increase the need for accurate non-invasive fracture monitoring both in 

the clinic and in experimental research.  

In intact bone, quantitative x-ray-based imaging techniques such as single-photon 

absorptiometry, dual-energy x-ray absorptiometry (DXA) and quantitative computed 

tomography (QCT) provide densitometric measurements that have been experimentally 

demonstrated to be both accurate and strongly associated with bone strength [157] and the 

risk of fracture [176]. The callus calcium content at the fracture site has been shown to be 

correlated with mechanical strength in histological studies [196]. Whilst it is possible to 

measure calcium levels using x-ray-based imaging techniques [5,200], it is also known that 

bone strength depends on more than the raw amounts of radiopaque bone minerals, such as 

bone geometric and microstructural properties [11] as well as the properties of the 

surrounding soft tissue [175]. In addition, quantitative magnetic resonance imaging (MRI) 

has demonstrated promising results in non-invasive assessments of cortical and trabecular 

bone [255]. Of these, DXA is commonly used in clinical practice to identify at-risk patients 

who may be treated with bone-strengthening medications. Even ultrasound imaging has 

been used for evaluating fracture healing, although not quantitatively [203]. There has been 

intense technology-driven research activity in the area of bone healing in recent decades 

[77], but none of the findings so far have altered traditional methods of fracture-healing 

evaluations applied in clinics. 

1.5.1 Mechanical testing 

The gold standard for evaluating long-bone fracture healing is mechanical testing of a 

fracture to failure by bending or torsion. Various types of bending testing can be employed, 

such as three-point, four-point or cantilever type. Mechanical testing to failure by 

compression, tension, bending or torsion provides exact measurements of biomechanical 

properties. In biomechanics, an important distinction is made between structural and 

material properties.2

                                                           
2 The distinction between structural and material properties can be illustrated by considering two different 
human long bones. Assuming that human bone tissue exhibits constant material biomechanical properties 
(bone tissue is in fact viscoelastic, which means that it changes properties under different conditions, but we 
will ignore this for now), different structures with obvious different sizes and configurations (e.g. tibia or 
phalanges – a bone of a finger or toe) constructed from this material may have different structural 
biomechanical properties. In another words, even though both the tibia and the phalanges are made from the 
same material (bone), they have different strength and stiffness due to the wider cortex and a larger diameter 
of the tibia. 
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Amongst the most important biomechanical structural parameters in bone healing 

research are the ultimate load, stiffness, and fracture energy or work to fracture. These 

parameters can be measured by bending a bone to failure. The corresponding parameter in a 

torsional test is called the ultimate torsional load or torque. The classic load–deformation 

diagram is essential for calculating structural biomechanical properties [184]. Figure 2 

demonstrates the load–deformation curve of an arbitrary and intact rat tibia tested with 

cantilever bending to failure using a previously described test set-up [65]. This curve gives 

information about (a) the bone strength or maximum bending load (y value of the maximum 

point of the curve), (b) the stiffness of the bone (the slope of the tangent of the curve) and 

(c) the fracture energy (the area below the curve), which is the energy absorbed by the bone 

before a fracture or irreversible deformation occurs. In the following, ‘bone strength’ 

implies the ultimate cantilever load (except where stated otherwise). 

Stiffness has been proposed as both a surrogate for and a definition of healing [204], 

but its clinical relevance is low. As mentioned above (see Section 1.5), the clinically 

valuable biomechanical factor for the patient and the surgeon is ensuring a high ultimate 

load, which is the ability of the bone to resist high loads without failure or irreversible 

deformation. Ethical considerations make it impossible to measure this ultimate bending 

strength in the clinic, which has led to fracture evaluations being performed routinely in 

animal and cadaveric experiments. 

In biomechanics, the rigidity or elastic modulus (modulus of elasticity) corresponds to 

the structural property of stiffness. Elasticity is the ‘stiffness’ of the material [184]. 

Calculating biomechanical material properties relies on the use of a stress–strain diagram. 

Converting a load–deformation curve into a stress–strain curve requires knowledge of and 

attention to the size and shape of the chosen specimen and the type of test (compression, 

tension, bending or torsion) applied. Stress is the internal reaction that is equal in magnitude 

but opposite in direction to the applied, external force or load [58]. The term ‘strain’ is used 

to describe the displacement or deformation of the bone under the influence of an applied 

force. 

1.5.2 Clinical testing – patient examination, history and x-rays 

Evaluations of clinical fracture healing by orthopaedic surgeons has remained largely 

unchanged since the discovery of x-rays in 1895 by Wilhelm Conrad Roentgen (1845–

1923). A few important parameters are considered: time from fracture and fracture 
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treatment, patient examination with manual manipulation, patient history, and the 

acquisition of standard two-plane x-ray images (front and side projections). The bone 

strength is restored by the occurrence of a clinically verified bony union, which the surgeon 

can verify from a mechanically stable fracture site and the patient being pain-free. Even 

though the results of quantitative, photometric assessments of standard x-ray images have 

been shown to be correlated with the rigidity in EF-treated segmental diaphyseal defects 

[231], x-ray-based investigations only allow qualitative clinical follow-ups of fracture 

healing. Bony union can be clinical or radiographical. Radiographically verified bony union 

is usually indicated in plain radiographs by trabecular bony meshwork and cortical bone 

crossing the fracture site. Clinically verified bony union usually precedes radiographical 

union [26]. 

1.5.3 Dual-energy x-ray absorptiometry 

DXA analyses use radiographic attenuation to calculate bone mineralization. It is both 

quantitative and more sensitive to mineralization changes than is the standard x-ray. It can 

quantify the bone mineral content, the amount of mineral in a bone or part of a bone (in 

grams), and bone mineral density (BMD) (in milligrams per square centimetre) on the basis 

of the bone area. The accuracy and precision of DXA are very high, though some factors 

need to be considered carefully, such as the requirement for careful positioning of the 

scanned object [151]. DXA does not measure the true BMD, since it measures relative to 

bone area rather than bone volume. However, this examination has such a well-documented 

high level of precision and predictive ability of fracture risk when applied to intact bones 

[159] that it is well established in clinical practice and is the most widely used examination 

of densitometry in the clinic. 

Whilst several studies have found statistical correlations between DXA measurements 

and biomechanical properties in callus measurements [20,160], and DXA provides an 

accurate method of quantifying the changes in BMD that occur during fracture healing [29], 

there is currently little support for the use of DXA in clinical evaluations of fracture healing 

[30]. 

1.5.4 Computed tomography 

Tomography is a word derived from two Greek words: tómos (a cut or section) and 

graphos (something drawn or written, or one who draws or writes). The theoretical idea of 
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reconstructing the distribution of the material properties from an object layer was reported 

by the Austrian mathematician Johann Radon in 1917 [199], whose name is preserved in 

the term ‘Radon transform’. Evaluating computed tomography (CT) images is an everyday 

exercise in clinical orthopaedics. The data obtained in a typical CT scan are usually 

presented as a collection of images (slices) from a clinically interesting site, perpendicular 

to one or several anatomically important axis (e.g. coronal, sagittal or transverse images), or 

as a three-dimensional (3D) reconstruction of one or many anatomically important 

structures. 

The additional value of QCT over CT can be explained by providing a brief 

introduction to the physics underlying CT. A CT system directly measures the x-ray 

attenuation, �. Attenuation, P, is defined as the natural logarithm of the ratio of primary 

intensity, I0,  to attenuated intensity, I [116]:  

P = ln(I0 / I) 

A CT system measures I and I0. The distribution of the attenuation coefficient within 

the scanned object can be defined as � = f(x, y, z). Furthermore, the attenuation can be 

expressed as an integral of the attenuation coefficients along the ray path or line along 

which an x-ray beam travels. This problem can then be viewed as finding N2 unknown 

values in an N�N matrix, and solved by solving the Nx independent equations that arise 

from the attenuations measured along the different projection scans, usually in an iterative 

manner. This algebraic reconstruction technique is valid if the product of the number of 

projections and data points is larger than the number of unknown attenuation coefficients. 

In other words, many different x-ray images taken through the object from different angles 

is required to measure and calculate the spatial distribution of the attenuation coefficients 

within the scanned object in order to construct the digital CT images. 

The CT image consists of two-dimensional (2D) pixels or 3D voxels. Every pixel or 

voxel is represented by a value called the CT value or CT number, whose unit of 

measurement is the Hounsfield unit (HU)3. The relationship between the CT value, tissue 

attenuation coefficient �T and HU can be expressed as 

CT value = (�T – �water ) / �water � 1000 HU 

The attenuation coefficient itself is not particularly useful since its absolute value is 

very dependent on the radiation energy of the system. The Hounsfield scale is based on the 

values for water and air: pure water and water-like tissue are given a value of 0 HU, while 
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air has a CT value of –1000 HU. Lung and fat tissue, which have relatively low mass 

densities, exhibit negative CT values. As mentioned above, the attenuation coefficient is 

dependent on both the mass density and effective atomic number. The CT value is normally 

converted into an HA density by simultaneously scanning phantom materials [212] with 

known HA densities and subsequent linear transformation, which is considered a robust 

technique [174]. 

CT provides unsurpassed accuracy and visual demonstration of bone tissue. In the 

clinic, 3D reconstructions and construction of slices in any plane are used for fracture 

configuration outlining and qualitative assessments of fracture healing. However, the use of 

CT in clinical research is restricted by the associated radiation dosage, which prevents its 

routine use despite it being able to detect defects in the callus not seen on an x-ray [25].  

CT provides both direct visualization of calcium tissue and the quantification of 

calcium, whereas MRI only indirectly visualizes calcium as a signal void. Thus, the use of 

CT has not diminished following the introduction and widespread availability of MRI. 

Multislice CT, also called volume CT, provides increased geometric resolution, shorter scan 

times and, most importantly, superior slice reconstruction possibilites. Both CT (especially 

QCT) and MRI can provide high-precision quantitative results with many applications 

[76,149]. For example, QCT can discriminate well between intact and previously fractured 

wrists [211]. Moreover, the large differences in CT densities between calcified bone and 

soft tissue mean that QCT can be performed with low radiation doses. 

QCT further provides for the accurate assessment of true volumetric bone density 

[87,201], geometric measurements [24,137,166] and tissue differentiation – especially 

between calcium tissues, fat and other soft tissues, and quantification of bone density – 

based on the segmentation of CT values [116]. Studies have documented that compared to 

DXA, CT provides more accurate measurements of densitometry and stronger associations 

between cortical, metaphyseal [152] and trabecular bone scans and biomechanical 

properties [172]. Microarchitectural features of bone [11] have until recently been 

considered to be unattainable by image analysis methods, but statistical correlations 

between CT values and relevant parameters have recently been discovered [230], consistent 

with the strong covariation between biomechanical properties and microstructural 

properties such as the osteon area, osteon density, porosity and interstitial area in intact 

bone [238]. For example, the cross-links in collagen do not affect densitometric 

                                                                                                                                                                                 
3 The HU and the Hounsfield scale are named after the inventor of CT, Godfrey N. Hounsfield, who was 
awarded the 1979 Nobel Prize in Medicine. 
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measurements, but they play an independent role in bone strength [256]. Cadaveric studies 

and animal experiments have confirmed that interesting statistically significant associations 

between QCT and biomechanical properties exist also in metastatic bones [118] and bone 

grafts [202], and that QCT can be combined with finite element models to accurately 

predict internal bone stress under different loading scenarios [227].  Dynamic bone 

mineralization occurs in healing fractures, and QCT can detect small changes in bone 

mineralization, which has been statistically correlated to qualitative image assessments of 

healing in distal radius fractures [153]. Moreover, although the results are diverse [75,108], 

interesting investigations on the correlations between fracture-site measurements by DXA 

and QCT and its derivatives and biomechanical properties have already been reported 

[9,16,20,30,52,160,210,215,220]. 

Secondary bone healing (the most common form of diaphyseal healing in the clinic) 

is characterized by the dynamic healing of bone tissue with callus formation, callus 

resorption and cortical remodelling, and QCT could theoretically be used to monitor 

fracture healing by segmenting the obtained images into bone tissue categories with 

different degrees of mineralization, and studying them separately with regards to 

correlations with biomechanical parameters. 
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2 Purpose of the present study 

 
The main purpose of the present study was to increase knowledge on bone healing in 

tibial fractures treated by EF and IMN by using an experimental rat model evaluated by 

DXA, micro-computed tomography (micro-CT) and mechanical cantilever testing. More 

specifically, five experiments were performed with the following aims: 

 

I To compare bone healing in tibial diaphyseal fractures treated with EF and IMN.  

 

II  To evaluate the effect of early compression on bone healing in externally fixed 

tibial diaphyseal fractures. 

 

III  To study bone healing in tibial diaphyseal fractures treated with secondary 

small- and large-diameter intramedullary nails after initial temporary EF. 

 

IV To study the effect of timing on bone healing in secondary IMN of tibial 

diaphyseal fractures after initial temporary EF. 

 

V To study the statistical correlation between bone strength and segmented QCT 

data in internally and externally fixed tibial diaphyseal fractures. 

 

 17



3 Summary of publications 

Publication I: External Fixation Compared to Intramedullary Nailing of Tibial 

Fractures in the Rat 

Forty male rats were subjected to a standardized tibial shaft osteotomy and were randomly 

assigned to two treatment groups: EF (N=20) or IMN (N=20). Half of the animals in each 

treatment group were evaluated at 30 days, with the remaining half evaluated at 60 days; 

the evaluations included x-ray, DXA and mechanical cantilever testing. Radiographically, 

both treatment groups showed signs of fracture healing with gradual bridging of the fracture 

line, while in the IMN group the visible collar of the callus appeared increased peripherally, 

which was indicative of periosteal healing. At 30 days, densitometric and mechanical 

properties were similar in the two treatment groups. However, at 60 days the bone strength 

was greater, the callus was larger and the bone mineral content in the callus segment was 

higher in IMN fractures than in EF fractures. Tibial shaft fractures showed similar healing 

patterns in the early phase of fracture healing in the rats treated with EF and IMN, while at 

the time of healing both densitometric and mechanical properties were better in IMN than 

in EF. Clinical findings indicate that bone healing after human tibial fractures may be better 

in IMN than in EF. 

 

Publication II: The Influence of Compression on the Healing of Experimental Tibial 

Fractures 

Sixty male rats received a standardized tibial shaft osteotomy stabilized with a unilateral 

external fixator with zero interfragmentary distance and were randomly assigned to the 

compression (N=20), control (N=20) or distraction (N=20) group. From days 4 to 14 the 

external fixator in either tightened (compression group) or loosened (distraction group) 

once daily to gradually induce a total axial displacement of the external fixator pin-clamps 

of 1.25 mm. The control group received a sham manipulation. Evaluations at 30 and 60 

days included x-ray, DXA, QCT and mechanical cantilever testing.  Compared with the 

controls, compression did not enhance fracture healing in terms of mineralization, bending 

strength or stiffness at the time of union. Compared with the distraction group, the 

compression and control groups exhibited improved healing in terms of mechanical 

strength and stiffness, and more-mature callus mineralization. 
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Publication III: Conversion from External Fixation to Definitive Intramedullary 

Nailing in Experimental Tibial Fractures 

Thirty male rats were subjected to a standardized tibial shaft osteotomy initially stabilized 

with EF. On day 7 they were assigned to the control group (group A, N=10) or to 

conversion to secondary nailing with small-diameter (group B, N=10) or large-diameter 

(group C, N=10) nails. The evaluation at 60 days included radiography, DXA and 

mechanical cantilever testing. All fractures healed radiographically with bridging of the 

fracture line and visible callus formation. Mineralization and callus formation (measured as 

the DXA parameters BMD and callus area) were significantly greater in Group B than in 

the other two groups. Group B also tended to have mechanically stronger bones with higher 

fracture energy compared to the other two groups. We found that converting lower leg 

fractures in rats from EF to IMN did not significantly improve bone healing, supporting 

continuation of EF as an acceptable fracture management option. 

 

Publication IV: The Effect of Timing of Conversion from External Fixation to 

Secondary Intramedullary Nailing in Experimental Tibial Fractures  

Forty male rats received a standardized tibial shaft osteotomy and EF, and were then 

randomly assigned to conversion to IMN at 7 (group A, N=10), 14 (group B, N=10) or 30 

(group C, N=10) days after the initial fixation. Group D (N=10) served as a control group 

without conversion. The evaluation at 60 days included x-ray, DXA and mechanical 

catilever testing. The bone mineral content and callus area were significantly greater in 

Group A than in the control group, while mechanical bending strength and stiffness were 

significantly lower in Groups B and C than in groups A and D. The timing of the 

conversion procedure had a significant effect on fracture healing: an early conversion 

procedure did not improve healing compared to control, but was advantageous compared to 

late conversion (at 2 or 4 weeks), with higher mineralization and superior biomechanical 

properties. 

 

Publication V: Correlations Between Strength and Quantitative Computed 

Tomography Measured Callus Mineralization in Experimental Tibial Fractures  

Forty male rats were subject to a standardized tibial shaft osteotomy and initially stabilized 

either with IMN (N=20) or unilateral EF (N=20). Evaluations at 30 and 60 days included 

radiography, QCT and a mechanical cantilever test. A narrow and wide region of interest 

(ROI) of the tibia (1.25 and 3.75 mm long, respectively) at the fracture site was 
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reconstructed and segmented with a voxel-based technique into soft callus, hard callus and 

cortical bone. The volumetric BMD (vBMD) was also calculated. Regardless of the fixation 

method, the study groups were characterized by pronounced soft- and hard-callus formation 

in the early phase. The volume of cortical bone and fracture cantilever bending strength 

were significantly increased at 60 days, but callus formation was significantly decreased 

compared to at 30 days. None of the QCT parameters demonstrated clinically valuable 

strength predicting abilities. However, the amount of cortical bone and the vBMD value 

measured by QCT at the fracture site were correlated positively and significantly with 

strength in the IMN group in the early phase of healing. 
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4 General discussion 

4.1 Methodological considerations 

This section considers issues concerning the rat model, the surgical procedures and 

the fracture evaluation methods. 

4.1.1 The rat model 

Adult male Wistar rats (Møllegårds Avlslaboratorium, Ejby, Denmark) were used in 

the experiments and given standardized care. Wistar rats are an albino strain of the wild 

brown rat (Rattus norvegicus). They are widely accessible and docile. The animals were 

housed in rodent cages with a lid holding a hinged water bottle divider and separate food 

area. Two rats in each cage received a standard rodent diet (RM3(E)M Special Diets 

Services, Witham, United Kingdom). The light cycle was 12 h/12 h. All experiments 

conformed to the Norwegian Council of Animal Research Code for the Care and Use of 

Animals for Experimental Purposes, and the number of animals was minimized by 

performing statistical power analysis before commencing experiments. The animals studied 

for publication I were subject to the correlation studies and CT scans described in 

publication V. 

Even though the rat is by far the most popular animal to use in fracture studies [179], 

differences must be considered and caution must be exercised both when animal 

experiments are designed and when experimental animal study results and conclusions are 

interpreted. The size, histological bone organization, locomotive stresses and anatomical 

relationships to the neighbouring fibula bone differ between the rat and human tibia. In our 

experiments, the rats resumed apparent normal locomotion with full weight-bearing within 

a few days post-operatively. The rat has a fibula, like humans and unlike some other 

mammals such as goats and sheep, where only a remnant of the head may be found.  

In humans, the tibia articulates with the fibular bone laterally both proximally and 

distally. However, the tibia and fibula of the rat fuse distally over a distance of several 

millimetres and hence constitute a more rigid structure [93] (see Figure 3). Even though the 

epiphyseal plate closes very late in the rat, an adult Wistar rat tibia is around 42 mm long 

[93,250], whereas the adult human tibia in males is almost ten times longer, at around 
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390 mm [55]. The cortical bone of Wistar rats probably reaches maturity at an age of about 

14 weeks, with the ultimate torsional load and modulus of rigidity being reached at that age 

[63]. Microscopically, the rat bone is similar to that of humans, but there are fewer and 

smaller Haversian systems [98], and these systems are scattered near the endosteal surface. 

Small avascular and acellular areas are present throughout the cortical bone [218]. These 

differences in the Haversian lamellar structure between human and rat bones might result in 

species-specific reactions. However, the basic remodelling processes are the same in rats 

and humans [249], and the deformation and biological repair of long bones are fairly 

constant across species [148], resulting in the rat being widely recognized as a suitable 

model for skeletal research relevant to humans. 

Early studies indicated that leg fractures in the adult rat regain mechanical properties 

similar to those of intact bone at 60 days [62]. In our study, the fracture strengths at 60 days 

in the IMN and EF groups were 85% and 54% of that of intact bone. Since we also wanted 

information about the healing process in the early phase, we evaluated differences in 

mechanical properties and mineralization at 30 and 60 days. 

4.1.2 Animal surgery  

The surgical procedures performed in the experiments were (A) open osteotomy, (B) 

primary external fracture fixation by mounting an external fixator, (C) primary internal 

fracture fixation by unreamed, unlocked IMN, and (D) secondary IMN. Procedure A was 

always followed by either procedure B or C and completed during the same surgical 

session. Procedure D was performed for publications III and IV as a secondary procedure at 

7, 14 or 30 days after the initial surgery, and it included the use of a percutaneous technique 

to remove the temporary external fixator prior to nail insertion. 

The open osteotomy was performed by exposing the left tibia through an anterior 

incision from the tuberositas tibia and in a distal direction. The muscles on the medial and 

lateral aspects of the tibia were carefully elevated from the tibia, and the anterior two-thirds 

of the tibia was cut at the level of the anterior ridge using a fine-toothed circular saw blade 

mounted on an electric drill. The remaining one-third was then manually broken, leaving 

the fibula intact. This experimental model combines saw osteotomy and the induction of 

traumatic fracture by open surgery. The results can therefore not be applied directly to 

either closed fractures or high-energy open fractures in the clinic. 

22 



The aluminium/steel external fixator used in the experiments has been described 

previously by Mark et al. [155], and was refined somewhat by our research group in 

collaboration with the mechanical workshop at the University of Oslo (see Figures 4 and 5). 

Four steel pins (with a diameter of 1.0 mm) were inserted: two proximal and two distal to 

the fracture. The core drill holes in the tibia were 0.8 mm in diameter, and the fixator offset 

– the free length of the pins between the rat’s anterolateral tibial surface and the inner side 

of the fixator bar – was 6 mm. The external fixator weighed 6.5 g and its position enabled 

free movements of the ankle and knee joints. The perioperative alignment and accurate 

fracture reduction with zero interfragmentary distance were verified both visually and 

manually. No perioperative or post-operative x-ray examination was performed. 

The intramedullary nails were inserted from the proximal side into the bone-marrow 

cavity through the anterior tip of the tibial plateau to the distal tibiofibular junction, with the 

knee in a flexed position (see Figure 6). The nails were cut flush to the bony surface at the 

insertion side. The nails were not reamed or locked. The medial and posterior segments 

were left attached to the bone. Experimental studies have shown that the rotational stability 

provided by an intact fibula favours healing [103,131]. The fibula is often fractured in 

human tibial fractures, and this is compensated for by interlocking the nail. All fibulas were 

left intact in our study to ensure rotational stability. 

The compressive and distractive stimuli used for publication II were applied via 

manual manipulation of the external fixator from days 4 to 14. Once daily during this early 

10-day period, the tubular fixator steel screws connecting the pin clamps were tightened 

(compressive stimuli) or loosened (distractive stimuli) with a standardized tool, resulting in 

a daily screw rotation of 90 degrees corresponding to a displacement of the pin clamps of 

0.125 mm; the total displacement was thus 10�0.125 mm = 1.25 mm. The control group 

received similar sham manipulations. The fixator was not manipulated after day 14. The 

operation wound was closed in two layers using absorbable sutures. A layer of transparent 

film dressing was then sprayed onto the sutured wound. 

The surgical procedures involving the rat tibia in our experiments were performed 

with an aseptic technique and experienced few or no post-operative complications such as 

infections. Prophylactic antibiotics were not included in the surgical or post-operative care 

routines. This indicates differences in the functions of the immune systems between the 

research animals and human patients. Other mechanobiological and soft-tissue factors 

relevant to bone healing may also be different in the rat.  
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On the other hand, strong scientific conclusions could be drawn by standardizing 

important parameters such as the level and configuration of the osteotomy or fracture, age 

and health of individuals, independency of compliance and applying the gold standard for 

evaluating fracture healing and mechanical testing.  

Mounting a 6.5-g four-pin unilateral external fixator on a 42-mm-long rat tibia is 

obviously more challenging than the corresponding clinical surgical procedures required for 

the human tibia. Even though precise reduction and stable fixation were verified both 

manually and visually perioperatively, as they are in the clinic, the small dimensions of the 

rat tibia naturally raise several concerns about the surgical accuracy and its influence on the 

results. To avoid the surgical experience and condition exerting systematic effects on the 

results, the animals were operated only during the daytime and they were randomly 

assigned to the animal surgeons. Complications such as drop foot, pin loosening and 

extramedullary positioning of the nail led to exclusion from the study. Two rats were 

excluded from publication I: one due to pin-tract infection and the other due to fixator 

loosening. For each of publications III and IV, one rat was excluded due to pin-tract 

infection and two rats due to extramedullary positioning of the nail. A few superficial 

infections/self-inflicted bite wounds were treated immediately with effective surgical 

debridement and skin closure. 

Half of the animals in each study group were killed by an intraperitoneal injection of 

pentobarbital at 30 days, and the other half at 60 days. Even though the age of the rat 

influences healing [64], previous studies have shown that leg fractures regain mechanical 

properties similar to intact bone within 8 weeks [62,242]. The tibias were immediately 

dissected free and examined visually. The external fixator clamps (but not its pins) and 

intramedullary nails were carefully removed after obtaining x-ray images and before DXA, 

CT and mechanical testing. The bones were kept frozen at –80 degrees Celsius between 

dissection and radiological, DXA, CT and mechanical evaluation. 

4.1.3 Imaging and densitometric evaluation 

X-ray images in all experiments were obtained on a standard clinical digital system 

(Axiom Aristos, Siemens, München, Germany). The x-ray tube settings were 46 kV, 

1.0 mAs and a focus-to-film (source-to-image-receptor) distance of 115 cm. All x-ray 

images were interpreted by the surgeons to confirm bone healing, but no inter- or 

intraobserver validation of the interpretation was performed. 
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DXA measurements for publications I–IV were performed using a densitometer 

system for research animals (Piximus, Lunar, Madison, WI). The x-ray tube voltage was 80 

kV, current was 400 μA, focal spot size was 0.25 mm � 0.25 mm and focal spot-to-image-

receptor distance was 32 cm. The callus area, BMD and bone mineral content were 

automatically calculated by the accompanying software from a standardized-size ROI at the 

fracture site of 21�43 pixels, which corresponds to around 0.30 cm2 and included a 

longitudinal tibial segment of 3.75 mm. The dissected tibias were placed in the same 

orientation and position on the scan table after a daily calibration of the system, but minor 

variations in position might have occurred due to variations in the pins of the external 

fixator (note that the ROI itself did not include any external fixator pins). 

QCT for publications II, III and V was performed by micro-CT scans and 

reconstruction of 2D and 3D images. The micro-CT system (Micro CAT II, Imtek – now 

Siemens) scan settings were 300 steps with 200 degrees of rotation, and the x-ray camera 

detector size was 2048�2048 with a bin factor of 2. The exposure time was 500 ms and the 

voxels were cubes with a side length of 50.7 �m. A micro-CT system was calibrated in an 

air scan that was performed daily prior to bone scanning. A bone tissue phantom was 

scanned simultaneously in every bone examination. The CT images were not used for 

qualitative fracture healing analysis. The images were reconstructed from scan data 

obtained from a narrow ROI near the fracture site and a wide ROI encompassing the callus 

region of the fracture: 1.25 mm (25 slices) and 3.75 mm (75 slices), respectively (see Figure 

7). No external fixator pins were included in the ROI. The standard software beam-

hardening error correction of the manufacturer was activated. Scan data were analysed with 

a commercially available reconstruction and visualization software package (Amira v4.1, 

Mercury Computer Systems, Mérignac Cedex, France).  

A Lucite phantom with HA densities equal to 50, 250 and 750 mg/cm3 was scanned 

simultaneously, and HUs were linearly converted into HA densities [141]. There is no 

clearly defined consensus on density thresholds between soft and hard calluses and cortical 

bone [8,40,135,172,251], since QCT is currently predominantly applied to calculate the 

density of intact bone and to predict its relative fracture risk. The voxels were segmented 

into four categories: the exterior, soft tissues and fat (<171 mg/cm3), soft callus (171–540 

mg/cm3), hard callus (540–1200 mg/cm3) and cortical bone (>1200 mg/cm3) (see Figures 8 

and 9). These threshold values were selected based upon previous experiments and careful 

visual examination of the CT images with a standard bone window and level [143,200]. 
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Other threshold values could also be justified, but more investigations of segmenting QCT-

measured callus formation are needed to determine definitive values. 

 Beam hardening is a known source of error in CT. In brief, the polychromatic x-ray 

beam is altered as it travels through an object. When travelling through low-attenuation 

tissue, part of the the x-ray beam spectrum is absorbed and the beam is hardened, which 

results in lower attenuation in the corresponding areas on images, and vice versa for high-

attenuation tissue. No segmentation between high-attenuation tissue was applied. The 

consequences of this effect on the segmented data were therefore minimal. Any small 

beam-hardening artefact would probably have affected all study groups in a similar manner 

and hence can hardly explain intergroup differences. 

The partial volume effect is another regularly debated feature of CT. In short, the CT 

value, or the voxel CT number, is a measurement of the radiopacity of the scanned tissue. 

Due to the relative low resolution of CT, a reconstructed 3D CT image represents an 

interpolated, approximate reflection of the true amount and distribution of mineral density 

of the scanned subject. This is commonly referred to as the partial volume effect [7]. Even 

though the geometrical resolution is better than for that of DXA, CT has limitations in 

visualizing certain features of fractured bones, such as their microstructure [11]. QCT 

measurement of radiopaque minerals is still crude, and at best provides an imprecise outline 

of bone repair and remodelling processes. The implications of averaging the mineralization 

of the tissue within the voxel volume are unknown. However, as for beam hardening there 

is no reason to believe that the partial volume effect would have been differed between the 

study groups. 

CT imaging also has limitations in the clinic. The radiation dosage needs to be 

considered. CT scanning of bone tissue will adversely affect healing processes even though 

CT is generally considered to be a non-invasive procedure in clinical medicine. Moreover, 

in cases with internal fixation devices, CT imaging will be affected by interference and 

inaccuracies in quantitative results. Complicated computational techniques are utilized to 

compensate for such interference. 

4.1.4 Mechanical testing 

The tibias were ultimately placed between gauze pads that had been moistened with 

0.9% saline before a cantilever test was performed. This was important to avoid changes in 

the biomechanical properties of bone due to variations in moisture content, since dry bone 
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is more brittle. Even though there were minor differences in the time for which the bone 

samples had been at room temperature before testing, the bones were tested in a random 

order to minimize any resulting systematic effect. The used universal testing machine had a 

servohydraulic mechanical linear drive actuator with 100 mm of total vertical displacement 

and a maximum axial tension loading capacity of 250 N (MTS 858 Mini Bionix, MTS 

Systems, Eden Prairie, MN). The set-up included a cantilever test that was designed to test 

the fracture site, as described previously [65]. A standard control program set the vertical 

travel speed to 160 mm/min. The data file was then converted into a classic load–

deformation curve, and values for basic biomechanical structural properties – such as the 

ultimate load, stiffness and energy to fracture – were obtained using a mathematical 

software package (Origin v 7.5, OriginLab, Northampton, MA) [184]. 

The ultimate torsional and bending loads are significantly associated with callus 

stiffness [158], and they are themselves the most important and interesting biomechanical 

parameters in the clinic. For example, a high leg stiffness is of little value to the patient if 

the load required for irreversible deformation is low.  

The advantage of a fracture-site-specific test situation is that this measures the 

maximum strength of the bone at the fracture site. In a torsional test, where the entire bone 

is stressed torsionally, the bone will fracture at the weakest point. If the fracture site has 

healed biomechanically to stage 4 (see Section 1.2), it may be stronger than the fractured 

point. In that case a torsion measurement will determine the weakest point of the bone 

rather than measuring the strength at the fracture site. This is why torsional tests are usually 

applied to bone segments and grafts. It is known that the holes drilled for pin insertion in 

EF weaken the bone, and so the cantilever test may be superior to a torsional test in the 

testing of the fracture-site strength in externally fixed bones. However, the strengths of the 

pin sites are also of interest. 

4.2 Discussion of results 

4.2.1 External fixation versus intramedullary nailing 

Major soft-tissue injuries delay bone healing in underlying tibial fractures [89], and 

attention to soft-tissue handling is important both in the clinic and in experimental fractures. 

In our study, the length of the incision and the surgical manipulation of the soft tissue 

around the fracture site may have been slightly more extensive in the EF procedure than in 
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IMN, although we did endeavour to use similar soft-tissue dissection procedures in the 

surgical protocol. This difference may have influenced the periosteal circulation and 

inhibited healing to some extent, and may partly explain the lower amount of callus 

formation and the inferior mechanical-testing results in externally fixed tibias. However, 

the application of external fixators in clinical practice usually implies a percutaneous, soft-

tissue-preserving procedure. 

In the clinic, tibial shaft fractures are often associated with a fractured fibula, and the 

nails are often interlocked. As mentioned above (see Section 4.1.2), our experimental 

design did not include locking of the nails, but all fibulas were left intact for rotational 

stability. Klein et al. [131] observed in an experimental sheep model (where the fibula was 

absent) that fractures treated with locked unreamed nails were inferior to those treated with 

EF (evaluated both mechanically and histomorphometrically). This suggests that rotational 

stability plays a major role in the outcome of tibial fractures and that the effect of fracturing 

the fibula ought to be studied systematically. The effect of the fractured fibula has been 

studied in IMN [103], with the results indicating that the presence of both a fractured tibia 

and fibula impairs the early phase of fracture healing. The use of a third treatment group 

with, for example, a segmental fibula osteotomy, could help to isolate and identify the 

effect of the fibula. Our research group has now initiated such a study of the role of the 

fibula in EF. 

The alignment and stability of the bony fragments are especially important surgical 

principles in fracture treatment. An increased interfragmentary gap or movement may result 

in malunion, delayed union or even non-union. Fracture fixation with absolute stiffness 

inhibits interfragmentary motion and is associated with primary healing and reduced 

external callus formation, as mentioned above (see Section 1.2.2). Flexible and semi-rigid 

fixation promotes motion at the fracture site in favour of secondary bone healing, with the 

characteristic development of a bridging periosteal callus until cortical healing occurs. 

While it is well accepted that interfragmentary motion influences callus formation and the 

healing of fractures in both IMN and EF, the optimal biomechanical conditions for the 

fracture healing process remain unclear [39,43,81,125,169,221]. 

The stiffness of the bone–implant construct has been shown to be important to the 

fracture healing process in both IMN and EF [245,264]. The IMN tibia–implant construct, 

with inferior bending stiffness and less protection from torsional and axial forces, was 

significantly more favourable for mineralization and for recovering mechanical properties 

in the fracture repair process compared to the EF construct in our model. The initial post-
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operative bending stiffness of the tibia–implant construct was significantly higher in the EF 

group than in the IMN group (89% and 17%, respectively, of the bending stiffness of intact 

tibias). While the external fixator shares the axial load, unlocked nails provide little 

protection from axial load. A side effect of the size and location of the external fixator 

device could be to cause the animal to use the fractured limb less due to irritation from the 

device and the changed pattern of movement. This was not systematically tested in our 

study, even though careful visual examination indicated the presence of full weight-bearing 

with apparent normal quadrupedal locomotion in both groups within a few days post-

operatively.  

Our results are consistent with IMN being the standard for the definitive clinical 

management of lower extremity long-bone fractures in humans over the last 2 decades, and 

often being associated with a higher bone union rate and a shorter time to full weight-

bearing. Shannon et al. [213] compared 17 patients treated with EF to 13 patients treated 

with unreamed locked tibial nails. They experienced four local pin infections in the EF 

group and one deep infection in the unreamed-locked-nail group. That retrospective study 

of grade-III fractures of tibial diaphysis also found that the time to full weight-bearing was 

significantly shorter for the nailed fractures (22 weeks) than for the externally fixed 

fractures (37 weeks). Schandelmaier et al. [206] found similar results in a comparison of 32 

grade-IIIb open tibial shaft fractures, where the time to full weight-bearing was 

significantly shorter among the 17 patients in the unreamed-nail group (11±4 weeks, 

mean±SD) than among the 15 patients in the EF group (20±11 weeks). The times to bony 

union, infection and non-union did not differ significantly between the groups. A 

significantly shorter time to full weight-bearing for IMN was also found by Braten et al. 

[23] in a prospective, randomized study of tibial fractures involving 78 patients distributed 

into groups treated with EF (N=41) and IMN (N=38). However, they excluded patients with 

significant soft-tissue problems (grade III).  

A few other studies have found no significant differences in healing between EF and 

IMN. Trabulsy et al. [234] evaluated the results of EF in 28 patients and unreamed 

intramedullary nails in 17 patients with grade-IIIb fractures. Early bone grafting was 

employed in 43% of the patients, and free muscle flaps or local flaps were used in all 

patients. No significant difference in the complication rate or the time to union was noted 

between the two groups (IMN=40 weeks, EF=41 weeks). Local infections occurred in three 

patients (6%) and osteomyelitis in two (4%). However, no assessments of the distribution 

of fracture types, severity of soft-tissue damage or time to flap coverage were reported. 
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Tornetta et al. [232] investigated 29 grade-IIIb open tibial fractures in a prospective study, 

of which 14 were randomly assigned to EF and 15 to unreamed locking IMN. The motion 

was slightly better in the IMN group, but there were no significant differences in the times 

to partial weight-bearing and bony union. One deep infection and two pin-tract infections 

occurred in the EF group, and one deep infection was found in the IMN group. The authors 

considered locked, unreamed nailing to be the treatment of choice for grade-IIIb tibial 

fractures. However, that study included only a rather small number of patients. Henley et al. 

[94] also found that the choice of implant did not significantly affect the healing rates. In 

the prospective study of 174 grade-II, -IIIa and -IIIb tibial shaft fractures, the numbers of 

malalignments, subsequent procedures and local infections were significantly lower in the 

IMN group (N=104) than in the EF group (N=70). The complications occurred in fracture 

patterns with higher degrees of comminution or bone loss regardless of the method of 

treatment. The main factor influencing the speed of healing of the tibial fractures was the 

severity of soft-tissue injury. In that study the fracture severity tended to be higher in the EF 

group (p=0.051). 

4.2.2 Compression and distraction of external fixation 

Both the tight apposition of fragments and an intact fibula may explain the lack of 

shortening of bones exposed to compressive force and the densitometrically and 

biomechanically comparable results between those bones and the control bones. The mean 

group lengths support that performing an exact initial surgical reduction of the fracture 

fragments with a zero interfragmentary distance limited further interfragmentary movement 

driven by compressive forces. The static (control) group would still allow interfragmentary 

contact between the bone ends and interfragmentary compressive stresses during function, 

although possibly of a lower magnitude than in the compression group. In addition, the 

fibula was left intact in order to increase torsional stability and prevent detrimental shear 

forces and rotational malunion [6,103].  

The increased compressive interfragmentary force in the bone–implant system in the 

compression group would be expected to increase the system stiffness. While the stiffness 

of external fixators has a documented effect on healing [264], the role of the increased 

stiffness on fracture healing in our experiments is unclear since a control group without 

compression with such increased stiffness was not included.  
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Interestingly, at 30 days the groups exhibited remarkably similar important 

biomechanical and densitometric properties. Mechanical stimulation via interfragmentary 

compressive forces did not alter the strength, stiffness or densitometric properties 

significantly at this time point, with only a significantly lower energy absorption before 

fracture being observed in the compression group. This corresponds to Perren’s finding that 

bone can resist a high amount of compressive stress without developing necrosis or 

degradation [193]. Moreover, even though both BMD and vBMD were significantly higher 

in the compression and control groups, strength, stiffness and QCT-measured callus 

formation did not differ significantly at 30 days. This confirms that the 30-day time point 

represents the early phase of fracture healing, with a relatively large, immature and weak 

callus being present in all groups. 

Both the densitometric and mechanical properties suggest the presence of ongoing 

remodelling activity in all groups in the late phase, and two distinct densitometric patterns 

were observed. Firstly, in the compression and control groups there was a characteristic 

decrease in ‘immaturity’ from days 30 to 60, in terms of the bone mineral content and 

callus area (DXA parameters) and soft- and hard-callus volume (QCT parameters), with a 

simultaneous increase in ‘maturity’ in terms of strength, stiffness and cortical-bone volume, 

and vBMD values close to those of intact tibias. This indicates that the healing of the bones 

in these two groups was near completion. It is also evident that the 2D DXA parameter 

BMD was a poor marker of this callus maturation in the compression and control groups. 

Secondly, in the distraction group, the pronounced callus that formed in the early phase was 

not reduced at 60 days. Even though the amount of cortical bone increased significantly 

from 30 to 60 days, there was still significantly less of it compared to that observed in the 

compression and control groups. The early mechanical distraction did induce a positive 

stimulatory effect, in terms of larger amounts of soft and hard callus at 60 days, but the 

reduced strength, stiffness, cortical bone and vBMD indicate a delayed callus maturation in 

this group. 

The presence of significantly longer tibias in the distraction group indicates that the 

early distraction creates a fracture gap that is, in turn, at least partly responsible for the 

significantly weaker and more-immature callus at 60 days [39]. Moreover, the longer tibias 

in the distraction group suggest that the intact fibula does not significantly limit the 

lengthening. However, the strain caused by distraction and a reduced bone–implant 

stiffness due to the fracture gap may also be partly responsible for the reduced recovery of 

strength and the densitometric pattern in this group at 60 days post-osteotomy.  
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The increase in cortical bone of more than a threefold in the distraction group 

between 30 and 60 days indicated that the fracture gap had not yet fully mineralized. A 

1.25-mm gap corresponds to around 5.5 mm3 of cortical bone, which is more than the mean 

difference between the distraction group and both of the other groups at both 30 and 60 

days. Also, there was a significant increase in strength but no significant reduction in 

stiffness in this group between days 30 and 60. Thus, there were no clear signs of failed 

healing. The results in the distraction group therefore probably reflect the characteristic 

delayed but robust healing process in distraction osteogenesis [104,105]. However, this 

process has the disadvantages of an extended healing time and the need to avoid a critical 

gap size. In short, given a longer healing time, the distracted bones would probably 

continue to remodel and consequently improve their mechanical properties. In this study, a 

slower maturation of the distracted callus segment was expected, and this provided a second 

reference for comparison. 

This study was subject to several limitations. The interfragmentary movement and 

compressive strain were not measured continuously. However, there were no signs of pin or 

fixator loosening, which suggests that only minor interfragmentary motion occurred 

[38,39]. Moreover, the callus segment was not examined histologically. Such an 

examination would have necessitated a larger number of animals or the ability to perform 

non-destructive biomechanical evaluations of the bones. However, previous investigations 

of the distraction and compression regimens have not revealed significant differences in 

data from histological light-microscopy evaluations [38]. The difference in the ROIs for 

DXA (length of 3.75 mm) and QCT (length of 2.0 mm) measurements prevents a direct 

comparison. Given the mean bone lengths in the compression and static (control) groups, 

similar portions of the callus and cortical-bone ends were probably measured in the two 

groups. It is difficult to separate the effects of the gap and distractive stress in the 

distraction group without including another group with an initial distraction gap of 1.25 

mm. The effect of distracted cortical bone could be avoided by selecting an ROI outside the 

distraction zone. However, the biomechanically interesting fracture site would then not be 

measured. Moreover, measuring mineralization in an ROI adjacent to the distraction zone 

what make it difficult to decide which ROI in the compression and control groups is the 

true corresponding ROI. These are interesting questions that our research group are already 

focusing on in experiments. The lengthening of the tibias in the distraction group may limit 

the application of the protocol. However, our aim was to investigate a fracture healing 
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process exposed to axial compressive forces and compare this to static fixation and 

distraction.  

4.2.3 Initial temporary external fixation and secondary intramedullary nailing  

Bone healing in experimental tibial fractures with initial EF and secondary IMN was 

investigated for publications III and IV. 

It is widely accepted that it is necessary to differentiate between polytrauma patients 

who can and cannot tolerate major surgical procedures [187,205,236]. Data suggest that 

early total fracture care should only be performed in patients with lower injury severity 

scores. Unstable patients and those in a critical condition should not undergo a prolonged 

surgical procedure, and therefore they should be treated with a damage-control approach by 

EF to prevent unexpected complications [188]. The efficacy of this approach has recently 

been confirmed in a prospective randomized clinical study [190]. The results clearly 

demonstrated that patients in a borderline (uncertain) condition did worse when initial 

definitive stabilization was performed, with the conclusion being that stable patients should 

undergo IMN of long-bone fractures while unstable patient should undergo a temporary 

approach using an external fixator, followed by secondary IMN. Another study found that 

about 40% of trauma patients who underwent major secondary reconstructive surgery 

within 3 days after admission developed multiple organ failure [254], and some authors 

have delayed extensive orthopaedic procedures until 72 hours after injury. 

The optimal timing for secondary procedures needs to be determined in damage-

control orthopaedics. The optimal timing of secondary fracture surgery is unclear. A large 

survey of 4314 patients found that patients who developed multiple organ failure received 

secondary surgery between days 2 and 4, whereas patients without organ failure were 

operated at between 6 and 8 days after the initial trauma [186]. Based on these studies, the 

current recommendation seems to be that the optimal approach for damage-control 

orthopaedics in polytrauma patients is initial stabilization of long-bone fracture by EF 

followed by IMN at about 1 week. This was the basis for our time point for the secondary 

IMN procedure. Furthermore, 7 days is in the early phase of healing even in the rat [62], 

and the initial inflammatory response to multisystem trauma often normalizes during the 

first week [96,189]. A soft-tissue neocallus has normally formed at 7 days [147]. After 

nailing the tibia, the fibula and the neocallus make the fracture segment relatively stable to 

torsion, with flexibility to bending and axial movements. Also, the conversion to a bone–
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implant construction with lower stiffness implies larger fracture-site micromotion, which 

has been documented to promote callus formation in the early phase [80].  

As explained in the Introduction, the rationale of a secondary conversion procedure is 

to enhance fracture repair. Goodship et al. demonstrated that early axial cyclic micromotion 

with a relatively high strain rate significantly increased the fracture mineralization, 

mechanical stiffness and maximum torsional load, whilst micromotion applied in the late 

phase reduced bone mineral and mechanical properties and had a detrimental effect on bone 

healing [80]. Increasing the interfragmentary motion substantially in the later phase of 

healing may increase callus formation in leg shaft fractures, but also reduce the quality of 

bone healing [244]. It has also been demonstrated that applying physiological dynamic 

axial compression to canine mid-tibial osteotomies treated with EF after 2 weeks did not 

alter bone formation or the maximum mechanical torque [4], whereas others have found 

significantly higher torsional stiffness and a tendency to higher maximum torque when an 

externally fixed fracture was dynamized after 1 week [146]. This indicates that early 

conversion to the less-stiff bone–implant system of the intramedullary nail may be 

beneficial in terms of enhancing bone healing. While it is obvious that simply changing to a 

less-stiff fracture fixation method during healing will not necessarily enhance fracture 

healing, the observed advantage of early conversion compared to later conversion is 

consistent with other reported experiments finding that only early mechanical fracture 

segment stimuli have a positive effect on bone healing [107]. However, recent advances in 

biomechanics and biomaterials have resulted in improvements of EF frames, and they can 

now remain in place for prolonged periods of time without degradation of the pin–bone 

surface [253]. Our results indicate that continuation of EF in some (possibly more stable) 

configuration may be an option. 

Some surgeons have promoted initial and temporary EF followed by a definitive IMN 

later to avoid compromising an already damaged circulation. However, secondary IMN 

following EF can increase the risk of infection following later nailing, leading to possible 

malunion, delayed union or non-union [164]. Our comparison of EF and IMN for 

publication I revealed no significant difference in the initial healing between the two 

implant types at 30 days. However, in the late phase IMN led to superior bone healing 

compared to EF. This indicates that when EF has been used as the primary treatment, 

exchange IMN in the later phase may enhance the healing process. 

The exact magnitude of the insult that the actual surgical conversion procedure 

represents is unknown, but it can be minimized by careful removal of the four pins and the 
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external fixator together with minimally invasive antegrade non-reamed IMN. Even though 

patients in our small-diameter-nail group received an extra surgical conversion, their 

mineralization and callus formation were superior to those in the control group. This group 

also tended to have higher mechanical bending strength and fracture energy than both other 

groups.  

The callus disturbance caused by the conversion procedure may partly explain why 

late conversion IMN led to an inferior bone healing process with respect to mineralization 

and biomechanical properties. The concurrent soft-tissue damage and its management are 

documented predictors of the outcome and need for reoperation of a fracture patient 

[90,266]. The additional manipulation of the fractured leg represented by the conversion 

procedure may have interfered with the hardening and maturation of the callus. More 

specifically, the physical removal of the four external fixator pins and insertion of an 

intramedullary nail through the fracture site may have influenced the biological fracture 

repair process in our experimental set-up, as it would in a clinical situation. Furthermore, 

penetrating the fracture site with the nail might have represented a greater stimulation to the 

early neocallus in the early-conversion group than in the more-mature callus in groups B 

and C. The conversion procedure or the change in bone–implant fixation in the late-

conversion groups may have delayed callus maturation and remodelling or reinitiated early 

repair processes with soft-callus production, and this may partly explain the lower BMD 

and significant reduction in bending strength and rigidity observed in these groups 

compared to the control and early-conversion groups. 

Our two types of nail correspond to the different standard options used in clinical 

trauma care, and our findings support the current practice involving conversion to the use of 

intramedullary, unreamed, loose-fitting nails as soon as soft-tissue problems are resolved 

and the inflammatory response levels permit removal of EF [51,54]. 

Our experimental set-up included a standardized diaphyseal tibial fracture with 

limited soft-tissue injury and an intact fibula, and hence it differs from the clinical high-

energy-damage situation that often includes extensive soft-tissue damage. In this aspect our 

set-up is more representative of patients with closed fractures but who have an otherwise 

immunological unstable situation where damage-control orthopaedics is an option. 

There is an inherent risk of deep infection when performing a secondary conversion 

to IMN in long-bone fractures. Musculoskeletal trauma is often complicated by a high risk 

of ischemia/reperfusion injuries and secondary infections, and the risk increases with the 

degree of soft-tissue injury and fracture wound contamination. Although favourable results 
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have been reported when secondary nailing is delayed until after granulation of the pin sites 

[257], recent clinical studies indicate that this risk significantly increases in late conversion 

procedures (e.g. after 28 days) [18]. 

4.2.4 Correlations between strength and quantitative computed tomography 

 An analysis of statistical correlation between segmented QCT data and bending 

strength in fractured leg bones is presented in publication V. As stated above (see Section 

1.5), from a clinical point of view the most important biomechanical parameter is the 

maximum (bending and torsional) load, which is how much load a patient’s leg can resist 

before it fractures. In theory, a torsional test tests the weakest region of the bone, whereas 

the cantilever test can be designed to test a specific site, such as the fracture site [62]. 

Stiffness is another frequently used surrogate marker for maturation of fracture healing 

[204]. However, the fractured bones in our study exhibited stiffnesses higher than that of 

intact tibias already at 30 days, even though the bending strength was no more than 50% 

that of intact tibias. 

Massive callus formation in the early phase was evident in both treatment groups. 

Callus formation increases with reduced stability of the bone–implant system [34]. We have 

already determined that bone repair involves numerous processes taking place more or less 

simultaneously, which can be divided into (1) the early, inflammatory response, (2) soft- 

and hard-callus formation through endochondral and intramembranous ossification 

(cartilage formation, calcification and removal), and (3) osteon remodelling, also called 

primary healing [59]. Moreover, remodelling is dependent on the provision of adequate 

stability, such as by the callus formed after fracture and/or fracture fixation devices. 

Furthermore, very rigidly fixed fractures exhibit bone repair with diminished callus 

formation, which is also called primary healing. Fixations of tibial diaphyseal fractures with 

absolute rigidity are rare in the clinic [46]. 

 The presence of soft and hard calluses was not significantly correlated with bone 

strength. When all study groups were pooled (N=40), strength tended to be negatively 

correlated with the soft-callus volume. In a clinical setting, the visible periosteal callus on 

an x-ray is not a direct indicator of the fracture strength. The formation of a callus is 

indicative of a normal course of healing in a fracture with relatively flexible fixation after 

some time, and signals that remodelling is imminent or perhaps already advancing with 

bone strengthening. Our results indicate that even though a callus provides stability for the 
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remodelling process, its biomechanical splinting effect is not a major contributor to the 

maximum bending strength of the bone. In theory, this complicated bone healing 

mineralization that results from overlapping formation and resorption processes of calcified 

tissue may be difficult to describe clearly with sum or average densitometric parameters 

such as bone mineral content, BMD or vBMD. Our experimental set-up failed to identify a 

clinically valuable QCT parameter of the bone strength, but this may have been due to 

threshold selection and issues concerning image resolution, and hence future studies might 

reveal QCT parameters that can predict the strength of a healing fracture. 

Only the fracture-site QCT-measured cortical-bone volume in the IMN group at 

30 days was correlated positively and significantly with strength. Almost half of the 

variability in the strength could be accounted for by variation in the fracture-site cortical-

bone volume. At 60 days, cortical bone in both treatment groups exhibited similar 

properties to intact bone, which suggests that cortical bridging had already occurred. 

Interestingly, the strength was found to differ between treatment groups even when the 

cortical-bone volume did not. Cortical-bone remodelling with the formation of new, strong 

lamellar structures across the fracture gap is the main factor responsible for a restoration of 

the mechanical strength. Our results support the idea that the proximity of the ROI of QCT 

to the fracture influences the biomechanical importance of the measurement. It may be that 

the QCT-measured cortical-bone volume is sensitive to biomechanically important 

mineralization processes such as cortical bridging or osteon remodelling in this situation, 

when the ROI is close to the fracture line in the early phase of healing in fractures with 

relatively flexible fixation. The higher bone implant stiffness in the EF group may be at 

least partly responsible for a smaller amount of hard callus forming, which in turn probably 

reduces the stability for the cortical remodelling process and bone maturation. Subsequent 

differences in lamellar structure and microstructural properties may explain differences in 

bone strength and the relatively weak correlation between strength and cortical-bone 

volume. 

The relatively weak correlation between measured cortical bone and strength may 

partly be explained by variation of the fracture configuration. The fracture homogeneity and 

standardization of our experimental model promotes systematic bone research. However, 

the ROI of QCT was aligned with the saw osteotomy perpendicular to the tibia, and not 

necessarily with the remaining one-third of the fracture – the manual manipulation after 

partial osteotomy to fracture the remaining third of the tibial bone may have led to a variety 

of fracture configurations. Figure 10 shows that the accumulation of measured cortical bone 
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(as represented by the curve) had a minimum in the centre of the ROI. This point probably 

expresses the fracture line and supports that our ROIs are centred on it. 

None of the measurements in the QCT study group with the wide ROI were 

correlated significantly with strength. When all groups were pooled (N=40), the presence of 

cortical bone in the wide ROI tended to be positively correlated with strength. The QCT-

based measurements of callus area included a relative large proportion of unfractured 

(cortical) bone, which might have weakened the correlation with bone strength.  

The calculated tissue volumes are based on the measured CT values of the voxels. 

Even high-resolution CT systems have limitations in visualizing bone microstructure [11]. 

In heterogeneous materials (e.g. fractured bone), the CT value corresponds to the average 

attenuation contributed by all materials and chemical elements within its boundaries, and 

this is commonly referred to as the partial volume effect [7,115]. The CT value thus reflects 

local radiopacity and is an approximation of the true amount and distribution of mineral 

density of the scanned subject. CT values are influenced by the properties of bone marrow 

in osteoporotic subjects [142,165]. The full implications of the use of a tomographic 

technique to produce the CT value are unknown, but the effects are unlikely to have 

affected the groups in the present study unequally.  
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5 Conclusions 

The observations made in this study indicate that treating tibial diaphyseal fractures  

with EF seems to be as effective as IMN in recovering mechanical properties in the early 

phase of healing. However, at the time of healing IMN provides significantly greater callus 

maturation, as measured by the mineralization of the callus segment, and results in superior 

mechanical properties compared to EF. 

We found that (1) early compression of externally fixed tibias did not enhance 

fracture healing in terms of mineralization of the fracture gap and mechanical 

characteristics at mid-term or at the time of union compared with statically fixed bones, and 

(2) both compression and static fixation techniques induced superior mechanical properties 

at 60 days and a more-mature callus mineralization compared to distraction. 

In our experiments we found that (1) the continuation of EF reduced mineralization 

and callus formation of the fracture segment compared with early conversion to definitive 

small-diameter nails after 7 days and (2) the conversion after 7 days to small-diameter nails 

induced increased callus formation compared with both the use of large-diameter nails and 

continuation of EF, whilst (3) the mechanical characteristics did not differ significantly 

between definitive EF and conversion to IMN using nails with different diameters. 

The results of our study indicate that the timing of the conversion from initial EF to 

IMN has a significant impact on bone healing. Our experiments support the clinical practice 

of early conversion as soon as the patient or local soft-tissue conditions permit since (1) 

early conversion to IMN induces an advantageous increase in mineralization and callus 

formation in the fracture segment, and (2) late conversion has a detrimental effect on the 

biomechanical properties of bending strength and rigidity, both compared to early 

conversion and to the use of an external fixator for definitive fracture management. 

In conclusion, even though QCT was able to quantify the characteristic pattern of 

secondary healing with early callus formation and late callus resorption with bone 

remodelling, segmenting the QCT data into these different types of bone tissue did no 

increase the correlation with strength relative to using vBMD or any clinically usable 

predictor of bone strength. The two significant correlations found between strength and 

QCT-measured cortical bone and vBMD suggest that fracture-site QCT measurements are 

sensitive to biomechanically important fracture mineralization in the early phase of healing 

in fractures with relatively flexible fixation. 
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6 Perspectives 

Our experimental findings cannot be directly extrapolated to human patients. 

However, the following implications for clinical treatment of tibial diaphyseal fractures can 

be suggested from our results: (1) IMN is useful as a standard treatment for unstable tibial 

fractures since it may promote callus formation and thereby improve biomechanical 

characteristics compared to the use of a more-rigid unilateral external fixator; (2) in 

fractures initially treated with a unilateral external fixator with adequate soft-tissue 

conditions, there exists an optimal time window (between 1 and 2 weeks after the initial 

surgery) in which a conversion to IMN from initial temporary EF provides superior 

biomechanical fracture healing with a low infection risk relative to later conversion; and (3) 

when the conversion to IMN cannot be performed early due to the patient having a severe 

polytrauma status or to the presence of damaged soft tissue surrounding the fracture 

segment, maintaining the EF until bony union in some (possibly more stable) configuration 

seems a viable option both to promote biomechanical fracture healing and to avoid deep 

infection. 

Even though we did not identify any enhancement in our compression regimen, 

future studies should combine defined periods with simultaneous distraction and 

compression of the fracture gap in order to prevent limb lengthening or shortening. A 

clinically applicable combination of early compression and distraction could theoretically 

stimulate callus formation without creating a fracture gap and avoiding the induction of 

delayed healing or non-union, and potentially enhance both the mechanical properties and 

healing. 

The results from a high-resolution micro-CT analysis of small animal bones cannot be 

directly transferred to and applied in the clinic. Still, we believe that our findings contain 

important and relevant information for the non-invasive evaluation and staging of bone 

repair, and indicate that further exploration of tissue threshold selection using imaging 

systems with higher resolutions and better fracture-line alignment of ROIs may increase the 

value of QCT. The future of fracture treatment research should include not only the 

development and clinical application of advanced surgical methods and the use of 

biologically active healing modifier molecules and materials, but also the corresponding 

development and clinical application of non-invasive methods for evaluating fracture 

healing. Even though computational models, mechanical monitoring and imaging 
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modalities such as CT and MRI have shown substantial technological improvements and 

are widely applied, the ability to adequately and non-invasively evaluate fracture healing 

remains unsolved. Combining improved scanning resolution, lower radiation doses, 

superior image analysis techniques, physical material models, mathematical models and 

increased computational power has shown promising results, and may eventually solve this 

problem. Further validation and exploration of tissue threshold selection for segmentation 

and ROI configuration of QCT may be the first steps toward obtaining such a solution. 
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7 Figures 

Figure 1. The OTA classification of tibial diaphyseal fractures (from [162]). 
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Figure 2. X-ray of an intact adult rat tibia. Figure 3. Photograph of a rat tibia at 
60 days after EF.  

 
 
 

 
 
 

Figure 4. X-ray of a rat tibia at 60 days after 
EF. 

Figure 5. X-ray of a rat tibia at 60 days 
after IMN. 
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Figure 6. Load–deformation diagram from a cantilever bending test of an adult rat 
tibia tested to failure, showing the biomechanical structural properties of strength, 
stiffness and energy to fracture. 
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Figure 7. 3D CT reconstruction of a rat tibia at 60 days after initial treatment with 
IMN, showing the fracture line (A), the 1.25-mm-long narrow ROI (B), and the 3.75-
mm-long wide ROI (C). The wide ROI is also shown enlarged. The fibula has been 
resected. 
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Figure 8. Normal and segmented cross-sectional CT images of the rat tibial diaphyseal 
fracture site. A) Normal cross-sectional image obtained after 60 days of EF, showing 
some periosteal and endosteal callus around the cortex. B) A segmentation of the image 
in panel A, where white = cortical bone, light grey = hard callus, dark grey = soft callus, 
and black = soft tissue or exterior. C) Normal cross-sectional image obtained after 30 
days of IMN, showing some cortical bone and a massive periosteal callus. D) 
Segmentation of image C (colours are the same as in panel B). 
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Figure 9. Slice-by-slice analysis of the tissue distribution (soft callus, hard callus and 
cortical bone) for the number of voxels per transverse CT slice along the 3.75-mm-long 
ROI in the longitudinal direction, centred around the fracture and encompassing the 
callus formed after fracture. Slice data are averaged for all fractures in all study groups 
(N=40). Voxels were cubes with a side length of 50.7 �m. 
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Figure 10. Histogram of the voxel distribution of micro-CT scans of the intact rat tibia. 
The ROI included a 3.75-mm-long segment (75 slices) of the tibia in the longitudinal 
direction. The voxels are segmented based on CT values into the exterior (<–7 mg/cm3), 
soft tissues and fat (–7–171 mg/cm3), soft callus (171–540 mg/cm3), hard callus (540–
1200 mg/cm3) and cortical bone (>1200 mg/ cm3). Voxels were cubes with a side length 
of 50.7 �m. 
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