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Chapter 1 Introduction

The merging of computer science and molecular biology has become increasingly tighter and
important as the design and analysis of biological experiments gains complexity and produces
increasing amounts of data. Computers and computer science were developed with the main
goal of solving problems involving too much data or too many operations for man to finish in
a reasonable time. On the other hand, molecular biology emerged as a field of study when
tools and curiosity combined enabled man to venture beyond biological studies in the more
classical terms of Mendel and Darwin. As novel tools are developed and further
understanding of the complexity of molecular biology is gained, the need for general and
specific high-throughput experiments and analysis tools has become clearer than ever. One
specific area of high throughput experiments and analysis is the field of microarrays. All
microarray studies involve an array design, an experimental design, a hybridisation of some

biological component to the array and a subsequent analysis of the hybridisation results.

In this work I have unleashed the power of microarrays for observation of DNA events in
bacteria and humans. This has been achieved by going all the way from array design to result
interpretation, and clearly demonstrates the power contained in high-throughput methodology

in the combined field of molecular biology and computer science.

Since the molecular biology and bioinformatics of this work are somewhat separated, an
introduction to the different aspects is presented in two parts below. As a bioinformatician
one tries to be a bridge between computer science and biology, and as a trained computer
scientist my short introduction to molecular biology would be basic to a biologist, but
important to the computer scientist. I further describe common algorithms, tools, microarray

platforms and computer programs that are relevant to the studies presented in the papers.

1.1 Molecular biology

The study has focused on custom high-density oligonucleotide microarray design and analysis
for detection of DNA repair systems and DNA damage. As the microarray application areas

differ, the introductory aspects of these are separated for the sake of clarity.



1.1.1 DNA and RNA basics

"DNA makes RNA, RNA makes protein, and proteins make us.” - Francis Crick

All organisms, except viruses, are made up of one or more cells. To construct and to maintain
a living organism a recipe is needed, and this recipe is stored in the genome. In single cell
organisms (prokaryotes), like bacteria, the genome is one circular piece of DeoxyriboNucleic
Acid (DNA), while multi-cellular organisms (eukaryotes) have chromosomal DNA
organisation and mitochondrial DNA. Normal chromosomal DNA is made up of two
complimentary strands formed in a double-helix structure, each strand is a linear variation
over the four nucleotides (bases): adenine (A), thymine (T), cytosine (C) and guanine (G).
The double-helix structure is maintained by base pairing between the two linear DNA strands

(Figure 1).

RiboNucleic Acid (RNA) is a less stable single stranded version of DNA, where the base T
has been changed to uracil (U), (Figure 1). An RNA molecule is generated by “copying” one
strand of the DNA “nucleotide by nucleotide” in a process called transcription. Dependent
upon its sequence type, the RNA can now serve as either a functional component in the cell or
be further translated into a protein (Figure 1). The total RNA product within in a cell is called

the transcriptome.
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Figure 1. DNA, RNA, ncRNA and protein. The DNA is the storage facility for the hereditary material. During
transcription RNA is created and subsequently either folded into a functional RNA or translated into amino acids
and folded into a protein.

1.1.2 Genes

A gene is a piece of DNA which can be transcribed into some RNA product that is of use to
the cell. In this thesis all DNA regions coding for some useful RNA product are referred to as
genes, rather than limiting the description to those responsible for protein coding messenger
RNAs (mRNAs). A gene is encoded on one of the DNA strands (coding strand), the opposite
DNA strand is named the template strand. The section of an mRNA being translated into a
protein is called the open reading frame (ORF), while the 5° start and the 3’ end regions of
mRNAs which are not part of the ORF are referred to as untranslated regions (UTR) (Figure
2).

In prokaryotes, a gene is organised as one continuous stretch of DNA, while in eukaryotes a
gene is usually made up of at least two exons (coding DNA) separated by introns (non-coding
DNA) (Figure 2). The introns are removed when the mRNA is assembled from the initial
transcript, which includes both the exon and intron sequences. Hence, eukaryotes can
compose several different versions (splice variants) of a single protein from a coding gene by

including or excluding exons in the mRNA assembly before translating it into a protein.
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Figure 2. The structure of prokaryotic and eukaryotic genes. The prokaryotic genes are organised as
continuous stretches, while the eukaryotic genes are usually made up of exons and introns.

Several genes (in prokaryotes) can be organised into operons; leading to a single transcript
containing at least two protein coding sequences. Operons often consist of genes that are
functionally closely related [1, 2]. One operon theory is that they are formed to ensure co-
regulation [3], while another theory (the “selfish operon model”) claim that genes form

operons by horizontal gene transfer to prevent their removal from the genome [4].

1.1.3 Non-coding RNA

RNA molecules have for many years been viewed as the cornerstones of the protein synthesis
(mRNA, transfer RNA (tRNA), ribosomal RNA (rRNA)). As more genomes were sequenced,
the numbers of protein coding genes suggested that organism complexity could not be
completely explained by the relatively limited number of protein coding genes. Already in
1993 it was shown that the /in-4 gene in Caenorhabditis elegans was not coding for an
mRNA, tRNA or rRNA, but for a functional RNA crucial to the development of the organism
[5]. The detection of this functional RNA molecule was made in the “protein era”, but today
the revelation of /in-4 and its function is perhaps viewed as more important than at the time of
discovery. This novel RNA molecule fuelled the detection of a wide range of RNA molecules,
for example; short-, micro-, and short-interfering —-RNAs, generically named non-coding

RNAs (ncRNAs) or small RNAs (sRNAs), as they do not code for proteins.

Several studies have tried to map the entire transcriptomes of bacteria [6, 7], yeast [8] or
entire human chromosomes [9], and widespread transcription is detected in all cases. Novel
transcripts are detected from intergenic regions and from the opposite strand of known coding
regions. This abundance of novel transcripts is sometimes referred to as the “dark matter in
the genome” since the transcripts await an explanation [10]. One possibility is that many of

these transcripts are ncRNAs acting as a critical, but until now, hidden layer of gene



regulation, with more complex organisms containing larger amounts of ncRNAs [11]. Other
explanations propose that these results are mixtures of experimental artefacts [12], biological

“artefacts”, true ncRNAs and transcripts that code for short peptides instead of ncRNAs [10].

Some RNAs have known functions; for example /in-4 triggers a certain developmental stage,
while the majority have unknown functions. One characteristic of these functional RNA
molecules is that they are often short (< 100 nts) and they can behave in a regulatory fashion
by binding to mRNAs with a complementary nucleotide sequence. Regulatory ncRNAs can
regulate mRNA translation depending on the level of complementarity (ncRNAs have been
reviewed and discussed in for instance Eddy [13], Szymanski ez al. [14], Huttenhofer et al.
[15], and Mattick & Makunin [16, 17]). Today many ncRNAs, from different species, have
been detected with laboratory methods. See for instance miRBase [18-20] or Rfam [21] for all
miRNAs and ncRNAs, and even more are in silico predicted [22-25]. As studies continue to
unravel ncRNAs as important gene regulators, it follows that detection of ncRNAs and

functional ncRNA studies are fundamental to a full understanding of functional genomics.

1.1.4 Escherichia coli

Escherichia coli is well known as a bacterium causing diarrhoea (e. g. strain 0157:H7). E. coli
is a gram-negative bacterium and some of the harmless E. coli strains are part of the normal
flora of the human gut. There are more than 60 sequenced strains of E. coli (NCBI 29" of
June, 2009). The E. coli strain studied in this thesis is MG1655, which is non-pathogenic and
has a circular genome of about 4.6 megabases [26]. E. coli is perhaps the best characterised
organism in molecular biology, and was documented already in 1885 and in 1919 named after
the German doctor Theodor Escherich who made the discovery.

The genome of E. coli MG1655 is annotated with 4131 protein coding genes and 172 non
coding genes (NCBI, NC_000913, updated 27" of January, 2009) [21], and it was sequenced
as early as in 1997 [26]. Although the E. coli genome is among the most thoroughly studied,
the functions of the majority of the genes are unknown. In prokaryotes it is assumed that the
non-coding strand does not hold any important coding information. Additionally, intergenic
DNA (regions located between known genes) is by many considered to be “junk-DNA”.

Today these non-coding regions are emerging as an interesting field of research, as



experiments indicate widespread transcription from non-coding DNA in a variety of species

[6, 8, 9], including E. coli.

Since 2001 several studies have been published on computational and/or experimental
detection of E. coli ncRNAs [22-25, 27-29] (reviewed in [30]). The methods vary from
whole-genome microarrays, via searches for conserved regions and structures, through
searches for transcription signals. Currently (24™ of March 2009) there are 57 annotated
ncRNAs (not including tRNAs or rRNAs) in E. coli MG1655 (Rfam [21]), and more than
1000 ncRNA candidates from in silico studies [30]. The usual methods for verification of
ncRNAs are northern blots and reverse transcriptase polymerase chain reaction (RT-PCR).
All verified E. coli ncRNAs are located in DNA regions without previously known protein
coding DNA on either strand (some of these have been mistakenly reported as short coding
regions before), and some predicted ncRNAs reside inside annotated protein coding regions.
Most known E. coli ncRNAs reside in intergenic regions with size [300-900] nts, and only

rarely in longer regions, since those regions are dominated by repeats.

1.1.5 DNA repair

A remarkable feature of DNA is the way in which the structure, via the strict strand
complementarity, has a redundancy which enables DNA damage repair. All organisms suffer
from DNA-damage from for example chemical reagents or UV-irradiation. For example,
about 18,000 purine residues are lost in every human cell every day because of hydrolysis.
Although most DNA damage is non-lethal, all organisms are critically dependent upon DNA
repair functionality. DNA repair is defined as “a cellular response to DNA damage that
results in the restoration of normal nucleotide sequence and DNA structure” [31]. Hence, a
DNA repair mechanism has to either reverse the damage or exchange the damaged part with a

healthy part. The initial recognition of DNA repair was done in E. coli [32].

DNA repair mechanisms are often divided into three different groups [31]:
i) Reversal of base damage. Repair systems of this category reverse damage inflicted
on single bases in the DNA.
ii) Excision repair of damaged, mispaired, or incorrect bases. Excision repair has

several subgroups defined by the part of the DNA that is excised. The central



function of these repair mechanisms cause damaged DNA base(s) to be cut away
and replaced by a healthy part which is identical to the original.

iii) Strand break repair. The DNA strand can be broken either on one or both strands.
Strand break repair has two subgroups; single strand break repair and double

strand break repair.

DNA-damage can be inflicted by different sources, from chemical reagents to irradiation.
Typical damage include loss of purines, damage inflicted to the bases, base-exchanges, single
strand breaks and double stranded breaks of the DNA [31]. DNA damage mechanisms can
cause mutations if the repair system is insufficient or the damage level too high, and although
most mutations are benign some are known to cause diseases in humans like xeroderma
pigmentosum, Cockayne’s syndrome and different types of cancer (reviewed by Hoeijmakers
[33]). Since the genome should be kept stable without introducing malign mutations, the
DNA repair system has several backup strategies; if a primary repair pathway fails, some

secondary system will hopefully repair the damage.

Not all repair processes are able to perfectly repair the damaged DNA, and instead might
introduce errors (error prone repair) or might allow DNA replication to continue although
there are errors present in the DNA (lesion bypass). Error prone / lesion bypass repair genes

are described in SOS-response section (1.1.5.1) below.

DNA damage tolerance systems are mechanisms often combined with DNA repair. These are
mechanisms enabling the cell to tolerate a certain level of DNA damage. It should be noted
that favourable genetic changes are most often introduced by means that do not include the

removal of DNA damage [31].

In multicellular organisms, a final answer to severe and unrecoverable damage is apoptosis
i.e. programmed cell death. DNA damage and uncompleted repair can cause many diverse,
but severe, diseases (including cancer). Therefore it is of utmost importance to fully
understand all DNA repair mechanisms, and E. coli is perhaps the most widely used model
organism for DNA repair research. A better understanding of the E. coli DNA repair systems,
combined with the fact that DNA repair genes are remarkably well conserved between species
[34], may make it easier to define therapeutic targets and design drugs for DNA damage

related diseases in higher organisms.



An important DNA damage response in many organisms is the SOS response [32] (first
formal paper, 1973), named after the international distress signal. The SOS response was first
discovered in E. coli and is known to include more than 40 genes [35]. DNA damage induces
the SOS response and the most important regulatory proteins involved are the LexA repressor
and the RecA protein (Figure 3). The SOS response has been reviewed extensively [36-40]

and is well understood.

Both in vivo and in vitro studies postulate that the induction signal for the SOS response is the
interruption of normal replication, or the creation of regions of single stranded DNA (ssDNA)
originating from replication attempts on damaged DNA templates [31]. The RecA protein
binds to the ssDNA making RecA-ssDNA nucleoprotein filaments, and the coprotease
activity of RecA is activated, enabling cleavage of LexA. The LexA repressor fuses with the
nucleoprotein filaments causing cleavage of the Lex repressor and subsequently a rapid
decrease in the amount LexA [41]. LexA functions as a repressor by binding to an operator
sequence (SOS box) of the genes it represses. The decrease of LexA repressors induces
expression of the normally repressed repair proteins at different times and levels. According
to the time-point microarray gene expression study by Courcelle et al. [6] the different SOS
repair systems are induced in an ordered fashion (commented in [37]). The first class of genes
induced is nucleotide excision repair (NER) consisting of uvrd, uvrB uvrD genes and the
endonuclease UvrC homologue cfo which repairs damaged nucleotides in double stranded
DNA. Secondly different homologous recombination repair functions with genes including
recA, recN, ruvA and ruvB are induced. To allow time to complete the repair process the cell
division inhibitor sfi4 (alias sulA4) is induced. If the genome is not fully repaired about 40
minutes after damage discovery, a final SOS response step is tried. This final repair process is
carried out by the error prone DNA repair polymerase Pol V (encoded by the umuC and
umuD genes). Pol V can repair double stranded DNA lesions, but Pol V might introduce

errors to the genome during this process.
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Figure 3. Induction of the LexA controlled SOS response genes. A schematic view of the regulation in the
lexA-recA regulon. In the uninduced state the LexA repressor protein binds to the SOS box of the LexA
regulated genes and represses these. DNA damage activates the coprotease activity of the RecA protein and the
activated RecA cleaves the LexA repressor. In the induced state the de-repression of recA results in large
amounts of RecA proteins. When the DNA damage induced signal decreases (due to DNA repair), the
coprotease activity of RecA decreases, LexA repressor protein accumulates and the LexA controlled genes are
again repressed by LexA. (Figure adapted from Friedberg et al. [42].)

The upstream region of SOS genes, which the LexA repressor binds to when residing its
normal non-cleaved form, is named the SOS box [31]. These operator sequences are
imperfect palindromes and the consensus sequence is described as 5'-TACTG(TA)sCAGTA-
3’ [43], and is usually located within -200 to +40 bases of putative translational start codons
of LexA regulated genes [35]. When the E. coli genome sequence was published in 1997,
whole-genome scanning for SOS-boxes could be applied to detect possible LexA binding

sites and consequently possible SOS-response genes. A computational search by Fernandes de
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Henestrosa et al. revealed 69 possible LexA regulated genes/operons, from which seven new
LexA regulated genes were identified [35]. The findings of this in silico search also included
all previously predicted LexA regulated genes from a previous study by Lewis et al. [44] from
1994. Of the 62 known SOS boxes most are found upstream of single genes or operons, but
some are found between genes transcribed in opposite directions. Due to DNA strand
complementarity and the palindromic form of the SOS-boxes the LexA binding sites may

regulate 69 genes or operons in total [35].

Ultraviolet (UV) irradiation, mitomycin C and nalidixic acid are examples of well established
SOS response inducers in E. coli. UV-irradiation causes DNA lesions that transiently block
both replication and transcription in E. coli. The first high throughput examination of the E.
coli SOS response was a time-point study done in 2000 with UV-stress and microarrays
covering 95.5% of all known ORFs [6]. In this study Courcelle ez al. show significant
upregulation of several known LexA dependent and independent genes, in addition to a wide
range of downregulated genes in response to UV-irradiation in the E. coli strain MG1655. As
expected, known SOS inducible genes were among those upregulated, additionally there were
many upregulated genes with unknown functions and/or that had not previously been
described as SOS inducible. The measured decrease in expression levels in a wide range of
genes is suggested to be a global stress response, but the experiment could not verify if this
decrease is caused by a decrease of transcription or accelerated transcript degradation.
Interestingly the normal E. coli transcriptome showed a significantly larger number of
reduced transcript levels compared to the LexA deficient version. This indicates some LexA
dependent transcript inhibition or degradation as another result of the LexA controlled

machinery.

Mitomycin C is a DNA damaging reagent generating inter-strand cross-links [45, 46]. The
crosslinks prevent separation of the DNA strands and can completely block replication and
translation, which is the reason mitomycin C and other inter strand cross link inducers have
been used in cancer chemotherapy [31, 45]. The E. coli transcriptional response to mitomycin
C was measured in the Khil and Camerini-Otero time-point study from 2002 [47], and
revealed regulation of more than 1000 genes, including upregulated genes from LexA
independent repair responses. The study was performed using microarrays covering all known
ORFs in the E. coli genome. Of the total of ~1200 (~30% of all ORFs) significantly regulated

genes detected in this study two thirds were downregulated, which coincides with the general
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agreement of a general downregulation combined with a specific upregulation in response to
DNA damage. The remarkable difference in the amount of differentially regulated genes
compared to the UV-irradiation time point study by Courcelle ez al. [6] can possibly be
explained by a difference in growth medium, the E. coli strain used (E. coli W3100 versus
MG1655), the dosage and type of stress and the microarrays used.

Notably, mitomycin C is an alkylating agent that do not invoke the adaptive response to
alkylation damage (described below), since the Ada protein remains unmethylated by
mitomycin C induced DNA damage. Interestingly, crosslink damage of DNA may introduce
translocations and other DNA damage known to be present in cancer. Hence, mitomycin C
may both induce cancer related damage and be applied chemotherapeutically to treat cancer.

Usage of mitomycin C in cancer chemotherapy has been reviewed by Thomasz [45].

DNA damage induced by nalidixic acid is an example of damage severely compromising the
normal DNA, without invoking the SOS response directly. Nalidixic acid results in double
stranded breaks (DSB) in the DNA. The DSBs alone are not sufficient to induce the SOS
response and recBCD processing of the DSBs is needed for SOS induction. The recBCD
enzyme degrades and unwinds the DSBs and the unwinding results in SOS induction,

supposedly due to detection of damaged ssDNA [31].

1.1.5.1 Adaptive response to alkylation damage

Alkylating base damage is a type of DNA damage where bases in the DNA are damaged by
the addition of a methyl group or an alkyl group. The main DNA repair pathway for repair of
alkylation damage in E. coli is called the adaptive response to alkylation damage [48]. This
damage is typically induced by exposure to alkylating agents inside the cell or in the
environment. Hence, this response is important to different species and it is highly conserved
in many bacterial genomes, although sometimes differentially organised [49]. As with the
SOS-response the genes involved in the adaptive response have a main regulator; the Ada
protein. The Ada protein is both a repair protein and a regulator of the adaptive response
pathway consisting of the ada-alkB operon and the alkA and the aidB genes (Figure 4). The
adaptive response in bacteria has been reviewed by Teo et al. [50], Sakumi & Sekiguchi [51],

Landini & Volkert [52] and Sedgwick & Lindahl [49].
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Figure 4. Induction of the adaptive response. Exposure of E. coli to methylating agents makes the cellular
DNA alkylated at many cites. The Ada protein, only present at a low level in the cell (top), will be methylated
during repair of methylated DNA (middle). This process converts Ada into a strong transcriptional activator of
the ada inducible genes (middle). The induction of the ada inducible genes strongly enhances the repair of
methylated DNA (bottom). (Figure adapted from Lindahl et al. [53].)

The ada gene product has at least four roles: repair of alkylated DNA lesions, sensor of
alkylation damage, it is a transcriptional activator of the ada gene itself and other adaptive
response genes, and it also terminates the adaptive response.

To be turned into a transcriptional regulator Ada needs to be activated. Methylated phosphates
in DNA are the signals that transfer Ada to its transcriptionally active form. The Ada protein
repairs such lesions by removal of the methyl groups from the damaged DNA, and during this
process Ada becomes methylated ("°Ada). The methylation turns Ada into a strong
transcriptional regulator of the Ada regulon genes, and is followed by a large increase of the

number of Ada proteins and increased transcription of the alkA, alkB and aidB genes.

The ada and alkB genes are organised as an operon, and the alkB protein is known to repair 1-

methyladenine and 3-methylcytosine in DNA by oxidative demethylation [54, 55]. The alkA
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protein is a glycosylase that catalyses removal of several methylated base lesions [49]. The
final (known) player in the Ada DNA repair regulon is the aidB gene. The function of the
aidB gene is somewhat uncertain, but it is believed to be important to the adaptive response. It
has been shown to reduce the mutagenic effect of N-methyl-N’-nitro-N-nitrosoguanidine

(MNNG) [56] and it is suggested that it directly destroys certain alkylating agents [49].

The Ada-dependent promoters located upstream of alkA, aidB and the ada-alkB operon only
allow a high level of transcription when methylated Ada ("*Ada) is present in the cell. The
actual interaction of "*Ada at the ada/alkB promoter has been presented in different versions
[52]. Lately several studies indicate that a "Ada-o’° (RNA polymerase subunit) interaction is
what enables transcription activation [57, 58]. The Ada role at the a/kA promoter is different
from the ada promoter and transcription of alk4 is allowed with "*Ada and with normal Ada,

but in the latter case at a far lower level [59, 60].

A recent study by He e al. [61] shows that the regulatory elements of ada regulon promoters
consist of two boxes; A box (AAT) and B box (GCAA) separated by a six nucleotide spacer.
This novel promoter region is similar for all four Ada regulon genes. Normal Ada proteins do
not achieve a strong enough binding with the A box and B box to activate the promoter, while
a "*Ada protein will stably bind to the ada regulon promoters and enhance transcription. It is
not known why the methyl group so strongly enhances the Ada binding ability, but the

difference in the binding efficiency is significant.

Methylation of the Ada protein is irreversible and some functionality for turning off the
adaptive response genes after completed DNA repair is needed, as high expression of the
adaptive response genes is lethal in healthy cells [62]. In the final stages of the repair process
unmethylated Ada will accumulate in the cell. High concentrations of normal Ada in the cell
(>200 molecules pr cell) will deactivate ada transcription caused by "*Ada, and the adaptive

response will rapidly be switched off if no further damage occurs [63].

Methylating agents are by far the best inducers of the adaptive response, some induction can
be seen during DNA damage from large alkyl groups, but large alkyl lesions are usually more

efficiently repaired by the uvrABC-dependent nucleotide excision repair pathway [52].
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1.1.6 Human fusion genes

In humans the genome is arranged in chromosomes, and the genes consist of one or more
exons separated by introns. As described, genes can occur in many splice variants by
including or excluding exons when processing the mRNA prior to translation. Splice-variants
give the resulting protein different functions and are part of the normal variation in healthy
human cells. The genomes of human cancer cells are often heavily damaged. The DNA
damage in cancer cells often includes numerical gains or losses of whole chromosomes,
structural changes such as translocations, intrachromosomal deletions, amplifications or
inversions. Such abnormalities are often the pathogenically essential features of cancer
genomes, and gene fusions caused by chromosomal rearrangements are the most widespread
genomic alterations known in cancers [64]. A fusion gene is caused by inter or intra-
chromosomal rearrangements, and arise when a gene 4, often having a strong promoter, fuse

with a gene B (Figure 5).

Gene A

Gene B

Figure 5. Fusion genes. Fusion genes occur when a chromosomal rearrangement creates a “fused” gene
consisting of exons from two different genes. (Picture courtesy of Marthe Lovf).

The resulting fusion gene thus has exons from both gene A4 (the upstream gene) and gene B
(the downstream gene). The fusion break point usually occurs in the intronic regions of the
genes [65] and the expression level is controlled by the 4 gene’s promoter [66].
Consequently, fusion gene products are often highly expressed and the protein functions
diverge from their origins (often towards malignant behaviour). The chromosomal
translocations usually create two fusion genes as they are reciprocal, but detection of both
gene fusions are uncommon as only one is controlled by an active promoter [67]. One known
rearrangement in leukemia results in a fusion gene with exons from the TCF3 gene being
followed by exons from the PBX1 gene [68]. Particularly, fusion genes seem characteristic of
haematological malignancies and sarcomas, and they can serve as potential drug targets [69,

70], diagnostic markers [71-73], and prognostic parameters.
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The Philadelphia chromosome in chronic myeloid leukaemia discovered by Novell and
Hungerford was the first cancer related chromosomal rearrangement detected [71, 72, 74].
Several reviews on fusion genes and cancer have been published since then; for example
Mitelman et al. [75], Gasparini et al. [67], Morris et al. [76] and Kumar-Sinha et al. [77].
Fusion genes can be found in neoplastic cells from a wide range of cancers, and their presence
may be used in differential diagnosis and/or therapeutic decision making. Hence there is a
great interest in, and a need for, development of high throughput screening methods for
known and novel chimeric fusion genes. Today, detection of fusion genes in cancer usually
includes laborious and time-consuming methods like chromosome banding analysis
(karyotyping), fluorescent in-situ hybridisation (FISH) and reverse transcriptase polymerase
chain reaction (RT-PCR). But as none of these methods have any high-throughput screening
potential they all require some educated guess about where to start the search. Without any
clue as to which genes fuse, all genes and their possible exon-exon combinations must be

tested, and the testing is unfeasible within a reasonable time.

There are two aspects of the detection of fusion genes; on the one hand cancer researchers
want to detect all fusion genes in a wide range of cancer types so that further research can
focus on the function of chimeric fusions and possible roles as drug targets. On the other hand
a high throughput chimeric fusion gene screening method is very interesting as a tool in

diagnostics, hopefully at a very early stage in the cancer development.

Oligonucleotide microarrays have been used in a few studies to detect known fusions in
cancer cell-lines, but these arrays have only covered a small set of predefined fusion junction
sequences [78-81]. Another option is to apply exon arrays, i.e. microarrays giving intensity
measurements for all (or a selection of) human exons, to look for intragenic gene expression
profiles that have significant internal edges between the up- and downstream parts. A major
problem with this method is that even though possible junction points for fusion genes can be
detected, one has no idea of which genes fuse, as no fusion sequences (sequences made up of

part from both the 4 and the B gene) are probed.

Recent developments of ultra-high throughput sequencing platforms have enabled whole

transcriptome sequencing, and consequently several novel fusion genes have been detected in



16

cancer cell lines [82-85]. The limitations of these studies today are the number of genomes

that can be investigated due to the high cost and computational challenges.

1.2 Microarrays

Different microarray types have a wide application range, and they all apply the basic
principle of having known compounds (probes) organised in a grid-like fashion on some sort
of slide (array), followed by a hybridisation to some labelled unknown biological compound
(sample). By knowing that the sample compound will, according to biological rules, bind to
the probes, one can use the labelling of the samples when reading a microarray (chip) to
detect the concentration of compounds in the sample (target) bound (hybridised) to any of the
known probes on the array. Subsequent data analysis will focus on investigating which probes
that have hybridised with the target, and very often the interest lies in detecting difference
between reference and treated sample hybridisations. Microarrays today have a wide range of
applications from DNA expression studies [86] to protein interactions [87] (Table 1), but only
oligonucleotide arrays will be discussed here (reviewed by Lockhart and Winzeler [88],

Yazaki et al. [89] and Liu [90].

An oligonucleotide array is a microarray where the probes are short (25-80 nts) single
stranded DNA sequences (oligonucleotides), and the sample is a collection of short, labelled
DNA or RNA sequences (locked nucleic acids [91] and other synthetic variants are
disregarded here). At the time of writing, high-density oligonucleotide arrays (HDONAs)
have feature numbers ranging up to ~6.1x10° (Affymetrix GeneChip® exon arrays [92]). A
feature is a unique microscopic region on the microarray (most often a glass or silicon slide)
housing similar probe sequences measuring the presence of one unique complementary

sample sequence. The actual feature number of an array varies with the price and the platform

type.
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Table 1 — Overview of a variety of microarray technologies and usage.

Application
/technology

Usage

Custom arrays

Custom designs to address needs not addressed by any other array

Tiling arrays

Arrays with overlapping probes to give a dense representation of the
DNA/RNA investigated, these arrays may be used for transcriptome
mapping and detection of alternative splice forms

Resequencing arrays

Arrays made to control and refine genome sequences derived from
different sequencing methods

SNP detection

Arrays to identify Single Nucleotide Polymorphism within or between
species or populations. Usage may be within genotyping, forensic
analysis, drug candidate identification eftc..

Alternative splicing
detection

Also referred to as “exon junction arrays”. These are made to detect
alternative splicing of genes. Some of these arrays have probes
consisting of sequences from two exons.

Exon arrays

Compared to gene expression arrays with 1-3 probes pr gene these
arrays have several probes per exon within each gene. These arrays
may also be used for alternative splicing detection.

Chromatin These arrays are used to locate protein binding sites throughout the
immunoprecipitation | genome. One may use several different chip types for ChIP on Chip
on Chip studies.

GenelD Often relatively small chips (low feature number) applied to identify
organisms in_food and animal feed. This approach is often combined
with PCR verification.

Comparative This technique is applied to investigate the genomic content within

genomic different cells or between closely related organisms.

hybridisation

Gene expression Arrays used for measurements of the expression level of several

profiling thousand genes simultaneously, often applied to detect changes.

Capture array

Arrays used to capture oligonucleotides of special interest, these
might subsequently be used in high throughput sequencing.

A labelled sample (target) is hybridized to the microarray, and binds to complementary probes

(Figure 6). When hybridising one sample per array, one colour labelling is used, and if using

two samples per array the samples have one colour each. In the one colour case, comparisons

are done between arrays; typically by hybridising a reference sample to one chip and a treated

sample to another chip. The two colour arrays also enable intra chip comparison as probes

with one dominating colour would be those differentially expressed in the reference and the

control.

Most microarrays are designed for one specific task or organism, exceptions include

microarrays made to discover expression on related unsequenced organisms. Today, a variety
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of arrays can be bought off the shelf for a wide range of organisms. Commercial arrays now
come with a definition of each probe sequence, their exact position on the array and most

often a mapping to the genomic location of each probe sequence.

Figure 6. Hybridisation of labelled nucleotide-strings from the sample to the oligonucleotide probes. The
labelled (with a red dot) nucleotide sequences from the sample hybridises with completely complementary
probes located on the array (picture from the educational materials at www.affymetrix.com).

The microarray technology for the studies performed in this thesis is the NimbleGen platform.
The NimbleGen platform occurred as a novel product after 2002 when the company managed
to develop maskless in situ synthesizing of oligonucleotides, by modifying the standard
photolithography process using a digital light processor (DLP) [93, 94]. This Maskless Array
Synthesis (MAS) technique relies on the DLP projection technology where digital
micromirror devices (DMDs) are programmed to create a “virtual” mask to control the
oligonucleotide synthesis on the array. Applying this “programmable light” NimbleGen could
eventually synthesise as many probe sequences simultaneously as there were micromirrors in
the DMD connected to the DLP.

On the NimbleGen arrays each feature (often referred to as probe) is made up of
approximately 1 x 10° similar oligonucleotide sequences (probes) connected to the array
surface by linker sequences. The linker sequence is designed to obtain some distance from the
slide to the actual probe sequence since probe sequences too close to the slide might behave

suboptimally. The novel NimbleGen technology has opened up affordable custom-designed
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arrays with far more probes per array, when compared to any previous offers. The major
advantage for the NimbleGen arrays compared to the Affymetrix GeneChip® arrays is the
maskless production process, as production of the GeneChip® arrays is time consuming,
expensive and has little flexibility due to the mask-dependence. Hence, programmable mirrors

for maskless array production are both far more flexible and also less expensive.

A major and ever present challenge to microarray technology has been experimental noise. As
the microarrays might have as many as 6 million features it is obvious that a great number of
false positives will occur just by random chance. Highly increased production accuracy
combined with strict lab procedures, randomized probe arrangement and introduction of
control probes, assessing both the sample preparation and the hybridisation, have greatly
improved array data quality, but normalization is still needed [95]. The role of the microarray,
as the most popular and widely used high-throughput tool for expression studies, is now
challenged by ultra-high throughput sequencing. How this novel technology will influence the

future of microarrays will be discussed later.

1.2.1 High-density oligonucleotide arrays

High-density oligonucleotide arrays (HDONAS) are microarrays with a large amount of short-
sequence DNA features on each array (typically > 100,000). HDONAs have for several years
been applied for detection of (differential) expression by probing genomic regions known or
expected to code for proteins. The regions probed were most often RefSeq sequences [96]
and/or computationally annotated genes (homology or start/stop codon searches). Some of the
first HDONAs were the Affymetrix GeneChip® arrays [97], designed with each gene covered
by a set of probes (probe set), and each probe set consisted of about 11-20 probe pairs. Every
probe pair consists of one perfect match (PM) and one mismatch (MM) probe (PM and MM
probes will be discussed later). The major manufacturers of HDONAs are Roche NimbleGen,

Agilent Technologies and Affymetrix.

1.2.2 High-density oligonucleotide tiling arrays

As high-density oligonucleotide arrays emerged (Affymetrix GeneChip®), the large probe

numbers enabled not only several probes per coding region, but also alternative designs with
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probes placed in an overlapping manner (like roof-tiles) along all genes investigated (Figure
7). The resolution (sometimes coverage) of a tiling array design denotes the number of
nucleotides between the start-point of two neighbouring probes, as one cannot pinpoint any
transcript start or stop with a higher accuracy than the experiment resolution. In response to
the revelation of fewer protein coding genes than previously believed (approximation in
humans; 20-25.000 in 2004 [98] versus ~70-100.000 in 1993/94 [99, 100]), regions
previously described as “junk” DNA are now more often probed. The resulting interest in
probing all genomic regions, combined with the rapidly increasing feature number on arrays,
has brought forward whole-genome tiling arrays. Whole-genome tiling arrays have been
designed for organisms having relatively small genomes (10° nts) and for some human

chromosomes. Currently there are a few whole-genome tiling arrays commercially available.

DNA sequence : TCGATGTACGAGGTGCAGGTGCAGGTGCAGTGAAGCGTGA
Tiling probe 1

Tiling probe 2 : ACGAGGTGCAGGTGCAGGTGCAGTG

Tiling probe 3 : GCAGGTGCAGGTGCAGTGAAGCGTGA

AFFYMETRIX,
. L

AN
BRI

GeneChip

5"

Figure 7. Picture of an Affymetrix GeneChip® microarray, and a schematic view of a simple tiling design.
On the left is a picture of the Affymetrix GeneChip® microarray (actual size 4x7cm). The GeneChip® is not a
tiling array and is only used for the illustration. On the right a DNA sequence has been covered by three 25 nt
tiling probes. Multiple copies of unique probe sequences are hybridised to unique spots defined by the mask on
the Affymetrix array. Every defined spot makes up a feature on the array. The density of the design is the
distance between the start of the probes (here 7nts).

1.2.3 Custom design of high-density olignucleotide microarrays

When your field of study falls outside the range of pre-designed arrays, the only other option,
if microarrays should be applied, was, and still is, custom design. Custom designs of arrays
with a low feature number (<< 100,000) have been used for many years, but only lately has
high-density (> 100,000 probes per array) custom design been affordable and hence possible
[101]. The upside of custom design is the complete and accurate control of each and every

probe on the array, while the downside includes the sometimes laborious work of probe-
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design and the, often even more, complex task of analysing an array that no regular analysis-
tool knows how to handle. The array design parts of this thesis will focus on issues related to
design arrays such as those from NimbleGen arrays, but it can easily be applied to other

HDONA platforms.

The basic tiling strategy is simple: 1) remove (mask) all repetitive regions in the DNA
investigated, ii) place a probe at each N nucleotide all along the DNA. The size of N is
dependent on the array feature number and the length of the investigated genome.
Experiments performed to understand the importance of uniform probe affinities
(hybridisation capabilities) uncovered the need of different tiling designs [95, 102]. The idea
of a more sophisticated design is to avoid probe quality bias before array production rather
than trying to adjust for it by normalization after hybridisation. Several programs and
algorithms have been developed for optimal probe selection [103-111], these are more or less
useful for alternative tiling designs and will be discussed later. But since a simple tiling
design of one probe at every N™ nucleotide is easily made, only a few alternative whole-
genome tiling probe selection strategies have been reported (Bertone et al.[103], Graf et al.
[112] and Schliep et al. [109]).

The ultimate, but unachievable goal of a microarray design, is to have i) high coverage of all
interesting sequences, ii) many good control probes, iii) uniform probe affinities of all probes,
iv) all probes equidistantly spaced, and v) no genomically closely located probes placed

adjacent on the array.

A design process should begin with a biological question: What is the hypothesis of the study,
and what is the question asked? “People tend to go out blindly and do (microarray)
experiments, then go back and try to analyse them and figure out what the question is
afterwards” (citation J. Quackenbush, Nature 2004, [113]). In the case of oligonucleotide
arrays the single most important part is that the probes on the array match the nucleotide
sequences one intends to measure. Not being able to buy commercial arrays with this
capability is what drives custom design. Hence, the designer must make an array design

fulfilling this need in parallel with meeting the desired goals mentioned above.
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1.2.4 Criteria of high quality probes and arrays

The oligonucleotide probes constituting each feature are exactly similar, but each feature
should differ unless multiple copies are specifically wanted. The sequence of the different

probes may also vary in length not only in nucleotide composition.

The nature of DNA-binding makes the design of each probe on the array far more difficult
than the simple task of finding an oligonucleotide sequence complementary to each of the
sequences you wish to probe for. As the binding between A-T is somewhat weaker than C-G
the nucleotide distribution of the probe will affect the probe affinity [114, 115]. Another
problem occurs when DNA sequences only partially complementary to a probe bind and
cause unspecific hybridisation. Further considerations include the temperature at which the
labelled single stranded sample will unwind from its secondary structure to enable
hybridisation. This temperature should be equal for all DNA in the sample that is
complementary to any probe on the array. Sequence complexity of the probes should also be
accounted for, meaning that a probe should not consist of short repeats of nucleotides which
might invite more unspecific hybridisation, and the probe sequences should also be unique not
only to the chip, but should occur only once in the target genome. A probe that is non-unique
to the target genome cannot be pinpointed back to one single occurrence on the genome.
Hence, one would not know the origin of the measured RNA. The probe quality
characteristics make up the probe quality (sometimes affinity) of every probe on an array. The
number of features available on the chip is also important since high coverage is one main
goal, but the biological question, genome sizes, number of genes and types of splice-variants

will also play an important role when designing arrays.

The criteria defining a high quality microarray probe can (although they are very closely
related) be divided into three: i) homogeneity, ii) sensitivity and iii) specificity. These criteria
should be met as far as possible for each probe, and it is easily seen that the more probes on
the array, or the stricter the placement boundaries for each probe are, the harder (sometimes
impossible) it is to select high quality probes only. The basics of the three criteria are
described here:

i) Homogeneity: To enable a fair analysis, where equal intensity measurements from

different probes can be considered to be signals from comparable probe binding

levels, it is important that the probes are homogenic, i.e. their abilities to bind to the
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iii)

sample are equal under the same hybridisation condition. The hybridisation ability of
probes are sometimes computed by using the Nearest Neighbour Model [116], but
more often predicted by other algorithms (also focusing on the melting temperature of
each probe (Ty,)) due to the demand for computational speed [105, 108, 110]. The Ty,
computations differ in complexity between the algorithms that are applied, and
sometimes other thermodynamic properties (entropy, enthalpy and free energy) of the
hybridisation are also included in the algorithms.

Sensitivity: The idea behind the sensitivity criteria is to ensure no self-binding among
the selected probes (increasingly important with probe length [108]), as self-binding
makes the probe inaccessible for hybridisation to the sample cDNA. The usual way to
meet the sensitivity criterion is to predict the secondary structure of the probe
sequence; the more stable, the less sensitive. The most widely applied algorithms for
secondary structure predictions used are MFOLD [117] and Vienna RNAfold [118].
These software packages are highly computational intensive, and other faster
algorithms have been introduced by for instance Li & Stormo [119] and by
Wernersson & Nielsen [110]. The Li & Stormo algorithm exploits the fact that the
lowest energy structure can be fairly precisely computed using simple heuristics on the
probe versus target alignment [119]. This alignment is already applied in the design
process, thus overall computational speed is increased. Wernersson & Nielsen base
their algorithm on a di-nucleotide dynamic programming algorithm, where each di-
nucleotide has a predefined stacking energy.

Specificity: The optimal specificity is when a probe only binds to the perfect
complementary sequence. The basic criteria are that the probe should not in general
sequence terms be too similar to any other part of the genome than the target,
additionally no subsequence longer than some defined cutoff should be exactly similar
to any other part of the genome. Specificity increases with probe length, as the free
energy involved in hybridisation of the probe-target complex increases with length,
but overly long probes could result in the hybridisation of complete matches of short
cDNA samples to parts of the probes, hence producing false positives [120]. The
specificity of probes is often computed by one of two methods; Hamming distance
[121] or BLAST [122, 123] searches. The Hamming distance is computationally
intensive and time consuming (runtime for probe-length m in a genome of length » is
O(mn*)), and hence often impractical to use. BLAST searches will be time-dependent

upon the number of sequences in the BLAST database, hence if probes are designed to
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detect species specific genes in a pool of genes from a set of species, BLAST may also

be very time expensive [108].

Another important factor is to have an error free array production making each probe
represent exactly the sequence it has been designed to represent on all arrays of one design.
The error rate of maskless in-situ hybridisation production of microarrays is not given from
any manufacturer, but NimbleGen claims it is very low (a verification study of the low error
rate has not been seen yet, and I assume it would be very difficult to make one).

Finally, genomically closely related probes should never occur closely located on the array to

minimise the effect of systematic spatial errors.

The various experiments performed with microarrays to understand sequence dependent
binding affinities, probe placement, usage of hybridization controls, spike-ins and probes for
background signal estimation seem to have forced commercial array manufacturers focus

more on production of arrays that produce high quality data than before.

1.2.5 Control probes

In addition to probes designed to investigate the labelled sample, a proper microarray should
also include control probes. Control probes are designed solely to investigate the quality of
the experiment, and control probe signal intensities can be used to adjust for systematic bias
(discussed later). Today, control probes are mainly used to investigate the target preparation
and the hybridisation process. The basic idea of control probes is that they probe for some
predefined RNA or DNA sequence that, if possible, should be entirely foreign to the target
genome. The hybridisation control probes are plainly named hybridisation controls (less
commonly called spike-ins), and typically probe for a set of four different genes. In the
hybridisation cocktail, prelabelled cDNAs (if cDNA is hybridised) of known concentrations
are added for each gene (different concentration per gene). Consequently the researcher
knows what to expect from the intensity readout of these four genes (when comparing them to
each other) during analysis. The second type of widely applied control probes is process
control probes (more commonly named spike-ins). These are made to investigate the entire
target preparation process. Such a spike-in set also consists of a set of genes and

corresponding probes, but in this case, unlabelled, unfragmented RNA is added at an early
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stage in the target preparation process (at different, but known, concentrations for each
spiked-in gene). Usage of the spike-ins is similar to the hybridisation controls, and there is an
expected relative probe intensity value for each gene, which can be used to verify the quality
of the sample preparation. Often the spiked-in concentrations are designed to make a graph of
the log, intensity values, that can be described by a linear function. This is to enable easy
quality control read-out. Inter-array differences in the intensity values can subsequently be
used to normalize the arrays with respect to each other, and sometimes the values are also

used for probe normalization within arrays.

1.2.6 Perfect match and mismatch probes

High-density oligonucleotide microarrays were originally introduced by Affymetrix. The first
design covered each gene by a probe set consisting of probe pairs. Each probe pair consisted
of a 25nt perfect match (PM) probe and a 25nt mismatch (MM) probe. The PM probe is a
perfect complimentary sequence to the target sequence, while the MM probe is made with the
middle nucleotide (13™) changed (Affymetrix exchanges it with the compliment) to create a
mismatch (MM) probe. The idea behind this strategy was to use the MM probe to estimate the
level of non-specific binding that introduces error to the PM probe.

Several different studies began suggesting MM-independent normalization and background
signal estimations as it was shown that MM probes were not only measuring non-specific
hybridisation [114, 124, 125]). It has also been shown that the inserted nucleotide strongly
affects the probe affinity and that random probes for background signal estimates may be
better [126].

Eventually Affymetrix recognised MM independent background estimates and at the same
time made room for almost twice the amount of PM probes on their GeneChip® arrays
covering all human exons [92]. These exon arrays have included a different type of
background estimation probes. First all PM probes are separated into groups (bins) according
to their nucleotide compositions. Secondly the background estimation probes are created in
groups (bins), where the probes in each bin are designed to measure the background signal of
the PM probe bin it corresponds to (in terms of nucleotide composition). By using this bin-
based method, Affymetrix claims precise background estimation using far fewer probes than

one MM per PM. As long as there is no clear argument that can be made for including MM
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probes, they will remain irrelevant. The most common problems associated with MM probes

will be discussed further in the analysis chapter.

1.2.7 Tools and methods for high-density oligonucleotide (tiling)

array design

Several algorithms and computer programs have been made for the purpose of optimal probe
selection, of which some have been made specifically for the design of tiling arrays.
Repeatmasker [127] and DUST (Tatusov & Lipman, unpublished) are typical representatives
for programs applied in the early process of tiling array design. These programs are made to
filter out repeat regions, regions with extreme A/T or G/C content, or stretches of
polypurine/polypyrimidine bases. These are typical regions that are believed to carry little
genomic information, and they are known to cause cross-hybridisation problems and non-
specific binding. DUST can even be used for more complex filtering by applying an

information entropy-based model of sequence analysis [103].

OligoArray 2.0 [108] from 2003 was the successor to OligoArray [107] and was designed to
meet the needs for automated design of short oligonucleotide probe sequences (25mers). The
OligoArray 2.0 program requires BLAST [122, 123] and applies a thermodynamic approach
(using MFOLD [117]) to predict secondary structures and the probe specificity, and the user

can adjust parameters such as the probe length, GC-content and the Ty, range.

CommOligo (and its accompanying CommOligo Parameter Estimator) from 2005 is software
made to either design whole-genome arrays (coding regions only) or probes for highly
homologous sequences [105]. The probes are selected by applying multiple filters for all
possible probe sequences; sequence identity, free energy, continuous stretch, GC-content,
self-annealing, the distance to the 3’UTR and the melting temperature (Ty,). The programs
were tested on 50-mer designs and the performance was good compared to existing tools like
OligoArray [107], OligoArray 2.0 [108] and OligoPicker [128]. The probes were score based
on their similarity to non-targets and longest continuous stretch, but the program is relatively

slow.
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OligoWiz 2.0 from 2005 is a web-tool for probe design [106, 110]. The probe selection
program presents a graphical interface showing each probe and several default and optional
parameter scores. The default parameters are cross hybridization, Ty, low-complexity,
position and folding. The cross-hybridization score is a BLAST based and defines how
similar this probe sequence is to any other sequence in the entire input-string for this probe
selection. The Ty, score defines the optimal melting temperature for the chosen probe
sequence, and the low-complexity score measures whether fragments of the chosen probe
sequence are part of common species-specific repeat sequences. The position score is made to
compensate for the fact that the reverse transcriptase is likely to fall off the transcript during
cDNA reverse transcription, and hence, it is preferable to place the probe close to the reverse
transcription start site. And the folding score procedure is described in section 1.2.4 point ii).
The possibility of applying additional custom parameters, along with the default parameters
that are fairly common to probe selections, makes OligoWiz 2.0 very flexible, and applicable
to tiling design. Usage of OligoWiz 2.0 has been presented by Wernersson et al. [129], and
the program is available at http://www.cbs.dtu.dk/services/OligoWiz2.

Bertone ef al. [103] presented two algorithms, a technique for finding the optimal tiling path
through longer sequences, and a method to determine the similarities between probe
sequences covering large genomes. Their study from 2006 concentrated on tiling array
application to eukaryotic genomes where a major goal of the design process is to remove
repeat regions, as such regions often contribute to unspecific hybridisation, and removal gives
better coverage in genomic regions viewed as more interesting. They emphasise the value of
applying a tiling strategy that optimises probe affinities (thermodynamic properties) compared
to having a uniform tiling resolution. The algorithms were embedded in a web tool available

at http:/tiling.gersteinlab.org.

MAMMOT (2006) is a web-tool made both for design of tiling arrays and visualisation and
processing of experimental data [111]. MAMMOT is MySQL based, which enables usage on
other genomes than those already installed and arrays other than the original PCR product
based arrays MAMMOT was designed for. The probe-selection algorithm is based on
matching probes towards PCR primers, and the visualisation requires the target genome to be

uploaded into the MySQL database. MAMMOT is available at http://www.mammot.org.
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A randomized probe selection algorithm for microarray design was presented by Gasieniec et
al. in 2007 [104]. This algorithm is mainly focusing on selection of one or a few probes that
are optimal for measuring genes, typically for detection of species specific genes in an
unknown pool of RNA to detect the species present. The algorithm first filters the search
space for probes using three probe selection criteria (quantitative (i.e. nucleotide
composition), homogeneity and sensitivity), and then a “randomized” probe selection is made.
The random algorithm is based upon the general idea that a probe similar to some random
generated probe “seed” will in general yield a high probe quality. Hence, instead of searching
for all good probes to pick from, the program suggests a presumed good random generated
probe, searches the input sequence for a similar sequence and then runs quality checks on this
probe candidate alone and not all possible candidates. This enables a significant speedup
compared to previous probe selection algorithms aiming at the same problem. The three probe
selection criteria are defined by the nucleotide composition, Ty, values and Hamming
distances [121], respectively. The name of the algorithm is RandPS and it is available at

http://www.csc.liv.ac.uk/~cindy/RandPS/RandPS.htm.

From the total set of all possible probes covering a genomic sequence one can select “the
globally optimal tiling path” through the sequence. One of the very few studies that has tried
another approach (instead of enforcing a defined distance between probes) for whole-genome
tiling, has applied this strategy to design microarrays with high coverage and high quality
probes, by introducing non equidistantly distributed probes [109]. While previous design
strategies have typically focused on obtaining a uniform Tp,, and have either scored probes
due to their cross-hybridisation abilities or the maximum contiguous match length (between
probes) for probes targeting a filtered (by DUST or Repeatmasker) sequence, the algorithm
presented solves the complete multicriterion optimization problem and works with unfiltered
sequences. The algorithm can accomplish this by the usage of unequal probe spacing instead
of the very strict probe placement-criteria implied by inter-probe distance parameters used in
other designs. They address the probe design problem as a Minimal-Cost Tiling Path Problem
(MCTPP). The approach applies a score to the Tr, the probe-quality (here cross-hybridisation
and maximum contiguous match) and the inter-probe distance, subsequently the optimal tile
path can be found by optimizing the total score based on score penalties for suboptimal
individual scores. The feature number and genome length are important constraints in the
algorithm. In short, all possible probe candidates scoring over some defined threshold are

evaluated first and then the MCTPP algorithm finds the optimal tiling path, in a time scaling
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linear with the input size. The MCTPP algorithm is able to probe some of the regions that
other algorithms would filter out, but some regions would still be left unprobed as no high

quality probes can be found within the regions.

1.2.8 Target preparation, labeling, hybridisation and scanning

The design and analysis process for HDONA studies is typical bioinformatics business, while
the actual biological parts of microarray studies is taken care of by trained lab personnel. In a
typical study the lab work can be divided into four parts:

i) Extraction of total RNA from the cells of the organisms investigated. Sometimes t-
and r-RNA are removed due to their abundance in the target. Then the single
stranded (ss) RNA is reversely transcribed into complementary ssDNA since
ssDNA is more stable than ssSRNA. The cDNA is amplified if necessary.

ii) The resulting cDNA is now either already labelled and then cut into smaller pieces
by using restriction enzymes, or cut first and subsequently labelled with some
material (fluorescent) that is detectable by the scanner.

i) Hybridisation is the process by which the hybridisation cocktail (target cDNA plus
any control cDNA) is applied onto the array and the complementary target
sequences in the sample bind to the probe sequences. The hybridisation process
most often takes place inside specially designed instruments made for the
optimisation and control of all hybridisation parameters.

iv) The final step of scanning includes washing the arrays of all non-hybridised
material. Then the arrays are placed in a special scanner that first aligns to the
array by chip-specific alignment probes. Subsequently the array is scanned and
one picture file and one raw intensity file is produced per array for typical high-

density chips.

During these four steps it is very important to avoid introducing any systematic or random
errors into the experiments. Such errors might occur when different personnel perform the
same task but for different arrays, or if randomization is lacking in the experimental setup
(one should for instance not systematically do all reference samples first, followed by the

treated samples). Other error sources include procedures carried out with different equipment



30

(weights, pipettes, scanners etc), experiments carried out on different days with significant
changes of temperature and humidity or any other possible way of introducing error.

One error source in many experiments is for example dust or fat on the array surface before
scanning. There are lab protocols and commercially available kits for all procedures
performed in the lab, but the methods and the results may vary. If one wishes to perform only
a minimum of laboratory work (only production of target cDNA), companies like NimbleGen
can perform the hybridisation and initial analysis. A set of files with pictures, raw intensity
files and initial analysis is returned to the researcher. Some manufacturers might even assist

with custom designs of tiling arrays in specific cases.

1.2.9 Analysis of high-density oligonucleotide microarrays

1.2.9.1 Overview

A microarray analysis consists of several steps. The first step is to read the chip and to define
the signal intensity of each feature on the array (most often done automatically), followed by
a second step of normalization. Normalization is a process whereby one tries to make
comparable scales of the intensity data, array-wise and internally on the arrays. During this
process one often has to discard some data-points. The intensity values for all features are
generally log, transformed during normalization. Either when normalising data, or as a
separate step, one has to measure the background noise present on the array, meaning that one
has to estimate the part of the signal intensity of each feature which is present due to non-
specific binding and other signal errors. The final step is now to analyse the intensity values
either according to some genomic annotation sharing what the probes are supposed to
represent, or totally independently of any “template-like” information of the genome probes
(a typical case for whole-genome tiling arrays). This final step creates an expression profile

for the investigated transcriptome (when hybridising total RNA).

1.2.9.2 Reading the microarray / image analysis

When the chip hybridisation is finished, the chip is washed and is read by a laser scanner. The
scanner aligns a grid system to the chip by using special alignment probes or spots on the
chip. If the automatic alignment fails it must be performed manually. When the alignment is

deemed optimal, the scanner measures the intensity of the light emitted from the labels bound
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to sample sequences still present on the array (as they have hybridised to probes). Different
array platforms have different scanners and have different algorithms for defining the exact
area over which the emitted light should be measured. The most important experimental
consideration during scanning is to have clean chips, high resolution imaging and repeatable

scanning (preferably using the same scanner to ensure similar reads).
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Figure 8. Raw intensity heatmap. Heatmap of raw intensity data for all positive strand probes from one
reference sample from the MNNG study. The eight black rectangles are the masked out control probes. Minor
vertical spatial patterns can be seen.

A useful assessment for detection of obvious spatial errors is to plot the resulting data readout
as one heatmap per chip (Figure 8). Since probe placement on the arrays has been randomized
regarding their genomic location one should not see any significant patterns of light or dark

areas. Such areas would be representing systematic bias if present on the array.
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1.2.9.3 Background estimates, normalization and expression

measurements

When running a microarray experiment in a lab there will always be some random errors
and/or systematic bias introduced, both internally on the arrays and between arrays. Causes
might be as diverse as chip production batch, RNA extraction, humidity or a change of the
lab-personnel. Additionally, the actual hybridisation on the chip will introduce noise. This
noise is caused by random hybridisation, probe-specific effect, cross-hybridisation, half
binder effects and spatial errors caused by saturation, dirt or fat. In addition, also the scanner
may introduce errors, especially if comparing chips imaged by different scanners. Because of
the (assumed) very high accuracy of the high-density array production methods (maskless or
by mask) and their lack of robot related problems, as print-batch and print-tip errors,
adjustments for manufacturing errors are not applicable here (even though no study on the

high-density chip manufacturing error-rate has been seen yet).

The measured signal of each probe hence consists of a true signal and a background signal,
where the background signal represents the sum of all signals not representing the true signal,
i.e. the signal that would be present without any target specific cDNA in the hybridisation
cocktail. Hence, it is crucial to form a proper estimate of the background to enable a more
correct estimate of the true signal intensity. Normalization is the process where the intensity
measurements of one or more probes or microarrays are adjusted to a common scale and/or
distribution. Due to more or less systematic bias, this may be necessary both between arrays

and internally within the arrays.

The normalization process manipulates the actual data and one should do as little
normalization as possible [102], but until further development of the microarray technology
and background adjustments matures into a standard approach, normalization should be
performed in a manner suitable for the study performed. Many array manufacturers supply
their own software packages for background adjustment, normalization and further data
analysis; these programs (for instance Expression Console™ from Affymetrix) often have
implementations of selected normalization and scaling algorithms. A very popular freeware
for microarray analysis is the Bioconductor framework [130] running under R (http:/www.r-
project.org/), and most of the non-commercial implementations of background adjustment and

normalization algorithms are implemented in Bioconductor. Presented here is a selected set of
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the most used and most relevant background adjustment and normalization methods applied
on HDONAs. Many of these methods define an overall expression of the gene probed by a
probe set and a measurement of the differential expression of genes between a treated and a

reference sample.

The first analysis by Lockhart ef al. [131] used the average difference (PM-MM) over probe
sets (probes probing the same gene) to calculate whether an mRNA was present in the sample,
and the log ratio (PM/MM) to compare data (typically between a treated and a reference
sample hybridised on two different chips). These two approaches were implemented as
AvgDiff and Average Log Ratio respectively in the Affymetrix Microarray Suite 4.0 (MAS
4.0). A major problem arising with the PM-MM or log(PM/MM) methods was that as many
as 1/3 of all MM probes may have higher signals then their related PM probes, of which many
will have MM >> PM [132]. The MM >> PM problem indicates this method as very inexact.

Model Based Expression Index (MBEI) [133] from 2001 was one of the first analysis
methods that did not use MM probes [125]. Li and Wong show in these two papers that the
variation of intensities is larger between different probes measuring the same gene (also
shown by Naef et al. [124]), than between the same probe on different arrays. Following this,
the main goal of their MBEI method becomes to adjust for probe-specific effects. Their
method also automates detection and handling of contaminated array regions and other image
artefacts. Their method is based on the assumption that the intensity measurement of a probe
will increase linearly with the actual expression of the corresponding gene, but the rate of the
increase will differ between probes. Additionally they assume that the PM intensity will
increase at a greater rate than the MM intensity. Each probe (PM and MM) is also given a
background noise intensity value and a random error, and probes (sometimes entire arrays)
detected as outliers will be removed from the dataset. In their second paper on MBEI [125]
the algorithm is made independent of MM probes, as their first MBEI paper indicated that
some MM probes show little response to changes in the target gene expression level [133].
They also introduce a baseline array normalization method based on detecting non-
differentially expressed genes (between samples) using internal rankings within the arrays.
Subsequently they adjust all other arrays to the chosen baseline array using the expression
levels of the non-differentially expressed genes. MBEI was implemented in the DNA-Chip
Analyzer (http://www.dchip.org).
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Micro Array Suite 5.0 (MAS 5.0) is a commercial microarray analysis software package
provided by Affymetrix [134]. One major focus of MAS 5.0 was to remove the problems of
negative expression values in previously applied algorithms, including the predecessor MAS
4.0. In MAS 5.0 robust estimators are used to avoid negative expression values, i.e. values
outside the physical range. This algorithm utilizes both the PM and the MM values in the
computation and assumes that the absolute signal is the sum of the #rue signal and a stray
signal (elsewhere referred to as background) and the stray signal varies with the probe
sequence. Special cases of PM < MM are treated by computing robustly estimated values for
the MM intensities (robustly meaning a reasonable MM value giving a true signal inside the
physical range). The problems faced due to the observation of varying stray-signals due to
differential probe affinities are treated by always performing comparisons (reference versus
treated). Since probe affinities remain relatively stable between experiments, the variation of
the expression differences between treated and reference samples is much less than the
variation between probes investigating the same gene. A problem with this approach is the
probe affinity bias calculations of single array experiments (multiple arrays, but no
comparison), but the authors suggest a solution by noise estimation through replicate

experiments.

Quantile normalization tries to make all probe intensity distributions in a set of arrays the
same [135]. By using the mean quantile of all datasets as the data value in the original dataset,
equal intensity distributions in all datasets are achieved. In their paper, Bolstad et al. [135]
showed the quantile normalization to be superior to previous methods. The methods proposed

in their paper are implemented in Bioconductor.

Variance stabilization normalization (VSN) was introduced as a microarray pre-processing
method in 2002 by Hiiber ef al. [136], and comprises data normalization and quantification of
both the differential expression and the measurement error. VSN computes sample-to-sample
variations and subsequently the intensities are transformed to a scale that has a variation

approximately independent of the mean intensity.

Robust Multi-array Average (RMA) was suggested by Irizarry et al. [132] as a novel
expression measurement that includes three steps: i) Background correction, ii) Quantile
normalization and iii) Fitting a linear model to the background corrected, normalized and log,

transformed probe intensities. RMA was shown to perform better in terms of sensitivity and
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specificity than AvDiff, MBEI, quantile normalization and MAS 5.0, particularly for
measurements of low intensity signals and small changes in expression levels. The RMA

normalization procedure is implemented as a Bioconductor package.

GeneChip Robust Multi-array Average (gcRMA, also referred to as gc-adjusted RMA) was
designed by Wu et al. [114]. The established RMA method was extended with a probe
sequence specific normalization based on estimated probe affinities. The binding affinities
were computed using hybridisation theories from molecular biology combined with data from
studies designed to investigate probe affinity. Hence the probe affinity of any given probe can
be computed by a formula considering the contribution of each base at each position. The
authors finally conclude that the gcRMA usage of MM probes can be avoided by using an
empirical approach to the background estimates at a low cost compared to the gain of more
PM probes. The gcRMA method improves the fold-change accuracy of the original RMA
method compared to MAS 5.0 while giving almost as precise expression measurements as

RMA. gcRMA is implemented in Bioconductor.

A useful tool for quality assessment of microarray data (raw or normalized) is the
arrayQualityMetrics [137] package for Bioconductor, which can easily provide a variety of
quality assessment plots for different expression array platforms. The real advantage of this
package is that it enables detection of experimental artefacts, and thereby outlier removal, and
comparison of raw and normalized data quality and intensity distribution. The catch is that
this package utilizes different older Bioconductor packages that depend on using MM probes,

which narrows the applicability, since MM probes are now used less.

1.2.9.4 Whole-genome tiling array specific methods

The main difference between typical high-density oligonucleotide arrays, such as the
Affymetrix GeneChip®, and tiling arrays is that the latter probes not only genomic regions
known or believed to encode genes, but the entire genome (or parts of it). To apply a
computationally derived annotation to learn which regions to measure intensity from would
be an abuse of the data-material, except for using it as a control procedure to check the
expression of genes with well known boundaries. One of the main motivations of the tiling
arrays was to be able to perform an unbiased (bias from annotations) transcriptome mapping

of entire genomic regions. Hence, analysis should be as independent of previous annotations
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as possible. Below I present a selection of the analysis methods that have been designed for

tiling arrays.

DNA reference normalization applied with tiling arrays was presented by Huber ef al. [138]
in 2006. This approach was presented in combination with a segmentation method for
detection of transcript boundaries, and was one of the first published methods designed
particularly for whole-genome tiling arrays [138]. The DNA reference normalization method
is based on computation of the intensities of all unique (i.e. only one genomic complementary
sequence) perfect match probes when hybridised to total genomic DNA. In a perfect world,
all probes would give the same intensity measurement, but on account of different probe
affinities caused by the oligonucleotide composition of each probe, this would not be the case.
The reference normalization uses the measurements of the total DNA hybridisation to adjust
for probe-specific effects in the actual study. Transcription boundaries are detected by a
structural change model (SCM), previously applied in array-CGH studies [139], that models
the expression data as a piecewise constant function along the chromosome. The SCM will
detect significant jumps in the expression pattern, and thus indicate transcriptional
boundaries. The SCM and the DNA reference normalization are implemented in the

tilingArray package in Bioconductor.

The Model-Based Analysis of Tiling-arrays (MAT) algorithm for detection of transcript
boundaries from tiling arrays was presented by Johnson et al. in 2006 [140]. This method was
designed for chromatin immunoprecipitation (ChIP) studies, but is flexible and can be applied
to other tiling array studies. The normalization part of MAT makes two assumptions of the
data; i) the majority of tiling array probes (in ChIP studies) measure non-specific binding, i.e.
no complementary mRNA is present in the sample for these probes, ii) the large amount of
probes per chip (3x10°-6x10°) gives accurate and precise predictions of probe specific effects.
A probe behaviour model is derived from the estimated probe behaviour from each single
array and used to calculate a standardized probe intensity value for each probe on every array.
The actual detection of transcript boundaries is based on a sliding window (600bp window
applied, and minimum 8 probes) and a scoring scheme based on a trimmed mean of all the
standardized expression values inside the sliding window. Each region (window) is assigned a
MATscore assumed to follow a normal distribution for the total of all windows. This can be

used to define a P value for regions thought to be enriched in the ChIP study, or as expressed
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in a transcriptome mapping study. MAT is available at

http://chip.dcfi.harvard.edu/~wli/MAT.

The Affymetrix tiling array analysis applied in at least three Affymetrix studies [9, 141, 142]
uses quantile-normalization [135], background and probe-specific normalization algorithms
as implemented in MAS 5.0 [134] and a smoothing sliding window to divide the genome into
transcribed and non-transcribed fragments. Fragments are detected as transcribed if the

average score is above a certain threshold set based on spike-ins.

The ExpressHMM method from 2006 focuses on removing previous ad-hoc solutions to the
question of whether some given genomic region is transcribed or not [143]. The hidden
Markov model (HMM) applied is trained on the correspondence between intensity signals and
genomic annotation. To avoid bias from erroneous annotations, down-weighting is applied
within regions of dubious annotation. A novel normalization method based on previous work
[114, 115, 144] is also presented along with this HMM method. ExpressHMM is available at
http://www.binf.ku.dk/~kasper/expresshmm.

1.2.9.5 Microarray data storage

Undoubtedly microarray experiments, and specially those of HDONAs, create a vast amount
of data. To enable quality control of studies, and availability of this data for non-commercial
research all array experiments published today must, in parallel, publish the raw data and
preferably also the normalized data in open data repositories. To make the data accessible and
understandable for other researchers, the microarray community have agreed upon how to
represent the data, and public data repositories have been organised. The two main data
repositories are the Gene Expression Omnibus (GEO), hosted by the National Centre of
Biotechnology Information (NCBI), USA [145], and ArrayExpress at the European
Bioinformatics Institute (EBI), UK [146]. To make the data accessible to others the MGED
(Microarray Gene Expression Data) society, founded in 1999, has agreed upon the MIAME
(Minimum Information About a Microarray Experiment) standards and the MAGE-ML
(Microarray gene expression markup language) format and MGED Ontology with which to
represent microarray data. Both the GEO and the ArrayExpress databases are curated, and all

data submitted has to be approved before publication. Not only do these databases serve as
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storage for raw and normalized microarray data, some curated datasets also serve as the basis

of a datawarehouse containing gene-expression measurements and other results.
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Chapter 2 Aim of the study

The aim of the study was to design high-density oligonucleotide microarrays and custom
analysis for detection of DNA repair systems and DNA damage.

The DNA repair systems chosen for this study were the SOS response system and the
adaptive response to alkylation damage in E. coli, while the DNA damage detection was
aimed at human cancer related fusion genes. In E. coli we emphasized detection of novel
short differentially regulated transcripts. The DNA damage detection in human cancer cells
included a completely novel oligonucleotide design, and was therefore aimed at establishing
custom designed oligonucleotide microarrays as a means for fusion gene detection. The two
applications of custom design and analysis for DNA repair and DNA damage detection are

presented in more detail in the following sections.

2.1 Detection of transcriptional changes in Escherichia coli

using high-density custom tiling microarrays

Although E. coli is one of the most studied organisms today, fairly little is known about the
overall transcriptome, and how the entire transcriptome changes during exposure to different
types of DNA-damaging agents. We wanted to map the E. coli reference transcriptome and
compare it to the transcriptome when exposed to the methylating agent MNNG and to UV-
irradiation. To address this problem we designed an oligonucleotide microarray with dense
coverage of the entire E. coli genome including all regions; genes, regions opposite of genes
(antisense) and regions considered as intergenic. As analysis of tiling arrays was a fairly new
field when starting this project (2005), and custom design was in its early phase we also
wanted to develop our own design and analysis methods optimized for bacterial tiling arrays.
Our main biological focus in the study of the transcriptional changes in E. coli was to detect
novel transcripts, protein coding and non-coding, that might be of importance to the

complicated systems of DNA repair and damage response.
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2.2 Detection of fusion genes using custom designed

microarrays

Detection of fusion genes have generally been inefficient and extremely time-consuming, but
the fact that fusion genes are considered a major player in several types of cancer, reviewed
by [77] and [147], has established a severe need for a high throughput method of fusion-gene
detection. Not only is there a need for identification of novel fusion genes, but also the ability
to detect known fusion genes present in cancer samples as both a diagnostic and research tool.
The main focus has been to design, test and establish custom made high-density
oligonucleotide microarrays as a method for a sensitive and specific high throughput detection

of fusion genes (Figure 9).
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Figure 9. A schematic view from probe design to array based detection of fusion genes. First all possible
fusion-junction probes covering how all exons (here exon 2) from the upstream (A) gene might fuse with any
exon from the downstream (B) gene) are made (arrow II). Then a set of three inter-exonic probes is made for all
exons of all possible fusion genes (arrows I and III). The inter-exonic probes are used to create expression
profiles and the chimeric probes are used to detect fusion sites. (Picture courtesy of Marthe Lovf).



41

Chapter 3 Summary of papers

3.1 Paper |

In this methodology paper, we present our probe design approach and the analysis algorithms
applied in paper II and III. The design process utilizes a program named OligoWiz 2.0 [110]
for initial probe selection, while we apply custom Python scripts for final probe selection. The
major novelty of the design methodology is the selective tiling approach, usage of several
copies of each spike-in probe set and the usage of random negative control probes for
background signal estimation. Selective tiling means that all probes included in the design
have probe qualities that satisfy a minimum cut-off value.

The major part of the paper discusses our minimal normalization approach, and we show that
it decreases data variation while maintaining the dynamic range of the raw data intensities. By
comparisons to other methods RMA, gcRMA and VSN we show our method as a better
alternative for bacterial tiling arrays.

Furthermore, we present an annotation-independent segmentation algorithm. This unguided
approach divides the genome into transcribed and untranscribed regions, while
simultaneously detecting transcripts differentially expressed between reference and treated
bacteria. The algorithm is based on a sliding window of varying sizes and statistical t-tests for
detection of significant changes. In the discussion we argue why not to use the established
gcRMA method [114], except for the purpose of additional outlier detection. Further, we
suggest improvements to our algorithm by introducing probe sequence specific weighting

derived by a generalised linear model created on the basis of the array data.

3.2 Paper i

Here we present a high-density whole-genome tiling project to map the E. coli transcriptome
and to detect transcriptional changes between MNNG treated and reference bacteria. MNNG
is known to induce the adaptive response, hence upregulation of ada, alkB and alkA is
expected [31]. We easily detect upregulation of the known adaptive response genes, except
the aidB gene, which is a gene previously reported as an adaptive response gene. In total we

detect 53 upregulated annotated genes, 171 downregulated annotated genes and 17
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downregulated annotated ncRNAs. The majority of the differentially regulated genes are
previously not described as MNNG responsive. The numbers of differentially regulated genes
suggest gene specific upregulation of repair genes, as the specific damage response, and an
overall downregulation of many other genes as a general defence mechanism. The most
interesting upregulated genes are recN and tisA/B, which are known SOS response genes, not
previously known to be MNNG responsive. The differential regulation of recN was verified
by Northern analysis, and we suggest that recN might also be involved in base lesion repair,
and that it might be regulated by an additional mechanism to the SOS response. We also
investigated the regulation of genes found to have the ada A box and B box in their upstream
regions and found both upregulated, downregulated and unmodulated genes. These findings
suggest that the regulation of the ada regulon must involve more factors than simply the
upstream boxes.

This work also describes 249 novel differentially expressed transcripts that are located = 100
nts upstream and downstream of any annotation. Many of these transcripts correspond well
with previous computational predictions of ncRNAs, actually fourteen differentially
expressed transcripts overlap with at least two separate previous ncRNA predictions. Finally,
we present reverse transcriptase quantitative polymerase chain reaction (RT-qPCR)
verification of a set of differentially expressed known genes, ncRNAs and a set of novel
MNNG responsive ncRNA candidates. We also experimentally verify the lack of differential
expression of the previously annotated adaptive response gene aidB. The correspondence

between array and RT-qPCR data is high and adds confidence to the array data.

3.3 Paper lll

UV-irradiation is known to induce the SOS response in E. coli. The SOS response upregulates
genes such as lexA4, suld, recA, uvrA, uvrB, umuC and umuD [31]. In Paper III we present a
study using high-density whole-genome tiling arrays to measure a reference and a UV treated
E. coli transcriptome. Along with the expected upregulation of almost all known SOS-genes
we present a variety of other upregulated genes. We also detect 291 novel differentially
expressed transcripts, of which many correspond to previous in-silico predictions of ncRNAs.
The UV induced transcript modulation indicates a possible role in the stress response for these
transcripts. Several of the differentially expressed known and novel transcripts were verified

by RT-qPCR, showing high correlation to the array data.
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To further investigate possible functions of the novel transcripts detected we searched all
similarly and differentially non-gene overlapping transcripts for ORFs using GeneMark [148].
The ORF search resulted in six differentially and 17 similarly expressed ORFs, of which 17
are short peptides ([16-60] amino acids) and six are somewhat longer. Furthermore, we
applied protein-BLAST to search for possible homologous amino acid sequences, and Jpred
[149] and TMHMM [150, 151] to make secondary structure predictions. 16 of the 23 novel
peptides had been annotated elsewhere, either as hypothetical proteins or proteins with some
suggested function. Seven of the peptides did not have any obvious protein-BLAST hits. One
of the upregulated small peptides forms a hydrophobic single transmembrane domain,
indicating a possible regulatory function in the inner-membrane. In addition to the detection
of this novel stress induced short inner-membrane peptide, we also confirmed transcription of
12 out of 18 small peptides detected in a study by Hemm ez al. [152]. Two of the 12 are
shown as UV-responsive in the present study, in total this adds three small peptides to the list
of novel small stress induced peptides presented in their subsequent study on possible

functions of small peptides [153].

Finally, we investigated the upstream regions of all significantly modulated genes, and as
expected we detected the SOS box promoter sequence as the top motif. Interestingly some of
the LexA independent upregulated genes were found to have a consensus sequence in their
upstream regions, and we also saw a consensus sequence (different from the SOS box) for a

set of upregulated genes, including several known LexA regulated genes.

3.4 Paper IV

In paper IV we present a novel high-density microarray strategy for high-throughput
screening for all oncogenic fusion transcripts described in the literature with one single array.
The microarray was designed solely for this purpose and gives measurements of chimeric
junctions and exon-wise measurements of the individual fusion genes. The array has 68,861
probes and covers 275 pairs of fusion genes. Every fusion gene exon has three probes for
detection of broken transcript profiles, and every possible chimeric exon-exon fusion is
covered by probes that measure the presence of that specific nucleotide sequence in the
sample mRNA. The array design algorithms have been implemented in Python. The analysis
of the arrays is made up of three parts and the analysis algorithms have been implemented in

Python. Every possible fusion has an upstream gene transcript profile, a downstream gene
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transcript profile and a set of chimeric exon-exon fusion intensities (Figure 9). The
probabilities of broken upstream and downstream gene transcripts are computed (t-test based)
and these scores are combined with the chimeric exon-exon intensity measurements. The
three scores are differentially weighted based on the fusion gene literature, and the sum of the
weighted scores is used to rank all possible fusion gene candidates (Figure 10).

Proof of principle was demonstrated by unguided detection of known fusion genes (such as
TCF3:PBX1, ETV6:RUNXI, and TMPRSS2:ERG) from all six positive controls consisting of

leukaemia cell lines and prostate cancer biopsies.
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Figure 10. Fusion gene detection. Detection plot for the BCR-ABLI1 (here exon 9 to exon 2) fusion found using
the 2.1 version array on the K562 cell-line. The combined score of the chimeric probe intensity (red square, part
A), the upstream gene (BCR) expression profile (part B) and the downstream gene (ABL1) expression profile
(part C) gave this true fusion the top score of about 1x10° possible fusions scored. (Intensity levels are not
comparable between part A and parts B and C).
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Chapter 4 Discussion

In this study, we have developed custom designs and custom analysis methods for high-
density oligonucleotide microarrays to investigate DNA repair systems and to detect DNA
damage. The discussion is, for the sake of clarity, divided into three major parts that are

followed by a general discussion of future prospects including possible improvements.

4.1 Array design, normalization and analysis

As shown in this thesis, the availability of custom designed HDONAs now enables
researchers to design arrays and experiments that suit their specific target optimally. The
number of biological/medical questions that may be asked is infinite, the answers are only
limited by money, time, availability, sensitivity and specificity. When considering a custom
design for a microarray study one must first of all have a defined question or hypothesis that
should be answered or tested. As discussed in chapter 1.2.3, a defined aim of for each study is

imperative for its success.

The array platform will often be dictated by availability, in-house resources and money, but
the choice must not compromise the project. The probe length and probe selection procedure
will then again be directed by the actual biological question. If only certain genes are
interesting to the study there is no need for a whole genome study, and if introns are
interesting, an exon array will be useless. Additionally, a reasonable amount of control probes
should be included. Experiment specific custom made control probes are, as shown in Paper I,

a very useful quality assessment tool in addition to standard spike-sets.

Regarding normalization there are a variety of widely applied and accepted methods available
in freeware and commercial software packages. A widely used measurement of probe quality
in oligonucleotide arrays is the level of variation between probes covering the same known
transcripts, as in theory they should yield the same intensity level [95]. If normalized data
show higher variation over such probes than in the raw data, it follows that the normalization
is no improvement to the data. Probe-sequence based normalization may indeed reduce the
noise measured along a single transcriptome, but when comparing a treated and a reference

transcriptome, this normalization has little or no value. Except if it is of any interest to
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perform a t-test between all reference and all treated sample probes for example. As described
in Paper I; Supplementary File 2, we have tested, investigated and experimented with
different normalization procedures before settling for the minimal normalization procedure
presented in Paper I. I will here briefly discuss the reasons why established methods turned
out to be suboptimal in the bacterial part of this study, and thus present the need for a

thorough consideration of which normalization method to choose.
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Figure 11. Histogram of raw probe intensities. The figure shows the raw intensity value histograms for all five
arrays probing the positive strand of the reference sample in the UV-irradiation study. Deviations from the mean
and median intensity lines are clearly seen, and the level of deviation varies between arrays and along the log,
intensity scale.

The need of a normalization procedure in the first place is easily seen in Figure 11, showing
the DMSO treated positive strand data values and the mean and median values. Ideally the
histograms of the intensity data from the 5 chips measuring the same data should overlap
closely in Figure 11 (unless some noise has been introduced), but the variation appears quite
large. Some noise could be explained by the weak patterns seen in the region-averaging
heatmaps (Figure 12) (optimally no variation in intensity across the whole chip), but the
patterns were far too weak to explain all variations. Thus, indicating additional sources of

noise.
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The purpose of any normalization has to be to improve signal-to-noise ration and this has to
be quantified before any method can be accepted as making a useful contribution to the data.
If raw data is better than the normalized, the raw data should be used.

To be able to compare normalization methods we computed the global standard deviation
(GSD) of all probes based on the mean level of standard deviation present in all sets of five
identical probes across the arrays. Further we assumed that all probes belonging to any well-
known annotated gene should return approximately the same intensity level. Based on this
assumption we calculated the average transcription level measured by all probes for each gene
and subsequently calculated the deviation of all coding probes from their calculated gene-
wide transcription mean. The distribution of these deviations would then be expected to form
a single normal distribution. Our criteria defined that only methods that reduce the GSD and
standard deviation within genes below the level seen in raw data should be candidate
normalization procedures. With the microarray techniques of today one should furthermore
assume that the raw data is of “good” quality and hence that a normalization method should

not drastically affect the data, but rather give a light “tuning”.

This allowed us to test and compare the established methods RMA, gcRMA and VSN on the
data from our tiling microarrays. RMA and gcRMA both struggle with the probe distribution
(dominantly from non-coding rather than coding regions) in our chip design, which was based
on our specific interest in short transcripts located in non-coding regions, and imposed by the
size of the available chip. RMA gave a small decrease in the GSD, but increased the variation
around known coding regions. gcRMA on the other hand gave a large increase of both values,
this indicated that both methods were performing worse than raw data. VSN on the other hand
gave a fair decrease in variation both on the global level and around coding regions,
suggesting nice improvement to the raw data. Closer inspection of the VSN data however
revealed a remarkable decrease of the dynamic range of the data resulting in no detection of
the response from well-known and tested stress-inducible genes, which is clearly visible in the

raw data.
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Figure 12. Region averaging heatmap. Heatmap averaged over a 50 point half window width, the colour-scale
is from 9 (dark) to 10.5 (white). Averages are over a minimum of 609 local probes (average 2239). The nine
black squares are the masked control probes. This heatmap shows the negative strand probes from one of the
arrays of MNNG treated E. coli.

In short, we concluded that the probe design, probing pattern (number of probes probing
coding versus non-coding regions) and the probe selection procedure have influence on the
performance of the normalization procedures. We reason that RMA and gcRMA, both of
which were more or less designed for the Affymetrix GeneChip® (probing only DNA
assumed to be coding) are confused by the large amount of probes here that probe true
intergenic regions and hence result in low signal levels. gcRMA is further tricked in some
way by the selection of probes having fairly uniform affinities, and we see that the nucleotide-
position weight graphs we presented in Paper I (Supplementary material) deviate from the
same plots shown by the gcRMA designers [114]. This might not only originate in the
methods applied and the transcriptome investigated, but also from the differences between
cDNA and cRNA [102], as the GeneChip® uses complementary RNA, while this study used
cDNA in the hybridisation process. Additionally we think that gcRMA is confused by the

small number of probes given as negative controls compared to the usual case of PM-MM
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probe pairs. On the other hand VSN manipulates the array data too heavily, resulting in overly
similar signal levels on a global scale, making only a few very significant transcription
changes detectable, and destroying the sensitivity of the technique.

It is, as shown in Paper I, of great importance that the chosen normalization method improves
the raw data and does not severely narrow the signal range of the study. Hence, one should
not settle too easily for the “usual” normalization method, or the one used in the last project
when working with custom designed arrays. One rule of thumb is to control the normalized
data against the raw data in terms of global variation and variation within genes, while

keeping the sensitivity of the resulting signal range in mind.

Analysis of custom designed microarrays will always be heavily dependent upon the question
asked, which again dictates the design process. There will be no single golden path through
the analysis when the number of different questions that might be asked is infinite, but some
rules must be kept in mind. One cannot say anything certain about any data that show signal
intensity levels below background, hence it is very important to have a good background
signal estimate. Furthermore, one must not be afraid of throwing away array data with
systematic or non-systematic experimental errors that are detected, but cannot be accounted
for in the normalization procedure. Another important issue is to ensure statistical
significance (and preferably biological significance) for all findings through sufficient
biological/technical replicates and probe coverage. In addition, a chosen set of the findings
should be experimentally tested to verify the array data, this test set should ideally include

results that represent the entire result range and not only the most significant findings.

Regular gene probing microarrays are made to investigate gene expression and disregard all
genomic regions not annotated as potential genes. Analysis of these arrays is bound by the
annotation that has been used to define the genomic regions that are probed. Until the
emergence of the Affymetrix exon arrays (HuEx) the analysis of high-density gene probing
arrays focused on the gene-wise expression, with the HuEx arrays one can detect splice
variants as well, although with some limitations. The major difference between gene arrays
and whole genome tiling arrays is that a large part (design and genome dependent) of the
probes are now expected to yield signal intensities at the background noise level, as many
probes investigate true non-coding regions (this discussion only considers transcriptome
analysis). In the analysis the major differences are the density level of the data, and the ability

to detect novel transcripts and define transcript boundaries. This calls for an analysis that is
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annotation independent, as annotation dependency would not take full account of the
available data and possibilities. The most significant difference from an annotation dependent
analysis is that the tiling analysis must be able to define transcriptional start and stop sites.
There have been a couple of different approaches to solve this problem, and the ultimate goal
is to be able to define these sites with one nucleotide resolution, which again demands single
nucleotide resolution of the probe tiling.

The two major approaches have been HMMs [143, 154] and sliding windows [9, 140]. An
HMM has to be trained, and the training set is based upon some annotated data. This disables
identification of novel transcripts with properties that do not correspond well with the training
data. On the other hand the sliding window approach decreases the resolution of the tiling
array by investigating several probes at a time, i.e. the probes inside the window.

In this study we selected a sliding window method where we also included varying window
sizes. Analysis of the data indicated that single probes with consistent significant differential
expression (comparing reference and treated data) could be trusted (25 nts), and that the
minimum length of a similarly expressed transcript should be 32 nts (i.e. covered by a
minimum of 2 probes). Trusted here means that there is sufficient evidence to believe that it is
an actual transcript, and not noise. These minimum lengths were based on different
observations described in detail in Paper 1. In short, one must first assume that probe specific
effects behave similarly on the different arrays, and previous work has uncovered that the
variation between the intensities of probes investigating the same gene on the same array is
larger than between intensities from identical probes on different arrays [124, 125, 133]. This
implies that if a short region (one probe) shows consistent significantly differential expression
between scaled reference and treated data, there must be a biological difference in the samples
that cause this systematic signal intensity difference. In the other case if one single probe
yields similar intensity levels in the reference and the stressed dataset, and this signal is above
the estimated average background intensity level, it may be simply due to a higher binding
affinity for this single probe compared to the average non-expressed probe. Therefore, the
expression of this genomic region is likely to become a false positive if not removed.
Differentially transcripts can therefore be defined with fewer probes than similarly expressed
transcripts. To enable single nucleotide resolution on tiling data, further knowledge must be
gained on probe-specific effects so that the analysis algorithms can better adjust for this.
Based on the findings by Naef and Magnasco [115] we investigated the possibilities of using
a generalised linear model (GLM) to define a probe-specific score system, but we observed

only an insignificant increase of the data quality.
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In the two E. coli studies presented in this thesis, the main goal was detection of novel small
differentially regulated transcripts. We claim that the varying window sizes applied in the
sliding window method add strength to previous sliding window methods and are preferable
to the HMM, although the sliding window disregards all information regarding typical
transcript properties. As seen in paper 11, we detected a short UV induced peptide with a
possible transmembrane function. This peptide had no significant protein-BLAST hits. The
ORF of this short peptide would probably not fit into the HMM, as no homologues are known
and thereby most likely not present a training set. Additionally, the RT-qPCR verifications
and the comparisons of detected transcript boundaries to annotations of well characterised

genes also show that the sliding window algorithm has performed well.

4.2 Bacterial DNA repair study

These studies of treated and reference E. coli transcriptomes (Paper II and III) have shown a
much higher transcriptional activity than previously annotated. Lately several studies on
various genomes (including E. coli) have revealed similar high transcription levels [7-9]. This
brings forth the question of the function of all these novel transcripts. The detected transcripts
are likely to have some kind of function in the cell physiology, as transcription is not likely to
occur by random. Not only do we detect high levels of transcription, several of the novel
transcripts are detected as differentially expressed in the treated bacteria. In Paper II and III
we presented two different lists of fourteen differentially regulated ncRNA candidates which
also had been previously in silico predicted by Saetrom et al. [25] and listed as candidates by
Hershberg et al. [30]. Of these candidates only three are found in both studies (Table 2). This
indicates that these three ncRNAs are possible regulators of gene expression in general during
stress, while the remainder are damage specific gene regulator candidates. Experimental work
including over- and under-expression of these ncRNA candidates must be performed to

further unveil their role in the damage response.
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Table 2 — Differentially expressed ncRNA candidates reported in both paper II and III.

Start, end and strand | Setrom | Previous Left | Right | UV fold MNNG

as detected in Paper | ID [25] | predictions | gene | gene | change fold

II (logy) change
(logy)

4532242-4532327,+ | 1253 [28] yjhX | yjhS | -1.5 -1.0*

4532456-4532559.4+ | 1179 [23] yjihX | yjhS |- 1.5 -1.0*

3645892-3645984,- | 1238 [22] dinQ | arsR | +1.1 +0.6

Differentially expressed ncRNA candidates reported in both paper II and I1I, which had also
been previously in silico predicted by Satrom ef al. [25] and also found in the Hershberg et
al. [30] compilation of E. coli ncRNA candidates. The left and right genes are given
regardless of strand. * These candidates have also been verified by RT-qPCR in paper II.

In the early analysis of the E. coli tiling arrays widespread antisense transcription
(transcription on the opposite strand of known genes) was detected. These findings were
similar to reports from other tiling array studies from E. coli [7] and yeast [8, 155]. However a
report from Perocchi et al. [12] concludes that the majority of such transcripts are artefacts
due to second strand cDNA synthesis during reverse transcription from mRNA to cDNA.
They show that most antisense transcripts correlate with the sense strand (2/3 in our studies;
data not shown), and that these transcripts are removed by adding actinomycin D (ActD)
during the reverse transcription. To further investigate this we performed strand specific RT-
gPCR and Northern analysis (data not shown) of the most prominently differentially
expressed antisense transcripts detected in the MNNG study; the ada transcript, and the
antisense recN transcript from the UV study. These antisense transcripts were invalidated in
both cases, and we selected to disregard all detected antisense transcripts as artefacts.
However, some of these transcripts might be true transcripts. These would be the transcripts

that are non-correlated to the sense strand.

The majority of the differentially regulated transcripts are downregulated in the treated
bacteria. In total we see a ~3% general decrease of the total number of nucleotides detected as
transcribed when comparing the two references with the two treated transcriptomes. A general
decrease in transcriptional activity is a reasonable defence against stress, as the organism
would then be able to concentrate more energy on maintenance and repair. Cell division, for
instance, would seem to be a hazardous activity while knowing parts of the genome are
damaged, therefore we believe that focus on repair is the reason behind the general down-

regulation of the wide range of annotated and un-annotated transcripts we detected.
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On the other hand, significant upregulation is seen in both of the treated samples (MNNG and
UV). The top list of upregulated transcripts are dominated by known and important response
genes (MNNG: alkA, ada and alkB, UV: sulA, recN, umuC, umuD and more) in the two
different repair pathways invoked by the treatments given. Novel upregulated transcripts are
clearly interesting candidates for being novel players within the respective repair pathways,
and further experiments must be made to validate them. We detected 132 and 4 upregulated
transcripts in the UV and MNNG stressed transcriptomes respectively, in addition to many
upregulated genes and predicted ncRNAs, not previously reported as stress induced, in both
studies. A reasonable approach to gain more knowledge of the function of these transcripts
would be to investigate the phenotypes of knock-outs of the most prominently modulated
candidates when inducing DNA damage. And of course, a selection of the most prominently
modulated genes, previously not described as MNNG or UV responsive, should be included
in the knock out studies. Among others, a very interesting candidate is the recN gene, a

known SOS inducible gene, which was strongly upregulated in response to MNNG.

One of the most interesting findings made is the high number of differentially expressed
transcripts that overlap with in silico predicted ncRNAs. In combination with the RT-qPCR
verification of a novel short differentially expressed ncRNA candidates in each of the two
studies this indicates that several of the small novel and previously in-silico predicted ncRNA
candidates are important in DNA damage responses. The in-silico predicted ncRNAs detected
as induced by UV and/or MNNG also adds to the list of transcripts that should be tested to

unveil their function in the respective responses.

Several small peptides have been detected in E. coli[152], and some of them have lately been
shown to be stress inducible [153]. These short peptides are often missed by normal peptide
searches as they are very short (< 60 amino acids), and may thus be an overlooked part of the
bacterial stress response, as argued by Hemm e? al. [153]. We detected one novel UV-induced
transmembrane protein and exhibited two previously detected small inner-membrane as UV-
responsive. These findings definitively strengthen the view of many overlooked important
small stress responsive peptides, and it shows that it is important to grasp the function of all

these small peptides to obtain the complete picture of stress responses.

Upstream regulatory sequences are heavily involved in the gene expression during both

adaptive response and SOS response. In Paper II a computational search for the A box and B
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box (spacer 5-7 nts) was performed on the upstream sequence of all MNNG responsive genes
detected by either analysis method. Interestingly several genes, even some downregulated,
had perfect A and B box sequences with a 6 nt spacer in their upstream regions. Our findings
indicate that the distance from the transcriptional start site to the upstream regulatory
sequences is important, and that the upregulated genes have a shorter distance than the
downregulated. The unexpectedly upregulated recN gene (known SOS response gene, but not
adaptive response gene) was found to have a perfect A and B box sequences only one
nucleotide upstream of the transcriptional start site detected by the sliding window, which is
115 nts downstream of the annotated start site. As this unexpected upregulation of recN was
also seen in an MNNG treated E. coli ada mutant (data not shown) we find the A and B box
sequence unimportant to the regulation of recN. Anyhow, a perfect A and B box sequence
was detected upstream of genes that did not follow the regulation of the known adaptive
response genes, this indicates that the A box and B box alone is insufficient to control the

regulation of the downstream genes alone.

The SOS box is central in the regulation of the SOS response genes, and the quality of the
SOS box, the position of the SOS box and the number of SOS boxes upstream of the gene
influence the induction of the various SOS genes [31]. In Paper III we performed a promoter
search of the upstream regions of all differentially regulated transcripts using the MEME tool
[156]. The top consensus sequence for upregulated transcripts was as expected the SOS box
consensus sequence, but additional interesting motifs were also predicted. No consensus
promoter sequence was found for the downregulated transcript. In short the promoter study
indicates novel promoter sequences for LexA independent UV responsive genes, and it
indicates alternative promoter sequences for some genes already known to have a functional
SOS box. The lack of a consensus sequence for the downregulated genes strengthens the idea
of a general unspecific downregulation of a variety of genes as part of different stress
responses. This also follows from the belief that it is easier to control a general
downregulation by lowering the general transcriptional activity, than by activating a sequence

specific inhibitor.
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4.3 Human fusion gene microarrays

The study presented in this thesis shows that the custom designed fusion gene microarray
enables high throughput detection of chimeric fusion genes. In Paper IV array analysis clearly
points out six out of six known positive controls as the top ranking fusion gene candidates in
the tested cancer samples. As fusion genes are known in several cancer types, while their
presence remains unknown in other cancers, high throughput detection of chimeric fusions is
needed. In cancer types having known fusion genes, high-throughput detection might become

an important means for early and/or differential diagnostics.

Once the pilot study established our high throughput method as successful, thoughts about the
next generation array began. Multiplex microarrays with even more features (3 x 720,000
features per chip) were available and knowledge about the probe behaviour on the pilot chip
guided an improved design. As we found no special benefit in the small nucleotide up- and
down-shift of some of the chimeric fusion probe sequences we designed in the pilot study, we
chose to exclude them in the second generation. To gain statistical strength, all chimeric
fusion probes covering an exon-junction are present in three copies on the next generation
array. Further, all intronic, intron-exon and exon-intron probes were removed from the chip.
To gain a more uniform probe affinity distribution of the exon probes, the script constraints
placing probes in the start, end and middle of each exon were changed. The updated design
algorithm now selects the three best non-overlapping (if the exon length allows) probes per
exon, regardless of position within the exon. Since the probe selection for the critical chimeric
junction probes is very restricted and T, is the only score applied, we use only this score in all
other probe selections on the array as well. The reasoning behind this is that we prefer a
uniform distribution of the probe affinities. A good T, score will imply a certain GC-content
(according to the Ty-calculation procedure), and all probes are designed to be unique, but we
have not optimised the exon probes according to all probe-selection factors mentioned in this
thesis. By analysis of the pilot array we know that our design is sufficient to detect fusion
genes in cancer samples, hence a suboptimal selection of the least critical probes on the array
can be justified. If a uniform and optimal probe selection should be made, many of the
chimeric junctions would be left unprobed. This would disagree with the basic idea of the

fusion gene array to provide a universal tool for detection of oncogenic fusion genes.
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In addition to probing known or expected fusion genes, the second generation of the fusion
gene microarray contains one single probe for each gene in the entire human genome. The
probe selected is a unique sequence with optimal Ty, that is present in one of the exons that is
part of all, or as many as possible, transcripts annotated by Ensembl (www.ensembl.org). In
addition to the fusion gene detection, the inclusion of these additional probes enables a
general expression profiling, and the probes also enable investigation and comparisons of how
our probes behave compared to measurements of the same samples with commercial exon or
gene arrays. Future chip versions will continuously cover more fusion gene candidates and
will be used to detect fusion genes in cancer types known to have such genes, and applied to

cancer types with no previously known fusion genes.

Lately it has been shown that precursor mRNAs (mRNAs not processed and made ready for
translation) from normal un-fused genes can be processed so that the mRNA product becomes
similar to mRNA originating from chromosomal rearrangements. Certain types of such trans-
spliced mRNAs can exist at a fairly low level in some healthy cells [157]. The revelation of
such mRNA products may complicate mRNA screening as a diagnostic tool in certain
cancers, but their existence are believed to be anecdotal more than being a common obstacle

to fusion gene based diagnostics.

Another technology that was recently applied for fusion gene detection is ultra-high
throughput sequencing methods, such as the Illumina Genome analyser 11
(www.illumina.com), Solid [158] and 454 [159] technologies. This technology has now been
successfully applied in fusion gene detection studies [84, 160, 161], and one major upside of
this technology is that the great dynamic range helps detecting the true “driver” fusions from
the many less interesting fusion candidates detected [160]. Ultra-high throughput sequencing
enables fast sequencing of enormous amounts of short nucleotide sequences (Illumina GX IIx:
~ 15 gigabases per run), which can subsequently be assembled into longer pieces. The
strategy for fusion gene detection would be to sequence samples from neoplastic tissue to
look for possible fusion genes, and the technology may also be combined with microarrays as
a first step to narrow the search field. The narrowing function would imply a hybridisation to
an array to look for possible candidates, followed by sequencing of all oligonucleotides that
hybridized with the chimeric probes on the array. A problem with this strategy today is first of
all the cost of running the sequencing and also the assembly of the sequenced

oligonucleotides is a very computer intensive problem even though a reference genome is
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present. Ultra-high sequencing (sometimes combined with microarrays) will probably be the
dominating technology detection of novel fusion genes in the near future. Nevertheless, if
proven successful as a diagnostic means the fusion-gene microarrays will play an important

role in diagnostics and fusion gene screening for many years to come.

4.4 Future perspectives and possible improvements

If this project was to be remade there should be some minor changes made based on the
knowledge gained during the project, and based on work by other research groups.

When designing the bacterial tiling arrays in 2005 little information was academically
available on the topic of custom design, except for the equally spaced designs. The changes
that should be made to the tiling array design include: i) Equal coverage of regions defined as
coding (the number of probes would be a function of the length of the gene investigated), ii)
At least two different probe selection software packages should be applied to design high
quality probes, iii) Random distribution of the control probes instead of placing them in
defined rectangles on the array to measure spatial error more accurately and iv) Usage of non-
uniform probe lengths will enable more flexibility when trying to obtain uniform binding
affinities for all probes.

As the array technology has improved the entire . coli genome can now be tiled with a very
high-density on one single array. Anyhow, based on the observations of high variance of
probe qualities, even though uniform probe qualities have been strived for, a selective tiling
strategy seems preferable. Excepted is the case where total DNA could be hybridised to a set

of equal spaced tiling arrays to generate a probe quality reference for data normalization.

As shown in Paper I, and in the discussion, our minimal normalization method performed
better than gcRMA, RMA and VSN, which were not originally designed for analysis of tiling
arrays. Therefore the novel normalization algorithm should definitely be applied in similar
future experiments, along with possible upcoming alternatives. We have shown the sliding
window method for segmentation of the expression data into similarly and differentially
regulated known and novel transcripts, successful in paper II and III. This was verified by
comparison to expected gene modulations, known annotations and RT-qPCR verifications of
selected modulated and unmodulated transcripts. The sliding window method is thereby well
suited to be applied on similar data in the future. Additionally, other tiling array analysis

methods as (MAT [140] and ExpressHMM [143]) should also be taken into consideration.
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The UV and MNNG studies would gain even more biological insight if performed as a time
point study. Transcriptome mapping at different time points will, as shown by Courcelle et
al.[6], provide a picture of the timing of transcript modulation in the two bacterial stress
responses. Additionally, as discussed, ActD should definitely be included in the sample
preparation control to be able to separate true antisense transcripts from reverse transcriptase
artefacts. Another, now available, approach is to apply next-generation sequencing on the E.
coli transcriptome at different time points after stress induction, and to compare this to a

sequenced reference transcriptome.

Fusion gene arrays have now been designed in two refined versions, and the design changes
have been described in the discussion. The pilot fusion array was proven capable of detecting
fusion genes in Leukemia cell-lines with an unguided computational analysis, as shown in
Paper IV. The newest version of the arrays has been tested in a blinded experiment with six
sarcomas, and we detected four out of six fusion genes correctly (data not shown). There is an
ongoing project with an iterative process of refining the design and analysis algorithms, and if
sufficient specificity and sensitivity are proven the fusion gene microarrays might become a

diagnostic tool in the near future.

This study has utilized only a fraction of the spectre of possible custom designed high-density
oligonucleotide microarrays applications. The real challenge is to fully recognise how your
project might benefit from custom high-density microarray experiments, and to develop the
design and analysis accordingly. Today, next generation sequencing is the big star, but in
many cases one should settle for microarrays. The microarray technology is fully capable of
solving a variety of questions, of which many have not been stated yet, at a lower cost and

without creating a vast overhead of perhaps unnecessary data.
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Abstract

Background: High-density tiling microarrays are a powerful tool for the characterization of complete genomes. The two
major computational challenges associated with custom-made arrays are design and analysis. Firstly, several genome
dependent variables, such as the genome’s complexity and sequence composition, need to be considered in the design to
ensure a high quality microarray. Secondly, since tiling projects today very often exceed the limits of conventional array-
experiments, researchers cannot use established computer tools designed for commercial arrays, and instead have to
redesign previous methods or create novel tools.

Principal Findings: Here we describe the multiple aspects involved in the design of tiling arrays for transcriptome analysis and
detail the normalisation and analysis procedures for such microarrays. We introduce a novel design method to make two
280,000 feature microarrays covering the entire genome of the bacterial species Escherichia coli and Neisseria meningitidis,
respectively, as well as the use of multiple copies of control probe-sets on tiling microarrays. Furthermore, a novel
normalisation and background estimation procedure for tiling arrays is presented along with a method for array analysis
focused on detection of short transcripts. The design, normalisation and analysis methods have been applied in various
experiments and several of the detected novel short transcripts have been biologically confirmed by Northern blot tests.

Conclusions:Tiling-arrays are becoming increasingly applicable in genomic research, but researchers still lack both the tools
for custom design of arrays, as well as the systems and procedures for analysis of the vast amount of data resulting from
such experiments. We believe that the methods described herein will be a useful contribution and resource for researchers
designing and analysing custom tiling arrays for both bacteria and higher organisms.
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Introduction

The availability of affordable custom-made expression arrays is
increasing, and the feature number on oligonucleotide microarrays
has increased remarkably during the last few years. Traditional
Affymetrix GeneChip arrays focus on probing the coding
sequences of known genes, and the probes usually only cover the
annotated transcripts’ 3" end, hence much information regarding
new transcripts (e.g. microRNAs, anti-sense transcripts and new
genes), as well as splice variants of both known and unknown
transcripts, are never found [1,2]. Also, recent reports show that
annotated genes tend to contain methylation sites with biased
distribution towards the 3’ end. This bias in the expressed gene
indicate that methylation might interfere with transcription
initiation and termination [3,4]. To address this problem, new
microarray approaches that enable mapping of the total genome
have emerged [5]. Tiling probes on the microarrays is one strategy
that has been developed to completely cover areas of the genome
[6]. For the majority of completely sequenced genomes no such
arrays are currently on the market. Researchers therefore need to
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design the tiling array themselves. One great advantage of custom
made arrays is that they enable total control over chip content with
regard to probes for expression measurements, control probes and
the distribution of probes over the array.

There are many aspects that have to be taken into consideration
in order to achieve high quality data when designing microarrays;
including probe density, probe-length, melting temperature, probe
placement, strand coverage, cross-hybridization/probe-sequence
complexity, probe uniqueness and control probes. The probe-
specific aspects mentioned above make up a set of probe-
properties. All probes on an array should ideally have approxi-
mately the same properties to ensure a constant probability of
hybridization [7], the mean value of all these properties can be
referred to as the consensus property. The ultimate, but impossible
achievement, is to obtain dense coverage of an entire genome by
probes with high consensus properties.

Today, several methods for the estimation of background signal
level (sum of noise and non-specific hybridization) and data
normalisation exist, but these are designed to work with
commercial arrays (MAS 5.0, RMA, MBEI, and gcRMA) [8
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11]. Such methods might rely on mismatch-probes [12] or assume
that the majority of probes target coding regions, and are therefore
often sub-optimal for non-standard custom arrays. Meanwhile, the
more generally applicable analysis algorithm MAT (Model-based
Analysis of Tiling-arrays) [13], originally designed for ChIP tiling
arrays, would be sub-optimal for this study as it applies a 600 bp
window which is far larger than the short transcripts targeted here
(<60 nts). Other methods for dividing a transcriptome into
discrete transcription segments involve different applications of
hidden Markov models (HMMs), for instance the supervised
Markov model framework of Du et al. [14]. One downside of
HMM based methods is the need for a training set (generally
originating from annotated regions of the genome) which
necessarily guides the method towards the recognition of regions
which are characteristically similar to the training set. Since a
major goal of the approach presented here is to locate novel, short,
differentially expressed transcripts in unannotated regions, a
standard training set is not optimal. Finally, an HMM method
which may successfully work on a single stressed or unstressed
dataset will not simultaneously be applicable to data from a direct
reference vs stress transcription comparison.

Present analysis methods for microarrays are mainly focused on
known coding regions [8,10], and researchers soon run into
problems when trying to analyse signals from intergenic regions or
un-annotated genomes, because of the difficulty in defining
consistently expressed segments of the genome without the aid of
an annotation. These problems can be addressed by applying the
methods presented here, and the annotation-independent analysis
method can be applied to any tiling array project, regardless of
whether the investigated regions are coding or non-coding, and
without the need of any genomic annotation or training set.

In this manuscript we present a novel design method for tiling
arrays, here targeting prokaryotic genomes, but easily applicable
to eukaryotic genomes as well. We present a novel normalization
method suited to equidistantly or un-equidistantly distributed
probes on tiling arrays. Additionally, we show how increased
numbers of control probes, including random controls, can be
used to assess the levels of non-specific binding and noise, which is
always more or less of a problem with microarrays. Finally, we
present two different analysis methods for genome-wide tiling
array data, of which the latter is independent of annotations and
training-sets.

Methods

There are several important considerations regarding micro-
array design and analysis. Here we present a method for designing
tiling arrays and methods for normalisation, background esti-
mates/adjustments and data analysis of tiling experiments. As an
initial project, two different prokaryotic genomes are used, the £.
coli K12 MG1655 genome and N. meningitidis MC58 genome,
respectively.

Microarray design

Genomic coverage will always be a trade-off between probe-
length, genome size and array feature number. The choices made
here ensure coverage comparable to regular gene chips of all genes
with a known function, as well as a very high coverage of the
remaining genome. The arrays used in this project are the 280,000
feature NimbleExpress [15-17] custom arrays provided by
Affymetrix, as this was the most reasonable choice when
considering the feature number versus production cost. The oligo
length was set to 25 nucleotides. The bacterial genomes and

annotations of £. coli K12 MG1655 [GenBank:NC000913] and V.
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meningitidis MC58 [GenBank:NC003112] used for the probe design
were downloaded from the NCBI fip-site (24™ of May 2005). A
basic tiling strategy places a probe at every Nth nucleotide (for
some N where N<probe-length). Such an approach does not
apply any probe-quality measures except for the widely used
exclusion of repeat-clements from the target sequences (by using
programs such as RepeatMasker [18] or Dust (Tatusov RL and
Lipman DJ, unpublished). Use of probes covering repeat elements
in the genome should be avoided because of the high risk of cross-
hybridisation by similar probes with plural origin, generating
meaningless data within these regions. If a more selective tiling
approach is used, as described in this paper, it should be possible
to choose a set of probes that are more homogeneous, reducing the
noise that is otherwise introduced by significant probe-affinity
differences.

A limited number of features on the arrays often prohibits a
high density tiling strategy from covering the entire genome
evenly. As these chips have a 280,000 feature size limit, the
decision to split the genomes into two categories was taken; coding
and non-coding. All regions annotated with an Open Reading
Frame (ORF) having a known function on either strand were
defined as coding regions, ORFs separated by less than 25
nucleotides were concatenated. The remaining regions were
defined as intergenic (Figure 1). This process of dividing the
genome into two categories does not introduce any bias to the
applied analysis method, and is solely used for the purpose of
probe design as the feature number is limited. For the genomes
used in this design, the intergenic regions make up about 10
percent of the E.coli and 20 percent of the N. meningitidis genome.
The terms “coding” and “non-coding” are used here only to
describe the two categories defined during the design phase.

As E. coli and N. meningitidis differ in genome-sizes as well as the
percentages of non-coding versus protein-coding regions, the
probe densities in the coding and non-coding parts in the two
genomes were set independently. This density trade-off was
dictated by the percentage of coding and non-coding regions
along with the total feature number available. The coding regions
were covered by 19 and 32 probes per gene in E. coli and N.
meningitidis, respectively. The probe density parameter details can
be found in Table S1.

Several probe selection programs are available today, such as
OligoArray 2.0 [19], CommOligo [20], OligoWiz 2.0 [21,22] and
a web tool from the Gerstein lab (http://tiling.gerstein.org) [23].
OligoArray 2.0 from 2005 was designed for automated selection of
short oligonucleotide probe sequences, it requires BLAST and uses
MFOLD [24] for thermodynamic secondary structure and probe
specificity predictions. CommOligo, accompanied by the Comm
Oligo Parameter Estimator, on the other hand addresses whole
genome array design or probe design from highly homologous
sequences. OligoWiz 2.0, which is applied here, is an oligonucle-
otide selection software with several user defined parameters;
AT,,, homology, low-complexity, position and “GATC” only,
probe spacing and a maximum and a minimum probe number per
sequence. The two algorithms from Bertone e al. [23] that form
the Gerstein lab web tool concentrate on eukaryotic genome tiling,
hence detection of similar probes or sub-sequences between probes
is their main focus. Their work emphasise the value of a tiling
strategy which optimises the probe affinities rather than a uniform
tiling solution, as long as the obtained coverage is sufficient to
answer the biological question asked.

As the target organisms here are bacteria, the large-scale
cukaryotic similarity problems are excluded (i.e. the Gerstein lab
web tool solution) and since the homology problems in bacteria are
relatively small, the need for the CommOligo special functionality
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Figure 1. Tiling strategy. The genome was divided into coding and non-coding regions, and the two region types were probed with different
densities. The grey bar represent the genome, red arrows represent genes and the blue arrows represent probes. The numbers of probes are not

realistic here (see Table S1 for density details).
doi:10.1371/journal.pone.0005943.g001

relating to probe designs for highly homologous sequences is not as
critical as for higher species/organisms. To make the initial oligo
selection, OligoWiz 2.0 was chosen on the basis of functionality,
and the implemented selection algorithms were well suited to the
tiling design in these specific projects. Major factors contributing
to the selection of OligoWiz 2.0 were the ability to adjust the score
parameters to fit the selective tiling design and to apply different
probe densities for known ORFs and intergenic regions. In
addition, OligoWiz 2.0 is more compatible, since it can be run
without the position score-filter, since every part of each probed
region is equally important in terms of the detection of novel
transcripts. Some recent methods for probe selection are discussed
in the “Conclusion and method remarks” section at the end.

After the divison into coding and non-coding regions, the initial
selection of probes was made using OligoWiz 2.0 [21,22]. From
the resulting set of all possible probes, a subset was chosen by
setting the selection parameters in OligoWiz 2.0 (see Tables S2
and S3). When choosing a small minimum inter-probe distance
(< probe-length) for the intergenic regions a “selective tiling” is
achieved, i.e. high density, but with high quality probes only (see
Table S1 for maximum probe density.) Repeat regions were not
removed prior to the probe selection, but were avoided by the
combination of OligoWiz 2.0 criteria followed by subsequent
probe selection scripts. The main function of these scripts was to
remove duplicates, see “probe-uniqueness” below. On the actual
array no genomically adjacent probes were closely located on the
chip, in order to minimize errors from spatial effects.

To ensure sufficient coverage of both strands, every probe on
the array has a complementary probe (if unique) covering the
opposite strand. This complementary design also enables all
probes to be hybridized with DNA or RNA from both strands.
One should keep in mind that hybridization to total DNA can give
good probe-quality measurements, which is a useful mean for
experimental probe-quality assessment [10]. To achieve this
design, OligoWiz 2.0 was applied on one strand and then all
probes were complemented to cover the reverse strand. Each
complement probe was assigned the same score as its origin. Test-
runs with OligoWiz 2.0 proved this approach reliable compared to
applying OligoWiz 2.0 on both strands. The complementary
probes were then checked for uniqueness (see below), and removed
if non-unique (exemplified by the removal of 166 out of 273.414
probes from the original E. coli design).

The optimal melting temperature was estimated by OligoWiz
2.0. All regions were considered equally important, as the goal was
to map the entire transcriptome. Therefore, the OligoWiz 2.0
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position score was left unused. For future designs, variable probe
length design (24-26 mers) might be considered in order to
achieve a more uniform melting temperature distribution for all
probes [25].

Cross-hybridization occurs when a piece of cDNA in the sample
binds with, and hence add signal to, a probe that is not 100%
complementary. This results in false positives that are almost
impossible to identify and remove. This is considered to be a
critical problem in array designs [26]. Therefore, the cross-
hybridization threshold was the most heavily weighted score. The
related sequence-complexity score was also set reasonably high to
further decrease the risk of cross-hybridization, see Table S2. One
major drawback regarding the probes selected by OligoWiz 2.0 is
that the program is able to select identical probes from two
different input sequences. The program can thus report two good
probes while actually choosing two identical probe sequences.
Similar probes on the chip therefore make it impossible to map the
actual transcript back to the genome. To avoid this problem of
non-unique probes, a computer program removing duplicates
from the OligoWiz 2.0 output-files was written and applied
(available upon request). The script uses a hash-table with all 13
nucleotide sub-sequences of all probes as keys, if similar keys are
detected, all non-overlapping probes with this sub-sequence are
removed. This allows a maximum similar continuous stretch of
12 nts. The removal is followed by a control of the regions from
which the probes have been taken away. If the removal strongly
affects the coverage, another probe with a lower OligoWiz 2.0
score is selected, from the set of all possible probe-sequences
generated, to ensure sufficient probe coverage.

A quality assessment of the sample preparation, the hybridiza-
tion-process and the intensity measurements can be obtained by
using control-probes [27]. Control probes are sequences foreign to
the target genome designed to assess cross-hybridization and
background noise. There are several commercial sets of control
probes made to measure the hybridization quality, as well as the
RNA sample preparation, labelling and fragmentation process
[28]. An improvement of the data quality measurement is sought
here by the inclusion of multiple control sets in combination with
multiple copies of each control probe. By distributing six copies of
these control probes (seven including the hybridization controls,
see Figure S1) around the arrays, more measurements can be
taken to improve the quality control process. This control probe
distribution is used particularly to assess chip-area specific
hybridization artefacts. In total there are 4566 control probes
distributed over seven separate patches on the chip, see Figure S1

June 2009 | Volume 4 | Issue 6 | €5943



and Table S4 for details. The standard controls used on these
arrays are the Affymetrix hybridization control-set, the Affymetrix
prokaryotic spike-in set (poly-A) for assessment of the sample
preparation and labelling process and the HXB2-yeast spike-set
(all three sets described in [28]). Additionally there is a custom
made control probe-set consisting of 50 probes having a di-
nucleotide composition similar to the E.coli specific probes. These
custom probes were generated by computing all di-nucleotide
frequencies for the target genome probe sequences. Then a
probabilistic ~ algorithm producing 25-mers with similar di-
nucleotide composition to the target specific probes was
implemented. The algorithm outputs the N first probes that differ
on at least seven out of 25 nucleotide positions when compared to
every E. coli specific probe.

The design method presented here was originally made for
relatively small genomes (4x10°%. However, the design is casily
adapted and scaled up to larger genomes. The target genome size
and the feature number available, combined with the biological
question asked, will decide whether a tiling approach with
equidistantly distributed probes of the entire genome is possible
or not. If this approach is considered, Grif et al. [29] as well as
Schliep et al. [30] recently presented more suitable methods for
equidistant probing. The method presented here is on the other
hand an elegant alternative for non-equidistant tiling designs. We
believe that the division of the target genome into “high’ and “less
high” interest regions is trivial after the biological question has
been stated. OligoWiz 2.0, or another well suited oligo selection
tool depending on the biological question (see “Method remarks”
section and [31]), should then be applied to design probes suitable
for the feature number available and the resolution needed in the
genomic region of interest. A probe selection as described here will
then select the set of best unique probes for the final design. The
control of uniqueness described here can be exchanged for a suffix
array approach [32], if the hash-based method raises memory-
limit problems. Also, if splice-variant related questions are raised,
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probes must be designed with probe sequences that represent both
the end of exony and the start of exong, as used by Skotheim et al.
[33]. The control probe design method, including the random
negative controls, is well suited to any genome or array size.

Data normalisation

There are a number of accepted normalization techniques that
can be applied to microarray data, with varying levels of
complexity and transparency. In many experiments, normalisation
procedures have proved extremely advantageous; but, as discussed
elsewhere [34], in the cases of relatively small genomes such as that
of E. coli (~4.6 Mbp) and N. meningitidis (~2.3 Mbp) the benefits
are usually minimal and the application of complex sequence
based normalisation routines can in fact confound otherwise clean
data (See File S1 for full discussion). It follows, therefore, that it is
preferable to minimise normalisation solely to the removal of
significant outliers from the data. Ideally, data from multiple
arrays show a variance between the logy intensities of a single
probe-set, which is independent of the mean logs intensity for the
given probes for all but the extremes of the data. Plotting the
standard deviation versus the intensity for all probe-sets after
aligning the data by the mean values of all chips (red circles in
Figure 2) allowed a mean level to be calculated for the standard
deviation. This was considered as a global measure of the standard
deviation (G4) between probes in the set of 5 chips (see Figure 2).
The global standard deviation was then used to process the data
set, by removing the worst-case outliers from the data sets. Here,
exactly 46,321 out of 2,733,980 data points were removed from
the MNNG experiment. Outlier detection was performed by
sorting the five different array signal values from each probe into
ascending order and taking the mean of the middle three points as
the central value. If either of the remaining probes was found to be
more than three global standard deviations (36,) from the central
mean value it was considered to be an outlier with >99% certainty
and was therefore discarded. In all other cases, the probe values

3 T T T T T T T
® Allchips
25 @® Normalized chips N
Global standard deviation
2 —

Standard deviation

Probe intensity (log,)

13 14 15 16

Figure 2. Standard deviation versus intensity for all probe sets. Plotting standard deviation versus intensity for all probes across the 5 arrays
(red circles) allowed a mean level of interest to be calculated for the standard deviation. This was considered as a global measure of the standard
deviation (o) between probes in the set of 5 arrays. All extreme outliers were removed (see text for details) and the result from this filtering is shown
by blue circles.

doi:10.1371/journal.pone.0005943.g002
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Figure 3. Probewise difference distribution between normal-
isation methods. Distribution of differences between our normalised
data and the gcRMA normalised data is shown. Y-axis represent probe
frequencies and the X-axis the absolute value of the difference (log,).
doi:10.1371/journal.pone.0005943.g003
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were retained. The result of this probe outlier filtering is shown as

blue circles (Figure 2). This was done before a comparison of

relative expression levels was performed on the data.

Given that adjacent probes within a single gene may differ in
signal with a standard deviation >1 (on a log2 scale) [35] we have
the option to create a very conservative dataset by selectively
removing probes using the results of the gcRMA algorithm [11]
run on the original raw dataset, in comparison to the dataset
returned by the normalization procedure described above. As the
original gcRMA  algorithm (version 1.0) uses mismatch (MM)
probes we applied gcRMA 2.0 (http://rss.acs.unt.edu/Rdoc/
library/gcrma/doc/germa2.0.pdf). Our custom designed random
negative control probes where used in the “bg.adjust.gcrma()”
method call, that adjusts for background signals, instead of MM
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probes. Approximately 10% of all probes (28.594 out of 273.398 in
the referred MNNG experiment) can subsequently be discarded
where the difference between the gcRMA results and normalized
data exceeded the set threshold. The threshold difference level was
defined on the basis of the distribution of mean differences
between the control and stressed data sets (Figure 3). At extreme
difference values, >6 (logy), there is clearly a secondary peak in the
distribution, contributed by data points, which are in strong
disagreement with the gcRMA algorithm. In order to minimize
data adjustment, while removing the points with strongest
disagreement, the threshold difference was set in the minimum
region of the distribution between primary and secondary peak.

As previously stated, the large number of control probes assured
good assessment of the labelling and hybridization process,
respectively. The average signal intensity values of all the spike-
in probes for two experiments with a reference and a treated
dataset are shown in Figures 4 and 5. The intensities of non-
specific probes (HXB2-yeast-, random- and #zpnX-probes) give an
estimate of the level of cross-hybridisation and background noise.
An interesting observation is that HXB2-yeast spike set has slightly
lower average signals than the custom-made experiment specific
control probes, indicating that custom-made, genome specific,
negative controls might be better for background signal estimation
than these standard spike-sets. The, custom controls show a higher
and probably more correct background signal intensity level than
the standard sets. The background level was defined as the level at
which low level transcription becomes indistinguishable from other
background signals. Since low-level transcription predominates
along the total length of the genome, this low-level intensity is
defined by the peak of a histogram of probe intensities (Figure 6).
Below this level it is impossible to separate error from transcription
levels. Therefore the background level was set to a logy intensity
level of 9.0 for the E. coli arrays, which is a slightly higher level
than the intensities of the custom negative control probes (Figure 4
and 5). All signals below the background noise level are considered
as uncertain since they might be a result of noise and/or cross-
hybridisation.

Scaling of experimental data should be performed when
comparing two datasets where a consistent difference can be
detected between control probes designed to give equal signals at a
range of different intensities. Here, the average difference showed
little variation between probes at differing intensities and therefore
the difference was applied as the baseline shift of the reference
dataset (Figure 4 and 5).
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Figure 4. Reference and MNNG treated E. coli control probeset average intensities. Average signal intensities for all control probes in
reference (Dimethyl Sulfoxide Reductase (DMSO) added only) and treated (N-methyl-N"-nitro-N-nitrosoguanidine (MNNG)) E. coli. It is easily seen that
the lines overlap very well (sometimes one is hidden by the other), and hence the two experiments can easily be compared with only a minor

baseline shift.
doi:10.1371/journal.pone.0005943.g004
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Figure 5. Reference and UV treated control probeset average intensities. Average intensity for all control probes in reference (Mock) and
treated (UV irradiated) E. coli. Note the consistent difference on all spiked in genes.

doi:10.1371/journal.pone.0005943.g005

Probe-specific effects and estimation of the minimum
length of a trustworthy signal

One important question regarding tiling arrays is how long a
region is needed to be for its signal to be considered a true signal?
A short stretch of the genome with unusual base-composition
might result in probes with a very high or very low binding affinity
[11]. Probes having low binding affinity might give rise to false
negatives, while the ones with high affinity can produce false
positives only when looking at the expression levels, and false
negatives only when considering differentially expressed regions.
These possible high or low affinity probes could be removed by the
application of the gcRMA [11] based method described previously
to the raw data. This decreased the number of probes that
potentially have biased signal intensities due to highly diverging
probe-affinities, although the design process tries to avoid such
differences. In the case of differentially expressed regions, probe-

o5 -
o N

Probe frequency
o]

8 10
Raw log

12 4 16 18
,probe intensities

Figure 6. Raw data signal intensity distribution. Signal intensity
distribution of all probes for reference (DMSO) and treated (MNNG
treated) E. coli before data processing. Log; signal intensities on the X-
axis and probe frequencies on the Y-axis.
doi:10.1371/journal.pone.0005943.g006
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artefacts should be equivalent in both conditions and hence
regions detected as differentially expressed should be trusted,
although there might be uncertainties connected to the absolute
signal intensity values, due to the probe affinity problem.
Similarly expressed regions and regions detected as present are
a different matter. First one must consider the very high probe
density, which inevitably will give rise to probes with diverging
affinities, even though this has been striven against in the design
and normalization process. Thus, with strict selection criteria,
regions that are transcribed i vivo as long stretches of RNA might
appear to be divided into several shorter stretches by the presence
of low-affinity probes. On the other hand, short stretches
appearing to be expressed in both conditions might be a result
of probe artefacts, indicating that they might represent false
positives. In addition to this, cDNA production and RNA
degradation may, to some degree, represent certain sources of
errors. This would likely be due to shortened or missing cDNA
pieces from the sample, generating false negatives. Bearing in
mind the above observations, differentially expressed regions with
a length of only one probe (25 nts) will be considered significant in
this study. To define a minimum length threshold for regions
detected as present, or similarly expressed, the length distribution
of the expressed regions (=50 nts) with a signal above the
background level were plotted in a histogram (Figure 7). A cut-off
of minimum 36 nts was set based on this distribution plot
combined with the criterion of a separation of the two adjacent
probes by at least 10 nts to ensure specific binding of the cDNA to
both probes. The minimum spacing criteria of 10 nts is based on
the Roche NimbleGen design guide [36]). This exclusion will
inevitably exclude true positives, but still it will remove far more
false positives and in the end increase the overall data-quality.

Analysis methods

The era of tiling arrays is fairly new [6] and there is not yet one
preferred, established and thoroughly tested data analysis method.
One problem is that most commercial and free-ware analysis tools
are made solely for traditional gene arrays and are therefore not
designed to handle the tiling strategy. Therefore the researcher has
to create new functions to sub-optimal programs already available,
or develop new data analysis tools to fit their specific need.

The percentage of transcribed DNA compared to total DNA is
unknown with regards to the bacterial genomes considered in this
paper, but is believed to be significantly higher than the
percentage annotated today (based on previous tiling projects
[37-42]). Nonetheless, tiling arrays are supposed to show far fewer
high-intensity signals than normal for gene-targeting arrays
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probing only coding regions. When intergenic regions are probed
there are no defined areas in which to look for signals, hence new
considerations and adjustments have to be made.

As the goal of this project was divided into transcriptome
mapping and detection of differentially as well as similarly
expressed genes and transcripts, including novel short transcripts,
different analysis methods needed to be developed. First, an
annotation guided approach was applied in order to investigate
similarly and differentially expressed annotated genes between
reference and treated cells. Then, a novel and more complex
sliding/expanding window approach, independent of previous
annotations, was developed to segment the data and give a
comparative analysis of the tiling-results. This approach also
allowed transcriptome mapping independent of the comparison
between reference and stress datasets.

Annotation based method. In the annotation guided
approach all probe signals for each condition of an annotated
gene were collected into two groups X, and Y,,. X, is probe 7 of a
total of n probes probing the reference sample, while Y; is probe j
of a total of m probes probing the treated sample. As a result of the
probe-by-probe normalization method, » and m are not necessarily
equal. A two-tailed unpaired t-test was applied to compare the
means of the signal values X, and Y,,. A p-value of 0.05 was
chosen as the threshold for rejection of the null hypothesis that the
mean values of the two probe sets originate from the same
distribution. This threshold equates to a 0.95 confidence of a
differential expression between reference and treated data sets.
Probe sets conforming to this condition were logged as candidates
for differentially expressed genes. Subsequently the absolute
average signal intensity difference (fold-change) between all X,
and Y,, probes was calculated. Genes having a probability
>=0.95 for differential regulation combined with an absolute
fold-change >=0.5 were finally considered as differentially
expressed. In cases where the average of X, or Y,, was below
background signal, this average was adjusted to be equal to the
background signal before the fold-change calculation was made.
This excluded the possibility of false positives in difference
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calculations occurring due to the presence of erroneous low
signals. Although it may be argued that the use of a t-test is
suboptimal in cases where many probes are present in an
annotated region, the subsequent application of the fold change
rule ensures that regions defined as differentially expressed are
valid. Meanwhile, when attempting to distinguish differential
expression in the shortest fragments, which is our primary interest,
application of the t-test as the first rule is the optimal solution.

The p-value returned by each t-test was recorded and subjected
to a Bonferroni multiple-testing correction. In practice, these p-
values were so small («0.05) that the entire genelist measured as
differentially expressed all pass the Bonferroni test. Similar results
were shown for the t-tests applied to the top two-hundred regions
identified by the sliding window method (below).

Genes where the average of X,,> = background and the average
of Y,,> = background and the probability of differential expression
or the fold change was below either threshold value were
considered similarly expressed. We are aware that a more correct
term would be non-significantly differentially expressed but for
simplicity similarly expressed is used. Genes having either the
average X, or Y, below the background level were excluded, as
the true signal value is uncertain. Inclusion could lead to false
positives, while exclusion gives possible false negatives. The false
negatives might be further investigated by looking at the dataset
from the plain transcriptome-mapping data (see present/absent
regions further below). The background adjustment is, as for the
differentially expressed genes, adjusted for the “worst-case”
scenario.

Sliding and expanding window method. The normalized
data, i.c. after removal of datapoints defined as outliers compared
to the gcRMA-normalized data, was sorted according to strand
and genomic position.

A sliding and expanding window algorithm was then applied to
run along the probes in order to perform calculations on window-
sizes of one, three and five probes, for each consecutive probe. For
every probe along the genome, a score (0 or 1) was computed for
cach of the three window sizes. First, an unpaired t-test was
applied to calculate the probability of differential regulation
between the reference and the stressed samples within the window.
Second, the absolute difference of the average signal intensities
(fold-change) of all the signals inside the window was computed.
Third, the probability and the fold-change were used to define a
boolean set of zeroes or ones for differential expression in each
window at each probe-position where a 1 indicate that the window
has a probability >=0.95 for being differentially regulated,
combined with a fold-change >=0.5 (logy value). On the other
hand a 0 indicates that the probability and/or the fold-change
criteria of differential expression are not met. Furthermore, no
window could include regulation in both directions, if the window
received a score of 1. This sliding and expanding window
algorithm resulted in two large score matrices, one for each strand
(example in Table 1). A selection algorithm was then applied on
these score-matrices. This algorithm searches through the matrices
sequentially and selects regions that are differentially regulated.
Differentially regulated regions are identified by locating rows in
the matrices where all window sizes (1 through 5) had a score of 1
and continues if the next row in the matrix is equal to one of the
following [1 X X] or [0 1 1], where X can be either 0 or 1. If a
single matrix row of [0 0 1] is located between two rows fulfilling
either of the mentioned criteria, this row is also included in the
differentially expressed region. In addition, the regulation has to
be uniform (either up or down) on all the probes inside a detected
region. For all regions detected, the overall t-test score and fold-
change value was computed. The final step of the region-selecting
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Table 1. Strand-wise score matrix from the Sliding window
algorithm.

Probe  Probe

start end Wind 1  Wind 3  Window-size 5
49 74 0 1 1

57 82 1 1 1

64 89 1 1 1

72 97 0 0 1

79 104 1 1 1

86 111 1 0 1

94 119 0 0 1

102 127 1 1 [

110 135 1 0 1

119 144 1 1 1

129 154 0 1 1

137 162 1 1 0

145 170 0 1 0

152 177 1 0 0

165 190 1 1 0

195 220 0 1 0

229 254 1 1 0

A strand-wise score matrix generated by the sliding window algorithm. The
example is fictional and illustrates different examples of how the algorithm
expands a differentially expressed region. The region from 57 to 162 (italics) will
be detected as differentially expressed, while the rest are non-differentially
expressed regions.

doi:10.1371/journal.pone.0005943.t001

algorithm was to annotate all the detected regions. This was
performed by searching for genes overlapping on the same or the
opposite strand. If no such overlap was found, the distance to the
closest upstream and downstream genes were calculated. For all
regions not detected as differentially regulated, another algorithm
was applied that located all similarly expressed regions, i.e. regions
where both datasets had a signal average >background level but
with t-test probability and/or the fold-change level below the
threshold of a differentially regulated region, (0.95 and 0.5
respectively). Finally, all the similarly expressed regions were
annotated as described earlier. As this method is independent of
previous annotations, genes might be reported as partly similarly

Tiling Array Design & Analysis

and partly differentially expressed. Also, there might be some
overlap (<25 nt) between regions being differentially and similarly
expressed due to the algorithm selection criteria and the
overlapping probes (Figure 8).

Transcriptome mapping. An expressed region is a
continuous stretch of probes that on average show a signal
intensity value above the background noise level. All regions not
detected as expressed (scored present) were reported as absent, i.e.
missing. This present and absent calculation was done for the
samples independently prior to the annotation procedure. Regions
excluded by the applied algorithms for the selection of
differentially and similarly expressed regions within the confines
of the methods described above, can be investigated by comparing
the present and absent data for the samples.

Normalisation method comparisons

The issue of normalization is critical in microarray experiments,
since the data quality can be highly dependent upon the chosen
algorithm. In the case of these custom arrays designed using the
OligoWiz 2.0 probe selection program, a visual inspection of the
data after application of the gcRMA normalization method [11]
indicated data quality degradation. In order to quantify this
impression we extracted the 87637 probe values from regions that
are annotated and therefore expected to be consistently expressed.
The strategy chosen was to use the mean value of all probes within
a single similarly-expressed region in order to define the
transcription level within this region. This led to the possibility
to calculate the deviation — or sequence-dependent bias — of each
individual probe from the mean transcription level. The measured
biases were, as would reasonably be expected, normally distributed
around zero. The quality of any normalizing algorithm was then
casily defined by its influence on the normal distribution. A
worthwhile normalization method would result in a reduction of
the observed variance, while any increase in the variance would
imply no improvement to the data quality, thus telling us that the
chosen method is wrong for the dataset. Comparison of the
variance between probes normalized by our method and the
equivalent gcRMA normalized probes showed a variance of 1.17
and 6.84, respectively Therefore, in this case, application of the
2cRMA method severely degrades the data quality. This in itself is
intriguing and leads us to conclude that the design setup and the
application of OligoWiz 2.0 (choosing uniform T\, values and GC-
content) for probe selection defines a probe set which is
incompatible with the gcRMA algorithm. The relative concen-
tration of non-coding compared to coding region probes on our
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Figure 8. Genes reported as differentially and similarly expressed. A visualisation graph of how several regions can cover one single gene.
The blue bars represent genes, differentially expressed regions are represented by the brown horizontal bars above the genes and similarly expressed
regions are represented by the green bars below. The numbers indicate genomic start and stop coordinates.

doi:10.1371/journal.pone.0005943.g008
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chips will also work against the gcRMA algorithm. Additionally
the substitution of MM probes with random control probes,
presumably having higher intensities than regular MM probes, will
confuse the gcRMA algorithm. The decision was therefore taken
not to apply any further normalisation to the data. (See discussion
in File SI)

As a further exercise in understanding the sequence dependence of
the bias, we compiled our data into histograms of the bias for each
nucleotide type at each position along the probe (see Figure S3) and
used this to generate a graph of the mean bias for each nucleotide at
cach position along the probe (Figure 9), which would act as the basis
for any sequence dependent bias estimate. This is markedly different
to the curve shown by Wu ¢t al. and in their discussion of gcRMA
[11], further confirming the incompatibility of our probe set with the
gcRMA normalisation. Taking this even one step further and
applying a generalized linear model (GLM), incorporating single
nucleotide positions to the measured biases (using the SAS statistical
package) we subsequently produced a set of additive coefficients for
individual nucleotide positions (see Figure S2 and Table S5) with
which sequence specific probe bias corrections could be made to the
data set. Application of this sequence based correction show that a
reduction in bias variance from 1.17 to 0.95 was attainable; thus
implying that some sequence based normalization is achievable. Due
to the time constraints imposed by related biological experiments that
were necessary in order to confirm stress responses measured using
this microarray data, this fine-tuning normalisation was not applied to
the published data sets; however we include the outline of what is
possible for the sake of completeness.

To investigate whether our probesets are compatible with
standard normalization methods, gcRMA regular RMA and VSN
[43] were applied to the data, and a variation comparison study
was conducted. Details of these tests are in File SI, but the
conclusion showed quite clearly that all three methods made the
signal-to-noise ratio worse than unnormalized data. Thus we are
vindicated in our choice not to apply standard methods.

Tiling Array Design & Analysis

Results and Discussion

Different genomes have different nucleotide-compositions, and
one should always ensure that regions of special interest on the
target genome have a sufficient coverage of probes. This is to
ensure that no important genomic region goes un-probed due to
some nucleotide composition abnormality.

Here we present a novel method that enables detection novel short
(<60 nts) intergenic transcripts by custom made tiling arrays. To
ensure sufficient intergenic coverage, overlapping tiling of probes was
used in all intergenic regions (as far as the probe quality thresholds
allowed). For the E. coli genome, a feature number of 386,000 is
needed for a complete non-overlapping tiling. Since the array feature
number (~280,000) was below 386,000 non-equidistant probing was
applied. This probing strategy, which is considered dense, gives a very
high intergenic coverage (up to 7 nt resolution), On the other hand, it
gives sufficient coverage within regions of known genes. This probe
density trade-off is balanced between the feature number and the
biological questions asked. With our strict definition of coding and
non-coding regions (see above) the applied design solution was
considered optimal in terms of the biological aims. During the
analysis of the arrays we have reconsidered this and would
recommend equidistant coverage of coding regions combined with
overlapping tiling of regions of special interest, if the total feature
number does not allow dense coverage of the entire genome. In our
existing case, the equal probe coverage of each known ORF implies
equal data material for each gene to base the statistical analysis on
and potentially enables the discovery of more individual gene features
[31]. In the suggested case, probes should be tiled as densely as the
feature number and the probe quality prediction allows.

Furthermore, by randomly distributing the control probes rather
than grouping them in blocks as done here, one might obtain even
better assessments of spatial bias. In the end it is the biological
question underlying the design that decides where probes are of most
efficient use. We still consider “selective tiling” better than a plain
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Figure 9. Probe nucleotide composition bias. Mean bias for each nucleotide type at each position along the probe for all probes within known
annotated regions of the genome, illustrating the basis of the sequence dependence of individual probe biases.

doi:10.1371/journal.pone.0005943.g009
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equidistant tiling approach, as high or low affinity probes would have
to be heavily adjusted or thrown away during background predictions
or normalisation procedures anyway. Additionally, a somewhat
surprising increased transcription detected, and biologically validated,
in regions opposite to some known genes indicate that, if the feature
number allows, such regions should be prioritized with denser
coverage

One may also think of experimenting with even more similar
custom made control probes to find the “optimal similarity” when
assessing background noise.

It should be noted that although OligoWiz 2.0 strives to obtain
uniform probe affinities. Therefore, probe designers should be
observant when designing probes for genomes with GC-content
far higher or lower than 50%, as OligoWiz 2.0 has no GC-specific
scoring filter. The GC-content is closely related to the T, score
and OligoWiz 2.0 would still select probes with uniform binding
affinities but the optimal hybridisation temperature would be
different and there are possibilities of a decrease or increase of
cross-hybridisation due to the GC-content.

Since the actual array design several novel design algorithms and
software have been introduced to the research community and are
elegantly reviewed and compared in a recent study by Lemoine e al.
[31]. Lemoine et al. show that OligoWiz 2.0 stand out as one of the
best choices, as long as the studied organism is found in the
OligoWiz 2.0 database. Of the competitors, CommOligo [20] could
be considered if the target organism has a non-regular GC content
or higher organisms with low-complexity regions. And ArrayOli-
goSelector [44] or OligoTiler (http://tiling.gersteinlab.org) should
be considered when designing tiling arrays with feature numbers
sufficient to provide equidistantly spacing of probes combined with
sufficient coverage to answer the biological question asked.

Even though the tiling array technology has been around for
several years now there is still no “all-in-one” programs and little
“how-to” information are available. A few programs/algorithms
have been developed for creating oligonucleotide tiling arrays
[23,45,46] but none of these have the multi functionality that a
chip-designer ideally would hope for. Also, as the interest in
specific bacteria differs, one design algorithm might not give good
results for two different species without modification.

The annotation based analysis method is a simple and
straightforward method for the analysis of the coding parts of
tiling experiments. But one should be aware that this method relies
on known annotations. The sliding window approach, on the other
hand, is novel but independent of previous annotations. This
method is somewhat more complicated and time consuming. The
array design, normalisation and data analysis methods presented
here have produced a mass of biologically relevant results
(manuscript in progress). This shows that the strategy from this
work can be implemented on bacterial genomes, and on
cukaryotic genomes after applying the minor changes suggested.

Additional information
The array definition and the datasets from the £. coli study has
been submitted to the Gene Expression Omnibus [47] with
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Abstract

Background: The ability to detect neoplasia-specific fusion genes is important not only in cancer
research, but also increasingly in clinical settings to ensure that correct diagnosis is made and the
optimal treatment is chosen. However, the available methodologies to detect such fusions all have
their distinct short-comings.

Results: We describe a novel oligonucleotide microarray strategy whereby one can screen for all
known oncogenic fusion transcripts in a single experiment. To accomplish this, we combine
measurements of chimeric transcript junctions with exon-wise measurements of individual fusion
partners. To demonstrate the usefulness of the approach, we designed a DNA microarray
containing 68,86 | oligonucleotide probes that includes oligos covering all combinations of chimeric
exon-exon junctions from 275 pairs of fusion genes, as well as sets of oligos internal to all the exons
of the fusion partners. Using this array, proof of principle was demonstrated by detection of known
fusion genes (such as TCF3:PBX I, ETV6:RUNXI, and TMPRSS2:ERG) from all six positive controls
consisting of leukemia cell lines and prostate cancer biopsies.

Conclusion: This new method bears promise of an important complement to currently used
diagnostic and research tools for the detection of fusion genes in neoplastic diseases.
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Background

Fusion genes created by structural chromosomal rear-
rangements such as translocations, deletions, and inver-
sions are often the pathogenetically essential feature of
cancer genomes. They seem to be particularly characteris-
tic of hematological malignancies and sarcomas, where
their identification may be crucial for differential diagno-
sis and therapeutic decision-making. Fusion genes have so
far been found less frequently in the common solid can-
cers, but recent reports on prostate and lung carcinomas
show that fusion transcripts may contribute significantly
also to the development of these malignancies [refs. [1-3];
reviewed in [4,5]].

The detection of fusion genes in cancer is laborious and
time-consuming and usually includes chromosome band-
ing analysis (karyotyping) followed by fluorescence in situ
hybridization (FISH) studies and molecular analyses
based on the reverse transcriptase polymerase chain reac-
tion (RT-PCR). Karyotyping requires the availability of
fresh, vital cells for short-term culturing to obtain met-
aphase chromosomes, and the success rate of this
approach may be particularly low for solid tumors. In
addition to taking a lot of time, the method also requires
highly trained and experienced personnel to interpret the
karyotypes correctly and identify whatever rearrange-
ments may exist. The main advantage of the approach is
that it is global in nature; it screens without prejudice for
all rearrangements at the chromosomal resolution level.
FISH with locus-specific probes and RT-PCR, on the other
hand, are precise and highly specific methods used for the
analysis of one or a few candidate fusion genes at prede-
fined breakpoints; the approach is therefore dependent
on prior knowledge of the suspected diagnosis. The specif-
icity of these methods at the same time highlights their
main limitation; they have no screening ability.

Recent developments of high-throughput sequencing
technologies enable genome-wide identification of novel
fusion transcripts at an unprecedented level of resolution
[6-9], but these technologies are as yet limited by the
number of samples that can be analyzed within a reason-
able time-frame and at an acceptable cost. A few studies
have utilized oligo microarrays targeting junction
sequences to detect fusion transcripts [10-13]. They have
then relied on preceding amplification of a small selection
of fusion transcripts by RT-PCR, thus limiting the coverage
offered by these approaches to a predefined set of fusion
junction sequences.

In this report, we present a new oligo microarray-based
approach for simultaneous analysis of all known or pre-
dicted fusion gene variants, with all possible chimeric
exon-exon junction combinations. The analysis can be
performed in a single experiment and does not include
prior sequence-specific amplification.

http://www.molecular-cancer.com/content/8/1/5

Methods

Cell lines and biopsies

To test our novel method for fusion gene detection, we
selected four prostate cancer samples (fresh frozen tissue
obtained from prostatectomy specimens of four inde-
pendent patients) and two leukemic cell lines, all known
to harbor a specific fusion gene. The cell lines, RCH-ACV
[14] and REH [15,16], are of human B-cell precursor
leukemia origin and were provided by Dr. Edith Rian.

Preparation of cDNA for microarray analysis and RT-PCR
Total RNA was isolated using the Trizol reagent (Life Tech-
nologies, Rockville, MD, USA), and the RNA quality was
evaluated by use of the Agilent 2100 Bioanalyzer (Agilent
Technologies, Palo Alto, CA, USA). To enrich for messen-
ger RNA, we used the RiboMinus kit (Invitrogen,
Carlsbad, CA, USA) which subtracts ribosomal RNA from
total RNA. To ensure detection of fusion junctions far
away from the poly-A tail, the first strand cDNA was pre-
pared by random priming to avoid the 3' end bias intro-
duced by oligo-dT labeling. Double stranded cDNA was
labeled and hybridized onto the oligo microarrays.

Microarray design

We set up a database with a broad coverage of the reported
fusion genes in cancer (351 to date), including informa-
tion on which of the fusion partners are up- and down-
stream in the majority of the resulting fusion transcripts.
See Additional file 1 for the identities and orientation of
the 275 fusion genes included in the pilot microarray
design. We used public genome sequence information
from Biomart to extract the exon sequences of all listed
transcript variants [17].

A script was written in the programming language Python
for design of the oligos. For genes that constitute the 5'
portion of fusion genes, we used the 3' end-sequences of
the exons when constructing chimeric fusion junction oli-
gos. For genes that are the 3' portion of fusion genes, we
used the 5' start-sequences of the exons. Thus, for each
fusion gene, we joined and listed all combinations of end-
sequences and start-sequences. These chimeric sequences
served as input for the design of chimeric fusion junction
oligos, enabling detection of any breakpoint combination
in the fusion genes. Chimeric oligos were constructed tar-
geting all possible combinations of chimeric exon junc-
tions between the up- and downstream partners of 275
known fusion genes. For a set of fusion genes, including
the ones known to be present in the control samples, we
extended the design to include four replicates of each of
the exon-exon junctions, as well as altogether four extra
control oligos for each exon-exon junction (oligos up-
and down-shifted by two nucleotides as compared to the
standard ones). Furthermore, a series of intragenic oligos
were designed for measurements of longitudinal profiles
of each of the fusion gene partners of altogether 115
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genes, including all the positive control fusion genes.
These were oligos targeting the start, mid, and end part of
all exons and all introns, as well as oligos targeting the
exon-exon, exon-intron, and intron-exon junctions. The
exon-intron junctions and intron-exon junctions are also
included among the single-gene oligos, as the pre-mRNA
processing machinery may alter the splicing pattern fol-
lowing removal or introduction of cis-acting splicing reg-
ulatory sequences.

The constructed microarray included a design with 68,861
oligos, including 59,381 chimeric oligos (of which 55,482
were unique), which were synthesized onto custom-pro-
duced NimbleGen microarray slides (Roche NimbleGen,
Inc., Madison, WI, USA). The chimeric oligos were
designed to optimize for similar melting temperatures on
each side of the junctions, thus reducing half-binder
effects.

Two versions of the microarray were designed, differing as
to the probe lengths. The set of shorter oligos, with
lengths ranging from 34 to 40-mers, had a Tm optimum
of 72°C. The set of longer oligos, with lengths ranging
from 44 to 50-mers, had a Tm optimum of 75°C. All sam-
ples, except the REH cell line, were hybridized onto the
short-oligo microarray, whereas the RCH-ACV and REH
cell lines were hybridized onto the long-oligo microarray.
The cell line RCH-ACV was analyzed by both microarray
designs, and data from its positive control gene,
TCF3:PBX1, demonstrated best performance of the short
oligos due to substantial half-binder signals with the
longer oligos (data not shown).

Because of the relatively short length of the sequences on
each side of the junction, the binding may be sensitive to
single nucleotide polymorphisms (SNPs). Thus, at known
SNP positions, we created extra sets of probes, accounting
for each of the SNP variants.

Data preprocessing and annotation

Data preprocessed by NimbleGen were further normal-
ized by dividing all individual probe intensity values for
each of the samples by the median of the three leukemia
cell lines. We normalized based on these three samples
(instead of all samples) because when the majority of the
samples contain the same fusion gene and breakpoint
(TMPRSS2:ERG, el:e4), normalizing on all samples
would level out the appearance of this fusion event in the
dataset.

All oligonucleotide probes were mapped to their one or
two respective genomic loci. For each locus, the Ensembl
identifiers for exon (ENSE), transcript (ENST), and gene
(ENSG) identities were used.

http://www.molecular-cancer.com/content/8/1/5

Raw and processed data were deposited to the Gene
Expression Omnibus public repository for microarray
data [accession number GSE14435] according to the
MIAME, minimum information about a microarray exper-
iment, recommendations for recording and reporting
microarray-based gene expression data [18].

Automated scoring algorithm

Downstream fusion partners will generally have higher
expression values for exons downstream of the fusion
breakpoint. For each exon-exon junction of downstream
fusion partner genes, two probabilities were calculated.
One probability was based on a t-test for whether values
from all upstream and all downstream exons are likely to
belong to different populations. A second probability was
based on a t-test for whether the values from the immedi-
ate up- and downstream exons are likely to belong to dif-
ferent populations.

A fusion score was calculated as the product of the nor-
malized expression value for the chimeric oligo and the
probabilities of the exon-exon junction of the correspond-
ing position in the downstream fusion partner being a
breakpoint in the longitudinal profile [Fusion score = Chi-
meric junction score * P(B-gene transcript) * P(B-gene
exon)].

To keep the values within scale, the following thresholds
were applied: when the normalized values for chimeric
oligos were larger than 5, they were set to 5 (approxi-
mately 5 per 10,000 values). Similarly, when probabilities
for a breakpoint in the longitudinal profiles were < 0.10,
they were set to 0.10. When the values from the down-
stream exons were lower than the values from the
upstream exons, the probability was set to 0.10 as well.

Experimental validation of fusion transcript breakpoints

We used RT-PCR followed by DNA sequencing to validate
the actual fusion junctions in the positive control fusion
genes. The following primers were applied: TCF3:PBX1:
TCF3, exon 15, forward, 5'-CACCCTCCCTGACCTGTCT-
3', and PBX1, exon 3, reverse, 5'-TGCTCCACTGAGTT-
GTCTGAA-3'; yielding a chimeric fusion product of 218
basepairs. ETV6:RUNX1: ETV6, exon 5, forward, 5'-
CACTCCGTGGATTTCAAACA-3', and RUNXI, exon 2,
reverse, 5'-CGTGGACGTCICTAGAAGGA-3'; yielding a
chimeric fusion product of 204 basepairs. TMPRSS2:ERG
[as published in ref. [19]]: TMPRSS2, exon 1, forward, 5'-
TAGGCGCGAGCTAAGCAGGAG-3', and ERG, exon 6,
reverse, 5'-CTGCCGCACATGGTCIGTAC-3'; yielding a
chimeric fusion product of 597 basepairs. The PCR prod-
ucts were separated by gel electrophoresis in a 2% agarose
gel. For all fusion genes, DNA was isolated from the
appropriate PCR bands (MiniElute Gel Extraction kit, Qia-
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gen Co., Valencia, CA, USA) and sequenced in both direc-
tions using the same primers as for the RT-PCR (ABI Prism
3730; Applied Biosystems, Foster City, CA, USA).

Cytogenetics

Cell cultures from the leukemia cell lines were harvested
for chromosome banding analysis. Chromosome prepa-
rations were made and G-banded using trypsin (DIFCO
Laboratories, Detroit, MI, USA) and Leishman staining
(BDH, Poole, England). For metaphase FISH, commer-
cially available probes for the TCF3:PBX1 (TCF3 FISH
DNA probe, split signal, DAKO Denmark A/S, Glostrup,
Denmark) and ETV6:RUNX1 (dual color, Dual Fusion
Translocation Probe Set; Vysis, Abbott Laboratories,
Abbott Park, IL, USA) fusion genes were used. The dena-
turation and hybridization conditions as well as the sub-
sequent detection procedures were in accordance with the
manufacturers' protocols. Two hundred successive,
whole, and single nuclei were examined through a Zeiss
fluorescence microscope (Zeiss Axioplan, Oberkochen,
Germany) for each FISH experiment.

Results

We have developed a novel strategy for the detection of
oncogenic fusion transcripts enabling simultaneous anal-
ysis of all known or predicted fusion gene variants, with
all possible chimeric exon-exon junction combinations
targeting each possible fusion gene junction on the proc-
essed mRNA level (Figure 1). We combine the use of chi-
meric oligos, spanning the two potential fusion gene
partners, with the use of single-gene oligos that provide
measurements along the length of each individual part-
ner.

We analyzed cDNA from a set of six positive control sam-
ples with known presence of one fusion gene in each. This
included two leukemia cell lines, RCH-ACV and REH,
known to carry the TCF3:PBX1 and ETV6:RUNX1 fusion
genes, respectively, and four prostate cancer samples pos-
itive for the TMPRSS2:ERG fusion gene.

To combine the information from the chimeric junction
measurements with that of the longitudinal intragenic
profiles, a fusion score was calculated for all fusion tran-
scripts and their respective breakpoints (details in Materi-
als and Methods). This enabled an objective and
automated evaluation of the presence of fusion genes, and
the fusion score was calculated for 10,297 possible fusion
events. The positive control fusion transcripts, with their
correct breakpoint positions, was ranked as the number
one hit in four out of the five samples run on the short-
oligo microarray (Figures 2A and 3A), thus validating the
concept. For prostate cancer sample P140, the expected
TMPRSS2 exon 1:ERG exon 4 fusion gene was assigned a
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fusion score rank of 95 within the 10,297 fusion break-
points (and number one within the 154 measured junc-
tions of TMPRSS2:ERG). When dissecting the values
behind the fusion score for this positive control, we see
that the intensity of the chimeric oligo was particularly
low. This is also in compliance with RT-PCR results from
the prostate cancer samples, demonstrating that this sam-
ple had a low expression level of the fusion gene as com-
pared to the other samples (data not shown).

To evaluate the top fusion score hits and positive control
fusion genes further, we visualized them via two inde-
pendent paths, using either the chimeric probe set (Fig-
ures 2B and 3B) or the longitudinal intragenic probe set
(Figures 2C and 3C). The positive control fusion genes
were clearly visualized for all six analyzed samples.

Discussion

A novel microarray-based strategy is presented to screen
for all known oncogenic fusion transcripts in a given sam-
ple, combining measurements of chimeric transcript junc-
tions with exon-wise measurements of individual fusion
partners. This provides a viable alternative to the existing
cytogenetic and PCR-based methods for fusion gene
detection, as it enables an objective and automated
genome-wide analysis in which all known as well as pre-
dicted fusion genes are assessed without requiring any a
priori knowledge as to the likelihood of the clinical or
genetic diagnosis. Furthermore, the precise mapping
information on the fusion breakpoint is given within
every positive hit. Finally, the method is carried out in a
single experiment and does not include prior sequence-
specific amplification.

Because fusion breakpoints mainly map to intronic
sequences, the resulting fusion transcripts will, after pre-
mRNA processing, consist of whole exonic building
blocks. In fact, more than 90% of the mapped fusion
breakpoints are located in intronic sequences [20]. Thus,
independently of the intra-intronic location of the break-
points, a detection of all exon-exon junctions between
two fusion gene partners would in principle provide spe-
cific detection of fusion transcripts.

To our knowledge, this is the first time chimeric oligos tar-
geting fusion gene junctions have been used in combina-
tion with measurements of longitudinal profiles of the
individual fusion partners. Furthermore, the earlier publi-
cations on fusion gene measurements by oligo microar-
rays have not attempted to be genome-wide, restricting
their use to either a few pre-defined fusion junctions and
fusion genes [10-13] or to the exclusive use of intragenic
oligos [21]. Our pilot experiment alone included 68,861
oligos, and the current version of the NimbleGen micro-
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Microarray data for a positive fusion gene hit. (A) This theoretical example of a fusion gene has a crossing-over event
between sequences in intron 2 of gene A and intron 3 of gene B. (B) If the genes A and B both have 10 exons, the microarray
will contain 10 x 10 = 100 oligos to cover all chimeric exon-to-exon junction combinations for this particular fusion gene. The
A2-B4 oligo detects the fusion transcript from part (A). (C) In true fusion events, the longitudinal profiles generated from intra-
genic oligos targeting each exon and exon-to-exon junction will provide independent confirmation.
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Figure 2

TCF3:PBXI in a leukemia cell line. (A) The highest ranking fusion score (y-axis) among 10,297 chimeric combinations
(ranked along the x-axis) indicated a fusion event between exons 16 and 3 of TCF3 and PBX/, respectively. (B) Fusion map of
each chimeric exon-exon junction of TCF3 and PBX|. Intensities of red indicate the relative values of the medians for the four
replicate oligos for each chimeric exon-exon junction, and the square with strongest intensity indicates the correct fusion
breakpoint. (C) Measurements from intragenic oligos (intra-exon probes) for each of the two fusion partners are indicative of
the same fusion breakpoints as seen from the chimeric oligos. (D) The exact fusion breakpoint between TCF3 and PBX| was
confirmed by cDNA sequencing. (E) Chromosome banding and fluorescence in situ hybridization analyses of the same cell line
demonstrated rearranged chromosomes from the translocation t(1;19)(q23;p|3), which implicates the loci of TCF3 and PBX].
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Figure 3

Fusion gene plots for four individual prostate cancer samples with the same fusion event. The four samples all had
fusion transcripts with junctions between TMPRSS2 exon | and ERG exon 4. (A) Chimeric sequences plotted with increasing
fusion scores. For the three first samples, the chimera of TMPRSS2:ERG exon|:4 had the highest ranking out of the 10,297
tested combinations. (B) Fusion map of each chimeric exon-exon junction of TMPRSS2 and ERG. Intensities of red indicate the
relative values of the medians for the four replicate oligos for each chimeric exon-exon junction and the white arrows point to
the correct fusion breakpoints. (C) Measurements from intragenic oligos (intra-exon probes) for ERG demonstrate a shift in
intensities between exons three and four.
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array platform enables analysis of up to 2.1 million oligos
on a single microarray slide. Thus, scaling up to include all
known fusion genes, as well as sets of novel candidate
fusion genes detected by high-throughput sequencing
strategies, can easily be achieved with the same resolution
level as the genes included in our pilot run.

Next-generation sequencing approaches are beginning to
provide numerous new pairs of fusion genes in individual
biological samples [6-9]. However, this methodology is
not feasible for screening purposes on large clinical sam-
ple series. The current microarray-based approach is suit-
able for assessing whether members of this growing set of
novel fusion transcripts (alongside with the already
known fusion genes) are indeed pathogenetic players in
the various subgroups of cancer.

The reported fusion gene detection platform can be used
irrespective of the tumor type in question. Detection of
certain fusion genes has direct diagnostic implications in
many leukemias and sarcomas, whereas other fusion
genes are more promiscuous and can be found in several
different cancer types. An example of the latter is the kary-
otypically cryptic translocation t(12;15)(p13;q25), result-
ing in the ETV6:NTRK3 fusion gene, which occurs in
histologically and developmentally completely disparate
tumors such as kidney and breast tumors, infantile fibro-
sarcoma, and acute myeloid leukemia [22].

Conclusion

We have developed a novel high throughput method for
detection of fusion genes with potentially significant
applications in cancer diagnostics. Also, for research
applications, there is a clear potential for detection of
putative fusion genes and discovery of already known
fusion genes in new cancer types.
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transcriptase polymerase chain reaction.
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Appendix Errata






Errata list

The following corrections have been made to Paper III

1.
2.
3.

10.

11.

Page 1, in the author list “Lagensen” was changed to “Lagesen”.

Page 13, line 4 was changed to “Supplementary Files 3-12".

Page 15, the last full sentence starting with “Seven of these are ...” was
changed to “Six of these are detected within transcripts that also span
other annotated genes and/or ncRNAs (examples include dinQ and istR2)
as well (candidate ID R3, R7-R9, R13 and R14 in Table 3 and
Supplementary File 3), while the rest are located inside transcripts that
are located = 100 nts from any upstream and downstream annotation
(Table 3 and Supplementary File 7).”

Page 16, line 2 was changed to “Supplementary Files 13-16".

Page 16, Table 2, the text under Table 2 was changed to “Intersection
represents the ncRNAs candidates present in both, while union
represents the number of ncRNA candidates present in either, of the two
studies (Saetrom and Hershberg).”

Page 16, Table 3, last sentence of the table caption was changed to “The ID
column can identify the candidate transcripts in the Supplementary Files;
Supplementary File 3: R3, R7-R9, R13, R14 and Supplementary File 7: R1-
R2, R4-R6, R10-R12.

Page 18, just below the middle the sentence within parenthesis was
changed to “(Figure 5, see Supplementary File 17 for primer sequences)”.
Page 24, the text in parenthesis on the first line was changed to
“(Supplementary File 18)".

Page 24, the text in parenthesis on the third line under Table 6 was
changed to “(Supplementary File 19)”.

Page 25, the text in parenthesis on line 5 was changed to:
“(Supplementary File 18)".

The overview of Supplementary Files was changed to:

Additional files

Supplementary file 1.xls — Differentially expressed genes, annotation
method

All genes detected as differentially expressed by the annotation method.

Supplementary_file 2.xls — Similarly expressed genes, annotation method
All genes detected as similarly expressed by the annotation method.

Supplementary_file 3.xls — Differentially expressed transcripts touching
genes, window method

All differentially expressed transcripts touching annotated genes
(detected by the sliding window method).

Supplementary_file 4.xls — Differentially expressed possible operon
elements, window method

All differentially expressed possible operon elements (detected by the
sliding window method).



Supplementary_file 5.xls — Differentially expressed possible 5’UTRs,
window method

All differentially expressed possible 5’UTRs (detected by the sliding
window method).

Supplementary_file_ 6.xls — Differentially expressed possible 3’°UTRs,
window method

All differentially expressed possible 5’UTRs (detected by the sliding
window method).

Supplementary_file 7.xls — Differentially expressed novel transcripts,
window method

All differentially expressed transcripts that could not be assigned any
possible role (detected by the sliding window method).

Supplementary file 8.xls — Similarly expressed transcripts touching
genes, window method

All similarly expressed transcripts touching annotated genes (detected by
the sliding window method).

Supplementary_file 9.xls — Similarly expressed possible operon elements,
window method

All similarly expressed possible operon elements (detected by the sliding
window method).

Supplementary_file 10.xlIs — Similarly expressed possible 5’UTRs,
window method

All similarly expressed possible 5’UTRs (detected by the sliding window
method).

Supplementary file 11.xlIs — Similarly expressed possible 3’UTRs,
window method

All similarly expressed possible 5’UTRs (detected by the sliding window
method).

Supplementary_file 12.xls — Similarly expressed novel transcripts,
window method

All similarly expressed transcripts that could not be assigned any possible
role (detected by the sliding window method).

Supplementary_file 13.xls — Differentially expressed transcripts
overlapping ncRNA predictions done by Saetrom et al.

All differentially expressed transcripts that overlap ncRNA predictions by
Saetrom et al. [11], transcripts detected by the sliding window method.



Supplementary_file 14.xls — Differentially expressed transcripts
overlapping previous ncRNA predictions from the Hershberg list.

All differentially expressed transcripts that overlap any previous ncRNA
prediction found in the Hershberg list [28], transcripts detected by the
sliding window method.

Supplementary_file 15.xIs — Similarly expressed transcripts overlapping
ncRNA predictions done by Saetrom ez al.

All similarly expressed transcripts that overlap ncRNA predictions by
Saetrom et al. [11], detected by the sliding window method.

Supplementary_file 16.xls — Similarly expressed transcripts overlapping
previous ncRNA predictions from the Hershberg list.

All similarly expressed transcripts that overlap any previous ncRNA
prediction found in the Hershberg list [28], transcripts detected by the
sliding window method.

Supplementary_file 17.pdf — Primer sequences for RT-qPCR
All primer sequences used for the RT-qPCR verification

Supplementary_file_18.pdf - The 23 novel peptides

In this file all NT-sequences, AA sequences, BLAST search results and the
Jpred secondary structure predictions can be found for the 23 novel
peptides.

Supplementary_file_19.pdf - Overlap to previously predicted small
peptides

All overlaps between similarly and differentially expressed transcripts
from this study and the 18 small peptides predicted by Hemm et al. [32].
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