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Basic concepts in immunology

The immune system has evolved to recognise and combat infectious agents. This is 

accomplished through the immune system’s ability to distinguish between self and non-self. 

The protection is achieved through the highly coordinated action of the innate and adaptive 

arms of the immune system (Murphy 2008).  

The innate branch of the immune system is the first line of defence against microbial 

agents. Receptors on the innate arm of the immune system are evolutionary conserved 

germline-encoded proteins which include Toll-like receptors (TLR) and nucleotide 

oligomerisation domain-like-receptors (NLR). TLRs which are receptors localised either at 

the cell surface or within endosomes, recognise a bewildering range of conserved microbial 

structures, such as bacterial cell wall components, lipoproteins, highly conserved microbial 

proteins, and bacterial and viral nucleic acids, often referred to as pathogen-associated 

molecular patterns or danger-associated molecular patterns (Janeway 2002; Kawai & Akira 

2005). By contrast, the NLRs are a family of intracellular sensors that in addition to detect 

conserved microbial structures also sense “danger signals”. These molecules alert the 

immune system upon recognition of dangerous environmental events, maybe independently 

of a microbial trigger (Fritz 2006). These relatively non-specific receptors are expressed on a 

variety of innate immune cells such as granulocytes, dendritic cells (DC), macrophages and 

natural killer cells. The innate immune system responds rapidly (within few hours) after onset 

of an infection, compared to days required for the mobilisation of the adaptive immune 

system.  

Adaptive immunity, also known as acquired immunity, is the specific response of 

lymphocytes to an antigen, including the development of immunological memory. 
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Immunological memory is known to persist for a lifetime and therefore carry the “history of 

the individual’s adaptive immune responses” (Crotty 2003; Amanna 2007). The adaptive 

immune response is generated by clonal selection and expansion of lymphocytes. The key 

players within the adaptive immunity are T cells, B cells, and professional antigen presenting 

cells (APC) including DCs, macrophages and B cells. The professional APCs are important 

in connecting the innate and the adaptive arm of the immune system by integrating innate 

information and conveying it to the T and B lymphocytes.  

 

The adaptive immune response 

Self - tolerance mechanisms 

Our immune system is the body’s sixth sense (Goodnow 2005). The mammalian immune 

system has an extraordinary capability for generating a huge receptor diversity that can 

mount a response to almost any chemical structure entering the body. The receptors that are 

involved in this “great deed” are the T cell receptors (TCR) displayed on T cells and the 

immunoglobulin (Ig) expressed on the surface of B cells as B cell receptors (BCR). Virtually 

unlimited receptor diversity can be generated in mammals by the process of variable (V), 

diversity (D), joining (J) V(D)J recombination that occur selectively in lymphocytes. During 

T- and B- cell differentiation which takes place in the central lymphoid tissues, three separate 

gene segments, the V, D and J are assembled by V(D)J recombination into unique TCR and 

BCR genes. Random addition and deletion of nucleotides at the junctions between gene 

segments further contribute to the diversity of the third hypervariable region. During the late 

phase of the immune response in the peripheral lymphoid tissues, somatic hypermutation 
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substitutes single nucleotides of BCR genes leading to the production of high-affinity 

antibodies (Goodnow 2005; Murphy 2008). 

Between 20 and 50 % of TCRs and BCRs generated by V(D)J recombination bind to self 

antigens (Zerrahn 1997; Wardemann 2003). However, the immune system has developed 

several checkpoints to prevent self-antigens from triggering self-reactive B and T 

lymphocytes. The cellular strategies engaged to deal with self-reactive receptors include: 1) 

clonal deletion; a cell bearing a “forbidden” receptor can be triggered to die according to 

Burnet’s concept of clonal selection, 2) receptor edition; further V(D)J recombination or 

somatic hypermutation of the aberrant receptor giving rise to a new receptor that is not self 

reactive, 3) “clonal anergy or tuning”; changes in gene expression can reduce the ability of 

the cell to be triggered by self-reactive receptors, and 4) extrinsic control mechanisms that 

limit the supply of essential growth factors, co-stimuli and other necessary factors including 

suppression by regulatory T cells or regulatory B cells (Burnet 1961; Kronenberg & 

Rudensky 2005; Fillatreau 2002; Hu 2007). The result of these processes is that most 

lymphocytes expressing self-reactive receptors dangerous for the host are eliminated.  

 

T cell immunity 

Progenitor T cells migrate from bone marrow to the thymus where further maturation and 

selection processes occur. Within the cortical and medullar compartments of the thymus, T 

cells undergo positive and negative selection driven by the interactions with thymic epithelial 

cells that display composites of self peptides and major histocompatibility complexes (MHC) 

molecules on their cell-surface (Starr 2003). T cells are divided into two major subsets 

identified by the expression of the unique functional cluster of differentiation (CD) surface 
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molecules, denoted CD4 and CD8. CD4+ T cells recognise peptides presented on MHC class 

II, whereas CD8+ T cells recognise peptides presented by MHC class I. 

Mature T cells leaving the thymus to enter the circulation are termed naïve. They 

circulate in the lymphatic system, through secondary lymphoid organs where they can 

interact with APCs, in principal DCs, but also macrophages and B cells. DCs which are found 

in the T cell areas of the lymphoid tissues are the most potent stimulators of T cells, and are 

believed to be the main cells that can activate naïve T cells (Banchereau & Steinman, 1998).  

 

The MHC complex 

The genes in the MHC complex 

Molecules of the MHC were first discovered for their importance in rejection of tissue 

grafts between genetically non-compatible individuals (Thorsby 2009). The MHC, named the 

human leukocyte antigen (HLA) complex in humans, is encoded by a highly polymorphic 

complex of genes contained within 4 megabase pairs (1 % of the genome) on chromosome 

6p21.3. The MHC region is divided into three; the class I gene region, followed by the class 

II and the class III gene region. Several of the genes encode classical immune response 

molecules, central in antigen presentation. The HLA genes are highly polymorphic and the 

genes are located in the class I (HLA -A, -C, -B) and class II (HLA -DR, -DQ, -DP) regions.     

 

The MHC molecules 

The function of MHC molecules is to bind peptides and display them on the cell surface 

to T cells. These membrane glycoproteins are divided into two types: Whilst MHC class I 

molecules are expressed on all nucleated cells, the MHC class II molecules are expressed 

primarily on professional APCs.  
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Whereas the MHC class I molecules are composed of  a heterodimer of a 43 kilo Dalton 

(kDa) membrane-spanning �-chain bound non-covalently to a 12 kDa �2-microglobulin 

(which does not span the membrane), the MHC class II molecules are composed of two 

transmembrane non-covalently associated glycoprotein chains, the 33 kDa �-chain and the 28 

kDa �-chain (Murphy 2008). Whereas the MHC class I peptide-binding groove is constrained 

allowing only short peptides of 8 - 10 amino acids to bind, the ends of the MHC class II 

peptide-binding groove are open, allowing peptides of unlimited length to bind. Peptides 

eluted from MHC class II molecules are normally between 10 and 34 amino acids long 

(Murphy 2008; Madden 1995; Rudensky 1991; Vartdal 1996).  

 

Presentation of T cell epitopes 

CD8+ T cells recognise peptides derived from cytosolic proteins in the context of MHC 

class I molecules, whereas CD4+ T cells interact with MHC class II molecules that presents 

fragments of proteins that have been degraded in the endocytic and phagocytic vesicles 

(Watts 1997).  

The antigen fragments that bind to MHC class I are usually derived from endogenous 

proteins synthesised within the cell, including viral proteins, after being transported from the 

cytosol by proteins in the endoplasmatic reticulum membrane (Murphy 2008). Furthermore, 

in addition to sampling of endogenous peptides for presentation by MHC class I molecules, 

DCs and macrophages have the capability to present exogenous antigens internalised via the 

endocytic pathway to CD8+ T cells (Ackerman 2004). Such “cross-presentation” is thought to 

be critical for initiating CD8+ T cell responses to antigens that would not otherwise gain 

access to the MHC class I presentation pathway in DCs. 
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Protein antigens determined for MHC class II molecules entering the endocytic pathway 

are unfolded and degraded into peptides before reassembling as integral components of the 

mature class II complex (Jensen 1995). In the different endosomal / lysosomal compartments, 

processing of protein antigens in the MHC class II pathway is achieved by exopeptidases, 

endopeptidases, and �-interferon-induced lysosomal thiol reductase, including several 

cysteine proteases. The outcome of antigen processing is thought to be a key determinant of 

the quality and quantity of a CD4+ T cell response (Watts 2004).  

 

T cell activation and their effector functions 

TCR interaction with the peptide / MHC complex is necessary, but not sufficient for 

triggering of the T cell. To become fully activated, T cells, and in particular naïve cells, must 

engage co-stimulatory molecules. The B7 molecules CD80 and CD86 displayed on the 

surface of APCs are recognised by CD28 molecules expressed by T cells. The fate of the T 

cell; death, fully activated or tolerant, depends on the strength and length of the interaction 

with peptide / MHC complex and cytokines in the environment (Lanzavecchia & Sallusto 

2001; Sallusto & Lanzavecchia 2001). Accordingly, if the T cell receives appropriate co-

stimulation, it will divide and differentiate into long-lived memory cells or effector cells. 

Triggered CD4+ effector T cells can differentiate into separate functional subsets, and 

exert their effector functions mainly through cytokine secretion. More than 20 years ago, 

Mosmann and Coffman described in mice the presence of two distinct populations of CD4+ 

T-helper (TH) cells, TH1 and TH2, characterised by their distinct cytokine profile (Mosmann 

& Coffman 1989). Studies on TH1 and TH2 cells in humans have been more challenging, 

since a high percentage of CD4+ T cells isolated from blood of healthy individuals have been 

found to display a mixed cytokine profile upon activation. Nevertheless, naïve conventional 
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CD4+ T cells have five (and possibly more) distinct fates determined by signal patterns 

received through initial interaction with the antigen. These five TH cell populations include: 

TH1 cells with interferon (IFN)-� as their signature cytokine, TH2 cells producing 

predominantly the signature cytokines IL-4, IL-5, and IL-10, TH17 cells secreting IL-17, IL-

22 and transforming growth factor-� (TGF-�), and the recently identified skin-homing helper 

T cell subset, TH22 cells, that secrete IL-22 but neither IL-17 nor IFN-�. In addition, adaptive 

regulatory T cells producing TGF-� and IL-10 are responsible for suppression of other T cells 

(Zhu & Paul 2008; Duhen 2009; Trifari 2009). Notably, it was recently demonstrated that TH 

cell lineages possess an unexpected degree of plasticity, which may allow them to adopt

alternative fates or to acquire functions usually restricted to an opposite CD4+ T cell linage

(Wei 2009; Lee 2009).   

Although no such subset diversification exists among CD8+ T cells a variety of effector 

functions have been described, including cytotoxicity and cytokine production (Williams & 

Bevan 2006). Whilst some of these effector cells respond with only a limited functional 

repertoire, other can exert several effector functions such as production of IFN-�, IL-2 and 

tumour necrosis factor (TNF)-� (Stemberger 2007).  

 

B cell immunity 

In mammals, B cells arise from hematopoietic stem cells in the bone marrow where they 

acquire a unique BCR. B cells mature independently of antigen stimulation into pro-B cells, 

and then further into pre-B cells and immature B cells before entering the antigen-dependent 

phase in the peripheral lymphoid tissues (Browning 2006).  
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Activation of a naïve B cell is initiated in response to specific antigen binding to the 

BCR. Following antigenic stimulation, B cells can process antigen and present it on their 

MHC II molecules to antigen-specific CD4+ T cells, which give cognate help to the B cell 

(Lanzavecchia 1985). At the immunological synapse, antigen specific CD4+ T cells are 

activated and successively stimulate B cells through CD40L-CD40 interactions and cytokine 

secretion (Banchereau 1994). Optimal activation of human naïve B cells requires a third 

signal that can be delivered by TLR agonists or by cytokines produced by activated DCs 

(Ruprecht & Lanzavecchia 2006). Activated B cells can then adopt one of two fates: 1) 

movement into extrafollicular areas to become short-lived antibody producing cells, or 2) 

movement into B cell follicles and establishment of GCs (Jacob 1991). After affinity 

maturation in GCs, both long-lived memory B cells competent to give rapid and enhanced 

response to secondary antigen challenge and plasma cells capable of producing high-affinity 

antibodies are formed (Rajewsky 1996). From the GCs, long-lived plasma blasts migrate to 

the bone marrow where they differentiate into long-live plasma cells, while activated memory 

B cells may migrate to inflamed tissues and also to other organs including the brain (Knopf 

1998; Dalakas 2008).  

The TNF family members B cell activating factor (BAFF) and a proliferation-inducing 

ligand are vital factors for B cells survival, differentiation, formation of GC and production of 

Ig (Mackay & Schneider 2009). BAFF receptors are displayed on all B cells from stem cells 

to plasma cells (Dalakas 2008). High levels of BAFF are associated with the development of 

autoimmune disorders in animal models, and an excess of BAFF has been found in serum of 

patients with diverse autoimmune conditions (Mackay & Schneider 2009).   

B cells also have a role in presenting antigen to CD4+ T cells. B cells are adapted to bind 

specific soluble molecules through their cell-surface Ig and to internalise bound molecules by 
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receptor-mediated endocytosis. Since B cells constitutively express high levels of MHC class 

II molecules, high levels of specific peptide-MHC class II complexes appear on the B cell 

surface (Murphy 2008). Moreover, it has been demonstrated that receptor mediated uptake of 

antigen makes B cells 100 – 1.000 times more potent on presentation of specific antigen 

compared to other APCs, and they are therefore especially effective at presenting low 

concentrations of antigens bound by their BCR (Lanzavecchia 1990).  

Optimisation of antibody affinity is a hallmark of the humoral immune response that 

takes place in hundreds of transient microstructures called GCs. The term “GC” was coined 

more than 120 years ago by Walter Flemming, who observed accumulations of large 

lymphocytes undergoing mitosis in the follicles of lymph nodes and proposed these to be the 

major source of all lymphocytes in the body (Nieuwenhuis & Opstelten 1984). Although it is 

not Flemming’s GCs but the bone marrow which is the site of lymphocyte generation, the 

GCs are now known to be associated with T cell dependent antibody responses and are the 

most important sites for generation of high-affinity B cells. Furthermore, affinity maturation 

is often seen in parallel with an increased concentration of specific antibodies and class 

switch from IgM to other isoforms (Griffiths 1984; Siekevitz 1987; Chien 1988). Positively 

selected GC B cells may differentiate into either memory B cells or antibody-secreting 

plasma cells that subsequently exit GCs to become part of the circulating lymphocyte pool or 

migrate to the bone marrow as long-lived plasma cells, respectively (MacLennan 1994).  
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Immunoglobulin structure 

Igs are the secreted form of the BCRs. Igs are large molecules of approximately 150 kDa, 

and are composed of two different kinds of polypeptide chains: heavy chains and light chains. 

Two heavy chains are linked to each other by disulfide bonds and each light chain is linked to 

a heavy chain by disulfide bonds and noncovalent interactions. This gives rise to an antibody 

molecule with two identical antigen-binding sites. Each of the four chains has a V region at 

its amino terminus, and this region contributes to the antigen-binding site. X-ray 

crystallography of antigen : antibody complexes has demonstrated that localised regions of 

hypervariable sequences of the Ig V regions form the antigenic-binding site of the antibody. 

The carboxyl terminal region, named the constant region, comprises one of five heavy chain 

classes or isoforms (IgM, IgD, IgG, IgA and IgE), some of which are found to have several 

subtypes. The constant regions are responsible for the biological effector functions of the 

antibody (Murphy 2008). 
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Autoimmunity

Autoimmunity can be defined as adaptive immunity specific for self antigens (Murphy 

2008). An overactive autoimmune response is believed to be one possible mechanism 

underlying development of autoimmune diseases, which affect 3 - 5 % of the human 

population in the industrialised part of the world (Ashwood 2006). Autoimmune disease can 

be divided into either organ-specific disorders, such as Type 1 diabetes (T1D) and 

myasthenia gravis, or systemic illnesses, such as systemic lupus erythematosus (SLE) and 

rheumatoid arthritis (RA).  

Little is known about how and why autoimmunity is triggered. A widely accepted 

hypothesis is that autoimmune diseases arise from an unfortunate combination of genetic and 

environmental factors. The low concordance rate for many autoimmune diseases among 

monozygotic twins suggests a substantial involvement of environmental factors. Evidence 

has indicated that microbes can initiate, enhance, or, conversely, abrogate autoimmunity 

(Christen 2005). Thus, a number of mechanisms for infection-induced autoimmunity have 

been postulated: 1) infection of target cells and organs, resulting in tissue destruction that 

may cause the release of sequestered antigens and enhanced antigen presentation by DCs and 

macrophages (under inflammatory conditions, upregulation of antigen processing events may 

lead to enhanced presentation of previously cryptic epitopes by the APCs which can be 

presented to self-reactive T cells), 2) epitope mimicry, and 3) bystander activation (Lehmann 

1992; Benoist & Mathis 2001).  

The involvement of activated B cells in autoimmune diseases has traditionally been viewed as a 

secondary consequence of the breakdown of T-cell tolerance (Dalakas 2008). This does not exclude 

that B cell play an instrumental role in the disease process. Thus, it was early demonstrated by 
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transfer experiments that some human diseases, such as myasthenia gravis, are directly 

mediated by pathogenic antibodies (Toyka 1975; 1977). In recent years, experimental 

evidence supporting an even more pronounced and diverse role of B cells in the pathogenesis 

of autoimmune diseases has grown: Thus, B cells could have a direct role via 1) production 

of autoantibodies or cytokine secretion, 2) indirectly influence T cell responses by presenting 

antigen or 3) by secreting antibodies that bind to antigens to form immune complexes. The 

observation that B cell depletion by using monoclonal antibodies against CD20 such as 

Rituximab, which depletes all cells of the B cell lineage except from stem cells, pro-B cells 

and plasma cells, as an effective therapy in autoimmune diseases such as RA and multiple 

sclerosis (MS), has provided an increased drive to explore the functions of B cells in 

autoimmune diseases (Edwards & Cambridge 2006; Hauser 2008).   

 

 

 

 

 

 

 

 

 

 



23 

 

Immune surveillance of the central nervous system 

The concept of immune privilege of the central nervous system (CNS) emerged from 

studies of a phenomenon that had been observed for over 130 years, namely that allografts, 

which are rapidly rejected from tissues such as skin, are accepted when placed in the brain. 

As no immune rejection was evoked, the organ was called “privileged” (Medawar 1948). 

However, more recent studies have shown a slow and inefficient clearance after inoculation 

of virus into the parenchyma of the CNS (Stevenson 2002). Consequently, the claim that the 

CNS is a site of immune privilege has been modified, and it is now rather viewed as an 

immunologically specialised site (Ransohoff 2003).  

Lymphocytes are rare in the CNS of healthy individuals partly because of the blood-brain 

barrier (BBB), which is a protective barricade that limits the entry of large molecules and 

circulating immune cells into the CNS. Immune activation is also limited in the CNS owing 

to the lack of endogenous APCs and a relative lack of lymphatic drainage of the parenchyma. 

To be able to interact with immune-competent cells in secondary lymphoid organs outside the 

BBB, the mammalian CNS has evolved pathways for delivery of antigens from the CNS 

parenchyma to the peripheral circulation. Additionally, three or more routes have been 

suggested to exist for leukocyte migration into the CNS from blood; 1) from the blood to the 

cerebrospinal fluid (CSF) via the choroid plexus within the ventricles of the CNS, 2) from the 

blood to the subarachnoid space and, 3) from the blood to the parenchymal perivascular space 

(Harling-Berg 1999; Ransohoff 2003).  

Under physiological conditions lymphocyte traffic across the BBB has been observed to 

be very low (Gowerman 2009). Pioneering studies demonstrated that the BBB strictly 

controls T cell traffic into the CNS as only activated but not resting T cells were able to 
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penetrate this barrier in healthy experimental animals (Wekerle 1987; Hicky 1991). Activated 

CD4+ memory T cells enter CNS directly from the systemic circulation to ′inspect′ the 

subarachnoid space, retaining their capability to either initiate local immune reactions or 

return to secondary lymphoid organs (Kivisakk 2003; 2009). Yet, how autoreactive T cells 

gain entry to an uninflamed brain to initiate disease has been unknown. Intriguing, it has 

recently been demonstrated that autoreactive TH17 cells expressing the chemokine receptor 

(CCR) 6 can gain access to the uninflamed CNS trough a “chink in the armour” of the BBB; 

the choroid plexus, by interaction with the chemokine ligand (CCL) 20 (Reboldi 2009; Axtell 

& Steinman 2009). CCL20 is constitutively expressed by epithelial cells of the choroid 

plexus in mice and humans, and it was suggested that the CCR6 - CCL20 axis controls an 

evolutionary conserved pathway of immune surveillance of the CNS (Reboldi 2009). 

Although huge numbers of immune cells can directly enter the CNS parenchyma through the 

“leaky” BBB during inflammation, lymphocyte recruitment into the CNS during MS or 

experimental autoimmune encephalomyelitis (EAE) is not random as T cells detected in the 

CNS parenchyma and in the CSF are phenotypically distinct from T cells found in the blood 

(Engelhardt 1998; Zeine & Owens 1992; Hestvik 2008).     

Leukocyte migration into the CNS parenchyma is a multi-step process: first, the cells 

must cross the vascular endothelial wall, and second they must transverse the astrocyte lining, 

each with its own basement membrane. The attachment of blood-borne T cells to the vascular 

bed, followed by diapedesis of immune cells across the endothelial barrier is mediated by 

several adhesion molecules, including intracellular adhesion molecule 1 (ICAM-1), vascular 

cell adhesion molecule-1 (VCAM-1), �4-integrins and laminins expressed on inflamed BBB 

(Bullard 2007; Carman & Springer 2004; Engelhardt 2005). New data has shown that the 

activated leukocyte cell adhesion molecule (ALCAM) which bind to CD6 on leukocytes, 
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replaces VCAM-1 in the BBB endothelium during the development of neuroinflammatory 

diseases such as MS (Cayrol 2008). Blocking of ALCAM suppressed transmigration of T 

cells through the BBB and ameliorated EAE. Inflammatory chemokines direct leukocyte 

trafficking to inflamed tissues “on demand”; for example the chemokines CCL5 (RANTES), 

CCL3 (MIP-1�), CCL4 (MIP-1�) and CCL10 (IP-10) attract mainly monocytes and T cells, 

which have been associated with lesion development in MS (Farina 2005). 

To reach the brain parenchyma leukocytes must traverse the parenchymal basement 

membrane and the glial limitans. Recent evidence has shown that macrophage-derived 

gelatinase matrix metalloproteinase (MMP)-2 and MMP-9 activity is crucial for leukocyte 

penetration of the glia limitans during EAE (Agrawal 2006). Ablation of both MMP-2 and 

MMP-9 in double knockout mice confers resistance to EAE by preventing leukocyte 

infiltration into the CNS (Agrawal 2006).  

The mechanisms of B cell migration into the CNS are not well understood as those that 

apply for T cells. However, the chemokine molecules CXCL13, CXCL10 and CXCL12 that 

are secreted from the endothelial wall are up-regulated in the brain of MS patients, thereby 

facilitating the recruitment and transmigration of B cells into the brain (Ritchie 2004; Meinl 

2006). Additionally, B cell migration into the CNS is also facilitated by binding of the 

adhesion molecules very late antigen-4 and lymphocyte function-associated antigen-1 to their 

counter-receptors VCAM-1 and ICAM-1 on the endothelial cells (Alter 2003).      

 

 

 

 



26 

 

 
Stiff Person Syndrome

Historical background 

Stiff man syndrome was originally described in 1956 by Moersch and Woltman (Moersch 

& Woltman 1956). Their first case in 1924 was a 49-year-old male farmer from Iowa who 

was examined because of a complaint of “muscle stiffness and difficulty in walking”, hence 

the original term “stiff man syndrome”. The pioneers went on and after 32 (from 1924 to 

1956) years with seeking they published a series of 14 (10 males and 4 women) other similar 

patients (Moersch & Woltman 1956). Since then the disease has been observed more 

frequently in women than men, and is now generally referred to as Stiff Person Syndrome 

(SPS) (Goetz 1983). SPS is a rare disorder of the CNS with a reported annual incidence of 

one per million in the European population, which could be an underestimate due to 

misdiagnosis as a psychiatric disorder (Koerner 2004).  

 

Clinical presentation 

The core clinical features of classical SPS are stiffness that is prominent in axial muscles 

with co-contraction of agonist and antagonist muscles, and sudden episodic spasms in the 

absence of another disease that causes similar symptoms (Moersch & Woltman 1956; Levy 

1999). SPS usually appears in adulthood and generally has a fluctuating, slowly progressive 

course; however, in a few cases sudden death has been reported (Mitsumoto 1991). The SPS 

spectrum which include stiff limb syndrome, jerking SPS and progressive encephalomyelitis 

with rigidity (PER) share clinical, laboratory, electrodiagnostic and histopathological features 
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(Brown 1997; Leigh 1980; Whiteley 1976). Some patients present initially with stiff limb 

syndrome progress over time to classical SPS and from that to PER (Duddy & Baker 2009).   

 In 5 % of the patients, SPS is a paraneoplastic manifestation. Such patients have been 

reported to have more prominent stiffness in neck and arms than other SPS patients (De 

Camilli 1993; Butler 2000). 

Continuous co-contraction of agonist and antagonist muscles as a result of involuntary 

firing of motor units at rest is central to the pathophysiology of SPS (Lorish 1989; Thompson 

2001). Because �-aminobutyric acid (GABA) is the brain’s predominant inhibitory 

neurotransmitter, GABAergic neurotransmission could play a role in the pathogenesis. 

Moreover, in vivo magnetic resonance spectroscopy has revealed a prominent and significant 

reduction in GABA levels in the motor cortex but not in the occipital cortex of SPS patients 

(Levy 2005). This is consistent with a recent paper describing changes in central GABA-A 

receptors linked benzodiazepine binding sites in selected brain regions on positron emission 

tomography scans (Perani 2007). These data strongly suggest a GABAergic deficit in SPS, 

but it remains unclear whether this is due to a functional block or reflects primarily neuronal 

loss. 

The histological findings of the few autopsies carried out so far have been inconsistent. 

The first report from Moersch and Woltman failed to demonstrate pathological lesions of 

specific areas of the CNS (Moersch & Woltman 1956). Evidence for an inflammatory process 

with selective loss of GABAergic neurons within the cerebellum and spinal cord, or a more 

aggressive inflammatory picture of perivascular lymphocytic infiltration including gliosis 

within the spinal cord, cerebral cortex, brainstem and basal ganglia have later been reported 

in some patients with SPS (Warich-Kirches 1997; Meinck 1994; Mitsumoto 1991).

Furthermore, autopsy has revealed vacuolar degeneration of anterior horn cells at the lumbar 
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segments of the spinal cord associated with prominent microglia proliferation and evidence of 

discrete infiltration of CD8+ cytotoxic T cells in patients with atypical SPS (Saiz 1999).   

 

Glutamic Acid Decarboxylase

Glutamic acid decarboxylase (GAD) converts glutamate to GABA (Erdo & Wolff 1990; 

Lernmark 1996). The two isoforms of GAD are named according to their respective 

molecular weights, GAD65 (585 amino acid residues) and GAD67 (594 amino acid residues). 

The isoforms are encoded by two different genes localised on chromosome 10 and 2 

respectively (Brilliant 1990; Karlsen 1991; Bu & Tobin 1994; Erlander 1991). Although the 

two isoforms display a high similarity in their amino acid sequences, differences are found in 

their interaction with the co-factor pyridoxal-5�-phosphate and in enzyme kinetics for GABA 

production (Battaglioli 2003). Whereas cytosolic GAD67 is found to be constitutively active 

and is responsible for basal levels of GABA, the inducible cytosolic GAD65 associated with 

the GABA vesicle membrane is mostly present without its co-factor as an autoinactivated 

apoenzyme (Fenalti 2007). Upon reactivation with its co-factor, apo-GAD65 becomes holo-

GAD65 that can catalyze synthesis of GABA when additional neurotransmitter is needed 

(Kash 1997). Whilst both GAD isoforms are found in the brain, only GAD65 is found in 

pancreas, though its function there is not clear (Lernmark 1996). 

 

GAD65 IgG antibodies and GAD65-specific T cells in SPS 

GAD IgG antibodies were first reported in 1988 by Solimena and co-workers in a patient 

affected by SPS and epilepsy. The GAD65 isoform was identified as the predominant 

autoantigen (Solimena 1988; Butler 1993). Antibodies to GAD65 are also found in 80 % of 
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patients with T1D and in some patients with cerebellar ataxia, epilepsy, myoclonus, Batten 

disease and Grave’s disease (Baekkeskov 1990; Saiz 1997). While antibodies against GAD65 

in T1D target mainly conformational epitopes, the GAD65 IgG antibodies in SPS have been 

shown to be of significantly higher levels and to detect both linear and conformational 

epitopes (Kim 1994; Bjork 1994; Daw 1996). The observation that disease severity in SPS 

did not correlate with GAD65 IgG antibody levels in serum or CSF in SPS patients suggested 

that GAD65 IgG antibodies may not have a direct pathogenic role in SPS (Rakocevic 2004; 

Burns 2005). Also, GAD65 IgG antibodies do not seem to transfer the disease symptoms 

from mother to infants (Nemni 2004). As GAD65 is a cytoplasmic molecule the pathogenic 

role of GAD65 IgG antibodies has been questioned. However, intrathecal administration of 

IgG from sera of patients with GAD65 IgG antibody-associated SPS induced 

neurophysiological and biochemical SPS-correlates in rats (Manto 2007). This phenomenon 

was not observed after administration of IgG antibodies from T1D patients, which indicate 

that SPS could be the direct consequence of antibody-mediated neuronal dysfunction (Manto 

2007). Also, electrophysiological studies have shown that CSF or serum positive for GAD65 

IgG antibodies from SPS patients, and not from T1D patients, can reversibly inhibit 

GABAergic transmission in rat cerebellar slices (Dinkel 1998; Ishida 1999; Vianello 2008). 

Additional evidence for B cell involvement in SPS has been demonstrated by the 

beneficial effects of intravenous Ig (Vasconcelos 2003). It has also been observed that some 

SPS patients respond to treatment with immunomodulatory agents (Vicari 1989; Brashear & 

Phillips 1991; Hao 1999; Dalakas 2001). Plasmapheresis has been reported to be beneficial in 

some SPS patients, and in a case study the improvement of symptoms correlated with 

decreased GAD65 antibody levels (Dalakas 2009). Finally, anti-CD20 B cell therapy has 

been shown to be beneficial in reducing stiffness and increasing mobility, and resulted in 
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disappearance of GAD65 IgG antibodies in patients with PER and SPS (Saidha 2008; Baker 

2005). 

Attempts to detect GAD65-specific T cells in the peripheral blood from SPS patients have 

been few and not very successful, despite the fact that class-switched and high-affinity 

antibodies to GAD65 imply T cell involvement. Nevertheless, peripheral blood mononuclear 

cells (PBMCs) from some SPS patients have been shown to respond weakly to synthetic 

GAD65 peptides or to recombinant human (rh)GAD65 (Costa 2002; Hummel 1998; 

Lohmann 2000, 2003). Additionally, a GAD65-specific T cell line has been established from 

the blood of an SPS patient, even though no primary proliferative PBMCs response against 

GAD65 was detected in the patient (Schloot 1999).  

 

Other aspects of autoimmunity in SPS 

A striking association with other organ-specific autoimmune diseases has been described 

in SPS (Solimena 1990). T1D is relatively common in SPS and occur in approximately 30 - 

60 % of the patients, whereas the converse is not true (Solimena 1990; 1991). Other 

autoimmune diseases less commonly associated with SPS include thyroid diseases, 

pernicious anaemia, vitiligo and Graves’ disease (Solimena 1990). Furthermore, it was 

recently reported of an SPS patient with celiac disease and dermatitis herpetiformis 

(O’Sullivan 2009). In addition, antibodies against GABA receptor-associated protein, a 

protein involved in the trafficking and assembly of the GABA-A receptor has been found in 

70 % of SPS cases in one study (Raju 2006). Also, an antibody to glycine receptors has been 

identified in a patient with PER (Hutchinson 2008). In paraneoplastic variants SPS, 

antibodies are directed against two other proteins in the GABAergic and glycinergic 
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synapses; amphiphysin and gephyrin (Folli 1993; De Camilli 1993; Butler 2000). 

Interestingly, injection of serum IgG antibodies from a patient with paraneoplastic SPS and 

antibodies to amphiphysin into rats resulted in transient symptoms of stiffness with spasms 

resembling human SPS, showing that the IgG antibodies could be pathogenic (Sommer 

2005). Recent studies from the same group showed that anti-amphiphysin antibodies from the 

same patient reduced GABA-induced calcium influx in embryonic motor neurons (Geis 

2009). 

An association to HLA-DQB1*0201 and HLA-DRB1*0301 in SPS has been reported in 

two studies (Pugliese 1993; Dalakas 2000). However, it is important to note that these studies 

were carried out on relatively small populations. In a short familial report on a father and his 

daughter who both had SPS associated with GAD65 IgG antibodies, the HLA-DQB1*0201 

(father) and DRB1*0301 (daughter) alleles did not segregate with SPS (Burns 2003). 

Interestingly, HLA-DRB1*06, which is an allele that is extremely uncommon in T1D 

patients, has been reported to be associated with a lower co-occurrence of diabetes in SPS 

(Pugliese 1993).  
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Multiple Sclerosis 

MS is an inflammatory disorder of the brain and spinal cord, affecting more than 1 in 

1.000 Caucasians living in temperate climate (Pugliatti 2002). In most patients the disease 

starts with transient neurological symptoms that are denoted clinically isolated syndrome 

(CIS), whereas an MS diagnosis requires further radiological or clinical dissemination of the 

disease process (McDonald 2001). It is thought that MS occurs in individuals with complex 

genetic-risk profiles after exposure to an environmental trigger that activates auto-reactive T 

cells allowing them to migrate across the BBB. In animal models of the inflammatory aspect 

of MS, T cells reactivated by CNS-resident APCs presenting CNS antigen can then recruit 

innate immune cells, which are important actors in the demyelination and neurodegeneration 

processes (McFarland 2007; Compston 2008). The hallmark features of MS are inflammatory 

demyelinating plaques with partial axonal preservation and reactive gliosis in the brain and 

spinal cord, particularly during the early (relapsing) stage of the disease (Prineas 1984; 

Kutzelnigg 2005). Different pathways involving distinct effector mechanisms have been 

suggested to be involved in the pathogenesis, and could possibly explain differences in the 

extent of demyelination, injury of oligodendrocytes and axonal damage seen among MS 

patients (Lucchinetti 1996, 2000, 2002). However, most active lesions in patients with long-

standing MS are characterised by Igs and complement-mediated phagocytosis of 

oligodendrocytes and myelin, indicating that the pathogenesis of MS may converge to a 

common pathway (Breij 2008).  
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Intrathecal B cell responses in MS

Involvement of Igs in the pathogenesis of MS has long been suspected. Thus, intrathecal 

synthesis of gamma globulin was first described in 1942, and was shown to be at least partly 

oligoclonal in 1960 (Kabat 1942; Karcher 1960). An increase in intrathecally synthesised IgG 

antibodies which often results in oligoclonal IgG bands in the CSF is the most consistent 

clinical immunological abnormality in MS. Elevated levels of IgG antibodies in the CSF have 

been thought to be sustained by long-lived plasma cells recruited to or differentiating within 

the CNS (Prineas & Wright 1978). Extensive replacement mutations in the Ig V gene region 

of B cells and plasma cells isolated from demyelinated lesions or CSF of MS patients have 

provided evidence for an antigen-driven intrathecal humoral immune response and that 

dominant B cell clone populations can persist within the CNS (Qin 1998, 2003; Colombo 

2000, 2003; Owens 2003). Post mortem histological findings of brain tissue have revealed 

structures strikingly similar to B cell follicles containing GCs in the meninges in secondary 

progressive MS, and found that the presence of such tertiary lymphoid structures are 

associated with early onset of disease and severe cortical pathology (Prineas 1979; Serafini 

2004; Magliozzi 2007). Concordantly, a complete recapitulation of B cell differentiation 

resembling the GC reaction has been found in the CSF of MS patients (Corcione 2004).  

 

Intrathecal humoral immune responses against microorganisms in MS 

Increased IgG antibodies and oligoclonal IgG bands have been detected in the CSF of 

humans with chronic infectious CNS diseases such as subacute sclerosing panencephalitis, 

neurosyphilis, cryptococcal, varicella zoster meningoencephalitis and progressive rubella 

encephalitis (Vandvik 1973; Vartdal 1982; Porter 1977; Vartdal 1982; Coyle 1981). Studies 
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of the specificity of CSF oligoclonal IgG bands in patients with CNS infections have revealed 

that the antibodies were directed against the agent that caused the disease (Vandvik 1982; 

Vartdal 1982). Since the oligoclonal IgG bands in CNS infections are specific for the 

causative infectious agent, it is conceivable that also the persistent Ig response in MS targets 

disease-relevant antigens. Despite considerable efforts, the specificities of the main IgG 

antibody fractions appearing as oligoclonal IgG bands in the CSF of MS patients remains 

enigmatic. 

A peculiar characteristic of MS is the perpetual intrathecal synthesis of virus-specific 

antibodies (Vartdal 1982). Intrathecal synthesis of specific antibodies against one or more 

common viruses, such as measles virus (MeV), rubella virus, and varizella zoster virus 

(VZV) are found in more than 90 % of MS patients (Vartdal 1980; Sindic 1984). Most MS 

patients display oligoclonal virus-specific IgG bands restricted to the IgG1 subclass upon 

CSF analysis using IEF with immunoblot (Vartdal & Vandvik 1983). Intrathecal antibody 

syntheses against MeV and rubella virus are also present in vaccinated individuals with MS 

(Robinson-Agramonte 2007). Some of these antibodies are directed against RNA-viruses 

most unlikely to persist within the CNS, suggesting that the virus-specific antibodies are not 

part of an ongoing response against a latent infection.  

The virus-specific IgG antibodies do not correspond to the main oligoclonal IgG bands in 

the CSF and constitute approximately only 2 % of the total CSF IgG (Reiber 1998). Whereas 

CSF IgG antibodies from patients with viral encephalitis have been shown to display high 

binding affinity against the causative agent, intrathecally synthesised virus-specific IgG 

antibodies from MS patients are of low affinity (Luxton 1995).
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Aims of the study

The problems addressed in this study are all related to the dysregulated intrathecal 

immunity in two chronic neurological disorders, and are grouped under the following 

subheadings: 1) Virus-specific IgG antibodies produced in vitro by CSF B cells from patients 

with MS and CIS, 2) GAD65-specific IgG antibodies in SPS and 3) GAD65-specific T cells 

in SPS.  

  

Paper 1: Virus-specific IgG antibodies produced by CSF B cells  

in vitro from MS and CIS patients 

Although CSF B cells have been shown to produce virus-specific antibodies in vitro 

(Henriksson 1986; Salmi 1989; Baig 1989), the clonal patterns of these B cells are not 

known. In this study we wanted to explore: 

a) The clonal patterns of total IgG and of virus-specific IgG antibodies against MeV, 

VZV and herpes simplex virus type-1 (HSV-1) in supernatants of in vitro cultures of 

PBMCs and CSF cells and in sera and CSF from MS and CIS patients.  

b) The effect of BAFF on total IgG and on virus-specific IgG production in in vitro CSF 

cultures.  

 

Paper 2: GAD65-specific IgG antibodies in SPS 

Earlier studies have shown a persistent intrathecal production of IgG antibodies against 

GAD65 in SPS (Dalakas 2001; Rakocevic 2004). In this study we wanted to further 

characterise of GAD65 IgG antibodies in CSF and serum by:   
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a) Mapping the clonal patterns and subclass distribution of GAD65 IgG antibodies in 

CSF and serum.  

b) Analysing the avidities and binding capacities of serum and CSF derived GAD65 IgG 

antibodies.    

c) Investigating the temporal persistence of clonal patterns of GAD65 IgG in serum and 

CSF.   

 

Paper 3: GAD65-specific T cells from patients with SPS 

Most patients with SPS display systemic and intrathecal production of IgG antibodies 

against GAD65, but little is known about the mechanisms driving this immune response. In 

order to explore the intrathecal cellular immune response against GAD65 and compare it with 

the systemic response, we attempted to clone GAD65-specific T cells from CSF and blood 

from SPS patients and investigate whether: 

a) GAD65-sepcific T cells are present in the CSF and the blood of patients with SPS, 

and if such T cells are sequestered in the CSF?    

b) And if so, what are the HLA restriction and the cytokine profile of GAD65-specific T 

cells?  

c) Also, can we identify the GAD65 epitopes recognised by CSF and blood T cells?  
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Summary of the papers 

Paper 1: 

In this paper we showed that in vitro cultured CSF cells from all six MS / CIS patients 

studied, whereas only one of the four control patients, produced oligoclonal IgG. In contrast, 

in vitro production of oligoclonal IgG by PBMCs was not detected in any patient. By using 

isoelectric focusing (IEF) with immunoblot, in vitro cultured CSF cells from all six patients 

with MS / CIS were shown to produce oligoclonal IgG antibodies against either MeV, VZV 

or HSV-1. In each patient, the in vitro and in vivo intrathecally produced antibodies were 

specific for the same viruses. However, the in vitro synthesised total IgG and virus-specific 

IgG antibodies were shown to display different clonal patterns from those produced 

intrathecally in vivo. Addition of BAFF did not affect the amounts or clonal patterns of either 

total IgG or virus-specific IgG antibodies produced by in vitro CSF cells cultures.  

 

Paper 2: 

In this article, the avidities and clonal patterns of the GAD65 IgG antibodies in five 

patients with SPS were studied. By using radioimmunoassay (RIA) analyses we demonstrated 

that four of five SPS patients displayed intrathecal synthesis of GAD65 IgG antibodies. 

Intrathecally and systemically produced oligoclonal GAD65 IgG antibodies, mainly of the 

IgG1 subclass, was found in all five SPS patients by using IEF with immunoblot. The binding 

avidity of GAD65 IgG antibodies from CSF was more than 10 times higher than in GAD65 

IgG antibodies from serum in two of the patients, but did not differ significantly in the 

remaining three. All patients displayed higher GAD65 IgG antibody binding capacities 

(Bmax) in serum than in CSF. The oligoclonal GAD65 IgG bands in CSF and serum 
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persisted for years. These data indicate that a population of potentially pathogenic intrathecal 

and systemic GAD6-specific B cells or plasma cells persists in the intrathecal compartment in 

SPS patients.  

 

Paper 3: 

This is the first study of GAD65-specific T cells from the CSF of SPS patients. 11 

GAD65-specific T cells were cloned from CSF from three out of four SPS patients. In 

contrast, only one GAD65-specific T cell clone was generated from blood from one of the 

patients. The GAD65-specific T cells isolated were predominately restricted by HLA-DR. 

However, two T cell clones isolated from CSF of one of the patients studied displayed HLA-

DP restriction. Mapping of GAD65 T cell epitopes showed that CSF T cell clones recognised 

four different GAD65 epitopes that were unique to each patient. In two patients, T cells 

recognising the same GAD65 epitope in the context of identical HLA molecules were cloned 

from more than one aliquot of the same CSF sample, suggesting that these T cells belonged 

to the same or to closely related clones, and that they had been clonally expanded in vivo. The 

T cell clone derived from blood recognised a unique GAD65 epitope which differed from the 

epitopes recognised by the CSF T cells. Notably, cysteine in amino acid position 474 was 

critical for recognition of GAD65 (474-484) by the HLA-DP restricted CSF T cells isolated 

from one of the SPS patients. All GAD65-specific T cell clones displayed a predominant Th1 

phenotype, but some clones also produced Th2 cytokines. These results suggest that clonally 

expanded GAD65-specific T cells exist intrathecally in patients with SPS. 
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Methodological considerations

Patients, sample collection and ethical considerations 

Patients

In paper I, MS, CIS and control patients were recruited to the study during routine 

diagnostic examination at the Department of Neurology, Oslo University Hospital Ullevål by 

neurologists working there. 

In paper II and III, SPS patients were recruited from the Departments of Neurology at 

Oslo University Hospital Ullevål and Rikshospitalet. The latter serves as referral hospital for 

rare neurological disorders in Norway. Even though SPS is a rare disease with an estimated 

prevalence of 1 per 1.000.000, we managed to recruit five and four patients with SPS to the 

studies comprising paper II and III, respectively. Requests to other neurological departments 

in Norway have not identified additional patients with SPS and GAD65 IgG antibodies. The 

SPS patients studied therefore probable represent almost the entire Norwegian population of 

patients diagnosed with SPS. 

In paper II, control patients with neurological diseases were recruited during routine 

diagnostic workup at the Department of Neurology at Oslo University Hospital Ullevål. In 

addition, sera from T1D patients with high levels of GAD65 IgG antibodies served as 

additional controls. These were made available from the biobank at the Hormone Laboratory 

at Aker University Hospital. 

A limitation of paper III is the lack of controls. It would be beneficial to test if it was 

possible to generate GAD65-specific T cells from CSF or blood of control patients. This was 

not performed because CSF sampling and repeated blood sampling impose a substantial 
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burden on the patients, and patients not having SPS would likely be less eager to participate 

or more easily withdraw from the study.  

 

Sample collection 

In order to avoid confounding imposed by changes in the lymphocyte repertoire, paired 

blood and CSF samples were always collected within less than one hour and cultured in 

parallel. No visible contamination of blood was recorded during the spinal tap. Nevertheless, 

the first 2 ml of CSF was always discharged, as even diminutive amounts of blood would 

render the CSF sample non-representative primarily due to the high levels of cells in blood. 

To obtain detectable IgG quantities by in vitro cultures of CSF B cells, only MS, CIS and 

control patients with CSF cell counts � 10 cells per �l were included in paper I. In order to be 

able to generate several T cell lines from each SPS patient, GAD65-reactive T cell lines were 

generated from approximately 26 ml CSF (paper III).  

 

Ethical considerations 

All work included in this thesis has been approved by the Committee for Research Ethics 

and all other relevant institutions, and written informed consent was obtained from all 

patients before they entered the study.  

It has been reported in a previous study that post puncture headache (PPH) is common 

and occur in 46 % of females and in 21 % of males (Vilming 2001). PPH was considered the 

major torment of using CSF in this study. It has been reported that PPH is more prevalent 

with the use of a 20- compared with a 22-gauge needle (Vilming 2001). Thin needles were 



41 

 

therefore used throughout. SPS patients were recruited for the study via experienced 

neurologists who stayed in contact with the patients during the study period. 

 

Antigens

Microbial antigens 

As > 90 % of all MS patients has local synthesis against MeV and / or VZV, accordingly 

these viruses were chosen as antigens (Vartdal 1980). HSV-1 was included as 1 / 3 of MS 

patients have local production against this virus (Vartdal 1980).  

The MeV and VZV antigens were produced from tissue culture of human cells infected 

with the viruses, whereas HSV-1 antigen was produced from permanent simian kidney tissue 

culture infected with HSV-1. The lyophilised virus antigens were dissolved in distilled water, 

sonicated and stored at -70°C. The advantage of using crude cell extracts for coating is that 

these antigen preparations contain a high range of antigenic determinants (Vartdal 1980). A 

possible disadvantage could be that they also contain contaminants from the cells and growth 

medium. However, no cross-reactivity was observed between virus-specific oligoclonal IgG 

bands from the same patients (paper I). Furthermore, Borrelia burgdorferi strain 152 was 

cultured in our laboratory. 

 

GAD65 protein and GAD65 peptides 

Recombinant human GAD65 

To analyse the clonal patterns of GAD65 IgG antibodies and select for GAD65-specific T 

cells from blood and CSF, rhGAD65 was used as antigen. This antigen was expressed in 

baculovirus infected Spdoptera frugiperda cells and the purity was tested to be �  95 % on 
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sodium dodecyl sulphate polyacrylamide gel electrophoresis (according to the manufacturer), 

and as well confirmed by high-performance liquid chromatography in our laboratory. As T 

cells are capable of responding to very low concentrations of antigens, even minute 

contamination may be sufficient to trigger proliferation of T cells that are specific for the 

contaminant (paper III). To confirm the specificity of GAD65-reactive T cells, a rhHLA-DQ2 

protein was included as a negative control protein (paper III). This negative control protein 

was produced in the same expression system as rhGAD65 and should therefore contain the 

same contaminations. 

 

GAD65 peptides 

To identify T cell epitopes and to further confirm the specificity of GAD6- reactive T cell 

clones, a panel of 144 16-mer overlapping peptides (approximately 50 % pure) spanning the 

complete amino acid sequence of GAD65 protein was synthesised. Each peptide overlapped 

the consecutive peptide with 12 amino residues, thereby allowing most potential CD4+ T cell 

epitopes to be represented in the panel. The solubility of the lyophilised peptides was 

variable, and the peptides were therefore initially dissolved in 100 % dimethyl sulfoxide 

(DMSO). Still, some of peptides tended to aggregate after dilution in the culture medium. 

DMSO is toxic. However; the concentration of DMSO in cell culture medium was always 

kept below the toxic concentration (0.1 %). For confirmation of specificity and determination 

of minimum epitopes, purified GAD65 peptides, including peptides that were truncated and 

contained amino acid substitutions, were purchased from another manufacturer (91-100 % 

pure).  

The peptide yield was measured in four control peptides, which were synthesised in 

addition to the 144 peptides GAD65 peptides comprising the peptide panel. The yield of the 
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GAD65 peptides was estimated from the yield of the four control peptides. To ensure that the 

concentration of each peptide was sufficient during screening experiments, a high and an 

intermediate estimated peptide concentration (100 μM and 10 μM) was used for this purpose. 

Yet, we cannot exclude that some of the peptide could be present in toxic concentrations or 

that some peptides were more or less insoluble and therefore present in too low 

concentrations to be detected by the T cells. 

 

Searching for GAD65-specific T cells in SPS patients 

GAD65-reactive T cell lines from CSF and blood were cultured in parallel following 

identical procedures to minimise the differences imposed by in vitro manipulations. In order 

to select and expand GAD65-specific T cells, T cells from CSF and blood were stimulated 

with irradiated autologous PBMCs that had been preincubated with rhGAD65 overnight. To 

select for CD4+ T cells that responded to primary antigen stimulation, IL-2 was not added 

until day seven of cell culture. Furthermore, as activated T cells express high affinity IL-2 

receptors, addition of IL-2 at day seven would provide an extra proliferation signal to 

GAD65-specific T cells that had received antigen stimulation at day one. The cells were 

further stimulated at day 16 with irradiated autologous PBMCs that had been preincubated 

with rhGAD65 overnight. The advantage of repeated antigen stimulation is that specific T 

cells are selectively and efficiently propagated (Holmøy 2004). To avoid propagation of 

allospecific T cells, GAD65-specific T cells from CSF and blood cells were cultured in 10 % 

autologous serum the first 24 days. Moreover, antigen responsive T cell lines were cloned by 

limiting dilution by seeding 0.1 - 3.0 cells per well. The cloning frequency was 1 - 20 %, 
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which makes it more than 95% likely that each T cell clone is monoclonal (Fitch & Gajewski 

1997).        

The main obstacle to the study of CSF cells is, in addition to the before mentioned 

discomfort for the patients, the limited number of cells that can be obtained from each 

patient. It is therefore hardly possible to study primary T cell responses in CSF, and the T 

cells had to be subjected to in vitro expansion. An important consideration that must be taken 

into account is that the in vitro milieu may have altered the cytokine profile of the T cells or 

favoured the expansion of particular subsets of T cells. Although cytokines known to select 

for particular subsets of CD4+ T cells were not used in the cell protocol, and although we 

were able to expand both TH1 and TH1 / TH2 polarised GAD65-specific T cell clones from 

SPS patients, it cannot be excluded that the method used to clone and expand the GAD65-

specific T cells may have influenced their cytokine profile. A further challenge is therefore to 

establish whether the GAD65-specific T cells also produce TH1 and TH1 / TH2 phenotype in

vivo. Moreover, we have been able to establish both TH1 and TH2 polarised glatiramer acetate 

(GA)-reactive CD4+ T cell lines and clones from both blood and CSF from MS patients by 

using the same protocol, and also demonstrated that TH2 polarized GA-reactive T cells 

accumulate in the CSF (Hestvik 2008). Furthermore, by using a similar method, 

Mycobactrium avium subspecies paratuberculosis-reactive CD4+ T cells with a TH1 and a TH1 

/ TH17 phenotype have been cloned from intestinal biopsies of Crohn’s disease patients 

(Olsen 2009). Collectively, these data indicate that the in vitro procedure used to clone CD4+ 

T cells in paper III is well suited for propagation of different phenotypes of CD4+ T cells.  

Irradiated autologous PBMCs were used as APCs in all T cell assays. As repeated antigen 

stimulation was used to establish GAD65-reactive T cell lines, it is particularly important to 

consider whether such APCs also stimulate naïve T cells, that are likely less relevant for the 
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disease process. PBMCs contains several potential APCs, including monocytes, B cells and 

some DCs. Notably, a previous study revealed that while both naïve and memory T cells 

from both patients with primary biliary cirrhosis and healthy subjects proliferated upon 

stimulation with antigen-loaded autologous PBMCs, whilst only memory T cells from the 

primary biliary cirrhosis patients responded to antigen-loaded costimulation-incompetent 

APCs (Shimoda 2008). It is therefore possible that the cell culture procedure applied in this 

work also propagated some naïve GAD65-specific T cells. This is, however, most relevant 

for the blood-derived T cell lines, as predominantly activated T cells are supposed to enter the 

CNS (Hickey 1991). The T cells present in CSF are therefore likely to be of an activated 

phenotype, whereas T cells with a naïve phenotype that are less relevant for the disease 

constitutes a larger proportion of the T cells present in the blood.  

 

T cell proliferation assays and analysis of cytokine production 

In this study, T cell proliferation was measured by a [3H] thymidine incorporation assay 

(paper III). This is a robust assay and well suited for screening and monitoring large number 

of T cell lines and clones. However, this method selects for T cells that proliferates upon 

activation, and neglects antigen-specific T cells with less pronounced proliferative potential, 

such as regulatory T cells. Another disadvantage of this method is the handling and disposal 

of radioisotopes, and it is therefore performed according to strict procedures.   

The cytokine secretion was measured in cell culture supernatants by employing a bead-

based multiplex system using Luminex 100 technology (paper III). Supernatants from T cells 

stimulated or not and in vitro CSF B cell cultures were harvested after 48 hours and seven 

days respectively, and kept frozen at - 70°C until analysis. In this assay, several populations 
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of beads in suspension are linked to different unique antibodies that can be separated from 

each other based on internal fluorescent dyes. The advantage of this assay is that a large 

number of samples can be analysed simultaneously for the presence of multiple cytokines.   

 

B cell culture 

To examine the clonal patterns of IgG and virus-specific IgG antibodies produced by in

vitro cultured blood and CSF cells, supernatants from short term B cell cultures were studied. 

After collection of CSF, the cells were isolated by centrifugation. To prevent cell loss, CSF 

cells were washed only once in culture medium before cultivation. The blood was obtained 

within 30 minutes of the lumbar puncture, and PBMCs and CSF cells were cultured for seven 

days before the cell-free supernatants were analysed for IgG. In pilot experiments, CSF cell 

cultures from patients with � 10 cells / �l did not secrete detectable amounts of IgG 

(detection limit 0.1 mg / ml) as measured with nephelometry. A short-coming of the 

nephelometry assay is that IgG concentration below 10 mg / ml is not always very reliable, 

however the measured in vitro synthesised IgG concentration correlated well with 

corresponding CSF and serum IgG when analysed on IEF for total oligoclonal IgG (paper I).       

  

Detection of IgG and IgG antibodies

Quantification of GAD65 IgG by radioimmunoassay 

To quantify GAD65 IgG in sera and CSF from SPS and control patients we have used 

RIA, which is a simple, reproducible and standardised assay that is routinely performed at the 

Hormone Laboratory at Aker University Hospital. Briefly, RIA was performed by using in

vitro transcribed and translated [3H]-Leucine labelled humane islet GAD65 (1.8 x 107 dpm / 
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pmol) performed in Escherichia coli (E. coli) (Petersen 1994). Samples were incubated 

overnight with radio labelled GAD65, followed by isolation of immunocomplexes and 

counting of [3H]-Leucine GAD65 in a Microbeta counter. In order to quantify intrathecal 

GAD65 IgG synthesis, serum IgG samples were diluted to the same total IgG concentration 

as in the corresponding CSF sample, and GAD65 IgG activity was then measured in serial 

dilutions of the CSF and adjusted serum pair. The CSF / serum GAD65 IgG ratio was 

calculated from the activity in CSF and serum at three different dilutions, corresponding to 

the most linear part of the titrations curves. 

 The main advantage of RIA is that the immunoreactions occur in free solution, meaning 

that there should be an unrestricted access for antibodies to antigenic epitopes. A potential 

disadvantage is that the in vitro translated GAD65 may not display identical antigenic 

properties as GAD65 expressed in neurons in vivo or in mammalian in vitro expression 

systems, because no posttranslational modifications take place in prokaryote cells such as E.

coli (Petersen 1994).  

 

Qualitative analysis of IgG and IgG antibodies 

The detection of intrathecal synthesis of oligoclonal IgG with IEF is a useful diagnostic 

tool both in MS and other disorders of the CNS (Deisenhammer 2006). IEF with immunoblot 

was used to examine the clonal patterns of intrathecally synthesised IgG and of virus-specific 

IgG antibodies in supernatants of in vitro cultures of PBMCs and CSF cells and in sera and 

CSF from MS and CIS patients (paper I). Additionally, this technique was employed to study 

the clonal patterns of GAD65 IgG antibodies in sera- and CSF-pairs from SPS patients and 

sera from T1D patients (paper II). IEF with immunoblot uses a pH gradient to separate IgG 

populations on the basis of their charge. The isoelectrofocused proteins were then blotted 
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onto membranes with or without antigen, and visualised with enzyme-coupled anti-IgG 

antibodies. IEF is sensitive for detection of intrathecally synthesised IgG and can be 

performed on low amounts of IgG (paper I). However, the technique is even more sensitive 

when antigen coated membranes are used to detect synthesis of oligoclonal antigen-specific 

IgG antibodies as such antibodies are not ′drowned′ by the background of total IgG 

(Deisenhammer 2006; Vartdal 1980).  

A potential drawback of this technique is that when the proteins are immobilised by 

electrostatic polarity and Van der Waals forces on the nitrocellulose membrane, steric 

hindrance may influence antibody access to antigenic epitopes (Vianello 2005). Using RIA 

and IEF with immunoblots, high GAD65 IgG antibody activity and oligoclonal bands were 

detected in sera and CSF in all patients with SPS. In contrast, high GAD65 IgG antibody 

activity was detected by RIA in sera from T1D patients, but no oligoclonal GAD65 IgG 

bands (paper II). These results may be attributed to the well described differences in target 

epitopes of GAD65 IgG antibodies between neurological and diabetes patients (Daw1996).  

 

Avidity and binding capacity of GAD65 IgG antibodies 

In our study we employed Scatchard analysis to determine the KD and Bmax of GAD65 

IgG antibodies from SPS and T1D patients (McPherson 1985). In this competition assay, 

displacement of [3H]-Leucine GAD65 binding to GAD65 IgG antibodies in serum or CSF 

samples by unlabeled GAD65 was performed by adding 0 - 15 pmol unlabeled GAD65. 

Binding data were analysed by non-linear curve analysis according to a one binding site 

model using the computer program KELL (McPherson 1985). Noteworthy, Scatchard analyses 

is not extremely reliable and the values for KD can have high margin of error (McPherson 

1985). Binding studies of antibodies can be carried out by using surface plasmon resonance 
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technique. Although binding studies of antibodies can be carried out by using surface 

plasmon resonance technique, Scatchard analysis is, however, still commonly used (Drake & 

Klakamp 2007).  
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General discussion 

The main general topics in this discussion are: 1) the relevance of CSF lymphocytes for 

the study of the immunopathogenesis of MS and SPS, 2) autoimmunity to GAD65 in SPS, 

and 3) B cell involvement in the intrathecal synthesis of virus-specific IgG antibodies in MS 

and GAD65 IgG antibodies in SPS. 

The relevance of CSF lymphocytes in the studies of MS and SPS 

 From experimental models, in particular EAE, it has become clear that immune 

responses within the CNS have specific characteristics compared with systemic immunity 

(Steinman 2001). In humans, the compartmentalisation of the immune response in CNS is 

underscored by the perpetual intrathecal synthesis of oligoclonal IgG in MS, CNS infections 

and other immune mediated neurological diseases, including SPS (Owens 2006; Dalakas 

2001). CSF T and B cells from MS patients have been reported to be clonally expanded 

(Oksenberg 1990; Wucherpfennig 1992; Qin 1998; Colombo 2000; Owens 1998, 2003; 

Obermeier 2008). As the CSF is contiguous with the extracellular fluid of the CNS, analysis 

of distribution and phenotype of inflammatory cells in the CSF may help us to understand the 

unique immunological conditions within the CNS compartment. 

 

Immune surveillance of the subarachnoid space is not necessarily identical with that of 

the CNS, and whether the IgG production from CSF cells reflects the humoral immune 

response in the CNS is unknown. In support of the relevance of CSF B cells, it has recently 

been shown that transcribed V(D)J genes from CSF B cells correspond with the amino acid 

sequence of CSF Ig (Obermeier 2008). Although the specificity of the main fractions of the 
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oligoclonal IgG is unknown, intrathecal synthesis of oligoclonal IgG antibodies against a 

broad panel of viral agents including MeV, VZV and HSV-1 is a characteristic feature of MS 

(Vartdal 1982). Comparison of the virus-specific IgG in the CSF with that produced in vitro 

by CSF B cells therefore offers a possibility to address whether CSF B cells actually reflect 

the IgG-producing B cells in the CNS. In paper I we therefore asked if the clonal patterns and 

specificities of antibodies to MeV, VZV and HSV-1 produced in vitro by CSF cells from MS 

and CIS patients correspond to that produced intrathecally in vivo. We showed that in vitro 

cultured CSF cells from these patients produced oligoclonal IgG antibodies against the same 

viruses targeted by oligoclonal CSF IgG antibodies synthesised intrathecally in vivo. 

Although the overall numbers of virus-specific IgG bands and their clonal patterns differed, 

the results indicate that the specificities of antibody producing B cells in the CSF reflect those 

of antibody synthesising cells in other locations of the CNS. 

It has been suggested that IgG-mediated complement deposition within MS lesions plays 

an important role in the pathogenesis of the disease (Breij 2008). This might suggest that the 

concentration of the most relevant antibodies is reduced in the CSF, as these antibodies may 

be bound in the MS lesions, or that the antibodies produced from CSF cells represent only a 

fraction of a much larger repertoire of antibody producing cells within the CNS. Likewise, 

the most relevant B cells might be trapped in the tissue, whereas B cells present in the CSF 

might be irrelevant bystanders. B cell clones producing low-avidity virus-specific IgG 

antibodies could possibly be an example of such irrelevant bystanders, as several of the 

viruses targeted by these IgG antibodies are not likely to be present in the CNS. Nevertheless, 

the corresponding specificities between virus antibodies in CSF and in vitro CSF B cell 

cultures highlight the relevance of studying CSF B cells in MS and possibly also in other 
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neurological diseases. The results do, however, not prove that CSF B cells correspond with B 

cells present within the CNS lesions or elsewhere in the intrathecal compartment.  

 

One of the major issues in understanding the pathophysiology of human autoimmune 

diseases is to identify the target antigens that drive the clonal expansion of autoreactive T 

cells. In paper II we showed that the synthesis of GAD65 IgG antibodies in SPS is 

oligoclonal and mediated by a stable population of affinity maturated B cell clones, 

suggesting that these antibodies are produced by B cells having received T cell help. Indeed, 

in paper III, we found evidence suggesting that HLA-DR or HLA-DP restricted GAD65-

specific CD4+ T cells accumulate in the CSF of SPS patients with intrathecal synthesis of 

GAD65 IgG antibodies. Also, in two of the patients studied, we found evidence suggesting 

that identical or closely related GAD65-specific CSF CD4+ T cell clones had been expanded 

in vivo. In contrast, only one GAD65-specific T cell clone could be raised from the blood in 

one of the patients, implying that GAD65-specific T cells from SPS patients had accumulated 

in the vicinity of the diseased organ. 

These results concur with those from other immune mediated diseases, in particular celiac 

disease, showing that disease relevant T cells accumulate in the diseased organ (Molberg 

1998). Notably even though disease-specific T cells from patients with celiac disease and 

T1D can enter the circulation for short periods of time, it has been difficult to identify 

clonally expanded disease specific-T cells in peripheral blood (Hafler 1988; Raki 2007). 

Furthermore, although a lack of a systemic response to insulin peptides in T1D patients, 

expanded T cells recognising an insulin epitope have been observed in draining pancreatic 

lymph nodes (Kent 2005). Together with the findings presented in this thesis, these 

observations support the thought that T cells present in the diseased organ more accurately 



53 

 

reflect the cell population relevant for the disease process. This question has been difficult to 

address in MS and most other immune mediated CNS diseases, because the specificity of the 

immune response is not established. In this context it is also noteworthy that a previous study 

of 36 MS patients showed an overrepresentation of CD8+ T cells expressing particular TCR-

variable � chains in the CSF compared with the blood in the majority of patients, suggesting 

that clonal T cell expansion occurring in the CSF can be detected in MS patients (Jacobsen 

2002). These results concur with the observations on GAD65-specific T cells in SPS 

presented in paper III.  

 

Autoimmunity to GAD65 in SPS 

Do GAD65 antibodies or any of the other SPS-associated autoantibodies described to date 

cause SPS, or are they only markers of autoimmunity? One well-rehearsed argument is that 

SPS autoantibodies are not pathogenic, because they are directed against intracellular proteins 

(Duddy & Baker 2009). This question is, however, beyond the scope of this thesis and will 

therefore not be further discussed. Some of the findings in this thesis may however have 

implications for the understanding of the immunobiology of GAD65 both in SPS and in more 

general terms.    

 

The synthesis of GAD65 IgG antibodies 

Even though T - B cell collaboration has not been studied directly in this thesis, the data in 

paper II and III indicating that clonally expanded GAD65-specific T cells co-exist with 

clonally expanded GAD65-specific B cells in the diseased organ, suggest a role for T cells in 

sustaining the intrathecal synthesis of GAD65 IgG antibodies in SPS. The exact anatomical 
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location for the intrathecal synthesis of GAD65 IgG antibodies in SPS remains unknown. 

Recently, one of the SPS patients studied in this thesis (patient SPS 3) has deceased. His 

symptoms included stiffness and spasms typical of SPS, as well as a malignant course with 

lower motor signs in one leg compatible with PER. This patient displayed intrathecal 

synthesis of oligoclonal GAD65 IgG antibodies as well as clonal expansion of GAD65-

specific T cells. Autopsy revealed unilateral axonal swelling, chromatolysis and vacuolisation 

of anterior horn cells of the lower spinal cord, in addition to discrete infiltration of CD8+ 

cytotoxic T cells and microglial proliferation, but no CD4+ T cells, B cells or plasma cells 

were detected within the inflamed section of the spinal cord or elsewhere in the CNS 

(Holmøy 2009). Obviously, this does not exclude that such cells were present in other 

locations of the CNS than those that were subjected to neuropathological examination. The 

meninges have to my knowledge not been examined in autopsies from SPS patients, and may 

be an important localisation for the intrathecal synthesis of GAD65 IgG. The lack of CD4+ T 

cells, B cells and plasma cells within the inflamed section of the spinal cord may imply that 

the intrathecal synthesis of GAD65 IgG antibodies is not directly related to the inflammation 

associated with tissue destruction (Holmøy 2009). Thus, GAD65-specific T - B cell 

collaboration – if it occurs – rather takes place elsewhere, either in the meninges or in other 

places inside or outside of the CNS. 

Interestingly, as shown in papers II and III, we were not able to clone GAD65-specific T 

cells from CSF from the only SPS patient (SPS 1) without substantial intrathecal synthesis of 

GAD65 IgG antibodies. Given that this patient displayed high GAD65 IgG antibody activity 

and binding capacity in serum, we speculate that physiological transfer of GAD65 IgG 

antibodies from serum to CNS may be sufficient to evoke neurological symptoms (paper II). 

Accordingly, many patients with voltage-gated potassium channel (VGKC) antibodies and 
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immunotherapy-responsive limbic encephalitis do not have oligoclonal IgG bands and their 

CSF is negative for VGKC antibodies (Vincent 2004; Jarius 2008).Thus, the lack of an 

intrathecal GAD65 IgG antibody synthesis does not necessarily exclude autoimmunity. 

 

GAD65 as an autoantigen 

An enduring question in autoimmunity is why only a limited proportion, ~ 2-3 %, of all 

human proteins becomes selected as autoantigens (Plotz 2003). It is striking that most 

autoantigens are localised intracellularly, raising the question of why they are targeted and 

the consequences of the immune response (Fenalti & Rowley 2008). The recent publication 

of N-terminally truncated crystal structures for the two isoforms, GAD65 and GAD67, have 

revealed that only the former has a very flexible and inherently mobile sequence in the C-

terminal region, which may render this region highly available to endopeptidases (Fenalti & 

Rowley 2008). Strikingly, non-obese diabetic (NOD) mice exhibit a spontaneous proliferative 

response to GAD65 at the onset of insulitis (Kaufman 1993; Tisch 1993). The T cell 

responses are initially directed towards a few so-called spontaneous epitopes (residues 509-

528 and 524-543 in the C-terminal, region of the GAD65 molecule) with later spreading to 

other T cell epitopes as the disease progresses (Kaufman 1993; Dai 2005). Interestingly, 

GAD65-specific T cell epitopes from one of the SPS patients (SPS 2) were localised within 

the C-terminal region (residues 474-484 and 555-565) of GAD65. This is in line with 

previous findings in T1D showing that T cell epitopes to GAD65 localise to residues 481-

495, 511-525 and 551-585 (Patel 1997; Nepom 2001). Furthermore, the C-terminal region is 

also targeted by CD8+ T cells and of interest, tolerance-inducing DNA coding for the C-

terminal region, GAD500-585, has been shown to protect NOD mice from diabetes (Quinn 

2001; Han 2005).  
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Furthermore by combining the N-terminally truncated high-resolution crystal structure of 

GAD65 with an “immunological” panel of 11 monoclonal antibodies to GAD65 established 

from T1D patients, the location of antibody epitopes on GAD65 has been examined (Fenalti 

2008). Two mutually exclusive clusters of B cell epitopes have been defined on opposing 

faces of the C-terminal domain of GAD65 in T1D (Fenalti 2008). Notably, T cell epitopes 

from T1D patients are localised to the same surface region of GAD65 (Fenalti & Rowley 

2008). Of interest, T and B cell epitopes from T1D patients overlap on GAD65, but the 

immunological meaning of this remains to be understood. While antibodies to GAD65 from 

T1D patients recognise mainly conformational epitopes, additional linear epitopes on GAD65 

are recognised in SPS (Lernmark 1996). Particularly, an N-terminal linear epitope that 

distinguishes sera from SPS and T1D has been repeatedly reported (Butler 1993; Kim 1994; 

Raju 2005). None of the GAD65-specific T cell epitopes from the SPS patients studied, paper 

III, overlapped with the identified linear N-terminal GAD65 antibody epitope (residues 4 - 

22). As no monoclonal antibody to GAD65 has been established from SPS patients until now, 

it cannot be excluded that the GAD65 T cell epitopes may overlap with other B cell epitopes 

to GAD65 characteristic for SPS. This question also needs to be addressed in SPS, to provide 

more insights into the GAD65 immunobiology.   

 

Breaking tolerance to GAD65 

Although a number of mechanisms have been proposed and contributing genes have been 

identified, the cause of autoimmunity is still elusive. As in most autoimmune diseases, the 

factors initiating loss of tolerance to GAD65 in SPS are not clear.   

In paper III we report two DP-restricted CSF T cell clones that initially responded weakly 

to rhGAD65 protein but later failed to respond to several batches of rhGAD65 protein. These 
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clones responded vigorously and persistently to synthetic GAD65 peptides, residues 474-484, 

showing that the failure to recognise rhGAD65 protein was not due to loss of responsiveness 

or specificity. Although we cannot exclude difference in quality between the different 

rhGAD65 protein preparations, it is peculiar that this epitope carries a cysteine residue (C474) 

found to be critical for T cell recognition. The six cysteine residues located in the N-terminal 

domain of GAD65 have been shown to form disulfide bonds in vitro (Battaglioli 2005). The 

C474 residue may be involved in a disulfide bond that is structural protected, and may 

therefore potentially be part of a cryptic epitope that has not been presented to T cells during 

T cell education in thymus. Under normal physiological conditions, cryptic epitopes are 

inefficiently processed and presented (Sercarz 1993). However, under inflammatory and 

other immunostimmulatory conditions, upregulation of antigen processing events can lead to 

enhanced processing, including enzymatic cleavage of disulfide bonds, and presentation of 

the cryptic epitopes by the APCs (Lehmann 1992). This may lead to the priming of cryptic 

epitope-specific T cells. Notably, the GAD65-specific T cells (paper III) produced substantial 

amounts of IFN-�, which among other functions could induce expression of IFN-� dependent 

proteases within the CNS. Moreover, further studies must be conducted to determine if 

oxidation of cysteine indeed is the cause of an inefficient processing of the GAD65 epitope. It 

is, however, an intriguing possibility that the relatively cryptic GAD65 epitope, residues 474-

484, has been unmasked by intrathecal APC during the diseases process of SPS, and therefore 

made available for intrathecal T cells.  

 

In paper II we showed that the intrathecally and systemically synthesised GAD65 IgG 

antibodies in SPS generally have high binding avidity, and that the avidity was higher in CSF 

than in serum in some patients. Yet, how the antibodies can influence antigen processing and 
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thereby affect GAD65 presentation to T cells in SPS is unknown. One possibility is that 

GAD65 IgG antibodies bind GAD65, thereby enhancing uptake and presentation of GAD65 

by APCs. Numerous studies have shown that soluble monoclonal antibodies can increase 

presentation of the antigen they bind to by facilitating antigen capture through fragment 

crystallisable receptors (Ravetch & Bolland 2001). A study using GAD65IgG antibody-

positive sera from T1D patients found enhanced presentation of an immunodominant T-cell 

epitope when GAD65 immune complexes rather than antigen alone were used to stimulate 

PBMCs (Reijonen 2000). However, it has been observed that high affinity antibodies does 

not dissociate from antigen at mildly acidic pH of the processing compartment and, therefore, 

the substrate for proteases is the antigen - antibody complex rather than antigen alone 

(Lanzavecchia 1995). In APCs antigen-antibody complexes can remain intact after 

internalisation and fragmentation by proteases along the antigen-processing pathway, thus 

protecting residues from proteolysis and thereby modulate the presentation of peptides to T 

cells (Quaratino 2005). Consequently, the fine specificity of a soluble antibody that binds to 

an antigen can affect the processing and presentation of T cell epitopes by either boosting or 

suppressing a particular epitope (Simitsek1995; Watts & Lanzavecchia 1993). Interestingly, it 

has been demonstrated in T1D that GAD65-specific B cells and antibodies can modulate the 

autoimmune T cell repertoire by down-regulating T cell epitopes in an immunodominat area 

whilst boosting distant or cryptic regions (Jaume 2002; Banga 2004). Whether the 

autoimmune GAD65-specific B cells and the antibodies they secrete may play a role in 

shaping the autoimmune T cell responses in SPS have not been elucidated. The results 

presented in paper II and III do; however, show that some of the requirements for such T-B 

cell collaboration are present in the intrathecal compartment of patients with SPS. Further 

studies are, however, required to reproduce this. Understanding how GAD65 antibodies can 
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influence presentation of T cell epitopes may hold important clues on the mechanisms 

controlling autoimmunity both in SPS and T1D.  

 

Antibody secreting cells of the intrathecally synthesised virus-

specific IgG antibodies in MS and GAD65 IgG antibodies in SPS 

The mechanisms of the perpetuating intrathecal synthesis of virus-specific IgG antibodies 

and GAD65 IgG antibodies in MS and SPS respectively, are not known. It has been shown 

that the clonal patterns of virus-specific oligoclonal IgG antibodies in MS may be dynamic 

during early stages of the disease, but that they mainly remain stable (Sandberg-Wollheim 

1987). In paper I, we showed that BAFF supplementation did not affect the amount of IgG or 

clonal patterns of virus-specific IgG antibodies produced by in vitro CSF cell cultures, 

indicating that cells producing these antibodies are of plasma cell phenotypes not affected by 

BAFF, as only transitional phases of B cells express BAFF-receptors (Dalakas 2008).  

Interestingly, it has been observed that anti-CD20 B cell depleting treatment in relapsing-

remitting MS patients significantly decreases the number of B cells in peripheral blood and 

CSF, and in addition depletes B cells from cerebral perivascular spaces, while the 

intrathecally synthesised oligoclonal IgG bands remain unaffected (Hauser 2008; Stuve 2005; 

Martin Mdel 2009; Monson 2005). This may indicate that the intrathecal synthesis of 

oligoclonal IgG antibodies in MS is generated from long-lived plasma cells not affected by 

the treatment, as CD20 is not expressed on plasma cells. The tendency of the oligoclonal IgG 

bands to persist in MS patients with anti-B cell depletion therapy may imply that the CNS 

provides a long-term survival niche for plasma cells producing antibodies that are not directly 

involved in the pathogenesis (Meinl 2006). It would be interesting to examine the persistence 
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of intrathecal virus-specific oligoclonal IgG antibodies after anti-CD20 B cell depletion to 

further understand the role of both these B cell subsets and virus-specific antibodies in MS 

pathogenesis.  

In paper II we reported that class-switched, high avidity GAD65 IgG antibodies in the 

CSF and serum from SPS patients are oligoclonal. In addition, the pattern of oligoclonal 

GAD65 IgG bands in CSF and serum in three SPS patients remained unchanged several years 

after symptom debut. Notably, these patients have not received immunomodulating drugs that 

could alter the immune response to GAD65. Of interest, a single case report on an SPS 

patient demonstrated a rapid decline of intrathecal GAD65 IgG antibodies following anti-

CD20 treatment, which suggested a successful targeting and elimination of autoantibody 

producing B cells within the CNS (Baker 2005). Furthermore, clinical trials with B cell 

depletion in other autoimmune diseases, such as RA and SLE, reported that certain 

autoantibodies, anti-DNA and rheumatoid factor, decayed after anti-CD20 B cell therapy 

(Cambridge 2003; Sfikakis 2005; Ahuja 2007). It is tempting to speculate that the 

continuously produced GAD65 IgG antibodies in SPS patients are being generated rapidly 

from renewing CD20+ B cell precursors, most consistent with the short-lived plasmablasts 

pathway. This is indeed consistent with our findings of intrathecal GAD65-specific T cells in 

paper III. Whether GAD65 specific B cells are also involved in antigen-presentation to 

GAD65-specific T cells is unknown. This may imply that the autoantibody response, 

although chronic in terms of the individual, may be a dynamic and ongoing process 

(Shlomchik 2008). 
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Future perspectives 

Human monoclonal GAD65 IgG antibodies from SPS patients 

Although the results presented in this thesis show that GAD65-specific T and B cells 

coexist intrathecally in SPS patient, their role in the pathogenesis remains unknown.  

To establish whether epitope-specific GAD65 antibodies have a role in the pathogenesis 

of SPS will require in vivo transfer studies of GAD65 antibodies from SPS patients. As 

GAD65 antibodies in CSF and serum may have different properties regarding epitope 

specificity and avidity, and because GAD65-specific antibodies only comprise a small 

fraction of IgG from serum and CSF, such experiments should ideally be performed with 

purified CSF and serum antibodies from SPS patients. Unfortunately, it is not likely to be 

feasible to obtain sufficient quantities of GAD65 antibodies from CSF of SPS patients. 

Moreover, it would not be very difficult to identify which of the many GAD65 specific IgG 

clones present in serum or CSF samples that eventually mediate the pathogenic effect. An 

alternative approach would be to use monoclonal antibodies with distinct epitope 

specificities. CSF B cells have previously been cloned from the CSF of MS patients in our 

laboratory (Holmøy 2005). Yet the limited number of antigen specific B cells has so far 

precluded the cloning of human GAD65 specific CSF B cells.  

To approach this issue, we are in the process of establishing a method for making human 

monoclonal antibodies based on an improved method for EBV immortalisation of human 

memory B cells (Traggiai 2004). The advantage of EBV-immortalised B cells is to have a 

continuous and direct source of GAD65-specific antibody secreting and antigen presenting 

cells. Additionally, B cell lines producing monoclonal GAD65 IgG offering a possibility to 

characterise monoclonal antibodies on the protein and DNA level to clarify the role of 
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epitope specificity, affinity maturation and selection of GAD65-specific IgG antibodies in 

SPS. Moreover, they could be valuable tools for the study of T - B cell collaboration in SPS. 
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