
STSM Report - GDIF Development at McGill

Alexander Refsum Jensenius
Musical Gestures Group

University of Oslo

February 2007

This report summarises the results of my COST Action 287 ConGAS Short Term Sci-
entific Mission (STSM) to the the Input Devices and Music Interaction Laboratory
(IDMIL) at McGill University in February 2007.

1 Prelude
The aim of the STSM was to continue development of the Gesture Description In-
terchange Format (GDIF). GDIF was suggested in [Jensenius et al., 2006] as a tool
for standardising the way we describe, stream and store music-related movement data.
This initiative grew out of the need to share data between some of the partners in the
ConGAS project. Since most of our equipment use different standards for sending and
storing information, we encountered numerous obstacles when it came to synchronis-
ing and storing the movement data. Similar problems were found when trying to store
and share analysis results. Thus the need for a common standard for streaming and
storing music-related movement data.

So far, two prototype setups have been developed and presented: using multi-
layered GDIF streams for controlling sound spatialisation in realtime using hand move-
ments [Marshall et al., 2006]; and analysis of instrumental gestures in violin perfor-
mance [Maestre et al., 2007]. This report will present and discuss the current state of
development as of February 2007.

Throughout the report, I will use movement to denote the act of changing physical
position of one or more objects; action will be used for goal-directed movement or
manipulation; and gesture will be used to denote the meaning aspect of the actions, i.e.
the perceived qualities of actions.

1.1 Streaming and Storage
GDIF is currently being developed along several lines: an implementation for realtime
control of sound synthesis, and two different storage alternatives. As Figure 1 shows,
movement can be captured by sensor devices which output a stream of raw data. The
data are then processed in various ways (see next section) and sent out as GDIF streams
on the network1 to control audio/video synthesis models in realtime.

1Typically using UDP/IP for communication but other protocols could also be possible

1

http://www.arj.no
http://musicalgestures.uio.no
http://www.uio.no
http://www.cost287.org
http://www.cost287.org/documentation/stsms/index.html
http://www.music.mcgill.ca/musictech/idmil/indexhome.htm
http://www.mcgill.ca


Movement Sensor device UDP/IP

SDIF

XML

Data Realtime 
model

Analysis

GDIF

GDIF

Realtime
Non-realtime

AnalysisAnnotations

Figure 1: Sketch of data flow for GDIF streaming and storage.

The GDIF streams can also be sent to a data logger, and in our current setup we
have been testing IRCAM’s FTM tools2 for storing the data as streams in SDIF-files3

in Max/MSP. As discussed in [Maestre et al., 2007], the data can later be analysed and
stored in structured XML files which will simplify further analysis.

One thing is to be able to store data from various devices, and synchronise these,
but we are also interested in storing and synchronising with audio and video recordings,
as well as manual annotations and other qualitative data. In an ideal system, it should
be possible to easily and quickly retrieve all these different forms of data and media at
any point in time. This would provide an efficient tool for further analysis and sharing.
A sketch of some of the content of such a multilayered GDIF file is shown in Figure 2.

time

Raw data

Trajectories

Segmentation 1

Segmentation 2

Descriptions

Sections

head up breathing left arm turn

Velocity

Intensity

1a 1b 2a 2b 2c 3a 3b 3c

Laban effort 
parameters

breathing

quantitative

qualitative

Figure 2: Sketch of movement data that could be stored in a GDIF file.

Notice that we are also open for including multiple versions of data (e.g. segmentation),

2http://freesoftware.ircam.fr/wiki/index.php/FTM
3The Sound Description Interchange Format (SDIF) was developed in the late 1990s as a tool for storing

results of audio analysis, e.g. F0 and spectral data [Wright et al., 1998]. GDIF can be considered a sibling
of SDIF.

2

http://freesoftware.ircam.fr/wiki/index.php/FTM


which will allow several researchers to work on the same material and store analysis
results next to each other.

The rest of this presentation will focus on the realtime implementation of GDIF,
which was the primary aim of my STSM to McGill.

2 Multilayered Namespaces
The realtime implementation of GDIF is based on OSC4. The open and flexible struc-
ture of OSC, with no namespaces defined by the standard, has caught on well in the
research community, but has yet to be adopted at a larger scale. Thus, while being one
of its strengths, this flexible structure is probably also the greatest weakness. Through-
out the years there have been some attempts to create common namespaces (see for
example [Wright et al., 2001]), but so far nothing has been agreed upon.

While we do not intend to create namespaces that will satisfy everyone, we hope
that the approach we have chosen in GDIF development can also be useful for the com-
munity at large. We are currently using a namespace structure which is modelled after
ideas of splitting descriptive and functional analysis presented in [Ramstein, 1991].
We also believe it is important to separate data resulting from analysis from the raw
and pre-processed movement data. The layout that we are currently working from is
sketched in Figure 3.

NamespaceAnalysis

Movement Sensor device Raw Data Pre-
processing

/body

/instrument

/environment

/performance

Descriptive

Functional

Meta /emotion

/raw

/cooked

Figure 3: A sketch of how we envisage a multilayered OSC namespace in GDIF.

The rest of this section will describe the general ideas for each namespace, while
Section 3 will show an example of an implementation which might help to clarify
our thoughts. Before delving into the discussion, I should mention a disclaimer: this is
work in progress. Nothing has yet been fixed, and everything is still open for discussion
and reconsideration!

4Open Sound Control

3

http://www.opensoundcontrol.org


2.1 Acquisition
The acquisition layer is handling what could be considered pre-analysed data, what we
have chosen to call the raw and cooked layers.

2.1.1 Raw

The namespace for the raw layer is supposed to pass on the data in the same form as
it is received. It is very seldom that we actually use raw data for anything, since it
is typically scaled and filtered before passed on, but we find important to be able to
access the original data to for example check the validity of some experiments. As far
as possible, the subnamespace for the raw data should reflect the structure that the raw
data is transmitted in (if possible).

2.1.2 Cooked

The cooked layer would typically pass on data that is low-pass filtered (to remove noise
in the signal), normalised and/or scaled to some useful range. This is the data that we
would probably use as the basis for further processing and analysis.

2.2 Descriptive
The descriptive layer is focusing on streaming and storing the kinematics of the move-
ments. At this stage, we are still only considering the continuous flux of movement, as
the actions will be described in the functional layer.

Considering the descriptive aspect of movement, there often seems to be some
confusion in terms of the analytical perspective taken (see [Kvifte and Jensenius, 2006]
for more on this). The descriptors often mix body-centred and instrument-centred data,
and often fail to take into account how both the body and the instrument exists in
space. We therefore suggest to split the descriptive layer into categories representing
three analytical perspectives: body, device and environment.

2.2.1 Body

The body layer is looking at actions "through the eyes" of the performer, and is coding
the data with respect to this person. As the example in the next section will show,
we use a body-centred namespace, naming the hand, finger, etc. The idea is that these
descriptions should be independent of the instrument, so that it is also possible to create
mappings on a body-level which would remain constant even though the device is
interchanged.

2.2.2 Device

The device layer codes data with respect to the sensor, instrument or controller used.
Here, the performer and performer’s movements are not relevant at all, as it is only the
button, slider, etc. which is in focus.

2.2.3 Environment

The environment layer is intended for coding information about the relationship be-
tween various bodies and devices in a space, and/or the relationship between the bod-
ies/devices and the space. This is typically useful if the performer’s position in space

4



is important (e.g. for controlling spatialisation), or the relationship between several
performers. For a more traditional setup with one performer and one instrument this
namespace is probably not applicable.

2.3 Functional
The functional layer is where we start analysing the actions of the performer, and the
function of the action. We are particularly interested in trying to code the actions
so that they can be easily mapped to corresponding sound synthesis parameters. The
namespace is inspired by the taxonomy of instrumental gesture (which I would call
instrumental action) as summarised in [Cadoz and Wanderley, 2000].

2.3.1 Excitation

We are looking for whether the action could be classified as:

• Impulsive An instantaneous energy transfer with no control of the tone after the
attack, e.g. percussion and piano instruments.

• Continuous A continuous energy transfer allowing for continuous control of the
tone, e.g. wind and string instruments.

• Iterative A combination of impulsive and continuous, with rapid repeated impul-
sive attacks, e.g. shakers and other percussion instruments.

This is not an easy task, and we believe that coding this is an important part of the
design of a new instrument and/or composition for an instrument.

2.3.2 Modulation

Actions that result in modulation of the sound can be classified as:

• Parametric Continuously changing a parameter, e.g. bow pressure in violin per-
formance.

• Structural Modifying or changing the structure of the object, e.g. key in a wind
instrument.

2.3.3 Selection

Selection would imply choosing among different structures, but without any sound-
production or object modification, e.g. choosing which string to play on, or the bowing
direction in string instruments.

2.3.4 Performance

It would also be relevant to code data using vocabulary from music performance, such
as:

• The dynamics of the performance, i.e. ppp - FFF

• The playing style, i.e. staccato or legato

• ...

5



2.4 Meta
The meta layer is focusing on the meaning of the actions (i.e. the gesture), e.g. imag-
ined emotional quality, or what is often referred to as expressive gesture qualities [Ca-
murri et al., 2003]. We have not worked on this so far, but believe it is important to
keep this aspect in mind while developing GDIF.

3 A Max/MSP Implementation
To test the theoretical ideas in practice, I have transformed jmod.mouse, a simple
Jamoma module returning data about the computer mouse connected to the system,
into a GDIF-compliant module called jmod.mouse.gdif. The computer mouse is not
the most exciting device for musical control purposes, but it was chosen as an easy
and versatile case study. The module can be downloaded from Jamoma’s repository at
SourceForge (currently at revision 1631).

3.1 Jamoma
Jamoma is an open-source project5 based on the engine of Jade6 by Tim Place [Place
and Lossius, 2006]. It is currently being developed by a small team including several
researchers affiliated with ConGAS. The idea is to develop a flexible framework for
creating modules within Max/MSP, as well as developing a number of modules that
can be easily combined by the end user. The aim is to help Max/MSP developers to
work more efficiently, and share more of their work, as well as allow end users the
power of Max/MSP while not having to learn it from the ground up.

Jamoma is based around jcom.hub providing a centralised router for all informa-
tion passed between modules. By using OSC internally, Jamoma is also flexible when
it comes to control, and being controlled by, other systems.

A Jamoma module typically consists of several files, splitting the GUI from the
algorithm. For example, the jmod.mouse.gdif module consists of the following files:

• jmod.mouse.gdif.mxt the graphical interface of the module.

• jalg.mouse.gdif.mxt the algorithm doing all the processing.

• jmod.mouse.gdif.help the help file showing how the module can be used.

• jmod.mouse.gdif.xml the preset file including the initial values of the module.

The rest of this section will present the jmod.mouse.gdif module. I will not go into
details about the implementation, but rather focus on the functionality that is offered
when using GDIF.

3.2 jmod.mouse.gdif
The help file of jmod.mouse.gdif can be seen in Figure 4. It consists of the module
itself with rather self-explanatory parameters: choosing whether to poll or sample data,
sampling rate and choice of reference point. Data are output through the left outlet and

5Jamoma is licensed under GNU LGPL
6http://www.electrotap.com/jade/

6

http://www.jamoma.org
http://sourceforge.net/projects/jamoma/
http://www.electrotap.com/jade/


is formatted as OSC streams that can be easily parsed by an OSC router7. I have chosen
to leave the data output from the original module untouched to not break compatibility
with the previous version of the module, but will focus on the GDIF data in the rest of
this section.

Figure 4: Help file of the Jamoma module jmod.mouse.gdif for outputting data from
computer mouse.

An inspector button is available in the upper right corner of the module, which
opens the inspector window where it is possible to choose which GDIF streams to
output (Figure 5). Since most of the GDIF data will probably be redundant most of the
time, we decided to leave it up to the end user to choose whether data should actually
be sent or not, to prevent flooding the system/network with too much data. The rest of
this section will focus on the namespace used for each of the layers described above.

Figure 5: The inspector window of the module.

7I use Jamoma’s jcom.oscroute but CNMAT’s osc-route would also work.

7



3.2.1 Acquisition

Figure 6 shows the subpatch parsing the acquisition layer. The raw data layer contains
the data as it is output from the mousestate Max object which is at the heart of the
module. It is formatted using the following namespace:

/gdif/raw/button <1/0>
/gdif/raw/location/horizontal <pixels>
/gdif/raw/location/vertical <pixels>

The use of location/horizontal and /vertical in the namespace is because these are
the names of the outlets of the Max object (and are probably more meaningful than
most other raw data names that we will come across). The most important is to keep
the information about raw data so that it is possible to go back and check if necessary.

Figure 6: Subpatch parsing the acquisition layer of the jmod.mouse.gdif, consiting of
the raw and cooked data layers.

The other half of the the acquisition layer shown in Figure 6 shows the pre-processed
data. In this example these data have been normalised to a 0.–1. range based on di-
viding the location of the mouse (in pixels) by the dimensions of the computer screen
(in pixels). The values have also been changed so that origo is now in the bottom left
corner of the screen as opposed to upper left corner for the raw data. This seems to be
more in line with how we would think about the position of the mouse.

/gdif/cooked/button <1/0>
/gdif/cooked/location/horizontal <0. - 1.>
/gdif/cooked/location/vertical <0. - 1.>

3.2.2 Descriptive

Figure 7 shows the descriptive data layers. These layers could be considered as trans-
formations of the cooked layer with respect to either the body of the performer, the
device or the environment.

First, the body layer consists of the following namespace:

/gdif/body/hand/right/finger/2/press <1/0>
/gdif/body/hand/right/location/horizontal <-1. - 1.>
/gdif/body/hand/right/location/vertical <-1. - 1.>

8



Figure 7: Subpatch parsing the descriptive layer.

Notice how we use values in the range between -1. and 1. This is because we imagine
that the user will have a home position which is surrounded by an action space on all
sides. This might be different in other action modes.

Similarly, the device layer consists of the following namespace:

/gdif/device/mouse/button/1/press <1/0>
/gdif/device/mouse/location/horizontal <-1. - 1.>
/gdif/device/mouse/location/vertical <-1. - 1.>

For the case of the mouse, where the location of the mouse and the location of
the body fall together, this layer outputs the same values as the body layer, but with a
different namespace.

We have started developing namespaces for a number of different devices, and
imagine having a library of generic device types to choose from when encoding the
data. For example, most mice, game controllers and MIDI keyboards look and work
more or less similarly, even though there might be manufactural differences. Thus,
they might output somewhat different raw data, but the descriptive data would be coded
according to some generic norm for the device.

3.2.3 Functional and Meta layers

I have only briefly started to implement functional and meta layers for the mouse mod-
ule, but these are not yet finished so I will leave that discussion for later. An important
question to consider in relation to this is whether the processing of such layers should
be handled in the module itself, or whether it would be better to have a separate module
that could be connected. I tend to think that the latter would be better. The functional
and meta layers deal with data that can be calculated from the other layers, and can
often be based on processing that can be reused for other modules, e.g. calculating
velocity and acceleration, segmentation, etc.

What is most important is that it should be fairly simple to make changes in the
namespace and/or scaling to reflect the setup used. Even though it would be interesting
to strive for some kind of "universal" coding of both the functional and meta layers,

9



I believe this would be very difficult. The interpretation of the data is very much de-
pendent on the use, and it could also be seen as part of the mapping process to do the
analysis and set up a namespace that works well.

4 Mapping
One of the main ideas behind the realtime implementation of GDIF is to allow for
quickly creating mappings between movement/action/gesture and sound. At first sight
it might seem cumbersome to create such a large namespace for a simple device, as
probably a lot of the information will be redundant. However, we believe it could also
be the basis for a very flexible system that could feel liberating to work with.

In the IDMIL, as in many other music technology labs, there are a large number
of controllers, synthesisers and computers. We envision a setup where everything can
be connected in any way anytime. Then it is possible to really test out various action-
sound couplings by just creating mappings from one device to another.

There are already some mapping modules available in Jamoma, that allow for easily
creating mappings within Max/MSP. Joe Malloch is also working on a more general
mapper, built in Max/MSP but with the scope of working as a standalone, which is
similar to the way Jack and Soundflower routes audio information. Even though this is
a one-to-one mapper, we believe that the added flexibility of the many layers in GDIF,
many of which are based on multidimensional transformations, will allow for a much
more flexible mapping process than is currently used in many systems.

4.1 ZeroConf
An important part of creating a mapper that works in a multi-device/computer setup, is
to figure out how to easily and efficiently send data between devices. After coming up
with a number of different solutions, we have tested using ZeroConf8 for the discov-
ery of addresses and namespaces. This protocol is currently implemented as Bonjour
in Mac OS X and is also available for other platforms. The good thing about Zero-
Conf is that it handles port allocation automatically and makes it is easy to distribute
information about clients that are available on the network.

Our current idea is to use ZeroConf for announcement and discovery of devices
and modules on the network, and develop a system for doing handshaking and set up
communication between modules. Some ideas about this was presented at the OSC
meeting during NIME 2006 [Jazzmutant, 2006], and we will be actively involved in
discussing this further within the OSC community.

During my STSM, I worked with Steve Sinclair testing ZeroConf in OS X and
Linux. After some fiddling, we managed to get the OSCBonjour externals9 by Remy
Mueller to work between different platforms. Our testing looks promising and we will
continue to follow this path in further development.

5 Postlude
Based on my frustration of working with equipment and software that was using totally
different standards (if any standard at all...), I started thinking about GDIF two years

8http://www.zeroconf.org/
9OSCBonjour external

10

http://www.music.mcgill.ca/musictech/idmil/indexhome.htm
http://www.zeroconf.org/
http://recherche.ircam.fr/equipes/temps-reel/movement/muller/index.php?entry=entry061110-193705


ago. We have come a long way when it comes to clarifying needs and sketch paths for
further development since then, but there is a much longer road ahead of us. A number
of challenges will have to be discussed and solved in the future:

• Namespace. The ideas presented in this report are in continuous revision. As
we have a bottom-up approach to the namespace, implementing whatever we see
that we need for our research, it will hopefully slowly develop into a more solid
and general structure.

• Units. Right now we are using all sorts of units for storing data, and we want to
be able to have a flexible system that can handle any type of unit we might want
to use. To be able to structure this, we are thinking about creating a unit library
that can store information about all the units we are using. This should also
include information about unit conversion to allow for easy mapping between
modules using different modules.

• Handshaking. We need to develop a robust system for creating handshaking
between devices, modules etc. This seems to be on the agenda for OSC 2.0, so
we will follow this development closely.

• Efficiency. We are currently using a verbose namespace, and will have to look
at how to more efficiently handle data flow. We have had numerous discussions
on how to allocate different ports for heavy traffic as well as using OSC aliasing,
but this will have to discussed and tested more in the future.

• Storage. So far, the focus has been on making a prototype for realtime process-
ing, but we also need to get back to handle storage and synchronisation of data.

We plan the following short term actions/activities:

• Submit a joint publication to ICMC 2007.

• Propose a panel session on movement/action/gesture data formats for ICMC
2007.

• Discuss GDIF development during the Jamoma developer’s workshop in Albi in
March 2007.

• Organise a GDIF workshop in Oslo in 2007 to continue development.

6 Acknowledgments
Thanks to ConGAS for granting this STSM and to Marcelo M. Wanderley for hosting
me. The work was carried out in collaboration with Steve Sinclair and Joe Malloch.
Thanks also to Nils Peters, Mark Marshall and Carmine Casciato for good discussions
during my STSM, and to the virtual presence of the Jamoma developers: Tim Place,
Trond Lossius, Pascal Baltazar and Dave Watson.

11



References
Cadoz, C. and M. M. Wanderley (2000). Gesture-music. In M. M. Wanderley and

M. Battier (Eds.), Trends in Gestural Control of Music [CD-ROM], pp. 71–94. Paris:
IRCAM - Centre Pompidou. 5

Camurri, A., B. Mazzarino, and G. Volpe (2003). Analysis of expressive gestures in
human movement: the eyesweb expressive gesture processing library. In Proceed-
ings of the XIV Colloquium on Musical Informatics (XIV CIM 2003), Firenze, Italy,
May 8-9-10, 2003. 6

Jazzmutant (2006). Extension and enchancement of the osc protocol. Draft Presented
at the OSC-meeting at NIME 2006, IRCAM, Paris. 10

Jensenius, A. R., T. Kvifte, and R. I. Godøy (2006). Towards a gesture description
interchange format. In Proceedings of New Interfaces for Musical Expression, NIME
06, IRCAM - Centre Pompidou, Paris, France, June 4-8, pp. 176–179. 1

Kvifte, T. and A. R. Jensenius (2006). Towards a coherent terminology and model
of instrument description and design. In N. Schnell, F. Bevilacqua, M. Lyons, and
A. Tanaka (Eds.), Proceedings of New Interfaces for Musical Expression, NIME 06,
IRCAM - Centre Pompidou, Paris, France, June 4-8, pp. 220–225. Paris: IRCAM -
Centre Pompidou. 4

Maestre, E. G., J. Janer, A. R. Jensenius, and J. Malloch (2007). Extending GDIF for
instrumental gestures: the case of violin performance. In Submitted to NIME 2007,
New York. 1, 2

Marshall, M. T., N. Peters, A. R. Jensenius, J. Boissinot, M. M. Wanderley, and
J. Braasch (2006). On the development of a system for gesture control of spa-
tialization. In Proceedings of the International Computer Music Conference, 6-11
November, New Orleans, pp. 360–366. 1

Place, T. and T. Lossius (2006). Jamoma: A modular standard for structuring patches
in max. In Proceedings of the 2006 International Computer Music Conference, 6-11
November, New Orleans. 6

Ramstein, C. (1991). Analyse, représentation et traitement du geste instrumental.
Thèse de docteur ingénieur spécialité informatique, Institut National Polytechnique
de Grenoble. 3

Wright, M., A. Chaudhary, A. Freed, D. Wessel, X. Rodet, D. Virolle, R. Woehrmann,
and X. Serra (1998). New applications of the sound description interchange for-
mat. In Proceedings of the International Computer Music Conference, Ann Arbor,
Michigan, pp. 276–279. 2

Wright, M., A. Freed, A. Lee, T. Madden, and A. Momeni (2001). Managing complex-
ity with explicit mapping of gestures to sound control with OSC. In Proceedings of
the 2001 International Computer Music Conference, Habana, Cuba, pp. 314–317. 3

12


	Prelude
	Streaming and Storage

	Multilayered Namespaces
	Acquisition
	Raw
	Cooked

	Descriptive
	Body
	Device
	Environment

	Functional
	Excitation
	Modulation
	Selection
	Performance

	Meta

	A Max/MSP Implementation
	Jamoma
	jmod.mouse.gdif
	Acquisition
	Descriptive
	Functional and Meta layers


	Mapping
	ZeroConf

	Postlude
	Acknowledgments

