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Abstract

In cognitive music research, ones main focus is the relationship between music and human beings. 

This involves emotions, moods, perception, expression, interaction with other people, interaction 

with musical instruments and other interfaces, among many other things. Due to the nature of music 

as a subjective experience, verbal utterances on these aspects tend to be coloured by the person who 

makes them. Such utterances are limited by the vocabulary of the person, and by the process of con-

sciously transforming these inner feelings and experiences to words (Leman 2007: 5f). Thus, gesture 

research has become extensively popular among researchers wanting a deeper understanding of how 

people interact with music.  In this kind of research, several different methods are used, using for 

example infrared-sensitive cameras (Wiesendanger et al. 2006) or video recordings in combination 

with MIDI (Jabusch 2006). This paper presents methods being used in a pilot study for the Sensing 

Music-related Actions project at the Department of Musicology and the Department of Informatics 

at the University of Oslo. Here I will discuss the methods for apprehending and analysing gestural 

data in this project, especially looking into use of sensors for measuring movement and tracking 

absolute position. In this project,  a superior goal is to develop methods for studying gestures in 

musical performance. In a large view this involves gathering data, analysing the data and organizing 

the data in such a way that we ourselves and others easily can find and understand the data.

The sensors

We are working with sensors for measuring acceleration/movement, position and muscle contrac-

tion. For movement tracking we are using the PhidgetAccelerometer 3-axis. The accelerometer con-

nect to a computer via USB, which makes it easy to work with on any computer. It outputs data at a 

sample rate up to 60 Hz, which should be more than enough for tracking human movements. The 

accelerometer outputs three values (X, Y, Z) referring to acceleration values along the three axis of a 
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Figure 1: Accelerometer in coordinate system
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three-dimensional coordinate system (figure 1). 

The accelerometer outputs both dynamic acceleration, i.e. change in velocity per time unit, 

and static acceleration which means the current tilt of the accelerometer. The latter is added as a off-

set to the three values. The way this offset is added is not mentioned in the documentations of either 

the  Phidget-Accelerometer 3-axis1 or the ADXL3302 (which is the acceleration  chip on the acceler-

ometer), but by looking at the data from the accelerometer, when it is kept still, it seems that this off-

set is added to the x, y and z axis as outlined in equation 1. This is shown by the accelerometer data 

in table 1. 

 x2 y2z2=1  

Equation 1: relationship between accelerometer values

Equation 1 shows that largest sum of offset added to the three variables is just below 1.8. This is 

relevant to the analysis at the end of this paper.

The data from the accelerometer is measured in gravities (G), e.g. a data output of 1 means 

9.81 m/s2. According to the manufacturer, the accelerometer can sense acceleration of up to 3 G in 

each direction,3 even so, it outputs data between -5 and +5. This is the sum of static and dynamic 

acceleration. I interpret this as the sensor being capable of measuring dynamic acceleration up to 4 

G, but that when the dynamic acceleration exceeds 3 G, the data becomes less reliable.

1 http://www.phidgets.com/documentation/Phidgets/1059.pdf
2 http://www.analog.com/UploadedFiles/Data_Sheets/ADXL330.pdf
3 http://www.phidgets.com/documentation/Phidgets/1059.pdf
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Example values from 
steady accelerometer

x y z
 x2 y2z2

1,00 0,00 0,00 1,00
0,00 1,00 0,00 1,00
0,00 0,00 1,00 1,00
0,73 0,00 0,73 1,03
0,00 0,69 -0,69 0,98
0,00 0,71 0,71 1,00
0,00 -0,71 0,71 1,00
0,73 0,73 0,00 1,03

-0,71 -0,71 0,00 1,00
0,59 0,59 0,59 1,02

-0,57 0,57 -0,57 0,99
0,59 -0,59 0,59 1,02

-0,57 -0,57 -0,57 0,99
-0,79 -0,10 0,61 1,00
-0,17 -0,36 0,92 1,00
0,98 -0,29 0,06 1,02

Table 1: Data from accelerometer lying still on table with different tilts. The  
data seem to follow equation 1. The divergence from 1 in the right column is  
probably due to me rounding off the accelerometer data in this table.



We are using a Polhemus Patriot, electromagnetic tracking system to determine absolute pos-

ition in the room. This system has two sensors moving in a electromagnetic field (EMF). The device 

is able to determine the absolute positions of the sensors by less than 1 mm accuracy, within a range 

of about 1.5 m from the source of the EMF (Maestre et al. 2007). In addition the sensor outputs data 

on how it is tilted (azimuth, elevation, roll). 

The x, y and z coordinates are in units of inches. The x-coordinates are absolute values (i.e. 

all coordinates are output as values larger than 0). The y- and z-coordinates are scaled along the y- 

and z-axis and are output as both positive and negative values along the axis. These axis change dir-

ection when the sensor crosses the yz-plane (see figure 2). 

We are also using  I-cube X electromyography biosensors (EMG) which measures muscle 

contractions. These have not been my main field of study, so I mention them here only briefly as I 

will refer to some of these data below.
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Polhemus Patriot data
Variable Data Range Physical Range

x [0. 60.) 60 inches 
(≈ 152 cm)

Distance from the sensor to the yz-plane (absolute value)

y (-60. 60.) 60 inches 
(≈ 152 cm)

Distance from the sensor to the xz-plane. The y-axis 
direction reverts when the sensor crosses the yz-plane

z (-60. 60.) 60 inches 
(≈ 152 cm)

Distance from the sensor to the xy-plane. The y-axis 
direction reverts when the sensor crosses the yz-plane

azimuth [-180. 180] 360 degrees Twist (in degrees) around Z-axis of the sensor. Value 0 
when the sensors x-axis aligns with the absolute x-axis

elevation (-90. 90.) 180 degrees Angle (in degrees) between the X-axis (along the cable) of 
the sensor and the absolute XY-plane

roll [-180. 180] 360 degrees Twist (in degrees) around the X-axis of the sensor. Value 0 
when the sensors z-axis aligns with the absolute z-axis

Table 3: Variables from a Polhemus Patriot sensor

Figure 2: Axis orientation, according to sensor position. x-coordinates are always output as  
positive values. The y- and z-axis change direction when the sensor crosses the yz-plane. The  
large cube in the centre is the source of the EMF, and the smaller cube is the sensor.
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Accelerometer data
Variable Useful Data Range Physical Range

x [-3  3] ± 1 [-3G 3G] ± 1G Physical acceleration up to 3G, 
plus a “tilt offset” of ± 1G

y [-3  3] ± 1 [-3G 3G] ± 1G Physical acceleration up to 3G, 
plus a “tilt offset” of ± 1G

z [-3  3] ± 1 [-3G 3G] ± 1G Physical acceleration up to 3G, 
plus a “tilt offset” of ± 1G

Table 2: Variables from the PhidgetAccelerometer 3-axis



The data

We are using Max/MSP4 for all communication with the sensors and recording of data. Some exten-

sions to this software has been particularly important from a methodological view and will be out-

lined here.  

FTM5 has been developed at IRCAM as mainly as an extension to Max/MSP. In our use, the 

handling of the  Sound Description Interchange Format (SDIF) in FTM is the most important fea-

ture. SDIF was developed at IRCAM as a standard for storing and exchanging sound data (Schnell 

et al. 2005). The SDIF format consists of separate streams along a common timeline. Each of this 

streams is  a  sequence of time-tagged frames.  Within the frames,  the actual  data  are  stored into 

matrices. The frames and the matrices are type-specific, meaning that different frame types consists 

of a different amount of matrices, and different matrix types consists of a different number of rows 

and columns (Wright et al. 1998). The structures of matrices and timelines in FTM is well suited for 

recording different types of data along a common timeline, an so it is also well suited for recording 

of SDIF files.

The  Gesture Description Interchange Format (GDIF), inspired by SDIF, is currently under 

development  as  a  standard  for  communicating  (i.e.  storing  and  streaming)  gesture  related  data 

(Jensenius et al. 2006). GDIF is a multiple-layer format consisting of quantitative raw data from the 

sensors,  pre-processed data and  analysed data.  In  addition  to  the  quantitative  data,  GDIF also 

includes qualitative metadata, annotations and observations (ibid). As GDIF development is mainly 

focused on what to store, rather than how to store it, recordings can be made in different types of 

formats, such as XML or SDIF (Jensenius et al. 2007b). The distinction between pre-processed data 

and analysed data seems somewhat unclear as Marshall  et al. (2006) only separates between  raw 

data and  body data as quantitative values, and neither Jensenius  et al. (2006) or Jensenius  et al. 

(2007a) outlines whether the pre-processing of data only involves scaling the data to e.g. a [0.–1.] 

range, or if it involves scaling the sensor values to a common reference point for multiple sensors. In 

my understanding, pre-processing data only involves scaling the raw data in itself,  meaning that 

scaling the data to a common reference point would be part of the analysis rather than pre-pro-

cessing.

When recording data  to GDIF, a first  challenge is  to organize and process the raw data. 

Jensenius et al. (2006) suggest using Open Sound Control (OSC) to organize the data in the GDIF. 

This way the raw data from the sensors can easily be separated from the pre-processed and analysed 

data. Marshall  et al. (2006) outlines the importance of a consensus on a namespace for these data. 

4 http://www.cycling74.com
5 http://ftm.ircam.fr/
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They suggest storing raw data in the format: 

/device/sensor <data>

which means that for a Polhemus Patriot, we would get two streams:

/patriot1/sensor1 x y z azimuth elevation roll

/patriot1/sensor2 x y z azimuth elevation roll

A namespace for analysed data, relating to the body parts is suggested as:

/body/part/side <data>

which could mean:

/body1/arm/left x y z azimuth elevation roll

In my opinion,  a universal  predefined namespace is somewhat problematic,  as  different projects 

using different sensors placed on different parts of the body would mean that a very large amount of 

redundant data is necessary to cover all different types of setups. For example, one project may aim 

to use a Polhemus sensor to describe the positioning of the left and right arms of different subjects. 

In this example the namespace from the example above is sufficient. Another example would be 

using three Polhemus Liberty sensors for measuring the position of the wrist, elbow and shoulder on 

the left arm of a single subject. Since we are using only one person, and only the left arm, both /body 

and /side would be redundant messages being stored for every single data input, while /part would 

change meaning, referring to a body part on a lower level (e.g. wrist as opposed to arm). Due to the 

large amounts of redundant data that would have to be stored into every GDIF-file in this case, I see 

it as necessary to define a namespace for each GDIF-file. To do this, the header of a GDIF-file 

should contain information on the sensors being used (the sensor types and the number of sensors) 

and the data from each sensor (number of variables, data type and data range). Further on, the header 

should contain information on the placement of the sensors on the subject, making it possible to see 

which raw data matches which analysed data. 

Jensenius  et  al. (2006)  suggests  a  higher  level  stream,  where  metadata  (i.e.  qualitative 

descriptions of the gestures) are stored. Marshall et al. (2006) organizes these types of data in a sep-

arate /meta stream.

In my second example above, one may want to record the raw data, and adjust the Polhemus 

data to be relative coordinates to the shoulder coordinates (to keep things simple, I only use the 

Cartesian coordinates in this example). One could additionally want to add a pre-processed layer, for 

scaling the values to another length unit (e.g. millimetres), I choose not to do this in this example. In 

addition to calculating relative coordinates, it would be relevant to look at the speed and acceleration 

of both the wrist, the elbow and the shoulder, and to make a quantitative description of the contrac-

tion and the elevation of the arm. These parameters are shown in table 4.
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The parameters  contraction, elevation,  speed and  acceleration does  not  refer  to  a  single 

sensor parameter, but are results of calculations based on several parameters. They introduce a pos-

sible need for expanding the quantitative part of the namespace beyond the raw, pre-processed and 

analysed data. These parameters does not only describe the same type of data as the sensor (in this 

example cartesian coordinates + tilting angles), but use the sensor values to achieve other types of 

information. In this example, one may benefit from an OSC namespace where the analysis part of 

the namespace is divided into /relative and /analysis. The namespace is displayed in table 5. 

Here, the relative data in /wrist, /elbow and /shoulder are displaced to values based on the raw data 

with the shoulder sensor as a reference point, meaning that the shoulder coordinates are  (0, 0, 0,). 

The coordinates (xw, yw, zw) would then be equal to (x1–x3, y1–y3, z1–z3) and (xe, ye, ze) would be found 

by (x2–x3, y2–y3, z2–z3). Contraction could be estimated in several ways, the easiest way probably to 

look at the point (xw, yw, zw). The magnitude of the vector from this point to the reference point would 

be a value reflecting the contraction of the arm (the larger the value, the more stretched out the arm 

is). Speed and acceleration are calculated by derivatives of vector magnitudes between succeeding 
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Raw data:

 /raw/liberty1/sensor1 x1 y1 z1 azimuth1 elevation1 roll1

 /raw/liberty1/sensor2 x2 y2 z2 azimuth2 elevation2 roll2

 /raw/liberty1/sensor3 x3 y3 z3 azimuth3 elevation3 roll3

Relative (to shoulder) sensor data 

 /relative/arm/wrist xw yw zw 
 /relative/arm/elbow xe ye ze 
 /relative/arm/shoulder 0 0 0 

Analysed data

 /analysed/arm contraction elevation
 /analysed/arm/wrist  abs_speed  abs_acceleration  rel_speed  rel_acceleration
 /analysed/arm/elbow  abs_speed  abs_acceleration  rel_speed rel_acceleration
 /analysed/arm/shoulder  abs_speed  abs_acceleration  rel_speed  rel_acceleration

Metadata

 /meta/expressivity value
 /meta/randomness value

Table 5: OSC namespace for the SDIF example

Example SDIF parameters
Raw data x y z azimuth elevation roll (×3)
Processed data xrel yrel zrel azimuthrel elevationrel rollrel (×3)

Contraction
Elevation
Speed
Acceleration

Table 4: Parameters in use in example, the suffix rel are parameters adjusted 
relative parameters. (×3) means data being stored for each sensor



room coordinates. Both absolute and relative speed and acceleration could be of interest, and are 

thus included in the example above.

The practical example

In our project so far, we have made a limited number of recordings of gesture data from a piano 

player. We used nine accelerometers to track movement in different parts of the body. Four of these 

were mounted on an adjustable “strap-on” system, to to be strapped on the pianists upper body: One 

accelerometer on each shoulder, one on the back of the neck, and one accelerometer on the lower 

back. Additionally, one accelerometer was strapped on the back of the pianist's head, and two accel-

erometers on each arm; one close to the elbow and one close to the wrist. The two Polhemus Patriot 

sensors were mounted next to the accelerometers on the wrist (see fig. 3). For a small part of these 

first  recordings  we  used  two  EMG sensors  to  measure  muscle  contractions  on  the  lower  arm; 

however, the sensor on the right arm did not work during the pilot recordings. In this paper I refer 
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Figure 3: Positions of the accelerometers and polhemus sensors

Back

= Accelerometer
= Polhemus sensors

Figure 4: Max/MSP patcher being used for recording SDIF-files. Main setup,  
including FTD and MTD definitions made by Alexander Refsum Jensenius.



less to the EMG data than to the accelerometer and Polhemus data. In addition to the sensors, we 

recorded MIDI data from the piano being played on (Yamaha disklavier).

For our project we are recording to SDIF-files, recording data from each type of sensor into a 

separate SDIF-stream. This was done by defining separate matrix types and frame types for the dif-

ferent data types. As we are planning on making video recordings on a separate computer we also 

needed a synchronisation frame and matrix. In our project, we used a complete setup within in Max/

MSP. Max/MSP communicates with all the sensors we are using, and within the FTM structures it is 

easy to make well-organized SDIF recordings. When analysing the data, FTM allows isolating only 

the streams one wants to look into, by importing only the wanted streams into FTM tracks. When 

making SDIF recordings with the ftm.sdif.write object by IRCAM, every frame is automatically 

given a time tag which is helpful when comparing data from different streams and analysing the 

development of sensor data over time. I will look into the process of analysing recorded data, with 

examples from our pilot recordings in the next section.

The analysis

Analysing raw data may involve both ascribing a significance to each of the sensor values alone, and 

looking at coherences in a selection of raw data. In this discussion, I will mainly look into problems 

with and analysis of data from the Polhemus Patriot and the accelerometers. I do not address the 

video sync stream, as we have not recorded data into this stream yet. Table 6 presents a simplified 

graphical  view of  a  cross  section of  the  data  in  our  SDIF recordings.  The  file  consists  of  five 

streams, where each stream consists of succeeding time-tagged frames, and every frame consists one 

matrix of data. Every frame and every matrix has its own unique ID, making it easy to look up data. 

As the frames are time-tagged, one can look at timing differences between e.g. the initial movements 
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SDIF-file:
Name value table:
 information on the experiment

MIDI-stream Accelerometer stream Polhemus stream EMG stream Video sync stream
XMID frame:

Time tag
XXYZ frame:

Time tag
XPOL frame:

Time tag
XEMG frame:

Time tag
XVSY frame:

Time tag
XMID matrix: XXYZ matrix: XPOL matrix: XEMG matrix: XVSY matrix:

     
 s  fdb  sdb 

s=status byte
fdb=first data byte
sdb=second data byte

 x      y      z 
x      y      z
x      y      z
x      y      z
x      y      z
x      y      z
x      y      z
x      y      z
x      y      z

     
x   y   z   azimuth   elevation roll

 x   y   z   azimuth   elevation roll 

     
left

right

     
...

1 

Table 6: A simplified graphical view of a cross section of our SDIF-files. The different streams consists of different types  
of frames and matrices (XMID, XXYZ, etc.). The user can easily navigate to a specific time, or isolate a single stream 
e.g. to only look at data from a single sensor. 



in the accelerometers and the keys being struck on the piano.

In our pilot recordings, I have found some problems in the Polhemus setup which complic-

ates the analysing of the sensor data. The source of the electromagnetic field was placed in such a 

way that the pianist was facing almost along the x-axis, the keyboard was almost aligned along the 

keyboard, and the z-axis was vertical. As mentioned earlier, the z- and y-axis changes polarity when 

the sensor crosses the zy-plane. As illustrated in figure 5, the sensors were moving on both sides of 

the  zy-plane,  causing   z-  and  y-values  to  flip  between  positive  and  negative  values.  This  flip, 

however, does not seem to be immediate, but rather an interpolation during a time of about 50 ms 

between  the  positive  and  negative  equivalents  of  the  value,  giving  smaller,  false  values  in  the 

samples between the two extremities. As an example, six succeeding y-values from the right hand of 

the player are presented in table 7. This means that an absolute value, which would have solved the 

problem if it was a direct flip with no interpolation, is insufficient. To make the errors as small as 

possible, I have found it useful to filter out all the smallest y-values for both sensors. To determine 

the threshold for which values that should be included in the pre-processed data, I counted all the 

instances of y-values between 0 and 1, 1 and 2, and so on up values between 39 and 40 in one SDIF-

file. This was done in a Max-patcher using select and counter objects. For the left hand there was a 

great difference between the intervals 7-8 (0 instances) and 8-9 (135 instances), while for the right 

hand,  the  greatest  difference  was  between  the  intervals  21-22  (53  instances)  and  22-23  (353 

instances). This means that 8 and 22 are suited thresholds for the right and left hand respectively. 

Figure 6 shows a part of this patcher, displaying the interval counts in a multislider for each sensor. 

There is reason to believe that the error margins are larger on the right hand, as this was both the 

sensor furthest away from the EMF source, and the sensor crossing the y-axis most times. For this 

reason I have chosen to interpret the small “tail”  in the area between 12 and 22 on the right hand 

(see figure 6) as errors.
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Figure 5: Sketch of Polhemus x/y-axis. The grey area illustrates the area where the 
sensors mainly were moving. The z axis is along the reader's view of the figure.

x

y

-29.0 -29.1 11.2 25.0 28.3 29.1
Table 7: Six succeeding y-values from the Polhemus sensor on the right wrist. The time between each of these 
values is 17 ms, meaning that if one would assume absolute values of these data to be correct, the pianist would 
have moved her hand appropriately 18 inches (46 cm) in 17 ms and almost all the way back within the next 17 ms.  



The next problem with the Polhemus data is that x-values are only positive values. Looking 

back at figure 5 it is obvious that the x-values should be interpreted as both positive and negative 

values, to get the correct room coordinates. This easiest solution to this problem is a simplification 

by setting a single y-coordinate where x-values turn from negative to positive. To find this coordin-

ate, one could use linear regression on all (x, y) points with y-values within a certain interval. Unfor-

tunately,  I  do  not  have  the  tools  for  doing  linear  regression,  so  my already inaccurate  method 

becomes more inaccurate when I estimate the crossing point by looking at the table object in figure 

7. The x-values seem to approach 0 when the y-values approach 25. Again referring to the sketch in 

figure 5, I choose to set x-values as positive when y > 25 and as negative values when y < 25. There 

are similar problems related to the z-values from the Polhemus.

When seeking information about movement, the static acceleration offset added to the accel-

erometer values is not as relevant as the dynamic acceleration. This can be filtered out with a high 

pass filter. After some trial-and-error of different filters I ended up in this example with a simple 

dual-stage FIR-filter with coefficients of 0.5 and -0.5.6 Since each of the accelerometers outputs 

three values, and in this example, we are only interested in the total acceleration for each sensor, I 

calculated the sum of the absolute values of the three variables. This number was then low-pass 

filtered, to remove high-frequent noise.  This setup is shown in fig. 8, and the result of the analysis 

of three accelerometers on the right arm is shown in fig. 9. The unfiltered data (left) is hard to inter-

6 FIR = Finite Impulse Response, coefficients of 0.5 and -0.5 means that every output sample is a result of the current 
input sample multiplied by 0.5 + the previous input sample multiplied by -0.5 (Roads 1996: 413).
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Figure 7: Table object in patcher for looking at where the x-values change polarity.

Figure 6: Part of patcher for counting occurrences of  the y-coordinate within different intervals.



pret, as there is a lot of noise, and the unnecessary offset is making it harder to read. In the filtered 

data (right) it is easy to extract the acceleration peaks, and thereby to compare the data from the 

three accelerometers.

Since we have recorded MIDI data, it is possible to compare the MIDI velocities to the vari-

ous types of sensor data. The velocity data is closely tied to loudness and sound energy, and thus it 

would be interesting to see if there is some correlation between the velocity and the acceleration val-

ues or the EMG.

To study the relationship in starting times for each of the accelerometer peaks, the midi note-

on and note-off messages and the EMG, it  would be useful to plot  these data along a common 

timeline. This has been done in figure 10. Looking at the plots inside the square, we can see that the 

lower arm EMG begins its peak slightly before the wrist accelerometer. This again is slightly before 

the right hand cluster (the three notes played on the same time, displayed on the MIDI plot inside the 

square) which is emphasised (the dots are darker than the preceding ones, meaning the midi velocity 

is higher). To draw significance from these comparisons, one will need to study the data closer, look-

ing at exact time values and having meaningful and comparable values on the vertical axis (in figure 

10 the accelerometer parameters have been filtered like in figure 9, but the vertical axis have been 
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Figure  10:  Plot  of  accelerometer  values  from  the  left  
wrist, elbow and shoulder, and EMG from the right lower  
arm. Each horizontal pixel represents a time of 17 ms. 

Figure 9: Display of unfiltered (left) and  
filtered (right) accelerometer values. 
Top: wrist, middle: elbow , bottom: shoulder

Figure 8: Filtering of the accelerometer values in Max/MSP



scaled individually for better resolution, making the plots less comparable). A better analysis would 

be achieved by including a video recording of the performance. It would then be possible to extract 

the frames where the accelerometers rapidly change value due to tilting. As stated before the max-

imum offset added as a total to the three variables is 1.8, meaning that before the low-pass filtering 

an error of 1.8 would be recorded if the subject was to tilt the accelerometer from one extreme to the 

other within 17 ms (i.e. the sampling rate). This is quite unlikely to happen, but it would be a signi-

ficant error, as the wrist accelerometer in figure 10 varies between 0 and 3.4.

Conclusions

In the field of gathering and structuring gesture data, the biggest challenge at the moment is prob-

ably to standardize the communication of this data. The GDIF format is a good starting point for 

this, but in my understanding it is still different practices on what to include in the GDIF, and on the 

namespace for the included data, and it does not seem to be a common opinion on how data should 

be processed. The best way of standardizing all of this is probably to keep using the format and doc-

ument the advantages and disadvantages of the setup in each project, allowing future projects to 

reach a common structure that is both stable and that covers all the needs in storing gesture-related 

data. 

In this paper I have not addressed the problems that occurs when one places sensors on a 

musician. It is more than likely that an excessive amount of cables and extra weight does affect the 

performance. Such problems can not easily be solved when working on a tight budget, but may be 

solved by more advanced motion capture systems like Vicon (O'Sullivan/Igoe 2004: 228). I have 

outlined some problems in our first recordings, related to the sensors themselves. These will be cor-

rected, and hopefully data from our next recordings will be easier to work with. Such testing record-

ings and investigation of the test data seem to be an important part of the preparing the data for ana-

lysis. From my examples, it is obvious that a small change in sensor placement (in my case rotation 

of the EMF source) can make less pre-processing of data necessary, which would mean less loss of 

information before the analysis.
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