
Free variable sequent calculi

one of them even with uniform variable splitting

Roger Antonsen

u1
1

4

a1
3

u1
6{13}

a1
9{13}

u1
6{51}

a1
9{51}

u2
1{51}

4

a2
3{51}

u2
6{51 2

3}

a2
9{51 2

3}

u1
1

4

a1
3

u1
6{13}

a1
9{13}

u1
6{51}

a1
9{51}

u2
6{13}

a2
9{13}

u1
1

4

a1
3

u1
6{13}

a1
9{13}

u1
6{51}

a1
9{51}

thesis presented

for the degree of

CANDIDATUS PHILOLOGIAE

Under supervision by:

Arild Waaler, Department of Informatics

Language, Logic and Information

Department of Linguistics

University of Oslo

May MMIII

Preface

This is a work in progress. To meet the requirements of a deadline and in
order to finish in time, I had to give the thesis away from me at this point.

This is also a thesis about free variable sequent calculi for first-order lan-
guages without equality. A brief summary: Chapter 1 and 2 are mainly
background material. Chapter 3 introduces a way of representing and rea-
soning about relations between inferences and sketches a method for syntac-
tical soundness proofs. Chapter 4 investigates a new free variable calculus
with variable splitting. There is also an appendix containing the article “A
free variable sequent calculus with uniform variable splitting” [45] written by
Arild Waaler and myself.1 This article is a documentation of much of the
work spent with this thesis.

A lot of background material can be found in this thesis. It has been my goal
to write a readable and understandable thesis, so along with all the defini-
tions and lemmas there are many motivating examples. Some mathematical
background knowledge is recommended; from Chapter 3 and outwards some
of it is also presupposed.

Scientific acknowledgments

Many ideas found in this thesis are due to Arild Waaler. In particular, the
idea for a calculus with uniform variable splitting and much of the contents
of the article [45], like the sketched proof of cycle elimination there, is due
to him. The diagram representations have evolved through numerous con-
versations between Arild and me in order to understand and prove a general
cycle elimination theorem. The idea for cycle elimination, as explained in
Chapter 3, is basically mine. Also, most of the terminology and concepts
related to uniform variable splitting after the article was written, is due to
me.

Roger Antonsen
May 12, 2003

1Accepted as a research paper to the conference TABLEAUX 2003 in Rome, Italy, 9-12
September 2003.

iii

Acknowledgments

First and foremost I want to thank my supervisor, Arild Waaler, who has
generously shared both his time and his logical intuitions with me over the
past two years. He has been ever-supporting and encouraging throughout
the work with this material, and without doubt, I have never before met a
person with such an intellectual honesty and from which I have learned so
much logic. It has been a great, great experience to have had you as my
supervisor, and I hope that our long conversations and explorations of logic
will not end with this. . .

I also want to thank my internal supervisor Herman Ruge Jervell, who has
given me many helpful hints and pointers during the entire period I have
been a student at Language, Logic and Information.

Thanks to my parents for their unconditional support and love through all
my years of studying! Many of the topics I have studied – actually, most of
them – have been quite esoteric in their eyes; nevertheless, their interest and
willingness to understand what I have been doing have always been present.

Special thanks goes to Tonje for prof-reading and spel-checking with the
utmost scrutiny! I’m also grateful to her because of her infinite patience,
understanding and caring in critical moments of discovery. Living together
with a narrow-minded and obsessed wannabe-logician trying to eliminate
cycles and split variables cannot be easy. Without your enduring support,
this would not have been possible. Many hugs and kisses go to you.

There are two great academic environments I have been fortunate to be
part of. First, I want to thank all students and teachers of Language, Logic
and Information at the Department of Linguistics, residing in and around
Hundremeterskogen (the Hundred Acre Woods). I first encountered this
environment in the spring of 1998, and since then I have more or less been a
regular inhabitant. It has been one of the reasons that my time of studying
has been interesting and endurable. I hope that this will continue to be
an equally great study environment in the future! Second, I want to thank
all Master of Logic students at the University of Amsterdam (Institute for
Language, Logic and Computation) during the study year of 2001/2002.
Late night working at the study room in Plantage Muidergracht and at
home in Prinsengracht will be remembered as a proof of how enjoyable and
inspiring collaboration can be.

And thanks to Ludvig van Beethoven for having put the combinatorics of
his piano sonata into the world and for having inspired me late at night
when nobody else was around.

v

Contents

1 Logical preliminaries 1
1.1 Syntax . 1
1.2 Semantics . 5
1.3 Sequents, rules and calculi . 6
1.4 The calculus LK . 12
1.5 Soundness of LK . 14
1.6 Completeness of LK . 17

2 Free variable sequent calculi 21
2.1 Proof transformations . 24
2.2 The calculus LKδ . 26
2.3 Soundness and completeness of LKδ 28
2.4 Formula trees . 30
2.5 The calculus LKce . 33
2.6 Completeness of LKce . 36
2.7 Soundness of LKce . 36

2.7.1 The semantical approach 37
2.7.2 Why local soundness does not hold for LKce 38

3 A change of perspective 45
3.1 Relations between inferences 45
3.2 Diagram representations . 47
3.3 Permutations . 50
3.4 Cycle elimination . 54

4 Uniform variable splitting 65
4.1 Rigid and universal variables 65
4.2 A calculus with uniform variable splitting 67
4.3 A big example . 77

4.3.1 Remark on non-balanced skeletons 79
4.4 Soundness . 81
4.5 A framework for reasoning about splitting 86
4.6 Summary and remarks . 89

4.6.1 Ideas for further development 90

vii

viii CONTENTS

Appendix 91

A Article 93
A.1 Introduction . 94
A.2 The free variable system . 97
A.3 Connections, colorings and proofs 102
A.4 Consistency . 105

Chapter 1

Logical preliminaries

“Before I begin my speech,
there’s something I want to say.”

Saul Gorn [26]

The purpose of this chapter is to introduce the reader to the formal frame-
work on which the subsequent chapters will depend, in particular the syntax
and semantics of first-order logic and the concepts of sequents, rules and cal-
culi.

Formulas and terms are the first notions that must be precisely defined.
Intuitively, formulas are objects that can be true or false, and terms are
objects that denote elements of some domain. We confine ourselves to the
first-order case (without equality), and thus, the elements denoted by terms
are individuals, not sets of individuals or sets of sets of individuals, etc.
When a formula or a terms is given, there will always be an underlying
language consisting of basic parts from which the formulas and terms are
constructed.

1.1 Syntax

All languages of consideration here will have the following in common:

Quantifier symbols: ∀ (for all), ∃ (there is)

Propositional connectives: ∧ (and), ∨ (or), → (implies), ¬ (not)

Variables: x1, x2, x3, . . . (x, y, z, . . . will be used as abbreviations)

1

2 Logical preliminaries

Auxiliary symbols: ‘)’, ‘(’ and ‘,’

These are called the logical symbols of first-order languages. Variables will
be given a special treatment later. For now, all languages will consist of the
same set of variables.

The logical symbols are common for all first-order languages. Next follow
the parts which will vary from language to language.

1.1 Definition (First-order language)

A first-order language L consists of:

• A countable (possibly finite) set P of predicate symbols.

• A countable (possibly finite) set F of function symbols.

Each predicate and function symbol will have associated with it a natural
number, called the arity of the given symbol. Symbols of arity n are called
n-ary symbols; if a symbol has arity one then it is called unary , and if it
has arity two, then it is called binary . Function symbols of arity 0 are called
constant symbols. The first-order language consisting of P and F will be
denoted L(P,F), or just L when P and F are clear from the context. a

Before formulas of a first-order language can be defined, the terms of a
first-order language must be defined, since terms are part of formulas.

1.2 Definition (L-term)

Let L be a first-order language. The set of L-terms is the least set that
satisfies the following conditions:

• Any variable is an L-term.

• If f is an n-ary function symbol in F and t1, . . . , tn are L-terms, then
f(t1, . . . , tn) is an L-term.

An L-term is ground if there are no variables in it. a

1.3 Definition (L-formula)

Let L be a first-order language. The set of L-formulas is the least set that
satisfies the following conditions:

• If P is an n-ary predicate symbol in P and t1, . . . , tn are L-terms, then
P (t1, . . . , tn) is an L-formula. It is called an atomic formula.

• If ϕ is an L-formula, then ¬ϕ is an L-formula.

• If ϕ and ψ are L-formulas and ◦ is in {∧,∨,→}, then (ϕ ◦ ψ) is an
L-formula.

1.1 Syntax 3

• If ϕ is an L-formula and x is a variable, then ∀xϕ and ∃xϕ are L-formulas.

When the language L can be understood from the context, we will skip the
prefix and just speak of terms and formulas. It is nevertheless important
to remember that terms and formulas are always given relative to some
underlying first-order language L. a

A few conventions. Capital roman letters (P , Q, R, etc.) will be used as
predicate symbols. Non-capital roman letters (f , g, h, etc.) will be used
as function symbols. Capital Greek letters (ϕ, ψ, ξ, etc.) will be used as
meta-symbols for first-order formulas.

For the rest of this section, let L be a fixed first-order language.

1.4 Definition (Free variable)

The free variable occurrences of a formula are defined recursively like this:

• The free variable occurrences of an atomic formula are all variables oc-
curring in it.

• The free variable occurrences of ¬ϕ are the free variable occurrences of
ϕ.

• The free variable occurrences of (ϕ ◦ ψ), where ◦ is ∧, ∨ or →, are the
free variable occurrences of ϕ together with the free variable occurrences
of ψ.

• The free variable occurrences of ∀xϕ or ∃xϕ are the free variable occur-
rences of ϕ except for occurrences of x.

A variable occurrence in a formula is bound if is not free. a

1.5 Definition (Closed formula)

A formula is closed if it has no free variable occurrences in it. a

Example 1.6 Let L(P,F) be the language consisting of the predicate sym-
bols Q of arity one, the predicate symbol R of arity two and the function
symbol s of arity one. The the following are L(P,F)-formulas:

∀xR(z, x) ∀x∃y(Q(x) → (Q(z) ∧ ¬R(s(x), y)))

z is the only free variable occurrence in both formulas. We will often skip
many of the parenthesis and write

∀xRzx ∀x∃y(Qx→ Qz ∧ ¬Rsxy)

under the assumption that some connectives bind stronger than others. (We
assume that ¬, together with quantifiers, binds stronger than ∧, which binds
stronger than ∨, which again binds stronger than →.)

4 Logical preliminaries

1.7 Definition (Substitution)

Let L be a first-order language. A substitution for L is a function σ from
variables to L-terms. The application of σ to an argument x can be written
either like σ(x) or xσ. It can be extended to a function from L-terms to
L-terms in the following way:

• cσ = c

• f(t1, . . . , tn)σ = f(t1σ, . . . , tnσ)

It can be further extended to a function from L-formulas to L-formulas, but
then we must pay attention to free and bound variable occurrences. Bound
occurrences should not be substituted. Therefore, for each substitution σ,
we define σx which is identical to σ for all arguments except x, which is left
untouched. That is, for all variables y

σx(y) =

{
σ(y) if y 6= x

x if y = x

We can then proceed to define substitutions for formulas.

• For atomic formulas: P (t1, . . . , tn)σ = P (t1σ, . . . , tnσ)

• (¬ϕ)σ = ¬(ϕ)σ

• (ϕ ◦ ψ)σ = (ϕσ ◦ ψσ), for ◦ either ∧, ∨ or →
• (Qxϕ)σ = Qx(ϕσx), for Q either ∀ or ∃

Often we are only interested in substitutions for a given finite set of vari-
ables. The support of a substitution σ is the set of variables x such that
xσ 6= x. If the support is finite, or if we are only interested in a finite part
of the substitution, we write {x1/t1, . . . , xn/tn} or {x1 7→ t1, . . . , xn 7→ tn}
for the substitution that maps the variables x1, . . . , xn to t1, . . . , tn, respec-
tively. The result of applying such a substitution to a formula ϕ is written
ϕ[x1/t1, . . . , xn/tn]. a

In the above definition, the situation where variables become bound as a
result of applying a substitution is not dealt with explicitly. For the purpose
of this exposition, it is not necessary. I.e., if we apply the substitution {z/x}
to the formula ∀xPxz, we obtain ∀xPxx, which is not desirable. In cases
like this, we assume that bound variables have been renamed properly before
applying the substitution, i.e. the formula becomes ∀yPyz before applying
the substitution and ∀yPyx after.

1.8 Definition (Substitution composition)

Let σ and τ be substitutions The composition of σ and τ , denoted στ , is
the substitution which sends each variable x to (xσ)τ . a

1.2 Semantics 5

1.2 Semantics

1.9 Definition (Structure)

Let L(P,F) be a first-order language. An L-structure M consists of a
domain D and an interpretation function (·)M such that

• D is a non-empty, countable set, also written |M |.
• If f is an n-ary function symbol, then fM : Dn → D.

• If R is an n-ary predicate symbol, then RM ⊆ Dn.

Thus the interpretation function provides an interpretation of all the predi-
cate and function symbols in the language. a

1.10 Definition (Interpretation of terms)

An L-structure M interprets L-terms in the following way:

• f(t1, . . . , tn)M = fM (tM1 , . . . , t
M
n)

a

1.11 Definition (Extended language)

Let L be a first-order language and M an L-structure. Then L(M) is the
first-order language L extended with a new constant symbol ā for each
element a in |M |. If a is in |M |, then ā is the name of a. It is required that
all L(M)-structures N interpret ā as a, that is, āN = a. a

When we evaluate L-formulas in a structure M we will use the extended
language L(M) and assume M to be an L(M)-structure by interpreting
ā as a. This is not strictly necessary, but makes many formulations and
definitions simpler. The evaluation is made precise in the following definition
of what it means for a formula to be true in a structure.

1.12 Definition (Truth)

Let L be a first-order language and M an L-structure. Assume that M is
an L(M)-structure. We define what it means for a closed L-formula ϕ to be
true in M , written M |= ϕ.

• For atomic formulas: M |= P (t1, . . . , tn) if (tM1 , . . . , t
M
n) ∈ PM .

• M |= ¬ϕ if it is not the case that M |= ϕ.

• M |= ϕ ∧ ψ if M |= ϕ and M |= ψ.

• M |= ϕ ∨ ψ if M |= ϕ or M |= ψ.

• M |= ∀xϕ if M |= ϕ[x/ā] for all a in |M |.
• M |= ∃xϕ if M |= ϕ[x/ā] for an a in |M |.

6 Logical preliminaries

If M |= ϕ, we say that M is a model for ϕ. a

Notice that we have only defined truth for closed formulas, not for formu-
las with free variable occurrences. From now on, if not made explicit, all
formulas will be closed.

1.13 Definition (Satisfiability)

An L-formula is satisfiable if there is an L-structure M in which it is true. a

1.14 Definition (Validity)

An L-formula ϕ is valid , written |= ϕ, if it is true in all L-structures. a

Satisfiability and validity are dual notions. If a formula is valid, then its
negation is unsatisfiable. If a formula is satisfiable, then its negation is
invalid.

1.15 Definition (Logical consequence)

An L-formula ϕ is a logical consequence of a set of L-formulas Γ, written
Γ |= ϕ, if ϕ is true in all L-structures that make all formulas in Γ true.
ψ |= ϕ abbreviates {ψ} |= ϕ. a

Example 1.16 ∃xPx is a logical consequence of ∀xPx (since all models are
non-empty). P (a) ∨ P (b) is a logical consequence of P (a), but P (a) is not
a logical consequence of P (a) ∨ P (b).

1.3 Sequents, rules and calculi

First-order formulas and relations between these, like logical consequence,
are in many settings the basic objects of study, and the object on which
certain operations are made. In our case, sequents will be the basic objects
of study.

1.17 Definition (Sequent)

A sequent is an object of the form Γ ` ∆, where Γ and ∆ are finite multisets
of formulas, where a multiset is a set in which the multiplicity of the elements
matters. Different occurrences of the same elements are distinguished. ` is
called the sequent symbol. Γ is called the antecedent and ∆ is called the
succedent of the sequent. If Γ′ is a subset of Γ and ∆′ is a subset of ∆, then
Γ′ ` ∆′ is a subsequent of Γ ` ∆. a

Formula occurrences are distinguished from formulas. A formula can be
represented by many different formula occurrences, e.g. in different sequents

1.3 Sequents, rules and calculi 7

or even in the same sequent, and we will view all such formula occurrences
as different, even though they represent the same formula.

Example 1.18 R(a), R(b) ` R(c) is a sequent. It is identical to the sequent
R(b), R(a) ` R(c), but not to the sequent R(a), R(b), R(b) ` R(c), in which
the formula R(b) has two occurrences in the antecedent.

Intuitively, a sequent Γ ` ∆ can be seen as a judgement, to the effect that
the conjunction of formulas in Γ in some sense implies the disjunction of
formulas in ∆. For a sequent like ∀x(P (x) → Q(x)), P (a) ` Q(a), this
clearly is the case. For a sequent like P (a) ` Q(a), this is clearly not the
case. We capture this interpretation of sequents in the notion of validity.

1.19 Definition (Validity of sequents)

A sequent Γ ` ∆ is valid if all models that make all formulas in Γ true, also
make at least one formula in ∆ true. a

Example 1.20 The sequent ∀xPx ` ∃xPx is valid. The sequent ∃xPx `
∀xPx is not valid. The empty sequent, ` , is not valid.

1.21 Definition (Countermodel)

If a sequent Γ ` ∆ is not valid, then there is a model that makes all formulas
in Γ true and all formulas in ∆ false. This is called a countermodel for the
sequent. If a sequent has a countermodel, then it is falsifiable. a

Remark. All definitions above presuppose an underlying first-order language
L. A sequent consists of L-formulas, and validity and countermodels are thus
defined with respect to L-structures.

This is the syntax and semantics for sequents. We now turn our attention to
syntactical operations on sequents, operations defined in various calculi by
means of logical rules. The rest of this chapter will be devoted to the common
parts of various calculi and rules, not the particular details of a certain
calculus. Since this treatment is rather abstract, and perhaps not intuitive
without prior exposure to calculi or proof systems, the reader should have
a look at the various calculi introduced in later sections while reading.

The logical devices which are used to generate new sequents from old ones
are called rules. A rule always relates one or two premisses to a conclusion.
The premisses and the conclusion are in our case sequents, not formulas. As
an example, if Γ ` ϕ and Γ ` ψ are premisses, then a rule could generate
the conclusion Γ ` ϕ ∧ ψ. This is a synthetical view of rules; premisses are
used to generate conclusions. The formulas, ϕ and ψ, are used to construct
a formula ϕ ∧ ψ, which is part of the conclusion. The opposite view is

8 Logical preliminaries

the analytical view, where premisses are generated from conclusions. If the
sequent Γ ` ϕ ∧ ψ is our conclusion, then the same rule as above could
instead have given us the two premisses. Here, ϕ ∧ ψ is taken apart to
obtain the two smaller sequents, Γ ` ϕ and Γ ` ψ. Both the analytical and
the synthetical way of applying rules are useful, but in this thesis the focus
will be entirely on the analytical view. One reason for this is that it is more
suitable for automated theorem proving, where one usually starts out with
a complex formula or sequent in order to analyze it by examining its smaller
parts.

There are two ways of defining rules. Denotationally, a rule can be defined as
a set of ordered pairs, with no information whatsoever about the process of
rule application or how to obtain new sequents from old ones. Operationally,
a rule can be defined by providing the exact syntactical means of obtaining
new sequents from old ones. With an operational definition of a rule at hand,
we have the explicit machinery to generate conclusions from premisses and
vice versa, in contrast to checking for membership in sets of ordered pairs.
We start with a denotational definition.

1.22 Definition (Rule)

A rule is either (1) a relation R ⊆ S×S , or (2) a relation R ⊆ (S ×S)×S,
where S is the set of all sequents. In case (1), R relates a premiss to a
conclusion, and R is a one-premiss rule. In case (2), R relates a pair of
premisses to a conclusion and R is a two-premiss rule. Each member of
R is called an R-inference. If a sequent S is given, then the process of
generating one or two appropriate sequents, such that S is the conclusion
of a rule instance in which these are premisses, is a rule application. We
require that the set R is decidable, i.e. that the problem of checking for
membership in R is a decidable problem. a

Inferences will be written like this:

premiss

conclusion

premiss 1 premiss 2

conclusion

This definition allows for many more rules than we are interested in, but
the denotational view will become important later, when we want to define
relations over a given set of inferences. This would be hard to do if we only
had an operational definition of a rule. Actually, we are only interested in
rules whose inferences have a certain form, more specifically inferences that
are instances of a defining schema.

1.23 Definition (Schema)

A schema for a rule R is an object containing placeholders such that each R-

1.3 Sequents, rules and calculi 9

inference is the result of replacing the placeholders in the schema by formula
occurrences. Without loss of generality, let

Γ ` ψ → ϕ,∆
Γ,¬ϕ ∧ ψ ` ∆

be an example of the schema of a rule R. The following is then an R-
inference:

R(a) ` S(a) → Q(a, b),∃zP (z)

R(a),¬Q(a, b) ∧ S(a) ` ∃zP (z)

This inference can be seen as the result of applying the rule R to the sequent
R(a),¬Q(a, b) ∧ S(a) ` ∃zP (z).

Schemes, like inferences, have premisses and conclusions. These are the
parts that become premisses and conclusions of the resulting inferences. We
require that schemes satisfy the following conditions:

• Γ and ∆ must occur in all premisses and conclusions (i.e. all rules of con-
sideration are context-sharing) and are called extra formulas or context .
They are replaced by corresponding extra formula occurrences.

• Formula placeholders, ϕ, ψ, etc., with connectives and quantifiers, can
occur both in premisses and conclusions.

• A formula placeholder in a conclusion is called a principal formula, and
it is replaced by a principal formula occurrence.

• A formula placeholder in a premiss is called an active formula, and it is
replaced by an active formula occurrence.

In the example, R(a) and ∃zP (z) are the extra formula occurrences, ¬Q(a, b) ∧ S(a)
is the principal formula occurrence and S(a) → Q(a, b) is the only active
formula occurrence of the resulting inference. a

Schemes are very generic objects; they give rise to both denotational and
operational definitions of rules. Denotationally, the set of all instances of
a given schema is a rule. The schema captures the structural similarities
between these inferences. Operationally, a schema can be read as a set of
instructions on how to construct the appropriate premisses when a sequent
is given. From now on, all rules will be given by their defining schemes.

Example 1.24 Let the following be a schema:

Γ, ϕ ` ∆
Γ,¬¬ϕ ` ∆

10 Logical preliminaries

From the sequent

∀xP (x),¬¬P (a),¬¬P (b) ` P (a) ∨ P (b)

the schema can be used to construct the premiss

∀xP (x), P (a),¬¬P (b) ` P (a) ∨ P (b)

Another application of the schema gives the premiss

∀xP (x), P (a), P (b) ` P (a) ∨ P (b)

We will presuppose some general knowledge and terminology about trees.
The reader should be familiar with concepts like root nodes, leaf nodes,
branches, etc. All trees will be displayed with the root node at the bottom.
For a given branch, the nodes above a node n are called the ancestors of n;
the nodes below n are called the descendants of n. The nodes directly above
n are called the immediate ancestors of n. The one node below n is called
the immediate descendant of n. The root node never has any descendants,
and the leaf nodes never have any ancestors.

1.25 Definition (Derivation)

A derivation is a finitely branching tree whose nodes are sequents. Given a
set of rules, the set of derivations generated by these rules is the least set
that satisfies the following conditions:

• A sequent is a derivation. (This is the singleton tree consisting of one
node.)

• If π is a derivation with a leaf sequent Γ ` ∆, and this sequent is the
conclusion of an inference with premiss Γ′ ` ∆′, then the tree obtained
from π by adding Γ′ ` ∆′ above Γ ` ∆ is a derivation:

Γ ` ∆....
π

Γ′ ` ∆′

Γ ` ∆....
π

• If π is a derivation with a leaf sequent Γ ` ∆, and this sequent is the
conclusion of an inference with premisses Γ′ ` ∆′ and Γ′′ ` ∆′′, then
the tree obtained from π by adding these two sequents above Γ ` ∆ is a
derivation:

1.3 Sequents, rules and calculi 11

Γ ` ∆....
π

Γ′ ` ∆′ Γ′′ ` ∆′′

Γ ` ∆....
π

The sequent at the root of a derivation is called a root sequent . a

1.26 Definition (Calculus)

A calculus K has two components:

• A set of rules. These rules generate the K-derivations.

• A condition which K-derivations can meet, called the closure condition.
If a K-derivation meets the condition, then it is called closable, or sim-
ply closed . The closure condition will typically be of the form: for all
branches in the derivation, there is a sequent with property X, where X is
the essential ingredient.

a

1.27 Definition (Proof)

Let K be a calculus. A proof of a sequent Γ ` ∆ in K is a closed K-
derivation in which Γ ` ∆ is the root sequent. A sequent is called provable
(in K) if it has a proof (in K). a

Notice that the notions of rules, schemes, derivations and proofs are purely
syntactical. We now provide the link to the semantics:

1.28 Definition (Soundness)

A calculus is sound if all provable sequents in the calculus are valid. a

1.29 Definition (Consistent)

A calculus is consistent if the empty sequent ` is unprovable. a

1.30 Lemma (Consistency) A sound calculus is consistent. a

Proof. Suppose the empty sequent is provable in a sound calculus. Then,
it must be valid, which is impossible. 2

1.31 Definition (Completeness)

A calculus is complete if all valid sequents are provable in the calculus. a

12 Logical preliminaries

1.4 The calculus LK

Our first calculus is called LK. This name goes back to Gentzen and his Lo-
gische Kalküle [20], but the calculus presented here differs from the original
version in many ways: (1) In our calculus, there are no separate structural
rules. Contraction is built into the quantifier rules, and weakening is not
necessary for neither soundness nor completeness. (2) Our sequents consist
of multisets, not sequences, where the order of elements also matters. (3)
All our rules are context-sharing, while in the original LK, the rule L→ is
not context-sharing. (4) We don’t use or have rules for the logical constant
⊥.

Before we define the calculus, we need the notion of an axiom.

1.32 Definition (Axiom)

A sequent Γ ` ∆ is an axiom of LK if there is an atomic formula which is in
both Γ and ∆. a

Example 1.33 ∀xP (x) ` ∀xP (x) is not an axiom, since ∀xP (x) is not an
atomic formula. But, P (a) ` P (a) is an axiom of LK.

1.34 Definition (The calculus LK)

The calculus LK consists of the set of rules, given by their defining schemes,
in Figure 1.1. The condition for δ-inferences, that a must not occur in the
conclusion, is called the eigenparameter condition and the term a is called
an eigenparameter . The closure condition of LK is this: An LK-derivation is
a proof, i.e. is closable, if all leaf sequents in the derivation are axioms. a

The names of the rules are written to the right of each schema. The L
indicates that the rule is an rule, and the R indicates that the rule is a
succedent rule.

The rules are categorized into four types, following the unifying notation of
Smullyan [38]: α-, β-, γ- and δ-rules. Originally, Smullyan introduced the
unifying notation for semantic tableaux, but it is unproblematic to transfer
it to sequent calculi: α-rules are propositional one-premiss rules, β-rules
are propositional two-premiss rules, γ-rules are quantifier rules in which
arbitrary, closed terms are introduced and extra copies of the quantifier
formula are introduced. The δ-rules are quantifier rules in which new terms
are introduced, terms that semantically function as witnesses for either the
satisfiability of a formula (the L∃-rule) or the unsatisfiability of a formula
(the R∀-rule). δ-rules have a significant role in this thesis, and will be dealt
with in detail later.

1.4 The calculus LK 13

α-rules β-rules

Γ, ϕ, ψ ` ∆
Γ, ϕ ∧ ψ ` ∆

L∧
Γ ` ϕ,∆ Γ ` ψ,∆

Γ ` ϕ ∧ ψ,∆ R∧

Γ ` ϕ,ψ,∆
Γ ` ϕ ∨ ψ,∆ R∨

Γ, ϕ ` ∆ Γ, ψ ` ∆
Γ, ϕ ∨ ψ ` ∆

L∨

Γ, ϕ ` ψ,∆
Γ ` ϕ→ ψ,∆

R→
Γ ` ϕ,∆ Γ, ψ,` ∆

Γ, ϕ→ ψ ` ∆
L→

Γ, ϕ ` ∆
Γ ` ¬ϕ,∆ R¬

Γ ` ϕ,∆
Γ,¬ϕ ` ∆

L¬

δ-rules γ-rules

Γ ` ϕ[x/a],∆

Γ ` ∀xϕ,∆ R∀
Γ,∀xϕ, ϕ[x/t] ` ∆

Γ,∀xϕ ` ∆
L∀

Γ, ϕ[x/a] ` ∆

Γ,∃xϕ ` ∆
L∃

Γ ` ∃xϕ, ϕ[x/t],∆

Γ ` ∃xϕ,∆ R∃

Figure 1.1: The rules of LK. The following conditions must hold: In γ-
inferences the term t is any closed term. In δ-inferences the introduced term
a must not occur in the conclusion.

Convention. If θ is one of these types, an occurrence of θ-formula is a for-
mula occurrence which potentially can be principal in a θ-type inference.
Instead of labeling derivations with L∃, R∃, L∀, R∀, the terms which are in-
troduced, sometimes together with the inference type, will be used as labels.
See the example below.

1.35 Definition (Closed branch)

If a branch of an LK-derivation contains an axiom, then the branch is closed .
Otherwise, it is open. a

14 Logical preliminaries

An LK-proof is then equivalent to an LK-derivation in which all branches
are closed

Example 1.36 (Rule dependencies) Below are proofs of ∀xPx ` ∀xPx and
∀xPx ` ∃xPx:

∀xPx, Pa ` Pa
∀xPx ` Pa

γa

∀xPx ` ∀xPx
δa

∀xPx, P t ` Pt
∀xPx, P t ` ∃xPx

γt

∀xPx ` ∃xPx
γt

In the left-side proof, the order of rule application is essential. The δ-
inference is below the γ-inference, which makes it possible to close the
derivation with only two rule applications. If the lowermost inference were
a γ-inference, then it would take at least three rule applications to close the
derivation. In other words, there is a rule dependency between L∀ and R∀.
In the right-side proof, the order of rule application is not essential. Both
are γ-inferences, and there is no rule dependency between these.

Example 1.37 Here is an example where the root sequent contains a function
symbol:

∀xPxg(x), Pag(a) ` Pag(a)
∀xPxg(x), Pag(a) ` ∃yPay

γg(a)

∀xPxg(x) ` ∃yPay
γa

∀xPxg(x) ` ∀x∃yPxy
δa

1.5 Soundness of LK

We will now prove that LK is a sound calculus; that every sequent we can
prove by means of LK-rules is valid. The idea underlying this proof is the
following: Since axioms are valid, and all rule applications preserve validity
when going from premisses to conclusion, then the root sequent of a proof
must also be valid.

A sequent is valid with respect to a first-order language L; it must be valid
in all L-structures. To ensure that eigenparameters are interpreted in the
right way, we will assume that these are not part of any given language L.
Instead, we will use a first-order language Lpar, which is L extended with a
set of new constant symbols, which are those used as eigenparameters. The
root sequent of an LK-derivation will always be a closed L-formula, while
the validity of sequents in an LK-derivation always will be with respect to
Lpar-structures. If a sequent is valid in all Lpar-structures, then it is also

1.5 Soundness of LK 15

valid in all L-structures, since the former is a superclass of the latter. The
purpose of this will be clear in the proof of local soundness below, where all
structures are assumed to be Lpar-structures.

1.38 Lemma (Local soundness) (1) All axioms are valid. (2) All infer-
ences preserve validity downwards, meaning that if the premiss, or premisses,
are valid, then the conclusion is also valid. (3) Conversely, all inferences pre-
serve falsifiability upwards, meaning that if the conclusion is falsifiable, then
at least one of the premisses is falsifiable. a

Proof. (1) Let Γ ` ∆ be an axiom. Then, there is an atomic formula which
occurs in both Γ and ∆, and all models which make all formulas in Γ true
must also make at least one formula in ∆ true, namely the formula which is
in both.

(2) L∧: Assume Γ, ϕ, ψ ` ∆ is valid. We need to show that Γ, ϕ ∧ ψ ` ∆ is
valid. By the truth definition, Definition 1.12, this clearly is the case.

L∨: Assume (1) that Γ, ϕ ` ∆ and (2) that Γ, ψ ` ∆ are valid. We need
to show that Γ, ϕ ∨ ψ ` ∆ is valid. Let M be a model which makes all
formulas in Γ and ϕ∨ψ true. By the truth definition, M makes either ϕ or
ψ true. Assume without loss of generality that M makes ϕ true. Then, by
assumption (1), M makes a formula in ∆ true.

L¬: Assume that Γ ` ϕ,∆ is valid and that Γ,¬ϕ is true in a model M .
Since, M makes all formulas in Γ true, the assumption gives that either ϕ
or a formula in ∆ is true. Since M cannot make ϕ true (it already makes
¬ϕ true), it must be the case that M makes a formula in ∆ true.

R∧, R∨, R¬: Similar.

L∃: Assume that Γ, ϕ[x/a] ` ∆ is valid. We need to show that Γ,∃xϕ ` ∆
is valid. So, let M be a model which makes all formulas in Γ and ∃xϕ true.
We must show that M also makes a formula in ∆ true. The assumption is
not directly applicable, since we don’t have that M makes ϕ[x/a] true; all
we have is that M makes ∃xϕ true. An extra argument is needed. By the
truth definition, there must be an element b in the domain of M such that
ϕ[x/b̄] is true in M . From the model M we construct a model M ′ which
is identical to M except for the interpretation of a. We require that the
interpretation of a in M ′ is b, that aM ′

= b. The interpretations of a and b̄
are thus the same, and since M makes ϕ[x/b̄] true, it must be the case that
M ′ makes ϕ[x/a] true (this is easily established by induction on the length
of formulas). But then, since a does not occur in Γ or ∆, the models M
and M ′ will interpret all formulas in these multisets in the same way. The
assumption gives that there is a formula in ∆ which is true in M ′, but this
formula must also be true in M .

16 Logical preliminaries

L∀: Assume that Γ,∀xϕ, ϕ[x/t] ` ∆ is valid. We need to show that Γ,∀xϕ `
∆ is valid. So, let M be a model which makes all formulas in Γ and ∀xϕ
true. To get that M also makes a formula in ∆ true, we need to show
that M makes ϕ[x/t] true; then the assumption is applicable. By the truth
definition ϕ[x/ā] is true in M for all elements a in the domain of M , in
particular tM . Since, t and tM are both interpreted as tM , ϕ[x/t] must be
true in M . End of proof.

R∀: The proof is dual to L∃. Assume that Γ ` ϕ[x/a],∆ is valid and let
M be a model which makes all formulas in Γ true. The assumption gives
that either ϕ[x/a] is true or that there is a formula in ∆ which is true. If
the latter is the case, then the proof is done. If the latter is not the case,
then ϕ[x/a] is true and we need to show that ∀xϕ is true. Pick an arbitrary
element b in the domain of M . If ϕ[x/b̄] is true, then we are done. This
follows from the truth definition and the fact that b is arbitrary. Like in
the L∃-case, construct a model M ′ which is identical to M except for the
interpretation of a. We require that the interpretation of a in M ′ is b, that
aM ′

= b. Then, M ′ must also make ϕ[x/a] true. Like above, it follows (by
an induction on the length of formulas) that M makes ϕ[x/b̄] true. End of
proof.

R∃: The proof is dual to L∀.

(3) The converse follows easily from this. 2

By repeated use of this lemma, soundness can be established. We will do
this by induction on the length of proofs.

1.39 Definition (Length of a derivation)

The length of a branch β in a derivation π is the number of inferences in
the branch, which is equal to the number of sequents minus one, written
|β|. The length of a derivation π is the maximum of the lengths of all the
branches in the derivation, written |π|. a

1.40 Theorem (Soundness of LK)

Let π be the proof of a sequent Γ ` ∆. Then Γ ` ∆ is valid. a

Proof. By induction on the length of π.

Base case: |π| = 0. The only sequent in the proof is then an axiom. By
Lemma 1.38 it is valid.

Inductive step: |π| = n + 1. The induction hypothesis is that all proofs of
length n or less have valid root sequents. By Lemma 1.38 it suffices to show
that the lowermost inference, the inference which has Γ ` ∆ as conclusion,
has valid premisses. (For if the premisses of this inference are valid, then

1.6 Completeness of LK 17

by Lemma 1.38 Γ ` ∆ is valid.) If it is a two-premiss inference, then both
premisses are root sequents of derivations of length n or smaller. Both these
derivations must be proofs, since all leaf sequents in π are axioms. By the
induction hypothesis, both these proof have valid root sequents, i.e. the
premisses are valid. If Γ ` ∆ is the conclusion of a one-premiss inference,
the proof is similar. 2

1.6 Completeness of LK

We now want to prove a much stronger property; that all valid sequents are
provable. Here, we must go from a universal statement, a property of all
structures, to an existential statement; that there exists a proof. We will
prove this by contraposition. If a sequent is not provable, then it is not
valid. The idea is that if a sequent is not provable, then, by systematically
using the rules of LK, it is possible to construct a model which falsifies the
sequent.

1.41 Definition (Herbrand universe)

The Herbrand universe of a set of terms T , written H(T), is the set of closed
terms which can be generated from T , together with a dummy constant, in
case there are no constants in T . More precisely, let H(T) be the least set
that satisfies the following conditions:

• H(T) contains all closed terms of T . If there are no closed terms in T ,
then a dummy constant t is added to H(T).

• If f is an n-ary function symbol in T and t1, . . . , tn are terms in H(T),
then f(t1, . . . , tn) is in H(T).

The Herbrand universe of a set of sequents is the Herbrand universe of the
terms occurring in the sequents. The Herbrand universe of a branch in a
derivation is the Herbrand universe of all the sequents in the branch. a

Remark. The specification of how to systematically apply LK-rules in order
to get a proof, if there is one, is defined with a fair strategy. This can be
done in several ways. Since the main focus here is not completeness, there
will be minor simplifications. Like in Waaler [44] we will allow the existence
of infinite derivation trees, limit objects, generated by fair strategies. Infi-
nite derivation trees will have inferences just like finite derivation trees, but
infinitely many of them. A branch in an infinite derivation tree is open if
there is no sequent in the branch which is an axiom. Also, such limit objects
will only be used in this context. Another approach is to define sequences
of derivations trees, and define fairness in terms of such sequences. We will
not do so here.

18 Logical preliminaries

1.42 Definition (Fair strategy for LK)

A strategy for LK is a specification of how to apply rules to non-axiomatic
sequents for all derivations in LK. A strategy is fair if every limit derivation
π, possibly infinite, generated by this strategy has the following properties:
(1) If ϕ is an α-, β- or δ-formula which occurs in a branch b which is not
closed, then ϕ is principal in somewhere in b. (2) If ϕ is a γ-formula of the
form Qxψ which occurs in a branch b, then for all terms t in the Herbrand
universe of b, the formula ψ[x/t] is an active formula occurrence somewhere
in b. Essentially, γ-formulas must be instantiated with all closed terms
occurring in, or generated from, b. a

The purpose of a fair strategy is this: If a root sequent is provable, then
by following a fair strategy we should eventually reach a proof. Otherwise,
a fair strategy should provide enough information for the construction of a
countermodel for the sequent.

Example 1.43 A fair strategy for the sequent ∀x∃yPxy ` generates a single
infinite branch. We shall soon see that this infinite branch gives rise to a
countermodel for the root sequent. Each δ-inference has been labeled with
its type and the eigenparameter that it introduces.

...
∀x∃yPxy, Pa1a2, Pa0a1, P ta0 `
∀x∃yPxy,∃yPa1y, Pa0a1, P ta0 `

δa2

∀x∃yPxy, Pa0a1, P ta0 `
γa1

∀x∃yPxy,∃yPa0y, P ta0 `
δa1

∀x∃yPxy, P ta0 `
γa0

∀x∃yPxy,∃yPty `
δa0

∀x∃yPxy `
γt

Example 1.44 The condition that γ-formulas must be instantiated with all
terms generated from the branch is necessary. Without this condition, a
strategy could result in no rule applications at all for the unprovable sequent
∀xP (x, fx) `. A fair strategy, on the other hand, would generate:

...
∀xP (x, fx), P (ft, fft), P (t, ft) `

∀xP (x, fx), P (t, ft) `
γft

∀xP (x, fx) `
γt

1.6 Completeness of LK 19

Example 1.45 Condition (1) is also necessary. The sequent

∀xPf(x), Qa ∧Qa ` Qa

is obviously provable. By solely applying L∀, which is a non-fair strategy, a
proof is ever obtained.

1.46 Theorem (Model existence)

Let Γ ` ∆ be a non-provable sequent and π be the object obtained from a
fair strategy for Γ ` ∆. Then, Γ ` ∆ has a countermodel. a

Proof. Note that π can have infinite branches, and will have so if there are
γ-inferences in an open branch with an infinite Herbrand universe. While γ-
inferences introduce new formulas, all the other rules are strictly analytical
in the sense that they only generate smaller objects and don’t introduce new
ones. There can only be countably many inferences in any given branch,
since there are only countably many terms. Since π is not a proof, there
must be at least one open branch β in π. If π has finitely many inferences,
this is obvious. If π is infinite, the existence of an open branch follows from
Königs Lemma1. Let β+ consist of all formula occurrences in any antecedent
of β and β− consist of all formula occurrences in any succedent of β.

Let L be the language containing all function and predicate symbols occur-
ring in β. We now define an L-structure M :

• The domain of M is the set of all terms occurring in β

• Any L-term is interpreted as itself. Formally: fM (t1, . . . , tn) = f(t1, . . . , tn)

• For any atomic L-formula P (t1, . . . , tn), M |= P (t1, . . . , tn) holds if and
only if P (t1, . . . , tn) is in β+.

Claim: M makes all formulas in β+ true and all formulas in β− false simul-
taneously.

Proof (of claim). By induction on the construction of formulas in β.
The base case follows by definition of M . The inductive step goes like this:

Assume that ϕ is of the form ψ1 ∧ψ2: If ϕ is in β+, then by fairness ψ1 and
ψ2 are also in β+. By the induction hypothesis, ψ1 and ψ2 are true in M .
By the truth definition, ϕ is also true in M . If ϕ is in β−, then by fairness
either ψ1 or ψ2 is also in β−. In either case, by the induction hypothesis
and the the truth definition, ϕ is false in M .

If ϕ is of the form ψ1∨ψ2 or ψ1 → ψ2, then the proof is exactly dual to this.

1See e.g. Fitting [19] for details.

20 Logical preliminaries

Assume that ϕ is of the form ¬ψ: If ϕ is in β+, then by fairness ψ is in β−.
By the induction hypothesis, ψ is false in M . By the truth definition ϕ is
true in M . If ϕ is in β−, then the proof is exactly dual to this.

Assume that ϕ is of the form ∃xψ: If ϕ is in β+, then by fairness, there is a
formula ψ[x/a] in β+for some term a. By the induction hypothesis, ψ[x/a]
is true in M . By the truth definition ϕ is also true in M . If ϕ is in β−, then
by fairness, ψ[x/t] is in β+ for all terms t in the domain of M . Thus, by
the truth definition, ϕ is true in M . (End of proof of claim.) 2

Since all formulas in Γ are in β+ and all formulas in ∆ are in β−, M is a
countermodel for Γ ` ∆. 2

1.47 Theorem (Completeness of LK)

Let Γ ` ∆ be a valid sequent. If Γ ` ∆ is not provable, then by the model
existence theorem, Γ ` ∆ has a countermodel, in which case it is not valid.
So, Γ ` ∆ must be provable. a

Chapter 2

Free variable sequent calculi

Since we are mainly interested in calculi for the purpose of proof search
procedures, keeping in mind possible implementations of the calculi we in-
troduce, LK is in many ways not the ideal calculus. One crucial difficulty
lies in implementing the γ-rules. In order to obtain a proof of a sequent,
it may be necessary to introduce many terms. But, which terms should be
chosen? And when should we stop introducing new terms? After all, the
γ-rules allow us to introduce any terms whatsoever.

Example 2.1 The sequent ∀xP (x) ` P (a) ∧ P (b) ∧ P (c) ∧ P (d) ∧ P (e) is
provable. It requires five applications of the γ-rule L∀; one for each branch
in the tree.

Example 2.2 The sequent ∀xP (x) ` P (a)∨P (b)∨P (c)∨P (d)∨P (e) is also
provable. But, in contrast, it requires only one application of the γ-rule.
A proof search may nevertheless result in five applications before a proof is
reached.

A naive way of choosing terms for the γ-inferences can be found in the defi-
nition of a fair strategy, where it is required that γ-formulas are instantiated
with all terms occurring in, or generated from, the branches in which they
occur. It is naive, since no intelligent selection of terms takes place at all.
When proving completeness, we were only interested in obtaining enough
terms as to guarantee the construction of a countermodel. Of course, a fair
strategy always ends up with a proof if there is one; this is the content of
a strategy being fair. The problem is that this proof may be unnecessary
long, and that it takes unnecessary long time to find it.

A less naive way of choosing terms can still lead to many instantiations
of γ-formulas before a proof is found; the terms that are necessary for the
branches to close, and which eventually lead to a proof, might not be known

21

22 Free variable sequent calculi

at the time of instantiation.

A solution to this is to let γ-rules introduce free variables instead of arbitrary
terms. Then, the actual value of a term can be delayed until more infor-
mation is gathered, and unnecessary applications of γ-rules can be avoided.
The idea is to postpone these decisions as long as possible until all branches
can be closed by means of a closing unifier, a substitution which sends free
variables to terms. The search for a proof is then done almost entirely at
the level of terms, not at the level of derivations. But, the introduction of
free variables for γ-rules poses a natural question for the δ-rules: what terms
should δ-rules introduce? In LK, the eigenparameter condition heavily re-
strains which terms the δ-rules can introduce; a term must be new relative
to the conclusion and function as a witness of either satisfiability or un-
satisfiability. With free variables, how can we ensure that the terms which
δ-rules introduce are fresh in the same way? There are two approaches to
this question. First, we can ensure that the terms are fresh by extending the
notion of a parameter in the following way. If u1, . . . , un are all the variables
occurring in a branch, then a δ-rule could introduce a term f(u1, . . . , un), for
a new function symbol f , called a Skolem function. In this way, no matter
what u1, . . . , un are instantiated with, the term f(u1, . . . , un) is instantiated
with a different term. Second, it is not necessary that the terms introduced
by δ-rules are fresh. The eigenparameter condition is actually too strong;
there are many ways of systematically introducing and reusing terms, thus
liberalizing the δ-rules, without affecting neither soundness nor completeness
of a calculus.

Below is a summary of the approaches that exist.

• δ-rule. This is the original δ-rule introduced by Fitting [19] in 1990, and
it corresponds exactly to the description above. The arguments of the
Skolem function are all the variables occurring in the branch. The second
edition of his book, from 1996, used a δ+-rule.

• δ+-rule. Introduced by Hähnle and Schmitt [28] in 1991. The arguments
of the Skolem function are exactly the free variables occurring in the δ-
formula at hand.

• δ+
+
-rule. Introduced by Beckert, Hähnle and Schmitt [10] in 1993. It is

like the δ+-rule, but the number of different Skolem functions that must
be used is reduced. When the δ+

+
-rule is applied to two formulas which

are identical up to renaming of free and bound variables, then the same
Skolem function is introduced.

• δ∗-rule. Introduced by Baaz and Fermüller [4] in 1995. They define a set
of relevant free variables occurring in a δ-formula, which is a subset of the
free variables occurring in it. When the δ∗-rule is applied, the arguments
of the Skolem function are these variables only.

23

• δ∗
∗
-rule. Introduced by Cantone and Asmundo [16] in 1998. It is based on

the combination of (a recursive generalization of) the concept of relevant
variables, together with a notion of key formulas. A similar reuse of
Skolem functions as in the δ+

+
-rule is utilized.

• δε-rule. Introduced by Giese and Ahrendt [25] in 1999; previously in
Giese’s Diploma Thesis [21] from 1998. This rule is based on Hilbert’s ε-
calculus [29], and instead of Skolem functions, ε-terms are introduced. (ε-
terms are objects which function as witnesses by virtue of their syntactical
structure.)

Historically, the use of free variables in first-order calculi can be traced back
to Prawitz [36] and Kanger [32], who called them “dummies”.

We will now introduce some terminology common for all calculi with free
variables. First of all, we separate the terms which are introduced by γ- and
δ-rules from the terms which occur in a given first-order language. From
now on, we will refer to the variables which are part of every first-order
language, and which are bound by quantifiers, as quantification variables.
Instead of using these as the terms which γ-rules introduce, we use a different
set of variables, called instantiation variables. Likewise, the δ-rules will
now introduce Skolem functions with instantiation variables as arguments.
Together with the function symbols of a first-order language, instantiation
variables and Skolem functions generate the set of instantiation terms.

2.3 Definition

Let L be a first-order language. Let U be an infinite and countable set of
instantiation variables, and let S be an infinite and countable set of Skolem
functions. These should be disjoint sets of symbols and not contain any
symbols from L.

The set of instantiation terms for L is the least set such that:

• All instantiation variables are instantiation terms.

• If f is a Skolem function or a function symbol in L of arity n and t1, . . . , tk
are instantiation terms, then f(t1, . . . , tk) is an instantiation term. If f is
a Skolem function, then f(t1, . . . , tk) is called a Skolem term.

From now on, all first-order languages (and related notions) will be consid-
ered to be contain instantiation terms. L-formulas with instantiation terms
are defined exactly like L-formulas in Definition 1.3, except for the base
case:

• If P is an n-ary predicate symbol of L and t1, . . . , tn are L-terms or
instantiation terms, then P (t1, . . . , tn) is an L-formula with instantiation
terms.

24 Free variable sequent calculi

Substitutions for such first-order languages are defined like before, except
that quantification variables can be sent to instantiation terms as well as
terms of the language. A ground instantiation term is defined to be an
instantiation term without any occurrences of instantiation variables in it. a

In a free variable calculus all formulas, except for the formulas in the root
sequent, will be taken from a first-order language with instantiation terms.
Also, such formulas will be generated by the rules of a calculus and will not
exist outside such a context.

Remark. Instantiation terms do not contain quantification variables. There-
fore, no variables can become bound as a result of replacing variables by
instantiation terms.

All substitutions to this point have been functions with quantification vari-
ables in the domain; instantiation terms enable us to speak of, and give
a separate treatment to, substitutions with instantiation variables in the
domain.

2.4 Definition (Substitution for instantiation terms)

A substitution for instantiation terms is a function σ from instantiation vari-
ables to instantiation terms. ϕσ denotes the formula ϕ where each instanti-
ation variable u in the domain of σ has been replaced by uσ. Γ ` ∆ denotes
the sequent Γ ` ∆ where each instantiation variable u in the domain of σ
has been replaced by uσ. σ is ground if uσ is a ground instantiation term
for all u in the domain of σ. a

2.5 Definition (Unifier)

If s and t are instantiation terms, σ is a substitution for instantiation terms
and sσ = tσ, then σ is a unifier of s and t. If ϕ and ψ are two formulas
with instantiation terms and ϕσ = ψσ, then σ is a unifier of ϕ and ψ. A
unifier is also called a closing substitution. a

2.6 Definition (Skeleton)

A skeleton is a derivation in which there are instantiation variables. a

2.1 Proof transformations

A free variable calculus which behaves exactly like the ground calculus
LK will soon be introduced, and it will match the informal description given
in the beginning of this chapter; the Skolemization will be done with respect
to all instantiation variables occurring in the conclusion of a sequent. The

2.1 Proof transformations 25

point of introducing this calculus is not that it is particularly interesting in
itself, but rather that it gives us a firm basis to which we can relate other
calculi with different, and more liberal, quantifier rules. This calculus will be
viewed as a canonical example of a calculus which only generates “LK-like”
proofs. (See Definition 4.30.) Soundness and completeness of this calculus
are established analogous to LK.

The idea is that if we have constructed a free variable calculus X and we are
able to effectively transform any X-proof of a sequent into an LKδ-proof of
the same sequent, then we have established soundness of this calculus. Then,
any X-provable sequent is LKδ-provable, and therefore valid. Furthermore,
if we want to show completeness, all we need to do is to show how any
LKδ-proof of a sequent effectively can be transformed into an X-proof of the
same sequent. Since all valid sequents are LKδ-provable, by completeness of
LKδ, we obtain X-proofs for all valid sequents.

Such soundness proofs are syntactical in nature; by syntactical operations
on derivation trees, we construct new derivation trees and show properties
of these. In the authors view, such soundness proofs are more constructive
than soundness proofs which are semantical in nature. From a syntactical
soundness proof it is often possible to extract more information than just
the soundness the calculus. Imagine some obscure system with highly non-
intuitive rules and that a semantical soundness proof for this calculus has
been provided, possibly with equally obscure techniques. We ask the system:
“Does P = NP?”; it answers “yes” and provides a – let us assume, rather
obscure – proof. How are we then to interpret the given proof? If the
rules are highly non-intuitive, the proof might altogether be impossible to
understand. We would be better off if we had an effective way of translating
the given proof into a proof in a system which had more understandable
rules. This is exactly what a syntactical soundness proof can provide!

In automated reasoning, it is crucial to minimize the search space and elim-
inate non-determinism whenever possible, mainly due to space and time
limitations of computers. One way of doing this is to postpone choice points
as long as possible and examine many different parts of a search space simul-
taneously until a proof can be found, which is what we do in free variable
calculi. This is a technique which is typically not used by human reasoners,
which, in contrast, most often only reason from a small set of assumptions
at any given time. The search space is explored, but in a very different
way; often human reasoners are able to exclude large parts of a given search
space, which automated theorem provers are forced to search exhaustively.
Interactive theorem proving is the field of theorem proving which incorpo-
rates human interaction; for example, by allowing users to introduce lemmas
or cuts into a proof.

26 Free variable sequent calculi

The two paradigms of search-oriented calculi on the one side and interaction-
oriented calculi on the other, are described excellently in [40]. The syntacti-
cal soundness proofs provided in this thesis correspond exactly to their proof
transformations between search-oriented and interaction-oriented calculi.

2.2 The calculus LKδ

The whole point of LKδ is to have a free variable calculus which behaves
exactly like LK. This will greatly facilitate soundness proofs of other free
variable calculi, since in many cases where a proof is given, we can translate
this proof to a proof in LKδ.

2.7 Definition (σ-axiom)

A sequent Γ, ϕ ` ψ,∆ is a σ-axiom if ϕ and ψ are atomic formulas and σ is
a unifier of ϕ and ψ. a

2.8 Definition (The calculus LKδ)

The calculus LKδ is obtained by changing the quantifier rules and the closure
condition of LK:

δ-rules γ-rules

Γ ` ϕ[x/f(~u)],∆

Γ ` ∀xϕ,∆ R∀
Γ,∀xϕ, ϕ[x/u] ` ∆

Γ,∀xϕ ` ∆
L∀

Γ, ϕ[x/f(~u)] ` ∆

Γ,∃xϕ ` ∆
L∃

Γ ` ∃xϕ, ϕ[x/u],∆

Γ ` ∃xϕ,∆ R∃

Figure 2.1: The rules of LKδ. In all γ-inferences, u must be an instantiation
variable which does not already occur in the derivation when it is introduced.
In all δ-inferences, ~u is a sequence of all instantiation variables occurring in
the conclusion, and f must be a Skolem function which does not occur in
the conclusion.

The closure condition for LKδ is this: An LKδ-skeleton π is closable if there
is a substitution σ such that all leaf sequents in π are σ-axioms. The proof
will be denoted 〈π, σ〉. a

Convention. We will use u, v, w, etc. as meta-symbols for instantiation vari-
ables and f, g, h, etc. as meta-symbols for function symbols. Usually, a, b, c,

2.2 The calculus LKδ 27

etc. will be used as meta-symbols for constant symbols. It will always be
clear from the context, usually the derivations, whether a symbol f stands
for a Skolem function or a function symbol from a first-order language.

Example 2.9 (Rule dependencies) This example is analogous to Example
1.36. Below are proofs of ∀xPx ` ∀xPx and ∀xPx ` ∃xPx in LKδ:

u 7→ a

∀xPx, Pu ` Pa
∀xPx ` Pa

γu

∀xPx ` ∀xPx
δa

u1 7→ u2

∀xPx, Pu1 ` Pu2,∃xPx
∀xPx, Pu1 ` ∃xPx

γu2

∀xPx ` ∃xPx
γu1

In the right-side proof, the order of the rule application is not essential.
Both are γ-inferences, and there is no rule dependency between these.

In the left-side proof, the order of the rule applications is essential. The
δ-inference is below the γ-inference, which makes it possible to close the
derivation with only two rule applications. If the lowermost inference were
a γ-inference, then it would take at least three rule applications to close the
derivation. In other words, there is a rule dependency between L∀ and R∀ in
LKδ, just like in LK. The skeleton below shows that three rule applications
is necessary.

v 7→ fu

∀xPx, Pv, Pu ` Pfu
∀xPx, Pu ` Pfu

γv

∀xPx, Pu ` ∀xPx
δfu

∀xPx ` ∀xPx
γu

After two rule applications, the sequent ∀xPx, Pu ` Pfu has no closing
substitution. (If u/fu is applied to the sequent, ∀xPx, Pfu ` Pffu is
obtained.)

Example 2.10 Here is an example, analogous to Example 1.37, where the
root sequent contains a function symbol g.

u 7→ a, v 7→ g(a)

∀xPxg(x), Pug(u) ` Pav,∃yPay
∀xPxg(x), Pug(u) ` ∃yPay

γv

∀xPxg(x) ` ∃yPay
γu

∀xPxg(x) ` ∀x∃yPxy
δa

28 Free variable sequent calculi

The following lemma will be used for all free variable calculi.

2.11 Lemma (Grounding) Let 〈π, σ〉 be a proof. Then, there is a ground
substitution σ′ such that 〈π, σ′〉 is a proof of the same sequent. a

Proof. Let π′ be the skeleton πσ where σ has been applied to all formulas
in the skeleton and assume that σ is not ground. Let u1, . . . , un be all the
instantiation variables occurring in π′ and let a be a constant which does
not occur in the skeleton. Let τ be a substitution (for instantiation terms)
which sends any of these instantiation variables to a, that is τ(ui) = a for
1 ≤ i ≤ n. Observe that τ closes π′. Then, στ , the composition of σ and τ ,
is a substitution which is ground such that 〈π, στ〉 is a proof. 2

2.3 Soundness and completeness of LKδ

We will now prove that LKδ is a sound calculus; that every sequent that we
can prove by means of LKδ-rules is valid. The idea is not difficult. Since the
δ-rules Skolemize with respect to all instantiation variables occurring in the
conclusion, each inference essentially satisfies the eigenparameter condition
of LK, so by replacing all occurrences of instantiation variables in a skeleton
with ground terms a local soundness lemma can be shown.

2.12 Lemma (Local soundness) Let 〈π, σ〉 be a proof where σ is a ground
substitution. Let πσ be the object obtained by applying σ to all instantia-
tion terms occurring in π. (1) All axioms in πσ are valid. (2) All inferences in
πσ preserve validity downwards, meaning that if the premiss, or premisses,
are valid, then the conclusion is also valid. a

Proof. Analogous to the proof of local soundness for LK, Lemma 1.38. 2

2.13 Theorem (Soundness of LKδ)

Let 〈π, σ〉 be a proof in LKδ of a sequent Γ ` ∆. Then Γ ` ∆ is valid. a

Proof. By Lemma 2.11 there is a ground substitution σ′ such that 〈π, σ′〉
is a proof of Γ ` ∆. The proof is by induction on the length of πσ′ and
proceeds by repeated applications of Lemma 2.12, analogous to the the
Soundness theorem (Theorem 2.13) for LK. 2

2.14 Theorem (Completeness of LKδ)

All valid sequents are LKδ-provable. a

Proof. Let Γ ` ∆ be a valid sequent. By completeness of LK, there is an
LK-proof π of Γ ` ∆. By simulating this derivation in LKδ, a skeleton π′

2.3 Soundness and completeness of LKδ 29

and a closing substitution σ are obtained. See Example 2.15 below for an
indication of how this can be done. 2

Example 2.15 We show how an LK-proof can be translated into an LKδ-
proof. (Some unused copies of γ-formulas are not displayed.) An LK-proof
for the sequent ∀x∃yPxy ` ∀x∃y(Pxy ∧ ∃zPyz):

∀x∃yPxy, Pab ` Pab

Pbc, Pab ` Pb c
Pb c , Pab ` ∃zPbz

γc

∃yP b y, Pab ` ∃zPbz
δc

∀x∃yPxy, Pab ` ∃zPbz
γb

∀x∃yPxy, Pab ` Pa b ∧ ∃zP b z

∀x∃yPxy, Pa b ` ∃y(Pay ∧ ∃zPyz)
γb

∀x∃yPxy,∃yP a y ` ∃y(Pay ∧ ∃zPyz)
δb

∀x∃yPxy ` ∃y(P a y ∧ ∃zPyz)
γa

∀x∃yPxy ` ∀x∃y(Pxy ∧ ∃zPyz)
δa

The LKδ-skeleton obtained by applying the corresponding rules in the same
order:

∀x∃yPxy, Puf(u) ` Pav

Pwg(u, v, w), Puf(u) ` Pv w′

Pw g(u, v, w) , Puf(u) ` ∃zPvz
γw′

∃yP w y, Pufu ` ∃zPvz
δg(u,v,w)

∀x∃yPxy, Pufu ` ∃zPvz
γw

∀x∃yPxy, Puf(u) ` Pa v ∧ ∃zP v z

∀x∃yPxy, Pu f(u) ` ∃y(Pay ∧ ∃zPyz)
γv

∀x∃yPxy,∃yP u y ` ∃y(Pay ∧ ∃zPyz)
δf(u)

∀x∃yPxy ` ∃y(P a y ∧ ∃zPyz)
γu

∀x∃yPxy ` ∀x∃y(Pxy ∧ ∃zPyz)
δa

The terms are boxed at the places where they are introduced. By comparing
which terms are introduced where, a closing substitution for the skeleton is
obtained. A table of correlations is given below.

γ-terms δ-terms
LK a b b c a b c

LKδ u v w w′ a f(u) g(u, v, w)

30 Free variable sequent calculi

From this table the resulting σ is constructed:
{u/a, v/fa,w/f(a), w′/g(a, fa, fa)}.

2.4 Formula trees

Observe that formulas have an implicit tree structure; the atomic formulas
are like leaf nodes, binary connectives are like nodes with two ancestor nodes,
etc. Before diagram representations are introduced, this tree structure is
made explicit by the notion of a formula tree. We still want to distinguish
formulas from formula occurrences, and formula trees make this possible in
an elegant way. Formula trees will be the basic objects of which formula
occurrences are representations, i.e. each formula occurrence will have an
underlying formula tree. Two different occurrences of a formula will have
two different underlying formula trees, but these formula trees will in return
only differ with respect to a copy number (defined below). In this way,
an implementation would not need to represent each formula occurrence by
its own formula tree object, but rather by a single object together with a
natural number.

2.16 Definition (Formula tree)

A formula tree is a representation of an occurrence of a formula ϕ as a tree.
Each node in the tree represents an occurrence of a subformula ψ and has
the following components:

• A label, which is the major connective of ψ (possibly with quantification
variables), or ψ if ψ is atomic.

• An index pair un
m, which is a unique identifier of the position in the tree;

the subscript m is a natural number called the occurrence number of the
node and the superscript n is a natural number called the copy number
of the node. All copy numbers in a formula tree should be identical and
all occurrence numbers should be distinct.

• A polarity , which is L or R . The polarity indicates whether a formula
occurs in the antecedent (left side) or the succedent (right side) of a se-
quent. Formulas with polarity L correspond to formulas in the antecedent
of a sequent and vice versa. The polarity of a node is determined by the
polarity and major connective of its descendant node.

• A principal type, which is α, β, γ, δ, or empty if ψ is atomic. The
principal type of a node is determined by the polarity and the label of
that node. The motivation for having a principal type θ for a node is that
the formula occurrence corresponding to this node is potentially principal
in a θ-inference. A node with principal type θ will be referred to as a
θ-node.

2.4 Formula trees 31

We will refer to a node by either giving its index pair or the subformula it
represents.

Here is how the principal type and the polarity is determined. The descen-
dant label is in each case written below the ancestor labels; in the same way
that descendant nodes are written below ancestor nodes in the formula tree.

polarity: ϕ R, ψ R ϕ L, ψ L ϕ R, ψ L ϕ L ϕ R
princ. type α: (ϕ ∧ ψ) R (ϕ ∨ ψ) L (ϕ→ ψ) L (¬ϕ) R (¬ϕ) L

polarity: ϕ L, ψ L ϕ R, ψ R ϕ L, ψ R
princ. type β: (ϕ ∧ ψ) L (ϕ ∨ ψ) R (ϕ→ ψ) R

polarity: ϕ R ϕ L
princ. type γ: (∀xϕ) R (∃xϕ) L

polarity: ϕ L ϕ R
princ. type δ: (∀xϕ) L (∃xϕ) R

Formula trees enable us to be somewhat more precise, and we will assume
that the following is the case:

• All formula occurrences have a unique formula tree associated with it,
thereby a unique index pair. When it is called for, we will write the
formula occurrence together with its index pair. ϕn

m stands for a formula
occurrence whose formula tree has n

m as its root node

• A formula occurrence to which a substitution has been applied is associ-
ated with a formula tree together with the substitution. The substitution
is not encoded into the formula tree.

• In a root sequent of a skeleton, the formula trees underlying the formula
occurrences will satisfy these conditions: (1) No two occurrence numbers
are identical. (2) All copy numbers equal 1.

a

Remark. The last assumption above easily gives that any sequent of a skele-
ton contains only distinct index pairs. By the assumption, all index pairs of
a root sequent are distinct. Furthermore, all rules preserve this property.

Example 2.17 Below is a formula tree for the formula

(∀x∃y(Pxy ∧ Sy) ∧ ∀x∀y∀z((Pxy ∧ Pyz) → Gxz)) → ∀x∃y(Gxy ∧ Sy)

The polarity is displayed to the left of each node, the principal type is
displayed to the right and all labels have an index pair attached to them.

32 Free variable sequent calculi

→1
1 αR

∧1
2 αL

(∀x)13 γL

(∃y)14 δL

∧1
5 αL

(Pxy)16L (Sy)17L

(∀x)18 γL

(∀y)19 γL

(∀z)110 γL

→1
11 βL

∧1
12 βR

(Pxy)113R (Pyz)114R

(Gxz)115L

(∀x)116 δR

(∃y)117 γR

∧1
18 βR

(Gxy)119R (Sy)120R

If we want to give this formula with its index pairs, we sometimes use the
following notation:

((∀x
3
∃y
4

(Pxy
6

∧
5
Sy)

7
∧
2
∀x
8
∀y
9
∀z
10

((Pxy
13

∧
12
Pyz)

14
→
11
Gxz

15
)) →

1
∀x
16
∃y
17

(Gxy
19

∧
18
Sy
20

))1

This is much more readable than the formula with all parentheses and index
pairs shown:

(((∀x(∃y((Pxy)16 ∧ (Sy)17)
1
5)

1
4)

1
3

∧(∀x(∀y(∀z(((Pxy)113 ∧ (Pyz)114)
1
12 → (Gxz)115)

1
11)

1
10)

1
9)

1
8)

1
2

→ (∀x(∃y((Gxy)119 ∧ (Sy)120)
1
18)

1
17)

1
16)

1
1

Example 2.18 If ϕ → ψ has polarity 1, then ϕ will have polarity 0 and ψ
will have polarity 1. Here are two intuitions for this: First, if the formula
ϕ → ψ is true, then there are two possibilities. Either, ϕ is false, which
corresponds to polarity 0, or ψ is true, which corresponds to polarity 1.

Second, that ϕ→ ψ has polarity 1, indicates that it occurs in the antecedent
of a sequent. If it is principal in an inference, the situation is this:

Γ,` ∆, ϕ Γ, ψ ` ∆
Γ, ϕ→ ψ ` ∆

ϕ occurs in the succedent and is associated with polarity 0; ϕ occurs in the
antecedent and is associated with polarity 1.

2.5 The calculus LKce 33

2.19 Definition (Subformula relation)

From the ancestor relation between nodes in a formula tree we define a
subformula relation between formula occurrences in a natural way. If a
node in the formula tree represents ϕ and an ancestor node represents ψ,
then ψ is a subformula occurrence of ϕ. We also say the ψ is an ancestor
of ϕ. If the node is an immediate ancestor node, then ψ is an immediate
subformula occurrence, or an immediate ancestor , of ϕ. Any instance of
ψ, i.e. any occurrence of ψ where the free variables have been replaced by
terms, is also considered to be a subformula and an ancestor of ϕ. a

Example 2.20 (Gf1
16u

1
17)

1
19 is a subformula occurrence of the formula occur-

rence in Example 2.18. It represents the formula tree for (Gxy)119 together
with the substitution {x/f1

16, x/u
1
17}

2.5 The calculus LKce

In the skeletons we have seen so far, two types of formula copying have taken
place. First, there is the explicit copying of a γ-formula in a γ-inference.
The introduced copy is a different occurrence from the occurrence which is
being copied. Second, there is the implicit copying which takes place in all
β-inferences. All our rules have been context-sharing, so all extra formula
occurrences of a conclusion of a β-inference have been copied into both of
the premisses. In some ways, two implicit copies of a formula occurrence
should be more closely related than two explicit copies. This is formulated
in the notion of contextual equivalence.

2.21 Definition (Contextual equivalence)

Two different formula occurrences are contextually equivalent if they are
representations of the same formula tree; equivalently, if they have the same
index pair. a

The calculus LKce (ce stands for contextual equivalence) is essentially the
same as introduced by Waaler [44]. The δ-rules of this system, call them
δce-rules, are like δ+ [28], with the exception that contextually equivalent
δ-formulas introduce identical Skolem functions. A certain reuse of Skolem
functions is thus built into the calculus, but it not as strong as the δ+

+
-

rule [10]; on any given branch, all introduced Skolem function symbols will
be different. To obtain this, we utilize the index pairs provided by the
underlying formula trees. If a δ-formula has the index pair n

m then a Skolem
function symbol fn

m is introduced1, and if a γ-formula has the index pair

1A closer approximation to the δ++ -rule could be obtained by skipping the copy num-
bers of the Skolem function symbols altogether.

34 Free variable sequent calculi

n
m then an instantiation variable un

m is introduced.

2.22 Definition (Instantiation terms, revisited)

The sets U and S of instantiation variables and Skolem functions, respec-
tively, will from now on be assumed to have the following form.
U = {un

m | m,n ∈ N} and S = {fn
m | m,n ∈ N}. A Skolem function fn

m with
no arguments will be written an

m. a

2.23 Definition (The calculus LKce)

The δce-rules are given below. If the principal formula occurrence is (∀xϕn
k)n

m

and ~u is a sequence of all instantiation variables occurring in (∀xϕn
k)n

m, then
the Skolem term fn

m(~u) is introduced and substituted for the variable x in
ϕn

k .

Γ ` ϕ[x/fn
m(~u)]nk ,∆

Γ ` (∀xϕn
k)n

m,∆
R∀

Γ, ϕ[x/fn
m(~u)]nk ` ∆

Γ, (∃xϕn
k)n

m ` ∆
L∃

The γ-rules for LKce are given below. If the principal formula occurrence is
(∀xϕn

k)n
m, then the instantiation variable un

m is introduced and substituted
for the variable x in ϕn

k . Also, the principal formula occurrence is copied by
incrementing all copy numbers in the underlying formula tree by one.

Γ, (∀xϕn+1
k)n+1

m , ϕ[x/un
m]nk ` ∆

Γ, (∀xϕn
k)n

m ` ∆
L∀

Γ ` (∃xϕn+1
k)n+1

m , ϕ[x/un
m]nk ,∆

Γ ` (∃xϕn
k)n

m,∆
R∃

The closure condition is the same as for LKδ: An LKce-skeleton π is closable
if there is a substitution σ such that all leaf sequents in π are σ-axioms. The
proof will, like before, be denoted 〈π, σ〉. a

Example 2.24 Again, here are proofs of ∀xPx ` ∀xPx, this time in LKce.
With all its index pairs displayed the sequent is of the form (∀x(Px)13)11 `
(∀x(Px)12)14. Below to the left is a proof with the same order of rule applica-
tions as in Example 1.36 and 2.9. To the right is a proof with the reversed
order.

u1
1 7→ a1

2

∀xPx, Pu1
1 ` Pa1

2

∀xPx ` Pa1
2

u1
1

∀xPx ` ∀xPx
a1

2

u1
1 7→ a1

2

∀xPx, Pu1
1 ` Pa1

2

∀xPx, Pu1
1 ` ∀xPx

a1
2

∀xPx ` ∀xPx
u1

1

2.5 The calculus LKce 35

We see that the rule dependencies between L∀ and R∀, which we had in
LK and LKδ, are gone with LKce. This is because of the liberalized δ-rules,
which disregard other free variables than those occurring in the principal
formula.

Example 2.25 The LKδ-skeleton from Example 2.15 contains an inference
(labeled δg(u,v,w)) which introduces a Skolem term with three arguments. In
LKce, the corresponding Skolem term will only have one argument. We will
do this example in detail, since it is referred to later on. The formula trees
of the formula occurrences in the root sequent is given below.

(∀x)11 γL

(∃y)12 δL

(Pxy)13L

(∀x)14 δR

(∃y)15 γR

∧1
6 βR

(Pxy)17R (∃z)18 γR

(Pxy)19R

The LKce-proof is given below. The root sequent has been labeled with
the occurrence numbers, and copy numbers are shown as superscript in the
appropriate places. The closing unifier is shown above the branches.

u1
1 7→ a1

4, u
1
5 7→ f1

2(a
1
4)

(∀x∃yPxy)2, Pu1
1f

1
2(u

1
1) ` Pa1

4u
1
5

u2
1 7→ f1

2(a
1
4), u

1
8 7→ f2

2(a
1
4(f

1
2))

Pu2
1f

2
2(u

2
1), Pu

1
1f

1
2(u

1
1) ` Pu1

5 u
1
8

Pu2
1 f

2
2(u

2
1) , Pu

1
1f

1
2(u

1
1) ` ∃zPu1

5z
u1

8

∃yP u2
1 y, Pu

1
1f

1
2u

1
1 ` ∃zPu1

5z
f2

2(u
2
1)

(∀x∃yPxy)2, Pu1
1f

1
2u

1
1 ` ∃zPu1

5z
u2

1

(∀x∃yPxy)2, Pu1
1f

1
2(u

1
1) ` Pa1

4 u
1
5 ∧ ∃zP u1

5 z

(∀x∃yPxy)2, Pu1
1 f

1
2(u

1
1) ` ∃y(Pa1

4y ∧ ∃zPyz)
u1

5

(∀x∃yPxy)2,∃yP u1
1 y ` ∃y(Pa1

4y ∧ ∃zPyz)
f1

2(u
1
1)

∀x∃yPxy ` ∃y(P a1
4 y ∧ ∃zPyz)

u1
1

(∀x
1
∃y
2
Pxy

3
)1 ` ∀x

4
∃y
5

(Pxy
7

∧
6
∃z
8
Pyz)

9

1
a1

4

36 Free variable sequent calculi

2.6 Completeness of LKce

2.26 Theorem (Completeness of LKce)

All valid sequents are LKce-provable. a

Proof. Let Γ ` ∆ be a valid sequent. By completeness of LKδ, there is an
LKδ-proof π of Γ ` ∆. By simulating this skeleton in LKce, a skeleton π′ and
a closing substitution σ are obtained. 2

2.7 Soundness of LKce

We have only defined truth for closed formulas, and the strategy used for
proving soundness of LKδ does not work for LKce. Surely, we have a ground-
ing lemma for LKce (proven just like for LKδ), but if we replace all occurrences
of instantiation variables in an LKce-proof with ground terms, then a local
soundness lemma, analogous to those for LK (Lemma 1.38) and LKδ (Lemma
2.12), cannot be shown.

Example 2.27 To the left is an LKce-proof from Example 2.24, and to the
right is the object obtained by replacing u1

1 with a1
2.

u1
1 7→ a1

2

∀xPx, Pu1
1 ` Pa1

2

∀xPx, Pu1
1 ` ∀xPx

a1
2

∀xPx ` ∀xPx
u1

1

∀xPx, Pa1
2 ` Pa1

2

∀xPx, Pa1
2 ` ∀xPx

×

∀xPx ` ∀xPx
a1

2

The inference marked with × is not sound in general. It is an instance of

Γ ` ϕ[x/a],∆

Γ ` ∀xϕ,∆
×

where there is no restriction, like the eigenparameter condition, on the term
a. Specifically, a can occur in the conclusion, which it does above.

There are two main ways of showing that LKce is sound; (1) semantically,
by introducing semantics for instantiation terms and showing that all rules
preserve falsifiability upwards, and (2) syntactically, by showing that any
LKce-proof can be transformed into an LKδ-proof.

2.7 Soundness of LKce 37

2.7.1 The semantical approach

To show soundness with the semantical approach, we first need to know
what it means for a formula with instantiation terms to be true.

Recall that a structure M for a language L consist of a domain D and
an interpretation function (·)M , which interprets all function and predicate
symbols in L. To interpret formulas with instantiation terms, the first step
is to interpret the Skolem functions appropriately. We do so by extending
L to a language Lsko in which all the Skolem functions are added as function
symbols. There is no harm in doing this, since the set of Skolem functions is
assumed to be disjoint from the set of function symbols in L. For the purpose
of this section, all structures of consideration will be Lsko-structures.

The next step consists of interpreting the instantiation variables appropri-
ately.

2.28 Definition (Variable assignment)

A variable assignment h for an Lsko-structure M is a function from instan-
tiation variables to elements in |M |. a

2.29 Definition (Interpretation)

An Lsko-structure M together with a variable assignment h for M , written
〈M,h〉, enables us to interpret all terms in the following way:

• f(t1, . . . , tn)〈M,h〉 = fM (t〈M,h〉
1 , . . . , t

〈M,h〉
n), where f is a function symbol

in Lsko (thus including all Skolem functions)

• u〈M,h〉 = h(u), for all instantiation variables u

By using the above interpretation of terms, it is now easy to define truth for
formulas with instantiation variables. That a formula ϕ is true in a structure
M under a variable assignment h, written 〈M,h〉 |= ϕ, is defined analogous
to Definition 1.12 (just replace M with 〈M,h〉). The only part of the truth
definition that needs to be changed is the base case, which is now like this:

• For atomic formulas: 〈M,h〉 |= P (t1, . . . , tn) if (t〈M,h〉
1 , . . . , t

〈M,h〉
n) ∈ PM

Some notation: 〈M,h〉 |= Γ means that ϕ is true in 〈M,h〉 for all formulas
ϕ in Γ. 〈M,h〉 |=⊥ ∆ means that ϕ is false in 〈M,h〉 for all formulas ϕ in
∆. If 〈M,h〉 |= ϕ, we say that ϕ is true in 〈M,h〉. a

38 Free variable sequent calculi

2.7.2 Why local soundness does not hold for LKce

For the previous calculi, we have shown local soundness lemmas; that all
inferences preserve falsifiability upwards, meaning that if the conclusion is
falsifiable, then at least one of the premisses is falsifiable. It is instructive to
see precisely how such a local soundness lemma, as formulated for LK and
LKδ, fails to hold for LKce. The purpose of this discussion is to illustrate
an essential feature of many free variable calculi; that different occurrences
of the same instantiation variable in a skeleton, most typically in differ-
ent branches, must be treated equally. For instance, all occurrences of an
instantiation variable must be interpreted in the same way by a variable
assignment, and all occurrences of an instantiation variable should be sub-
stituted with the same element. Calculi for which this is the case are called
rigid free variable calculi.

The next natural step is to provide notions of validity and falsifiability for
sequents in which instantiation variables occur. The simplest way of doing
this is by means of a countermodel.

2.30 Definition (Countermodel)

If M is a Lsko-structure such that for all variable assignments h it is the case
that 〈M,h〉 makes all formulas in Γ true and all formulas in ∆ false, then
M is a countermodel for the sequent Γ ` ∆. A sequent is valid if it has no
countermodel. a

A more compact formulation which says exactly the same is: For all h,
〈M,h〉 |= Γ and 〈M,h〉 |=⊥ ∆.

Indirectly, instantiation variables occurring in antecedents should be inter-
preted universally and instantiation variables in succedents should be inter-
preted existentially. To see this, consider the following examples.

Example 2.31 Γ, Pa ` Pu,∆ is a valid sequent.

Proof. It is sufficient to show that the sequent has no countermodel. Sup-
pose that M is a countermodel. Then, for all variable assignments h, 〈M,h〉
must make Pa true and Pu false. But a variable assignment h which sends
u to aM makes both Pa true and Pu true in 〈M,h〉. This contradicts the
assumption that M is a countermodel, and since M was arbitrary, no coun-
termodel can exist for the sequent.

2.7 Soundness of LKce 39

Here is a skeleton which generates
such a sequent. Notice that u occurs
in the succedent, and that it should
have an existential interpretation.

Γ, Pa ` Pu, ∃xPx,∆
Γ, Pa ` ∃xPx,∆

u

Γ,∃xPx ` ∃xPx,∆
a

2

Example 2.32 By the same reasoning as above, both Pu ` Pa and Pu ` Pu
are valid sequents.

Remark. Validity for sequents could have been defined without going via
countermodels, but the definition would not be so transparent. The defini-
tion goes like this: A sequent Γ ` ∆ is valid if for all structures M there is a
variable assignment h such that if all formulas in Γ are true in 〈M,h〉, then
there is a formula in ∆ which is true in 〈M,h〉.

Remark. As one might think, the sequent ϕ1, . . . , ϕn ` ψ1, . . . , ψm does
not correspond to the universal closure of (ϕ1 ∧ . . . ∧ ϕn) → (ψ1 ∨ . . . ∨
ψm), which is ∀~x∀~y((ϕ1 ∧ . . . ∧ ϕn) → (ψ1 ∨ . . . ∨ ψm)), where ~x and ~y are
the instantiation variables occurring in the ϕi’s and the ψi’s, respectively.
Rather, it corresponds to ∀~x(ϕ1 ∧ . . . ∧ ϕn) → ∃~y(ψ1 ∨ . . . ∨ ψm). To see
this, consider the sequent with this formula in the succedent. After finitely
many rule applications (in particular; R→, L∀, L∧, R∃ and R∨) the sequent
ϕ1, . . . , ϕn ` ψ1, . . . , ψm is in the leaf node.

Example 2.33 The following sequents are falsifiable:

• Pa,Qb ` Pu∧Qu - (Consider the structure M with domain {a, b}, in
which Pa and Qb are true and Pb and Qa are false. For all assignments
h, the formula Pu ∧Qu is false in 〈M,h〉.)

• Pu ∨Qu ` Pa,Qb - (Consider a structure with the same domain, but
where Pa and Qb are false and Pb and Qa are true. For all assignments
h, the formula Pu ∨Qu is true in 〈M,h〉.)

Let us apply R∧ to the uppermost sequent in the above example to see why
an analogous local soundness lemma cannot be shown for LKce.

Pa,Qb ` Pu Pa,Qb ` Qu
Pa,Qb ` Pu ∧Qu R∧

If considered separately, the two leaf sequents are valid, since there are no
countermodels for either of them. This is exactly the place where a local

40 Free variable sequent calculi

soundness lemma fails to hold; the leaf nodes cannot be treated separately,
because the instantiation variable u occurs in both of them. In this case, u
is called a rigid variable. Logically, it must be a placeholder for the same
element in both branches. Said differently, the quantification cannot be
considered branchwise, but must span across the branches.

We now turn our attention to the right way to do it.

2.34 Definition (Open branch, semantically)

Let π be a skeleton and β a branch in a skeleton. Also, let β+ consist of
all formula occurrences in any antecedent of β and β− consist of all formula
occurrences in any succedent of β. Given a structure M and a variable
assignment h, we say that β is an open branch of π if 〈M,h〉 makes all
formulas in β+ true and 〈M,h〉 makes all formulas in β− false. a

2.35 Definition (Countermodel for a skeleton)

A countermodel for a skeleton is a structure M such that for all variable
assignments h there is an open branch in the skeleton. a

Since instantiation variables function as placeholders, different variable as-
signments might give different open branches. If a skeleton has a counter-
model, all we know is that for each variable assignment, there is an open
branch.

Example 2.36 Reconsider the skeleton above.

Pa,Qb ` Pu Pa,Qb ` Qu
Pa,Qb ` Pu ∧Qu R∧

The structure M given in Example 2.33 is a countermodel for the skeleton.
For all variable assignments h there is an open branch in the skeleton. There
are only two possibilities for the value of u. If h(u) = a, then the right
branch is open; all antecedent formula occurrences are true and all succedent
formula occurrences are false. Likewise, if h(u) = b, then the left branch is
open.

This is an example of a general principle: all rules of LKce preserve the
existence of a countermodel for a skeleton.

2.37 Lemma (Countermodel preservation) Let π be a skeleton and let
β be a branch in π with a leaf sequent Γ ` ∆. Let r be an inference with
Γ ` ∆ as conclusion, and let π′ be the skeleton obtained by adding the
premiss(es) of r above Γ ` ∆. Claim: If π has a countermodel, then π′ has
a countermodel. a

2.7 Soundness of LKce 41

Proof. If r is a one-premiss inference, call the new branch β1; if r is a
two-premiss inference, call the new branches β1 and β2. The new skeleton
π′ must be of one of these forms:

Γ′ ` ∆′

Γ ` ∆
r

.... β
π

Γ′ ` ∆′ Γ′′ ` ∆′′

Γ ` ∆
r

.... β
π

First, assume that M is a countermodel for π. The cases in the proof
correspond to which type of inference r is. If r is not a δ-inference, then the
countermodel for π′ will be M .

Pick an arbitrary variable assignment h. Then, by assumption, there is an
open branch in π. If this branch is different from β, then it must also be an
open branch in π′, and we are done. So, assume without loss of generality
that the open branch in π is β. Then, β1 (or β2) will be an open branch of
π′.

L∧: Suppose β1 is obtained by extending the leaf node of β in the following
way:

Γ, ϕ, ψ ` ∆
Γ, ϕ ∧ ψ ` ∆

L∧

Since β is open in π, we have that 〈M,h〉 |= Γ, ϕ∧ψ and 〈M,h〉 |=⊥ ∆.
It follows that 〈M,h〉 |= ϕ and 〈M,h〉 |= ψ, so β1 is an open branch
in π′.

L∨: Suppose β1 and β2 are obtained by extending the leaf node of β in the
following way:

Γ, ϕ ` ∆ Γ, ψ ` ∆
Γ, ϕ ∨ ψ ` ∆

L∨

Since β is open in π, we have that 〈M,h〉 |= Γ, ϕ∨ψ and 〈M,h〉 |=⊥ ∆.
Then, either 〈M,h〉 |= ϕ or 〈M,h〉 |= ψ, which makes either β1 or β2

open.

R∧, R∨, R→, L→, R¬, L¬ are similar.

L∀: Suppose β1 is obtained by extending the leaf node of β in the following
way:

Γ,∀xϕ, ϕ[x/u] ` ∆

Γ,∀xϕ ` ∆
L∀

Since β is an open branch, we have that 〈M,h〉 |= ∀xϕ. Claim:
〈M,h〉 |= ϕ[x/u]. Assume h(u) = d, where d is in the domain of

42 Free variable sequent calculi

M . Since 〈M,h〉 makes ∀xϕ true, by the truth definition it is the case
that 〈M,h〉 |= [x/d]. Since h(u) = d, we have that 〈M,h〉 |= ϕ[x/u].
(This is easily established by induction on the length of formulas.)
Then β1 is a an open branch of π′.

R∃: Similar.

If the rule used to obtain β1 was L∃ or R∀, we must construct a new coun-
termodel M ′ for π′.

L∃: Suppose β1 is obtained by extending the leaf node of β in the following
way:

Γ, ϕ[x/f(u1, . . . , un)] ` ∆

Γ,∃xϕ ` ∆
L∃

Let M ′ be a structure which is identical to M except for the interpre-
tation of the Skolem function f , which should be interpreted in the
following way. Let a1, . . . , an be n elements in the domain of M ′, and
let h be a variable assignment which maps ui to ai for 1 ≤ i ≤ n. If
〈M,h〉 |= ∃xϕ, then there is an element d in the domain of M ′ such
that 〈M,h〉 |= ϕ[x/d]. In that case, let fM (a1, . . . , an) = d. If not, let
fM (a1, . . . , an) = d′ for an arbitrary d′ in the domain of M ′.

Claim: M ′ is a countermodel for π′. Again, pick an arbitrary variable
assignment h. Notice, that h is also a variable assignment for M , since
M and M ′ have the same domain. Then, there is a branch β′ in π
which is open with respect to 〈M,h〉. If β′ does not contain the Skolem
function f , then it must also be open in π′ with respect to 〈M ′, h〉,
since the two structures interpret all other symbols identically. But,
if β′ does contain the Skolem function f (this subtlety is caused by
the fact that the Skolem function f might already occur in π), then
there are two cases. (1) If β′ is identical to β, then β1 will be an
open branch of π′. This is guaranteed by the construction of M ′.
In that case, 〈M ′, h〉 |= ∃xϕ and the interpretation of f gives that
〈M ′, h〉 |= ϕ[x/f(u1, . . . , un)]. (2) If β′ is a different branch than β
in which f occurs, then the situation is a bit more complex. The
branch β′ is open with respect to 〈M,h〉, but since the M ′ interprets
f differently, we cannot be sure that β′ is open with respect to 〈M ′, h〉.
Nevertheless, the construction of M ′ ensures that f is interpreted in
the right way, and we use this fact to show that there indeed is a
branch in π′ which is open with respect to 〈M ′, h〉. First, there must
be contextually equivalent formula occurrences in β′ of both ∃xϕ and
ϕ[x/f(u1, . . . , un)]. (Otherwise, f would not be in β′.) These must
also be true in 〈M ′, h〉, since M and M ′ only differ with respect to

2.7 Soundness of LKce 43

the interpretation of f . Let r′ be the inference in β′ in which ∃xϕ
is principal. By induction on the structure of the skeleton above r′,
it it easily shown that there must be an open branch with respect to
〈M ′, h〉.

Remark. The open branch found in this last step is not necessarily
identical to β′. This is becauseM andM ′ might interpret f differently.
For example, if ∀xϕ is of the form ∃x(Pxu ∨Qxu):

Γ, Pf(u)u ∨Qf(u)u ` ∆

Γ,∃x(Pxu ∨Qxu) ` ∆
f(u)

It is possible that M interprets f such that Pf(u)u is false for a
given variable assignment h, and that the construction of M ′ results
in an interpretation of f such that Pf(u)u is true under the the same
variable assignment.

2

2.38 Theorem (Soundness of LKce)

Let 〈π, σ〉 be a proof in LKce of a sequent Γ ` ∆. Then Γ ` ∆ is valid. a

Proof. Suppose that Γ ` ∆ is not valid. Then, the skeleton consisting
of only Γ ` ∆ has a countermodel M . By repeated applications of the
countermodel preservation lemma (Lemma 2.37), M must be a countermodel
for π. By definition of a countermodel, there must be an open branch
β in π for any variable assignment h. By Lemma 2.11 there is a ground
substitution σ′ which closes π. Let h be the variable assignment which
sends an instantiation variable u to the interpretation of uσ′ in M , i.e.
h(u) = (uσ′)M . (Since uσ′ is a ground term and M is a Lsko-structure,
(uσ′)M is well-defined.) Since every leaf sequent is a σ′-axiom, there cannot
be an open branch in π with respect to 〈M,h〉. Then, Γ ` ∆ must be
valid. 2

44 Free variable sequent calculi

Chapter 3

A change of perspective

4

4

Permutation variants

For each inference in a skeleton, there is exactly one principal formula oc-
currence. We can thus relate inferences in a skeleton by means of how their
principal formula occurrences are related.

This is a change of perspective. The relations introduced below are not
between the nodes in a skeleton, which are sequents, but between the in-
ferences in a skeleton. Inferences contain more information than sequents;
each inference has a type, a principal formula occurrence, one or two active
formula occurrences and a context.

3.1 Relations between inferences

3.1 Definition (Contextual equivalence)

Two different inferences r and s are contextually equivalent, written r ∼
s, if their principal formula occurrences are contextually equivalent. The
set consisting of r together with contextually equivalent inferences of r is
denoted [r]. a

Remark. In the definition, the inferences are assumed to be different. For

45

46 A change of perspective

reasons that will become apparent later, it is not convenient that an inference
is contextually equivalent to itself.

3.2 Definition (Immediate ancestor)

The inference r is an immediate ancestor of the inference s, written r � s,
if (1) the principal formula occurrence of r is an immediate ancestor of the
principal formula occurrence of s, and (2) r and s are inferences in the same
branch of the skeleton. Equivalently, the principal formula occurrence of r
has the same index pair as an active formula occurrence of s. (The ancestor
relation is defined similarly.) a

3.3 Definition (Substitution ordering)

Let π be a skeleton and σ a closing unifier. Assume without loss of generality
that σ is minimal in the sense that every binding in the support of σ is
necessary in order to close all branches of π. (A binding is necessary for the
closure if the result of taking the binding out of the support is that some
branch is not closed. If this is not the case, we can remove the bindings
which are not necessary.) Then, ru A rf holds if is the case that:

(1) ru and rf are two inferences in the same branch β of π

(2) ru introduces the instantiation variable u

(3) rf introduces the Skolem function f

(4) uσ = f(~t), for some sequence of terms ~t

(5) u and f both occur in the atomic formula which closes β

We say that the A is the substitution ordering induced from σ. a

3.4 Definition (Conforming)

Let 〈π, σ〉 be a proof. π conforms to A, if for all inferences r and s in π,
such that r A s, it is the case that r is above s. a

Remark. A conforming skeleton corresponds to the eigenparameter condi-
tion of LK.

Example 3.5

Pua ` Pbv
Pua ` ∃yPby

v

∀xPxa ` ∃yPby
u

∀xPxa ` ∀x∃yPxy b

∃y∀xPxy ` ∀x∃yPxy
a

Let a, b, u, v denote the inferences in the skeleton. Then, u � a holds
because the principal formula of u (∀xPxa) is ancestor to the principal

3.2 Diagram representations 47

formula of a (∃y∀xPxy). By the same reasoning v � b holds. Let σ =
{u/b, v/a} be a closing unifier. Then u A b and v A a hold. The skeleton
conforms to σ, since u is above b and v is above a.

3.6 Lemma (Soundness of LKce- Part I) Let 〈π, σ〉 be a proof of Γ `
∆ in LKce such that π conforms to A. Then, Γ ` ∆ is valid. a

Proof. Since π conforms to A it is possible to show that Γ ` ∆ is valid
by induction on the length of πσ′ for a ground substitution σ′. This is
precisely analogous to the local soundness proof for both LK (Lemma 1.38)
and LKδ (Lemma 2.12). The conformity of σ ensures that the Skolem terms
do not occur in the conclusion when they are introduced. They function
properly as witnesses for satisfiability (in R∃-inferences) and unsatisfiability
(for L∀-inferences). 2

3.7 Definition (�-tree)

If r is an inference in a skeleton, then the �-tree rooted in r is the least
tree T such that (1) r ∈ T and (2) for all s ∈ T , if s′ � s, then s′ ∈ T . a

Observation. Let T be the �-tree rooted in r such that ϕ is principal in r.
Let T ′ be the tree where the nodes are exactly the sets [s], where s is an
inference in T , such that [s] is an immediate ancestor of [s′] if and only if
s� s′. Each node represents an equivalence class of contextually equivalent
inferences. Then T ′ is isomorphic to the formula tree of ϕ in the following
way: Each node [s] in T ′, such that ψn

m is principal in s, is associated with
the node in the formula tree representing ψn

m. This node will have the same
principal type as the inference type of s, and the polarity will correspond to
whether ψn

m occurs in the antecedent or the succedent. This enables us to
speak of �-trees and formula trees in a similar way. More importantly, for
each �-tree, there is a unique formula tree. Conversely, for each formula
tree there can be many �-trees in a skeleton, but only one up to contextual
equivalence.

3.2 Diagram representations

A rewarding part of this work has consisted in developing an intuitive way of
representing derivations, inferences and relations between inferences in order
to reason about them effectively. By observing that many important prop-
erties of derivations (such as the fulfillment of an eigenparameter condition)
could be expressed by means of relations between inferences, as opposed
to relations between formulas or sequents, it was natural to develop a dia-
gram language which could display the essential aspects and dependencies
in a derivation. The diagram language enables us to give an abstract and

48 A change of perspective

compact representation of a derivation; furthermore, operations on these
representations correspond directly to operations on the represented deriva-
tions. It enables us to visualize complex structures and abstract away from
the not so essential details of a derivation. It turns out that reasoning about
these representations, and not about the represented structures in all detail,
is very fruitful. It is not uncommon for mathematicians to employ such
visual structures in their reasoning; by reasoning about simpler structures,
avoiding an unnecessary detail overload, it becomes possible to gain insight
and prove important facts about the real, more complex, structures. Hoping
that it will increase clarity and display our logical intuitions, the diagram
representations of skeletons will be provided as often as possible after they
are introduced.

A skeleton is composed out of inferences, instances of rules. We will now
represent skeletons at a higher level of abstraction by diagrams in which
the diagram labels denote inferences and arrows denote relations between
inferences.

The following are diagram labels:

α-inference: ◦ γ-inference: u or un
m

β-inference: 4 δ-inference: f(~u), fn
m(~u), a, an

m

If a γ-inference introduces the instantiation variable u, then we use u as a
label representing this inference. If a δ-inference introduces the instantiation
term f(~u), where f is the Skolem function, then we use f(~u) as a label
representing this inference.

The following are the diagram arrows:

immediate ancestor relation
contextual equivalence relation
substitution ordering

A diagram representation of the infer-
ence r being an immediate ancestor of
an inference s. s

r

(r � s)

A diagram representation of the infer-
ence r being contextually equivalent
to an inference s due to a splitting
caused by a β-rule.

4

r s

(r ∼ s)

3.2 Diagram representations 49

A diagram representation of two in-
ferences, ru and sf , being A-related.

u

f

(ru A sf)

The diagram labels enable us to distinguish between to types of splitting
of branches in �-trees; one type of splitting due to α-rules and one due to
β-rules, which additionally split the branches of the skeleton.

Γ ` ϕ′,∆
Γ ` ϕ,∆

Γ ` ψ′,∆
Γ ` ψ,∆

Γ ` ϕ ∧ ψ,∆ 4

Γ ` ϕ′, ψ′,∆
Γ ` ϕ′, ψ,∆
Γ ` ϕ,ψ,∆

Γ ` ϕ ∨ ψ,∆

3.8 Definition (Balanced skeleton)

A balanced skeleton is a skeleton where the following condition holds for all
inferences r and s: If r ∼ s and r′ � r, then there is an s′ such that s′ � s
and s ∼ s′. A diagram representation:

r

r′

s

only if there is a s′ such that
r

r′

s

s′

a

Remark. The notion of balanced skeletons is the same as the notion of bisim-
ilarity, as found in [14] and often used in modal logic. What is described
above is exactly what it means for two structures to be bisimilar, namely
that there exists a bisimulation between the two structures.

50 A change of perspective

To get a feeling for the diagrams,
here is a diagram representation for
the LKce-proof in Example 2.25. No-
tice that all arrows point downwards.
Thus, the skeleton is conforming.
This property of the diagrams corre-
sponds to the eigenparameter condi-
tion. We say that the proof in ques-
tion is LK-like. Also, observe that
each label representing a γ-inference
only has one arrow going downwards
out from it. Later, we will see a calcu-
lus where this is not always the case.

a1
4

u1
1

f1
2 (u1

1)

u1
5

4

u2
1

f2
2 (u2

1)

u1
8

The skeleton from Example 3.5, together with its corresponding diagram,
illustrating that the skeleton is conforming.

u/b, v/a

Pua ` Pbv
Pua ` ∃yPby

v

∀xPxa ` ∃yPby
u

∀xPxa ` ∀x∃yPxy b

∃y∀xPxy ` ∀x∃yPxy
a

a

b

u

v

3.3 Permutations

The study of permutations for sequent calculi goes back to Kleene [33]. Some
background knowledge will be presupposed here. For precise definitions and
more detailed expositions, see Waaler [44] or Troelstra and Schwichtenberg
[42]. Despite this, many examples will be given, and the reader should be
able to get a fairly good understanding of permutations from these.

Intuitively, a permutation of a skeleton, called a permutation variant , is a
skeleton which differs only in the order of rule applications. Two permuta-
tion variants have exactly the same leaf sequents.

3.3 Permutations 51

What is important to point out here is that only symmetrical permutation
schemes are considered. The class of balanced and variable-sharing (see
definition below) skeletons was identified in [44], where it was shown that leaf
sequents of such skeletons correspond precisely to paths through matrices.
(See Bibel [12] or Wallen [46] for further information about matrices.)

3.9 Definition (Variable-sharing skeleton)

A skeleton is variable-sharing if all contextually equivalent γ-inferences in-
troduce the same instantiation variables. A skeleton is variable-pure if all
γ-inferences introduce different instantiation variables. a

Example 3.10 LKδ generates variable-pure skeletons and LKce generates variable-
sharing skeletons. This depends solely on how the γ-rules are defined. It
is possible to define LKce such that it generates variable-pure skeletons, but
then symmetrical permutation schemes would not be applicable.

With LK and LKδ there are rule dependencies (cnf. Example 1.36 for LK and
Example 2.9 for LKδ) which make it impossible to permute freely between
inferences. In particular, a γ-inference (L∀ or R∃) in a skeleton might depend
on a δ-inference (R∀ or L∃), and then it is necessary for the δ-inference to
occur below the γ-inference in any given branch. With LKce, this is not the
case anymore (cnf. Example 2.24).

Even if we are not going into the details of permutations, it is instructive to
see how symmetrical permutation schemes can be applied. The next three
examples are all illustrations of symmetrical permutation schemes. Notice
that the permutation variants always have identical leaf sequents.

Example 3.11 The two proofs in Example 2.24 are permutation variants;
here, two one-premiss inferences change order.

Example 3.12 A one-premiss inference changes order with a two-premiss
inference:

Pu ` ϕ
∀xPx ` ϕ L∀

Pu ` ψ
∀xPx ` ψ L∀

∀xPx ` ϕ ∧ ψ R∧

Pu ` ϕ Pu ` ψ
Pu ` ϕ ∧ ψ R∧

∀xPx ` ϕ ∧ ψ L∀

Example 3.13 Two two-premiss inferences change order:

ϕ1 ` ψ1 ϕ2 ` ψ1

ϕ1 ∨ ϕ2 ` ψ1
L∨

ϕ1 ` ψ2 ϕ2 ` ψ2

ϕ1 ∨ ϕ2 ` ψ2
L∨

ϕ1 ∨ ϕ2 ` ψ1 ∧ ψ2
R∧

52 A change of perspective

ϕ1 ` ψ1 ϕ1 ` ψ2

ϕ1 ` ψ1 ∧ ψ2
R∧

ϕ2 ` ψ1 ϕ2 ` ψ2

ϕ2 ` ψ1 ∧ ψ2
R∧

ϕ1 ∨ ϕ2 ` ψ1 ∧ ψ2
L∨

A useful lemma to have when reasoning about permutations is the following.

3.14 Lemma (Permutation) Let π be a balanced skeleton with a non-
atomic formula occurrence ϕ in the root sequent such that ϕ has an ancestor
somewhere in the skeleton. Then, there is a permutation variant of π where
ϕ is principal in the lowermost inference. a

Proof. (See Lemma 2.14 in Waaler [44].) Briefly, the proof there goes like
this: Since ϕ has an ancestor in π, it must be principal somewhere in π.
There must be a set of contextually equivalent inferences which all have ϕ
as the principal formula occurrence. All of these inferences must occur in
different branches. By repeatedly choosing the inferences which are furthest
away from the root and permuting downwards according to permutation
schemes, a skeleton such that ϕ is principal in the lowermost inference is
obtained. 2

Example 3.15 The following two skeletons are permutation variants. In the
first skeleton, the γ-inference has been applied before the β-inference; in the
second skeleton, it is the other way around. To the right are the correspond-
ing diagrams.

Pu1
1, Qu

1
1 ` ϕ

Pu1
1 ∧Qu1

1 ` ϕ
Pu1

1, Qu
1
1 ` ψ

Pu1
1 ∧Qu1

1 ` ψ
Pu1

1 ∧Qu1
1 ` ϕ ∧ ψ

R∧

∀x(Px ∧Qx) ` ϕ ∧ ψ
u1

1 u1
1

4

Pu1
1, Qu

1
1 ` ϕ

Pu1
1 ∧Qu1

1 ` ϕ
∀x(Px ∧Qx) ` ϕ

u1
1

Pu1
1, Qu

1
1 ` ψ

Pu1
1 ∧Qu1

1 ` ψ
∀x(Px ∧Qx) ` ψ

u1
1

∀x(Px ∧Qx) ` ϕ ∧ ψ R∧ 4

u1
1 u1

1

3.3 Permutations 53

Example 3.16 (More complex.) The skeleton in Example 2.25 has an im-
portant property; it is conforming with respect to the closing substitution.
Below is a permutation variant of this skeleton which is not conforming.
The permutation variant has exactly the same leaf sequents as the original
skeleton.

(∀x∃yPxy)2, Pu1
1f

1
2(u

1
1) ` Pa1

4u
1
5

(∀x∃yPxy)2, Pu1
1f

1
2(u

1
1) ` Pa1

4u
1
5

Pu2
1f

2
2(u

2
1), Pu

1
1f

1
2(u

1
1) ` Pu1

5u
1
8

∃yPu2
1y, Pu

1
1f

1
2(u

1
1) ` Pu1

5u
1
8

f2
2(u

2
1)

(∀x∃yPxy)2, Pu1
1f

1
2(u

1
1) ` Pu1

5u
1
8

u2
1

(∀x∃yPxy)2, Pu1
1f

1
2(u

1
1) ` ∃zPu1

5z
u1

8

(∀x∃yPxy)2, Pu1
1f

1
2(u

1
1) ` Pa1

4u
1
5 ∧ ∃zPu1

5z

(∀x∃yPxy)2, Pu1
1f

1
2(u

1
1) ` ∃y(Pa1

4y ∧ ∃zPyz)
u1

5

(∀x∃yPxy)2, Pu1
1f

1
2(u

1
1) ` ∀x∃y(Pxy ∧ ∃zPyz)

a1
4

(∀x∃yPxy)2,∃yPu1
1y ` ∀x∃y(Pxy ∧ ∃zPyz)

f1
2(u

1
1)

(∀x
1
∃y
2
Pxy

3
)1 ` ∀x

4
∃y
5

(Pxy
7

∧
6
∃z
8
Pyz)

9

1
u1

1

The leftmost diagram rep-
resents the permutation
variant, and the right-
most diagram represents
the original skeleton. No-
tice that the arrows from
u1

1 to a1
4 and from u1

8 to
f2

2(u
2
1) go upwards. This

is what makes the skele-
ton non-conforming. Also,
observe that the permuta-
tion variant is obtained by
moving a1

4 upwards two in-
ferences and by moving u1

8

downwards two inferences.
u1

1

f1
2 (u1

1)

a1
4

u1
5

4

u1
8

u2
1

f2
2 (u2

1)

a1
4

u1
1

f1
2 (u1

1)

u1
5

4

u2
1

f2
2 (u2

1)

u1
8

54 A change of perspective

3.4 Cycle elimination

In this section we will approximate a syntactical and proof-theoretical sound-
ness proof for LKce.

3.17 Definition (Reduction ordering)

Let 〈π, σ〉 be a proof in LKce. We introduce a new relation �∼ between
inferences, which is the transitive closure of �, with a twist added to it. Let
�+ be the transitive (but not reflexive) closure of �. Then, r�∼ r′ holds
if either (1) r �+ r′ or (2) there is an inference r′′ such that r �+ r′′ and
r′′ ∼ r′ (r′′ is contextually equivalent to r′). Diagrammatically, r�∼ r′ holds
if:

Either (1)

r

r′

+ or (2)

r

r′′ r′

+

The transitive (but not reflexive) closure of (�∼ ∪ A) gives the reduction
ordering �. (A is the substitution ordering induced from σ). We say that
� is the reduction ordering induced from σ. a

3.18 Definition (Cycle)

Let 〈π, σ〉 be a proof in LKce. A �-cycle is a finite sequence of inferences
r1, . . . , rn, for n ≥ 2, such that r1 � r2, . . . , rn � r1. We say that � contains
the cycle r1, . . . , rn. It is cycle-free if it does not contain a cycle. a

Convention. Since �∼ is transitive we will from now on assume that each �-
cycle is a finite sequence of inferences r1, . . . , rn such that r1�∼ r2, r2 A r3,
. . . , rn−1�∼ rn, rn A r1. Additionally, since r A r′ holds only if r is a
γ-inference and r′ is a δ-inference, it is also safe to assume that if s�∼ s′

holds, for s and s′ in a cycle, then s is a δ-inference and s′ is a γ-inference.
Furthermore, each �∼ -step can be decomposed into exactly one �+-step and
one ∼-step.

3.19 Definition (Cycle length)

The length of a cycle is the number of γ-inferences in it; equivalently the
number of δ-inferences in it. (By the above assumption, there are equally
many γ- and δ-inferences in a cycle.) a

Since we have diagram representations for both � and A, and � is defined
from these, it is possible to give a diagram representation of a �-cycle. We
use the fact that one �∼ -step in a cycle can be decomposed into one �+-step

3.4 Cycle elimination 55

and one ∼-step. Below is a diagram representation of a cycle of length 3,
where f1�∼ u′1, u

′
1 A f2, f2�∼ u′2, u

′
2 A f3, f3�∼ u′3 and u′3 A f1.

u′
3

u1 u′
1

u2 u′
2

u3

f1 f2 f3

+ + +

3.20 Definition (Well-founded)

A relation > is well-founded on a set A if for all non-empty subsets B of A,
there is a >-minimal element in B, i.e. an element r such that there is no
element s in B such that r > s. a

3.21 Lemma � is well-founded if and only if it is cycle-free. a

Proof (⇒). If � contains a cycle, then it is obviously not well-founded.
The set of all inferences in the given skeleton does not have a �-minimal
element. 2

Proof (⇐). If � is not well-founded, then there is a subset of inferences
in π for which there is no �-minimal inference. For every inference r in the
subset it is possible to find an inference s in the subset such that r�s. But,
then � contains a cycle. 2

3.22 Lemma (Soundness of LKce- Part II) Let 〈π, σ〉 be a proof in LKce such
that the reduction ordering � induced from σ is cycle-free. Then, there is a
permutation variant π which conforms to A. a

Remark. Together with part I (Lemma 3.6), this lemma gives that every
sequent with a proof 〈π, σ〉 such that � is cycle-free, is valid.

Proof. By induction on the sub-skeletons of π. Initially, label all inferences
in π black.

Basic step: By Lemma 3.21, for the set of inferences in π, there must be a
�-minimal element r. Assume that ϕ is the principal formula occurrence
of r. By the permutation lemma (Lemma 3.14), there is a permutation
variant of π which has ϕ as the principal formula occurrence in the lowermost
inference, i.e. r is the lowermost inference of the permutation variant. Label
the inference r white.

Induction hypothesis: The A-conformity property holds for all white infer-
ences, i.e. if r and s are white inferences such that r A s, then r is above s
in the skeleton.

56 A change of perspective

Induction step: Let π′ be a sub-skeleton such that its lowermost sequent is
the premiss of a white inference. Observe that all inferences in π′ are black
and that all inferences below its lowermost sequent are white. By Lemma
3.21, for the set of inferences in π′, there must be a �-minimal element r.
By the permutation lemma there is a permutation variant π′′ of π′ in which
r is the lowermost inference. This must also be a permutation variant of
the main skeleton (of which π′ is a sub-skeleton). Since all inferences in π′

were black, no white inference was touched in order to obtain π′′, so we can
apply the induction hypothesis. Label the inference r white. Claim: The A-
conformity property still holds for all white inferences. The only possibility
for this not to be the case is if s A r, for some white inference s. But then,
since s � r, the inference s could not have been �-minimal when it was
labeled white. 2

So far, so good. We have now established that LKce is a sound calculus,
provided that the induced � is cycle-free. The only problem is that � can
contain cycles, as the reader might have guessed by now. When � contains a
cycle, there is no conforming permutation variant, and the arguments above
can not be applied to show that the sequent in question is valid.

The soundness proof in Waaler [44] fails to recognize the existence of such
cycles and does not work as it stands. The error lies in Lemma 2.16 in
that article, which says: “The reduction ordering � induced by a ground,
homogeneous substitution is well-founded.” The reduction ordering defined
there is essentially1 the same as the one defined here.

Before a sketch for a cycle elimination proof is given, we will go through
some examples of cycles and how to eliminate them in full detail.

Example 3.23 (Cycle - main example I)

Let ϕn
1 abbreviate: (∃x

1
(Px

3
→
2
∀y
4
Py
5

))n
1 . A proof in LKce is given below.

1There are two main differences between � in Waaler [44] and our �: (1) The � in
[44] also relates inferences which do not occur in the same branch. (2) The � in [44] also
relates γ-inferences with each other. The choice of reduction ordering in this thesis avoids
(1) because this allows for a more fine-grained discussion of cycles. (2) is avoided since
only ground substitutions are considered and the essence of a conforming skeleton is not
affected by whether two γ-inferences are A-related.

3.4 Cycle elimination 57

u1
1/a

1
4

Pu1
1 ` Pa1

4, ϕ
2
1

Pu1
1 ` ∀yPy, ϕ2

1

a1
4

` Pu1
1 → ∀yPy, ϕ2

1

` ∃x(Px→ ∀yPy)
u1

1 u1
1

a1
4

There is a �-cycle of length one, since u1
1 A a

1
4 and a1

4 � u1
1.

If we want to eliminate the cycle from this example, there is only one thing
to do; expand the formula occurrence ϕ2

1. After one application of R∃ and
one application of R→, the leaf node is Pu1

1, Pu
2
1 ` Pa1

4,∀yPy, ϕ3
1. Now it

is possible to close the skeleton with the binding {u2
1/a

1
4}, which results in

a cycle-free proof. The skeleton resulting from additionally applying L∀is
given below, together with a diagram representation.

u2
1/a

1
4

Pu1
1, Pu

2
1 ` Pa1

4, Pa
2
4, ϕ

3
1

Pu1
1, Pu

2
1 ` Pa1

4,∀yPy, ϕ3
1

a2
4

Pu1
1 ` Pa1

4, Pu
2
1 → ∀yPy, ϕ3

1

Pu1
1 ` Pa1

4, ϕ
2
1

u2
1

Pu1
1 ` ∀yPy, ϕ2

1

a1
4

` Pu1
1 → ∀yPy, ϕ2

1

` ∃x(Px→ ∀yPy)
u1

1

u1
1

a1
4

u2
1

a2
4

Example 3.24 (Cycle - main example II)

Let ϕn
1 abbreviate (∀x

1
(∀x

3
Qx
4
→
2
Px
5

))n
1 .

Let ψn
6 abbreviate ∃x

6
(Qx

8
→
7
∀x
9
Px
10

)n
6 .

A proof of the sequent ϕ1
1 ` ψ1

6, in which the principal formula occurrences
are boxed, is given below. To the right is the corresponding diagram repre-
sentation, which demonstrates the cycle.

58 A change of perspective

u1
6/a

1
3

ϕ2
1, Qu

1
6 ` ψ2

6, Pa
1
9, Qa

1
3

ϕ2
1, Qu

1
6 ` ψ2

6, Pa
1
9, ∀xQx

a1
3

u1
1/a

1
9

Pu1
1, ϕ

2
1, Qu

1
6 ` ψ2

6, Pa
1
9

ϕ2
1, ∀xQx→ Pu1

1 , Qu
1
6 ` ψ2

6, Pa
1
9

∀x(∀xQx→ Px) , Qu1
6 ` ψ2

6, Pa
1
9

u1
1

∀x(∀xQx→ Px), Qu1
6 ` ψ2

6, ∀xPx
a1

9

∀x(∀xQx→ Px) ` ψ2
6, Qu

1
6 → ∀xPx

∀x(∀xQx→ Px) ` ∃x(Qx→ ∀xPx)
u1

6 u1
6

a1
9

u1
1

4

a1
3

There is a �-cycle of length two: u1
6 A a

1
3, a

1
3
�∼ u1

1, u
1
1 A a

1
9 and a1

9
�∼ u1

6.

The rightmost leaf sequent is closed by the binding {u1
1/a

1
9}. If this binding

is removed (taken out of the support of the substitution), then the cycle
would be eliminated. In order to close the skeleton without this binding,
but with the other bindings in the support as they are, we can introduce
a new instantiation variable u2

1 and a new binding {u2
1/a

1
9} for all the leaf

sequents in which u1
1 occur. To get the variable u2

1, we must expand ϕ2
1.

The result of doing this for the rightmost leaf sequent is given below.

Pu1
1, ϕ

3
1, Qu

1
6 ` ψ2

6, Pa
1
9, Qa

2
3

Pu1
1, ϕ

3
1, Qu

1
6 ` ψ2

6, Pa
1
9, ∀xQx

a1
3

u2
1/a

1
9

Pu2
1, Pu

1
1, ϕ

3
1, Qu

1
6 ` ψ2

6, Pa
1
9

Pu1
1, ϕ

3
1, ∀xQx→ Pu2

1 , Qu
1
6 ` ψ2

6, Pa
1
9

Pu1
1, ϕ

2
1 , Qu

1
6 ` ψ2

6, Pa
1
9

u2
1

The rightmost branch in the new skeleton is closed by {u2
1/a

1
9}, but the

other new branch is not closed; the variable u1
6 is already bound to a1

3, so
it cannot be sent to a2

3, and the variable u1
1 is not supposed to be in the

support of the new substitution. In the same spirit, we can expand ψ2
6 in

order to get a new variable u2
6, which can be sent to a2

3. Then a cycle-free
skeleton is obtained. (See the diagram representation – variant 1.)

3.4 Cycle elimination 59

u2
6/a

2
3

Pu1
1, ϕ

3
1, Qu

1
6, Qu

2
6 ` ∀xPx, ψ3

6, Pa
1
9, Qa

2
3

Pu1
1, ϕ

3
1, Qu

1
6 ` Qu2

6 → ∀xPx , ψ3
6, Pa

1
9, Qa

2
3

Pu1
1, ϕ

3
1, Qu

1
6 ` ψ2

6 , Pa
1
9, Qa

2
3

u2
6

Another way of eliminating the cycle consists of removing the binding {u1
6/a

1
3}

from the cycle, introducing the binding {u2
6/a

1
3} and expanding ψ2

6 in the
leftmost sequent of the original skeleton, since that is the leaf sequent in
which u1

6 occurs. (See the diagram representation – variant 2.)

The original skeleton.

u1
6

a1
9

u1
1

4

a1
3

Variant 1.

u1
6

a1
9

u1
1

4

a1
3 u2

1

4

a2
3

u2
6

a2
9

Variant 2.

u1
6

a1
9

u1
1

4

a1
3

u2
6

a2
9

60 A change of perspective

Below is a permutation variant of the first skeleton. The rules are applied in a
different order, but the leaf nodes are identical. Again, the principal formula
occurrences are boxed. Below is the corresponding diagram representation,
which demonstrates the cycle.

u1
6/a

1
3

ϕ2
1, Qu

1
6 ` ψ2

6, Pa
1
9, Qa

1
3

ϕ2
1, Qu

1
6 ` ψ2

6, ∀xPx ,Qa1
3

a1
9

ϕ2
1 ` ψ2

6, Qu
1
6 → ∀xPx ,Qa1

3

ϕ2
1 ` ∃x(Qx→ ∀xPx) , Qa1

3

u1
6

ϕ2
1 ` ∃x(Qx→ ∀xPx), ∀xQx

a1
3

u1
1/a

1
9

Pu1
1, ϕ

2
1, Qu

1
6 ` ψ2

6, Pa
1
9

Pu1
1, ϕ

2
1, Qu

1
6 ` ψ2

6, ∀xPx
a1

9

Pu1
1, ϕ

2
1 ` ψ2

6, Qu
1
6 → ∀xPx

Pu1
1, ϕ

2
1 ` ∃x(Qx→ ∀xPx)

u1
6

ϕ2
1, ∀xQx→ Pu1

1 ` ∃x(Qx→ ∀xPx)

∀x(∀xQx→ Px) ` ∃x(Qx→ ∀xPx)
u1

1

u1
1

4

a1
3

u1
6

a1
9

u1
6

a1
9

The same �-cycle of length two is found here: u1
1 A a1

9, a
1
9
�∼ u1

6, u
1
6 A a1

3

and a1
3
�∼ u1

1.

Remark. u1
6 in the cycle represents the leftmost inference which introduces

u1
6, and a1

9 represents the rightmost inference which introduces a1
9. There is

no harm in not specifying which, since A in this case unambiguously relates
two and two inferences on a branch. If we inspect the decomposition of the
cycle, this becomes clear: u1

1 A a1
9R, a1

9R �+ u1
6R, u1

6R ∼ u1
6L, u1

6L A a1
3

and a1
3
�∼ u1

1, where L and R denote whether the inference is in the left or
the right branch of the skeleton.

3.4 Cycle elimination 61

By the exact same arguments as for the first skeleton it is possible to elimi-
nate the cycle in the permutation variant in two ways, as indicated by the
cycle-free diagrams below.

Variant 1.

u1
1

4

a1
3

u1
6

a1
9

u1
6

a1
9

u2
1

4

a2
3

u2
6

a2
9

Variant 2.

u1
1

4

a1
3

u1
6

a1
9

u1
6

a1
9

u2
6

a2
9

It is essential that cycles can be eliminated. The motivation for doing so
should be clear from Lemma 3.22; every cycle-free proof has a conforming
permutation variant.

The idea for a more abstract cycle elimination theorem is to “break up”
cycles in the following way:

Let 〈π, σ〉 be an LKce-proof for which � contains a cycle. Let ru and rf be
two inferences in the cycle such that ru introduces the instantiation variable
u, rf introduces the Skolem function f and ru A rf . The substitution σ must
send u to a term of the form f(~t). Let τ be the substitution σ \ {u/f(~t)};
i.e. σ where u is not in the support. It should be possible to extend π to a
skeleton π′ and extend τ to a substitution τ ′ such that τ ′ closes π′. Assume

62 A change of perspective

that the principal formula occurrence of r is ϕn
m. Then, u is identical to un

m.
The inference r also introduces a copy of ϕn

m, which means that in any leaf
sequent of π where un

m occurs, there is a formula occurrence of ϕn+k
m , for some

k ≥ 1. By expanding this formula occurrence, a new instantiation variable
un+k

m is introduced, which does not occur in the support of τ . Therefore, we
are free to assign any value to un+k

m . In particular, we can extend τ such
that un+k

m is sent to f .

3.25 Conjecture (Cycle elimination)

For every proof 〈π, σ〉 there is an extension of π with a closing substitution
σ′ such that the reduction ordering � induced from σ′ is cycle-free. a

One essential obstacle is the following: When expanding a γ-formula oc-
currence ϕ in order to obtain a fresh instantiation variable, there might be
β-type subformula occurrences of ϕ which split the skeleton into branches.
In order to close all new branches under the condition that some instantia-
tion variables should not be in the support of the closing substitution, it is
sometimes necessary to expand other γ-formula occurrences as well.

Example 3.26 Let ϕn
3 abbreviate: (∃x

3
(∀x

5
Qx
6
∧
4

(Px
8
→
7
∀y
9
Py
10

)))n
1 .

u1
1/a

1
5

∀xQx,Qu1
1 ` Qa1

5, ϕ
2
3

∀xQx,Qu1
1 ` ∀xQx, ϕ2

3

a1
5

u1
3/a

1
9

∀xQx,Qu1
1, Pu

1
3 ` Pa1

9, ϕ
2
3

∀xQx,Qu1
1, Pu

1
3 ` ∀yPy, ϕ2

3

a1
9

∀xQx,Qu1
1 ` Pu1

3 → ∀yPy, ϕ2
3

∀xQx,Qu1
1 ` ∀xQx ∧ (Pu1

3 → ∀yPy), ϕ2
3

∀xQx,Qu1
1 ` ∃x(∀xQx ∧ (Px→ ∀yPy))

u1
3

∀xQx ` ∃x(∀xQx ∧ (Px→ ∀yPy))
u1

1

3.4 Cycle elimination 63

u1
1

u1
3

4

a1
5

a1
9

To eliminate the cycle by the strategy indicated above it is necessary to
expand both the occurrence of ϕ2

3 and the occurrence of ∀xQx.

∀xQx,Qu1
1, Pu

1
3 ` Pa1

9, Qa
2
5, ϕ

3
3

∀xQx,Qu1
1, Pu

1
3 ` Pa1

9,∀xQx, ϕ3
3

a2
5

u2
3/a

1
9

∀xQx,Qu1
1, Pu

1
3Pu

2
3 ` Pa1

9,∀yPy, ϕ3
3

∀xQx,Qu1
1, Pu

1
3 ` Pa1

9, Pu
2
3 → ∀yPy, ϕ3

3

∀xQx,Qu1
1, Pu

1
3 ` Pa1

9,∀xQx ∧ (Pu2
3 → ∀yPy), ϕ3

3

∀xQx,Qu1
1, Pu

1
3 ` Pa1

9, ϕ
2
3

u2
3

In the left leaf sequent above, the binding u1
1/a

2
5 would close the branch, but

we already have the binding u1
1/a

1
5, and the binding u1

3/a
1
9 would close, but

u1
3 should not be in the support of the closing substitution. It is necessary

to expand ∀xQx once more.

u2
1/a

2
5

∀xQx,Qu2
1, Qu

1
1, Pu

1
3 ` Pa1

9, Qa
2
5, ϕ

3
3

∀xQx,Qu1
1, Pu

1
3 ` Pa1

9, Qa
2
5, ϕ

3
3

u2
1

64 A change of perspective

Below are the diagrams for the original skeleton and the cycle-free skeleton.

u1
1

u1
3

4

a1
5

a1
9

u1
1

u1
3

4

a1
5

a1
9

u2
3

4

a2
5

u2
1

This shows that it is not sufficient to take only the γ-formula occurrences
in a �-cycle into consideration when cycles are eliminated.

Chapter 4

Uniform variable splitting

“Given a proof, how can we
reduce it to a smaller proof by
exploiting the symmetricity of its
subparts?”

A. Carbone [17]

4.1 Rigid and universal variables

All calculi so far have had rigid instantiation variables; whenever we have
applied a substitution to an instantiation variable, we have applied the sub-
stitution to all occurrences of this variable. There are nevertheless situations
where this is not necessary, where two occurrences of the same variable can
play two logically different roles. In particular, the the occurrences can be
place-holders for two different elements.

Let us start with a simple example:

u/a

∀xPx, Pu ` Pa
∀xPx, Pu ` ∀yPy

a

u/b

∀xPx, Pu ` Pb
∀xPx, Pu ` ∀zPz b

∀xPx, Pu ` ∀yPy ∧ ∀zPz
∀xPx ` ∀yPy ∧ ∀zPz

u

For the calculi we have seen so far, it is not possible to close this skeleton
at this stage. The instantiation variable u must be sent to both a and b in

65

66 Uniform variable splitting

order to close it. In this situation, however, there is no harm in viewing
Pu as a universal formula (see [7] or [9] for details), and allowing u to be
assigned both the value a and the value b. In cases where this is permissible
u can be viewed as a universal variable.

The situation does not improve by permuting the skeleton in order to get
the δ-inferences below the γ-inferences:

u/a

∀xPx, Pu ` Pa
∀xPx ` Pa

u

∀xPx ` ∀yPy
a

u/b

∀xPx, Pu ` Pb
∀xPx ` Pb

u

∀xPx ` ∀zPz b

∀xPx ` ∀yPy ∧ ∀zPz

Since our free variable calculi are all variable-sharing, the two contextually
equivalent γ-inferences must introduce the same instantiation variable. In
LK, however, we have the freedom of instantiating γ-inferences with any
terms we wish:

∀xPx, Pa ` Pa
∀xPx ` Pa

γa

∀xPx ` ∀yPy
δa

∀xPx, Pb ` Pb
∀xPx ` Pb

γb

∀xPx ` ∀zPz
δb

∀xPx ` ∀yPy ∧ ∀zPz

We see that in LK, the term universe relevant for instantiation of γ-formulas
can be bound branchwise; it is sufficient to instantiate γ-formulas with terms
occurring on the same branch as the γ-formula. There is a clear advantage
of LK over free variable calculi when it comes to restricting the search space
effectively. A proof procedure which has to consider all terms in all branches
of a skeleton naturally has a greater search space than calculi where the term
universe can be bound branchwise.

On the other hand, free variable calculi with variable-sharing skeletons have
very nice permutation properties, which LK does not have.

In his book Automated Theorem Proving [12], Bibel sketched a method
for systematic splitting of variables, called splitting by need The system
introduced in this chapter can be viewed as a refinement of this idea.1

1Bibel’s [12] splitting by need is defined for matrix systems and clausal formulas only.
The system introduced here is designed to work also for non-clausal formulas.

4.2 A calculus with uniform variable splitting 67

4.2 A calculus with uniform variable splitting

4.1 Definition (Splitting set)

A splitting set is a set of index pairs. a

Each formula occurrence in a skeleton will now be assumed to have a splitting
set attached to it. The splitting sets are considered to be part of first-
order languages, not just meta-language devices used to talk about formula
occurrences. The splitting set of a formula occurrence is initially (in the root
sequent) empty, and index pairs are added to splitting sets when β-rules are
applied. The purpose of these sets is to keep track of which β-formula
occurrences that have split the skeleton into branches, in order to split the
instantiation variables accordingly, as explained below.

Example 4.2 Here is an example of a formula occurrence with a splitting set
attached to it and all index pairs shown:

(∃y((Pu2
1y)

2
4 ∧ (Qu2

1)
2
5)

2
3)

2
2{1

7,
1
8}

We will assume that all skeletons of this calculus are balanced. It is not
known at the time of writing what happens if this restriction is lifted.2

Empty splitting sets will usually not be shown, and instead of writing com-
mas, like {1

3,
1
5,

1
7}, we will write {1

3
1
5

1
7}.

4.3 Definition (The rules of LKs)

The rules of LKs (the s stands for splitting) is given in Figure 4.1. ϕn
mS

denotes the formula occurrence ϕ with index pair n
m and splitting set S.

The quantifier rules are like those for LKce, but with splitting sets added to
all formula occurrences.

β-rules: Γ]l
k denotes {ϕn

mS∪{l
k} | ϕn

mS ∈ Γ}, the set of formula occurrences
in Γ where the index pair l

k has been added to the splitting sets. The
β-rules split the skeleton into branches and add the corresponding
index pairs to the splitting sets of all other formula occurrences than
the β-formula itself. If the β-formula in question is (ϕn

k ∧ψn
l)n

mS, then
the index pairs n

k and n
l are called dual. The dual index pair of n

m will
be denoted n

m.
2The author believes that this is possible, and that a calculus with many interesting

properties will emerge from doing so. However, additional constraints for closing unifiers
are probably needed, and identifying exactly which criteria these should satisfy is not
entirely trivial.

68 Uniform variable splitting

α-rules β-rules

Γ, ϕn
kS, ψ

n
l S ` ∆

Γ, (ϕn
k ∧ ψn

l)n
mS ` ∆

L∧
Γ] n

k ` ϕn
kS,∆] n

k Γ] n
l ` ψn

l S,∆] n
l

Γ ` (ϕn
k ∧ ψn

l)n
mS,∆

R∧

Γ ` ϕn
kS, ψ

n
l S,∆

Γ ` (ϕn
k ∨ ψn

l)n
mS,∆

R∨
Γ] n

k , ϕ
n
kS ` ∆] n

k Γ] n
l , ψ

n
l S ` ∆] n

l

Γ, (ϕn
k ∨ ψn

l)n
mS ` ∆

L∨

Γ, ϕn
kS ` ψn

l S,∆

Γ ` (ϕn
k → ψn

l)n
mS,∆

R→
Γ] n

k ` ϕn
kS,∆] n

k Γ] n
l , ψ

n
l S,` ∆] n

l

Γ, (ϕn
k → ψn

l)n
mS ` ∆

L→

Γ, ϕn
kS ` ∆

Γ ` (¬ϕn
k)n

mS,∆
R¬

Γ ` ϕn
kS,∆

Γ, (¬ϕn
k)n

mS ` ∆
L¬

δ-rules γ-rules

Γ ` ϕ[x/fn
m(~u)]nkS,∆

Γ ` (∀xϕn
k)n

mS,∆
R∀

Γ, (∀xϕn+1
k)n+1

m S, ϕ[x/un
m]nkS ` ∆

Γ, (∀xϕn
k)n

mS ` ∆
L∀

Γ, ϕ[x/fn
m(~u)]nkS ` ∆

Γ, (∃xϕn
k)n

mS ` ∆
L∃

Γ ` (∃xϕn+1
k)n+1

m S, ϕ[x/un
m]nkS,∆

Γ ` (∃xϕn
k)n

mS,∆
R∃

Figure 4.1: The rules of LKs

a

Example 4.4 To get a feeling for the skeletons generated by this calculus,
reconsider the permutation variants from Example 3.15, now with index
pairs and splitting sets:

4.2 A calculus with uniform variable splitting 69

(Pu1
1){1

2}, (Qu1
1){1

2} ` ϕ1
2

(Pu1
1 ∧Qu1

1){1
2} ` ϕ1

2

(Pu1
1){1

3}, (Qu1
1){1

3} ` ψ1
3

(Pu1
1 ∧Qu1

1){1
3} ` ψ1

3

Pu1
1 ∧Qu1

1 ` ϕ1
2 ∧ ψ1

3

β

∀x(Px ∧Qx)11 ` ϕ1
2 ∧ ψ1

3

γ1
1 u1

1

4

(Pu1
1){1

2}, (Qu1
1){1

2} ` ϕ1
2

(Pu1
1 ∧Qu1

1){1
2} ` ϕ1

2

∀x(Px ∧Qx)11{1
2} ` ϕ1

2

γ1
1

(Pu1
1){1

3}, (Qu1
1){1

3} ` ψ1
3

(Pu1
1 ∧Qu1

1){1
3} ` ψ1

3

∀x(Px ∧Qx)11{1
3} ` ψ1

3

γ1
1

∀x(Px ∧Qx)11 ` ϕ1
2 ∧ ψ1

3

β
4

u1
1 u1

1

The instantiation variable u1
1 occurs in both leaf sequents, but with differ-

ent splitting sets attached to the atomic formula occurrences in which it
occurs. In the left branch, we find (Qu1

1){1
2} and in the right branch we

find (Qu1
1){1

3}. Speaking quite informally, since we have not yet defined the
mechanism for splitting variables, the calculus will allow us to view u1

1{1
2}

and u1
1{1

3} as two different variables which can be bound to different terms.

4.5 Lemma (Invariance lemma) The sets of leaf sequents are invariant
under permutation. Any two permutation variants have identical leaf se-
quents. a

Proof. By induction on the number of primitive permutation steps per-
formed to obtain the permutation variant. Each step is an application of
a permutation scheme and results in a skeleton which has identical leaf se-
quents to the original. So, the final permutation variant must also have
identical leaf sequents to the first skeleton. 2

Example 4.6 Below is an instance of a permutation scheme for permuting a
two-premiss inference over another two-premiss inference. It is analogous to
Example 3.13.

70 Uniform variable splitting

1
ϕ1

1{1
3} ` ψ1

3{1
1}

2
ϕ1

2{1
3} ` ψ1

3{1
2}

(ϕ1
1 ∨ ϕ1

2){1
3} ` ψ1

3

L∨

3
ϕ1

1{1
4} ` ψ1

4{1
1}

4
ϕ1

2{1
4} ` ψ1

4{1
2}

(ϕ1
1 ∨ ϕ1

2){1
4} ` ψ1

4

L∨

ϕ1
1 ∨ ϕ1

2 ` ψ1
3 ∧ ψ1

4

R∧

1
ϕ1

1{1
3} ` ψ1

3{1
1}

3
ϕ1

1{1
4} ` ψ1

4{1
1}

ϕ1
1 ` (ψ1

3 ∧ ψ1
4){1

1}
R∧

2
ϕ1

2{1
3} ` ψ1

3{1
2}

4
ϕ1

2{1
4} ` ψ1

4{1
2}

ϕ1
2 ` (ψ1

3 ∧ ψ1
4){1

2}
R∧

ϕ1
1 ∨ ϕ1

2 ` ψ1
3 ∧ ψ1

4

L∨

Both skeletons have identical leaf sequents, as indicated by the numbers
above each.

4.7 Lemma (Permutation) Let π be a balanced sub-skeleton with a non-
atomic formula occurrence ϕn

mS in the root node such that ϕn
mS has an

ancestor somewhere in the skeleton. Then, there is a permutation variant
of π which has ϕn

mS as the principal formula occurrence in the lowermost
inference. a

Proof. (Analogous to the proof of Lemma 3.14) 2

The mechanism for splitting variables consists of identifying each instantia-
tion variable by the splitting set of the surrounding formula occurrence. We
will use a color metaphor and speak of colored variables, where splitting sets
are the colors. Skeletons in which all leaf nodes in all branches are closed
by a unifying substitution will still play an important part. To do this,
substitutions must be defined for colored variables, and suitable conditions
for these substitutions must be defined. Since all permutation variants of
an underlying skeleton generate the same set of leaves, this can be done
altogether at the level of terms.

A guiding intuition: The uniformity of the splitting sets should provide a
machinery to split variables maximally without losing sight of logical depen-
dencies between these.

4.8 Definition (Color)

A color is a splitting set occurring in a leaf sequent of a skeleton. a

4.2 A calculus with uniform variable splitting 71

4.9 Definition (Colored term)

Let P (s1, . . . , sk)n
mS be an atomic formula occurrence in a leaf sequent. For

all si, where 1 ≤ i ≤ k, the color S gives the corresponding colored term
si ⊕ S like this:

• un
m⊕S = un

mS

• fn
m(t1, . . . , tl)⊕S = fn

m(t1⊕S, . . . , tl⊕S)

Notice that function symbols are not colored in the same way as instantiation
variables are colored; if an

m is a unary Skolem function, then an
m⊕S = an

m.
We will use tS as an abbreviation for the colored term t⊕S when the context
allows it. All colored instantiation variables in a colored term are colored
with the same color. a

4.10 Definition (Connection)

A connection c in π is a subsequent P (s1, . . . , sk)S ` P (t1, . . . , tk)T of a
leaf sequent in π, where P (s1, . . . , sk)n1

m1
and P (t1, . . . , tk)n2

m2
are two atomic

formulas with the same predicate symbol P . The associated equation set
for c, written Eq(c), is the set of equations {siS = tiT | 1 ≤ i ≤ k}. Each
equation is between two colored terms. If C is a set of connections, then
the equation set for C, written Eq(C), is the union of all equation sets for
connections in C, i.e. Eq(C) =

⋃
{Eq(c) | c ∈ C}. A set C of connections

is spanning for π if there is exactly one connection in C for each branch in
π. a

4.11 Definition (Herbrand universe, for connections)

Let C be a spanning set of connections and E be the associated equation
set for C. The set of colored variables of C, written Cvar(C), is the set of all
colored instantiation variables occurring in an equation in E. The Herbrand
universe of C, written Her(C), is the set of all terms that can be generated
from the function symbols occurring in C together with Cvar(C). If there
are no constant symbols in C, a dummy constant is added to the Herbrand
universe. a

4.12 Definition (Substitution, for connections)

Let C be a spanning set of connections and E be the associated equation
set for C. A substitution for C is a function σ from the colored variables of
C to the Herbrand universe of C. It is extended to a substitution from the
Herbrand universe of C to the Herbrand universe of C in the usual way. It
is a closing substitution for C if it satisfies each equation sS = tT in E, that
is, if (sS)σ = (tT)σ. a

72 Uniform variable splitting

We will from now on assume that all function symbols occurring in a skeleton
are Skolem functions. This is not strictly necessary, but it will facilitate
the exposition a good deal. For instance, if a function symbol occurs in a
connection, then we will know for sure that this is a Skolem function and
that there is a δ-inference somewhere in the branch which introduces it.
Without this simplification, the definitions have more cases and extra care
must be taken.

Example 4.13 A skeleton for the following valid sequent is given below.

∀x
1
Px
2
` ∀x

3
∀y
4

(Px
6
∧
5
Pz
7

)

Let u abbreviate u1
1, a abbreviate a1

3 and b abbreviate a1
4.

Pu{1
6} ` Pa Pu{1

7} ` Pb
Pu ` Pa ∧ Pb
∀xPx ` Pa ∧ Pb

u

∀xPx ` ∀y(Pa ∧ Py) b

∀xPx ` ∀x∀y(Px ∧ Pz)
a

The set of leaf sequents is a spanning set of connections, and a closing
substitution is {u{1

6}/a, u{1
7}/b}.

At this point, one might be inclined to suggest the following closure condition
for LKs: “A skeleton π is closable if there exists a spanning set of connections
C and a closing substitution for C.” But, this is not correct, even though
it works for the example above. We shall soon see what goes wrong if
appropriate care is not taken.

From this point and outwards this thesis should be considered a work in
progress; what follows is a fairly detailed discussion of our current intuitions.
A lot effort has been made to understand all the concepts involved, but the
matter is fairly complex and a finished, complete result can unfortunately
not be given at this point.

Example 4.14 The following sequent is not valid.

∀x
1

(Px
3
∨
2
Qx
4

),∀x
5

(Px
7
∨
6
Qx
8

) ` ∀x
9
Px
10
,∀x

11
Qx
12

But with the erroneous definition of a closure condition, it would be provable.
Let v,w,b,c abbreviate u1

1, u
1
5, a

1
9, a

1
11, respectively.

4.2 A calculus with uniform variable splitting 73

(1) (2)

Pv, Pw ∨Qw{1
3} ` Pb{1

3}, Qc{1
3}

L∨
(3) (4)

Qv, Pw ∨Qw{1
4} ` Pb{1

4}, Qc{1
4}

L∨

Pv ∨Qv, Pw ∨Qw ` Pb,Qc L∨

Pv ∨Qv, Pw ∨Qw ` Pb,∀xQx
c

Pv ∨Qv, Pw ∨Qw ` ∀xPx,∀xQx b

Pv ∨Qv,∀x(Px ∨Qx) ` ∀xPx,∀xQx
w

∀x(Px ∨Qx),∀x(Px ∨Qx) ` ∀xPx,∀xQx
v

(1) Pv{1
7}, Pw{1

3} ` Pb{1
3

1
7}, Qc{1

3
1
7} v{1

7} 7→ b{1
3

1
7}

(2) Pv{1
8}, Qw{1

3} ` Pb{1
3

1
8}, Qc{1

3
1
8} w{1

3} 7→ c{1
3

1
8}

(3) Qv{1
7}, Pw{1

4} ` Pb{1
4

1
7}, Qc{1

4
1
7} w{1

4} 7→ b{1
4

1
7}

(4) Qv{1
8}, Qw{1

4} ` Pb{1
4

1
8}, Qc{1

4
1
8} v{1

8} 7→ c{1
4

1
8}

A spanning set of connections is indicated by the underlined formula occur-
rences. To the right is a closing substitution for this set of connections.

To give some intuitions for what goes wrong here, consider the equations for
the connections in (1) and (4):

(1) v{1
7} = b{1

3
1
7} Intersection of splitting sets: {1

7} ∩ {1
3

1
7} = {1

7}
(4) v{1

8} = c{1
4

1
8} Intersection of splitting sets: {1

8} ∩ {1
4

1
8} = {1

8}

In equation (1), the index pair 1
7 occurs in both splitting sets, and in equation

(4) the same is the case for 1
8. This is significant. Let us remove the index

pairs in the intersection from the splitting sets:

(1′) v = b{1
3} (Pv ` Pb{1

3})
(4′) v = c{1

4} (Qv ` Qc{1
4})

These two equations cannot be solved simultaneously. Suppose that the two
topmost L∨-inference in the skeleton were absent and that the leaf sequents
were the two premisses of the bottommost L∨-inference. Then we would
have the two connections written to the right of the equations (1′) and (4′).
There is no closing substitution for this spanning set of connections either.
The removal of the intersection of the splitting sets corresponds to this fact.
A closing substitution should satisfy such a condition; if the substitution
solves the equations (1) and (4), then there should also be a substitution
which solves (1′) and (4′). This is an informal description of the notion of
homogeneity.

74 Uniform variable splitting

4.15 Definition (Reduced connection)

Let c be the connection P (s1, . . . , sk)S ` P (t1, . . . , tk)T . Let X = S ∩ T .
The corresponding reduced connection is the sequent P (s1, . . . , sk)(S \X) `
P (t1, . . . , tk)(T \X). For any set C of connections, the corresponding set of
reduced connections of C is denoted Red(C). a

Example 4.16 The reduced connections for the spanning set of connections
given in Example 4.14 are these:

(1′) Pv ` Pb{1
3}

(2′) Qw ` Qc{1
8}

(3′) Pw ` Pb{1
7}

(4′) Qv ` Qc{1
8}

For this set there is no closing substitution.

In addition to substitutions for sets of connections, we will now consider
substitutions for the corresponding sets of reduced connections. If C is a
spanning set of connections, a substitution for Red(C) will be a function
from the colored variables of Red(C) to the Herbrand universe of Red(C).
Naturally, there will be fewer colored variables of Red(C) than colored vari-
ables of C.

4.17 Definition (Color extension)

Let C be a spanning set of connections and Red(C) be the corresponding
set of reduced connections. A substitution σ for Red(C) can be extended to
a substitution σ′ for C, called a color extension of σ, in the following way.

Let uS be a colored variable of Red(C) and uT be a colored variable of C
such that S ⊆ T . Let X = T \ S, i.e. the index pairs in T which are not
in S. Then, σ′(uT) is defined to be the term σ(uS)]X, which is the term
σ(uS) where all splitting sets Y have been replaced with Y ∪X, i.e. all the
index pairs of X have been added to all the splitting sets. a

The only case where σ(uS) and σ(uS)] X in the above definition differ,
is when σ(uS) contains colored variables, since function symbols are not
colored with splitting sets. If we assume σ to be ground, we would not have
to do this.

4.18 Definition (Homogeneity)

Let C be a spanning set of connections for a skeleton π. A substitution σ is
homogeneous for C if it is the color extension of a closing substitution for
Red(C). a

4.2 A calculus with uniform variable splitting 75

Example 4.19 The substitution which was closing for the set of connections
in Example 4.14 is not homogeneous, since it is not the color extension of a
closing substitution for the set of reduced connections. In this case the set
of reduced connections does not have a closing substitution.

4.20 Definition (Idempotent)

A substitution σ is idempotent if for all u it is the case that uσ = (uσ)σ. a

4.21 Definition (Closure condition for LKs)

Let C be a spanning set of connections for a skeleton π. Then, 〈π,C, σ〉
is a proof of the root sequent in π if σ is idempotent, homogeneous and
closing. a

4.22 Definition (Substitution ordering, for LKs)

Let 〈π,C, σ〉 be LKs-proof. Let τ be a closing substitution for Red(C) such
that σ is a color extension of τ . Assume without loss of generality that τ is
minimal in the sense that every binding in the support of σ is necessary in
order to close all branches of π. (A binding is necessary for the closure if the
result of taking the binding out of the support is that some branch is not
closed. If τ is not minimal in this sense, then we can remove the bindings
which are not necessary.) Then, ru A rf holds if it is the case that:

(1) ru and rf are two inferences in the same branch β of π

(2) ru introduces the instantiation variable u

(3) rf introduces the Skolem function f

(4) (uU)τ = f(~t), for some sequence of terms ~t in the Herbrand universe
of Red(C)

(5) u and f both occur in a connection in C which closes β

The relation A is the substitution ordering induced from σ. We say that
ru A rf holds with respect to the splitting set U if (uU)τ = f(~t) from point
(4). a

The diagram arrow between two inferences ru and rf , such that ru A rf
will be drawn like usual, but with an extra label indicating with respect to
which splitting set r A s holds.

Example 4.23 A diagram represenation for the LKs-skeleton in Example
4.13. u A a holds with respect to {1

6} and u A b holds with respect to
{1
7}.

76 Uniform variable splitting

u{1
6}/a

Pu{1
6} ` Pa

u{1
7}/b

Pu{1
7} ` Pb

Pu ` Pa ∧ Pb
∀xPx ` Pa ∧ Pb

u

∀xPx ` ∀y(Pa ∧ Py) b

∀xPx ` ∀x∀y(Px ∧ Pz)
a

a

b

u

4

{16}
{17}

Example 4.24 The LKs-skeleton in Example 4.14 does not have a closing and
homogeneous substitution, but we can nevertheless consider a hypothetical
closing substitution for the set of reduced connections. Below is the diagram
representation of a permutation variant of the skeleton, where the diagram
arrows for the hypothetical substitution is displayed.

(1′) Pv = Pb{1
3}

(2′) Qw = Qc{1
8}

(3′) Pw = Pb{1
7}

(4′) Qv = Qc{1
8}

b

c

v

4

w w

4 4

4.3 A big example 77

4.3 A big example

“Small examples are deceiving.”

anonymous

The formula tree in Example 2.17 gives rise to the following valid sequent:

(∀x
3
∃y
4

(Pxy
6

∧
5
Sy)

7
)1, (∀x

8
∀y
9
∀z
10

((Pxy
13

∧
12
Pyz)

14
→
11
Gxz

15
))1 `(∀x

16
∃y
17

(Gxy
19

∧
18
Sy
20

))1

Intuitively, the three formulas express “Everyone has a Snill Parent”, “If y
is the Parent of x and z is the Parent of y, then z is the Grandparent of x”
and “x has a Snill Grandparent”.

Let u abbreviate u1
3, w abbreviate u1

17, a abbreviate a1
16 and f abbreviate

f1
4.

(1a) (1b)

(1′)
R∧

(1)
w

(2a) (2b)

(2′)
R∧

(2)
w

Pufu{1
12}, Sfu{1

12} ` ∃y(Gay ∧ Sy), Pu1
8u

1
9 ∧ Pu1

9u
1
10

R∧

(3a) (3b)

(3′)
R∧

(3)
w

Pufu, Sfu, (Pu1
8u

1
9 ∧ Pu1

9u
1
10) → Gu1

8u
1
10 ` ∃y(Gay ∧ Sy)

L→

Pufu, Sfu,∀x∀y∀z((Pxy ∧ Pyz) → Gxz) ` ∃y(Gay ∧ Sy)
u1

8, u
1
9, u

1
10

Pufu ∧ Sfu, ∀x∀y∀z((Pxy ∧ Pyz) → Gxz) ` ∃y(Gay ∧ Sy) L∧

∃y(Puy ∧ Sy),∀x∀y∀z((Pxy ∧ Pyz) → Gxz) ` ∃y(Gay ∧ Sy)
fu

(∀x∃y(Pxy ∧ Sy),∀x∀y∀z((Pxy ∧ Pyz) → Gxz)) ` ∃y(Gay ∧ Sy)
u

(∀x∃y(Pxy ∧ Sy),∀x∀y∀z((Pxy ∧ Pyz) → Gxz)) ` ∀x∃y(Gxy ∧ Sy)
a

(1a) Pufu{1
12

1
13

1
19}, Sfu{1

12
1
13

1
19} ` Gaw{1

12
1
13}, Pu1

8u
1
9{1

19}

(1b) Pufu{1
12

1
13

1
20}, Sfu{1

12
1
13

1
20} ` Sw{1

12
1
13}, Pu1

8u
1
9{1

20}

(2a) Pufu{1
12

1
14

1
19}, Sfu{1

12
1
14

1
19} ` Gaw{1

12
1
14}, Pu1

9u
1
10{1

19}

(2b) Pufu{1
12

1
14

1
20}, Sfu{1

12
1
14

1
20} ` Sw{1

12
1
14}, Pu1

9u
1
10{1

20}

(3a) Gu1
8u

1
10{1

19}, Pufu{1
15

1
19}, Sfu{1

15
1
19} ` Gaw{1

15}

(3b) Gu1
8u

1
10{1

20}, Pufu{1
15

1
20}, Sfu{1

15
1
20} ` Sw{1

15}

Figure 4.2: The six leaf sequents of the skeleton. A spanning set of connec-
tions C is indicated by the underlined formula occurrences.

78 Uniform variable splitting

Red(1a) Pufu{1
12

1
13} ` Pu1

8u
1
9

Red(1b) Pufu{1
12

1
13} ` Pu1

8u
1
9

Red(2a) Pufu{1
12

1
14} ` Pu1

9u
1
10

Red(2b) Pufu{1
12

1
14} ` Pu1

9u
1
10

Red(3a) Gu1
8u

1
10{1

19} ` Gaw{1
15}

Red(3b) Sfu{1
20} ` Sw

Figure 4.3: The set of reduced connections, Red(C).

σ′ relevant connections color extension σ

u{1
12

1
13}/a 1a,1b u{1

12
1
13

1
19}/a u{1

12
1
13

1
20}/a

u1
8/a 1a,1b u1

8{1
19}/a u1

8{1
20}/a

u1
9/fa 1a,1b,2a,2b u1

9{1
19}/fa u1

9{1
20}/fa

u{1
12

1
14}/fa 2a,2b u{1

12
1
14

1
19}/fa u{1

12
1
14

1
20}/fa

u1
10/ffa 2a,2b u1

10{1
19}/ffa u1

10{1
20}/ffa

u1
10{1

19}/ffa 3a u1
10{1

19}/ffa
u1

8{1
19}/a 3a u1

8{1
19}/a

w{1
15}/ffa 3a w{1

15}/ffa
w/ffa 3b w{1

15}/ffa
u{1

20}/fa 3b u{1
15

1
20}/fa

Figure 4.4: A closing substitution σ′ for Red(C), together with a color ex-
tension σ which is closing for C.

4.3 A big example 79

In Figure 4.2, the six leaf nodes of the skeleton are displayed, and a spanning
set C of connections is indicated by the underlined formula occurrences. A
proof of the root sequent is 〈π,C, σ〉, where σ is the closing substitution
given in the rightmost column of Figure 4.4. This substitution is homo-
geneous, since it is the color extension of the substitution σ′ given in the
leftmost column of the same figure. The substitution σ′ is closing for the
set of reduced connections. The middle column of the figure indicates which
connections that are closed by the bindings of σ and σ′, respectively. In
Figure 4.5 there is a diagram representation.

It should be noted that C is not the only possible spanning set of connections.
The leaf sequents (1b) and (2b) could instead give rise to the connections:

(1b′) Sfu{1
12

1
13

1
20} ` Sw{1

12
1
13}

(2b′) Sfu{1
12

1
14

1
20} ` Sw{1

12
1
14}

The corresponding reduced connections, both identical to Red(3b), are:

Red(1b′) Sfu{1
20} ` Sw

Red(2b′) Sfu{1
20} ` Sw

The same substitution σ′, for the same set of reduced connections, has a
color extension which is closing for the new set of connections. This color
extension, together with the skeleton and the new set of connections, gives
another proof of the root sequent.

4.3.1 Remark on non-balanced skeletons

Consider the skeleton which has (1), (2), (3a) and (3b) as leaf sequents:

(1) Pufu{1
12

1
13}, Sfu{1

12
1
13} ` ∃y(Gay ∧ Sy){1

12
1
13}, Pu1

8u
1
9

(2) Pufu{1
12

1
14}, Sfu{1

12
1
14} ` ∃y(Gay ∧ Sy){1

12
1
14}, Pu1

9u
1
10

(3a) Gu1
8u

1
10{1

19}, Pufu{1
15

1
19}, Sfu{1

15
1
19} ` Gaw{1

15}

(3b) Gu1
8u

1
10{1

20}, Pufu{1
15

1
20}, Sfu{1

15
1
20} ` Sw{1

15}

This skeleton is not balanced. Even though is is not yet clear what the
appropriate conditions for a closing substitution should be for non-balanced
skeletons, it is interesting to see how far the concepts from the balanced case
can take us.

80 Uniform variable splitting

a

u

fu

u1
8

u1
9

u1
10

4

4

w w

w

4 4

4

{112, 113}

{120} {112, 114}

{119}

{119}

{115}

Figure 4.5: A diagram representation. (Not showing arrows for w � a.)

4.4 Soundness 81

The four connections which are possible are the subsequents which are un-
derlined. This set of connections is spanning. The only connection which is
not itself reduced is (3b). The reduced connection corresponding to (3b) is:

Red(3b) Sfu{1
20} ` Sw

The substitution σ′ in Figure 4.4 is closing for this reduced set of connections.
Moreover, it is closing for the four underlined connections. So if we view σ′

as its own color extension, we have a proof, even though the skeleton is not
balanced.

One intuition for allowing non-balanced skeletons, like this one, is that there
are corresponding proofs in LK, or equivalently LKδ, which are not balanced.

Remark. This is not to be taken as a complete exposition of the non-
balanced case, not even as a conjecture, but as an indication that a good
characterization of provability for the non-balanced case is possible.

4.4 Soundness

We now turn to the proof of soundness for LKs; that every provable sequent
is valid. The core idea is to perform proof transformations on LKs-proofs
in order to obtain proofs which essentially are like proofs in LK or LKδ. By
examining relations between inferences in skeletons it is possible to give a
precise characterization of how LKs-proofs differ from LK-proofs, and this
information enables us perform the correct transformation steps. There are
three important properties which we want LKs-proofs to satisfy in order to
be LK-like. (1) The reduction ordering should be cycle-free, (2) the skeleton
should be conforming and (3) the substitution ordering should be projective
(defined below).

4.25 Definition (Conforming)

Let 〈π,C, σ〉 be a an LKs-proof. The skeleton π conforms to the induced
substitution ordering A if for all inferences r and s in π, such that r A s, it
is the case that r is above s. a

4.26 Definition (Reduction ordering)

The induced reduction ordering � is defined exactly as for LKce. a

With the induced reduction ordering we can speak of cycles for LKs-proofs.

Example 4.27 The induced reduction ordering from the big example in Sec-
tion 4.3 contains two different cycles. (1) u A f (wrt. {1

20}) and f�∼ u.

82 Uniform variable splitting

(2) u A f (wrt. {1
12,

1
14}) and f�∼ u. This is easily seen from the diagram

representation in Figure 4.5.

4.28 Definition (Projective)

Let 〈π,C, σ〉 be a an LKs-proof. The induced substitution ordering A is
projective if r A s1 and r A s2 implies that s1 = s2. If the A is projective,
we say that the proof is projective. a

Example 4.29 The diagram in Example 4.23 shows that the induced substi-
tution ordering is not projective, since u A a (wrt. {1

6}) and u A b (wrt.
{1
6}), but not a = b. The substitution ordering from the big example in

Section 4.3 not projective either, since u A a and u A f .

4.30 Definition (LK-like)

Let 〈π,C, σ〉 be an LKs-proof, and let � and A be the induced reduction and
substitution ordering, respectively. The proof is LK-like if (1) � is acyclic,
(2) π conforms to A and (3) A is projective. a

Example 4.31 Let a,b,c and u be abbreviations for appropriate Skolem func-
tions and instantiation variables. (The extra copy of the γ-formula is not
displayed in the skeleton.) A proof in LKs-of the sequent is given below.

Pau ` Puc{1
1} Pbu ` Puc{1

2}
Pau ∨ Pbu ` Puc L∨

` Pau ∨ Pbu→ Puc
R→

` ∃u(Pau ∨ Pbu→ Puc)
u

` ∀z∃u(Pau ∨ Pbu→ Puz)
c

` ∀y∀z∃u(Pau ∨ Pyu→ Puz)
b

` ∀x∀y∀z∃u(Pxu ∨ Pyu→ Puz)
a

a

b

c

u

4

{11} {12}

Both leaf sequents display reduced connections (the set of connections is
identical to the set of reduced connections in this case). The equation set
is {a = u{1

1}, b = u{1
2}, u = c}. A closing, homogeneous substitution is

indicated above the leaf sequents. The substitution ordering is not projec-
tive, since u A a and u A b, but not a = b. The substitution ordering is
conforming.

The above example is interesting, because the variable u plays the role of
both a rigid variable (u without splitting set occurs in both branches) and a
universal variable (u occurs with different splitting sets in both branches).

4.4 Soundness 83

4.32 Conjecture (Soundness of LKs)

A proof 〈π,C, σ〉 can be extended to a proof which is LK-like. a

The proof of this result, which yields the consistency of the system, is cur-
rently not known. The idea for the proof is to threefold: (1) To show that
every proof has a cycle-free extension (like for LKce). (2) Find a permutation
variant of the proof which is conforming. (3) To show that every conforming
proof has a projective extension. We formulate these three steps below and
give a sketch of how this can be achieved.

4.33 Lemma (Cycle elimination) For every proof 〈π,C, σ〉 there is an
extension of π with a idempotent, homogeneous and closing substitution σ′

such that the induced reduction ordering � is cycle-free. a

The idea is still to “break up” cycles like we described for LKce. (See the
article in the Appendix for one approach.)

4.34 Lemma (Conformity) For every proof 〈π,C, σ〉 in LKs such that
the reduction ordering � is cycle-free, there is a conforming permutation
variant. a

Proof. Like for Lemma 3.22 for LKce. The reduction ordering is well-
founded and a conforming permutation variant can be constructed by re-
peatedly choosing �-minimal inferences and permuting the skeleton accord-
ingly. 2

4.35 Lemma (Projection) Every cycle-free and conforming proof has a
projective extension. a

By repeatedly adding γ-inferences to the skeleton, removing the bindings
from the substitution which makes the induced substitution ordering non-
projective and introducing new bindings (keeping the substitution idem-
potent, homogeneous and closing), it should be possible to eliminate all
“non-projective” parts of a closing substitution. (See the examples below.)

Example 4.36 Let us reconsider the proof from Example 4.13. It is cycle-free
and conforming, but not projective. A projective extension is given below.

∀x
1
Px
2
` ∀x

3
∀y
4

(Px
6
∧
5
Pz
7

)

84 Uniform variable splitting

u2
1{1

6}/a

Pu2
1{1

6}, Pu1
1{1

6} ` Pa
(∀xPx){1

6}, Pu1
1{1

6} ` Pa

u1
1{1

7}/b

(∀xPx){1
7}, Pu1

1{1
7} ` Pb

∀xPx, Pu1
1 ` Pa ∧ Pb

∀xPx ` Pa ∧ Pb
u1

1

∀xPx ` ∀y(Pa ∧ Py) b

∀xPx ` ∀x∀y(Px ∧ Pz)
a

a

b

u1
1

4

u2
1

{16}
{17}

It is interesting to see that it is not necessary to introduce another γ-
inference; in this case there is a projective permutation variant, due to the
fact that the β-inference can occur below the γ-inference in the skeleton.

u1
1{1

6}/a

Pu1
1{1

6} ` Pa
(∀xPx){1

6} ` Pa
u1

1

u1
1{1

7}/b
Pu1

1{1
7} ` Pb

(∀xPx){1
7} ` Pb

u1
1

∀xPx ` Pa ∧ Pb
∀xPx ` ∀y(Pa ∧ Py) b

∀xPx ` ∀x∀y(Px ∧ Pz)
a

a

b

4

u1
1 u1

1

{16}
{17}

Example 4.37 The proof from Example 4.31 can be made projective by ex-
panding the γ-formula, ∃u(Pau∨Pbu→ Puc) in both branches; thus remov-
ing both of the bindings u{1

1}/a and u{1
2}/b. It is not necessary to expand

the β-subformula, because a closing, homogeneous substitution is reached
already after applying R→. In the diagram below, we have assumed that u
was an abbreviation for u1

5.

4.4 Soundness 85

a

b

c

u

4

{11} {12}

a

b

c

u1
5

4

u2
5 u2

5

{11} {12}

Instead of giving the non-projective LKs-proof, let us see that this LK-like
proof actually gives a proof in LK!

Pac , Paa ∨ Pba ` Pcc, Pac
Pac ` Pcc, Paa ∨ Pba→ Pac

Pac ` Pcc, ∃u(Pau ∨ Pbu→ Puc)
γa

Pbc , Pab ∨ Pbb ` Pcc, Pbc
Pbc ` Pcc, Pab ∨ Pbb→ Pbc

Pbc ` Pcc, ∃u(Pau ∨ Pbu→ Puc)
γb

Pac ∨ Pbc ` Pcc, ∃u(Pau ∨ Pbu→ Puc)
L∨

` Pac ∨ Pbc→ Pcc, ∃u(Pau ∨ Pbu→ Puc)
R→

` ∃u(Pau ∨ Pbu→ Puc)
γc

` ∀z∃u(Pau ∨ Pbu→ Puz)
c

` ∀y∀z∃u(Pau ∨ Pyu→ Puz)
b

` ∀x∀y∀z∃u(Pxu ∨ Pyu→ Puz)
a

The diagram representation of the LK-like proof corresponds exactly to the
actual LK-proof. All the essential relations between the LK-inferences are
captured in this diagram.

86 Uniform variable splitting

4.5 A framework for reasoning about splitting

The introduction of splitting sets and index pairs enables a framework in
which it is possible to reason very explicitly about branches in a skele-
ton and the formula occurrences in these branches. Since β-formulas split
branches and add index pairs to the surrounding formula occurrences, there
is information available to us which was not available before. This section
introduces some new terminology and concepts in order to speak of about
splitting in a precise and constructive way.

In all the definitions below, we assume that a finite set of formula trees (see
Section 2.4) is given, and that all index pairs of these are distinct. All the
examples refer to the formula tree in Figure 4.5, and only the occurrence
numbers of the index pairs will be given.

→1
1 αR

∧1
2 αL

(∀x)13 γL

(∃y)14 δL

∧1
5 αL

(Pxy)16L (Sy)17L

(∀x)18 γL

(∀y)19 γL

(∀z)110 γL

→1
11 βL

∧1
12 βR

(Pxy)113R (Pyz)114R

(Gxz)115L

(∀x)116 δR

(∃y)117 γR

∧1
18 βR

(Gxy)119R (Sy)120R

Figure 4.6: The formula tree from Example 2.17.

4.38 Definition (β-related nodes)

Two different nodes x and y in a formula tree are β-related , written x ‖β y,
if (1) they are not in the same branch of the formula tree, and (2) their
greatest common descendant in the formula tree is of principal type β. a

Example 4.39 The following nodes are β-related: 12‖β15 (gcd is 11), 13‖β15
(gcd is 11), 14‖β15 (gcd is 11), 13‖β14 (gcd is 12) and 19‖β20 (gcd is 18).

4.5 A framework for reasoning about splitting 87

4.40 Definition (β-option, duality)

If n
m is a β-node, then the index pairs of the immediate ancestors are called

the β-options for n
m; the two index pairs are called dual . The β-options for

n
m are given by β1(n

m) and β2(n
m). If βi(n

m) equals l
k, then the dual is given

by βi(n
m) or l

k
. If S is set of index pairs, then S = {n

m | n
m ∈ S}. a

Example 4.41 The set of β-options for the formula tree is {12, 13, 14, 15, 19, 20}.
The pairs 〈13, 14〉, 〈12, 15〉 and 〈19, 20〉 are dual index pairs.

4.42 Definition (β-successor)

Let n
m be a node (not necessarily a β-node). A β-successor of n

m is an
ancestor of n

m such that (1) it is a β-option and (2) there are no other β-
options between it and n

m in the formula tree. a

Example 4.43 Both 12 and 15 are β-successors of 9, but 13 is not a β-
successor of 9, since 12 is between them.

4.44 Definition (Complete skeleton)

A skeleton is complete if the following conditions hold: (1) If ϕn
mS is a

formula occurrence of principal type α, β or δ in the skeleton, then ϕ has
an ancestor formula occurrence in the skeleton. (2) If ϕn

mS is a formula
occurrence of principal type γ in the skeleton, then there is either a formula
occurrence ϕk

mS in the skeleton, where k < n, or ϕn
mS has an ancestor in

the skeleton. a

4.45 Definition (β-closed)

A set of index pairs b is β-closed if for all n
m in b: if n′

m′ is a β-successor of n
m,

then either n′
m′ or its dual is in b. (This condition corresponds to expanding

a formula maximally in a derivation, which is what is required for complete
skeletons.) All sets of index pairs can be extended to a β-closed set by
repeatedly choosing β-successors for index pairs in the set. This process will
be referred to as closing the set upwards under β-successors or performing
a β-closure. A partial β-closure consists of adding only some β-successors
in the desribed way. a

4.46 Definition (β-chain)

Let n
m be a node. A β-chain rooted in n

m is a partial β-closure of {n
m}. a

4.47 Definition (β-consistent)

A set of index pairs b is β-consistent if no two index pairs in b are β-related. a

Trivially, dual index pairs can not both be in a β-consistent set, but that
a set is β-consistent says more than this. If an index pair n

m is in the set,

88 Uniform variable splitting

then no index pair n′
m′ such that n

m and n′
m′ have a β-node as the greatest

common descendant, is allowed. The intuition behind this is that n
m and n′

m′

should not be ancestors of dual β-options. A β-option excludes its dual and
all ancestors of its dual, even though it is not itself in the β-consistent set.

4.48 Definition (β-path)

A β-path in a formula tree is a β-consistent set of β-options from the formula
tree. A complete β-path is a β-closed β-path. a

4.49 Definition (Complementary β-paths)

Two β-paths are complementary if one can be obtained from the other by
performing finitely many β-changes. A β-change consists of (1) removing
one index pair n

m together with all its ancestors and (2) adding a β-chain
rooted in the dual β-option n

m. a

Notice, for instance, that each singleton set consisting of a β-option is triv-
ially a β-path. If this β-option has no β-ancestors, then it is a complete
β-path. The empty set is always a β-path.

Example 4.50 All β-paths are displayed below, where complementary β-
paths are indicated with lines between them. The reader should verify that
following a solid line consists of performing exactly one β-change, while
following a dashed line consists of performing two β-changes, as explained
in the definition.

{12, 13, 19} {12, 13, 20}

{15, 19} {15, 20}

{12, 14, 19} {12, 14, 20}

{12, 19}

{12, 20} {12, 13} {12, 14}

{15}

{12}

{13} {14}

{19} {20}

{13, 19} {13, 20}

{14, 19} {14, 20}

For instance, to see that {13, 19} is a β-path, observe that it is β-closed, since
there are no additional ancestor β-options to add, and that it is β-consistent,
since the greatest common descendant of 13 and 19 is the root node 1, which
is not a β-node. The β-paths {13, 19} and {14, 20} are complementary.

4.6 Summary and remarks 89

One β-change consists of removing 13 and adding 14; another consists of
removing 19 and adding 20.

Furthermore, the sets {13, 15} and {14, 15} are not β-paths, since they are
not β-consistent. The greatest common descendant for each set is 11, which
is a β-node. The sets {12, 19} and {12, 20} are β-paths, but not complete,
since they are not β-closed. 13 is an ancestor β-option of 12, but it is not in
any of the sets.

4.51 Lemma (β-path) Let (P~s)S ` (P~t)T be a connection for a complete
skeleton π. Then, S ∩ T is a β-path. a

Proof. (1) S∩T is β-closed. Let n
mbe an index pair in S∩T . Then, neither

of the atomic formulas in the connection are ancestors of the formula with
index pair n

m. If they were, n
m would not be in their splitting sets. Therefore,

neither of the atomic formulas in the connection are ancestors of any β-
successors of n

m. Furthermore, if n′
m′ is a β-successor of n

m, then, since π is
complete, the index pair n′

m′ is added to the splitting sets of all extra formula
occurrences in one of the premisses; the dual index pair is added to the
splitting sets of all extra formula occurrences in the other premiss. One of
these index pairs must be added to both of the splitting lists of the atomic
formulas, or descendants of these, so one of these index pairs must be in
both S and T , and thus in S ∩ T . (2) S ∩ T is β-consistent. By virtue of
occurring in the leaf node of a branch in the skeleton, there are no two index
pairs in S ∩ T which are β-related. 2

4.6 Summary and remarks

This is not the last word on either cycle elimination or uniform variable
splitting; there is work left to be done. More precisely, here are the short-
comings:

• Cycle elimination for LKce (Conjecture 3.25) and LKs.

• Soundness of LKs (Conjecture 4.32) needs to be properly established. It
is believed that the this will follow from the proof of cycle elimination.

• Minimal closure conditions for LKs needs to be found; what are the mini-
mal requirements of a closure condition for LKs-skeletons in order to obtain
a sound calculus? The present approach can be found in Definition 4.18
of homogeneity. It is rather fresh and has probably not reached its final
form. (See comments on article below for more details.)

The contributions of this thesis are briefly the following:

90 Uniform variable splitting

• A way of characterizing LK-likeness by means of intuitive diagrams rep-
resenting relations between inferences. This gives a perspective on proof
transformation which is new. Also, the problem of cycle elimination has
been identified; cycles in a reduction ordering must be eliminated in order
to obtain an LK-like proof.

• A new free variable calculus which utilizes splitting of variables in a sys-
tematic way. This is done by syntactically identifying variable dependen-
cies across branches in a skeleton. Since variables can occur both as rigid
and universal in a skeleton, this joins the two notions into a more general
one.

After submission of the article [45], we have found some errors and room for
improvement.

• The definition of homogeneity in the article differs from the one in this
thesis because the one given in the article is too strong. In the arti-
cle, there is the requirement that a certain colored instantiation variable,
where one index pair has been replaced with a dual one, is in the domain
of the substitution. This is not necessary, and the discovery of this gave
birth to Example 4.50.

• Quote: “To compensate for this [splitting of variables] the logical depen-
dencies of some variables will be regained by introducing term equations
which identify certain instantiation variables.” It is the author belief that
the introduction of these auxiliary equation sets (denoted Π(c) in the ar-
ticle) is not necessary. This was a technical step in the article to ensure
that the substitution orderings were projective. Instead of doing this, it
should be possible to extend a skeleton, like explained in Section 4.4, in
order to make a substitution ordering projective.

• The Lemma Existence of complementary colors is not correct; there are
simple counterexamples.

4.6.1 Ideas for further development

Working with this new machinery of variable splitting, many new problems
and topic arise. Here is a sketch of some of them.

Proof length How does LKs relate to other free variable systems with re-
spect to proof complexity and proof length? Baaz and Fermüller [4]
has shown that the use of the δ+

+
-rule instead of the δ- and the δ+-rule

(and the use of the δ∗-rule instead of the δ+
+
-rule) gives non-elementary

shortenings of proofs in the worst case. (They relate proof complex-
ity of different calculi to the calculus-independent notion of Herbrand

4.6 Summary and remarks 91

complexity.) A relevant question is therefore: Does LKs allow for sim-
ilar speed-up results?

Other δ-rules Even though LKs is defined with a δce-rule, it is also possible
to use the other variants of δ-rule. (For instance, a δ-formula with
index pair n

m could introduce fm instead of fn
m, which is closer to the

δ+
+
-rule.) What happens if the idea of uniform variable splitting is

applied to calculi with δ+
+
-, δ∗-, δ∗

∗
- and δε-rules, respectively?

Structural rules and cut Weakening and contraction are not defined for
LKs. The splitting sets are developed from below by generating a
skeleton from a given root sequent. It would be interesting to develop,
if possible, a full calculus with structural rules like weakening and
contraction, axioms and a cut rule. Then, some sort of merging of
colors must be defined, which makes it possible to go from premisses
to conclusions in a synthetical way. Additionally, it would be nice that
have a cut-elimination proof for LKs.

Cut introduction Investigate how cycle elimination can be done by means
of introducing cuts.

Algebra Splitting sets and β-paths have an intrinsic structure which prob-
ably can be captured by means of algebraic tools. (Section 4.5 - A
framework for reasoning about splitting - is the beginning of such an
approach.)

The non-balanced case Investigate the conditions under which non-balanced
skeletons of LKs are permissible

The incremental closure technique This has been developed by Giese
[23] and is a way of organizing the search for a closing substitution in
an efficient way. It would be interesting to develop such an algorithm
for LKs as well. As a side product, we could show completeness of
LKs directly, by specifying a fair strategy.

Other logics Apply the method of variable splitting to labeled systems of
modal and intuitionistic logic [44] and linear logic.

Permutations To characterize a permutation variant as a “merging” of
formula trees. A skeleton can be viewed as a disjoint union of �-
trees, and each �-tree, up to contextual equivalence, is isomorphic to
a formula tree. Thus, a permutation variant of a skeleton corresponds
to one way of organizing the formula trees in a skeleton.

92 Uniform variable splitting

Appendix A

Article

A free variable sequent calculus

with uniform variable splitting

Arild Waaler1 and Roger Antonsen2

1 Finnmark College, 9500 Alta and
University of Oslo, Department of Informatics, 0315 Oslo, Norway.

arild@ifi.uio.no
2 University of Oslo, Norway
rantonse@ulrik.uio.no

Abstract. A system with variable splitting is introduced for a
sequent calculus with free variables and run-time Skolemization.
Derivations in the system are invariant under permutation, so that
the order in which rules are applied has no effect on the leaves.
Technically this is achieved by means of a simple indexing system
for formulae, variables and Skolem functions. Moreover, the way
in which variables are split enables us to restrict the term universe
branchwise. Compared to standard sequent calculi or tableau sys-
tems with an eigenvariable condition our system is at least as good
wrt. both proof length and the size of the search space, in addition
to allowing full flexibility in the order of rule application.

93

94 Article

A.1 Introduction

The aim of this paper is to present a solution to the problem of variable split-
ting in free variable systems for classical logic without equality. Attempting
both to reveal the nature of this problem and to motivate our contribution,
we shall start out by a brief discussion of the types of quantifier rules used
in three standard proof systems for classical logic. To facilitate compari-
son we address their sequent calculi formulations. Following the notation
of Smullyan [38] L∀ and R∃ are referred to as γ-rules, L∃ and R∀ are called
δ-rules, branching rules are β-type rules and the remaining logical rules are
of α-type. If θ is one of these types, an occurrence of θ-formula is a formula
occurrence which potentially can be principal in a θ-type inference.

In comparing the complexity of search spaces one relevant factor is the length
of proofs (counted in number of inference steps). Of no less importance,
although much harder to measure, is the uniformity of the search space and
the possibility of avoiding irrelevant steps in the search process.

The following four questions related to proof-search are among others central
for this issue.

1. Is it possible to apply the rules in any order?

2. Does the system admit free variables and variable binding by means
of explicit substitutions?

3. Given that the system has free variables and does not constrain the
intrinsic order of rules, is the number of explicit copies of γ-formulae
on a branch independent of the intrinsic rule order?

4. Can the number of explicit copies of γ-formulae on a given branch be
locally bound by the term universe of the branch?

A negative answer to the first question implies that there are limited possi-
bilities for goal-directed search, i.e. search driven by connections or potential
axioms. It is then hard to prevent expansion of irrelevant formulae. If the an-
swer to the second question is negative, we must choose instantiation terms
along with applications of γ-type rules. We then run the risk of instanti-
ating quantifiers with irrelevant terms, and this may give rise to irrelevant
inferences. A positive answer to the first two questions greatly improves the
possibility of performing least commitment search. Nevertheless, it may still
be the case that unification-based goal-directed search has a cost in terms of
proof length (addressed by the third and fourth questions). Should this be
the case, the least commitment strategy may give rise to redundancies in the
proof objects themselves, and the benefits of the strategy becomes harder to

A.1 Introduction 95

measure. The fourth question has partly to do with termination within de-
cidable fragments of the language. An affirmative answer greatly facilitates
the formulation of an efficient termination criterion. On the contrary, a neg-
ative answer is likely to have a negative impact both on the complexity of
the search space and on the length of proofs (due to redundant inferences).
We may also fail to detect that a given sequent is unprovable in cases where
the term universe of one open branch would have been finitely bounded,
given another set of quantifier rules.

Let us first address the standard Fregean treatment of quantifiers in terms
of eigenparameters1. For systems without free variables, and which adopt
Gentzen’s eigenparameter condition, the answers to the first two questions
are negative. However, the answer to the fourth is positive; in fact proofs in
this family of Gentzen systems are in most cases very short2.

If we let the γ-rules introduce free variables and the δ-rules introduce Skolem
functions (the type of which is irrelevant here), we can delay the choice of
instantiation terms to the level of axioms and select them on the basis of
appropriate equations. In consequence, the rule dependencies expressed by
the eigenparameter condition are replaced by term dependencies defined by
unification problems. This gives systems with a positive answer to questions
1 and 2.

However, to say that γ-rules generate free variables is not a sufficient de-
scription of the free variable system. We must also specify a mechanism for
selecting free variables, and this has an impact on the other two questions. In
one extreme, we may select a fresh variable for each γ-rule application. This
strategy generates variable-pure skeletons and is illustrated by the leftmost
skeleton π1 below. If, in that skeleton, the two variables u1 and u2 are dis-
tinct, the skeleton is variable-pure. Note that the skeleton can be extended
to a proof without any new application of a L∀ inference: the final skeleton
can be closed by the substitution {u1/a, u2/b}. Also note that in each case
the inference which introduces a variable occurs above the inference which
introduces the Skolem function of the binding; this property corresponds to
the fulfilment of the eigenparameter condition. In π2 the order is reversed.
Note that the free variable u is copied into the two branches, creating a
dependency which is absent in π1. In π2 we must apply a L∀ once more in
one of the branches to close the skeleton.

1We shall use ‘eigenparameter’ instead of the more usual ‘eigenvariable’, since eigen-
terms are generated by δ-rules. The term ‘parameter’ stands for a constant or a 0-arity
Skolem function and shall be used in relation to δ-rules, while the term ‘free variable’ is
reserved for terms generated by γ-rules.

2Exceptions to this are addressed in section A.4.

96 Article

u1 = a
....

∀xϕx, ϕu1 ` ξa

∀xϕx ` ξa
γu1

∀xϕx ` ∀xξx
δa

u2 = b
....

∀xϕx, ϕu2 ` Qb

∀xϕx ` Qb
γu2

∀xϕx ` ∀xQx
δb

∀xϕx ` ∀xξx ∧ ∀xQx
β

Skeleton π1

u = a....
∀xϕx, ϕu ` ξa

∀xϕx, ϕu ` ∀xξx
δa

u = b....
∀xϕx, ϕu ` Qb

∀xϕx, ϕu ` ∀xQx
δb

∀xϕx, ϕu ` ∀xξx ∧ ∀xQx
β

∀xϕx ` ∀xξx ∧ ∀xQx
γu

Skeleton π2

In π1 and π2, ϕx is ∃y(Pxy ∧Qx) and ξx is ∃yPxy.

Variable-pure skeletons correspond to free variable tableaux [44]. As the
example illustrates, the answer to question 3 is negative for these systems.
The answer to question 4 is in general also negative, unless a rule ordering is
chosen which is guaranteed to fulfil the eigenparameter condition. However,
question 1 then receives a negative answer. To remedy this situation a
strategy for identifying universal variables was proposed in [9]. Applied to
π2, the strategy identifies the occurrences of u as universal in the branches;
u can then be bound to different terms in different branches. However,
even if this idea works in this particular example, it has limited range.
It does e.g. not work for the sequent ∀x(Px → (Qx ∧ Rx)) ` ∀x(Px →
Qx) ∧ ∀x(Px→ Rx) given eager use of the L∀ rule.

If the variables u1 and u2 in π1 are identical, the skeleton is variable-sharing.
This class of skeletons was identified in [44], where it is shown that leaf
sequents of skeletons which are balanced (defined below) correspond to paths
through matrices [12]. As this strategy for selecting variables generates freely
permuting skeletons, the answer to question 3 is positive. However, since
the price of the nice permutation properties is strong dependencies among
variable occurrences, question 4 receives a negative answer.

Attempting to solve the redundancy problem Bibel sketched an idea for
variable splitting [11]. We believe that the system introduced in this pa-
per can be taken as a sharp formulation of his idea, fully generalized to
non-clausal formulae. This is achieved by dynamically renaming variables
uniformly over the skeleton as the skeleton is developed. Technically, the
formulation exploits a fairly simple system of indices. As skeletons of our
system are freely permuting, the answers to the first three questions is the
same as for variable-sharing (i.e. matrix) systems. And since we can fully
simulate proofs constructed in a calculus with eigenparameters, question 4
receives the same answer as for this calculus. We hence combine the best
of the three quantifier treatments discussed in this section and can respond
‘yes’ to all four questions.

The focus of the current paper is exclusively on the class of balanced skele-

A.2 The free variable system 97

tons, which is the class corresponding to matrices. This restriction can
however be avoided at the cost of a more complex syntax.

A.2 The free variable system

The object language contains the usual quantifiers and connectives, but it
also contains a stock of indices of various sorts. It is essential that these
constructs are part of the language itself; they are not just meta-language
devices used to talk about formulae.

The set of closed first-order formulae is inductively defined from a fixed,
countable set of predicate symbols and a set of quantification variables,
which only occur bound by quantifiers. The logical operators are ∧, ∨, →,
¬, ∀ and ∃. In addition, we allow formulae to contain instantiation terms.
Instantiation terms are inductively defined from countable sets U = {un

m |
m,n ∈ N} of instantiation variables and F = {fn

m | m,n ∈ N} of Skolem
function symbols. We require that instantiation terms do not contain quan-
tification variables. The purpose of instantiation terms is to provide a syntax
for free variables and run-time skolemization. Formulae with instantiation
terms will be generated by the rules of the calculus and do not exist outside
such a context. Furthermore, we shall distinguish ‘formulae’ from ‘formula
occurrences’. A formula occurrence is a formula in which each subformula,
including the formula itself, is augmented by an index pair n

m; the subscript
m is called an occurrence number and the superscript n is called copy num-
ber . Each formula occurrence, but not its subformulae, is also labelled with
a splitting set S, which is a set of index pairs.

Example A.1 Here is an example of a formula occurrence:

(∃y((Pu2
1y)

2
4 ∧ (Qu2

1)
2
5)

2
3)

2
2{1

7,
1
8}

The purpose of the occurrence numbers is to uniquely identify all subformu-
lae occurrences in a given structure. Therefore, in a formula occurrence, all
subformula occurrences must have distinct occurrence numbers. An occur-
rence number can be thought of as a pointer to a position in a formula tree
[46] or to a memory location.

The copy numbers correspond to Bibel’s notion of multiplicity [11]; we are
thus able to speak of two distinct occurrences of the same formula. For a
given formula occurrence, the copy number must be the same for all subfor-
mula occurrences. This number will be incremented as new explicit copies
of a formula are made by the implicit contraction in γ-rules.

98 Article

The purpose of the splitting set is to keep track of the β-formulae that have
split the skeleton into branches, in order to split the instantiation variables
accordingly.

The system manipulates sequents of the form Γ ` ∆, where Γ and ∆ are
sets of formula occurrences. A root sequent is a sequent in which:

• all occurrence numbers are distinct

• all copy numbers are identical to 1

• all terms are quantification variables, bound by quantifiers

• all splitting sets are empty

Example A.2 Here is the root sequent discussed in section 1:

(∀x(∃y((Pxy)14 ∧ (Qx)15)
1
3)

1
2)

1
1{} ` ((∀x(∃y(Pxy)19)18)17 ∧ (∀x(Qx)111)110)16{}

Since the system of index pairs makes a formula hard to read, we will allow
for abbreviations. We can denote the root sequent like this:

∀x
1
∃y
2

(Pxy
4

∧
3
Qx
5

)11 ` (∀x
7
∃y
8
Pxy

9
∧
6
∀x
10
Qx
11

)16

A skeleton is a finitely branching tree generated from a root sequent and the
rules given in Fig. A.1. The formulae in Γ and ∆ are called extra formulae,
while the other formula in the conclusion is called the principal formula and
the other formula(e) in the premiss(es) are called active formulae.

Meta-language conventions: In ϕn
mS, m denotes the occurrence number

given to ϕ, n is the copy number given to all subformula occurrences of
ϕ and S is the splitting set.

Explanations:

β-rules: Γ] l
k denotes {ϕn

mS∪{l
k} | ϕn

mS ∈ Γ}, the set of formula occurrences
in Γ where the index pair l

k has been added to the splitting sets. The β-rules
split the skeleton into branches and add the corresponding index pairs to
the splitting sets of all other formula occurrences than the β-formula. If
the β-formula in question is (ϕn

k ∧ ψn
l)n

mS, then the index pairs n
k and n

l are
called dual. The dual index pair of n

m will be denoted n
m.

γ-rules: These rules introduce instantiation variables un
m, where n

m corre-
sponds to the index pair of the principal formula occurrence. In addition,

A.2 The free variable system 99

α-rules β-rules

Γ, ϕn
kS, ψ

n
l S ` ∆

Γ, (ϕn
k ∧ ψn

l)n
mS ` ∆

L∧
Γ] n

k ` ϕn
kS,∆] n

k Γ] n
l ` ψn

l S,∆] n
l

Γ ` (ϕn
k ∧ ψn

l)n
mS,∆

R∧

Γ ` ϕn
kS, ψ

n
l S,∆

Γ ` (ϕn
k ∨ ψn

l)n
mS,∆

R∨
Γ] n

k , ϕ
n
kS ` ∆] n

k Γ] n
l , ψ

n
l S ` ∆] n

l

Γ, (ϕn
k ∨ ψn

l)n
mS ` ∆

L∨

Γ, ϕn
kS ` ψn

l S,∆

Γ ` (ϕn
k → ψn

l)n
mS,∆

R→
Γ] n

k ` ϕn
kS,∆] n

k Γ] n
l , ψ

n
l S,` ∆] n

l

Γ, (ϕn
k → ψn

l)n
mS ` ∆

L→

Γ, ϕn
kS ` ∆

Γ ` (¬ϕn
k)n

mS,∆
R¬

Γ ` ϕn
kS,∆

Γ, (¬ϕn
k)n

mS ` ∆
L¬

δ-rules γ-rules

Γ ` ϕ[x/fn
m(~u)]nkS,∆

Γ ` (∀xϕn
k)n

mS,∆
R∀

Γ, (∀xϕn+1
k)n+1

m S, ϕ[x/un
m]nkS ` ∆

Γ, (∀xϕn
k)n

mS ` ∆
L∀

Γ, ϕ[x/fn
m(~u)]nkS ` ∆

Γ, (∃xϕn
k)n

mS ` ∆
L∃

Γ ` (∃xϕn+1
k)n+1

m S, ϕ[x/un
m]nkS,∆

Γ ` (∃xϕn
k)n

mS,∆
R∃

Figure A.1: The rules of the free variable system

the γ-rules have built-in an implicit contraction operation and introduce new
contracted copies of the principal formula occurrence. The new occurrence
is obtained from the principal occurrence simply by incrementing the copy
number.

δ-rules: These rules skolemize the principal formula occurrences in the fol-
lowing way: If (∀xϕn

k)n
mS is the principal formula occurrence in which ex-

actly the instantiation variables ~u = un1
m1
, . . . , uni

mi
occur, then the Skolem

term fn
m(~u) is introduced and replaced for the variable x. This δ-rule lies

somewhere between a δ+-rule [28] and a δ+
+
-rule [10]. It is δ+-like in the

sense that only variables in the current formula occurrence matter, not all
variables in the whole branch, like the original δ-rule, or all relevant vari-

100 Article

ables, like the δ∗-rule [16]. Moreover, all formula occurrences with the same
index pair will introduce identical Skolem function symbols, which is more
δ+

+
-like, at least with respect to different branches. (A closer approxima-

tion to the δ+
+
-rule could be obtained by skipping the copy numbers of the

Skolem function symbols altogether.)

A skeleton is composed out of instances of rules, called inferences. An
inference can be uniquely identified by its principal formula occurrence. We
can therefore denote the inferences in a skeleton with the inference type and
the index pair of the principal formula, like this: θn

m, where θ is the inference
type, m is the occurrence number and n is the copy number of the principal
formula occurrence. We use r and s as metasymbols for inferences.

Skeletons can be represented at a higher level of abstraction by diagrams
in which the diagram labels denote inferences and arrows denote relations
between inferences. The following are diagram labels:

α-inference: ◦ γ-inference: γn
m

β-inference: 4 δ-inference: δn
m

First, we need to define the immediate ancestor relation. The inference r
is an immediate ancestor of the inference s, written r � s, if the principal
formula occurrence of r has the same occurrence and copy number as an
active formula occurrence of s. The splitting sets of the two occurrences
may be different; the splitting set of r might be a superset of the splitting
set of s. It is necessary that the inference r is above s in the skeleton. (In
the diagrams, two �-related inferences will have a similar looking arrow
between them.)

If r is an inference in a skeleton, then the �-tree rooted in r is the least
tree T such that r ∈ T and for all s ∈ T , if s′ � s, then s′ ∈ T .

Two different inferences r and s are contextually equivalent, written r ∼ s,
if the index pairs of r and s are identical. In the diagrams, two contextually
equivalent relations will have dots between them.

A balanced skeleton is one in which the following condition holds for all
inferences r and s in the skeleton: If r ∼ s and r′ � r, then there is an s′

such that s′ � s and r′ ∼ s′.

We will from now on require all skeletons to be balanced. This is the class
of skeletons which corresponds directly to matrices[44, Section 2.5].

A permutation variant of a skeleton is a skeleton which differ only in the
order of rule applications.

The following two skeletons are permutation variants. In the uppermost

A.2 The free variable system 101

skeleton, the γ-inference has been applied before the β-inference; in the low-
ermost skeleton it is the other way around. Notice that the situation is
symmetrical; the two inferences directly above the β-inference in the low-
ermost skeleton are contextually equivalent. Only indices and splitting sets
of particular relevance for the example are displayed. Empty splitting sets
and implicit copies of γ-formulae are omitted.

(Pu1
1){1

2}, (Qu1
1){1

2} ` ϕ1
2

(Pu1
1 ∧Qu1

1){1
2} ` ϕ1

2

(Pu1
1){1

3}, (Qu1
1){1

3} ` ψ1
3

(Pu1
1 ∧Qu1

1){1
3} ` ψ1

3

Pu1
1 ∧Qu1

1 ` ϕ1
2 ∧ ψ1

3

β

∀x(Px ∧Qx)11 ` ϕ1
2 ∧ ψ1

3

γ1
1 u1

1

4

(Pu1
1){1

2}, (Qu1
1){1

2} ` ϕ1
2

(Pu1
1 ∧Qu1

1){1
2} ` ϕ1

2

∀x(Px ∧Qx)11{1
2} ` ϕ1

2

γ1
1

(Pu1
1){1

3}, (Qu1
1){1

3} ` ψ1
3

(Pu1
1 ∧Qu1

1){1
3} ` ψ1

3

∀x(Px ∧Qx)11{1
3} ` ψ1

3

γ1
1

∀x(Px ∧Qx)11 ` ϕ1
2 ∧ ψ1

3

β
4

u1
1 u1

1

Examples like this are easily generalized to general permutation schemes,
according to which the γ-inferences are symmetrically interchanged with
the β-inferences. By inspecting the patterns of these schemes, it is straight-
forward to verify the following key property for balanced skeletons:

A.3 Lemma (Invariance lemma) The sets of leaf sequents are invariant
under permutation. Any two permutation variants have identical leaf se-
quents. a

A.4 Lemma (Permutation lemma) For any sub-skeleton with Γ, ϕn
mS `

∆ in the root, ϕn
mS non-atomic with an ancestor of ϕn

mS expanded some-
where in the sub-skeleton, there is a permutation variant of the sub-skeleton
which has ϕn

mS as the principal formula occurrence in the lowermost infer-
ence. a

Proof. Let S ⊆ S′. Since ϕn
mS

′ is principal somewhere in the sub-skeleton,
there is a set of contextually equivalent inferences in the skeleton for which
the principal formulae occurrences have the form ϕn

mT for S ⊆ T . All of
these inferences must occur in different branches. By repeatedly choosing the
inferences which are furthest away from the root and permuting according
to permutation schemes, we obtain a skeleton in which ϕn

mS is the principal
formula. The schemas apply since the skeleton is balanced [44, Lemma 2.14].
2

102 Article

A.3 Connections, colorings and proofs

The purpose and intuition behind the splitting sets is to identify instantia-
tion variables by the splitting sets of the surrounding formula occurrences.
The uniformity of the splitting sets provides a machinery to split variables
maximally without losing sight of logical dependencies between these. How-
ever, the splitting mechanism in the rules is in some cases too liberal. To
compensate for this the logical dependencies of some variables will be re-
gained by introducing term equations which identify certain instantiation
variables. We wish to define proofs as skeletons in which all leaf nodes in
all branches are closed by a unifying substitution. To do this, we must first
define precisely how the splitting of terms is achieved and then specify the
conditions which the substitutions must satisfy. This can be defined alto-
gether at the level of terms, since all permutation variants of the underlying
skeleton generate the same set of leaves.

A color is a splitting set occurring in a leaf sequent.

If P (s1, . . . , sk)n
mS is an atomic formula occurrence and si is one of the

instantiation terms, then the color S gives the corresponding colored term
si ⊕ S like this:

• un
m⊕S = un

mS

• fn
m(t1, . . . , tl)⊕S = fn

mS(t1⊕S, . . . , tl⊕S)

sT stands for the colored term s⊕T

P (s1⊕S, . . . , sk⊕S) is the corresponding colored formula.

If P (s1 . . . sk)n1
m1
S1 ` P (t1 . . . tn)n2

m2
S2 is a subsequent of a leaf sequent in

a skeleton π, then the pair of colored formulae P (s1⊕S1, . . . , sk⊕S1) `
P (t1⊕S2, . . . , tn⊕S2) is called a connection. Each connection c has an
associated set Π(c) of equations, where Π(c) contains exactly the equations
of the form un

mS = un
mT such that un

mS occurs in the connection and un
mT

occurs in the same sequent which gives rise to the connection. A set of
connections C, typically one connection for each branch in the skeleton,
defines the set of colored variables of C, containing all colored instantiation
variables occurring either in a connection c in C or in an associated set of
equations Π(c), and a set of colored function symbols, containing all colored
function symbols occurring in a connection in C. The Herbrand universe of
C contains all colored terms that can be generated from these.

Let C be a set of connections. A substitution is a function σ which maps
colored variables of C into the Herbrand universe of C. It can be partial;
the domain is dom(σ). Important properties of a substitution σ are:

A.3 Connections, colorings and proofs 103

• σ is idempotent if for all colored variables t of C, σ(t) = σ(σ(t))

• σ is closing if for each connection c ∈ C, cσ is of the form ϕ ` ϕ, and
for all equations v = w ∈ Π(c), σ(v) = σ(w).

• σ is homogeneous if the following condition holds: If σ(ul
kS) = tT and

n
m ∈ T ∩ S, then ul

kS[nm/
n
m] is in dom(σ) and σ(ul

kS[nm/
n
m]) = tT [nm/

n
m].

(S[nm/
n
m] is the splitting set S where n

m has been replaced by its dual
index pair n

m.)

The intuition behind the homogeneity property is the following: The fact
that n

m ∈ T ∩ S means that the β-inference whose one active formula is
marked n

m does not contribute to the closing of the branch in question. Then,
it should not, symmetrically, contribute to the closure of the corresponding
leaf at the other side of the β-inferences either. (See Ex. A.7 for an example
of what can happen without this condition.)

Let π be a skeleton. A set C of connection is spanning for π if there is
exactly one connection in C for each branch in π.

Let C be spanning for a skeleton π. Then, 〈π,C, σ〉 is a proof of the root
sequent in π if σ is idempotent, homogeneous and closing.

A.5 Lemma If 〈π,C, σ〉 is a proof and π′ is a permutation variant of π, then
〈π′, C, σ〉 is also a proof. Hence, colors are invariant under permutation. a

Proof. By Lemma A.3, the leaf nodes of π′ are identical to the leaf nodes
of π. Thus, the colors are invariant under permutation. Furthermore, since
C and σ do not change, σ is still idempotent, homogeneous and closing. 2

We now lift the notion of colors of terms and formulae to the level of colored
inferences. If tnmS is a colored term in a connection, then there will be a
unique θ-inference θn

m in the skeleton which introduces the instantiation term
tnm. Of course, there can be many θn

m-inferences in the skeleton, but only one
will be below the leaf sequent which gives rise to the given connection. θn

mS
denotes the θn

m-inference colored with S. One θ-inference can be colored in
many different ways, due to different splitting sets in different connections.
Note that only γ- and δ-inferences are colored.

A spanning set C of connections gives rise to a colored skeleton, a skeleton
in which some, but not necessarily all, quantifier inferences are colored ac-
cording to the colored terms in C. Notice that if an inference r is colored
rS and r ∼ r′, then r′ is not colored r′S.

Let 〈π,C, σ〉 be a proof and assume that σ is of minimal cardinality. The
substitution σ induces a relation 99Kσ defined in the following way: If

104 Article

σ(un
mS) = tT and rS and r′T are the corresponding colored inferences,

both occurring on the same branch of the skeleton, then rS 99Kσ r′T .

In diagrams for colored skeletons we can now draw 99Kσ-arrows between the
inferences to visualize the relations induced from a closing substitution. The
arrows will be labelled with splitting sets to display which colored inference
that are 99Kσ-related.

Example A.6 Let π be a skeleton generated from the root sequent given in
Ex. A.2 above. Assume that the lowermost inference is R∧:

∀x∃y(Pxy ∧Qx)11{1
7} ` (∀x∃yPxy)17 ∀x∃y(Pxy ∧Qx)11{1

10} ` (∀xQx)110
∀x∃y(Pxy ∧Qx)11 ` (∀x∃yPxy ∧ ∀xQx)16

R∧

The left branch gives rise to the connection Pu1
1{1

7}f1
2{1

7}(u1
1{1

7}) ` Pf1
7u

1
8.

(Pu1
1f

1
2u

1
1)

1
4{1

7}, (Qu1
1)

1
5{1

7} ` (Pf1
7u

1
8)

1
9

(Pu1
1f

1
2u

1
1)

1
4{1

7}, (Qu1
1)

1
5{1

7} ` (∃yPf1
7y)

1
8

γ1
8

(Pu1
1f

1
2u

1
1 ∧Qu1

1)
1
3{1

7} ` (∃yPf1
7y)

1
8

∃y(Pu1
1y ∧Qu1

1)
1
2{1

7} ` (∃yPf1
7y)

1
8

δ12

∀x∃y(Pxy ∧Qx)11{1
7} ` (∃yPf1

7y)
1
8

γ1
1

∀x∃y(Pxy ∧Qx)11{1
7} ` (∀x∃yPxy)17

δ17

The right branch gives rise to the connection Qu1
1{1

10} ` Qf1
10.

(Pu1
1f

1
2u

1
1)

1
4{1

10}, (Qu1
1)

1
5{1

10} ` (Qf1
10)

1
11

(Pu1
1f

1
2u

1
1 ∧Qu1

1)
1
3{1

10} ` (Qf1
10)

1
11

∃y(Pu1
1y ∧Qu1

1)
1
2{1

10} ` (Qf1
10)

1
11

δ12

∀x∃y(Pxy ∧Qx)11{1
10} ` (Qf1

10)
1
11

γ1
1

∀x∃y(Pxy ∧Qx)11{1
10} ` (∀xQx)110

δ110

The substitution σ = {u1
1{1

7} 7→ f1
7, u

1
8 7→ f1

2{1
7}(f1

7), u
1
1{1

10} 7→ f1
10} is clos-

ing for the two connections and provides a proof.

Below to the left is the skeleton diagram. To the right is the skeleton diagram
for Example A.7, depicting a substitution which is not a proof. The skeletons
diagrams have arrows displaying the immediate ancestor relation and the
99Kσ-relation.

A.4 Consistency 105

4

f1
7

u1
1

f1
2

u1
8

f1
10

u1
1

f1
2

{17} {110}

g

f

u

4

v v

4 4

{12}

{121
3}

{14}

{121
4}

{11}

{111
3}

{13}

{111
4}

Example A.7 (∀x((Px)11∨(Qx)12))
1
5, (∀x((Px)13∨(Qx)14))

1
6 ` (∀xPx)17, (∀xQx)18

is not a valid sequent, but without the requirement that substitutions are
homogeneous, it would be provable. Below to the left are the generated
leaf sequents (v,w,f ,g abbreviate u1

5, u
1
6, f

1
7, f

1
8, respectively). Below to the

right is a closing, non-homogeneous, substitution σ for a spanning set of
connections.

Pv{1
3}, Pw{1

1} ` Pf {1
1
1
3}, Qg{1

1
1
3} v{1

3} 7→ f {1
1
1
3}

Pv{1
4}, Qw{1

1} ` Pf {1
1
1
4}, Qg{1

1
1
4} w{1

1} 7→ g{1
1
1
4}

Qv{1
3}, Pw{1

2} ` Pf {1
2
1
3}, Qg{1

2
1
3} w{1

2} 7→ f {1
2
1
3}

Qv{1
4}, Qw{1

2} ` Pf {1
2
1
4}, Qg{1

2
1
4} v{1

4} 7→ g{1
2
1
4}

It is not homogeneous, since u{1
3} 7→ f {1

1
1
3}, but it is not the case that

u{1
4} 7→ f {1

1
1
4}. The index pair 1

3 occurs in both u{1
3} and f {1

1
1
3}, and since 1

3

and 1
4 are dual, it is required that u{1

4} is in the domain of σ, which it is, and
that it is mapped to f {1

1
1
4}, which it is not, since it is mapped to g{1

2
1
4}.

A.4 Consistency

The consistency argument contains two parts of a very different nature.
The first part demonstrates that if a certain skeleton relation (the reduction
ordering) is acyclic, the skeleton can be permuted into an object with the
σ-conformity property (defined below). Proofs with this property naturally
correspond to proof objects in a calculus with quantifier rules which observe
the eigenparameter condition. Incidentally, the fact that this also holds
the other way around shows the completeness of the free variable system.
The second part of the consistency argument shows that any proof can be

106 Article

extended to a proof for which the associated reduction ordering is acyclic.
The extension can in odd cases give an exponential increase in proof length.

Let us first make some of the notions precise. A colored inference rS is
projected onto a unique skeleton inference r. Note that two colored inferences
can be projected onto the same skeleton inference. The reduction ordering
� on the skeleton is induced by the substitution in the following way: r� s
iff either r � s or there are colored inferences rS and sT projected onto r
and s such that rS 99Kσ sT .

Let 〈π,C, σ〉 be a proof. π conforms to σ if the following two conditions
hold:

(1) for all colored γ-inferences rS and r′S′ with identical projections, if
rS 99Kσ sT and r′S′ 99Kσ s′T ′, then sT and s′T ′ have identical pro-
jections,

(2) if r � s, then r is above s in the skeleton.

Relating the condition (2) to rules in a calculus with explicit instantiations
of eigenparameters in γ-inferences (cnf. Section. 1), it corresponds to the
fulfillment of an eigenparameter condition for relevant instantiations. It
also corresponds to the condition that a δ-inference must introduce a term
which does not occur in the conclusion. The function of (1) is to secure that
a particular γ-inference receives a unique instantiation on a given branch.

From the immedate ancestor relation (which is defined only for non-colored
inferences), we define a similar relation for colored inferences in a colored
skeleton π: If either r �+ r′ or there is an inference r′′ such that r �+ r′′

and r′′ ∼ r′, where �+ is the transitive closure of �, then rS � r′T . (The
inference r′′ does not need to be colored.)

A cycle is a sequence of colored inferences r1R1, s1S1, . . . , rnRn, snSn such
that

r1R1 99Kσ s1S1 � r2R2

r2R2 99Kσ s2S2 � r3R3

. . .
rnRn 99Kσ snSn � r1R1

A proof is cycle-free there is no cycle through its colored inferences. It is
immediate that a proof is cycle-free iff the associated reduction ordering is
cycle-free.

A.8 Theorem (Eigenparameter property theorem)

If a proof 〈π,C, σ〉 is cycle free, there is a permutation variant π′ of π such
that π′ conforms to σ. a

A.4 Consistency 107

The proof of this theorem makes use of general properties of colors, formu-
lated below. To see the content of these statements, recall that colors are
developed branchwise by tracing the generation of a leaf formula. Its index
pairs can be identified by repeatedly “selecting one side” of β-inferences of
the branch whose principal formulae do not descend from the leaf formula
occurrence which carries the color. The following notions characterize situa-
tions where colors have emerged by symmetrically choosing “different sides”
of β-inferences; the β-inferences up to contextual equivalence.

Let S and T be colors. The complementary image of T in S is the set of all
index pairs n

m ∈ S such that n
m ∈ T . S and T are complementary if S \ T is

the complementary image of T in S and T \ S is the complementary image
of S in T .

A.9 Lemma (Existence of complementary colors) Let uS and uT be
two colorings of the same instantiation variable u. Then there is a leaf which
contains both uS and uT for a color T complementary to T such that the
complementary image of T in T is identical to the complementary image of
T in S. a

Proof. Follows by observing that all β inferences identified by the com-
plementary image of T in S have contextual equivalents in a branch which
contains uS. 2

A.10 Lemma (Generalized homogeneity property) Let r be a γ-type
inference and s be either γ-type or δ-type. Let rS 99Kσ sT . Then there is
a set S complementary to S and a set T complementary to T such that
rS 99Kσ sT . Furthermore, both the complementary image of S in S and the
complementary image of T in T is identical to S ∩ T . a

Proof. Repeated application of the homogeneity property. 2

A substitution σ has the generalized homogeneity property when it is the
case that σ(rS) = sT implies that rS ∈ dom(σ) and σ(rS) = tT , where S :=
S[n1

m1
/n1

m1
, . . . , ni

mi
/ni

mi
] and T := T [n1

m1
/n1

m1
, . . . , ni

mi
/ni

mi
], for all {n1

m1
, . . . , ni

mi
} ⊆

S ∩ T .

We now return to the proof of the Eigenparameter property theorem, which
is by branchwise induction on the number of inferences from the root sequent
and upwards. Let us say that all inferences initially are black, and use
as induction hypothesis that all white inferences satisfy the σ-conforming
property. Select an inference r in the branch which is �-minimal among
the black inferences (this is the point which requires that the proof is cycle-
free). Apply the Permutation lemma to the sequent above the uppermost
white inference (initially the root sequent) to transfer r to a place where all

108 Article

inferences below r are white. Note that no white inferences are touched by
the permutation process, so that we can apply the induction hypothesis to
these inferences also for the new skeleton. Now turn r white. The second
property of σ-conformity follows immediately from the induction hypothesis
for r. If r is a γ-type inference, we must also verify the first property. So
assume that rS and r′S′ have identical projections and that rS 99Kσ sT and
r′S′ 99Kσ s′T ′. If S 6= S′, Lemma A.9 gives the existence of variables uS
and uS′ such that uS = uS′ must be an equation in the associated set of
equations. Moreover, S′ is complementary to S′ and satisfies the conditions
which enable us to apply Lemma A.10 and conclude that sT and s′T ′ have
identical projections. For sT and s′T ′ project onto inferences which are
either identical or contextually equivalent, but since they both occur below
r, they must be identical.

A.11 Theorem (Cycle elimination theorem)

A proof 〈π,C, σ〉 can be extended to a proof which is cycle-free. a

The proof of this result, which yields the consistency of the system, goes
by branchwise induction on the number of cycles with colored inferences
projected onto the branch. We provide a sketch of the argument. First,
using homogeneity, one can show that a cycle

r1R1 99Kσ s1S1 � r2R2

. . .
rnRn 99Kσ snSn � r1R1

witness the existence of a local cycle, i.e. a cycle of the above form with the
property that R1 ∩ S1 = R1 ∩R2, . . ., Rn ∩ Sn = Rn ∩R1. We next show a
property about the γ-formulae ϕi, instances of which occur as principal in
the colored γ-inferences riRi. If we select a branch with a connection which
gives rise to one 99Kσ-arrow in the cycle, the leaf of this branch must contain
an instance of each ϕi with a higher copy number. Using these instances and
the locality property we can effectively add inferences to the branch so that
all connections which give rise to a 99Kσ-arrow in the cycle can be recreated
(differing from the original only in copy numbers). The newly created cycle
can, however, be broken by keeping one connection formula generated from
inferences of the old cycle and taking the other connection formula from the
newly created cycle. The process is illustrated in the following example.

Example A.12 Let the root sequent be: ∀x
1

(∀x
3
Qx
4

→
2
Px
5

) ` ∃x
6

(Qx
8

→
7

∀x
9
Px
10

)

To the right is a skeleton diagram which is generated from the above root
sequent and which contains the cycle γ1

6 99Kσ δ
1
3 � γ1

1 99Kσ δ
1
9 � γ1

6. Elim-

A.4 Consistency 109

inating the cycle yields the skeleton represented by the rightmost skeleton
diagram:

u1
6

a1
9

u1
1

4

a1
3

u1
6

a1
9

u1
1

4

a1
3 u2

1{15}

4

a2
3{15}

u2
6{15 2

3}

a2
9{15 2

3}

The arrow γ1
1 99Kσ δ

1
9 is resolved by expanding the rightmost branch with

an inference in which ∀x(∀xQx → Px)21{1
5} is the principal formula. Then,

the instantiation variable u2
1 is introduced. The connection in question is

recreated, but in order to close the other branch as well, it is neccessary to
expand it with an inference in which ∃x(Qx → ∀xPx)26{1

5
2
3} is a principal

formula. Then, the other connection is also recreated.

110 Article

Bibliography

[1] Peter B. Andrews. Theorem proving via general matings. Journal of
the Association for Computing Machinery, 28(2):193–214, 1981.

[2] Roger Antonsen. Free variable sequent calculi. Master’s thesis, Univer-
sity of Oslo, Language, Logic and Information, Department of Linguis-
tics, May 2003.

[3] Franz Baader and Wayne Snyder. Unification theory. In A. Robinson
and A. Voronkov, editors, Handbook of Automated Reasoning, volume I,
chapter 8, pages 445–532. Elsevier Science, 2001.

[4] Matthias Baaz and Christian. G. Fermüller. Non-elementary speedups
between different versions of tableaux. In Reiner Hähnle Peter Baum-
gartner and J. Possega, editors, 4th Workshop on Theorem Proving with
Analytic Tableaux and Related Methods, volume 918 of LNAI, pages
217–230. Springer, 1995.

[5] Matthias Baaz and Alexander Leitsch. Complexity of resolution
proofs and function introduction. Annals of Pure and Applied Logic,
57(3):181–215, 4 June 1992.

[6] Bernhard Beckert. Ein vervollständigungsbasiertes Verfahren zur Be-
handlung von Gleichheit im Tableaukalkül mit freien Variablen. Diplo-
marbeit, Fakultät für Informatik, Universität Karlsruhe, July 1993.

[7] Bernhard Beckert. Adding equality to semantic tableaux. In K. Broda,
M. D’Agostino, R. Goré, R. Johnson, and S. Reeves, editors, Proceed-
ings, 3rd Workshop on Theorem Proving with Analytic Tableaux and
Related Methods, Abingdon, pages 29–41, Imperial College, London,
TR-94/5, 1994.

[8] Bernhard Beckert. Depth-first proof search without backtracking for
free-variable clausal tableaux. In P. Baumgartner and H. Zhang, editors,
Third International Workshop on First-Order Theorem Proving (FTP),
St. Andrews, Scotland, pages 44–55, 2000.

111

112 BIBLIOGRAPHY

[9] Bernhard Beckert and Reiner Hähnle. An improved method for adding
equality to free variable semantic tableaux. In D. Kapur, editor,
Proceedings, 11th International Conference on Automated Deduction
(CADE), Saratoga Springs, NY, LNCS 607, pages 507–521. Springer,
1992.

[10] Bernhard Beckert, Reiner Hähnle, and Peter H. Schmitt. The even
more liberalized δ-rule in free variable semantic tableaux. In Georg
Gottlob, Alexander Leitsch, and Daniele Mundici, editors, Proceedings
of the third Kurt Gödel Colloquium KGC’93, Brno, Czech Republic,
volume 713 of LNCS, pages 108–119. Springer-Verlag, August 1993.

[11] Wolfgang Bibel. Computationally improved versions of herbrand’s the-
orem. In Logic Colloquium ’81, pages 11–28. North-Holland, 1982.

[12] Wolfgang Bibel. Automated Theorem Proving 2. Edition. Vieweg Ver-
lag, 1987.

[13] Wolfgang Bibel and Elmar Eder. Methods and calculi for deduction. In
Dov M. Gabbay, C. J. Hogger, and J. A. Robinson, editors, Handbook
of Logic in Artificial Intelligence and Logic Programming, volume 1:
Logical Foundations, pages 67–182. Oxford University Press, 1992.

[14] Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic.
Cambridge University Press, 2001.

[15] Samuel R. Buss. On Herbrand’s theorem. In Daniel Leivant, editor,
Proceedings of the International Workshop on Logic and Computational
Complexity (LCC’94), volume 960 of LNCS, pages 195–209, Berlin,
GER, October 1995. Springer.

[16] Domenico Cantone and Marianna Nicolosi Asmundo. A further and ef-
fective liberalization of the delta-rule in free variable semantic tableaux.
In R. Caferra and G. Salzer, editors, Automated Deduction in Classical
and Non-Classical Logics, LNCS 1761 (LNAI), pages 110–126. Springer,
2000.

[17] Alessandra Carbone. Duplication of directed graphs and exponential
blow up of proofs. Annals of Pure and Applied Logic, 100(1-3):1–67,
1999.

[18] Anatoli Degtyarev and Andrei Voronkov. Kanger’s choices in au-
tomated reasoning. In G. Holmström-Hintikka, S. Linström, and
R. Sliviski, editors, Collected papers of Stig Kanger with Essays on
his Life and Work, volume II. Kluwer Academic Publisher, 2001.

BIBLIOGRAPHY 113

[19] Melvin C. Fitting. First-Order Logic and Automated Theorem Prov-
ing. Graduate Texts in Computer Science. Springer-Verlag, Berlin, 2nd
edition, 1996. 1st ed., 1990.

[20] Gerhard Gentzen. Untersuchungen über das logische schliessen. Math-
ematische Zeitschrift, 39:176–210, 405–431, 1934. English translation
[41].

[21] Martin Giese. Integriertes automatisches und interaktives Beweisen:
Die Kalkülebene. Diploma Thesis, Fakultät für Informatik, Universität
Karlsruhe, June 1998.

[22] Martin Giese. A first-order simplification rule with constraints. In Proc.
Int. Workshop on First-Order Theorem Proving, St. Andrews, Scotland,
2000.

[23] Martin Giese. Incremental Closure of Free Variable Tableaux. In Proc.
Intl. Joint Conf. on Automated Reasoning, Siena, Italy, number 2083
in LNCS, pages 545–560. Springer-Verlag, 2001.

[24] Martin Giese. Proof Search without Backtracking for Free Variable
Tableaux. PhD thesis, Fakultät für Informatik, Universität Karlsruhe,
July 2002.

[25] Martin Giese and Wolfgang Ahrendt. Hilbert’s ε-terms in Automated
Theorem Proving. In Neil V. Murray, editor, Automated Reasoning with
Analytic Tableaux and Related Methods, Intl. Conf. (TABLEAUX’99),
volume 1617 of LNAI, pages 171–185. Springer, 1999.

[26] Saul Gorn. Self-annihilating sentences, saul gorn’s compendium of
rarely used cliches. Technical Report MS-CIS-85-03, Computer and
Information Science Department, University of Pennsylvania, January
1985.

[27] Reiner Hähnle. Tableaux and related methods. In A. Robinson and
A. Voronkov, editors, Handbook of Automated Reasoning, volume I,
chapter 3, pages 100–178. Elsevier Science, 2001.

[28] Reiner Hähnle and Peter H. Schmitt. The liberalized δ-rule in free vari-
able semantic tableaux. Journal of Automated Reasoning, 13(2):211–
222, October 1994.

[29] David Hilbert and Paul Bernays. Die Grundlagen der Mathematik II.
Springer-Verlag, Berlin, 2nd edition, 1939.

[30] Herman Ruge Jervell. Forelesninger i logikk. Universitetet i Oslo, 1989.

[31] Einar Broch Johnsen and Christoph Lüth. Abstracting theorems for
reuse. Submitted for publication, 2003.

114 BIBLIOGRAPHY

[32] Stig Kanger. A simplified proof method for elementary logic. In J. Siek-
mann and G. Wrightson, editors, Automation of Reasoning 1: Classical
Papers on Computational Logic 1957-1966, pages 364–371. Springer,
Berlin, Heidelberg, 1983.

[33] Stephen Cole Kleene. Permutability of inferences in Gentzen’s calculi
LK and LJ . Two papers on the predicate calculus. Memoirs of the
American Mathematical Society, 1952(10):1–26, 1952.

[34] Christoph Kreitz and Jens Otten. Connection-based theorem proving
in classical and non-classical logics. Journal of Universal Computer
Science, 5(3):88–112, 1999.

[35] Christoph Kreitz, Jens Otten, Stephan Schmitt, and Brigitte Pientka.
Matrix-based constructive theorem proving. In Steffen Hölldobler, edi-
tor, Intellectics and Computational Logic. Papers in honor of Wolfgang
Bibel, number 19 in Applied Logic Series, pages 189–205. Kluwer, 2000.

[36] Dag Prawitz. An improved proof procedure. Theoria, 26:102–139, 1960.
Reprinted in [37].

[37] Jörg Siekmann and Graham Wrightson, editors. Automation of Rea-
soning: Classical Papers in Computational Logic 1957–1966, volume 1.
Springer-Verlag, 1983.

[38] Raymond M. Smullyan. First-Order Logic, volume 43 of Ergebnisse der
Mathematik und ihrer Grenzgebiete. Springer-Verlag, New York, 1968.

[39] Richard Statman. Lower bounds on Herbrand’s theorem. Proceedings
of the American Mathematical Society, 75(1):104–107, 1979.

[40] Gernot Stenz, Wolfgang Ahrendt, and Bernhard Beckert. Proof trans-
formations from search-oriented into interaction-oriented tableau cal-
culi. Journal of Universal Computer Science, 5(3):113–134, 1999.

[41] M. E. Szabo, editor. The Collected Papers of Gerhard Gentzen. North
Holland, Amsterdam, 1969.

[42] Anne S. Troelstra and Helmut Schwichtenberg. Basic Proof Theory.
Cambridge University Press, 2 edition, 2000.

[43] Jan van Eijck. Model generation from constrained free variable
tableaux. In Proc. Intl. Joint Conf. on Automated Reasoning, Siena,
Italy, number 2083 in LNCS, pages 150–169. Springer-Verlag, 2001.

[44] Arild Waaler. Connections in nonclassical logics. In A. Robinson and
A. Voronkov, editors, Handbook of Automated Reasoning, volume II,
chapter 22, pages 1487–1578. Elsevier Science, 2001.

BIBLIOGRAPHY 115

[45] Arild Waaler and Roger Antonsen. A free variable sequent calculus with
uniform variable splitting. Accepted for publication at the TABLEAUX
2003 conference, 2003.

[46] Lincoln A. Wallen. Automated deduction in nonclassical logics. MIT
Press, 1990.

Index

β
-chain, 87
-closed, 87
-closure, 87
-closure, partial, 87
-consistent, 87
-options, 87
-path, 88
-path, complete, 88
-related, 86
-successor, 87

�-tree, 47, 100

active, 98
ancestor, 33

immediate, 33, 46
antecedent, 6
arity, 2
axiom, 12

σ-, 26

Beethoven, Ludvig van, v
binary, 2
branch

closed, 13
open, 13, 40

calculus, 11
closure condition, 11
color, 70, 102

extension, 74
colored term, 102
complementary β-paths, 88
completeness, 11
conforming

skeleton, 46, 81

connection, 71
reduced, 74

consistent, 11
constant symbol, 2
context, 9
copy number, 30, 97
countermodel, 7, 38

for a skeleton, 40
cycle

-free, 54
�-, 54
length, 54

derivation, 10
closable, 11
closed, 11
K-, 11
length, 16

domain, 5
duality, 87

eigenparameter, 12
condition, 12

equation set, 71
extra formulae, 98

falsifiable, 7
first-order language, 2
formula

α-,β-,γ-,δ-, 13
active, 9
atomic, 2
closed, 3
extra, 9
L-, 2
principal, 9

116

INDEX 117

formula occurrence, 97
formula tree, 30
formulae, 97
function symbol, 2

ground
instantiation term, 24
substitution, 24
term, 2

Herbrand universe, 17
for connections, 71

idempotent, 75
immediate ancestor, 100
index pair, 30, 97
inference, 8
inferences, 100
instantiation

term, 23
variable, 23

Instantiation terms, 97
instantiation variables, 97
interpretation function, 5

LK-like, 50, 82
logical consequence, 6
logical symbols, 2

model, 6
multiset, 6

n-ary, 2
name, 5

occurrence
active formula, 9
extra formula, 9
principal formula, 9

occurrence number, 30, 97

permutation, 50
variant, 50

polarity, 30
predicate symbol, 2
principal formula, 98

principal type, 30
projective, 82
proof, 11
provable, 11

quantification variables, 97

reduction ordering, 54
root sequent, 98
rule, 8

application, 8
one-premiss, 8
two-premiss, 8

satisfiable, 6
schema, 8
sequent, 6

root, 11
sequents, 98
skeleton, 24, 98

balanced, 49
complete, 87
variable-pure, 51
variable-sharing, 51

Skolem function, 23
Skolem function symbols, 97
Skolem term, 23
soundness, 11
spanning, 71
splitting set, 67, 97
strategy, 18

fair, 18
structure, 5
subformula, 33

immediate, 33
occurrence, 33

subsequent, 6
substitution, 4

closing, 24, 71
composition, 4
for connections, 71
for instantiation terms, 24

succedent, 6
support, 4

118 INDEX

term
colored, 71
L-, 2

unary, 2
unifier, 24

valid
formula, 6
sequent, 7, 38

variable
assignment, 37
bound, 3
colored, 71
free occurrence, 3
quantification, 23
rigid, 40
universal, 66

well-founded, 55

	Title page
	Preface
	Acknowledgments
	Table of contents
	1 Logical preliminaries
	1.1 Syntax
	1.2 Semantics
	1.3 Sequents, rules and calculi
	1.4 The calculus LK
	1.5 Soundness of LK
	1.6 Completeness of LK

	2 Free variable sequent calculi
	2.1 Proof transformations
	2.2 The calculus LK
	2.3 Soundness and completeness of LK
	2.4 Formula trees
	2.5 The calculus LKce
	2.6 Completeness of LKce
	2.7 Soundness of LKce
	2.7.1 The semantical approach
	2.7.2 Why local soundness does not hold for LKce

	3 A change of perspective
	3.1 Relations between inferences
	3.2 Diagram representations
	3.3 Permutations
	3.4 Cycle elimination

	4 Uniform variable splitting
	4.1 Rigid and universal variables
	4.2 A calculus with uniform variable splitting
	4.3 A big example
	4.3.1 Remark on non-balanced skeletons

	4.4 Soundness
	4.5 A framework for reasoning about splitting
	4.6 Summary and remarks
	4.6.1 Ideas for further development

	Appendix
	A Article
	A.1 Introduction
	A.2 The free variable system
	A.3 Connections, colorings and proofs
	A.4 Consistency

