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Preface

This project is an investigation into the use of Abstract State Machines
(ASMs) in the process of compilation. The aim is to use the expressive
power of ASM to capture the semantics of Scheme procedures according to
a particular model, and to take advantage of ASM’s simple form in the pro-
cess of compilation. The programming language Scheme is the domain or
source language for the investigation. The semantic model is The Enuviron-
ment Model for Fvaluation described by Abelson and Sussman in Structure
and Interpretation of Computer Programs. The ASMs will be represented
in Abstract state machine Language (AsmL), a Microsoft proprietary pro-
gramming language. Using Microsoft Visual Studio, the AsmL code can be
compiled, via C'++, to x86 binaries. The main focus of the project will be
on the process of parsing Scheme code, and generating the corresponding
AsmlL code. Little attention will be payed to the subsequent step of compil-
ing AsmL to C++. The documentation for this project is divided into six
chapters. The first two chapters introduce what are effectively the domain
and the range of the project, Scheme and ASM, respectively. The third
chapter provides an overview of the process, how the different components
fit together, while the fourth and fifth chapters give a more detailed descrip-
tion of these components. The last chapter covers briefly the final stage;
generating binaries from the generated AsmL code. It is a assumed that the
reader of this project has some experience with the programming languages
Scheme and Java.
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Chapter 1

Scheme

1.1 A Little Scheme

This chapter is intended to give a very brief description of various central
aspects of the programming language Scheme. A limited working knowledge
of this programming language is assumed. Since the focus of the work is on
the semantics of Scheme with regard to the environment model of evaluation,
only aspects of the language important for this project will be covered in this
chapter. The features looked at here are the environment and procedures.
This will draw attention to topics such as scope, frames, first class objects
and closures.

1.2 Lexical Scope

Scheme is a lexically (statically) scoped programming language; i.e. the
binding of a variable is lexically apparent, it can be determined by reading
the source code. This means that the scope of a variable can be fixed at
compile time to a region in the source code where the variable is declared.
Generally speaking, a variable declaration presides over the expression it
heads. Variable declarations in scheme are made using the lambda key
word, so basically a variable declaration presides over the text within the
parentheses enclosing the lambda expression. However, Scheme is block-
structured and allows nesting. A lambda expression can contain a lambda
expression, as in the following:

(define x
(lambda (x)
(map (lambda (x)(+ x 1)) x)))

or, equivalently
(define (x x)

(map (lambda (x)(+ x 1)) x))

13



such that

>(x (1 2 3))
>(2 3 4)

Here, in the expression (+ x 1), the x refers to the innermost x (third in-
stance). This property is known as lezical binding. 1t implies that a decla-
ration will not preside over an inner region of code if the inner region has
another declaration using the same name. In such cases, inner declarations
are said to shadow outer declarations, or create holes in their scope. Other
lexically scoped languages include Pascal and Common Lisp. Lexical binding
can be achieved using the concept of the environment.

1.3 The Environment

An environment is an association of symbols to values. That is, in an envi-
ronment each of a finite set of symbols maps to some value. This could be
by means of a symbol table. Mathematically speaking, the environment is a
function, a set of ordered pairs, Scheme symbols and values, whose domain
is all Scheme identifiers, and whose range is all Scheme values. This could
be formalized as follows:

F:D—=R,D=A{s1,...,8.,3R=Av1,..., 0.}

1.4 Environment Frames

Environments are implemented by means of frames. It is within the frame
that the symbol-value bindings described above are found. In addition to a
set of bindings, a frame has a pointer to its parent frame. Environments are
simply linked lists of frames. The frames are linked by the parent pointers,
and terminate with the frame called global environment, also known as the
null environment as its parent pointer points to null.

1.5 Environment Structure - Visibility

Environments are structured as trees or, more precisely as directed acircular
graphs (DAGs). DAGs consist of nodes connected by edges. Edges are
directional, they can only be traversed in one direction. In a DAG, circles
are not allowed, i.e. for any node A, if a node B can be reached from A, then
A cannot be reached from B. In terms of the environment, this means that
a symbol is visible in a frame if it is bound within the frame itself, or if it is
visible in the parent frame. Figure 1.1 shows an environment consisting of
11 frames, E0 to EA. Each frame contains a symbol. From any point in the
environment, a symbol is visible if it is in the frame or in a frame accessible

14



from that point. So in frame E7, the symbols a, b, ¢ and h are visible, and
in frame FA, the symbols «a, ¢, g and k are visible.

Global EOQ
Env

a
' 4
bE1 CE

2

—
t+ 32
d E3 o E4 ] ES 9 E6
| S N S
E7 . EB . E9 EA
h i J k

Figure 1.1: An Environment Structure

1.6 Extending The Environment

To add new bindings to an existing environment, that will be visible globally,
top-level definitions must be used. Environments can also be extended with
new frames, containing new bindings. Existing bindings will be visible in
the new frame if they are visible in the parent frame. It is permitted to have
multiple occurrences of any identifier at different points in the environment,
and for new bindings to shadow existing bindings. This means that some
mechanism must be in place to determine which variable occurrence is being
referenced. This is discussed in section 1.13. As mentioned under the section
on lexical scope, the syntactic form lambda is used for variable declarations,
it follows then that it is by procedure application (evaluation of lambda
expressions) that environments are extended. Procedure applications cause
the binding of arguments with variables in an extended environment.

1.7 Procedures, Functions and Side Effects

The terms function and procedure do not always appear discrete. The sit-
uation is further complicated with terms such as routine and method. Pro-
cedures are usually understood as being sequences of instructions that can
access and alter local and global variables, as well as (optionally) return-
ing some value. The term function refers to procedures called explicitly for
their return values. For simplicity only the term procedure is used in this
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text. Scheme being a functional language, it is taken for granted that all
procedure return values. However, the syntactic form set! allows for the as-
signment of variables, breaking with the strict functional paradigm, allowing
for programs such as the following:

(define apple 10)

(define (reduce-apple)
(set! apple (- apple 1)))

(define (bite-apple)
(if (< apple 1)
#t
(begin
(reduce-apple)
"bite)))

Here the procedure reduce-apple is called purely for its side-effect, i.e.
decrementing apple. The return value of set! is not specified by Revised(5)
Report on the Algorithmic Language Scheme (r5rs). The details of this are
left up to the implementer. This does not mean that it has no return value,
as can been seen;

> (if (set! a 3) ’yes ’no)
yes
>

This break with the puritan functional programming paradigm is also appar-
ent with the syntactic form begin, which is used for sequencing side effects,
typical in imperative languages such a C. begin returns the value of the last
expression evaluated, as below.

> (begin (define zz 3) ((lambda(x)(set! zz (+ zz x)))3) zz)
6
>

This sequencing of expressions is also allowed, without the explicit use of
begin in conjunction with the keywords lambda and cond.

1.8 Procedure Objects - Closures

In functional programming we have the concept of closures. A closure is
a data structure that holds an unevaluated expression together with the
environment in which that expression is to be evaluated. In addition, a
closure contains a list of identifiers. All identifiers used in the expression
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that are not included in the list must be bound within the environment.
The identifiers in the list however are bound on application. Procedures
in Scheme are closures. The expression, together with the list of identifiers
is referred to as a first-class object, or procedure object. Procedure objects
have pointers to their environments, they can be created and returned as the
result of evaluating expressions. Such objects can also be passed as input
to other procedures, before themselves being applied to input to produce
values. This is an important device in Scheme, and other languages such
as Common Lisp and ML. It is the basis of lazy evaluation and central to
the way programming techniques such as recursion, message passing and
stream-processing are achieved in Scheme, as well as the modular, object-
based strategy similar to the object-oriented approach we know from C++
and Java. In Abelson’s & Sussman’s Structure and Interpretation of Com-
puter Programs, (SICP) procedure objects are described as pairs, created
by evaluating a lambda expression. The pair consists of a pointer to the
environment in which the lambda expression was evaluated, and a text; the
body of the lambda-expression. More on this in section 1.12.

1.9 Evaluating Expressions

Expressions can be divided into two main types; primitive expressions and
derived expression. The focus here will be on primitive expressions. These
are:

e Variable references

Literal expressions such as 5 and #t.

Application expressions such as (¥ 3 3) and (car ’(a b)).

e Procedures, such as + and car.
e Conditionals, such as (if #f + *)
e Assignments, using define or set!

Evaluation is as follows. Variable references evaluate to the value stored
in the frame where the variable is bound. Literal Expressions evaluate to
themselves. With application expressions, the operator and the operands are
all evaluated separately. Evaluating the operator returns a procedure object.
The closing frame of the procedure object is duly extended, with the values of
the operands. This new frame is known as the invocation environment. The
expressions in the body of the procedure object are subsequently evaluated,
sequentially, within the invocation environment. The following are simple
examples of Scheme interaction.
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>(+ (+ 7 3) (- 34))
9
>

The conditional expression evaluates the first operand, here car. All objects
in Scheme, bar #f, are treated as true, including the void value #<void>.

>(if (if #f #f) #t #f)
#t
>

1.10 The Read Eval Print Loop

Scheme is usually interpreted, rather than compiled. An interpreter is an
interactive environment, very suited to rapid development and testing of
code. The interpreter runs a Read-Evaluate-Print loop, in which Scheme
code is read and parsed into an expression structure, then evaluated in the
context of the global environment, before the resulting value is printed in
some human friendly form. The Eval stage could look something like this:

(define (eval obj env)
(cond ((number? obj)obj)
((symbol? obj)(get env obj))
((conditional? obj)
(eval-conditional obj env))
((assignment? obj)
(eval-assignment obj env))

o))

(define (eval-conditional obj env)
(if (eval (cadr obj) env)
(eval (caddr obj) env)
(eval (cadddr obj) env)))

(define (eval-assignment obj env)
(add-binding env (second obj)
(eval (third obj) env)))

The main procedure eval determines the type of object passed. Num-
bers evaluate to themselves, while symbols are used as identifiers for ob-
taining values from the environment env, using the get procedure. The
eval-conditional procedure first evaluates the second object in the list
to determine whether the third or fourth object should be evaluated and
returned. Remember that the first element in the list of a conditional is
simply a syntactic marker, namely if.

18



1.11 OOP in Scheme

Briefly, object-oriented programming (OOP) aims to structure programs in
accordance with the perceived entities of the real or abstract world, sim-
ulating objective or conceptual reality. The objects of the program will
have variables representing attributes associated with their prototypes. So
instances of object types (object types are known as classes) will possess
state, be dynamic. Also associated with classes are actions, often known
as methods. The object-based approach described in SICP utilizes proce-
dure objects and environments to achieve a variant of OOP. Using define,
procedure objects and environments can be bound to identifiers. The envi-
ronments can be used for storing the state variables of the objects, and the
procedure objects can describe the methods.

1.12 The Environment Model of Evaluation

As explained, procedures in Scheme are first class objects. This property
is nicely captured in SICP. The environment consists of a top-level frame,
with a run-time library, and a dynamic list of bindings. When a lambda
expression is evaluated within a frame, a procedure object is created. This
object is described as a pair;

e A text, as given by the body of the lambda expression evaluated to-
gether with its parameter list.

e A pointer to the frame in which the procedure object was created.

The object can be bound to an identifier in the frame in which it was created
by the define macro. When a procedure object is applied to arguments,
a new frame is created in which the procedure’s parameters are bound to
the arguments. The body (the text part of the procedure object) is then
evaluated in the context of this new frame. This frame has as its enclosing
environment the frame pointed to by the procedure object. This model can
be well illustrated with a simple example. The procedure countdown under
returns a simple lambda expression.

(define countdown
(lambda(n)
(lambda ()
(if(<= n 0)
‘ping
(begin
(set! n (- n 1))
#1£)))))
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Evaluating this at top level (in the global environment) causes the symbol
countdown to be associated with a new procedure object, as shown in fig-
ure 1.2. The environment pointer points of course to the global environment.
A call to countdown with the argument 2 will result in the creation of a new

Global

Env
™ countdown

ara: n

ody:

(Ia(r_nbda
im...

—
S

Figure 1.2: Global binding of procedure object to Symbol.

frame where n is bound to 2, seen in figure 1.3. This call simply returns a
new procedure object.

{E}mbal
™ countdowm
Elfn: 2
para: n
body:
(ramtu:la{g
{if...)
Eg:‘jﬂ: n
e
{if...)

Figure 1.3: New procedure object.

> (countdown 2)
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#<procedure>
>

Using define, we can bind this procedure, in the global environment to say
C1, as follows:

> (define C1 (countdown 2))
>

This results in a new frame, E1, and a new procedure object, C1, pointing to
E1 (figure 1.4). A call to C1 will add another new frame to the environment,

{E}mbal
W countdowm 1
Elfn: 2
para: n
body:
(ramtu:la{g
{if...)
Eg:‘jﬂf n
e
(if...)

Figure 1.4: Binding the new procedure object.

referred to here as E2 (figure 1.5). E2 has E1 as its enclosing frame, as this
is the frame pointed to by the C1’s environment pointer. The body of the
C1, namely the if expression, is then executed within the context of E2. E2
contains no binding for n, and so the enclosing frame is checked. In E1 n is
bound to 2, the if-test fails, and the syntactic form set! is applied to reduce
n by 1, and false is returned. After the procedure call has completed, the
new frame, E2, is lost, as there are no pointers to it.

> (C1)
#f

1.13 The Environment’s Structure - Locating Bind-
ings

On evaluation, when any identifier is referenced, the Environment Model
provides an easy method for identifying the correct binding. It is simply a
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{E}mbal
™ countdown 1
Elfn: 2

para: n E2 +

body:

(ramtu:la{g

{if...) (set!n(-n 1))

Eg:ja:_n
(if.l:'.r'.)

Figure 1.5: A call to C1.

question of proximity. The frame created during procedure application is
checked first. There after the search continues on upwards, following the
enclosing-environment pointers of each frame checked. This is the case for
all symbols referenced in the procedure object’s body. Since the environment
is structured as a DAG, there is no risk of referencing a binding made out of
scope; sibling frames are inaccessible.

1.14 A Subset of Scheme

As this project is an investigation into the representation of the seman-
tics of the environment model of evaluation, only an appropriate subset of
Scheme will be dealt with; such a subset as is needed for the bank example
make-withdraw from SICP, along with a few other simple examples. The
list of Scheme keywords used here is as follows:

define
lambda
set!
if

While the list is the data structure most associated with Scheme, it will
not be dealt with here. The reason is that implementing the list structure
would require a fair bit of extra work, and is not necessary for capturing the
underlying semantics of the environment model. For this purpose numbers
and numeric operators will suffice.
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To simplify the reading of expressions via the DOS prompt, the use of non
alpha-numeric symbols has been avoided. This means that the primitive
operators have be given alpha-numeric equivalents, as in table 1.1

Scheme operator | alpha-numeric equivalent
+ add

- take

* times

/ div

>= gte

< It

= eq

Table 1.1: Scheme operators and their alpha-numeric equivalents
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Chapter 2

The Abstract State Machine

2.1 Turing Machines

Yuri Gurevich first introduced Abstract State Machines (ASM) under the
name Fvolving Algebras. ASMs bear a strong resemblance to Alan Turing’s
universal computing machines, or Turing machines. A Turing machine con-
sist of a state variable, an infinite tape on which any of a vocabulary of
symbols can be written, and a read/write head that can navigate the tape
(figure 2.1). The machine performs calculations defined by a set of guards

Figure 2.1: Turing Machine

and updates, or rules. The guard has two parameters; what state the ma-
chine must be in, and what the read-head must be reading on the tape, in
order for the subsequent update to apply. The update has three parameters;
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the next value of the state variable, what should be written on the tape, and
in which direction the read/write head should be moved. Rules have then a
very simple five-tuple form. Present state, input from tape, resulting state,
output to tape, and direction to move head, or [S,R,N,W D]. A simple unary
adder could be written as follows:

1,1,1,#,R 5,1,5,#,L
1,0,2,#,R 5,0,6,#,L
2,1,3,#,R 6,1,6,#,L
2,0,7,#,L 6,0,1,1,R
3,1,3,#,R 7,0,8,#,L
3,0,4,#,L 8,1,8,#,L
4,1,5,0,L 8,0,9,#,#

A rule such as 3,0,4,#,1 is read:

1f state is 3 & read O then goto state 4 & write nothing &
move head left.

Figure 2.2: Turing Unary Adder
This adder can be visually represented as in figure 2.2, where the states are

represented as nodes and the transitions as directed edges. Turing’s the-
sis claims that every computable function is computable by some Turing
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machine. As a medium for discussing the concept of computability Turing
machines are very useful. However, they are not well suited as a tool for ana-
lyzing, verifying or modeling algorithms. The limitations of Turing machines
are due to the medium for calculation, the tape.

2.2 Algorithms and Semantics

The problem with Turing machines is their poor operational semantics. That
is they are some how not able to catch the essence of algorithms. But the
notion of algorithms is not a very formal one. Algorithms seem to be under-
stood as recipes that, if followed correctly, lead to the solution to given prob-
lems. However, this definition is rather vague, and Turing’s thesis implies
that any algorithm can be simulated by a Turing machine. So what is meant
by poor operational semantics? Take the problem of computing expres-
sions given in reverse Polish notation (RPN), for example 4 4 * 12 12 * +,
which is the equivalent of 12 * 12 + 4 * 4. This is typically done using a
stack. The stack is a simple tool for the temporary storage of data which
ensures that the relative order of stored elements is maintained, following
the first in, last out principle. Associated with the stack are the operations
pop, push and top. The push operation is for placing new data elements on
the top of the stack, pop is for removing the uppermost element, and top
is for looking at the element at the top of the stack. Assuming the input
is read as a list, one element at a time, then the standard algorithm is as
follows:

e read (remove) an element from list
e if the element is a number, push it onto the stack

e if the element is an operator, pop two elements from stack, apply the
operator, and push the result onto the stack

If this algorithm is repeated until the list is empty, the result will be the
only element remaining on the stack. How would such structures and oper-
ations be represented using a Turing machine? Obviously they can be, but
equally obviously there will be a tremendous amount of coding involved in
implementation. Also, at the level of abstraction of the algorithm it is not
necessary to take into consideration what kind of data that will be stored
on the stack. In a Turing machine implementation this must be taken into
account. Presumably operational semantics were not Turing’s aim. Good
operational semantics implies being able to model any algorithm at the nat-
ural level of abstraction, being able to use the vocabulary of the algorithm.
Turing machines have a fixed level of abstraction, a predefined vocabulary,
and are not suitable for modeling algorithms in general.
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2.3 ASM

The ASM is a more general automata, not confined to just reading and
writing symbols on an essentially two-dimensional storage medium. It can
have any number of state variables. The ASM thesis claims that any algo-
rithm can be described by an ASM, at the algorithms own level of abstrac-
tion. That is, each step of an algorithm maps to a discrete transition of
the corresponding ASM, and vice versa. The ASM formalism uses standard
mathematical notation to define machines by means of rules and variable
updates. The syntax is extremely simple making ASMs very readable. In
the run of an ASM, the rules are repeatedly applied, simultaneously, until
such a point is reached when all possible consequent states are identical to
the present state; in other words, when no rule application results in change
of state. The following example is taken from Egon Bérger’s ASM tutorial
(http://www.di.unipi.it/ boerger/). It demonstrates the fidelity of an ASM
representation of a well-known algorithm, namely Conway’s Game of Life.
The game takes place on a matrix of n X m cells. Cells can be in one of two
states; on or off (dead or alive). There are just three simple rules to Game

of Life:
e Cells with exactly 3 living neighbours will turn "on" in the next round.

o Cells with exactly 2 living neighbours will stay as they are in the next
round.

e Cells with any other number of living neighbours will be "off" the next
round.

This translates to the following ASM. Note that the second rule is implicit,
and does not need expressing in the ASM. neighbours(cell) is a call to an
external function.

turn0ff(cell, n) =
if status(cell)
status(cell)

On and (n < 2 or n > 3) then
0ff

turnOn(cell, n) =
if status(cell)
status(cell)

0ff and n = 3 then
On

game0fLife =
forall cell in Matrix do
turn0ff (cell, liveNeighbours(cell))
turnOn(cell, liveNeighbours(cell))

The first two functions, turn0ff and turnOn take the arguments cell and
n. n is the amount of living neighbours the given cell has. The unary
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function status gives the mortal status of the given cell. Repeated calls to
gameOfLife increment the game, one step at a time. Each step consists of
applying both turn0ff and turnOn to each cell on the board simultaneously.
It is important to remember that the calls to turn0ff and turnOn occur
simultaneously. If this happened in sequence, all cells would be turned on.

2.4 Lock-Step Execution

As shown, a major drawback with Turing machines is the excessive amount
of steps involved in executing a calculation. This is a result of the very
limited medium used, namely the tape. The tape only accommodates one
character per square, and it is only possible traverse the tape one square
at a time. This means that to represent most data some coding will be
necessary. The more complex or abstract the data, the more elaborate the
coding. This coding of data means that it will not be possible to apply
the original operations or steps of the algorithm directly on the data. The
operations will need to be broken down to the abstraction level of the Turing
machine. The various steps of the algorithm will require varying numbers of
steps in the corresponding Turing machine, often a great many more, as seen
above in the unary adder. The point of ASM however, is that any algorithm
can be represented at the algorithm’s own level of abstraction, in what is
called lock-step simulation, i.e. the ASM uses one step to simulate one step
of the algorithm. This means that ASM provides a representation of any
algorithm that will execute at the same speed as the algorithm itself. Where
as Turing machines force us to act at a very low, fixed level of abstraction,
ASMs are written using the same vocabulary as the algorithm.

2.5 AsmL

Asml. is an ASM programming language provided by Microsoft. It defines
a large array of data types and structures and a library of operators and
procedures, typical of other larger programming languages. Although ASM is
a formalism developed and used by logicians, it is not difficult to understand
when treated as a programming language. AsmL is in many respects just
another programming language, most notably differing in the way statements
are executed in parallel. It is object oriented and the structuring of the
Scheme ASM module relies extensively on this feature.

2.6 The Semantics of Scheme Procedures

As has been stated, the desire here is to capture the underlying semantics
of Scheme procedures at their natural level of abstraction. Natural level of
abstraction is here understood as meaning an interpretation of a procedure in

29



terms of the model in use, i.e. the environment model. This is an important
clarification. When writing Scheme code, a programmer is not likely to be
thinking in terms of environment frames, or first class objects. Particularly
when writing recursive procedures, the tendency is to ignore the details of
execution. These details will however be fully visible in the ASM. Recursive
procedures will loose their recursive look, and details of execution should
be clear. The reason for this is simply that this project is an exercise in
compilation, where the source language is of a higher level than the target
language. The AsmL code should have a low level, instruction set look. Of
course, AsmL is not a low level language, like C' or Assembler, it allows
recursion, is object oriented, etc. But care will be taken to avoid hiding
execution details in the resulting code.

2.7 The Environment Model with AsmL

Some decisions must be made regarding how Scheme code shall be repre-
sented using AsmlL. Particularly regarding the data structures and admin-
istration. As established, the model to be used here is the Environment
Model of Evaluation from SICP. The intention is to capture faithfully the
semantics of any procedure written in Scheme in the terms of this model.
There are two main components used in the model; the environment, and
the procedure object. Before dealing with these two components however, a
quick look at the representation of types is called for.

2.8 Types

Scheme offers a range of different data types, amongst others numbers,
strings, lists and importantly here, procedure objects. Because of type con-
straints on pointers in Asml, and indeed most languages, a generic Scheme
object or form will be useful. This suggests the use of classes and inheri-
tance; a general Scheme class can spawn the necessary types. This will allow
the use of generic pointers that can refer to all the different types used in
Scheme, such as procedures and numeric values.

class ScmQObj

This class will never be realized directly, and so this definition suffices.

2.9 The Procedure Object

One of the main components of the Environment Model is the procedure
object. The procedure object consists of a frame pointer, a list of parameter
labels or identifiers, and a procedure body. As mentioned in section 2.8,
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procedure objects are just one of various different Scheme objects used in
Scheme, and they shall extend the generic Scheme object class Scm0bj. The
following is the class definition for the procedure object.

abstract class ProcObj extends ScmObj
abstract Ep as Env

abstract getPara() as Seq of String
abstract Body(e as Env) as ScmObj

The abstract tag preceding the ProcObj declaration indicates that this
class cannot be implemented directly, such an object would make no sense.
abstract is really to indicate that a new type is being created. Other classes
will be declared that implement Proc0Obj, the actual procedures, both user-
defined and standard. The abstract keyword simply tells the compiler that
any class extending ProcObj must override the methods and fields marked as
abstract. This gives assurance that any subclasses of ProcObj can be treated
in the desired way. The actual procedure objects will extend this class using
the extend keyword.

(define Foo
(lambda (n m)
)

The Scheme procedure Foo would translate to something like the following:
class Foo extends ProcQObj

Para = [unu’ umu]

getPara() as Seq of String
return Para

Body(e as Env) as Scm0Obj
step

This is just a definition of a particular procedure object. Actual procedure
objects are, of course created using the new keyword.

new Foo(Global)

This will create a new Foo procedure object in the top-level environment.

2.10 The Environment

The other main component of the model is the environment itself. The
environment consists of frames. Each frame has a set of symbol-value bind-
ings, and a pointer to its enclosing environment. The values bound can be
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any of various types, as mentioned in section 2.8. AsmlL provides a data
type found in other programming languages, called the map. Maps, as the
name suggests, associate identifiers and values, which is exactly what the
environment function does. The following is the definition of the class Env.
It includes a pointer to an enclosing environment, that will be undef for
the global environment, as well as a Map from String to ScmObj (Scheme
objects), for holding definitions. The methods Define and Value are for
adding and accessing definitions, respectively.

class Env
Ep as Env
var Bindings as Map of String to ScmObj = {|->}

Define(sym as String, val as ScmObj)
Bindings(sym) := val

Value(Sym as String) as ScmObj
if (Boundp(Sym)) then return Bindings(Sym)
elseif (Ep <> undef) then return Ep.Value(Sym)
else return undef

Boundp(Sym as String) as Boolean
if (Bindings(Sym) <> undef) return true
else return false

shared ExtEnv(Para as Seq of String,
Args as Seq of ScmObj, env as Env) as Env
var 1 as Integer = length(Para)
var 1 as Integer = 0
e = new Env(env)
step while 1 < 1
e.Define(Para(i), Args(i))

i:=1+1
step
return e

The method ExtendEnv is a so called stafic or class method, that is, a
method that due to its domain is associated with a class, but that is not
associated with each object of that class. In AsmlL jargon, such methods are
called global methods, as opposed to instance-level methods. They are defined
using the shared tag. ExtEnv creates and returns a new environment frame.
It takes as its arguments a sequence of character strings and a sequence of
corresponding Scheme objects, of equal lengths. These are the symbol-value
pairs to be bound within the newly created environment. Additionally the
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method is passed a pointer to the environment that is to be the enclosing
environment.

2.11 Numeric Values

While Scheme provides a variety of data types, only operations on numeric
values are dealt with here, specifically integers. The ScmObj class NumVal
encapsulates integers, enabling them to be passed and returned between
procedure objects, as well as bound in environments.

class NumVal extends ScmQObj
var Val as Integer

getVal() as Integer
return Val

This class consists simply of an integer holder for the value, as well as an
accessor.

2.12 Standard Procedures

Built into Scheme is a small set of primitive procedures such as arithmetic
operators and list procedures. There are also built-in library procedures im-
plemented using these primitive procedures. All such procedures are bound
to identifiers in the top-level environment. Some such procedures will need
to be available in the ASM. For practical reasons, only a small subset of the
operations defined in rjrs will be implemented here; those needed for the
chosen subset of Scheme covered, essentials such as the arithmetic opera-
tions. The way in which standard procedures are treated is not described
in the environment model, the same applies for compiled procedures. Two
approaches seem viable here. The first being that identifiers such as + and
car are still associated with procedure objects, with parameter lists and en-
vironment pointers. These objects should not however, have bodies in the
same sense as procedure objects hitherto described. They should only be
references to directly executable Asml procedures, and not to procedure
objects. Such standard procedures should be available in the Scheme in-
terpreter ASM, as procedure objects defined in the top-level environment.
The other approach is to have standard procedures hard coded directly into
the user defined procedure objects in which the are used, as AsmL proce-
dure calls, avoiding further reference to procedure objects; an in-line variant.
This requires that the status of a procedure in the Scheme code as a stan-
dard procedure must be asserted at compile-time. This could be achieved
using a list of identifiers, reserved names. The first approach seems however
preferable as all procedure applications in the Scheme code can be treated
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alike. The following is an example of such a standard procedure. In most
respects it is just like a user-defined procedure. The difference is seen in its
return statement; a reference to an AsmL procedure. Usually all procedure
calls would be made using the Eval procedure.

class Addition extends ProcObj
Para = [unu’ umu]

getPara() as Seq of String
return Para

Body(e as Env) as ScmObj
var m as NumVal
var n as NumVal

step

m := e.Value("m") as NumVal
n := e.Value("n") as NumVal
step

return Plus(m, n)
The AsmL procedure Plus is as follows:

Plus(n as NumVal, m as NumVal) as NumVal
n.getVal() as Integer
m.getVal() as Integer

var x as Integer

var y as Integer
step
return new NumVal(x + y)

Another interesting standard procedure is SetBang. The procedure object
definition is as follows:

class SetBang extends ProcObj
Para = ["sym", "val"]

getPara()as Seq of String
return Para

Body(e as Env) as Scm0bj

var val = e.Value("val") as NumVal
var sym = e.Value("sym") as Symbol
var found as Boolean

step

found := SetB(e, sym.id(), val)
step

if(found) return val
else return new Error("set!: cannot set undefined
identifier: "+sym.id())
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This simply makes a call to the AsmL procedure SetB, before returning the
new value assigned. The procedure SetB works its way recursively upwards
through the environment frames, starting with the one passed by SetBang,
until it finds an occurrence of the target symbol. On doing so, it then changes
the bound value. If no occurrence of the target symbol is located, SetB does
returns false. If false is returned, the SetBang Body method returns another
ScmObj type; Error (see section 2.15).

SetB(e as Env, sym as String, val as ScmObj) as Boolean

v as NumVal = val as NumVal

step

if (e.Boundp(sym))

e.Bindings(sym) := val

return true

elseif(e.Ep <> undef)SetB(e.Ep, sym, val)

else return false

2.13 Define

So far, only the creation of procedure objects has been discussed. For such
objects to be of any use they must be bound somewhere. This is just what
the Env method Define does. Adding a procedure object of type Foo to an
environment Global would be done as follows.

Global.Define("Foo", new Foo(Global))

This binds an object of the Foo class within the environment Global, giving
the object Global as its enclosing environment. The method Define updates
the local map Bindings with this string-object pair.

2.14 Administration

The model for evaluation clarifies issues of scope, assignment, etc. The pro-
cess of applying procedures remains to be addressed. Procedure application
triggers the extension of the environment, the binding of identifiers to val-
ues, and the evaluation of procedure bodies. Some agent responsible for
these actions is needed. The agent will also require a limited bookkeep-
ing capability. On procedure application, the agent must obtain the correct
procedure object from the environment, determine the objects environment,
and create a new frame within this environment. The appropriate bindings
must then be added to this new frame. Next, the agent must somehow effect
the evaluation of the procedure body in the context of the extended envi-
ronment and return the resulting value for printing. The requirements are
fairly limited; an environment pointer for the new frame, and a procedure
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object pointer. However, in many cases, such as recursive procedures, the
evaluation is dependent upon the value of successive evaluations.

2.15 Evaluation

In Scheme, evaluation of an expression is triggered by parentheses. The
enclosing of a symbol or expression within parentheses, along with any other
symbols, expressions or literals, forces evaluation. In the ASM evaluation
will be achieved by the explicit use of a procedure Eval. Essentially, the
Eval procedure is as follows.

Eval(proc as String,
args as Seq of ScmObj, env as Env) as ScmObj
var pro as ProcObj = env.Value(proc) as ProcObj
step
Frame := ExtEnv(pro.getPara(), args, APPROPRIATE ENVIRONMENT)
step
return pro.Body(Frame)

This Asml procedure has a character string proc, a sequence of Scheme
objects args and an environment env as its formal parameters. The name
under which the required procedure object is bound is given by the character
string. The correct procedure object is subsequently located from the envi-
ronment referenced or its enclosing environment. The arguments, or actual
parameters for the procedure application are given in the sequence args.
The next step is to bind the arguments to the parameters specified by the
procedure object, within the new environment frame created using ExtEnv.
This frame is given the procedure object’s environment pro.Ep as its en-
closing environment, except in the case of the procedure object being set!.
The final step of Eval is to return the procedure object’s Body method, in
its appropriate context, i.e. with the newly created environment frame as its
argument. The reason that this works is that the AsmL implementation of
any procedure object either only contains standard procedures, implemented
directly as AsmL procedures, or it utilizes Eval itself. So if Eval is viewed
as an agent, then many evaluations, or runs will involve multiple agents.
In this way, all runs are ultimately broken down into a series of standard
procedures, implemented using Asml procedures. For robustness and us-
ability, the Eval procedure must be more elaborate. Various checks need to
be in place, and suitable alternatives provided in case of invalid or illegal
procedure application.

Eval(proc as String, args as Seq of ScmObj,
env as Env) as ScmObj

var Obj as ScmObj = env.Value(proc)

var Args as Seq of ScmObj = []

36



var Frame as Env

var pro as ProcObj
var Actu as Integer
var Form as Integer
var 1 as Integer = 0

step
i£(0bj <> undef)
step
if(0bj is ProcObj)
step
pro := 0Obj as ProcObj
step
if(pro is SetBang)
1:=1

Args := Args+[args(0)]
Actu := length(args)
Form := length(pro.getPara())
step
if(Actu = Form)
step while 1 < Actu
if(args(i) is Symbol)
step
var sym as Symbol = args(i) as Symbol
step
Args := Args+[env.Value(sym.id()) as ScmObjl
else
Args := Args+[args(i)]
1:=1+1
step
if(pro is SetBang)
Frame := ExtEnv(pro.getPara(), Args, env)
else Frame := ExtEnv(pro.getPara(), Args, pro.Ep)
step
return pro.Body(Frame)
else
return new Error(wrong number of arguments)
else
return new Error(invalid procedure)
else
return new Error(undefined identifier)

This version of Eval does not take for granted the existence of the procedure

named, nor that the correct number of arguments has been past. In case
of error or disparity, Eval returns another ScmObj heir, namely an Error
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object.

class Error extends ScmObj
var msg as String

getMsg() as String
return msg

In the case of a valid procedure application, Eval passes the newly created
environment frame to the Body method of the identified procedure object,
i.e. evaluates the procedure in the context of the extended environment.
It is important to notice that on creating the new environment frame, the
identified procedure object’s environment pointer is passed to ExtEnv. In this
way the new frame gets the procedure object’s environment as its enclosing
environment. This is not however the case when the procedure being applied
is set!, as discussed in section 2.16.

2.16 Assignment

Assigning new values to existing identifiers in Scheme is achieved using set!
(pronounced set bang). As already mentioned, set! breaks with the pure
functional approach to programming. It also breaks with normal rules of
evaluation. This is due to set!’s inconsistency with functional programming.
Usually, procedure application is a case of extending an environment with a
frame in which evaluation can take place, and returning the resulting value.
What happens within the frame is of no concern or consequence to the outside
world, so to speak. Also, and importantly, the enclosing environment of the
frame is the environment indicated by the procedure object being utilized.
For standard procedures this means the global environment. From this point
in the environment tree, only global identifiers will be visible. This means
that identifiers referred to in the procedure application are not necessarily
visible in the context of the evaluation. For set! to be of any use it must be
able to access other relevant frames, or nodes of the environment tree, where
the target identifiers reside. set! is only ever applied for its side effects. This
is presumably the reason the rjrs does not specify its return value. Figure
2.3 shows the application of set! using normal rules of application. It is
easy to see that no occurrences of the relevant symbol are visible. Indeed, it
could be the case that another occurrence of the named symbol could appear
in the global environment, causing an unintended reassignment. Figure 2.4
shows how the assignment must be applied in order to succeed as intended.

Another point to note here is the way in which variables are treated in the
bodies of procedure objects. It could be tempting to store values obtained
from environments locally. This would cut down on variable reference, and
might be considered more efficient. However, this has its hazards, as can be
shown with a little example.
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(define lazy
(lambda (x)
(lambda (y)

(if > x y)
(set! y x))
y)))

class lazy extends ProcObj
Para = ["x"]

getPara()as Seq of String
return Para

Body(e as Env) as Scm0bj
return new lazy_lambda(e)

class lazy_lambda extends ProcObj
Para = [uyu]

getPara()as Seq of String
return Para

Body(e as Env) as Scm0Obj

var x = e.Value("x") as NumVal
var y = e.Value("y") as NumVal
if(x > y)

Eval("set!", [new Symbol("y") as ScmObj, e.Value("x")], e)
step
return y

This is an incorrect representation of the semantics of the above Scheme
code. The reason is that the local variable y used in the return value is not
a pointer to the value stored in the environment e under the symbol y. It
is merely a copy, made prior to the if-test, and there is no guarantee that
its value is up to date. If it was not for set! then this would be fine, as
identifier-value pairs would remain constant.

2.17 Embedded Lambda Expressions

As established, a procedure object in Scheme is created by the use of the
lambda key word. It is often useful to have lambda expressions return new
lambda expressions, as in the STC'P bank example. This can be achieved in
the ASM by simply having the Body methods of such procedure objects re-
turn new objects. The example under shows how this can be done, using the
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suffix lambda, to generate a class name built on the name of the enveloping
class.

(define foo
(lambda (x)
(lambda(y)
(set! y x)
y)))

The Scheme procedure foo translates into the following Asml. code.

class foo extends ProcObj
Para = ["x"]

getPara()as Seq of String
return Para

Body(e as Env) as Scm0Obj
return new foo_lambda(e)

class foo_lambda extends ProcObj
Para = [uyu]

getPara()as Seq of String
return Para

Body(e as Env) as Scm0Obj
Eval("set!", [new Symbol("y") as ScmObj, e.Value("x")], e)
step
return Eval(new Symbol("y"), e)
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Chapter 3

Compilation

3.1 Overview

Roughly speaking, the process of compiling source code can be divided in
two; parsing and generating. These two steps will be dealt with in detail
in separate chapters, but a general overview of the process will be helpful.
Figure 3.1 shows the data flow, from Scheme source code to Asml. source
code. The discs represent Java objects, while the boxes represent classes of
static Java methods.

Data Flow
G
LReader ScmParse AsmLDefs
<> >
File.scm File.asml

Figure 3.1: The data flow

3.2 Scheme Syntax

Though the process of compilation was described as a two step operation, it
is clear from the diagram that there are three stages. The extra stage is a
pre-parse needed for structuring the code in accordance with Scheme syntax.
Scheme syntax is fortunately very simple; all code is written as parenthe-
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sized lists. This is particularly useful as the list is also the predominant data
structure of Scheme. It means that Scheme has a well defined set of oper-
ators and procedures for processing lists. From this point of view it would
have been far simpler to implement a Scheme to Asml compiler in Scheme.
However, for reasons of no importance to this project, Java was chosen.

3.3 Reading Source Code

Using Java, parsing directly from the text string would be difficult. The op-
erations defined on strings are limited, and we would not be able to perform
the parse at an appropriate level of abstraction. That is, the vital list opera-
tions of first and rest cannot be performed on strings, obviously. The Scheme
read function parses strings into list structures, which include symbols and
numbers. Scheme represents lists using pairs. A pair in Scheme consists of
a car field, and a cdr field. Pairs are created using the procedure cons, and
the fields are accessed using the procedures car and cdr respectively. Both
car and cdr fields can contain any data structure defined in Scheme. For
simplification however, only pairs, symbols, numbers and a representation of
the empty list, will be considered here. While parsing the list representation
of the Scheme code will be dealt with in chapter 4, parsing the text stream
to a list structure will be looked at here.

3.4 Lists

A list can be defined recursively as either the empty list, or a pair whose cdr
is a list. In BNF this could be stated as follows:

<list>::=[]
1i=[_,<1list>]

The set of lists as defined in rjrs is the smallest set X such that
e The empty list is in X.
e If list is in X, then any pair whose cdr field contains list is also in X.

Lists are constructed by assembling chains of pairs, as in figure 3.2. The first
stage parse is to derive this list structure. A list structure can be viewed
as a tree. Pair objects will form the nodes of the tree, while the atomic list
elements comprise the leaves, or terminal nodes.

3.5 Parsing Text

The LReader class (appendix B.3), so named to distinguish it from the Java’s
own Reader class, is responsible for parsing the source with regards to a list
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Car | Cdr
Caar | Cdr
Car | Codr

Figure 3.2: The list '(a b ¢)

structure. The list is represented as a tree, using derivatives of the Lis-
tEID class (appendix B.1.1); that is Cons (B.1.2), Literal (B.1.3) or Symbol
(B.1.4). List structures are formed using these classes as in figure 3.3. As

Figure 3.3: The list '(a b ¢) using the ListEltD class

can be seen, the inner nodes are built from Cons objects, while the leaves
are all either Symbols of Literals, the exception being the empty list. The
empty list is represented using a Cons whose Car field is set to null. This
is distinct from the list whose first element is the empty list. A good case
could be made for writing a special derivative of ListE1tD particularly for
this purpose, and while the present solution suffices, this would appear to
be a nicer approach. This is however an opinion formed with hindsight.
LReader’s read method takes a Java Reader as its argument, and returns
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a ListE1tD. Most of the work is done in the LReader.ReadList method.
The actual elements of the text file are read and interpreted using the
LReader’s tokenString method, which creates and returns objects of the
ListToken class (appendix B.2). ListToken acts as a buffer between the
LReader and the Java StreamTokenizer. This is helpful in that the tokens,
or list elements read can be strings, characters or numbers. The ListToken
class has methods and fields that reveal what kind of element it is. The
ListToken objects represent symbols, numbers, left-parenthesis or right-
parenthesis. While reading a list (using the LReader.ReadList method),
a left-parenthesis causes the creation of a new Cons with its Car and Cdr
fields filled by successive calls to ReadList. A right-parenthesis causes an
empty list Cons. A ListToken with a number prompts the creation of a
Literal, while a ListToken with a string creates a Symbol. The process of
parsing the input file to a list structure is shown in figure 3.4.

Figure 3.4: The list reader

3.6 Parsing Lists

Once the Scheme code is represented as a ListEltD object, it needs to be
parsed with regards to the syntax of Scheme’s keywords and special forms.
The details of this process are described chapter 4. The Java class struc-
ture is quite similar to the structure just described in section 3.5. The
class responsible for the parse is ScmParse (appendix C.3), which consists of
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various static methods responsible for parsing the various expression types.
ParseExpression is the method responsible for identifying the type of ex-
pression found. The ScmParse class inherits a library of methods from the
superclass JScheme (C.2), for processing lists and identifying Scheme key-
words.

JScheme

;: ScmParse

ExpressionD

Figure 3.5: The ListEItD parser

3.7 Generating AsmL

The final step is generating an output file (figure 3.6), containing the AsmL
source code. The AsmLDefs (appendix D) class contains an array of static
methods for assembling the AsmL code representation of the Scheme proce-
dure parsed. The code generated is returned by the addGlobalDef method
as a string.

3.8 Coordination

The various pieces of the compiler need to be tied together, and the data
flow coordinated. The Java class Schasm (Scheme Asm, appendix E) is
responsible for this (figure 3.7). Schasm has four pointers; a FileReader FR,
a ListE1tD [, an ExpressionD E and a FileWriter FW. Each is initiated
to point to a newly created object of the relevant type, and the compile
method carries out the whole process.
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ExpressionD

Figure 3.6: The AsmlL definition generator

FileReader

3 LReader

ScmParse AsmlLDefs

Figure 3.7: Schasm
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Chapter 4

Parsing Scheme Expressions

4.1 Syntax

First step in the process of generating an ASM from Scheme source code is
generating an abstract syntax tree representation of the Scheme expressions
described by the code. The parse is done in accordance with a grammar,
written in BNF. To build such a grammar, the components or forms of
Scheme expressions must be identified. Scheme uses a parenthesized-list
Polish notation to describe programs and other data. A typical scheme
expression might look like the following,

(lambda (grutts hoot)
(moggify grutts (rompus (dwindle grutts hoot))))

revealing three types of expressions, i.e. variable expressions, such as grutts
and hoot, lambda expressions, and application expressions, such as moggify,
rompus and dwindle. This could be encompassed by the following grammar,
taken from Fssentials:

<identifier>
[var-exp(id)]

<expression>

(lambda(<identifier>)<expression>)
[lambda-exp(id body)]

(<expression><expression>)
[app-exp(rator rand)]

4.2 Abstract Syntax Tree

A parse of the above Scheme expression in section 4.1 should produce an
abstract syntax tree that could be visually represented as in figure 4.1 An
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Figure 4.1: Abstract Syntax Tree.

abstract Java class can be used to represent the Scheme expression, and
extensions of this class can then implement the specific manifestations of
expression, i.e. variable, lambda etc. Thus the grammar above will yield the
following Java class-hierarchy:

abstract class Expression

class VarExp extends Expression
class LambdaExp extends Expression
class AppExp extends Expression

Expression
I
| -->VarExp
I
| -->LambdaExp

I
| -->AppExp

The classes LambdaExp and AppExp will both need pointers to nested expres-
sions; id, body, rator and rand. The pointers will facilitate the construction
of the abstract syntax tree, where instances of the expression classes (objects)
will form the nodes and leaves of the tree, while the afore-mentioned pointers
will comprise the edges. It is here the use of an abstract class declaration is
necessary; on creating an expression object, the type of a nested expression
is still not known, so nested expression pointers must be of most general

type.
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4.3 Abstraction

An issue that has to be addressed is that of abstraction. It is desirable that
the class and method structure of the Java code should resemble the data
structure abstractions of Scheme closely. This will place constraints on the
way the Java code is written. An example of this is seen with the Cons class.
The Cons class has fields car and cdr. The class is given default access status,
and the fields have private access, in accordance with a cautious approach
to programming. This means that the class must be equipped with methods
for accessing the values stored in these fields from external classes. Given
such accessors, it would be tempting to use them as implementations of the
Scheme functions car and cdr. But this would break with the abstraction.
The following is a an example of an interaction with the Scheme interpreter:

> (car ’grutts)
car: expects argument of type <pair>; given grutts

car is a primitive Scheme standard procedure, and not a procedure associ-
ated with a pair, that is, not a method of Cons. This implies implementing
car, cdr and various other procedures externally to any ListElt class deriva-
tives. The class JScheme (appendix C.2) is just such a collection of static
methods that operate upon ListElt objects. The importance of abstraction
is also seen when traversing a list, due to the need for type-casting in Java.
That is, any attempt to access the car field of an argument (ListElt)datum,
known to be of type Cons, requires type-casting, i.e.

if(pair(datum))
recur (datum.car())

would need to be rewritten to

if (pair(datum)){
Cons 1 = (Cons)datum;
recur(l.car());

}

This may not seem too long-winded, but it would cloud any resemblance to
Scheme the parse method might have. Writing the car and cdr methods
externally to the Cons class, with the signature ListElt car(ListElt) will
maintain the desired level of abstraction, enabling the following style:

if (pair (datum))
recur(car(datum))

This is particularly desirable when writing longer car-cdr chains, such as

foo(car(cdr(cdr(datum))))
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4.4 Read Failure

Operating at this level of abstraction, some device for dealing with error
should be provided. The Scheme code input could be incorrectly formed.
Various JScheme methods, such as car and cdr, will throw ExpectsPair
exceptions if sent Literals or Symbols. Likewise, exceptions will be thrown
on encountering malformed if expression and application expressions.

4.5 Kleene Star

The original grammar needs to be extended, by the introduction of Kleene
star. This is to accommodate multiple arguments to lambda expressions and
multiple operands to application expressions. The extended grammar is as
follows:

<expression> ::= <number>
[lit-exp(datum)]

::= <identifier>
[var-exp(id)]

::= (lambda({<identifier>}*)<expression>)
[lambda-exp(ids body)]

::= (<expression>{<expression>}*)
[app-exp(rator rands)]

The introduction of Kleene star to the grammar forces a restructuring of
the classes LambdaExp and AppExp. Prior to this elaboration, the two classes
needed only simple Expression pointers to their nested expressions;i.e. ARG
and RAND, respectively. These must subsequently be changed to Expression
array pointers; ARGS and RANDS (see appendices C.1.2 and C.1.5). The cre-
ation of objects of type LambdaExp and AppExp will be facilitated using the
ParseList method in ScmParse (appendix C.3). This method traverses it-
eratively lists of expressions, such as those found in lambda or application
expressions. Regarding the use of arrays; they seem preferable to vectors
for two reasons. Firstly, they do not incur the same amount of overhead as
vectors, though this is maybe not worth worrying about. Secondly, vectors
entail type-casting; they can contain any Java object, and do not need to
be homogeneous. Thus accessing the contents of a vector demands type-
casting. The disadvantage of using arrays here is that they are static data
types. Whereas vectors grow to accommodate more data, arrays demand
reallocation. The solution in ParselList is to use vectors to hold elements
while traversing the list, and then convert the vector to an Expression ar-
ray, before returning. A further change to the grammar here is the addition

52



of literal expressions, to accommodate numbers. However, this needs fur-
ther attention as literal expressions will need also to encompass strings and
quoted symbols. One solution would be to let the LitExp class spawn sub-
classes for numbers, strings and quoted symbols. For now however, literals
shall be used for numbers.

4.6 Conditionals

Again the grammar must be extended, to describe another important concept
of any programming language; the conditional. Only the if syntactic form
will be covered here. The Scheme cond form is a macro, that expands to
an elaborate if construction at compile time. The grammar now looks as
follows:

<number>
[lit-exp(datum)]

<expression>

1:= <identifier>
[var-exp(id)]

::= (if <expression> <expression> <expression>)
[if-exp (test-exp true-exp false-exp)]

::= (if <expression> <expression>)
[if-exp (test-exp true-exp)]

::= (lambda({<identifier>3}*)<expression>)
[lambda-exp(ids body)]

::= (<expression>{<expression>}*)
[app-exp(rator rands)]

The if expression IfExp has been added with the help of two new rules
in the grammar. The first for the conditional with an alternative should
the test expression evaluate to false, the second without this alternative
expression. It is worth noting here that in Scheme, an if expression whose
test expression evaluates to false, and that does not have an alternative
expression, returns the Scheme value #<void>. The details of this point
are Scheme implementation dependent. In MsScheme, #<void> evaluates to
true. The void value could possibly be represented by the Java null value,
both being distinct from false. In the Scheme code, if, like lambda, is the
name of a syntactic form. It tells the interpreter or compiler to read the rest
of the list that it heads, in a particular way. On reading if here, the parse
module will use the method ParseIf. ParselIf will determine the length
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of the list. Three elements indicates the use of the first new rule, two the
second. A different number will trigger an exception.

4.7 Definitions

A final class must be added to the heirs of Expression. There is as yet
no mechanism for dealing with the binding of symbols to expression using
the define macro. For this the class Definition shall be introduced (ap-
pendix C.1.3). Definition needs two pointers; an Expression pointer for
the expression that is bound and a String pointer for the name under which
the expression shall be bound.

4.8 The Parse

Using the grammar described, and the assortment of classes defined, the
parse is relatively simply. It uses ParseExpression, a recursive method.

Expression ParseExpression(ListElt datum)throws Exception{
if (symbol(datum))
return new VarExp((Symbol)datum);
if(literal(datum))
return new LitExp((Literal)datum);
if(pair(datum)){
if(define(car(datum)))
return
(new Definition
(new VarExp
((Symbol)car(cdr(datum))),
ParseExpression(car(cdr(cdr(datum))))));
if (lambda(car (datum)))
return
(new LambdaExp
(Parselist(car(cdr(datum))),
Parselist (cdr(cdr(datum)))));
if(ifop(car(datum)))
return ParseIf(datum);
else
return
new AppExp(ParseExpression(car(datum)),
Parselist(cdr(datum)));
}

return null;
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On encountering conditionals the auxiliary method ParseIf is called, as the
syntax of conditionals does not conform to the syntax of simple expressions.

IfExp Parself(ListElt datum)throws Exceptionf{
int args = length(datum); //args including if-keyword.
if(args<3 || args>4)
throw (new BadSyntax("if", W.write(datum)));
ListElt test, con, alt;
test = car(cdr(datum));
con = car(cdr(cdr(datum)));
if(length(cdr (datum))==3)//ie alternative.
alt = car(cdr(cdr(cdr(datum))));
else alt = null;
return new IfExp(ParseExpression(test),
ParseExpression(con),
ParseExpression(alt));

}

Another exception to the syntax of simple expressions is encountered in
lambda expressions, both in their argument lists, and their bodies. The
Parselist method will be used in both cases.

Expression[] Parselist(ListElt datum)throws Exception{
Vector tmp = new Vector(5);
ListElt p = datum;
while(!nullp(p)){
tmp.addElement (ParseExpression(car(p)));
p = cdr(p);
}

return VecToArr (tmp);
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Chapter 5

Generating AsmL

5.1 The Generator Module

The generator module defined in the file AsmlDef.java (appendix D) pro-
vides Asml. definitions that can be used together with the Asml. Scheme
interpreter (appendix A), and its standard and library procedures. The gen-
erator module produces a textual, AsmL representation of a given Scheme
expression structure, according to a fairly simple template. Its output can
be divided in two. Firstly a Define statement for adding an associated pair
to the global environment. Secondly, a new class definition for any lambda
expressions.

5.2 Two Definitions

The two components of the generator’s output correspond to the symbol-
object binding in the global environment, and the creation of a procedure
object, in accordance with the environment model for evaluation. The
AsmLDefs class consists of, along with a number of static methods, two static
character string variables; GlobalDefs and ProcObjs. Once execution has
completed, GlobalDefs should contain a global definition, with the following
form: Global.Define(quoted string, ScmQbj). The appearance of SemOby
depends upon the value specified by the original Scheme expression parsed.
The scope of this project is here limited to lambda expressions and pro-
cedure applications, as the two together cover a suitably large portion of
Scheme. The other string variable, ProcObj, should given the occurrence of
a lambda expression, contain the code for a new class definition, an exten-
sion of the ProcObj class. This class should represent the semantics of the
Scheme procedure, and have the following form:

class foo extends ProcQObj
Para = ["x"]
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getPara()as Seq of String
return Para

Body(e as Env) as ScmObj
step

step
return ScmOby

5.3 Adding Closures

The occurrence of a lambda expression in Scheme indicates the creation of
a closure. When the method addGlobalDef is passed a definition whose
value is a lambda expression, the method addClosure is called, with the
appropriate expression as its argument, along with the name indicated by the
definition’s symbol. addClosure consists of two for loops, and it writes an
AsmlL class definition. The first loop assembles the parameter list, the second
builds the sequence of expressions comprising the body of the procedure.
Creating closures in the ASM is simply a case of constructing objects of this
class, using the new constructor. Augmentation of the environment with a
new closure is achieved using Define, as follows:

Global.Define("some_procedure", new some_procedure(Global))

5.4 Building Expressions

Asml representations of the Scheme expressions are built using the method
BuildExp. BuildExp is indirectly recursive in that it makes calls to meth-
ods that in turn call BuildExp, reflecting the recursive nature of Scheme
expressions. The building of any expression is either referred to one of three
methods (If, BuildProcApp or addClosure), or terminates in the case of a
symbol or literal. The method returns an AsmL representation of the Scheme
expression passed.

5.5 Building Conditionals

Compiling conditionals is facilitated with the BuildIf method. BuildIf
makes two or three calls to BuildExp, depending on the presences of an al-
ternative statement for test failure (that is the conditional returning false).
The first statement, the conditional, is packed into the context of the if key-
word, and braces. All test statements will be of type ScmObj, and the AsmlL
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if requires a statement of type boolean. The AsmL procedure notFalse
(appendix A.3) solves this mismatch, taking as its argument a ScmObj in-
stance and returning a boolean. notFalse tests for the occurrence of the
type False (appendix A.2), which is a subclass of the class ScmObj. False
is returned by the various Asml procedures found in the AsmL Scheme
interpreter, such as the equality operators Gte, Lt and Eq.

5.6 Building Procedure Applications

Since Scheme procedure applications are lists, headed by a procedure refer-
ence and followed by zero or more expressions, a procedure that traverses
lists is needed. The method BuildProcApp has as its heart a loop. The in-
put expression is traversed iteratively, and each occurrence of an expression
is duly passed to BuildExp, and the results concatenated. The subsequent
string is packed into a call to the AsmL procedure Eval.

5.7 AsmL Syntax

AsmL has very simple syntax. Block depth is determined by indentational
depth. The character used for indentation is the space, tab not being permit-
ted. This means that block depth must be taken into account on building
AsmlL procedures. The argument blockDepth seen in the various methods
of AsmLDefs is an integer for just this purpose. blockDepth dictates the
amount of spaces prefixed any line of AsmL. It is duly incremented or zeroed
at the appropriate points in the data flow.

5.8 Return Statements

The last expression in any Scheme procedure is always a return statement.
If this expression is some kind of branch then there will be multiple return
expressions. The boolean rtrn is passed from method to method, to deter-
mine whether the return keyword should be prefixed the AsmL statement
being generated.

5.9 Variable Reference

As explained Scheme is lexically scoped (see section 1.2). In the case of
nested declarations shadowing outer declarations, the resulting AsmL code
must obviously be unambiguous. Fortunately, this is never a problem, since
the occurrence of a nested lambda expression will lead to the generation of
a new, separate class in the AsmL code. Any variable references are always
made in the context of the appropriate environment.
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(define daft
(lambda (n)
(lambda (n)(take n 1))))

The above Scheme code will translate into the following AsmlL code.

class daft extends ProcObj
Para = ["n"]

getPara()as Seq of String
return Para

Body(e as Env) as ScmObj
step
return new daft_lambda(e)

class daft_lambda extends ProcObj
Para = ["n"]

getPara()as Seq of String
return Para

Body(e as Env) as ScmObj
step
return Eval("take", [new Symbol("n") as ScmObj,
new NumVal(1l) as ScmObjl, e)

60



Chapter 6

Running the ASM

6.1 The Final Stage

The final stage of the transition from Scheme source code to machine code
can be achieved using Microsoft’s Visual Studio. It would of course have been
both interesting and challenging to have undertaken this step as part of this
dissertation, perhaps by writing an ASM to Java compiler, and using a Java
compiler to create Java byte code. This would have had the additional benefit
of producing platform independent code. However, when such well-developed
tools exist already, the payoff of such an undertaking seemed relatively small.
Also, the scale of this project would have been significantly larger than now,
and probably have exceeded the appropriate size for such a dissertation. This
said, it should also be pointed out that a considerable amount of work was
involved in learning a sufficient amount about AsmlL to be able to code the
interpreter module, so that this part of the project did not come without a
cost.

6.2 Generating C++ and x86 binaries

To use the output of the Scheme-Asml. compiler, the generated AsmlL code
must be compiled, using the AsmL plug-in with Microsoft Visual Studio,
together with the Fnuviron.Asml file. This is achieved using the crude cut-
and-paste method. The generated AsmlL code can simply be pasted into the
FEnviron.asml file, and compiled in Visual Studio. Given a lambda expres-
sion, the generator will write a class definition. The keyword define will
lead to the code necessary for adding an instance of this class to the global
environment. The following example shows a simple Scheme procedure def-
inition, and the corresponding AsmL code.

(define loop
(lambda()
(if #t (loop))))

61



Global.Define("loop", new loop(Global))

class loop extends ProcObj
Para = []

Body(e as Env) as ScmQbj
step
if (notFalse(new Symbol("#t")))
return Eval("loop", [1, e)

6.3 Running the Environ interpreter

The following example is to show that the Environ module functions correctly
with respect to the environment model. It is a simplified version of the bank
example from sicp.

(define account
(1ambda (bal)
(lambda(amnt)
(if (gte bal amnt)
(set! bal (take bal amnt)))
bal)))

It leads to the following AsmL code.

class account_lambda extends ProcObj
Para = ["amnt"]

Body(e as Env) as ScmObj
step
if (notFalse(Eval("gte",
[new Symbol("bal") as Scm(bj,
new Symbol("amnt") as ScmObj],
e)))
var wot = Eval("set!",
[new Symbol("bal") as Scm0bj,
Eval("take",
[new Symbol("bal") as ScmObj,
new Symbol("amnt") as ScmObj],
e) as Scm0Obj],
e)
step
return Eval(new Symbol("bal"), e)
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class account extends ProcQObj
Para = ["bal"]

Body(e as Env) as Scm0bj
return new Account_lambda(e)

Staying with the bank analogy, a new account object can be added to the
environment, as in the next example.

(define bill (account 300))
Which yields the following:

Global.Define("bill",
Eval("account",
[new NumVal(300) as ScmObj], Global)

The following is an example of an interaction with PLT DrScheme inter-
preter, having made the above Scheme definitions, using the appropriate
">="and "-" operators.

> (account 300)
#<procedure>
> (bill 100)
200

> (bill 100)
100

> (bill 100)
0

> (bill 100)
0

>

Finally, an example run of the Environ module, compiled together with the
generated AsmL code shown above.

>[account, 300]
Account_lambda_010D1640
>[Bill, 100]
200

>[Bill, 100]
100

>[Bill, 100]

0

>[Bill, 100]

0

>
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Appendix A

Environ

A.1 The Environment

class Env
Ep as Env
var Bindings as Map of String to ScmObj = {|->}

Define(sym as String, val as ScmObj)
Bindings(sym) := val

Value(Sym as String) as ScmObj
if (Boundp(Sym)) then return Bindings(Sym)
elseif (Ep <> undef) then return Ep.Value(Sym)
else return undef

Boundp(Sym as String) as Boolean
if (Bindings(Sym) <> undef) return true
else return false

shared ExtEnv(Para as Seq of String,
Args as Seq of ScmQbj,
env as Env) as Env

var 1 as Integer = length(Para)

var 1 as Integer = 0

e = new Env(env)
step while 1 < 1
e.Define(Para(i), Args(i))

i:=1+1
step
return e
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A.2 The Scheme Object

class ScmQObj
class False extends ScmObj

class Error extends ScmObj
var msg as String

getMsg() as String
return msg

class Symbol extends ScmQObj
var ID as String

id() as String
return ID

class NumVal extends ScmQObj
var Val as Integer

getVal() as Integer
return Val

class ProcApp extends ScmObj
Proc as String
Args as Seq of ScmObj

getProc() as String
return Proc

getArgs() as Seq of ScmObj
return Args

abstract class ProcObj extends ScmObj
abstract Ep as Env

abstract getPara() as Seq of String
abstract Body(e as Env) as ScmObj

A.3 Low level Procedures

This is the collection of Asml procedures that are responsible for carrying
out the operations used in the Scheme procedures.
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notFalse(obj as ScmObj) as Boolean
if(obj is False) return false
else return true

SetB(e as Env, sym as String, val as ScmObj)
step
v as NumVal = val as NumVal
step
if(e.Boundp(sym))e.Bindings(sym) := val
elseif(e.Ep <> undef)SetB(e.Ep, sym, val)

Plus(n as NumVal, m as NumVal) as NumVal
var x as Integer = n.getVal() as Integer
var y as Integer = m.getVal() as Integer
step

return new NumVal(x + y)

Minus(n as NumVal, m as NumVal) as NumVal
var x as Integer = n.getVal() as Integer
var y as Integer = m.getVal() as Integer
step

return new NumVal(x - y)

Divide(n as NumVal, m as NumVal) as NumVal
var x as Integer = n.getVal() as Integer
var y as Integer = m.getVal() as Integer
step

return new NumVal(x/y)

Multiply(n as NumVal, m as NumVal) as NumVal
var x as Integer = n.getVal() as Integer
var y as Integer = m.getVal() as Integer
step

return new NumVal(x * y)

Gte(n as NumVal, m as NumVal) as ScmObj
var x as Integer = n.getVal() as Integer
var y as Integer = m.getVal() as Integer
step

if(x >= y) return n
else return new False()

Lt(n as NumVal, m as NumVal) as ScmObj
var x as Integer = n.getVal() as Integer
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var y as Integer = m.getVal() as Integer
step

if(x < y) return n

else return new False()

Eq(n as NumVal, m as NumVal) as ScmObj
var x as Integer = n.getVal() as Integer
var y as Integer = m.getVal() as Integer
step

if(x = y) return n
else return new False()

Incr(n as NumVal) as NumVal
var x as Integer = n.getVal() as Integer
step

return new NumVal(x + 1)

Decr(n as NumVal) as NumVal
var x as Integer = n.getVal() as Integer
step
return new NumVal(x - 1)

A.4 The Standard Procedures

This is the selection of first class objects available in the global environment.

class Terminate extends ProcObj

Para = []

getPara() as Seq of String
return Para

Body(e as Env)as ScmObj
step
Exit := true
step
return new NumVal(O)

class Addition extends ProcObj
Para = I:"Il", umu]

getPara() as Seq of String
return Para

Body(e as Env) as ScmObj
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var m as NumVal
var n as NumVal

step
m := e.Value("m") as NumVal
n := e.Value("n") as NumVal
step

return Plus(m, n)

class Subtraction extends Proc(Obj
Para = ["Il", umu]

getPara() as Seq of String
return Para

Body(e as Env) as ScmQObj
var m as NumVal = e.Value("m") as NumVal
var n as NumVal = e.Value("n") as NumVal
step
return Minus(n, m)

class Division extends Proc(Obj
Para = [unu’ umu]

getPara()as Seq of String
return Para

Body(e as Env) as ScmQObj
e.Value("m") as NumVal
e.Value("n") as NumVal

var m as NumVal

var n as NumVal
step
return Divide(n, m)

class Multiplication extends ProcObj
Para = ["Il", umu]

getPara()as Seq of String
return Para

Body(e as Env) as ScmQObj
var m as NumVal = e.Value("m") as NumVal
var n as NumVal = e.Value("n") as NumVal
step
return Multiply(m, n)
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class GTE extends ProcObj
Para = I:"Il", umu]

getPara()as Seq of String
return Para

Body(e as Env) as ScmObj
var m as NumVal = e.Value("m") as NumVal
var n as NumVal = e.Value("n") as NumVal
step
return Gte(n, m)

class EQ extends ProcObj
Para = I:"Il", umu]

getPara()as Seq of String
return Para

Body(e as Env) as Scm0bj
var m as NumVal = e.Value("m") as NumVal
var n as NumVal = e.Value("n") as NumVal
step
return Eq(n, m)

class LT extends ProcObj
Para = I:"Il", umu]

getPara()as Seq of String
return Para

Body(e as Env) as ScmObj
var m as NumVal = e.Value("m") as NumVal
var n as NumVal = e.Value("n") as NumVal
step
return Lt(n, m)

class SetBang extends ProcObj
Para = ["sym", "val"]

getPara()as Seq of String
return Para

Body(e as Env) as Scm0bj
var val = e.Value("val") as NumVal
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var sym = e.Value("sym") as Symbol
step

SetB(e, sym.id(), val)

step

return val

A.5 The Interpreter

Eval(s as Symbol, e as Env) as ScmObj
if (ErrorSignal = undef)
return e.Value(s.id())
else return ErrorSignal as ScmObj

Eval(proc as String,
args as Seq of ScmObj,
env as Env) as ScmObj
var error as Error = ErrorSignal
var RTN as ScmObj
var Obj as ScmObj = env.Value(proc)
var Args as Seq of ScmObj = []
var Frame as Env
var pro as ProcObj
var Actu as Integer
var Form as Integer
var 1 as Integer = 0
step
if (ErrorSignal = undef)
if(Obj <> undef)

step
if(0bj is Proc0bj)
step
pro := Obj as ProcObj
step
VAEEEES mustn’t evaluate the first arg!----- */
if(pro is SetBang)
i:=1
Args := Argst[args(0)]
Actu := length(args)
Form := length(pro.getPara())
step

if(Actu = Form)
step while 1 < Actu
if(args(i) is Symbol)
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step
var sym as Symbol = args(i) as Symbol
step
Args := Args+[env.Value(sym.id()) as ScmObjl
else
Args := Args+[args(i)]
i:=1+1
step
if(pro is SetBang)

Frame := ExtEnv(pro.getPara(), Args, env)
else
Frame := ExtEnv(pro.getPara(), Args, pro.Ep)
step
RTN := pro.Body(Frame)
step
if(RTN is Error) ErrorSignal := RIN as Error
return RTN

else return new Error(proct+": expects "+
Formt" argument, given "+
Actu)
else return new Error("procedure application:
expected procedure,
given: "+proc)
else return new Error("reference to undefined
identifier: "+proc)
else return error as ScmObj

newProcApp(Sym as String,
Args as Seq of NumVal) as ProcApp
var 1 as Integer = 0
var 1 as Integer = length(Args)
var SArgs as Seq of ScmObj = []
var o as ScmObj
step
step while 1 <1
SArgs := SArgs + [Args(i) as ScmObj]

1:=1+1
step
return new ProcApp(Sym, SArgs)
T */

nextExp()as ProcApp
var CMD as Seq of String
var 1 as Integer =1
var nargs as Integer = 0
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var call as String = ""
var args as Seq of ScmObj = []

st

ep

write(">")
MD := readlnSeqOfString()

C
st
c

ep

all := CMD(0)

nargs :=

st

ep

length(CMD)

step while 1 < nargs

st

args :=

args+
[new NumVal(asInteger(CMD(i))) as ScmObj]

i:=1+1

ep

return new ProcApp(call, args)

var
var
var
var
var
var

Exit as Boolean = false

ErrorSignal as Error = undef

Global

= new Env(undef)

PA as ProcApp
b as NumVal
v as Scm0Obj
initLib()

Global
Global
Global
Global
Global
Global
Global
Global
Global

step
Global.Define("rmult", new Times(Global))
Global.Define("tms", new limes(Global))
Global.Define("rdivi", new rDivide(Global))
Global.Define("account", new Account(Global))
step
Global.Define("Bill", Eval("account",

.Define("exit", new Terminate(Global))
.Define("add", new Addition(Global))
.Define("take", new Subtraction(Global))
.Define("times", new Multiplication(Global))
.Define("div", new Division(Global))
.Define("gte", new GTE(Global))
.Define("1t", new LT(Global))

.Define("eq", new EQ(Global))
.Define("set!", new SetBang(Global))
initUsDef ()

[new NumVal(300) as ScmObj],
Global))
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Global.Define("Ben", Eval("account",
[new NumVal(300) as ScmObj],
Global))
Global.Define("Jill", Eval("account",
[new NumVal(300) as ScmObj],

Global))
run()
step
initLib()
step
initUsDef ()
step while not Exit
step
PA := nextExp() //Procedure Application
step
v := Eval(PA.getProc(), PA.getArgs(), Global)
step
if (v is Error)
step
e as Error = v as Error
step
writeln(e.getMsg())
step
ErrorSignal := undef
else
if(not(v is NumVal)) writeln(v)
else
step
b := v as NumVal
step

writeln(b.getVal())
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Appendix B

The List Parser

B.1 List Elements
B.1.1 ListEltD
The abstract List Flement class.

abstract class ListE1tD{}

B.1.2 Cons

The Cons-pair class.

class Cons extends ListE1tD{

private ListEl1tD Car;
private ListEl1tD Cdr;
VAT
* Constructs a Cons element.
* @param car The ListEltD to occupy the Car field.
* @param cdr The ListEltD to occupy the Cdr field.

*/
Cons(ListEltD car, ListEltD cdr){
Car = car;
Cdr = cdr;
}
VAT
* Accessor
*/

public ListEltD car(){
return Car;

b
VAL
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* Accessor
*/
public ListE1tD cdr(){
return Cdr;

3

B.1.3 Literal

The literal class.

class Literal extends ListE1tD{
private double v;

/ k%
* Constructs a Literal LstE1tD element.
* @param d The number.

*/
Literal(double d){
v = d;
}
VAT
* Accessor for v field
*¥Q@return double, V.
*/
double id(){
return v,
}

B.1.4 Symbol

The symbol class.

class Symbol extends ListE1tD{
private String id;

VAT
* Constructs a Symbol LstEl1tD element.
* @param s The symbol.

*/
Symbol(String s){
id = s;
b
VAL

76



* Accessor, for id.
*@return String, id.
*/
String id(){
return id;

3

B.2 ListToken

The list token class.

class ListToken{
private double nval;
private String sval;
private boolean isNumber;
private boolean start;
private boolean stop;

VAT
* Constructs a ListToken
* @param d The number to be encapsuled.
* The isNumber boolean is set to true.
*/

ListToken(double d){
start = false;
stop = false;

nval = d;
isNumber = true;
sval = "";

¥
/*%

* Constructs a ListToken
* @param s The String to be encapsuled.
*/
ListToken(String s){
start = false;
stop = false;
sval = s;
isNumber = false;

/*%

* Constructs a ListToken
* Q@param i The char to be encapsuled. A& "(" or ")"
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*/
ListToken(int 1i){
sval = "";
isNumber = false;
start = false;
stop = false;
if(i == ()
start=true;
if(i == "))
stop=true;

VAL
* Accessor
*/
double nval(){
return nval;

/ k%
* Accessor
*/
String sval(){
return sval;

}
VAT
* Predicate, true IFF number.
*/
boolean isNumber(){
return isNumber;

VAT
* Predicate, true IFF list start.
*/
boolean isStart(){
return start;

VAL
* Predicate, true IFF list end.
*/
boolean isStop(){
return stop;

3
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B.3 LReader
The list reader class.

public class LReader {
private static Reader R;
private static StreamTokenizer strTok;

* Reads first element of the input list,

* decides what to do.

* @param r, Reader. The in-file.

* @return ListEI1tD.

* Returns a ListEltD representation of the
* file.. hopefully.

public static ListEltD read(Reader r){
R=r;
strTok = new StreamTokenizer(R);

//quote != string delimiter in scheme
strTok.wordChars (33, 39);

//allow diverse op-symbols
strTok.wordChars(42,64);
ListToken t = getNextToken();
if (listStart(t))

return readlist();
if(t.isNumber())

return new Literal(t.nval());
return new Symbol(t.sval());

/*%
* The main motor of the class.
* Traverses the list recursively.
* Q@return Cons, the ListEltD list object.
*/
private static Cons readList(){
ListToken t = getNextToken();
1if(listEnd(t))return new Cons(null, null);
if(listStart(t))
return new Cons(readlist(), readList());
if (isNumber(t))
return new Cons(new Literal(t.nval()),
readlList());
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return new Cons(new Symbol(t.sval()),
readlist());

/ k%
* A predicate.
* Returns true IFF datum holds number.
* @param datum A ListToken
* Q@return boolean
*/
private static boolean isNumber(ListToken datum){
return (datum.isNumber());

}
VAL
* A predicate.
* Returns true IFF datum is start of a list.
* @param datum A ListToken
* @return boolean
*/
private static boolean listStart(ListToken datum){
return (datum.isStart());

3

/%

* A predicate.
* Returns true IFF datum is end of a list.
* @param datum A ListToken
* @return boolean
*/
private static boolean listEnd(ListToken datum){
return (datum.isStop());

b
/%
* Returns result of call to tokenString.
* @return ListToken
* Q@exception ... needs attention
*/
private static ListToken getNextToken(){
int tok;
try{

tok = strTok.nextToken();
if(tok == strTok.TT_EOF)return null;
return tokenString(strTok, tok);
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catch(Exception e){
return null;

3

/*%
* Builds and returns a new ListToken
* @param tokenizer The input Stream
* @param t The next token
* Q@return ListToken
*/
private static ListToken tokenString(StreamTokenizer
tokenizer, int t){
if(t=="-’)return new ListToken(new String("-"));
if (t==tokenizer.TT_WORD)
return new ListToken(tokenizer.sval);
if (t==tokenizer.TT_NUMBER)
return new ListToken(tokenizer.nval);
return new ListToken(t);
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Appendix C

The Scheme Parser

C.1 Expressions

C.1.1 ExpressionD

abstract class ExpressionD{
abstract String getXML();
abstract String id();

C.1.2 AppExp
Application Expressions.

class AppExp extends ExpressionD{
private String xmlrep;
private String ID;
private ExpressionD RATOR;
private ExpressionD RANDS[];
private String vars[];

/*x

Constructs a AppExp object.
@param e The operator.

@param es The operands.
Constructor sets RATOR & RANDS

to e & es respectively. Also, all

¥ X ¥ ¥ X

* free variables are identified
* and added to $vars$.
*/
AppExp(ExpressionD e, ExpressionD es[])throws Exception{
if(e instanceof LitExp)
throw new ExpectsProcedure("procedure application",
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(LitExp)e);
Vector v = new Vector(5);

RATOR = e;

RANDS = es;

ID = e.id();

xmlrep = "<app>\n<rator>\n"+e.getXML()+"</rator>\n";

for(int i = 0; i < es.length; i++){
if(es[i] instanceof VarExp)
if(lv.contains(es[i].id()))//not already found.
v.addElement (es[i].1d());//add to var list.
if(es[i] instanceof AppExp)<{
AppExp a = (AppExples[il;
collectVars(v, a.getVars());
}
if(es[i] instanceof IfExp){
IfExp a = (IfExp)es[il;
collectVars(v, a.getVars());
}
xmlrep +="<rand no="+(i+1)+">\n"
+es[i].getXML()+"</rand>\n";
}
addVars(v);
xmlrep +="</app>\n";

/ k%
* @param v The Vector for collecting free variables.
* @param vs The String array with all free variables.
* Adds all free variables to Vector.
*/

void collectVars(Vector v, Stringl[] vs){
for(int i = 0; i < vs.length; i++)
if(!v.contains(vs[i]))
v.addElement (vs[i]);

VAT
* @param v Vector containing
* all free variables (no duplicates).
* Initiates vars array.
*/
void addVars(Vector v){
int s = v.size();
vars = new String[s];
for(int i = 0; i<s; i++)
vars[i] = (String)v.elementAt(i);

84



VAT
* Accessor
*/
ExpressionD getRator(){
return RATOR;
}

/*%
* Accessor
*/
ExpressionD[] getRands(){
return RANDS;
}
VAT
* Accessor
*/
String id(){
return ID;
}
[ *%
* Accessor
*/
String[] getVars(){
return vars;

b
VAT
* Accessor
*/
String getXML(){
return xmlrep;

3

C.1.3 Definition

Definitions.

class Definition extends ExpressionD{
private String key, xmlrep;
private ExpressionD val;

VAT

* Constructs a new Definition object.

85



* @param id The Symbol underwhich

* the expression will be bound.
* @param e The expression to be bound.

*/

Definition(ExpressionD id, ExpressionD e)<
xmlrep = new String("<define>\n");
xmlrep += "<key>"+id.id()+"</key>\n";
xmlrep += "<val>\n"+e.getXML()+"</val>\n</define>\n";

key

val =

VAL

= id.id();
e;

* Accessor
* @returns String key.

*/

String id(){
return key;

b
VAL

* Accessor
* @returns String xmlrep.

*/

String getXML(){
return xmlrep;

}
/%

* Accessor

* Q@returns String val.

*/

ExpressionD getVal(){
return val;

3

C.1.4 IfExp

Conditional expressions.

class IfExp
private
private
private
private
private

extends ExpressionD{
String xmlrep;
String ID;
ExpressionD TEST;
ExpressionD CON;
ExpressionD ALT;
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private String vars[];
/ k%
* Constructs a IfExp object.
* @param el The Test.
* @param e2 The Consequence.
* @param e3 The Alternative.
*/
IfExp(ExpressionD el, ExpressionD e2, ExpressionD e3){
Vector v = new Vector(5);

TEST = eil;

CON = e2;

ALT = e3;

xmlrep = "<if>\n<if-test>\n"+

TEST.getXML() +"</if-test>\n";
xmlrep +="<if-con>\n"+CON.getXML()+"</if-con>\n";
if (ALT!=null) xmlrep+="<if-alt>\n"+
ALT.getXML()+"</if-alt>\n";
xmlrep += "</if>\n";
ID = TEST.id();
initVars(v, el);
initVars(v, e2);
if(e3 !'= null)initVars(v, e3);
addVars(v);

/ k%
* Uses collectVars to collect free variables.
* @param v Temporary holder for free variables.
* @param e The Expression where the vars are found.
*/
private void initVars(Vector v, ExpressionD e){
if(e instanceof VarExp)
if(lv.contains(e.id()))
v.addElement(e.id());
if(e instanceof AppExp){
AppExp a = (AppExp)e;
collectVars(v, a.getVars());
}
if(e instanceof IfExp){
IfExp a = (IfExp)e;
collectVars(v, a.getVars());

VAT

* Adds Strings in vs to Vector v. No duplicates.
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* @param v Vector for collecting Strings.
* @param vs String array.
*/
void collectVars(Vector v, String[] vs){
for(int i = 0; i < vs.length; i++)
if(!v.contains(vs[i]))
v.addElement (vs[i]);

VAT
* Initiates global vars.
* @param v Vector (of Strings).
*/
void addVars(Vector v){
int s = v.size();
vars = new String[s];
for(int i = 0; i<s; i++)
vars[i] = (String)v.elementAt(i);

VAL
* Accessor
*@return String, the ID field.
*/
String id(){
return ID;
b
VAL
* Accessor
*@return String, the xmlrep field.
*/
String getXML(){
return xmlrep;
b
VAL
* Accessor
*@return String, the TEST field.
*/
ExpressionD getTest(){
return TEST;

VAT
* Accessor
*Q@return ExpressionD, the CON field.
*/
ExpressionD getCon(){
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return CON;

b
VAT
* Accessor
*Q@return ExpressionD, the ALT field.
*/
ExpressionD getdlt(){
return ALT;
b
VAL

* Accessor
*Q@return String[], the vars array field.
*/
String[] getVars(){
return vars;

3

C.1.5 LambdaExp

Lambda expressions.

class LambdaExp extends ExpressionD{
private String ID, xmlrep;
private ExpressionD ARGS[];
private ExpressionD BODY[];
private String vars[];
VAL
* Constructs a LambdaExp object.
* @param es ExpressionD array.
* The formal parameters.
* @param es2 Expressiond array.
* The sequence of expressions.
*/
LambdaExp (ExpressionD es[],
ExpressionD[] es2)throws Exception{
Vector v = new Vector(5);
xmlrep = new String("<lambda>\n");
for(int i = 0; i<es.length;i++){
ExpressionD t = es[i];
if (1 (t instanceof VarExp))
throw(new
ExpectsVarExp("Lambda", es[i]));
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xmlrep += "<arg no="+(i+1)+">"+
es[i].getXML()+"</arg>\n";
}
xmlrep += "<body>\n";
for(int i = 0; i<es2.length; i++){
xmlrep += "<exp no="+(i+1)+">"+
es2[i] .getXML()+"</arg>\n";
if(es2[i] instanceof VarExp)
if(!v.contains(es2[i].1d()))
v.addElement (es2[i] .1d());
if(es2[i] instanceof AppExp){
AppExp a = (AppExp)es2[i];
collectVars(v, a.getVars());
}
if(es2[i] instanceof IfExp)<{
IfExp a = (IfExp)es2[i];
collectVars(v, a.getVars());

}
}
addVars(v);
xmlrep += "</body>\n</lambda>\n";
ID = "lambda";
ARGS = es;
BODY = es2;
}
VAT

* Adds Strings in vs to Vector v.
* No duplicates.
* @param v Vector for collecting Strings.
* @param vs String array.
*/
void collectVars(Vector v, String[] vs){
for(int i = 0; i < vs.length; i++)
if(!v.contains(vs[i]))
v.addElement (vs[i]);

VAT
* Initiates global vars.
* @param v Vector of Strings.
*/

void addVars(Vector v){

int 8 = v.size();

vars = new String[s];

for(int i = 0; i<s; i++)
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vars[i] = (String)v.elementAt(i);

/*%
* Accessor for vars array field.
*Q@return String[], vars array field.
*/
String[] getVars(){
return vars;
b
[ *%
* Accessor for id field.
*@return String, ID.
*/
String id(){
return ID;
b
VAL
* Accessor for ARGS array field.
*Q@return ExpressionD[], ARGS array field.
*/
ExpressionD[] getArgs(){
return ARGS;
b
VAL
* Accessor for xmlrep field.
*@return String, xmlrep.
*/
String getXML(){
return xmlrep;
b
VAL
* Accessor for BODY array field.
*Q@return ExpressionD[], BODY array field.
*/
ExpressionD[] getBody(){
return BODY;
b

C.1.6 LitExp

Literal expressions.
class LitExp extends ExpressionD{
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private int val;
private String ID, xmlrep;
VAT
* Constructs a LitExp object.
* @param 1 Literal
*/
LitExp(Literal 1)
val = (int)l.id();
ID = Integer.toString(val);
xmlrep = "<LitExp>"+
Integer.toString(val)+"</LitExp>\n";

/*
* Gives a String representation of
* the int val.
*Q@return String, Integer.toString(val);
*/
String getVal(){
return Integer.toString(val);
b
/*
* Gives a String representation of
* the int val.
*Q@return String, Integer.toString(val);
*/
String id(){
return Integer.toString(val);
b
/*
* Accessor for xmlrep field.
*@return String, xmlrep field.
*/
String getXML(){
return xmlrep;

3

C.1.7 VarExp

Variable expressions.

class VarExp extends ExpressionD{
private String ID, xmlrep;

VAL
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* Constructs a VarExp object.
* @param s Symbol
*/
VarExp(Symbol s){
ID = 5.1d();
xmlrep = "<var>"+s.id()+"</var>\n";

/*
* Constructs a VarExp object
* from a String.
* @param s, the name.
*/
VarExp(String s){
ID = s;
b
/*
*Accessor, get ID.
*@return String, ID.
*/
String id(){
return ID;
b
/*
*Accessor, get xmlrep.
*Q@return String, xmlrep.
*/
String getXML(){
return xmlrep;

3

C.2 JScheme

A minimal Scheme library.

public class JSchemeq
VAT
*Q@param datum A ListELtD
*@return boolean
*4 predicate. Returns true IFF given a ListE1ltD
*representation of Scheme’s empty list.
*/
public static boolean nullp(ListE1tD datum){
if(datum instanceof Symbol ||
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datum instanceof Literal)
return false;
Cons ¢ = (Cons)datum;
if(c.car()==null)return true;
return false;

* @param datum A ListELtD
* Q@return ListEltD
* Qexception ExpectsPair
* If datum is of type Coms,
* then datum’s car field is returned.
*/
public static ListE1tD car(ListE1tD datum)
throws Exception{
if (datum instanceof Symbol ||
datum instanceof Literal)
throw (new ExpectsPair("car",
(Symbol)datum)) ;
Cons ¢ = (Cons)datum;
return c.car();

/**
* @param datum A ListEILtD
* Q@return ListEltD
* Q@exception ExpectsPair
* If datum is of type Coms,
* then datum’s cdr field is returned.
*/
public static ListE1tD cdr(ListE1tD datum)
throws Exception{
if (datum instanceof Symbol ||
datum instanceof Literal)
throw (new ExpectsPair("cdr", (Symbol)datum));
Cons ¢ = (Cons)datum;
return c.cdr();

* @param datum A ListELtD

* Q@return boolean

* A predicate. Returns true IFF datum
* 1s an instanceof Symbol
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*/
public static boolean symbol(ListE1tD datum){
return (datum instanceof Symbol);

b

VAT
* @param datum A ListE1ltD
* Q@return boolean

* A predicate. Returns true IFF datum

* 1s an instanceof Literal

*/

public static boolean literal(ListE1tD datum)<{
return (datum instanceof Literal);

3

VAT

*

@param datum A ListEltD
¥ Qreturn boolean
* A predicate. Returns true IFF datum
* is an instanceof Cons AND datum’s car != null
*/
public static boolean pair(ListE1tD datum){
if(datum instanceof Cons){
Cons ¢ = (Cons)datum;
return (c.car()!=null);
}

return false;

VAL

*

@param datum A ListEltD
Qreturn int
Qexception ExpectsPair
* Returns the length of the list passed.
*/
public static int length(ListE1tD datum)
throws Exception{

if(!(datum instanceof Cons))

throw (new ExpectsPair("length",

(Symbol)datum)) ;

* ¥

int 1 = 0;

for(;car(datum) '=null;i++)
datum = cdr(datum);

return 1i;
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/ k%

*

@param datum A ListE1tD

@return boolean

A predicate. Returns true IFF given a ListEltD
* containing the word "define".

*/

public static boolean define(ListE1tD datum){
return compareTo(datum, "define");

* %

b
VAL
* @param datum A ListEILtD
* @return boolean
* A predicate. Returns true IFF given a ListE1ltD
* containing the word "lambda".
*/
public static boolean lambda(ListE1tD datum){
return compareTo(datum, "lambda");
b
VAL
* @param datum A ListEILtD
@return boolean
A predicate. Returns true IFF given a ListELtD
* containing the word "if".
*/
public static boolean ifop(ListEltD datum)<q
return compareTo(datum, "if");

* ¥

}
private static boolean compareTo(ListE1tD datum,
String target)q
Symbol sm;
String s;
if (symbol (datum)){
sm = (Symbol)datum;
s = sm.1d();
return s.compareTo(target) == 0;
}

return false;

C.3 ScmParse

The Scheme parser.
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public class ScmParse extends JSchemeq
VAT
* @param datum The ListELtD
* to be parsed.
* Determines what sort of ListELtD
* 1s passed, acts accordingly.
*/
static ExpressionD ParseExpression(ListE1tD datum)
throws Exception{
if (symbol(datum))
return new VarExp((Symbol)datum);
if(literal(datum))
return new LitExp((Literal)datum);
if (pair(datum)){
if(define(car(datum)))
return
new Definition(new VarExp((Symbol)
car(cdr(datum))),
ParseExpression(car(cdr(cdr(datum)))));
if (lambda(car(datum)))
return
new LambdaExp(Parselist(car(cdr(datum))),
Parselist (cdr(cdr(datum))));
if (ifop(car(datum)))
return ParselIf(datum);
else
return
new AppExp(ParseExpression(car(datum)),
Parselist (cdr(datum)));
}

return null;

/*%

* @param datum The ListE1tD to be parsed.

* Assembles IfExps, in case of conditionals.

*/

static IfExp Parself(ListEltD datum)throws Exception{
int args = length(datum); //args including if-keyword.
if(args<3 || args>4)
throw (new BadSyntax("if", LWriter.write(datum)));

ListE1tD test, con, alt;
test = car(cdr(datum));
con = car(cdr(cdr(datum)));
if(length(cdr (datum))==3)//ie alternative.
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alt = car(cdr(cdr(cdr(datum))));
else alt = null;
return new IfExp(ParseExpression(test),
ParseExpression(con),
ParseExpression(alt));

/ k%
* @param datum The ListEIltD.
* Constructs sequences or Expressions.
* Start off by using a vector, but convert to an array
* using the VecToArr method under.
*/
static ExpressionD[] Parselist(ListEltD datum)
throws Exception{
Vector tmp = new Vector(5);
ListE1ltD p = datum;
while(!nullp(p)){
tmp.addElement (ParseExpression(car(p)));
p = cdr(p);

3

return VecToArr (tmp);

VAT
* @param v Vector
* Converts Vector of Expressions to array.
*/
static ExpressionD[] VecToArr(Vector v)<{
ExpressionD a[] = new ExpressionD[v.size()];
for(int i = 0; i < v.size(); i++)
alil=(ExpressionD)v.elementAt(i);
return a;
}
static String getXML(ExpressionD e){
return e.getXML();
}
static String ExpToString(ExpressionD e){
return e.id();

3
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C.4 Exceptions

C.4.1 ParseException

The abstract Parse Exception class.

abstract class ParseException extends Exception{

}

C.4.2 BadSyntax

class BadSyntax extends ParseException{
private String keyword;
private String sign;
VAT
* Constructs a BadSyntax object.
* @param key The keyword.
* @param s The code where the error is found.
*/
BadSyntax (String key, String s){
keyword = key;
sign = s;

VAT
*Constructs and returns error message.
*@return String
*/
public String getMessage(){
return keyword+": bad syntax in: "+sign;

3

C.4.3 ExpectsPair

class ExpectsPair extends ParseException{
private String caller;
private String id;
VAL
* Constructs a ExpectsPair object.
* @param s String, the method that expected a Comns.
* @param 1 Symbol, the unexpected ListEltD.
*/
ExpectsPair(String s, Symbol 1){
caller = s;
id = 1.1d();
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/ k%
* Constructs a ExpectsPair object.
* @param s String, the method that expected a Conms.
* @param 1 Literal, the unexpected ListEltD.
*/

ExpectsPair(String s, Literal 1){
caller = s;
id += 1.id(Q);

/ k%
* Error report.
*@return String, the Error message.
*/
public String getMessage(){
return caller+" expects Pair, given "+id;

3

C.4.4 ExpectsProcedure

class ExpectsProcedure extends ParseException{
private String caller;
LitExp le;
/ k%
* Construct ExpectsProcedure exception.
*@param s String, error message.
*@param 1 Literal, the offending object.
*/
ExpectsProcedure(String s, LitExp 1){
caller = s;

le = 1;
b
VAL
*@return String, the error repport.
*/

public String getMessage(){
return caller+": expects procedure, given:"+le.id();

3

C.4.5 ExpectsSymbol

class ExpectsSymbol extends ParseException{
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private String caller;
Symbol 1le;

ExpectsSymbol(String s, Symbol 1){
caller = s;
le = 1;
}
public String getMessage(){
return caller+" expects Pair,\ngiven Symbol "+le.id();

3

C.4.6 ExpectsVarExp

class ExpectsVarExp extends ParseException{
private String caller;
ExpressionD le;
VAT
* Constructs ExpectsVarExp exception.
*@param s String, the expecter.
*@param 1 ExpressionD, the expectee.
*/
ExpectsVarExp(String s, ExpressionD 1){
caller = s;
le = 1;

/*%
*@return String, the error report.
*/
public String getMessage(){
return caller+
" expects Variable Expression,\ngiven "+le.id();
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Appendix D

The AsmL Generator

D.1 AsmLDefs

The AsmlL code generator.

class AsmLDefs{
private static String GlobalDefs = "";
private static String ProcObjs = "";
private static final String getPara =
"\n getPara()as Seq of String\n return Para\n";

VAT
* Returns a textual AsmlL representation
* of a Definition structure.
* Entry point for building definitioms.
*@param e A Definition
*@return AsmL String
*/
static String addGlobalDef(Definition e){
String name = new String(e.id());
String s = new String(indent(5)+
"Global.Define("+(char)34
+name+ (char)34)+", ";
if (Lambdap(e.getVal())){
s += '"new "+name+"(Global))\n";
addClosure( (LambdaExp)e.getVal(), name);
}
if (Appp(e.getVal()))
s += BuildProcApp((AppExp)e.getVal(), false, 6);
GlobalDefs += s;
return GlobalDefs+ProcObjs;
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/ k%
* Determines ExpressionD type.
* Calls appropriate method.
* Returns a textual AsmL representation
* of an ExpressionD
*Q@param e The ExpressionD
*@param name String, name under which
* ExpressionD is bound.
*Q@param rtrn boolean, whether expression
* 1s return statement.
*Q@param blockDepth int, depth of indentation.
* Indentation is
* part of AsmlL syntax.
*@return AsmlL String
*/
private static String BuildExp(ExpressionD e,
String name, boolean
rtrn, int blockDepth){
String r= new String(indent(blockDepth));
if(rtrn)r+="return ";

if(Ifp(e))

return If((IfExp)e, rtrn, blockDepth);
if (Appp(e))

return BuildProcApp((AppExp)e, rtrn, blockDepth);
if (Lambdap(e)){

addClosure((LambdaExp)e, name+"_lambda");
return r+"new "+name+"_lambda(e)";
}
if(Litp(e))return r+"new NumVal("+e.id()+")";
else{
String s="new Symbol("+(char)34+
e.id()+(char)34+")";
if(rtrn)return r+"Eval("+s+", e)";
return r+s;

VAT
* Concatinates global String ProcObjs
* with a new lambda
* espression String.
*@param e The LambdaExp
*@param name String, name under which
* ExpressionD is bound.

*/
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private static void addClosure(LambdaExp e, String name)q
boolean rtrn = false;
String[] vars = e.getVars();
String title = new String(

"\n class "+name+
" extends ProcObj\n");
String para = new String(" Para = [");
String body = new String(
"\n Body(e as Env) as ScmObj\n");

ExpressionD[] prms = e.gethrgs();

ExpressionD[] bdy = e.getBody();

for(int j=0; j<prms.length; j++){
para+=(char)34+prms[j].id()+(char)34;
if (j<prms.length-1)parat=", ";

}

para+="]\n";

for(int j=0; j<bdy.length; j++){
body+=new String(indent(7)+"step\n");
// Flag for return statement!!
if (j==bdy.length-1)rtrn=true;
body+=BuildExp(bdy[j], name, rtrn, 8)+"\n";

}

ProcObjs+=title+paratbody;

/*%
* Builds and returns an AsmL
* application expression String.
*Q@param e The AppExp Application Expression.
*Q@param rtrn boolean, whether expression
* 1s return statement.
*@param blockDepth int, depth of indentation.
* Indentation is
* part of AsmlL syntax.
*@return AsmL String
*/
private static String BuildProcApp(AppExp e,
boolean rtrn,
int blockDepth){
String r = indent(blockDepth);
String app, p=e.id();
boolean asgn = p.compareTo("set!")==07true:false;
ExpressionD es[] = e.getRands();
int n = es.length;
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if(rtrn)r+="return ";
app=new String("Eval("+(char)34+p+(char)34+", [");
//AsmL requires return vals captured!
if (asgn)app="var wot = "+app;
for(int j=0; j<n; j++){
//surfix -as ScmObj-
app+=BuildExp(es[j], null, false, 0);
app+=" as ScmObj";
if(j<n-1)app+=", ";
}
appt="1, e)";
return r+app; //in case of it being return statement.

/ k%
* Builds and returns an AsmL conditional
* expression String.
*Q@param e The IfExp Conditional Expression.
*Q@param rtrn boolean, whether expression
* 1s return statement.
*Q@param blockDepth int, depth of indentation.
* Indentation is
* part of AsmlL syntax.
*@return AsmlL String
*/
private static String If(IfExp e,
boolean rtrn,
int blockDepth){
String s = new String(indent(blockDepth)+
"if(notFalse(");
s += BuildExp(e.getTest(), null, false, 0)+"))\n";
s += BuildExp(e.getCon(), null, rtrn, blockDepth+1)+"";
if(e.getAlt() != null)
s+="\n"+indent (blockDepth)+
"else\n"+
BuildExp(e.getAlt(), null, rtrn, blockDepth+1);
return s;

VAT
*A predicate, true IFF e is Defintion
*Q@param e ExpressionD
*@return boolean
*/
private static boolean Definep(ExpressionD e){
return (e instanceof Definition);
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VAT
*A predicate, true IFF e is LambdaExp
*Q@param e ExpressionD
*@return boolean
*/
private static boolean Lambdap(ExpressionD e){
return (e instanceof LambdaExp);
}
[ *%
*A predicate, true IFF e is IfExp
*Q@param e ExpressionD
*@return boolean
*/
private static boolean Ifp(ExpressionD e)<
return (e instanceof IfExp);
}
/*%
*A predicate, true IFF e is AppExp
*@param e ExpressionD
*@return boolean
*/
private static boolean Appp(ExpressionD e){
return (e instanceof AppExp);
}
/*%
*A predicate, true IFF e is a VarExp
*Q@param e ExpressionD
*@return boolean
*/
private static boolean Varp(ExpressionD e){
return (e instanceof VarExp);
}
VAT
*A predicate, true IFF e is LitExp
*Q@param e ExpressionD
*@return boolean
*/
private static boolean Litp(ExpressionD e){
return (e instanceof LitExp);
}
private static String indent(int n){
String idnt = "";
for(int i=0;i<n;i++)idnt+=" ";
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return idnt;
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Appendix E

Schasm

E.1 Scheme to AsmL compiler

This class coordinates the different components of the compiler.

public class Schasm{
FileReader FR;
FileWriter FW;
ListE1tD L;
ExpressionD E;

VAT
* Constructs a Schasm
* @param s The name of the source file.
* @param t The name of the target file.
*
*/

Schasm(String s, String t)throws Exception{
FR = new FileReader(s);
FWW = new FileWriter(t);

/*%
* Compiles from FR to FW
*
*/
public void compile()throws Exception{
L = LReader.read(FR);
try{
E = ScmParse.ParseExpression(L);
FW.write(AsmLDefs.addGlobalDef ((Definition)E));
}

catch(ParseException e){
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System.out.println(e.getMessage());

}

catch(Exception e){
System.out.println("Exception:"+e+"\n");

}
}
VAL
*Point of entry for whole Shebang.
*/
public static void main(String prms[]){
try{
Schasm S = new Schasm("rec/scm_exp.scm",
"rec/scm_exp.asml");
S.compile();
S.FR.close();
S.FW.close();
}
catch(Exception e){
System.out.println(e);
}
}

110



Appendix F

Java Class Hierarchy

F.1 Class Hierarchy

class java.lang.0Object
class AsmLDefs
class ExpressionD
class AppExp
class Definition
class IfExp
class LambdaExp
class LitExp
class VarExp
class JScheme
class ScmParse
class ListEltD
class Cons
class Literal
class Symbol
class ListToken
class LReader
class LWriter
class Schasm
class java.lang.Throwable (implements java.io.Serializable)
class java.lang.Exception
class ParseException
class BadSyntax
class ExpectsPair
class ExpectsProcedure
class ExpectsSymbol
class ExpectsVarExp
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