Institutt for Lingvistiske Fag Universitet i Oslo

Norwegian Word Order in

Head-Driven Phrase Structure Grammar

— Phenomena, Analysis, and Implementation —

HOVEDFAGSOPPGAVE

(June 20, 2003)

submitted by:

Liv Ellingsen
Rostedsgate 2
0178 Oslo (Norge)

livel®@hf.uio.no

Contents
1 Introduction

2 Surface structure of Norwegian sentences
2.1 Themainclause
2.1.1 Position of the finite verb
2.1.2 Objects e
2.1.3 Thesubject oo
2.1.4 Complex verbals, ...
2.1.5 Adverbials,
2.2 The subordinate clause,
2.3 Field Grammaro
2.3.1 Mainclauses
2.3.2 Subordinate clauses
2.4 Transformational generative theories

3 Head-Driven Phrase Structure Grammar
3.1 Whoand where
3.2 Means and mechanisms L.
3.2.1 Untyped feature structures
3.2.2 Untyped subsumption
3.2.3 Unification of untyped feature structures
3.2.4 Typed feature structures and the type hierarchy . . .
3.2.5 Well-formedness and type inference
3.3 Main characteristics of HPSG
3.3.1 A sign-based architecture
3.3.2 General principles
3.3.3 Grammarrules
3.3.4 Lexical types and the lexicon

4 Minimal Recursion Semantics
41 Whoandwhere
4.2 The representation oo
4.3 Semantic composition oL
4.4 MRS in typed feature structures

5 The LKB system
5.1 Who and whereo
5.2 Implementing a grammar
5.2.1 A basic grammar
522 Notation
5.2.3 Grammar components
5.3 Processing a grammaro
531 MRS
5.3.2 Parsing and generation L.
5.3.3 Processing efficiency

17
17
18
18
20
20
20
22
23
23
24
25
26

29
29
29
32
32

5.3.4 Testing the grammar

6 The LinGO Grammar Matrix
6.1 Whoand where,
6.2 Basic feature geometry L oL oL
6.3 Types for semantic composition
6.4 General classesofrules
6.5 Constructional types

7 Norwegian word order in HPSG
7.1 Themain clause
7.1.1 Norwegian vs. English
7.1.2 The inverted subject
7.1.3 The non-inverted subject
7.14 Topicalization
7.2 The subordinate clause
7.3 Declarative vs. interrogative clauses
74 Adjuncts

8 Norwegian word order in the Matrix and LKB
8.1 Constructional types oo
8.2 Adjuncts
8.3 Additional grammar features
8.3.1 Lexical types
8.3.2 Inflectional types
8.3.3 Additional constructional types

9 Conclusion

A Parse tree examples
A.1 Parse trees from section 7
A.2 Additional features L.

B LKB Grammar Sources

C Test corpora

ii

43
43
44
45
45
46

51
51
51
52
57
59
63
64
67

73
73
80
84
85
86
86

89

10

15

49

Tusen takk

This thesis is a result of far more than a year’s work and sweat on my part.
Over this time, a lot of people have helped me along, whether they know
it or not. I would therefore like to thank them all, now that the days of
swearing seem to come to an end.

First of all, I would like to thank my supervisor Jan Tore Lgnning for the
time and patience he has laid down in order to get me through this thesis.
I am very grateful for his continuous advice and open door throughout the
whole process, and, not to forget, for the occasional bit of firm but friendly
pressure.

Secondly, I would like to thank good friends in and outside of Oslo for
making the time spent outside of Blindern enjoyable and relaxing, and friends
at Blindern and at Hundremeter’n for adding fun and interest to my studies.
Thanks to Elin for all the coffee, to Hege for a great last year and to Leiv
for the company.

The main thank, though, goes to my parents Aud and Per, who very
much saved this thesis towards the end by spending vast amounts of time,
energy, care and love on me when I needed it, in the middle of their already
stressful daily life. They found the time to type up two of the sections of
this thesis when I was not able to do this myself.

Finally, thanks to Siv and Frgydis for great hospitality and a never-ending
supply of dandelions. And to Stephan: takk i lige made!

iii

v

INTRODUCTION

1 Introduction

This thesis is based on a course in computational linguistics at the Univer-
sity of Oslo, where we used the text book Syntactic Theory — A Formal
Introduction by Ivan A. Sag and Thomas Wasow (Sag and Wasow, 1999).
The book presents the grammar framework Head-Driven Phrase Structure
Grammar (HPSG) and its application to the English language.

One part of the course consisted of implementing a grammar fragment
for Norwegian based on the English grammar described in the book. With
no tools (but Prolog) at hand, constructing the grammar and its type system
from scratch, the grammar fragments ended up small and rudimentary. Still,
even at this basic level, interesting questions arose concerning Norwegian
word order in contrast to the English model grammar.

It turned out that although many basic constructions can be transferred
directly from English to Norwegian, Norwegian also includes basic clause pat-
terns that are not found in English, and that thus need different analyses and
implementations. The starting point of interest was the strict V2 constraint
in Norwegian declarative main clauses that is central to many Germanic
languages but not found in English, in combination with the possibility of
topicalization. To be able to combine these two phenomena, subject inver-
sion is far more common in Norwegian than in English, and well worth a
closer look.

As a natural continuation, my field of interest soon expanded to cover
the structural differences between Norwegian main and subordinate clauses
as well. How to account for the latter’s rigid SVO structure and at the
same time allow for the inverted, topicalized structures of the former in the
simplest possible way turned out to be a fascinating problem.

Finally, the differing placement of adverbials in the two clause types forms
an important part of the thesis’ objectives. Sentence adverbials can not only
be placed in different positions in the two clause types, their distributional
possibilities also vary from one group of adverbials to the other, within the
same clause type. A challenge, in other words, both to describe and to
implement.

In the essence, the goal of this thesis is to develop an analysis for Nor-
wegian that covers all of the above-mentioned phenomena concerning Nor-
wegian word order, and additionally to present an efficient implementation
of the analysis in HPSG, using a specialized grammar writing tool.

Overview

The first main section of the thesis introduces the exact data for Norwegian
that the analysis and the implementation will cover (section 2). As back-
ground, two formal frameworks used for describing the clause structure of
the mainland Scandinavian languages are reviewed, one (Field Grammar)
because it introduces ideas that are later used in the analysis, and the other
(Transformational Grammar) because it represents a very common view on

NORWEGIAN WORD ORDER IN HPSG

the mechanisms of Scandinavian clause structure that I still choose to oppose
against.

The four sections that follow the description of the language data (sec-
tions 3 to 6) all present the different theoretical frameworks and tools that
I have used to develop the analysis and implement it as an HPSG grammar
fragment of Norwegian.

The first of these sections presents the main characteristics of the gram-
mar framework HPSG. It is a non-transformational, constraint-based and
mostly lexicalist framework, and the name ‘head-driven’ reflects the impor-
tance of the information encoded in the lexical head of a phrase. Typed
feature structures are used to model linguistic objects, and multiple inheri-
tance type hierarchies are used extensively to express generalizations across
lexical items as well as phrases and constructions (section 3).

The following section gives a very brief introduction to the semantic
framework of Minimal Recursion Semantics (MRs), the semantic representa-
tion that is used in the grammar implementation. MRS is not an independent
semantic theory, but rather a meta language developed to fit the needs of
large computational grammars. It is thus developed with semantic trans-
fer and parsing and generation of natural language in mind. Though not
the main subject of this thesis, semantic representations are included in the
implementation because MRS is already incorporated in the basic grammar
Matrix, on which the Norwegian grammar has been built (section 4).

The third of the four background sections describes the grammar de-
velopment tool that has beeen used to construct the grammar fragment,
namely the Linguistic Knowledge Builder (LKB) system. The original course
implementation in Prolog was abandoned at an early stage in favor of the
opportunity to use this more advanced grammar development tool. It aids
the construction of the various grammar parts and the grammar’s type hi-
erarchy, and it also includes various ways of processing grammars, including
both parsing and generation. The LKB as a development environment made
it possible to build a far more extensive and sophisticated grammar, covering
more phenomena than originally intended (section 5).

As the fourth piece of background, section 6 presents the LinGO Gram-
mar Matrix, the basic type hierarchy on which the language-specific Norwe-
gian grammar fragment is built. The types are mainly taken from the HPSG
LinGO English Resource Grammar (ERG), but the goal of the Matrix is
to develop into a language-independent starter kit for grammar developers
that wish to build HPSG grammars for their own language. Said goal and
the fact that the type hierarchy is based on English fit very nicely into this
thesis’ wish to develop a grammar fragment for Norwegian in combination
with taking a closer look at some of the differences in the clause structure
between Norwegian and English.

As the main part of the thesis, section 7 presents my own analysis of
Norwegian word order and the relevant main vs. subordinate clause distinc-
tions. These distinctions include the V2 constraint, topicalization, the strict
SVO structure of subordinate clause structures, declarative vs. interrogative

INTRODUCTION

clauses and, finally, adjunct placement in main and subordinate clause struc-
tures. Firstly, the theoretical foundations of the analysis are introduced, and
it is shown how it accounts for the data described in preceding sections. The
analysis takes as its starting point both the linguistic frameworks of Field
Grammar and HPSG. It leans on existing work for English, but Norwegian-
specific solutions, required by the word order differences between the two
languages, are presented. Advantages and weaknesses of these solutions to
the challenges of Norwegian clause structure are then discussed.

The implementation of the analysis is presented in more technical detail
in section 8. Aspects of the type hierarchy are combined with comments on
the underlying motivations and interactions with other parts of the gram-
mar. To keep the section down to a manageable size, only the the relevant
aspects of the grammar that are directly related to the analyses of the main
phenomena are explained in some detail. This primarily includes the con-
structions that inherit from the basic constructional types in the Matrix and
the hierarchy of adjunct head types used to implement the distributional
possibilities of the different groups of adjuncts. Both the changes that had
to be made to the types in the Matrix to support my implementation and
the types for the Norwegian grammar inheriting from these (adjusted) basic
Matrix types are described.

For the really interested and skillful, even further technical details are
supplied in various appendices.

NORWEGIAN WORD ORDER IN HPSG

SURFACE STRUCTURE OF NORWEGIAN SENTENCES

2 Surface structure of Norwegian sentences

This section presents the data that I wish to take into account when implement-
ing a grammar fragment for Norwegian with focus on clause structure. I describe
the possible structures of Norwegian main and subordinate clauses, revealing the
differences between the two clause types that include the V2 constraint, topical-
ization and the placement of adverbials in a clause. Two attempts at describing
or explaining Norwegian (and Swedish and Danish) clause structure in a formal
framework are presented at the end of the section. Norsk referansegrammatikk
(Faarlund et al., 1997) and the Oslo-Bergen corpora of tagged Norwegian texts'
have been the main sources used in this section.

Norwegian belongs to the group of Germanic languages and exhibits great
similarities to its siblings on many linguistic levels. Syntactically, it shares
properties both with the closely related mainland Scandinavian languages
Danish and Swedish and with more distant related Germanic languages such
as English and German.

2.1 The main clause
2.1.1 Position of the finite verb

One of the main structural characteristics of a Norwegian declarative main
clause is the fact that only one phrase may precede the finite verb. This
is called the V2 constraint, a characteristic it shares with almost all other
Germanic languages with the exception of English. There are few constraints
on what type of phrase can be fronted, so although the subject will be
expected to front an otherwise unmarked main clause, different types of
objects and adverbials can also be placed in this position.

(1) a. Gyrd smilte da Inge lo.
Gyrd smiled when Inge laughed

b. Da Inge lo smilte Gyrd.

c. *Da Inge lo Gyrd smilte.

Also common for the V2 languages is the fact that direct yes/no questions
have the finite verb in the first position, while wh-questions follow the V2
pattern, fronted by a wh-word.

(2) a. Smilte Gyrd da Inge lo?
b. Hvem smilte da Inge 1o?

c. Nar smilte Gyrd?

!Web adress:http://www.tekstlab.uio.no/norsk/bokmaal/

NORWEGIAN WORD ORDER IN HPSG

2.1.2 Objects

With the exception of some personal pronouns, Norwegian words and phrases
are not marked morphologically for case. Syntactic roles are instead handed
out according to the ordering of constituents in the sentence. The result is
a relatively fixed constituent order, as is found in most Germanic languages
that have moved away from case marking, the mainland Scandinavian lan-
guages and English included. The objects in a Norwegian sentence follow the
order of Indirect Object - Direct Object - Prepositional Object when placed

behind the finite verb, as seen in the sentences in (3)2.

(3) a. Hun ga Inge boka.
she-nom gave Inge the-book

b. Hun ga boka til Inge.

c. *Hun ga til Inge boka.

2.1.3 The subject

As a consequence of the V2 rule and the possibility of fronting other elements
than the subject, the subject itself must have more than one possible position
in a Norwegian declarative main clause. If another element in the sentence is
structurally stressed by fronting, the subject must find a place for itself after
the finite verb. Due to the mentioned lack of case marking in Norwegian,
the syntactic role of the subject still has to be determined by the placement
of the element in the sentence. The subject will always be placed in the
position after the finite verb, preceding all objects, if the first position of the
sentence is already taken.

(4) a. Til Inge ga hun boka.

b. Boka ga hun til Inge.

2.1.4 Complex verbals

For main clauses that include both a finite verb and one or more non-finite
verbs, the V2 constraint still holds for the finite matrix verb. The infinite
verbs are placed before their objects (or other nominal components, like
predicatives), following the same pattern as for English main clauses and
contrasting with for instance German, where the infinite verbs typically are
placed at the end of the sentence. But contrasting again with English, the
Norwegian subject will keep its position right after the finite verb in con-
structions where another element is fronted, and so the finite verb and the
infinite verbs can be separated by the subject, as shown in sentence (5b) and
sentence (5¢). Wh-questions and yes/no questions follow the same patterns.

2 @yrd is here replaced by the case-marked pronoun hun to avoid multiple readings.

SURFACE STRUCTURE OF NORWEGIAN SENTENCES

(5) a. Gyrd hadde gitt boka til Inge.
Gyrd had given the-book to Inge

b. Boka hadde Gyrd gitt til Inge.

c. Til Inge hadde Gyrd gitt boka.

(6) a. Hvem hadde gitt boka til Inge?
b. Hva hadde Gyrd gitt til Inge?

c. Hadde Gyrd gitt boka til Inge?

2.1.5 Adverbials

The syntactic function adverbial covers a large and far from homogeneous
group of expressions. Adverbials can modify a verb, an adjective, adverbs
and adverbial phrases, or a clause as a whole.

In this thesis I will concentrate on a small collection of so-called sentence
adverbials®,due to their distributional possibilities in a Norwegian clause. All
the sentence adverbials used in my grammar are of the grammatical category
adverb, although other sentence adverbials can belong to as different cate-
gories as adjective phrases, prepositional phrases and subordinate clauses. I
will not go further into the possible semantic or syntactic classifications of
adverbs or adverbials than to give a brief presentation of some of the char-
acteristics of what are traditionally referred to as sentence adverbials, versus
bound adverbials and free adverbials.

Bound adverbials are obligatory modifiers, bound by the valence of the
verb. The type of adverbial is selected for by the verb, as seen in the sentences
in (7). Bound adverbials are placed after the verb(s), and usually after a
possible object. They can be fronted, and if the verb they are modifying
is fronted in combination with the word gjor/gjorde (do/did), the bound
adverbial must be fronted together with it.

(7) a. Hun bori Oslo .
she live in Oslo

b. *Hun bor.

c. *Hun bor gjennom Oslo.
she live through Oslo

d. I Oslo bor hun.

3Because of their distributional possibilities, names like nerus adverbial (Diderichsen
(1962), see section 2.3) and central adverbial have also been used in attempts at classifica-
tion of sentence adverbials. Different attempts at classification are presented in Heggelund
(1981). The classification used in this thesis is based on the classification made in Norsk
referansegrammatikk (Faarlund et al., 1997), leaning heavily on Heggelund (1981).

NORWEGIAN WORD ORDER IN HPSG

e. Boi Oslo gjgr hun.

f. *Bo gjgr hun i Oslo.

Free adverbials are not bound by the verb they are modifying in any way.
Possibilities for placement include at the front of a main clause, at sentence
end, or between the finite verb and the infinite verbs or the objects of a
main clause, on both sides of the subject. Their precise distribution varies
considerably according to their grammatical category and type of semantic
contribution. Time adverbials are among the more frequent inter-verbal
free adverbials, as shown in the sentences in (8), while for instance locative
prepositional phrases that function as free adverbials often are restricted to
stand at sentence end or in the fronted position. Free adverbials can choose
freely whether they want to move with the main verb when fronted, as shown
in sentence (8e) and sentece (8f).

(8) a. Gyrd ga boka til Inge i dag.
Gyrd gave the-book to Inge today

b. I dag ga Gyrd boka til Inge .
c. Boka ga Gyrd i dag til Inge.
d. Boka ga i dag Gyrd til Inge.
e. Ga boka til Inge gjorde Gyrd i dag.
f. Ga boka til Inge i dag gjorde Gyrd.

(9) a. Gyrd ga boka til Inge ved bordet.
Gyrd gave the-book to Inge at the-table

b. *Gyrd ga ved bordet boka til Inge.
c. Ved bordet ga Gyrd boka til Inge.

Sentence adverbials are also facultative, and they modify the whole
clause to which they attach. They are only loosely bound to the verb, and
they can not be fronted together with the main verb of the sentence, as shown
in sentence (10h). They usually express denial, confirmation or doubt, or
they tie the clause up to some part of the context.

Sentence adverbials are usually placed in the pre- or the post-subject
position between the finite verb and the infinite verbs or the objects of a
main clause, as shown in the sentences in (10). They can only seldom stand
at the end of a sentence unless they are extraposed. Some sentence adver-
bials are always light elements, and can therefore not be fronted, as seen in
sentence (10d). Another group can happily be stressed, and so also fronted,
as seen in sentence (11d).The last and small group includes the sentence ad-
verbials that can stand at sentence end in addition to be able to be fronted,
as shown in sentence (12e).

SURFACE STRUCTURE OF NORWEGIAN SENTENCES

(10) a. Gyrd ga sikkert boka til Inge.
Gyrd gave surely the-book to Inge

b. Til Inge ga Gyrd sikkert boka.

c. Boka ga sikkert Gyrd til Inge.

oM

. *Sikkert ga Gyrd boka til Inge.
e. *Gyrd ga boka til Inge sikkert.
f. ?Gyrd ga boka sikkert til Inge.

g. Ga boka til Inge gjorde sikkert Gyrd.

=

. *Ga sikkert boka til Inge gjorde Gyrd.

(11) a. Gyrd ga heldigvis boka til Inge.
Gyrd gave luckily the-book to Inge

b. Boka ga Gyrd heldigvis til Inge.

c. Til Inge ga heldigvis Gyrd boka.

e

Heldigvis ga Gyrd boka til Inge.
. *Gyrd ga boka til Inge heldigvis.

)

f. 7Gyrd ga boka heldigvis til Inge.

(12) a. Gyrd ga allikevel boka til Inge.
Gyrd gave still the-book to Inge

b. Boka ga Gyrd allikevel til Inge.
c. Til Inge ga allikevel Gyrd boka.
d. Allikevel ga Gyrd boka til Inge.
e. Gyrd ga boka til Inge allikevel.

f. 7Gyrd ga boka allikevel til Inge.

The sentences (10f), (11f) and (12f) are not marked clearly ungrammat-
ical. Even though a general rule claims that no other element is allowed
between the objects or between an infinite verb and an object in a Norwe-
gian clause, it can not be denied that adverbials sometimes are placed in this
position. It is difficult to distinguish adverbials that can do this succesfully
from those that definitely can not, as it is not just determined by the type
of adverbial, but also by the environment into which it is placed.

The important factors concerning this question are stress and length of
the elements involved. A light and short adverbial that is normally placed at
sentence end, for instance a preposition with no complement, will more likely

NORWEGIAN WORD ORDER IN HPSG

than a longer one be able to migrate to the left of a long, heavy object without
leaving the sentence ungrammatical. Following this, it is possible that also
long and/or heavy sentence adverbials are more successful at migrating to
the right of a lighter and shorter object than shorter and lighter ones.

I have no strong intuition about neither of the three sentences mentioned
above, but I find sentence (13) (where the adverbial is extremely light and
short) unacceptable, although jo has the same distribution as sikkert in all
other cases.

(13) *Gyrd ga boka jo til Inge
Gyrd gave the-book after-all to Inge

This phenomenon might be related to phenomena like heavy-NP shift and
scrambling, and it is probable that it is a question of performance rather than
of competence, i.e. a question of style rather than a rule belonging to the
core grammar, at least in the case of sentence adverbials. For simplicity, I
will rule out these dubious cases in the grammar.

In this thesis I will also not take into account an important generalization
that can be made concerning adverbials interleaving objects, namely the fact
that light pronouns not just can, but usually demand to stand to the left of
any sentence adverbials. This phenomenon is called object shift, and takes
place in all the Scandinavian mainland languages. Where sentence (13) is
ungrammatical, sentence (14a) is clearly grammatical. The sentence in (14b)
is also a possible construction, but it implies that a certain stress is laid on
den, so that it is no longer a light element.

(14) a. Gyrd ga den jo til Inge

b. (*)Gyrd ga jo den til Inge

2.2 The subordinate clause

Common for many of the Germanic languages is that the structure of the
subordinate clause differs from that of the main clause. In German and
Dutch, the V2 pattern is forsaken and the finite verb placed at the end
of the clause in a subclause. Strict structural differences between the two
clause types are also found in the mainland Scandinavian languages, although
the changes might not seem too dramatic on the surface. The subordinate
clause structure following a subjunction like da (when) in sentence (15) is
for instance apparently the same as in a main clause.

(15) [da] Gyrd ga boka til Inge.
One of the main structural differences is that the subject only has one

possible position in the subclause, to the left of the finite verb. Objects and
adverbials can not be fronted in the same way as in a main clause, as shown

10

SURFACE STRUCTURE OF NORWEGIAN SENTENCES

in sentence (16a) and (16b)*. This rigid structure accounts for labeling Nor-
wegian an SVO language, a claim widely accepted in contemporary linguistic
theories.

(16) a. (*) [da] boka ga Gyrd til Inge.®

b. * [da] boka Gyrd ga til Inge.

The other main difference is the distribution of adverbials in the clause.
The possible adverbial positions after the finite verb, before any of the objects
in a main clause do not exist in a subordinate clause. As a consequence, the
questionable placement of sentence adverbials between objects in the main
clause is here clearly ungrammatical.

(17) a. * [da] Gyrd ga sikkert boka til Inge.
b. * [da] Gyrd ga boka sikkert til Inge.

c. * [da] Gyrd ga den sikkert til Inge.

Instead, and breaking down the V2 constraint, sentence adverbials can
be placed before the finite verb, after the subject, as shown in sentence (18a).

(18) a. [da] Gyrd sikkert har gitt boka til Inge.

The place before the subject is in theory also open for adverbials, but
only a small collection of adverbials occupy this position on a regular basis
in real life, and then often in connection with specific subjunctions. The
sentence adverbial ikke (not) is among the most frequent occupants of the
position, in combination with subjunctions like hvis (if).

Other frequently occurring adverbials include for instance bare (only)
and ogsd (too). These adverbials are troublesome, as they belong to the
group of focussing adverbs, a group of adverbs that can modify entities on
different levels in a sentence. Due to this, their distributional possibilities
are more complex than for sentence adverbials, which can only modify the
clause as a whole. When placed in the pre-subject position, it can be hard
to decide whether a focussing adverb modifies the subject or the clause.

None of the (very common) sentence adverbials that I have chosen for
my grammar implementation can be found in the pre-subject position of
a subordinate clause during search in the Oslo-Bergen corpora of tagged
Norwegian texts. I therefore choose to view sentence-modifying adverbials
placed in this position as an exception rather than as a rule, and I will
not look further into the question of whether any type of clause-modifying
adverbials can fill this position.

4For the well-informed reader: the small but important exception to this rule follows
on page 12.
5Only correct for the reading where the book gave Gyrd to Inge.

11

NORWEGIAN WORD ORDER IN HPSG

(19) a. 7?7 [da] sikkert Gyrd har gitt boka til Inge.

b. [hvis] ikke Gyrd har gitt boka til Inge.

Under some circumstances it is possible for a clause to have the structure
of a main clause and still function as a subclause. This includes all subclauses
headed by the subjunction at, where it is optional whether the clause should
have main or subordinate clause structure.

(20) a. [at] Gyrd sikkert har gitt boka til Inge.

b. [at] boka har Gyrd sikkert gitt til Inge.

2.3 Field Grammar

The traditional way of describing clause structure in Norwegian is based
on the field-based approach to syntax originating with Diderichsens Field
Grammar for Danish from 1946 (Diderichsen, 1962). The version presented
here is taken from Norsk referansegrammatikk (Faarlund et al., 1997) and is
slightly adjusted for Norwegian.

The two different clause structures described in the previous sections
result in two different clause patterns, one applying to main clauses (see
figure 1) and one to subordinate clauses (see figure 3). Each pattern is
divided into three main fields, where the two last fields are divided into
positions according roughly to the sort of elements that can occupy that
position in a clause.

The first position, in the main clause schemata called the fundamental
field or the front field, in the subclause schemata called the complementizer
field®, does only contain one element. In the main clause it will be the
fronted element, in the subclause the subjunction. Following this field in
both patterns comes first the nexus field and then the content field. The
main difference between the patterns is located in the nexus field.

2.3.1 Main clauses

The nexus field of a main clause is divided into positions for verb, adverbials
and a nominal, in the order of v-a-n-a as seen in figure 1. The V2 constraint is
reflected by the claim that the v-position must always be filled by the finite
verb in a main clause, in combination with the claim that the F-position
must always be filled in a declarative main clause The nominal position is
the obligatory subject position after the finite verb.. Positions might be
empty, and we see that the n-position is empty if a subject is fronted. A-
positions can be filled with an arbitrary number of adverbials’.

STranslation of the field names from Norwegian following Platzack (1985) and Sells
(2001)

"In cases of multiple adverbials in one position, or in cases where both a-positions are
filled, the ordering of the adverbials is not free. See Nilsen (2000) for further information
on this topic.

12

SURFACE STRUCTURE OF NORWEGIAN SENTENCES

The content field includes positions for infinite verbs, objects and other
adverbials, in this order. All can contain more than one element, and all can
be empty, depending on the construction of the sentence.

Interrogative clauses also follow this pattern, as seen in figure 2. In
yes/no questions the fundamental field has to be empty, while wh-questions
require it to be filled by a wh-word.

Fund. field | Nexus field Content field

F v al n a2 A% N A
Inge ga - - - - boka til Gyrd -
Boka ga sikkert Inge - - til Gyrd -

Til Gyrd ga - Inge sikkert | - boka -
Boka har - Inge sikkert | gitt til Gyrd -
Heldigvis kan jo Inge sikkert | gi boka til Gyrd i dag

Figure 1: Diderichsen’s main clause scheme, adjusted for Norwegian

Fund. field | Nexus field Content field

F v al n a2 V N A
- Ga - Inge sikkert | - boka til Gyrd?
Hva ga sikkert Inge - til Gyrd?

Hvem har - - sikkert | gitt boka til Gyrd?

Figure 2: Interrogative clauses in Diderichsen’s scheme

2.3.2 Subordinate clauses

The nexus field of a subordinate clause is also divided into positions for verb,
adverbials and a nominal, but as seen in the pattern shown in figure 3 the
ordering here is a-n-a-v. The n-position is the only possible subject position
in this pattern, while the v-position is the only possible position for the finite
verb, just as in the main clause pattern. The content field equals the content
field of the main clause pattern.

2.4 Transformational generative theories

The name ’complementizer field’, here used for the first field in the subordi-
nate clause pattern in field grammar, originates in formal theories of gram-
mar that view the mechanisms behind the ordering of constituents in a clause

13

NORWEGIAN WORD ORDER IN HPSG

Comp. field | Nexus field Content field

f al n a2 v A% N A
da - Inge sikkert ga | - boka til Gyrd -
at - Inge sikkert har | gitt boka til Gyrd -
dersom ikke Inge - har | gitt boka til Gyrd -

Figure 3: Diderichsen’s subordinate clause scheme, adjusted for Norwegian

differently, though slightly related. The idea, that is especially adopted by
GB theoreticians, is that the varying structures of a language are derivations
of one basic structure, made by transformations on this structure. Condi-
tions for transformations, imposed on the grammar by the grammar writer,
are supposed to limit the number of possible derivations to the set of deriva-
tions that are considered grammatical for the language.

When it comes to the Scandinavian languages, subordinate clause struc-
ture is considered to be the basic structure, mainly due to its strict SVO
word order and the fact that the verbal always is placed together as one
unit. The inverted and non-inverted main clause structure is so supposed to
be a derivation of the subordinate clause structure.

The complementizer in a subordinate clause occupies a position labelled
Comp or C that is open both to complementizers and to exponents of tense,
such as the finite verb. The inverted structure is derived from the basic
structure by moving the finite verb to the C position. Any remaining con-
stituent from the basic structure is then moved to the left of C to derive a
main clause structure with a fronted subject, object or adverbial.

Platzack (1985) presents an overwiev of some of the transformational gen-
erative analyses of the V2 phenomenom in Swedish, Danish and Norwegian.
In one of these analyses, the distribution of certain sentence adverbials in
main and subordinate clauses are said to support the movement-to-C analy-
sis. It claims that possible adverbial positions before and after the subject in
a subordinate clause structure result in the corresponding adverbial positions
before and after the inverted subject in a main clause structure.

As earlier mentioned, the adverbial position before the subject in a subor-
dinate clause is questionable, and seldom used in an unambiguous manner®.
Since one of the advantages to the movement analysis should be that the part
of the structure that is not moved should remain constant, this might be an
argument against this analysis. The adverbial position before the inverted
subject in a main clause is used on a regular basis, occupied by adverbials
that would leave a subordinate clause ungrammatical, should they occur

8The example given in Platzack (1985), ..., da pludselig en af mine Venner traade ind i
Stuen (..., when suddenly one of my friends entered the room), is admittedly a grammatical
construction, also in Norwegian. One other example of a subordinate clause beginning
with da plutselig was also found in the Oslo-Bergen Corpora of tagged Norwegian texts.
Interestingly enough, the combinationda plutselig was also found in one other construction,
namely as one constituent fronting a declarative main clause, before the finite verb.

14

SURFACE STRUCTURE OF NORWEGIAN SENTENCES

before the subject there.

In Hellan and Nordgard (2000), it is also argued against this type of
analysis and the existence of the C position, based on the distribution of
sentence adverbials as well as on object shift (for similar reasons as men-
tioned above) and the variation in clause patterns found in different Nor-
wegian dialects. Their view on clause structure, “in favor of recognizing the
patterns surveyed as somehow basic by themselves” (Hellan and Nordgard,
2000, pg. 144), is adopted for the work on this thesis. I will consequently
try to implement the phenomena described in this section by the help of a
non-transformational analysis, and so I have chosen one of the important
non-transformational grammar frameworks to aid me, namely Head-driven
Phrase Structure Grammar, which is presented in detail in the next section.

15

NORWEGIAN WORD ORDER IN HPSG

16

HEAD-DRIVEN PHRASE STRUCTURE GRAMMAR

3 Head-Driven Phrase Structure Grammar

This section gives an introduction to Head-driven Phrase Structure Grammar (HPSG),
the formal grammar framework that I have used to develop my analysis of Norwe-
gian. The first main section presents the theory of typed feature structures and the
construction and inner workings of the type hierarchy. In the last main section, the
main charachteristics of the theory is described, includin the sign-based architec-
ture, the general principles, the grammar rules and the lexical types For a further
introduction to the framework, see Sag and Wasow (1999).

HPSG is one among many grammar frameworks contrasting with the
transformational approach to generative grammar in that they are constraint-
based and mostly lexicalist. ‘Constraint-based’ implies that the grammars
are based on constraint satisfaction rather than transformational derivation,
and ‘lexicalist’ (in this context) that words are the atomic entity of the
syntax, their internal structure not playing any role in the construction of
sentences.

The ancestor of HPSG, Generalized Phrase Structure Grammar® (GPsa),
was based on the assumption that standard context-free phrase structure
grammars could be enriched so as to make them suitable for describing natu-
ral language syntax'?. Some of the central ideas in GPSG, like a feature-based
analysis of filler-gap dependencies to treat long-distances dependencies, can
be found almost unchanged also in its descendant, while new developments
included among other things the attempts at incorporating data type the-
ory and situation semantics into the theory. As HPSG evolved from GPsG,
‘Head-Driven’ was chosen to reflect the recognized importance of informa-
tion encoded in the lexical heads of syntactic phrases.

3.1 Who and where

Attempts at computational implementation of HPSG was made early, as in a
project supported by Hewlett-Packard Laboratories in Palo Alto, California,
from 1980 to 1991. Contributions to its theoretical framework was made
(among others) at the Center for the Study of Language and Information
(csui) at Stanford, California, and the theoretical basis was developed mainly
by Carl Pollard and Ivan Sag in Pollard and Sag (1987) and Pollard and Sag
(1994), by Ivan Sag and Tom Wasow in Sag and Wasow (1999) and by
Jonathan Ginzburg and Ivan Sag in Ginzburg and Sag (2001). Additional
work can be found in major articles by various researchers.

Multiple inheritance hierarchies were used in early work on HPsG!! to sim-
plify the lexicon, expressing cross-classifying generalizations about words.
The same approach was later applied by other linguists to treat general-
izations about phrases and constructions in terms of cross-classifying type

9See Gazdar et al. (1985)

'0This assumption has also been the basis idea for many other generative linguistic
theories, such as Lexical Functional Grammar and Government and Binding.

'1Gee Flickinger et al. (1985), Flickinger (1987), Pollard and Sag (1987) and more.

17

NORWEGIAN WORD ORDER IN HPSG

hierarchies. In Sag and Wasow (1999) the type system and type-based in-
heritance is a fully integrated part of the theory, in fact becoming one of its
main characteristics. The possibilities of the type system is used extensively
to provide analysis for interrogative constructions in English in Ginzburg and
Sag (2001), in combination with the use of default constraints'? introduced
by Lascarides and Copestake (1999).

3.2 Means and mechanisms
3.2.1 Untyped feature structures

Feature Structures are sets of feature-value pairs, used to model linguistic
objects and represent grammatical information. There is a finite set of pos-
sible features, which are all atomic symbols. The value of a feature is either
an atomic symbol or a new feature structure. They can be thought of and
represented as directed graphs which have one unique root node, and edges
leaving this node labeled with feature names. The edges leaving the root
node point to daughter nodes properly labeled (if the value is an atomic
symbol), or with new edges departing from it (in the cases where the value
is a new feature structure). A feature structure has to have a finite num-
ber of nodes, and it can not contain cycles. The features labeling the edges
leaving a node must be unique within that node.

3rd
PHON Per
PERS o
[¢] CAT .
sing
(o] 0O ...
(o) o)
o)
NUM
SYNSEM o...
fem
CONT
GEND 0

Figure 4: Directed acyclic graphs

Even if this representation is very useful for understanding some aspects
of working with feature structures, like value sharing and unification, the
structures are more conventionally represented as attribute-value matrices
(AvMs) as seen in figure 5.

Feature structures can be reentrant, meaning that the structures contain
features that share the same value. This is not the same case as when two or
more edges in the graph lead to different nodes labeled with the same label,
but the thought that the edges share exactly the same node in the graph, as
illustrated in figure 6. In an AvM notation, reentrancy is indicated by boxed
integers as seen in figure 7.

12Default constraints will not be used or further discussed in this thesis.

18

HEAD-DRIVEN PHRASE STRUCTURE GRAMMAR

PHON ‘Per’ PERS 3rd
CAT [] NUM sing
SYNSEM
CONT [| GEND fem

Figure 5: AvVMs

HD-DTR AGR NUM Sg
o . 0 0 0
0 —4 o . 0 o 0
NH-DTR AGR NUM sg
HD-DTR AGR NUM
o . o o
0 —4 o . 0 o 0
NH-DTR AGR NUM sg
HD-DTR SUBJ
o 0 0
0 0 0
SYNSEM

Figure 6: Re-entrant and non-reentrant directed graphs

SYNSEM | LOCAL | CAT | HEAD
HD-DTR | SYNSEM | LOCAL | CAT | HEAD

Figure 7: Reentrancy in AvM notation

19

NORWEGIAN WORD ORDER IN HPSG

3.2.2 Untyped subsumption

Feature structures can be partially ordered by specificity, using the notion of
subsumption. A more general feature structure F; can be said to subsume a
less general structure Fy (Fy C Fy). F, will then contain all the information
present in Fj, and possibly also additional information, as seen in figure 8.

[GEND fem] c lGEND fem]

PERS 3rd

HD-DTR | SS | CAT | AGR HD-DTR |SS | CAT |AGR [sg
SS| CAT | AGR SS| CAT | AGR

Figure 8: Subsumption

Explained using DAG notation, the root node in the graph representing
F, must have at least the same number of edges leaving it as the root node in
the graph representing Fi, labeled with the same feature names and pointing
to nodes with the same labels as in F. If two edges lead to the same node in
F, the corresponding edges in Fy must do the same (reentrancy present in Fj
must also be included in F»). Once this has been verified, these constraints
in turn apply to the sub-graphs starting from each node hit by an edge from
the root node, and the procedure is repeated until each sub-graph of F} has
been tested against the equivalent sub-graph of F5. F5 can contain additional
edges, and can also specify reentrancy not present in Fj.

If we find that all paths in F are also present in F5, that the value of the
corresponding paths in F} and F5 is the same for all paths in F;, and that all
paths that are reentrant in Fj are also reentrant in Fy, then F; subsumes Fb.
If not, the two feature structures are inconsistent (depicted by L).

3.2.3 Unification of untyped feature structures

Unification (depicted as L) is the operation of combining two feature struc-
tures into the most general feature structure which contains all the infor-
mation from the two original structures. The unification of two feature
structures F; and F» is then the most general feature structure F3 which is
subsumed by both F; and F5. Unification is said to fail if there are one or
more features in the two structures which have conflicting values (depicted
by L).

3.2.4 Typed feature structures and the type hierarchy

“Typed feature structure grammars are essentially based on one
data structure - the typed feature structure, and one operation
- unification. The type system contains the allowable structures

20

HEAD-DRIVEN PHRASE STRUCTURE GRAMMAR

PERS 3rd
PERS Jrd
[GEND fem] L NUM sg
NUM sg
GEND fem
HD-DTR|... |NUM
U [HD—DTR|... | NUM sg]
NH-DTR|... |[NUM
HD-DTR|... |[NUM sg
NH-DTR|... |NUM

Figure 9: Unification of feature structures

and provides a way of capturing linguistic generalizations. This
combination is powerful enough to allow the grammar developer
to write grammars and lexicon that can be used to parse and
generate natural language.” Copestake (2001)

Typing of feature structures has been developed to achieve two goals: as
a method to constrain what can be the value of a feature, and to be able to
capture generalizations across feature structures.

In a DAG representing a typed feature structure, every node in the graph
must have a single type. Atomic values are replaced by (atomic) types. Ev-
ery feature structure is labeled by a type, and each type has appropriateness
conditions that define which features are appropriate for it and what con-
straints are laid on the feature values. The constraint on a type t is itself a
feature structure of type ¢, as seen in figure 10.

Type | Appropriate features Constraint
png PERS PERS person
NUM NUM number
GEND GEND gender
png
person person

Figure 10: Appropriateness conditions for types, with appropriate features
and type constraints

The types are organized in a type hierarchy with a single most general
top type, as sketched in figure 11. All types that exist must have a known
position in the hierarchy (closed world assumption). The hierarchy can not
contain cycles, but do allow for multiple inheritance. By multiple inheritance
all the parents of the type must unify. The properties of a supertype are in-
herited by all of its subtypes, meaning that e.g. features found appropriate

21

NORWEGIAN WORD ORDER IN HPSG

for one type will also be appropriate for all the subtypes of this type, and
that constraints on instances of a particular type will also be inherited to all
its subtypes (monotonic inheritance). The constraint on a type must conse-
quently be subsumed by the constraints on all its parents. Features can only
be introduced at one place in the type hierarchy, and so feature structures
with a common feature will all be descendants of a common supertype. If
two types in the hierarchy are compatible, it is stipulated that they must
and will have a unique most general common descendant (called the greatest
lower bound).

Adding to the notion of subsumption according to this, a type z subsumes
a type y either if they are the same type, or if y is a subtype of z. This
holds for all well-formed instances of the the types z and y, as introduced in
section 3.2.5.

top
so%[\nn
.7 gender . sign synsem png
masc-or-fem neut L
masc fem phrase lex-item

Figure 11: Excerpt from possible type hierarchy

3.2.5 Well-formedness and type inference

Not all typed feature structures (TFss) described in this and following sec-
tions will be well-formed with regard to its set of type constraints. One of the
very reasons for type constraints is to keep descriptions of the TFss down to
a manageable size by allowing generalizations. Non-well-formed structures
are made into well-formed ones via type inference.

For a TFs to be well-formed, all substructures in the TFs must fulfill two
criteria concerning appropriate features for a type and type constraint!®:
1) The top-level features of every substructure must be the appropriate fea-
tures for the type on the structure’s root node, none missing and none added.
2) Every substructure must also satisfy the constraint on the type on its root
node, meaning every substructure of the TFs must be subsumed by the con-
straint corresponding to the type on the substructure’s root node.

Type inference returns the most general well-formed structure which a
non-well-formed structure subsumes, if there is such a structure. To achieve
this, the type on each node in the structure is first specialized to the most

Bfrom Copestake, 2001, pg. 68.

22

HEAD-DRIVEN PHRASE STRUCTURE GRAMMAR

general type for which all the node’s features are appropriate, as seen in
figure 12. Missing features are added to the node if they are appropriate
features for the type on the node. Then it is made sure that all the resulting
substructures are subsumed by their type constraint. For this purpose the
constraint and the substructure is unified using well-formed unification. The
result of a well-formed unification of two TFss F; and F5 is the most general
well-formed TFS which is subsumed by both F; and F5. The resulting TFS
is certain to be subsumed by the type constraint, and it replaces the old
substructure. All the information needed to build a well-formed structure is
derived from the type system, and local constraints are expanded into full
constraints following the principles of inheritance described in section 3.2.4.
The type hierarchy must still be finite after type inference.

PERS person

. *[GEND gender] = [GEND gender] = NUM number
top pn
! GEND gender

png
PERS sort PERS person
NUM number = NUM number
GEND gender GEND gender

png png

Figure 12: Non-well-formed TFss made into well-formed TFss through type
inference.

3.3 Main characteristics of HPSG
3.3.1 A sign-based architecture

The HPsG tradition uses a sign-based conception of grammar. The notion of
‘sign’ originates with Ferdinand de Saussure (1857-1913), a ‘sign’ in his view
being an entity which associates form with meaning. Words and phrases
can thus both be viewed as signs, insofar as they both combine form with
meaning, and this might ideally allow us an equal treatment of the two
variants of linguistic expressions. The type hierarchy of an HPsG grammar
will typically contain the type sign (as in the sketched type hierarchy in
figure 11), which will then be a supertype of both lexical and phrasal types,
containing a feature like PHON (phonology) and a feature SYNSEM, which
gives us both syntactic and semantic information.

Natural subtypes of sign could be lez-item and phrase, where lez-item
can branch out into a hierarchy of lexical types discussed in the section 3.3.4.
With the help of the type phrase and its subtypes, it is possible to no longer
treat grammar rules as a special kind of theoretical entity, but to model them
as feature structures using exactly the same description language, mech-

23

NORWEGIAN WORD ORDER IN HPSG

anisms and machinery as for words and lexemes, making the similarities
between lexical and phrasal signs visible. With the help of features like
DAUGHTERS Or HEAD-DTR and NON-HEAD-DTR the subtypes of phrase can de-
scribe different kinds of linguistic phrase structure trees in terms of feature
structures. Generalizations across different sorts of rules can be captured in
the simple way that they hold for certain types of phrases and not for oth-
ers, as for example the property headedness which is mentioned in the next
section. Different types of phrases will be organized in the type hierarchy in
the same way as sorts and lexical entities, as seen in figure 13.

phrase

. .m-phrase

head-comp-phrase head-subject-phrase

Figure 13: Excerpt of possible type hierarchy below phrase

3.3.2 General principles

Principles of the theory are formulated as general principles capable of cov-
ering all the needed cases without worrying about unimportant differences
between the constituents involved from time to time.

As an example, one of the main principles, the Head Feature Principle,
is a generalization over the fact that certain properties of the mother in a
phrase are always identical to those of the most important daughter of the
phrase, for this reason called the head daughter. In terms of the HPSG theory,
this means that certain feature values of the mother are always identical to
the values of the corresponding features of the head daughter, i.e. that the
values are shared between mother and daughter. To reflect this, the signs
are given a feature HEAD, which value is a feature structure containing all
the (head) features that always have shared values in the two signs. The
head feature principle can then be expressed simply as seen in figure 14.

[HEAD] - ... H[HEAD}

Figure 14: The Head Feature Principle

Thanks to the type hierarchy, it is possible to apply this general principle
in a simple and elegant way to a grammar by implementing it as a type.

For the practical implementation in the type hierarchy, the head features
are collected as appropriate features for a type head, with various subtypes
for the different constraints laid on different lexical types, or for additional
appropriate features. A TFs of type sign would then on some level have the

24

HEAD-DRIVEN PHRASE STRUCTURE GRAMMAR

appropriate feature HEAD, which would be constrained to have a value of
type head.

We build the general principle into our grammar by adding the type of
headed-phrase to the type hierarchy, with the appropriate feature HD-DTR
(head-daughter) for recognizing the daughter with which the HEAD value
is to be shared, as seen in figure 15. By adding the constraint of shared
HEAD values without any further specification of the phrase, we get a general
type implementing a general principle from which a diversity of other phrase
types can inherit. Grammar rules for which the head feature principle should
apply will be subtypes of headed-phrase, inheriting its constraint in addition
to applying own constraints.

SYNSEM [LOCAL | CAT | HEAD]

HD-DTR [SYNSEM | LOCAL | CAT | HEAD]
headed-phrase

Figure 15: Constraints on TFss of the type headed-phrase

Other principles are implemented in a similar way, including the valence
principle, the semantic inheritance principle, the semantic compositionality
principle, the GAP principle and others. See for instance Sag and Wasow
(1999) for further details.

3.3.3 Grammar rules

The trouble of writing the grammar rules of an HPSG-based grammar is
greatly reduced as a result of the linguistic generalizations made possible
by working with phrases as feature structures on the same level as lexical
items and incorporating them into the type hierarchy. The general prin-
ciples and constraints can be introduced separately and on a higher level
as the more construction-specific constraints imposed on realistic grammars
of natural languages. Construction-specific types with construction-specific
constraints inherit appropriate constraints from the types implementing the
general principles needed in the construction at hand. The head-subject
rule depicted as general rule in figure 16, would so in the type hierarchy in-
herit from the type headed-phrase in addition to imposing its own constraint
shown in figure 17.

Parts of the Matrix, the basic type hierarchy presented in section 6, is
exactly what is mentioned here: the general principles implemented as basic
types, on which more language specific grammar rules can be build.

[SUBJ()] — [, H[SUBJ]

Figure 16: Head-Subject Phrase Structure Rule, head-final version

25

NORWEGIAN WORD ORDER IN HPSG

SYNSEM [LOCAL|CAT|VAL|SUBJ ()]

HD-DTR [SYNSEM | LOCAL | CAT | VAL | SUBJ)]

NH-DTR
head-subj-phrase

Figure 17: Constraint on TFss of the type head-subject-phrase, order-inde-
pendent

3.3.4 Lexical types and the lexicon

HPSG is considered a theory based on strong lexicalism, in the sense that
most of the syntactic information is located in the lexicon instead of in other
components like the grammar rules (like e.g. standard CFG). Grammar rules
and principles are tried kept simple and with a wide application throughout
the grammar, with questions like e.g. subcategorization and possible modi-
fication all determined in the lexicon and the single lexical entry.

The lexicon is organized via a hierarchy of lexical types, each expressing
lexical generalization that make building the lexicon much simpler and less
time-consuming. It catches shared properties across different word classes
and lexemes, the most general type encompassing all in lez-item. Multi-
ple inheritance allows us to organize information in multiple dimensions,
like part-of-speech and argument selection, each lexeme then inheriting from
subtypes from both of these dimensions as seen in figure 18. Figure 19 illus-
trates some of the many types needed to build the type tv-lzm in figure 20
according to this.

lex-item
word lexeme
pos arg-selection

prep-Ixm verb-lxm trans-lxm itrans-lxm

tprep-lxm iv-lIxm

Figure 18: Excerpt of possible type hierarchy below lex-item

26

HEAD-DRIVEN PHRASE STRUCTURE GRAMMAR

LOCAL | CAT | HEAD |]] VFORM vform
verb
verb-lxm PRED bool
AUX bool
verb
LOCAL | CAT | VAL |]] [COMPS ()]
itrans itrans

itrans-lem

Figure 19: Constraints on a few types needed to build iv-lzm

[VFORM uform |
HEAD | PRED bool
AUX bool
LOCAL | caT| verb
suBJ ([)
VAL [SPR ()
COMPS ()
L itrans _

w-lzm - -

Figure 20: Simplified example of iv-lzm, based on the two dimensions part-
of-speech (verb) and argument selection (itrans)

27

NORWEGIAN WORD ORDER IN HPSG

28

MINIMAL RECURSION SEMANTICS

4 Minimal Recursion Semantics

This section gives an introduction to Minimal Recursion Semantics (MRS), the
semantic representation incorporated in the Matrix and also used in the LinGO
ERG. The introduction is brief, as the semantic representations produced by the
implemented grammar fragment are not the main subject for this thesis. Still,
semantics are an integrated part of the implementation and in a few cases help to
constrain syntactic analyses, hence a basic knowledge of the theory behind MRS and
the mechanisms at work is necessary for a better understanding of the grammar.
Details on MRS can be found in Copestake et al. (1999).

As its origins in the Verbmobil project would suggest, Minimal Recursion
Semantics is a framework for semantic theory developed to suit the needs
of large computational grammars, and designed to be used for parsing, gen-
eration and semantic transfer, all in combination with linguistically precise,
hand-built grammars. MRs is derived from existing theories of semantics,
but it is constructed as a meta language for describing semantic structures,
not as an independent semantic theory in itself. As such, it is depending
on an underlying object language, like predicate calculus with generalized
quantifiers, which is the object language assumed in Copestake et al. (1999).

The framework is surface-oriented and, as the name specifies, aims at
non-recursive structures in the representations. Its goal is to be able to
decompose, relate and compare semantic structures in an easy way, plus
to allow for underspecifiacation in the representation without losing neither
expressive accuracy nor compuational efficiency and control.

The possibility of underspecification of the representations is important,
for instance when it comes to quantifier scope. Resolving quantifier scope
ambiguities is a difficult task, and additionally often quite unnecessary for
some classes of NLP tasks, as for example machine translation. MRs makes
it possible to ignore scope when it is not needed, but also to retrieve it when
necessary.

4.1 Who and where

MRS was used for the semantic representation in the English HPSG grammar
in the Verbmobil project. It has been presented in several papers, including
Copestake et al. (1995), Copestake (1995), Copestake et al. (1999) and lately
in Copestake et al. (2001)

4.2 The representation

The basic units in MRS are elementary predications (EPs), a single relation
with its arguments.

EPs are never embedded into each other, and to be able to flatten the
semantic structures even further without losing control, each EP is supplied

29

NORWEGIAN WORD ORDER IN HPSG

with a handle that serves as the label for the Ep'*. A scopal EP will have
labels in its scopal argument slots, and all Eps filling the same scopal slot will
have the same label. Hence, Eps sharing the same label are assumed to be
conjoined. The conjunction symbol is omitted to flatten the structure and
so avoid that logical properties of the conjunction create formal differences
between otherwise equivalent structures.

The conventional representation of sentence (21a) in predicate calculus
is shown in (21b). In (21c), the logical form is replaced by a flat list of EPs,
i.e. the conjunction is removed, and each EP is given a label (h0 to hn). The
conjoined EPs all share the same label, and the two argument slots in the EpP
for the quantifier alle are filled with the labels of the Eps that occupied this
slot in (21D).

(21) a. Alle store gule lgvetenner blomstrer.
all big yellow dandelions bloom

b. alle(z,(stor(z) & (gul(z) & (lpvetann(z)))), blomstre(z))

c. ho:alle(z, h1, h2), h1:stor(z), h1:gul(z), hl:lgvetann(z),
h2:blomstre(z)

What distinguishes the MRS representation from a plain rewriting of the
logical form, is the fact that handles in the argument positions of an EP can
be left underspecified. The example sentence in (21a) does not lend itself to
illustrating the usefulness of underspecification, as the only possible scope-
resolved representation of the sentence is shown in (21b). Sentence (22a), on
the other hand, allows for the two differing representations shown in (22b)
and (22c), according to which quantifier is given wide scope.

(22) a. Alle gutter beundrer ei ~ blid jente
all boys admire some smiling girl

b. alle(z, gutt(z), ei(y, (blid(y) & jente(y)), beundre(z,y))

c. ei(y, (blid(y) & jente(y)), alle(z,gutt(z), beundre(z,y))

By letting the handle variables hA and hB replace specified labels in the
scopal argument slot of the quantifier EPs, the representation shown in (23)
is a generalization that covers (22b) as well as (22¢) . The conditions on
retrieving the fully spedified representation from an underspecified represen-
tation are that 1) no argument can be left unsatisfied and 2) an EP can only
fill one argument position.

(23) hoO:alle(z, hi, hA), h1:gutt(z), h2:blid(z), h2:jente(y), b4 ei(y, h2, hB)
h4 :beundre(z,y)
"“The word label is used for the handles labeling EPs, whereas the word handle is used

for variable handle arguments in argument positions of an EP, as presented later in the
section.

30

MINIMAL RECURSION SEMANTICS

In (23), the restriction of each quantifier is directly filled by a label,
because this is the only possible representation for the sentence. This can
not be made a general rule, though, because more complex cases demand
further underspecification to make the underspecified representation cover
all possible representations of a sentence. Still, complete and unconstrained
underspecification would lead to unwanted representations, as shown in (24a)
and (24b), based on (23).

(24) a. hO:alle(z, hA, hB), h1:stor(z), h1:gul(z), hi:lpvetann(z),
h2:blomstre(z)

b. hO:alle(z, h2, h1), h1:stor(z), h1:gul(z), hi:lgvetann(z),
h2:blomstre(z)

To avoid this, it is possible to express constraints on handle variable
instantiation. The form of handle constraint used in Copestake et al. (1999)
is called a ‘qeq’ constraint (=4, for equivalence modulo quantification), a
specific form of the outscopes relationship. An EP F immediately outscopes
another EP E’ if the value of one of the handle-taking arguments of E is the
label of E’. If a handle argument hA is geq a label k1, either that argument
slot must be filled directly by k1, or it must be filled by the label of another
quantifier that has A1 directly or again indirectly in its body argument.

A MRs structure thus contains a bag of handle constraints in addition
to the bag of EPs. A full MRs structure also contains a global and a local
top handle. The global top handle is a handle that is not outscoped by any
other handle in the structure, whereas the local top handle is the topmost
label in an MRs that is not the label of a floating EP, i.e. an EP that can
be inserted into a =, relationship, like quantifiers'®. The full MRS structure
for an underspecified representation of (23) with qeq constraints is shown
in (25).

(25) < ho, hi,
{ h2:alle(z, hA, hB), h3:gutt(z), h4:blid(z), h4:jente(z),
h5:ei(y, hC, hD) h6:beundre(z,y) },
{ hA =4 h8, hC =4 h4, h1 =4 h6 } >

An MRs is said to be scope-resolved if every label is equated with either
a handle argument or the global top of the MRS, and at least one label is
equated with the global top. The result of these constraints is that the scope
resolved MRS has the structure of a tree, with one single root node and no
nodes that have multiple parents. An underspecified MRS corresponds to
a set of expressions in the object language, whereas a scope-resolved MRS
corresponds to exactly one expression in the object language. An MRS is
well-formed if it represents at least one expression in the object language.

'5Tn the implementation of the LinGO ERG, though, the global top is redundant for
reasons explained in Copestake et al. (1999), and so only the local top is implemented.
This applies to my own grammar fragment based on the Matrix as well, so when only one
top is used throughout this thesis, this is always the local top.

31

NORWEGIAN WORD ORDER IN HPSG

4.3 Semantic composition

The composition rules for MRSs (in phrase structure grammars) are quite
simple. Most lexical items supply a single EP to the representation. When
a phrase is constructed, the bags of EPs from the daughters are appended to
one bag, and so are the bags of handle constraints.

If none of the EPs are scopal (i.e. the phrase is intersective), the handles
of the daughters are equated with each other and with the top handle of the
phrase. The MRs representation of the phrase blide jenter shown in (26a),
hence, is the result of the composition of the two MRs representations shown
in (26b).

If one of the EPs is scopal, the handle argument of the scopal EP is
defined to be geq the top handle of the scoped over phrase. Thus the MRS
representation of the phrase alle gutter shown in (27a) is a result of the
composition of the two MRs representations shown in (27b).

(26) a. < hO, {hO:blid(z), hO:jente(z)}, {} >

b. < k0, {k0O:blid(z)}, {}>
< h2, {h2:jente(z)}, {} >

(27) a. < hO, {h1:alle(z, hA, hB), h2:gutt(z)}, {hA =4 h2}>

b. < h0, {h1:alle(z, hA, hB)}, {}>
< h2, {h2:gutt(z)}, {} >

The conindexation of the ordinary variables has here been taken for
granted, but this conindexation must also be specificly defined in lexical
entries or constructions of the grmmar, in order to yield correct representa-
tions.

4.4 MRS in typed feature structures

MRS is designed with feature-based grammars in mind, and can so be easily
expressed in terms of typed feature structures and unification. As mentioned,
it is already integrated in the LinGO ERG, proving to work well with this
kind of large typed feature structure grammars.

The EPs can be implemented as feature structures, organized in a hier-
archy of relational types, where individual predicates can either be encoded
as specific types of relations, or as the value of a feature, such as PRED or
RELN. The appropriate features for the types include a feature for the handle
that labels the EP and one feature each for the EP’s argument positions. The
different types of relations can be organized in the type hierarchy according
to the type and number of arguments they take. The two types of relations
shown in figure 21 can be the types for the representation found in (27b)
for gutt and alle, respectively.

An MRs structure is defined as a type whose appropriate features are at
least TOP, L1zST or RELS for the bag of relations and H-cons for the bag of

32

MINIMAL RECURSION SEMANTICS

HNDL handle |

HNDL handle BV ref-ind
INST ref-ind RESTR handle
PRED ’gutt BODY handle

nom-rel ,
PRED alle
quant-rel - -

Figure 21: EPs as typed feature structures

handle constraints, as shown in figure 22. The bags are implemented as lists,
but the order of list elements is not semantically relevant. A geq constraint
is implemented as a type with appropriate features SC-ARG and OUTSCPD.
Coindexation of feature structures is used for the linking of variables.

TOP
HNDL
HNDL [6] HNDL BV
LIZST < ARG1 , INST) RESTR >
PRED ’smile PRED ’gutt BODY handle
event-rel- om-rel - ,
PRED en

quant-rel- -

[sc-ARrG SC-ARG]
H-CONS
OUTSCPD [6]| ’ |ouTscpD
qeq -

B qeq
mrs*- d

Figure 22: MRS structure

Phrase types can be defined with regard to constraints on semantic com-
position, for instance whether a phrase type handles intersective or scopal
elements. Semantic contributions to the phrase made by the construction
are simply treated as an additional, implicit daughter in the structure, in-
troduced via the feature C-CONT. In an implementation, the appending of
the two bags of Eps and handle constraints can be achieved by the help of
difference lists.

Further details on the relational types and the linking of syntactic and se-
mantic information made by constructional phrase types in my implemented
grammar fragment can be found in section 6, describing the Matrix type
hierarchy, and in sections 7 and 8§, of course.

33

NORWEGIAN WORD ORDER IN HPSG

34

THE LKB SYSTEM

5 The LKB system

This section provides a rough introduction to the Linguistic Knowledge Building
system (LKB), the grammar development environment that I have employed to
implement a fragment of an HPSG grammar for Norwegian. The first subsection
presents the practical implementation of a grammar, including notational issues
and a survey of grammar components, whereas the second subsection deals with
the processing of a grammar when made, including parsing, generation, efficiency
issues and how to test the grammar. If detailed information on the system, its
various parts and its use is needed, see first Copestake (2001) and secondly further
references given in the text.

The LKB system is an open-source grammar development environment for
typed feature structure grammars, to be used with constraint-based linguis-
tic formalisms. It contains tools to help the grammar writer construct the
various parts of the grammar, and it includes support for parsing and gener-
ation with the grammars when built. The system can be downloaded from
the LKB-website.'® The system is used for teaching, research and application
development on a wide variety of sites.

5.1 Who and where

The main developers of the LkB system are Ann Copestake, John Carrol, Rob
Malouf and Stephan Oepen. It was initially developed at the University of
Cambridge Computer Laboratory as part of the ACQUILEX projects (1991
—), at first as a tool for construction of typed feature structure lexicons. LKB
then stood for Lexical Knowledge Base. The system has since been heavily
updated, mainly at the Center for the Study of Language and Information
(CSLI) at Stanford University, California (as a part of the LinGO project),
and it now serves for building and maintaining all grammar components,
including syntactic and semantic knowledge. A theoretical and practical
introduction to the system and its use with typed feature structure grammars
is given in Copestake (2001), which also functions as a user manual.

5.2 Implementing a grammar
5.2.1 A basic grammar

The parts of a typed feature structure grammar built in LKB are divided
into different files recognized and used by the system. The minimal set of
grammar components and their default file names are as follows:

e types.tdl the type hierarchy, type definitions with information about
inheritance, appropriate features and type constraints for each type

http://cslipublications.stanford.edu/1kb.html

35

NORWEGIAN WORD ORDER IN HPSG

e lexicon.tdl instances of the lexical types with orthography and op-
tionally specific semantic predicates, lexical items used in parsing and
generation

e rules.tdl instances of the construction types, grammar rules used
by the parser and generator

e lrules.tdl lexical rules, redundancy rules implementing productive
lexical processes

e irules.tdl lexical rules with associated ortographemic variation, typ-
ically inflection

e roots.tdl the start symbol(s) of the grammar, well-formedness con-
ditions on full results

In addition, grammar configurations for the LkB for each grammar are
defined in a small number of auxiliary lisp files that can be edited by the
grammar writer to adjust e.g. path settings, interface functions and more.

5.2.2 Notation

The abbreviation TDL stands for Type Description Language, the description
language used for constructing all the parts of an LkB grammar.

The definition of a type consists of the name of the type being defined,
the operator ‘:=’, one or more parent types from which the type inherits,
each separated by ‘&’, and finally an optional list of appropriate features and
specific constraints for the new type. An excerpt from a possible type file
describing parts of the type hierarchy on page 22 is provided in figure 23.

LKB notation: AVM strucure:
avm =: top. 0]
. avm
sign := avm &
[STEM list,)
SYNSEM synsem] . STEM list
SYNSEM synsem
sign_
rule := sign &
[RULE-NAME string]. [STEM list

SYNSEM synsem
RULE-NAME string

rule

Figure 23: LKB notation vs. AvM notation

Reentrancy is introduced using the sign ‘#’ followed by an identifier that
names the reentrancy uniquely within one definition. Nested TFss can each

36

THE LKB SYSTEM

headed-phrase := phrase &
[SYNSEM.LOCAL.CAT.HEAD #head,
HD-DTR.SYNSEM.LOCAL.CAT.HEAD #head].

SYNSEM | LOCAL | CAT | HEAD

HD-DTR | SYNSEM | LOCAL | CAT | HEAD
headed-phrase

Figure 24: Paths and reentrancy in TDL notation vs. AVM notation

be enclosed in its own set of square brackets ([1), or the path-notation seen
in figure 24 can be used.

String constants are always subtypes of the type string, and do not need
to be defined in the type hierarchy. They can not themselves have subtypes,
and are so mutually incompatible. Strings are enclosed by double quotes, as
in ““jente”.

Lists are not a built-in data type, but a special list notation is available in
TDL that is expanded into a standard TFS representation by the LKB reader.
Notation is present for fully defined lists, underspecified lists of unknown
length and for difference lists that can be concatenated by unification. Fig-
ure 25 shows the abbreviatory TDL list notation versus the full AvMm notation.

The type list used for the standard list representation has two daughter
types, ne-list (non-empty-list) with the appropriate features FIRST and REST
and nwull. This specification of a non-empty list is needed to provide indirect
recursion in the type hierarchy without making it infinite, as it would be
if list was to be defined recursively with the appropriate features FIRST and
REST, and with the type list itself as value for the feature REST. By specifying
different types of lists, the feature REST in ne-list can unproblematically be
defined to have a value of type list, as type inference will not try to specify
the type further without additional constraints deciding on which daughter
type is to be selected.

5.2.3 Grammar components

Type hierarchies used with the LkB must have all the properties described
in section 3.2.4. Type inference takes place as described in section 3.2.5 to
convert the TDL specifications into well-formed TFss.

Apart from non-linguistic types like lists and strings, the type hierarchy
includes lexical types and types for lexical and syntactical rules as described
in section 3.3. The other main parts of the grammar are defined from these
types, in the same description language as the types themselves. The lexicon
is constructed from the lexical types, each entry pairing strings with their
syntactic and semantic form. Lexical and syntactic rules are defined from
lexical and constructional types. Figure 26 and 27 show a lexical entry and
a grammar rule written in TDL, respectively.

37

NORWEGIAN WORD ORDER IN HPSG

LKB notation AVM strucure:
< hei, du > _
FIRST hei
FIRST du
REST
REST null
L ne-list
ne-list
< hei, du, ... > _
FIRST heil
FIRST du
REST i
REST list
L ne-list
ne-list
< hei . du > _)
FIRST hei
REST du
ne-list
<! hei, du !> _ _
FIRST hei
FIRST du
LIST REST
REST
ne-list
ne-list
LAST
diff-list N

Figure 25: Lists and difference lists in LKB notation vs. AVM notation

jente-noun := fem-noun-lxm &
[STEM < "jente" >,
SYNSEM.LOCAL.CONT.RELS.LIST.FIRST.PRED ’jente].

Figure 26: Lexical entry in TDL

head-complement-rule := head-comp-phrase.

Figure 27: Grammar rule in TDL

38

THE LKB SYSTEM

A simple ortographemic component in the LKB admits a certain use of
inflectional lexical rules, unary rules mapping from lexemes to words or lex-
emes. They differ from non-inflectional lexical rules only in that they add
orthographemic information describing the affixation. Affixation patterns
are written as seen in figure 28, essentially using pairs of regular expressions,
where the first expression must match letters in the word stem, while the
second expression supplies the corresponding letters in the affixed version of
the word. ‘*’ represents a null-character, while characters following an ‘!’
are macro symbols denoting a set of letters. The key words ‘suffix’ and
‘affix’ in the line of subrules determine what sort of affixation the rule is
treating.

Irregular morphemes are handled separately, viz. in a separate file where
each entry provides a triple of (i) the inflected form, (ii) a rule specification
and (iii) the stem of the irregular morpheme.

h(letter-set (!t bcdfghjklmnpgrsxtvwxz))
h(letter-set (!v aiouyazgd))

noun-fem_irule :=
%suffix (e a) ('t 'ta) (!'v !'va)
sg-noun-word-aff &
[ARGS < fem-noun-lxm >,
SYNSEM.LOCAL.AGR.PNG.DEF def].

Figure 28: Morphological rule in TDL

It is possible to define labels for certain TFS configurations in a separate
file, deciding for instance how to label the nodes in a parse tree. Though
abbreviatory labels like ‘S’ and ‘VP’ can be used, these linguistic categories
are not elements of the theory in unification grammar. The labels are merely
defined by the grammar writer as abbreviations for certain typed feature
structures.

The start symbol or symbols of the grammar are defined in a similar way,
not as a type, but as a set of TFSs in a separate file, as seen in figure 29.

root := phrase &
[SYNSEM.LOCAL.CAT [HEAD verb & [VFORM fin],
VAL [SUBJ < >,
COMPS < > 1].

Figure 29: Possible root TFs

39

NORWEGIAN WORD ORDER IN HPSG

5.3 Processing a grammar
5.3.1 MRS

The LKB system contains a separate module for reading out the semantics
from a TFS, converting it into an MRS object and processing it. The module
is able to scope-resolve MRS structures (see section 4), to compare different
structures, to export them to other formats or simply to reduced them to
elementary dependency structures. The basic MRs structure for the sentence
Jenta smiler'™ (The girl smiles) is shown in figure 30, and an indexed version
is seen in figure 31.

5.3.2 Parsing and generation

The default parser used in the LKB system implements a variant of active
chart parsing, as described in Oepen and Callmeier (2000). The parsing
algorithm is purely bottom up, bidirectional and key-driven, i.e. the daughter
marked as the key daughter by the grammar writer is checked first when a
grammar rule is applied to two or more daughters. Chart parsing in general
is described in detail in Jurafsky and Martin (2000).

The chart generator used in the LkB is described in Carrol et al. (1999).
It assumes a lexicalist grammar, but it does allow for constructions that
introduce additional semantics. It also combines the chart generation with
a special treatment of intersective modification for increased generator ef-
ficiency. The generator requires a grammar that uses a flat, non-nested
semantic representation, where the semantics of a phrase is described as a
list of relations with coindexed variables. This applies to MRS and similar
formalisms.

5.3.3 Processing efficiency

When implementing larger grammars, past the level of toy grammars, even
for interactive grammar development processing efficiency can become a
pressing issue. The LKB system supplies several mechanisms for keeping pro-
cessing costs down, but is at the same time somewhat tuned to the LinGO
ERG grammar in terms of where most work on efficiency issues has been
invested. For instance, the ERG includes only about 70 rules, but a type
hierarchy with thousands of types, thus naturally deciding which look-up
mechanism in the LKB is the more advanced. Because of this, the choices of
design made by the grammar writer can still have a great influence on the
efficiency of processing a grammar.

Efficiency techniques implemented in the LKB includes (i) the checking
of high-frequency failure paths before full unification is attempted, (ii) key-
driven parsing and generation, (iii) using the locality principle!® in mPSG to

"The example is taken from my Norwegian grammar fragment.
18The HPSG locality principle guarantees that it is not possible for a phrase to access
information from daughters of its own daughters or from any level below them unless it

40

THE LKB SYSTEM

[
INDEX: el [EVENT

E.TENSE: PRESENT
E.MOOD: INDICATIVE
E.ASPECT: ACTIVE]
LISZT: <
[jente
HNDL: h3
INST: x2 [REF-IND
PNG.DEF: DEF
PNG.PERS: PERS
PNG.NUM: SING
PNG.GEND: FEM]
LABEL: v4]
[def-rel
BV: x2
HNDL: h7
LABEL.: v8
RESTR: h5
SCOPE: h6]
[smile-rel
ARG1: x2
EVENT: el
HNDL: h9
LABEL: v10] >
HCONS: < h5 QEQ h3 >]

Figure 30: MRs output for Jenta smiler

<el:PRESENT:INDICATIVE:ACTIVE,
{ijente(h3, x2:DEF:PERS:SING:FEM, v4),
def-rel(x2, h7, v8, h5, h6),

smile-rel(x2, el, h9, v10)},

{h5 QEQ h3}>

Figure 31: Indexed MRs output for Jenta smiler

41

NORWEGIAN WORD ORDER IN HPSG

avoid copying and tree reconstructions (see Malouf et al., 2000), and (iv)
optional packing with special treatment of the problems that arise trying to
use this technique with unification-based grammars (see Oepen and Carroll,
2000).

5.3.4 Testing the grammar

The LB system includes a simple batch parse mechanism which can be used
with simple grammars, but non-trivial grammar engineering tasks has been
interfaced to a package called [incr tsdb()].1?

The package includes components to take care of the needs of both gram-
mar writers and system developers working with large scale grammars. The
test data are stored in a database together with the needed information
about each test item, where the need for information is decided upon by the
grammar writer/system developer. During parsing and generation, differ-
ent performance measures are taken, stored and made into a profile for the
grammar, for later inspection. Possibly interesting measures might include
the number of readings per test item, time and memory usage, ambiguity
and so forth, all depending on what part of the grammar or system one
wants to inspect. The package also includes graphical tools for inspecting
and comparing the profiles after changing the grammar.

is explicitly carried up through its daughters.
19Web adress: http://www.coli.uni-sb.de/itsdb/

42

THE LINGO GRAMMAR MATRIX

6 The LinGO Grammar Matrix

In this section I present the LinGO Grammar Matrix, the basis grammar upon
which I have built my own grammar fragment for Norwegian. Its main partitions
of types are presented section-wise, with special emphasis on those aspects that will
be revisited in section 7. The sections introduce the basic feature geometry, types
for semantic composition, general classes of rules and constructional types. For a
broader introduction to the Matrix initiative, see Bender et al. (2002).

The Matrix is a grammar ‘starter kit’ for HPSG grammars, freely dis-
tributed to interested grammar writers . It is a subset of types from two ex-
isting large-scale HPSG grammars for English and Japanese, leaning heavily
on the English LinGO ERG grammar implemented mainly by Dan Flickinger
(see Copestake and Flickinger, 2000), and aiming to ensure consistency with
other work on HPSG and semantic representation.

The goal of the Matrix is to supply grammar writers using the LKB sys-
tem with a basic language-independent type hierarchy, as a starting point
from which more sophisticated language-specific grammars can be built. Us-
ing this starter kit, grammar writers working with different languages can
quickly approach a level where linguistically interesting grammars can be
built, avoiding time-consuming sessions with toy grammars.

Depending on feedback from these users, the Matrix can also function
as an experiment to see to which extent the selected types can be fruit-
fully shared across grammars for different languages, and so with increased
plausability be considered language-independent. Additionally, comparision
of different grammars might be simpliefied when they are built on a common
base.

The Matrix embodies the already mentioned goal of making the type
hierarchy express generalizations across different linguistic objects. It con-
tains a total of 210 types, whose implemention faithfully follows main-stream
HPSG theory. On account of this, this section will not go into minute details
describing all types and features included in the Matrix, but will instead
try to give an overview of its main partitions of types with some instructive
examples.

6.1 Who and where

The Matrix 0.1 was released in January 2002, and updates were made in June
2002. Tt is being developed at CSLI Stanford, primarily by Emily Bender
(see Bender et al., 2002). The download-able Matrix package®® includes
configuration and parameter files for the LKB.

20Recent version found at: http://lingo.stanford.edu/ftp/matrix.tgz

43

NORWEGIAN WORD ORDER IN HPSG

6.2 Basic feature geometry

The types for basic feature geometry implemented in the Matrix are shown in
an abbreviated version?! in figure 32. The main partitions of types include:

e atomic types vs. attribute value matrices
e types for lists, difference lists and list operations (see also figure 25)

e generalized types for various levels of linguistic description in HPSG

Appropriate features and types are only defined in the Matrix if it is
suspected that they could be language-independent. The basic linguistic
object, the sign, is implemented as shown in figure 33. Elementary features
like HEAD, VAL(ENCE) and CAT(EGORY) will be defined as appropriate features
for suitable types, as they are part of the theoretical basis of HPSG and
vital to the grammar implementation regardless of language. Types that are
constrained to be the value of these features, i.e. head, val and cat, will also
need to be defined, though maybe in a very underspecified version. This
because crucial appropriate features (or types) in some languages will be
lacking in others, like e.g. the head-features CASE or AUX(ILIARY) for languages
without case or a system of auxiliary verbs. It is then up to a grammar writer
to fill in the additional features required for the language with which she is
working.

top

atom avm

string integer symbol

avim

list diff-list sign local cat head synsem wval
rule phr-or-lrule w-or-lrule

phrase lex-rule word phr-ss lex-ss gap

Figure 32: Basic feature geometry, excerpt from the Matrix

%1The type hierarchies depicted in this section are abbreviated sub-hierarchies of the
real Matrix type hierarchy and meant to give only an idea about the contents, not a full
overview. Important types are left out, and intermediate steps (e.g. used for processing
efficiency) have been skipped.

44

THE LINGO GRAMMAR MATRIX

[sTEM list
SYNSEM synsem
ARGS list
INFLECTED bool
ROOT bool

sign - -

Figure 33: The type sign

TOP handle
INDEX indiviual
LISZT diff-list
H-CONS diff-list

Figure 34: The type mrs

6.3 Types for semantic composition

The types for semantic composition are based on Minimal Recursion Se-
mantics (see section 4). Following this, the type mrs needs to contain a top
handle, a bag of elementary predications and a bag of scope constraints.The
HPSG implementation also introduce a feature INDEX into the MRs, which is
an instance or event variable. The type mrs is defined with the appropriate
features and constraints, as shown in figure 34. It has two subtypes, psoa
and nom-obj, where the value of the feature INDEX is constrained to be of
type event in a psoa and of type index in a nom-obj, respectively.

The bag of elementary predications is implemented as the value of the
feature LiszT, a difference list that collects semantic relations of type rela-
tion, each a feature structure with its own handle, predicate and argument
information. The bag of scope constraints is the value of the feature H-CONS,
again implemented as a difference list that houses elements of the type gegq
(although other types of handle constraints are in principle allowed).

6.4 General classes of rules

The general classes of rules implement fundamental principles in HPSG, like
the head-feature principle, the semantic compositionality principle and the
non-local feature principle. The rule types are split along different dimen-
sions:

e phrase structure rules and lexical rules
e derivational and inflectional lexical rules

e unary and binary rules

45

NORWEGIAN WORD ORDER IN HPSG

avm
mrs keys relation ctxt mrs-thing qgeq
nom-obj psoa arg-rel event-rel individual
argl-rel arg3-rel index

event ref-ind

Figure 35: Types for semantic composition, excerpt from the Matrix

e headed and non-headed rules
e head-initial and head-final rules

The types from different dimensions cross-classify to yield the types
needed to build the constructoinal types of the grammar, as illustrated in fig-
ure 36. The Matrix uses binary-branching structures only, a constraint which
can be easily extended by defining additional types following the patterns of
the basic definitions.

phrase

ARGUMENT-ST

un-phr bin-phr hd-phr n-hd-phr

hd-only bin-hd-phr hnr-phr hng-phr hd-compos

hd-init hd-final hd-nex-phr

Figure 36: General classes of rules, excerpt from the Matrix

Figure 37 shows an example of the mother’s amalgamation of semantic
information from the daughters in a rule by means of difference lists. The
value of C-CONT is the semantic information supplied by the rule itself and
is treated much like an inherent additional daughter.

6.5 Constructional types

The rules of a grammar inherit from the constructional types in the type
hierarchy. The basic constructional types in the Matrix include the following:

46

THE LINGO GRAMMAR MATRIX

LIST
LISZT
LAST
SYNSEM | LOCAL | CONT
LIST
H-CONS
LAST
LIST
LISZT
LAST
C-CONT
LIST [6]
H-CONS
LAST
LIST
LISZT
LAST
ARGS SYNSEM | LOCAL | CONT
LIST
H-CONS
LAST [6]

bs-un-phr- -

Figure 37: Abbreviated version of the type basic-unary-phrase

e head-specifier phrase

e head-complement phrase

e head-subject phrase

e head-modifier phrases

e extracted-argument phrases

e head-filler phrase

None of these phrase types are specified with regard to whether the or-
dering of their arguments should be head-final or head-initial. All of them
except for the head-filler phrase inherit from the type headed-phrase, and
with the exception of the unary phrase types for extracting arguments, all
phrases are defined as binary.

As the constructional types supplied by the Matrix will be relevant to
the application to Norwegian presented in section 7, I will in the following
comment on some of them in particular, also focussing on properties that
will be further discussed there.

The basic-head-subject-phrase combines a sign with a non-empty SUBJ
list with its subject (as in Gyrd smiler/Gyrd smiles). Accordingly, the

47

NORWEGIAN WORD ORDER IN HPSG

synsem element on the head-daughter’s suBJ-list is unified with the sYNSEM
value of the non-head daughter, as shown in figure 38

The mother structure is specified to have an anti-synsem element on its
suBJ-list, in order to distinguish structures with a lexically empty suBJ-list
from structures that originally had a synsem element on its suBJ-list. The
head daughter is specified to have an empty comps-list, meaning that any
elements on the comps-list should be removed, e.g. by building a VP with
the basic-head-comp-phrase, before the basic-head-subject-phrase is applied.

COMPS ()
SPR

SUBJ < anti—synsem>

SS|LOC| CAT | VAL

SPR

HD-DTR | SS | LOC | CAT | VAL
SUBJ < >

NH-DTR | SS

basic-hd-subj-phr

Figure 38: Abbreviated basic-head-subj-phrase

The basic-head-comp-phrase combines a sign with a non-empty coMmPps-
list with its first complement (as in the verb phrase ser henne/see her).
Accordingly, the first synsem element on the head-daughter’s comps-list is
unified with the syNsEM value of the non-head-daughter, as shown in fig-
ure 39.

The mother structure shares its comps-value with the REsT-value of the
head daughter’s comps-list, i.e. the head-daughters comps-list minus the first
element. Values for sUBJ and sPR are shared directly with the head-daughter.

basic-hd-comp-phr -

Figure 39: Abbreviated basic-head-comp-phrase

48

COMPS
SS|LOC | CAT| VAL | SPR
SUBJ
FIRST
COMPS
| REsT
HD-DTR | SS | LOC | CAT | VAL ne-list
SPR
SUBJ
NH-DTR | $S 1]

THE LINGO GRAMMAR MATRIX

The basic-head-spec-phrase combines a sign with a non-empty SPR-list
with its specifier (as in the noun phrase ei jente/a girl). The first synsem
element on the head-daughter’s spr-list is unified with the syNsEM value of
the non-head-daughter. Additionally, the sPEC-list of the non-head-daughter
must contain a sign with a HEAD and coOMPS value that unifies with the HEAD
and comps values of the head-daughter. Unifying the entire synsem of the
head daugter with SPEC on the non-head daughter, as is foreseen in Pollard
and Sag (1994), would result in a cyclic feature structure, which is ruled out
by the LKB formalism.

The head-mod-phrase-simple combines a sign with a non-empty MOD-
list with a sign matching the constraints on the mobp-list element (as in
the phrase rgde jenter/red girls). The appropriate values of the non-head
daughter’s MOD-list element are unified with the corresponding values of the
head-daughter, as seen in figure 40

The mother structure is specified to have an empty comps-list, hard-
wiring the assumption that modification takes place after complementation.
Values for suBJ and spr are shared directly with the head-daughter.

COMPS ()
SS|LOC| CAT | VAL | SPR
SUBJ
SPR
VAL
SUBJ
HEAD
HD-DTR | SS | LOC | CAT| py
MC
AGR [6]
SPR
VAL
SUBJ
HEAD
NH—DTR|...|MOD< SS|LOC| CAT | py >
MC
AGR (6]

hd-mod-phr-s - -

Figure 40: Abbreviated head-mod-phrase-simple

The types head-adj-phrase and adj-head-phrase are defined from head-

49

NORWEGIAN WORD ORDER IN HPSG

mod-phrase-simple by letting them inherit from head-final and head-initial,
respectively, and by adjusting values like POSTHEAD and MODIFIED accord-
ingly.

Two other subtypes, scopal-mod-phrase and isect-mod-phrase, are also
inheriting from head-mod-phrase-simple, making it possible to make a dis-
tinction in the semantics between intersective and scopal modification. An
intersective modifier shares its handle with the sign it is modifying, thus
always having the same scope as the head it attaches to, and it takes its
modifee’s event or index variable as its argument. A scopal modifier has its
own handle that is not shared by anything. It takes a handle as its argument
that is geq to the handle of its modifee, while e.g. quantifiers can scope inside
or outside the modifier at will.

The basic-head-filler-phrase combines a structure with one element on
its sLAsH-list with a filler whose LocAL-value can be unified with the lo-
cal-element on this list. This mechanism is used for inserting topicalized
elements at the front of a sentence.

The LocAL-value of the first element on the ARGs-list is unified with the
value of the NON-LOCAL.SLASH-value of the second element on the ARGs-list.
The mother structure is left with an empty difference list as the value of
SLASH, hard-wiring the assumption that at most one extraction occurs per
clause.

The basic-extracted-arg-phrase 1is a prerequisite for the basic-head-filler-
phrase. For an element to be topicalized and inserted at the first position
of the sentence, it must first be removed from its original position. There
are different phrase types according to what element should be extracted
from the original structure. These types are basic-extracted-comps-phrase,
basic-extracted-subj-phrase and extracted-adj-phrase.

In the type basic-extracted-comps-phrase, the first element on the head
daughter’s comps-list is constrained to be of the type GAP, and the gap’s
sLASH-value is shared with the head-daughters sLAsH-value. The SLASH-value
is passed subsequently from each head daughter to its mother by the con-
straints on the type head-valence-phrase.

The basic-extracted-subj-phrase constrains the head daughter’s suBJ-value
to be of type GAp, which is also shared with its sLAsH-value. The mother
structure is constrained to have empty SUBJ-, SPR- and comMps-lists, and to
have the value McC - (indicating a non-main clause), meaning that the phrase
can only be applied when all other elements have been combined with the
head, and that only subclause structures allow subject extraction.

The extracted-adj-phrase, finally, introduces an element on the mother’s
SLASH-list that can modify the head daughter sign, i.e. that has an element
on its MOD-list that shares important feature values with the head-daughter
(mostly in analogue to the head-mod-phrase-simple on page 49).

50

NORWEGIAN WORD ORDER IN HPSG

7 Norwegian word order in HPSG

This section presents an implementation of word order phenomena in Norwegian
clauses in the HPSG framework. The implementation is based on existing work for
English, but Norwegian-specific solutions are presented where the word order differs
between the two languages. Advantages and weaknesses of these solutions to the
challenges of Norwegian clause structure are discussed. The actual implementation
in the LKB grammar development environment is presented in more technical detail
in section 8.

The grammar fragment described in this section covers the different word
order phenomena in Norwegian main and subordinate clauses described in
section 2, including:

e The V2-constraint
e Topicalization

e Adjunct placement in main and subordinate clause structures

7.1 The main clause
7.1.1 Norwegian vs. English

As the Matrix is based mainly on the LinGO ERG grammar for English, it
is natural to compare the two languages to see what structural similarities
one might utilize and what differences one has to take into account when
building a Norwegian grammar.

The clause structure in an unmarked, declarative main clause shows

the same placement of subject, finite verb and object(s) in both languages,
namely SVO.

(28) Inge beundrer Tore.
Inge admires Tore.

Introducing a complex verb form, English and Norwegian are still alike
in that they keep the verbal together as a unit.

(29) Inge har beundret Tore.
Inge has admired Tore.

Regarding the objects of the sentence, the case-less languages Norwegian
and English show the same rigid ordering of the objects (IO - DO - PPO).
The ordering can not be changed without affecting the semantics of the
sentence.

(30) Inge har skjenket Tore en bok/*har skjenket en bok Tore.
Inge has given Tore a book/*has given a book Tore.

51

NORWEGIAN WORD ORDER IN HPSG

Both languages allow topicalization, i.e. stressing an element by fronting
it, but structural differences arise from the process. English simply extracts
the element from its place in the sentence and places it in front of an other-
wise unchanged structure. Norwegian, on the other hand, strictly keeps the
finite verb in second place, applying a V2 constraint to all declarative main
clauses. The subject is then placed directly after the finite verb, before any
infinite verbs and objects.

(31) Tore har Inge skjenket en bok.
Tore, Inge has given a book.

Due to the many similarities in the clause structure of the two languages,
it should be possible to lean on already existing solutions to a great extent
when building a hierarchy of needed constructional types for Norwegian.
Constructional types for argument extraction, topicalization, the combina-
tion of a head with its complements and a head with its subject should be
transferrable to a Norwegian grammar assuming that the necessary changes
are made to account for the differences presented above.

7.1.2 The inverted subject

Also, the English grammar contains constructions where the ordering of the
finite verb and the subject is inverted, though not in normal declarative
main clauses. In English, only a finite auxiliary can precede the subject.
This inverted order is present in questions as well as in other types of con-
structions, as shown in the sentences (32) to (34). The various cases are
thoroughly discussed in Ginzburg and Sag (2001).

(32) Who would you like best?
(33) Would you like him?
(34) Had I met him before, I wouldn’t have come.

Norwegian uses the same inverted verb-subject structure in many of these
cases, but in addition applies the inverted structure to all main clauses where
an element other than the subject has been topicalized, as seen in the differ-
ent structures in sentence (34) and (37).

(35) Hvem ville du like best?
(36) Ville du like ham?
(37) Hadde jeg mgtt ham fgr, hadde jeg ikke kommet.

As described in section 6, the basic constructional types are not quite
tuned to this construction. The basic-head-subject-phrase has an empty
cowmps list, and its head daughter’s comps list is of type olist. Practically,

52

NORWEGIAN WORD ORDER IN HPSG

this means that all head complement rules are supposed to apply before any
head subject rule, to build a VP. This accounts for the word order of strict
SVO languages as well as for SOV languages, as subtypes of the basic-head-
complement-phrase can be defined to be either head-initial or head-final.
The inverted structure presents this approach with a problem, though, as
the head and its complements are separated in the structure.

Different methods can be applied to make the subject appear to the
right of the finite verb, before any of its complements. In the following
three sections three possible solutions to the problem are presented. The
first two solutions are taken from Sag and Wasow (1999) and Ginzburg and
Sag (2001), respectively, whereas the third solution is the one chosen for the
analysis in this thesis.

Sag and Wasow (1999)

In Sag and Wasow (1999), the problem is solved by a lexical rule that removes
the subject from the spr list?? of the lexical entry for an inverted auxilliary
as shown in figure 41. As a result of this, all elements on the ARG-sT list of
the verb appear on its comps list, and the subject will thus end up as the
first element on this list.

Since the inverted subject always appears to the right of the finite auxil-
liary, before the rest of the complements, this would be a possible solution in
combination with a head-complement-rule that generates the complements
of the comps list in the order of which they appear on it.

FORM fin
HEAD HEAD [INV +}
SYN AUX + SYN
SPR
SPR (NP - ¢
SEM [MODE ques]
SEM [MODE prop] word

word

Figure 41: Inversion Lexical Rule from Sag and Wasow (1999)

The solution presents the inverted structure in English as an exception
to the base case, where a head-final head-subject phrase applies to the finite
verb phrase (auxiliary or non-auxiliary) to combine the subject with the verb
phrase in a non-inverted structure. In Norwegian, following the strict V2
constraint, this phrase must be blocked against any topicalization, whereas
in English, a freely chosen element can still be topicalized. For the inverted
structure, the opposite situation arises: only a wh-word can be topicalized
in English, whereas any element can be topicalized in Norwegian.

22The feature SUBJ is not introduced in the simplified teaching grammar presented in
this book.

53

NORWEGIAN WORD ORDER IN HPSG

As the inverted subject always appears in the same position in Norwegian
as it does in English, the lexical rule solution is possible to implement. The
differences mentioned above would have to be taken into account in the
implementation of Norwegian, in addition to the fact that all finite verbs
can give rise to an inverted structure in Norwegian, not only the auxiliaries
as in English.

A practical problem arises from this solution, because the inverted struc-
ture is also present in regular main clauses with a topicalized element in
Norwegian. This makes it possible to use a lexical rule to invert the order of
subject and verb as shown in figure 41, and then at the next level topicalize
the inverted subject back to the sentence-initial position, as all complements
of the verb in a Norwegian main clause can be topicalized. This construction
is better avoided, as it creates spurious parses and is unefficient, doubling the
number of phrase applications compared to what is really needed to generate
the phrase?3.

A second and more pressing problem is the fact that the Norwegian main
clause allows for certain types of adjuncts both directly before and directly
after an inverted subject, but not between the complements of the verb,
should there be more than one. This makes it necessary to know whether
the first element on the cowmps list was originally a subject or not. It is
possible to solve this problem by marking the subject element with a specific
type as well, in combination with the lexical rule, but the question is then if
this is not just another technical detour that camouflages the problem rather
than solving it.

Ginzburg and Sag (2001)

In Ginzburg and Sag (2001, pg.36), the subject is not camouflaged as one of
the verb’s complements. The type subject-auzilliary-inversion-phrase (sai-
ph) is subject to the constraint seen in figure 42. Both the element from the
head daughter’s suBJ list and the elements from its coMPs list are generated
at the same time in this type of phrase, introducing both the subject and
the complements as sisters of the lecixal head.

INV +

AUX +
SUBJ — H , al,
[<>] suBJ (@)

COMPS

word

Figure 42: Constraints on the type sai-ph from Ginzburg and Sag (2001)

Using a similar approach with a flat structure for Norwegian, we would

23 A similar problem is in the LinGO ERG grammar taken care of by defining types for
extractable and non-extractable structures. The inverted subject then defined as unex-
tractable.

54

NORWEGIAN WORD ORDER IN HPSG

avoid the problems and technical detours needed to keep track of the in-
verted subject. To achieve this practically, the hierarchy of constructional
types must include phrases more complex than just binary branching ones.
The number of constructional types must be expanded to cover all possi-
ble permutations of inverted subject?*, finite verb and complements in a
sentence.

Building constructional types that have more than two daughters into
the hierarchy of phrase types is not a problem in the LKB system. But
where the type sai-ph is a generalized phrase type, encompassing any possible
number of complements, the number of daughters has to be specified for
each constructional (leaf) type built in the LKB. Appropriate types for each
construction shown below would have to be specified. This results in a
larger number of constructional types than what is needed when working
with binary branching structures only, but it is a possibility.

Vf,’,w - Sub]
Viinw — Subj — Comp
Viny — Subj — Comp — Comp

Problems to this approach arise when it is combined with sentence-
modifying adjuncts. Adjuncts placed at the sentence end can recursively
modify a phrase with the help of a binary modifier phrase, and might not
cause a problem. Modifiers inside the phrase represent a larger problem, as
the number of adjuncts, in contrast to complements, theoretically is unre-
stricted. It is possible to let the adjuncts modify the lexical verb recursively
before applying the flat constructional phrase, but this does not hold for the
cases where the inverted subject precedes the adjunct. A theoretically end-
less number of constructional phrases would have to be postulated following
the pattern shown below.

V¢ — Subj — Adj — Comp
Vi — Adj — Subj — Comp
Vi — Adj — Subj — Adj — Comp

V¢ — Subj — Adj — Adj - Comp
Vi — Adj — Adj — Subj — Comp
Vi — Adj — Adj — Subj -~ Adj - Adj - Comp

V; - Subj — Adj — Adj — Adj — Comp

Even with a restricted number of adjuncts, using flat constructions leaves
us with a very large number of possible constructions and corresponding
types. It therefore seems wise to work solely with binary branching construc-
tion types, as is common practise in many implemented HPSG fragments and
mainly intended in the Matrix.

24This approach still uses a head-final head-subject phrase as the base case.

55

NORWEGIAN WORD ORDER IN HPSG

The inverted head-subject phrase

The use of binary branching structures is compatible with the lexical rule
approach from Sag and Wasow (1999). But to a greater extent than this
approach can offer, a Norwegian grammar also needs an easy way to keep
track of the subject of the clause. The easiest solution to this is to avoid
any redefinition of the subject and simply use a head-subject phrase that
combines the lexical head (i.e. the finite verb) with the inverted subject to
its right directly, as shown in figure 4325. This approach recognizes the
construction for what it is: a construction so common in the Norwegian
language that it deserves to be recognized as a part of the core grammar and
not to be rewritten in any way.

VFORM fin
] — H| suBJ (m) |,

COMPS
COMPS

lSUBJ ()

Figure 43: A head-initial head-subject phrase to be used with inverted struc-
tures

Changing the order of the head and the dependent is not a practical
problem. Additionally, the basic-head-subject-phrase must be adjusted to
pass the comPps value up from daughter to mother instead of constraining it
to be an empty list, so that it is possible for a head-complement phrase to
apply to this structure afterwards. The practical result can thus be made
the same as in the lexical rule approach and the sai-phrase, only without
the detour and camouflage of the lexical rule, without the disadvantages of
using flat structures and with the added bonus of increased control.

The phrase that is built by applying a head-initial head-subject phrase
to the inverted structure does not correspond to any recognized linguistic
entity such as the NP or the VP. On the contrary, it destroys the traditional
connection between the lexical head and its complements as we find it in
a traditional VP, a unit that has been proved to function as one linguistic
object in many constructions. Following this, it is normally assumed that
only complements are sisters of the lexical head, complements thus being
deeper embedded in a phrase than subjects or specifiers.

Introducing the inverted head-subject phrase means breaking this as-
sumption. It means choosing to take the surface structure of Norwegian
clauses as a starting point for the analysis and rejecting the view of one un-
derlying (syntactic) structure for all constructions. Figure 44 illustrates how
constructional phrases can be applied in an inverted structure, following this
analysis.

% For simplicity, the sketched feature structures in this section only include the features
crucial to the problem at hand. For details on the placement and organization of the
features, see section 6 or 8.

56

NORWEGIAN WORD ORDER IN HPSG

head-comp-ph

head-subj-ph

Beundrer Per Aud?

Figure 44: Inverted main clause structure

To be able to account for the many constructions where the traditional
VP plays an independent part, as one linguistic object, a grammar for Nor-
wegian must also be able to construct it. Luckily, it is possible to build a
grammar that is both able to construct a VP and to apply a head-subject
phrase before a head-complement phrase. The head-complement phrase im-
plemented in the current grammar is for instance able to combine an infinite
verb with its complements where no head-subject phrase has been at work
(see page 75), and further variations of the analysis are possible.

Alternative approaches

It is possible to insist that a structure corresponding to a VP should al-
ways be built at some level in the analysis, but an implementation might
then require rather heavy machinery. To motivate such descriptive power,
the analysis would have to cover the wanted phenomena far better than its
simpler sibling (on some measure of linguistic adequacy).

One such candidate is the transformational analysis presented in sec-
tion 2.4, which would include head-movement in a practical implementation.
This might be doable, but also more resource-demanding than an analysis
without head-movement. Still; the most important argument against this
solution is that it does not cover the selected phenomena in a satisfying
mannner, as is discussed in section 2.4.

Other possibilities could for instance be based on work on discontinuous
constituents, analyses and machinery developed for languages with a far
more free word order than Norwegian, as presented in, among others, Miiller
(2000). For a language with such a rigid word order as Norwegian, though,
this would presumably be an extravagant use of resources as long as a less
complicated analysis can do the same job.

7.1.3 The non-inverted subject

The ordering of the finite verb and the subject in a non-inverted Norwegian
sentence is equal to the ordering found in English as well as in the other
Scandinavian languages. The supertypes for head-complement phrases and
head-subject phrases defined in the Matrix could therefore theoretically be

57

NORWEGIAN WORD ORDER IN HPSG

applied to this structure in their original versions, resulting in standard-
looking parse trees like the one shown in figure 45.

head-subj-ph

head-comp-ph

Per beundrer Aud

Figure 45: Non-inverted main clause structure

To account for this non-inverted structure, a head-final subtype of the
basic-head-subject-phrase is needed in addition to the head-initial version
described in section 37.

The original basic-head-complement-phrase that applies to the lexical
head before any head-subject phrase (i.e. where the suBJ value is passed
up from head daughter to mother) can be used in combination with this
head-final head-subject phrase. The head-complement phrase then realizes
the complements as sisters of the lexical head and builds a VP.

If this solution is chosen, the basic-head-subject-phrase still needs to be
redefined in the Matrix as described in section 37 to be able to account for
both the inverted and the non-inverted structure. The head-initial phrase
type for the inverted structure must pass up the comMpPs value from the head
daughter to the mother, while the head-final phrase type for the non-inverted
structure must constrain the comps value of the mother and the head daugh-
ter to be empty lists. This means the head-final head-subject phrase has to
have the same constraints as its supertype originally had, to ensure that no
head-complement phrase can apply after it.

Because the basic-head-complement-phrase passes up the suBJ value from
head daughter to mother (as it has to, with this suggested implementation
of the non-inverted structure), it must be made sure that the head-initial
head-subject phrase can only apply to the lexical head. If not, structures
where the subject interleaves or is placed after the complements would be
considered grammatical due to the fact that the head-initial head-subject
phrase constrains the mother to inherit its head daughter’s comps value. A
possible result is shown in figure 46.

It is possible to solve the problem of the two different verb-subject struc-
tures in Norwegian main clauses in this manner, and an implementation of
this solution would build structures like the one shown in figure 45. Ad-
justments would have to be made, for instance to avoid topicalization in
non-inverted senteces. This is not the exact solution chosen for the imple-
mentation of the grammar fragment for this thesis, though, and the alterna-
tive approach used in the implementation and its consequenses are described
in more detail in the following section.

58

NORWEGIAN WORD ORDER IN HPSG

head-comp-ph

head-subj-ph

head-comp-ph

*Skjenket Per Aud en bok?

Figure 46: Implementation trap

7.1.4 Topicalization

Topicalization, i.e. stressing an element by placing it at the initial position
of the sentence, is used in a large part of Norwegian main clauses, as it is in
most of the Germanic languages. In HPSG the phenomenon is implemented by
introducing constructional types for extracting an argument from its normal
place in the structure and for filling the extracted argument in again at the
wanted position. The types for extraction add an element to the mother’s
SLASH list that is equivalent to the complement or subject that one wants
to extract (it is then removed from the valence list), or to an element that
is able to modify the head daughter, in the case of adjunct extraction. The
head-filler construction type fills in an element equal to the one from the
head daughter’s sLASH list at the first position of the sentence, i.e. to the left
of the head daughter.

Both complements, adjuncts and subjects can be extracted from a struc-
ture. The basic types for extraction and the later re-introduction of an
element is presented in section 6, and the grammar fragment uses the ba-
sic types as intended when it comes to topicalization of complements and
adjuncts. Technical challenges and solutions related to topicalization of ad-
juncts are described in section 7.4 and 8.2.

Topicalization of the subject is normally used for cases where the subject
is extracted from a subordinate clause and then topicalized in the main
clause that has the subordinate clause as its complement. This phenomenon
also exists in Norwegian, but my grammar implementation additionally uses
subject extraction and topicalization to part main clause structures from
subordinate clause structures.

A topicalized subject

The grammar fragment implements ideas from Diderichsen’s two schemata
for Norwegian clauses described in section 2.3. The differing clause patterns
in Norwegian are divided into two basic patterns, one for the main clause
structure and one for the subordinate clause structure. The challenge pre-

59

NORWEGIAN WORD ORDER IN HPSG

sented by the main clause structure is then to describe one basic pattern,
despite the varying position of the subject.

If one follows Diderichsen’s main clause pattern, the differing positions do
not have to present a problem. It is possible to decide that the fundamental
subject position is the position to the right of the verb, and that it has no
special claim on the sentence-initial position. As a consequence, the subject
must be extracted from its place in the original structure in the same way
as complements and adjuncts are, and then inserted via a head-filler phrase
to be placed in the initial position, as shown in figure 47. In most cases
it is then possible to separate main and subordinate clause structures from
each other from the very beginning of an analysis, as further described in
section 7.2.

head-filler-ph

head-comp-ph

subject-extr-ph

Per beundrer Aud

Figure 47: Main clause structure with topicalized subject

This analysis correctly predicts the structural ambiguity that arises from
topicalized Norwgian main clauses, as both the subject and an object can
occupy the sentence-initial position and none of them has to be marked for
case. Both analyses shown in figure 48 are theoretically correct readings of
the sentence Per beundrer Aud, even though it will be disambiguated to the
first reading only in an unmarked case.

Structural vs. perceived ambiguity in Norwegian main clauses

The possibilitiy of topicalization, combined with the V2 constraint and the
lack of case marking on nouns, results in vast possibilities for constructing
syntactically ambiguous sentences in Norwegian. Still, syntactically ambigu-
ous sentences (caused by these mechanisms) are not too often perceived as
such.

The main source of real-life disambiguation is a rule saying that the
sentence-initial element is given the syntactic function of subject in an oth-
erwise unmarked sentence, as shown in sentence (38) and (39)%.

26The example sentences in this section are collected from the Oslo-Bergen Corpora. of
tagged Norwegian texts. In the cases where a sentence is repeated with changed word
order, the first sentence is the original sentence from the corpora. Sentence (42) and (43)
have been somewhat simplified.

60

NORWEGIAN WORD ORDER IN HPSG

head-filler-ph

head-comp-ph

subject-extr-ph

Per beundrer Aud

head-filler-ph

comp-extr-ph

head-subj-ph

Per Dbeundrer Aud

Figure 48: Structural ambiguity in Norwegian main clauses

61

NORWEGIAN WORD ORDER IN HPSG

(38) Jagland-S valgte Kgbenhavn-O.
Jagland chose Kgbenhavn

(39) Kgbenhavn-S valgte Jagland-O.

A syntactically ambiguous sentence can also be disambiguated by stress?”
or by deduction from the semantic contribution of the words and/or the con-
text of the utterance together with knowledge of the world. Pure syntactic
means can also be of some help in the disambiguation process, for instance
the fact that definite objects are topicalized more often than indefinite ones.
Knowledge about the world and the feature definiteness can both be applied
to suggest a disambiguation of the sentences (40) and (41)

(40) Svaret-O/7?S fant Tranmel-S/?0 i teorien.
the-answer found Tranmael in the-theory

(41) Tranmeel-S/?0 fant svaret-O/?S i teorien.

Some computational lexica include extra-grammatical knowledge of the
world, for instance whether a verb takes an animate or inanimate subject,
and syntactic means like definiteness are a necessary part of most grammars.
To utilize this information for disambiguation can bring a great improvement
for grammar-based parsing, but for the scope of this thesis I conclude that
syntactically, the sentences (38) to (41) are all ambiguous, even if they are
disambiguated by the users of the language on a syntactic or a non-syntactic
level?8.

The most efficient approach for a grammar implementation would be to
use the rule for unmarked sentences and always mark down the initial element
as the subject in sentences where it is not possible to decide specifically that
an object or an adjunct has been topicalized. This would grant us a high
score of right parses and spare us a great deal of (semantically) strange ones.
But as long as efficiency is not the primary issue, it would also rule out
quite legal, possible and probable readings of sentences. For this reason, the
current grammar treats sentences like Per beundrer Aud as ambigous.

But even if syntax cannot solve all the problems in the world, some
means that are unquestionable and easy to exploit are given to us also at the
syntactic level. Complex verb forms do not give rise to the possible syntactic
ambiguity described above at all, because the objects are complements of the
infinite verb and thus extracted from the non-finite verb’s complement list
instead of from the finite verb itself, as shown in sentence (42).

2T A topicalized object will often be stressed if the sentence is not marked in any other
way.

2 Disambiguation can seldom be made with one hundred percent accurracy. Thus, in a
perfect system, some readings should be given a higher probability score than others. In
her master thesis at the University of Oslo (to appear), Lilja @vrelid explores different
factors that influence this probability score. The factors include definitness and animacy,
among others.

62

NORWEGIAN WORD ORDER IN HPSG

(42) Risikoen-O mé& leverandgrselskapene-S beere.
the-risk must the-supply-companies carry

By simple verb forms, structural ambiguity is avoided if nexus adver-
bials are placed in the nexus field after the subject, effectively fencing in
the canonical subject position after the finite verb and disambiguating the
sentence as shown in sentence (43).

(43) Sjokoladen-O spiser jo tyvene-S sjelden.
the-chocolate eat after-all the-thieves seldom

In sentences where the subject or the object is a personal pronoun,
the syntactical roles can be distinguished through case marking, as in sen-
tence (44) and sentence (45).

(44) Boken-O finner du-S i Fjeerland.
the-book find you-nom in Fjeerland

(45) Det lgftet-O holdt jeg-S.
that promise held I-nom

Still, the slow disappearance of case-specific personal pronouns® leads to
structural ambiguity in sentences that would earlier have been unambiguous.

(46) Faren-S/O s& han-S/O knapt.
the-father/the-danger saw he-nom/akk barely

7.2 The subordinate clause

Having established the main clause pattern following Diderichsen’s clause
schemata, the pattern for subordinate clauses is relatively easy to estab-
lish. The subordinate clause lacks the variation in the basic structure that
makes life with main clauses complicated. The subject has only one possible
position in the structure, before the finite verb.

Due to the rigid SVO structure, the basic constructional types from the
Matrix adequate for describing English sentences could also be applied here,
with the exception of the head-filler construction, of course. The head-final
subtype of the modified basic-head-subject-phrase that correspond to the
original basic type described in section 7.1.3 can thus be applied in this case.

Since the grammar treats the position after the finite verb as the funda-
mental position for the subject in a main clause, a head-final head-subject
phrase can be defined to apply in subordinate clause structures only. Thus
the head-final head-subject phrase can mark the new structure as [MC -]
(main clause -), while the head-initial version can mark the structure [Mc +],
dividing the two structures into the two patterns as shown in figure 49 and 50.

29The nominative forms of the personal pronouns han (3rd, sing, masc), hun (3rd, sing,
fem) and de (3rd, pl) are gradually replacing the accusative forms ham, henne and dem

63

NORWEGIAN WORD ORDER IN HPSG

The main clause structure with a topicalized subject is set to be [MC +| only
by the application of a head-filler phrase, since subject extraction can take
place in subordinate clauses as well as in main clauses.

To obtain a uniform constituent structure for both clause types, my
grammar implementation applies the head-subject phrase before the head-
complement phrase also in the subordinate structure. This results in struc-
tures like the one shown in figure 49 and was done for practical reasons rather
early in the implementation process.

This solution may present a problem for VP coordination, as in the sub-
ordinate clause [om/] Tranmel fant svaret og beundret Gyrd. An intuitive
solution might be to coordinate the two VPs fant svaret and beundret Gyrd,
but this may be difficult in combination with the chosen analysis for sub-
ordinate clauses. Still, coordination data in general is far from conclusive.
Choices of design made later in the process also probably make the task
of managing two different strategies for the ordering of phrase application
easier. But because redesigning this ordering would have consequences for a
large amount of small details in other parts of the grammar, this experiment
would exceed the scope of this thesis.

head-comp-ph
[MC - |

head-subj-ph
[mC -]

Tranmeel fant svaret.

Figure 49: Subordinate clause structure

7.3 Declarative vs. interrogative clauses

Describing sentences in terms of main or subordinate clause structure (Mc
+/-) in this manner leaves for something to be wished for, as shown in
figure 50. The structure in Fant Tranmcel svaret? has the characteristic
inverted structure of a main clause, and this could be further illustrated
by adding adjuncts before or after the subject, as in Fant Tranmel allikevel
svaret?. Still, we need to distinguish the two sentences Fant Tranmel svaret?
and Tranmel fant svaret from each other semantically, as they represent
different speech acts, one clearly indicating a question and the other one a
proposition.

As the distinction between a question and a proposition in this case
is expressed purely by the syntactic structure of the clause, it is possible
to classify the constructions as a question or a proposition during a parse.

64

NORWEGIAN WORD ORDER IN HPSG

head-filler-ph
[mc +]

head-comp-ph

subj-extr-ph

Tranmeel fant svaret.

head-comp-ph
[MC +]

head-subj-ph
[MC +]

N\

Fant Tranmel svaret?

Figure 50: Main clause structures

65

NORWEGIAN WORD ORDER IN HPSG

For instance, a head-filler construction results in a proposition as long as
the topicalized element is not a wh-word (as in Hvem fant svaret?). A
main clause construction with no topicalized element (a V1 construction)
can either be a command or a question, depending among other factors on
the verb form.

To account for the different speech acts, maximal projections are di-
vided into types of clauses according to their differing properties. Clauses
differ from non-clauses in that they are given a message value. Following
the Matrix, the possible message types are question, command and proposi-
tion30. The clause types distinguished from each other by these message val-
ues are declarative-clause (proposition), interrogative-clause (question) and
imperative-clause (command), the constraints on the first two types shown
in figure 51.

[SS|LOC|KEYS|MESSAGE <! question '>]
interrogative-clause

[SS|LOC|KEYS|MESSAGE <! proposition '>]
declarative-clause

Figure 51: Constraints on the type interrogative-clause and declarative-
clause from the Matrix

The main vs. subclause structural difference that has hitherto been de-
scribed is as explained encoded by the feature mc, the feature value + indi-
cating a main clause structure and the value - encoding a subclause structure.
This value can often be decided upon before the full sentence is parsed, in
contrast to the proposition vs. question semantic difference encoded via
the message type. The clause types are cross-classified with the construc-
tional types that result in maximal projections, providing the suitable type
of message for the construction, as sketched in figure 52.

CLAUSALITY

decl-cl inter-cl hd-filler-ph unary-hd-ph
[MESSAGE prop] [MESSAGE ques|

top-head-filler-ph yes-no-int-ph

Figure 52: Cross-classification of clause types and constructional types

30This hierarchy has been greatly extended and put to use for analyzing several complex
constructions of English in Ginzburg and Sag (2001), where clausality is treated as a totally
independent dimension to be cross-classified with types from the dimension of headedness.
My simplified inventory of messages is, of course, compatible with Ginzburg and Sag.

66

NORWEGIAN WORD ORDER IN HPSG

The inverted structure for Fant Tranmel svaret shown in figure 50 is
marked as [MC +[, but it has not yet got a message value. This must be so,
as the structure can function as a non-maximal projection, a possible head
daughter for an adjunct-extracting phrase that will then again be a potential
head daughter for a head-filler phrase. In this case, the construction might
end as a declarative clause, as in the clause Allikevel fant Tranmeel svaret
shown in figure 53.

top-head-filler-ph

extr-adj-ph

head-comp-ph

head-subj-ph

Allikevel fant Tranmeel svaret

Figure 53: Structure with topicalized adjunct

To recognize the inverted, non-topicalized structure as a maximal projec-
tion, a unary phrase applies to it and gives it a message value as explained in
detail in section 8.1 and shown in figure 54. The structure must be marked
[MC +] to ensure that the construction has got an inverted subject, and its
SLASH list must be empty, i.e. no elements have been extracted from the
structure. It must also not have a message value already, to avoid applying
the phrase more than once or after a head-filler phrase. After the application
of the yesno-int-phrase the phrase can function as a maximal projection, and
it is blocked against application of any extraction rules.

The grammar is implemented so that only maximal projections are given
a message value. For technical reasons, subordinate clauses are at the mo-
ment not given a message value until they combine with a subjunction.

7.4 Adjuncts

As mentioned in section 2.1.5, possible placement of adjuncts in a sentence is
also a way of distinguishing a main clause structure from a subordinate clause
structure, in addition to the placement of the subject. Adverbs are allowed
to occupy different positions in the two different structures, and this must be
taken into account when building the phrases of the grammar. In addition,
different types of adverbs may have different constraints on placement within
the same structure.

67

NORWEGIAN WORD ORDER IN HPSG

yesno-int-ph

head-comp-ph
head-subj-ph

a

Fant Tranmeal svaret?

top-decl-cl

extr-comp-ph

hd-subj-ph

Svaret fant Tranmeel

Figure 54: Interoggative vs. declarative clause type

68

NORWEGIAN WORD ORDER IN HPSG

Constructions where adjuncts behave differently according to whether
they belong to the group of free adverbials or to the group of sentence
adverbials (as shown in section 2.1.5) are not implemented in the current
grammar. The adjuncts can so be classified with regard to their distribution
only. As this distribution is not decided upon by syntactic category of the
adjuncts or other features present in the grammar, it is natural to imple-
ment the distribution as a dimension on its own, independent of the other
dimensions treating syntactic or semantic categorization.

Practically, and following section 2.1.5, what we need is: i) a type of
adjunct that can only stand in the nexus field of a sentence, ii) a type of
adjunct that can only stand at sentence end, and iii) a type of adjunct
that can occupy all positions. Additionally, it must be defined whether the
group of adjuncts can be fronted or not. This divides group 1 into two
sub-groups, as some of the adjuncts that can stand in the nexus field can
be fronted whereas others can not. A more fine-grained classification would
become necessary if one wishes to implement groups of free adverbials whose
distribution differ from the ones mentioned. This is possible, but not done
in the present grammar.

The group of adjuncts that can only be placed in the nexus field needs a
constraint stating that its members can only modify an element that has not
yet been combined with any of its complements. This is done via the feature
NUC (nucleus phrase), which is set to + for all lexical items of type verb
and then changed to - when a head-complement phrase or a complement-
extraction phrase is applied. The adjunct can so modify the verb both before
and after a head-subject phrase has been applied, but it can not be placed
between or after complements of the verb. The two subtypes of this type
of adjunct do not have any additional constraints on their own as they are
separated into two types only to signal which type can and which type can
not be fronted.

As explained in section 2.3, the placement of the adjunct positions in the
nexus field varies between main and subordinate clauses. This difference is
straightforwardly accounted for in the phrase types that handle modification.
In main clauses, the nexus adjunct can only be placed after the head, before
or after an inverted subject. Thus a head-initial head-adjunct phrase that
takes a finite verb phrase as its head daughter and a nexus adjunct as its
non-head daughter applies to main clause structures only and marks the
stucture as [MC +|, as shown in figure 55. In subordinate clauses, the nexus
adjuncts can only be placed before the head, so a corresponding head-final
head-adjunct phrase applies to subordinate clause structures only and marks
the structure as [Mc -|, as shown in figure 56.

The Mmc value is shared between the head daughter and the mother in the
head-adjunct phrases, i.e. this constraint demands that the head daughter
has either got the same MC value as the mother is given by the head-adjunct
phrase, or it has got the underspecified value bool, which is compatible with
the value the mother is given. More technical details concerning the head-
adjunct phrase types are described in section 8.1.

69

NORWEGIAN WORD ORDER IN HPSG

top-head-filler-ph
[MC + |

head-comp-ph
[MC + |

head-adj-ph
[mc +]

extr-subj-ph
[MC +]

Gyrd beundret neppe Inge

Figure 55: Main clause structure with nexus adjunct

head-comp-ph
[mc -]

head-adj-ph
[McC -]

(at) Gyrd neppe beundret Inge

Figure 56: Subordinate clause structure with nexus adjunct

70

NORWEGIAN WORD ORDER IN HPSG

As explained in section 2.2, the decision has been made that adjuncts can
not be placed in the position before the subject in a subordinate clause in this
grammar3!. The constraints ensuring this are also laid on the constructional
types described in section 8.1, and hence do not influence the lexical types
of the adjuncts.

The group of adjuncts that can be placed solely at sentence end needs
the opposite constraint of the nexus adjuncts, specifying that its elements
can only modify an element that has already been combined with all its
complements, i.e. that has an empty comPs list or a comPs list of type olist.
The modification must take place before the head-filler phrase is applied,
and this is ensured through the constraint that the MESSAGE list of the mod-
ified element must be empty32. An inverted structure with no topicalization
can thus be modified before the unary yesno-int-phrase is applied and the
structure is given a message value, as shown in figure 57.

head-adj-ph

head-comp-ph

head-subj-ph

Beundrer Gyrd Inge bak blomsten?

Figure 57: Inverted clause structure with sentence-final adjunct

The last group, whose elements can be placed in all possible adjunct
positions of a clause, must be constrained to modify an element that has
either not been combined with any of its complements or with all of them.
This task is solved through the interaction of underspecification and multiple
inheritance in the type hierarchy. The type of adjunct is defined as a common
supertype for both the nexus adjunct type and for the sentence-final adjunct
type. By application of a head-modifier phrase, the type can be forced down
to one of its further specified subtypes as further described in 8.1. Details
on the type hierarchy are given in section 8.2.

To front an adjunct, an extracted-adjunct phrase must be applied to a
clause structure, as shown in figure 53. The extracted-adjunct phrases must
be constrained to only extract the types of adjuncts that can be fronted.

3L1f this should be allowed, it would be an advantage to apply the head-subject phrase
first in subordinate clauses, as is done in the current grammar. This would ensure a
uniform treatment of sentence-modifying adjuncts.

32This is one of the reasons why subordinate clauses are not given a message value before
they combine with a subjunction in the current grammar. As the head-subject phrase is
applied first, the adjuncts at sentence end must be able to modify the whole structure in
the same way as by the V1 interrogative clause shown in figure 56.

71

NORWEGIAN WORD ORDER IN HPSG

Adjuncts can be extracted from the positions in the structure where
they normally occur. This implies that a clause with a topicalized sentence
adverbial results in several different parse tree constructions, one for each
position the adverbial can have in the clause, as shown in figure 58. All of
the generated structures are correct, since it is impossible to decide from
which position the adverbial has been extracted. Still, it is at this point no
advantage to generate all possible trees for a clause of this type, as the only
difference between them will be the order of the phrase application. Any
semantic contribution that the adverbial might make when it is placed in a
non-fronted position (like stress) is for instance lost when it is fronted. For
this reason, the grammar constrains the adverbial and the extracted-adjunct
phrases in a way that makes sure that adverbials can only be extracted from
one position in the clause, as described in section 8.2.

top-head-filler-ph

head-comp-ph

extr-adj-ph

head-subj-ph

Kanskje fant Tranmeal svaret

top-head-filler-ph

head-comp-ph

head-subj-ph

extr-adj-ph

Kanskje fant Tranmael svaret

Figure 58: Possible structures with topicalized sentence adverbial

72

NORWEGIAN WORD ORDER IN THE MATRIX AND LKB

8 Norwegian word order in the Matrix and LKB

This section presents the tecnical details of parts of the implementation described
in section 7. Changes that need to be made to the Matrix to support this implemen-
tation and types for the Norwegian grammar inheriting from the (adjusted) basic
Matrix types are both described. Important for the implementation of Norwegian
word order is primarily the constructional types needed for the grammar rules,
which inherit from the basic constructional types presented in section 6.5, and the
hierarchy of adjuncts described in section 7.4. Additional grammar features are
presented in section 8.3.

To complete the documentation of my implemented grammar fragment,
the following sections review all relevant aspects of the implementation in
considerable technical detail. Throughout the discussion, aspects of the type
hierarchy are combined with comments on the underlying motivations and
interactions with other parts of the grammar.

8.1 Constructional types

As explained in section 7, the basic constructional types from the Matrix
must be somewhat adjusted to support my account of Norwegian word order.
Each constructional type is described in this section, first explaining the
changes that had to be made to the original type from the Matrix, then
presenting the subtypes of the original type that is needed for the Norwegian
grammar fragment.

The basic-head-subject-phrase from the Matrix needs two subtypes in
the grammar to supply the two needed grammar rules, one head-final for the
subclause construction and one head-initial for the inverted main-clause con-
struction. The phrases must be marked Mc (main clause) - or -+, respectively,
as shown in figure 59.

Some minor changes need to be made in the original basic-head-subject-
phrase in the Matrix to support this grammar implementation. As the head-
subject-rule applies before the head-complement-rule the comps-value of the
phrase can not be null, and the comps-value of the head-daughter can not be
olist. Instead, the comps-value must be underspecified and shared between
mother and daughter to pass it up in the structure.

The McC value of the head-daughter is changed from na to unspecified,
and the value has to be shared between mother and head-daughter. This
change is necessary because sentence adverbs can modify a verb before a
head-subject-rule is applied. Pre-head modification will then result in the
value [MC -|, while post-head modification will result in the value [McC +], as
described on page 77.

The diff-list values for LISZT and H-CONS in C-CONT are not specified in
the basic-head-subject-phrase, as they are in the other constructional phrase

73

NORWEGIAN WORD ORDER IN HPSG

types. Since the head-subject-rule does not make any semantic contribu-
tion of its own in this grammar, they are both specified to have an empty
difference list as value.

The head-subj-phrase inherits from non-clause to make sure that it can
not function as a main clause on its own, even in an intransitive verb con-
struction like Smiler jenta? (Does the girl smile?). The yes-no-interrogative-
phrase has to be applied to this structure to yield a main clause of type
interrogative-clause. Furthermore, the subjunction at, which can select for
a main-clause construction as its complement is thus blocked from selecting
smilte jenta as its complement, specifiying its main-clause complement to be
of type declarative-clause.

head-subj-phrasel := basic-head-subj-phrase &
rule &
[SYNSEM.LOCAL.CAT.MC #mc,
HEAD-DTR.SYNSEM.LOCAL.CAT.MC #mc,
C-CONT [LISZT <! 1>,
H-CONS <! !>]].

subj-head-phrase := head-subj-phrasel &
head-final &
[SYNSEM [LOCAL.CAT.MC - 1],
RULE-NAME ’subjh].

head-subj-phrase := head-subj-phrasel &
head-initial &
non-clause &
[SYNSEM [LOCAL.CAT.MC + 1,
RULE-NAME °’hsubj].

Figure 59: TDL definition of the head-subject phrase types

The basic-head-comp -hrase from the Matrix only needs one subtype
in the grammar, shown in figure 60, and no changes needs to be made to the
original type. The subtype specifies that the phrase has the value [NuC -],
as the comps list is not complete anymore when the phrase type is applied.
The subtype also specifies that the head-daugther’s suBJ list has to be of
the type olist. This type of list specifies that the list must either be empty,
or all list elements must be of type unexpressed-synsem and have the value
[oPT +].

The reason for this implementation is the fact that the head-comp-phrase
should be able to apply to elements with an empty suBJ-list (for instance
prepositional phrases), to elements with a suBJ-list containing an element of
type anti-synsem (for instance after applying a head-subject-rule to a verb)

74

NORWEGIAN WORD ORDER IN THE MATRIX AND LKB

head-comp-phrase := basic-head-comp-phrase &
head-initial &
rule &
[SYNSEM.LOCAL.CAT.NUC -,
HEAD-DTR.SYNSEM.LOCAL.CAT.VAL.SUBJ olist,
RULE-NAME ’hcompl].

Figure 60: TDL definition of the type head-complement-phrase

and finally to elements where the suBJ-list only contains elements of type
unexpressed-reg.

The last case is a result of a solution chosen for dealing with infinite verb
forms in this grammar. The type verb-lzm is defined with an element of type
synsem on its SUBJ-list.

Still, infinite verbs do not have a syntactic subject that is supposed to
be present in the surface structure in connection with this verb, but share
their semantical subject with the subject or object of the finite verb in the
construction. To have two definitions of each verb lexeme, one for finite verbs
with a synsem subject and one for infinite verbs without a synsem subject,
is going against the idea of keeping types as simple and general as possible.
To treat the raising constructions mentioned above, it is also simpler to keep
a synsem element on the suBJ-list for infinite verbs as well, to handle the
semantics of the phrase.

As long as the verb lexemes are defined in the way described above,
their suBJ-list element can not be further specified to be of type anti-synsem
because anti-synsem only inherits from synsem-min in addition to unez-
pressed, and it is therefore a sister and not a descendant of synsem. The
suBJ-list element can be specified to be of type unezpressed-reg though, be-
cause unezxpressed-reg inherits from synsem as well as from unezpressed. This
makes the definition in figure 61 for the type psp-verb possible, as it will not
clash with the definition of the subtype of verb-lzm it is cross-classified with.
This definition avoids the chance of the subject of the infinite verb form ever
being physically present in the structure, while still transferring semantic
information.

psp-verb := sign &
[SYNSEM.LOCAL [CAT [HEAD.VFORM psp,
VAL.SUBJ < unexpressed >],
CONT.INDEX.E.TENSE pastperf] 1].

Figure 61: TDL definition of the type psp-verb

Following the definition of olist, this presumes that the subject’s opT
value is undefined in the verb lexemes, and then set to + for the finite verb-
forms in the inflectional rules.

75

NORWEGIAN WORD ORDER IN HPSG

This approach works for this grammar, but it is well possible that it might
complicate matters in a larger grammar. What might be preferred is to use
the inflectional rules to supply the infinite verb forms with an anti-synsem
subject. The hypothesis in the Matrix, that inflectional lexeme-to-word rules
pass the synsem value from the argument to the mother unchanged, would
then have to be broken.

The extracted-subj phrase in the Matrix needs to be changed in the
same way as the basic-head-subject-phrase. The comps value of mother and
head-daughter needs to be shared and unspecified, as subject extraction takes
place before the head-comp-rule can apply. The head daughter’s Mc value
can not be set to na because this value might already have been decided
upon by modification of the head-daughter, and this value must also be
shared between mother and daughter.

In the Matrix, the mother’s McC value is set to -, to ensure that subject
extraction can only take place in subordinate clauses. As this grammar uses
subject extraction to build the main clause structure as well, this constraint
must be removed.

The INDEX value of the gap on the head-daughter’s suBJ list is changed
from ref-ind to individual to allow for extraction of the formal subject det.
The word det has an INDEX value which is a subtype of expl-ind, as in det
regner (it rains).

Only one subtype of the basic-extracted-subj-phrase is needed in the gram-
mar, specifying the value of C-CONT in the same way as in basic-head-subject-
phrase, as shown in figure 62.

extr-subj-phrase := basic-extracted-subj-phrase &
head-compositional &
rule &
[HEAD-DTR.SYNSEM.MODIFIED notmod-or-lmod,
C-CONT [LISZT <! !>,
H-CONS <! !> 1],
RULE-NAME ’extr-subj].

Figure 62: TDL definition of the type extr-subj-phrase

Additionally, the head-daughter is specified to have the value for MOD-
IFIED be notmod-or-Imod (not modified or left modified). This is done to
avoid spurious parses for sentences containing a modifier in the nexus field.
As modifiers can stand both before and after the subject in the nexus field
in a main clause, it would otherwise be possible to extract the subject from
the structure both before or after the verb has been modified.

By specifying that the head-daughter must be notmod-or-Imod, extrac-
tion can only take place before the verb has been modified in a main clause,
because there only topicalized modifiers may stand to the left of the finite
verb. The reason for using notmod-or-Imod instead of only notmod is to al-

76

NORWEGIAN WORD ORDER IN THE MATRIX AND LKB

low for subject extraction also in subordinate clauses, as the grammar does
not allow adverbials to modify a subj-head-phrase (when the subj-head-rule
has been applied in a subordinate clause). If the subclause does have mod-
ifiers to the left of the verb, the subject must then be extracted after they
have modified the verb, since nothing is allowed to modify the verb once the
subject is removed.

The basic-extracted-comp-phrase from the Matrix does not need to be
modified. It needs one subtype that constrains the head daughter’s sUBJ
value to the type olist, for the same reasons as described above for head-
comp-phrase. The value of NUC is also constrained to be -.

The adj-head-int-phrase and head-adj-int-phrase from the Matrix
do also not need to be modified before they are put to use in my grammar.
They both inherit from the head-mod-phrase, though, where the comMps value
of the phrase is changed from null to an underspecified list shared between
mother and head daughter. This is necessary, of course, because modifiers
can also modify elements with a non-empty comPps list.

The phrase types needed for modifying noun-phrases, n-hadj-int-phrase
and n-adjh-int-phrase, only need to specify that the head daughter’s HEAD
value must be of type noun. These phrase types then apply both to the
adjectives and prepositonal phrases that can modify noun phrases in the
grammar.

The phrase types needed for modifying verb-phrases need additional con-
straints, which is the reason why the division between verb-modifying and
noun-modifying phrases must be made here in the first place33.

The s-int-phrase is a verb-modifying subtype of the type isect-mod-phrase,
constrained to have a head daughter with a HEAD value of type verb and with
the value of VFORM set to fin. It needs three subtypes that cross-classify with
one of the types adj-head-int-phrase and head-adj-int-phrase to cover all cases
present in the grammar, s-hadj-int-phrase, s-main-nez-hadj-int-phrase and s-
sub-nex-adjh-int-phrase.

The type s-hadj-int-phrase shown in figure 63 is used for the post-head
modification of the verb that is common for main and subordinate clauses.
The only possible position for such modification is at the sentence-final po-
sition, and the type thus only specifies the head daughter’s HEAD value to
be of type final-or-strictly-final-mod. The hierarchy of adjunct head types is
presented in detail in section 8.2.

The head-initial type s-main-nez-hadj-int-phrase shown in figure 64 then
covers all the cases where adjuncts are placed in the nexus field of main
clause structures in my grammar. The phrase type is thus specified to have
the MC value +, blocking for any nexus adjuncts after the finite verb in a

33Such a syntactic distinction is not uncommon and it is done for several reasons, among
others partly semantic. See for instance the LinGO ERG.

7

NORWEGIAN WORD ORDER IN HPSG

s-hadj-int-phrase := s-int-phrase &
head-adj-int-phrase &
[NON-HEAD-DTR.SYNSEM.LOCAL.CAT.HEAD
final-or-strictly-final-mod].

Figure 63: TDL definition of the types s-hadj-int-phrase

subordinate clause, and its non-head daughter’s HEAD value is constrained
to be of type nex-mod.

s-main-nex-hadj-int-phrase := s-int-phrase &
head-adj-int-phrase &
[SYNSEM.LOCAL.CAT.MC +,
NON-HEAD-DTR.SYNSEM.LOCAL.CAT.HEAD nex-mod].

Figure 64: TDL definition of the type s-main-nex-hadj-int-phrase

As its counterpart, the head-final type s-sub-nex-adjh-int-phrase shown in
figure 65 handles adjuncts in the nexus field of subordinate clause structures.
The value of MC is set to -, thus blocking the pre-head modification of the
verb that is not allowed in a main clause. The non-head daughter’s HEAD
value is set to mex-mod. The suBJ value of the head daughter is set to be
a list containing an ezpressed-synsem, in order to block modification to the
left of the subject. If modification in this position was considered desirable
(see the discussion in section 2.2), this constraint could be relaxed to just the
type olist, or be left unspecified. The type ezpressed-synsem is used instead
of, for example, canonical-synsem to ensure that the subject can still be
extracted.

s-sub-nex-adjh-int-phrase := s-sub-int-phrase &
adj-head-int-phrase &
[SYNSEM.LOCAL.CAT.MC -,
HEAD-DTR.SYNSEM.LOCAL.CAT [VAL.SUBJ < expressed-synsem >],
NON-HEAD-DTR.SYNSEM.LOCAL.CAT.HEAD nex-mod].

Figure 65: TDL definition of the type s-adjh-int-phrase

If a distinction between scopal and intersective modifiers was needed for
a semantic reason (see section 4), corresponding types could be defined for
scopal modifiers as well in a straightforward fashion.

The basic-extracted-adj-phrase from the Matrix does not need to be

modified. It needs two subtypes in this grammar, both shown in figure 66.
The type adv-extracted-adj-phrase extracts adjuncts that can be placed

in the nexus field of a sentence. The extracted argument is specified to have

78

NORWEGIAN WORD ORDER IN THE MATRIX AND LKB

adv-extracted-adj-phrase := extracted-adj-phrase &
[SYNSEM.NON-LOCAL.SLASH.LIST.FIRST.CAT.HEAD emph-mod,
HEAD-DTR.SYNSEM.LOCAL [CAT.VAL.SUBJ < anti-synsem >,
KEYS.MESSAGE 0-dlist 1].

adv-fin-extracted-adj-phrase := extracted-adj-phrase &
[SYNSEM.NON-LOCAL.SLASH.LIST.FIRST.CAT.HEAD
strictly-final-mod,
HEAD-DTR.SYNSEM.LOCAL.KEYS.MESSAGE 0-dlist].

Figure 66: TDL definition of the subtypes for adjunct extraction

a HEAD value of type emph-mod (see section 8.2 for details on the adjunct
head types).

The head-daughter’s anti-synsem subject is specified to avoid spurious
parses, as the adjunct otherwise can be extracted both before and after the
head-subject-rule has been applied.

Setting the head daughter’s MESSAGE value to 0-dlist is done to avoid
extracting an adjunct from a sentence (i.e. once the fillhead-rule or the yes-
no-rule has been applied).

The type adv-fin-extracted-adj-phrase extracts an adjunct from the final
position of a sentence. The extracted argument is specified to have a HEAD
value of type strictly-final-mod.

The basic-head-filler-phrase from the Matrix does not need any modi-
fication. As wh-questions are not yet implemented in the grammar, it also
needs only one subtype, resulting in a propositional phrase.

The type fillhead-phrase inherits from the types head-final, declarative-
clause and head-compositional. The type fills in an element according to
the value of the head daughter’s sLAsH list. The head daughter must be of
type verb and have mcC value +, which is shared with the mother. As the
phrase is a maximal projection, a message relation is introduced on the LISZT
difference list via the value of C-CONT.L1SZT. This message relation is shared
with the mother’s MESSAGE value which is a proposition.

The type also adds a geq handle constraint to the mother’s H-CONS list
via the C-CONT.H-CONS value of the phrase. This geq element ensures that
the soa handle of the message of the phrase takes scope over the key handle
of the phrase.

The yes-no-interrogative-phrase is a unary rule that inherits from the
types unary-phrase and interrogative-clause from the Matrix. Together with
the fillhead-phrase, this is the only other phrase type that yields a maximal
projection, i.e. that can function as a root element. It takes as its argument
an inverted finite verb phrase with an empty comps list where no topicali-
sation has taken place and where no argument has been extracted from the

79

NORWEGIAN WORD ORDER IN HPSG

structure. This is ensured by constraining the argument’s SLASH value to be
0-dlist and its MESSAGE value also to be of type 0-dlist.

The mother is given a quest-rel element on its MESSAGE difference list to
show that the phrase is a question. This is shared with the element on the
C-CONT.LISZT difference list to add it to the LiszT difference list of the phrase.

8.2 Adjuncts

In the Matrix phrase types are defined for both intersective and scopal
modification, cross-classifying with the types for head-initial and head-final
phrases to yield all the possible combinations of the four types. Hence what
the grammar needs is lexical types for the different types of adjuncts, speci-
fying what type of constituent they modify.

The implementation of adjuncts does as already mentioned not directly
follow the classification of adjuncts (i.e. adverbials) found in section 2.1.5,
where the distinction is made between free adverbials on one side and sen-
tence adverbials on the other side. This exact classification is not imple-
mented in my grammar because there are no syntactic phenomena that de-
pend on it within the scope of this thesis. In the interest of transparency, the
current implementation avoids irrelevant distinctions, though from the dis-
cussion in section 2.1.5 it should be clear how a more fine-grained distinction
could be incorporated quite easily.

Instead, the type hierarchy shown in figure 67 covers only the different
distributional possibilities associated with the corresponding types of adver-
bials in section 2.1.5. That is to say, that if a sentence adverbial and a free
adverbial have the same distributional possibilities in a sentence, their imple-
mentation is identical in this grammar. If such a classification was needed it
could easily be defined as a new sub-hierarchy, to be cross-classified with the
distributional types at need, without loss of generality. Aditional semantic
classifications could be treated in the same way.

mod

final-or-strictly-final-mod nex-or-final-mod

nex-mod

strictly-final-mod final-mod emph-mod non-emph-mod

Figure 67: Type hierarchy below mod

The only sub-hierarchy that is implemented to cross-classify with the
distributional types in this grammar are grammatical categories like adverb

8o

NORWEGIAN WORD ORDER IN THE MATRIX AND LKB

(adv) and preposition (prep), subtypes of head. as shown in figure 68.

adv := adverbee.

nex-or-final-adv := adv & nex-or-final-mod.
final-adv := nex-or-final-adv & final-mod.
non-emph-adv := adv & non-emph-mod.
emph-adv := nex-or-final-adv & emph-mod.

prep := head.
final-prep := prep & strictly-final-mod.

Figure 68: TDL definition of the types below adv and prep

The top type of the sub-hierarchy of distributional types is the type
mod (modifier). It inherits only from the type head and it has no specific
constraints on its own.

The type nez-or-final-mod only inherits from the type mod and it has
also no constraints on its own. It is a type encompassing all distributional
possibilities an adjunct can have in a sentence, as the types specified to be
able to stand in the pre- and post-subject positions in the nexus field, at
sentence end and fronted all are subtypes of this type. A sentence adverbial
(or free adverbial) that can stand in every (adjunct) position of the clause,
such as allikevel, inherits directly from this type.

Instances of its subtypes, nez-mod and final-mod, can only be placed in
the nexus field or at sentence end, respectively, i.e. most sentence adverbials
implemented in the grammar are instances of one of the subtypes of nez-mod.

The type nex-mod is specified to modify an element that has NUC value +,
as shown in figure 69. This means that it can not modify an element that
has already had a complement removed from its comps list, thus blocking
adjunction ‘inside’ of (what corresponds to) the traditional VP.

nex-mod := mnex-or-final-mod &
[MOD < [LOCAL.CAT.NUC +] >].
non-emph-mod := nex-mod.
emph-mod := nex-mod.

Figure 69: TDL definition of the types below nex-mod

The subtypes of nez-mod, non-emph-mod and emph-mod, are specified
with regard to whether the type can be fronted or not. As a general rule, all
adjuncts that can be emphasized can also be fronted, hence the name emph-
mod is given to the type that can be fronted (such as kanskje), whereas
instances of the type non-emph-mod can not be fronted (such as sikkert).
Other than their relative position in the type hierary, they have no con-
straints of their own.

The type final-mod also inherits from the second subtype of mod, the type

81

NORWEGIAN WORD ORDER IN HPSG

final-or-strictly-final-mod, defined as shown in figure 70. The type final-or-
strictly-final-mod is specified to modify an element with an empty CcoOMPS
list, as it can only stand at sentence end. The two other specifications, that
the suBJ list must be of type olist and that the modified element can not
have a message value, are consequenses of the decision always to combine the
subject and the finite verb first, before applying a head-complement phrase.
The message specification is then needed to avoid modification of maximal
projections, i.e. a whole clause.

final-or-strictly-final-mod := mod &
[MOD < [LOCAL [CAT.VAL [SUBJ olist,
COMPS <>],

KEYS.MESSAGE 0-dlist 1] > 1].

Figure 70: TDL definition of the types below final-or-strictly-final-mod

As shown in section 8.1, two different rules are needed to handle post-
head modification by sentence-modifying adjuncts in main clause structures.
Both are head-initial, but where the phrase type that applies to nexus adver-
bials is defined to have a non-head daughter with the HEAD value nez-mod,
the phrase type handling modification at sentence end is defined to have a
non-head daughter with the HEAD value final-or-strictly-final-mod.

Intuitively, it might seem that another way of setting up the adjunction
rules wold be to assume just one ‘nexus or final’ head-adjunct construction
and constraint it to be [MC +] (because of the adjuncts placed after the finite
verb in the nexus field). Given the type hierarchy in figure 67, such a unified
rule could require its non-head daughter’'s HEAD to be of type nez-or-final-
mod and apply to both nexus adverbials and adverbials at the end of the
sentence.

However, actual implementation will sometimes serve to prove naive in-
tutions wrong and reveals that the strategy sketched above would result in
overgeneration. The lexicon, as mentioned earlier, contains adverbs defined
to be of the same underspecified type (i.e. nex-or-final-mod) as well. If the s-
main-hadj-int-phrase applies directly to an element with a HEAD value of type
nez-or-final-mod, wrong parses would result from the underspecification, as
crucial information needed to rule out ungrammatical adjunct placement is
only supplied by the subtypes of nez-or-final-mod. Underspecification of the
feature NUC (whose specified value is defined in nez-mod) can for instance
lead to structures where adjuncts interleave the complements. The division
into two different rules thus ensures that only the adequately constrained
types are used in combination with the head-adjunct phrases.

As shown in section 8.1, this division also makes it possible to use a
single phrase type for modification at sentence end, only contrained to have
a non-head daughter with the HEAD value final-or-strictly-final-mod. If one
head-initial phrase should apply to all head-adjunct constructions in the
main clause structure, this phrase would, as mentioned, have to be marked

82

NORWEGIAN WORD ORDER IN THE MATRIX AND LKB

as [MC +]. Adjuncts at the end of a sentence in subordinate clause structures
would then have to be accounted for by their own phrase type, in addition
to the head-final phrase type needed to account for the adjuncts placed in
the nexus field before the finite verb in subordinate clause structures.

This division between the two subtypes of final-or-strictly-final-mod, final-
mod and strictly-final-mod, is made for technical reasons, in order to part
adjuncts that can only be placed at sentence end (strictly-final-mod) from
adjuncts that can be placed in the nexus field as well (final-mod) as at sen-
tence end. This means that no adjunct is defined as an instance of the type
final-mod directly, as an adjunct must be defined as an instance of strictly-
final-mod if it can only stand at sentence end (in this grammar for instance
prepositional phrases such as ved bordet). Instances of the type final-mod in-
herit from the type nez-or-final-mod and are specified to the type final-mod
during phrase application.

strictly-final-mod := final-or-strictly-final-mod.
final-mod := nex-or-final-mod &
final-or-strictly-final-mod.

Figure 71: TDL definition of the types below final-or-strictly-final-mod

The reason for this division is to avoid spurious parses by adjunct ex-
traction and fronting, as discussed on page 71 in section 7.4. Fronting is a
possibility for all adjuncts that can be placed at sentence end3*, so adjuncts
of the type final-mod should have the ability to be extracted. But as some
adjuncts, as mentioned earlier, are instances of the type nez-or-final-mod,
they can correctly unify to instances of both emph-mod and final-mod.

This makes the implementation of the extraction rule a bit tricky. A
nex-or-final-mod element can not be extracted directly, as this would include
non-emph-mod elements. Making one extraction rule each for emph-mod and
final-mod would be a solution, but it would result in spurious parses, as some
elements, as mentioned, can unify to instances of both types. To define one
common supertype for final-mod and emph-mod, excluding non-emph-mod,
would enable us to use one rule only, but would still leave us with spurious
parses. In this case the supertype unifies to the type emph-mod when the
adjunct is extracted from the nexus field in one possible parse of the clause,
and then unifies to the type final-mod when the adjunct is extracted at
sentence end in the second possible parse of the clause.

Finally, deciding that only elements of the type emph-mod can be ex-
tracted would exclude adjuncts that can only stand at sentence end, like
prepositional phrases in this grammar, and the other way around the ad-
juncts that are only defined as emph-mod would be excluded.

The solution chosen here is to introduce the type final-or-strictly-final-
mod, which has the mentioned subtypes strictly-final-mod and final-mod,

34Not including extraposed adjuncts and sentence adverbs that can end up at sentence
end because of lacking objects.

33

NORWEGIAN WORD ORDER IN HPSG

also inheriting from nex-or-final-mod. Using this classification, the problem
of extracting adjuncts can be solved by using the two adjunct-extraction
phrases shown in section 8.1.

The phrase type adv-extracted-adj-phrase is therefore specified to have a
non-head daughter with a HEAD value of type emph-mod, as adjuncts of the
type non-emph-mod can not be fronted. Adjuncts specified as nez-or-final-
mod can be fronted, and unify to the subtype emph-mod.

To cover the cases of extraction of adjuncts from the final position of a
sentence, the phrase type adv-fin-extracted-adj-phrase is specified to have a
non-head daughter with a HEAD value of type strictly-final-mod (i.e. adjuncts
that can only be placed at sentence end and not in the nexus field as well).
To avoid spurious parses, elements of the type final-mod can not be extracted
from this position, as any element that unifies to final-mod also unifies to the
type emph-mod, to which the phrase type adv-extracted-adj-phrase already
applies.

This hierarchy does not exhaust the possible placement pattern for ad-
juncts. As mentioned in section 2.1.5, especially the precise distribution
of free adverbials can vary considerably according to grammatical category
and semantic contribution. The free adverbials implemented in this grammar
were selected because they cover the full range of distributional possibilities,
in addition to being of the grammatical category adverb. In spite of this,
it would not be a problem to specify additional distributional types for ad-
juncts, e.g. one that can only be placed after the subject in the nexus field
or only before the subject in the nexus field, or any other combination.

The phenomenon of bound adverbials is implemented in the grammar,
but this has no impact on the implementation of the mod-hierarchy. A bound
adverbial is simply any kind of adjunct that is an oblique complement of a
verb, and the interesting implementaion is thus done for the verb’s lexical
type, specifying which type of adjunct the type of verb requires.

8.3 Additional grammar features

This section briefly presents some of the features of the implemented gram-
mar fragment that have not been mentioned in the main sections describing
the grammar. This is because although they do provide a necessary basis for
working with word order phenomena, the main goal of the grammar imple-
mentation, they do not directly influence the solutions that have been chosen
in this field.

The main parts of the grammar presented here include lexical types (i.e.
types used for building lexical elements), inflectional types and construc-
tional types. By the lexical types, the hierarchy of adjuncts has already
been described in detail, as this is important for the implementation of word
order phenomena. Most of the constructional types have already been de-
scribed in section 8.1. The very few types left for this section were omitted
because they construct entities other than clauses or because they handle
clause constructions that were not on the to-do list of this thesis.

84

NORWEGIAN WORD ORDER IN THE MATRIX AND LKB

8.3.1 Lexical types

The lexical types implemented in the grammar are in many cases copied
from the LinGO ERG grammar and adjusted for use with the Norwegian
grammar.

Nominal types included in the grammar are lexical types for common
nouns and for the lexical NPs proper names and pronouns (which are marked
for case). Common nouns are defined as lexemes, and get their feature value
for number (singular of plural) via inflectional rules.

One lexical type of adjective is defined, with an element with HEAD value
of type moun on its moD list. All adjectives are pre-head modifiers, marked
as POSTHEAD -. The adjectives are defined as lexemes, which get inflected
with regard to number, person, gender and definiteness via a inflectional
rule, to ensure agreement with the noun.

Definite and indefinite types of determiners function as specifiers in the
noun phrases. The subtypes of the determiners also vary with regard to gen-
der, person and number, as these values need to agree with the corresponding
values of the noun.

To build the lexical types for verbs, two sub-hierarcies are put to use. A
hierarchy of linking types specify the relationship between valence positions
and semantic roles. Another hierarchy of valence types specify the number
and type of subcategorized complements. The different lexical verb types
thus inherit from the suitable subtypes from both hierarcies. The verbs are
also defined as lexemes, so tense and verb form are introduced by inflectional
rules.

The lexical verb types include types for atransitive verbs, intransitive
verbs, transitive verbs with a NP complement, ditransitive verbs, intranitive
verbs with a PP complement, transitive verbs with a PP complement and
intransitive verbs with a CP complement. One type of auxiliary verb is also
defined.

Only transitive prepositions is defined in the grammar. This type has an
element with HEAD value of type wverb-or-noun on its MOD list, i.e. it is able
to modify both noun and verb phrases. Prepositional phrases are posthead
modifiers only, and they are so marked POSTHEAD .

The defined lexical type of adverb can only modify elements with HEAD
value of type verb, and they can be pre-head as well as post-head modifiers.

Two subtypes of complementizers are defined, one that takes a finite verb
phrase as its complement (i.e. a subordinate clause) and one that takes an
infinite verb phrase as its complement. Additionally, the type of comple-
mentizer that takes a finite verb phrase as its complement has two subtypes,
one where the complement can have both main clause structure and subordi-
nate clause structure and one where the complement must have subordinate
clause structure.

85

NORWEGIAN WORD ORDER IN HPSG

8.3.2 Inflectional types

The inflectional types in the grammar treat inflection of adjective lexemes,
noun lexemes and verb lexemes. Irregular forms are not implemented in
this grammar, and of the regular forms only the main paradigmes are imple-
mented. This to ensure a maximum of coverage with a minimum of work.
The adjectives are inflected with regard to number, gender and defi-
niteness. The nouns are inflected with regard to number and definiteness,
and feminin nouns can be inflected like masculine nouns in addition to the
feminin-specific inflection, as in the rule shown in figure 72.

noun-mof-pl_irule :=

%suffix (e er) (er ere) (ler !erer) (!vm !vmmer) (!tm !tmer)
('k 'ker)

pl-noun-word-infl-rule &

[ARGS < masc-or-fem-noun-lxm >,
SYNSEM.LOCAL.AGR.PNG.DEF indef].

Figure 72: Inflectional rule for masculine and feminine noun lexemes

The inflected forms of the verbs reflect tense, and they include infinitive,
presens, past and past participle forms. The fact that there are four different
main inflectional patterns for regular verbs in Norwegian is complicating
matters slightly. Four parallel set of inflectional rules for the past and past
participle forms are thus needed to cover for all the regular verbs, and each
verb lexeme inherit from a type defining it to belong to one of the three
groups. FEach inflectional rule then specify which type of verb lexeme it
takes as its argument, as shown in figure 73.

verbl-pret_irule :=
%suffix (!'s !set) (!s !sa)
past-verb-rule &

[ARGS < verbl-1lxm >].

verb2a-pret_irule :=
%suffix (s !ste)
past-verb-rule &

[ARGS < verb2a-1xm >].

Figure 73: Inflectional rules for verb lexemes

8.3.3 Additional constructional types

The n-hadj-int-phrase is a subtype of head-adj-int-phrase, constraining
head daughter of the phrase to have the HEAD value noun. Its sibling n-
adjh-int-phrase is its head-final equivalent. These two phrase types account

86

NORWEGIAN WORD ORDER IN THE MATRIX AND LKB

for all modification of noun phrases in the grammar including adjectives and
prepositional phrases.

The bare-np-phrase is a unary grammar rule, inheriting from the types
head-valence-phrase and head-only. The phrase is needed because all com-
mon nouns are defined with a specifier, although some lexical forms of the
noun can stand alone in a phrase. The phrase type thus removes the specifier
when needed.

The head daughter is a lexical element with a HEAD value noun and a
non-empty specifier list. Because all nouns must be bound by a quantifier,
the quantifier is provided through the Cc-CONT.LISZT value. The INDEX value
of the noun is unified with the bound variable of the quantifier relation. In
addition to this, a qeq element is introduced on the C-CONT.H-CONSs difference
list. Here the handle of the quantifier relation is set to take scope over the
top handle of the noun.

The phrase needs two subtypes, the bare-np-def-phrase and the bare-np-
indef-phrase. The first phrase type constraints the noun to have the PNG.DEF
value def and the quantifier relation to be of type def-rel. It also constraints
the head daughter to have the MODIFIED value notmod-or-rmod as a definite
noun can not stand without a specifier if it is left-modified.

The bare-np-indef-phrase has to have the PNG.DEF value indef and it
specifies the quantifier relation to be of type udef-rel. Additionally PNG.NUM
value to be plur. It does not lay constraints on modification as does its
sibling.

The det-subj-phrase is a lexical rule introducing formal subject while
transforming the original subject into a complement. This construction is
constrained to take certain types of verbs as its arguments, also laying con-
straints on the original subject of the verb.

In this simplified version, the verb is constrained to be of type prep-
intrans-verb. This works well, as the grammar only contains prepositions
that can be used in this costruction. The subject of the verb must have
the PNG.DEF value indef. The mother’s comps list consist of the daughter’s
comPs list with the subject element put at the front of the list. When the
new element of mother’s SUBJ list has an INDEX value of type det-ind, which
applies to the non-referntial formal subject det.

37

NORWEGIAN WORD ORDER IN HPSG

88

CONCLUSION

9 Conclusion

To start the conclusion where the introduction ended: the goal of this thesis
has been “[...] to develop an analysis for Norwegian that covers all of the
above-mentioned phenomena concerning Norwegian word order, and addi-
tionally to present an efficient implementation of the analysis in HPSG, using
a specialized grammar writing tool”. The phenomena mentioned were the
varying structures of Norwegian main clauses due to the V2 constraint and
topicalization, and the differences in word order between Norwegian main
and subordinate clauses, concerning both the ordering of subject, verbs and
complements and of adjuncts.

It must be admitted that the learning curve needed to achieve this goal
has been steep at times. It has taken considerable time to master the formal
frameworks as well as the technical tools. Additionally, the complex nature
of the type hierarchy has made it difficult to test out alternative approaches
for different phenomena along the way, as the consequences of small changes
in one part of the grammar have been deeply felt in completely different
grammar parts. But as comparison of different analyses was not an original
goal for the thesis, the alternative approaches mentioned in the text can also
be seen merely as interesting topics for further studies.

When this is said, though, it must again be mentioned that both the
technical tool LkB and the Matrix have made it possible to build a far more
advanced grammar than originally intended. In the case of the Matrix, an
extra bonus of mutual benefit is added, as my grammar implementation is
among its first test beds, building a non-English grammar by the help of
the English-derived starter kit. The comparison of Norwegian constructions
against their English equivalents thus contributes to the goal of the Matrix,
to develop into a language-independent basic type hierarchy. The informa-
tion resulting from the implementation process, concerning which types can
be directly imported into the Norwegian grammar and which types are so
language-specific (English) that they need to be changed to be put to use,
can be evaluated and later incorporated into the Matrix by its creators.

Not all factors contributing to the the long time span and steep learning
curve of this thesis have been imposed on the innocent student by technicians
or formal frameworks. It can not be denied that the main and self-inflicted
reason has been its broad scope. The work can be divided into no less than
four main parts, including: i) a formal descriptive account of the Norwegian
phenomena, their classification and delimination, ii) an analysis of the phe-
nomena within the framework of HPSq, iii) a functional implementation of
the analysis in LKB and iv) a comprehensive test suite for the phenomena.

To my best knowledge, this thesis presents the first implemented and
documented analysis of Norwegian word order phenomena in HPSG. Though
the inspiration found in the formal framework of Field Grammar is shared
with other contributors to the treatmeant of Scandinavian clause structure
in HPSG, the advantage of the analysis is its (relative) simplicity. A minimal
use of phrase marking via the features MC and NUcC has shown to be sufficient

39

NORWEGIAN WORD ORDER IN HPSG

to account for the main troublesome constructions in the grammar.

The basic differences in the clause structure of main and subordinate
clauses are accounted for by postulating two basically different construc-
tion patterns, normally separated already from the first phrase application.
The sentence adverbials, that on first glance seemed like a rather unruly
class when it came to constituent ordering, have shown themselves as well
suited for implementation and underspecification in a type hierarchy. When
combined, these solutions fulfill the goal of the thesis, as they supply an
implementable analysis that accounts for the all chosen language data.

My implemented grammar fragment is supplied on CD-ROM as a ‘virtual’
appendix to this thesis. The implementation comprises a type hierarchy of
360 types (in addition to the 219 supplied by the Matrix), 17 constructions
and 22 lexical and inflectional rules, 84 lexical entries (typically with only a
few examples per lexical class), and 2440 lines of TDL code (in addition to the
1398 lines of code for the Matrix). My development and test corpus included
as appendix C contains 388 sentences, of which 150 are ungrammatical to
test for overgeneration in the grammar (of which there is none).

Maybe one of the most tempting open question that remains is to see how
easily the analysis can be expanded to handle object shift as well. It should
not be a problem to use the already present features MC and NUC to supply a
slightly more advanced marking of the head-complement, head-subject and
head adjunct phrases, in combination with a distinct type for at least light
pronomina, so that the interaction between the light pronomina and sentence
adverbials in the nexus field (i.e. in a NUC + phrase) can be accounted for.
It would be extremely interesting to see how advanced the mark-up would
have to be to allow for the grammatical object shift constructions while still
blocking the ungrammatical ones. However, this question can not be solved
in this conclusion and must be left as an exercise to the reader.

90

APPENDIX A

A Parse tree examples

This appendix presents the parse trees for some possible constructions in the
grammar fragment. The trees are all saved directly from the LKB, exactely
as they are displayed in the program. The parse results for the full test set
of sentences can be found in appendix C.

A.1 Parse trees from section 7

All the parse trees depicted in section 7 are included in this section, in
addition to a few parse trees for possible constructions described but not
depicted?.

S-DECL
NP VP/NP

| —_—

Per VP/NP NP

!

VINP Aud
beuﬁdrer
V/NP
S-DECL

—

NP VP/NP

Per VP/NP
—
VINP NP
|]
beundrer Aud
|
VINP

Figure 74: Declarative main clause structures

Figure 74 displays the two resulting parse trees from a declarative main
clause with a transitive verb. The first tree corresponds to the default reading
of this sentence, where the subject is placed in the sentence initial position.
In the second tree, the direct object is extracted from the structure and
topicalized.

Figure 75 shows a V1 version of the main clause shown in figure 74.
The yes-no-int-phrase is applied to recognize and mark the clause as an
interrogative clause.

Figure 76 shows the structure of a subordinate clause, here as the com-
plement of the sentence’s main verb sjekket.

Figure 77 shows the two resulting parse trees when a light sentence adver-
bial is placed directly after the finite verb. In this case, the element after the

35Due to a font problem with the LKB, discovered a bit to late to be fixed, parse trees
containing the name Tranmel can not be saved to file. For this reason, other proper
names replace the name Tranmeel in some examples.

NORWEGIAN WORD ORDER IN HPSG

S-INT
|
VP
VP NP

—_—]

\Y NP Au

| \
Beundrer Per

|

\Y

Figure 75: Interrogative main clause structures

S-DECL
NP VP/NP
Aud VPINP CP
VNP C SBl
sjekket o\m VP NP
, Rl ‘
VINP NP V N
Pér fa‘nt svéret
vV N

Figure 76: Declarative main clause with subordinate clause complement

S-DECL
— T T
NP VP/NP
Gyrd VPINP
—_—
VINP NP
— \

VINP ADV Inge
beur‘1dret nebpe
V/I/\IP
S-DECL
NP VPINP
G)‘/rd VP/NP NP
VP/NP ADV In\ge
V/NP nebpe
bem:ﬂdret

V/NP

Figure 77: Main clause with light sentence adverbials

vi

APPENDIX A

adverbial can be the subject as well as the complement of the verb. The first
tree has a topicalized object, while the second tree shows the non-stressed
reading with the subject at the front of the sentence.

S-DECL
NP VP/NP
Gyrd VP/NP
—_—
VP/NP ADV

V/NP NP neppe
beundret Inge
VINP

Figure 78: Main clause with light sentence adverbials and topicalized object

In figure 78, the parse result of the sentence is one parse tree only, bed-
cause an NP element is placed between the finite verb and the light sentence
adverbial. As the light and heavy sentence adverbials can only be placed
in two positions in the nexus field, directly after the finite verb or after the
inverted subject, the NP element must be the subject and the topicalized
element must be the object.

S-DECL
NP VP/NP
Pér VP/NP CP
VNP C sBI
troade ét VP NP
V/NP NP \% In\ge
| o
Gyrd ADV \%
ne;/)pe beurildret
\%

Figure 79: Subordinate clause with light sentence adverbial

Figure 79 shows the pre-head position for light and heavy sentence ad-
verbials in subordinate clause structures.

Figure 80 shows a main clause modified by a sentence adverbial that can
also be placed at the final position of a sentence, i.e. after the complements.

In figure 81, this adverbial is topicalized. Note that it is then only ex-
tracted from the position after the inverted subject, before the complement.

Figure 82 shows a modified main clause where the adverbial is a prepo-

vii

NORWEGIAN WORD ORDER IN HPSG

S-INT
VP
VP ADV
—_— |
VP NP allikevel
\Y NP N
Fant Aud svaret
V N

Figure 80: Main clause with nez-or-final-mod sentence adverbial

S-DECL

P

ADV VP/ADV

| —_—
Allikevel VP/ADV NP
VP Gyrd

—_—

\% NP

| \

beundret Inge
\
Y,

Figure 81: Main clause with topicalized nez-or-final-mod sentence adverbial

viii

S-INT
VP
VP NP
o ——
Y, NP NP PP
Beuﬁdrer G)}rd Inée P/\NP
v bak N
bIom‘sten
N
S-INT
VP
vV PP
— —
VP NP P NP
\% NP Inége b:lik N
Beuﬁdrer G)}rd bIom‘sten
v N

Figure 82: Main clause with PP modifier

APPENDIX A

sitional phrase. The PPs that are implemented in this grammar are of type
strictly-final-mod and can so (in addition to being topicalized) only be placed
at sentence end if they are modifying the finite verb of the sentence. As the

first parse tree shows, they can also modify NPs.

S-DECL
PP VP/PP
P NP VP
| | —
Bak N VP NP
blomsten \ NP Gyrd
N beundrer Inge
Y

Figure 83: Main clause with topicalized PP modifier

In figure 83, the PP is topicalized. As it can only be placed at the end

of the sentence, it is also extracted from this position.

ix

NORWEGIAN WORD ORDER IN HPSG

A.2 Additional features

As already mentioned, the exhaustive parse results of the grammar test set
of sentences is found in appendix C, logically sorted after subject. The
following parse trees are only meant to give a glimpse of some of the features
of the grammar that are not described in section 7, in a more visual way
than appendix C allows for36.

S-DECL
B
NP VP/NP
Jeg VPINP CP
| -
VINP C S-DECL
| | -
trodde at ADV VP/ADV
| |
VINP kanskje VP/ADV PP
- —
VP/ADV ADV P NP
| | | |
VP allikevel ved N
\Y NP bordet
| -— |
satt DET N N
| | —_—
V den ADJ N
forelskede jenta
ADJ N

Figure 84: Main clause with main clause complement

Figure 84 and 85 show a important distinction by the use of the com-
plementizer at. In contrast to the complementizer om that can only have
a subordinate clause structure as its complement, at can choose between a
main and a subordinate clause structure complement. The embedded sen-
tence in figure 84 displays all the signs of a main clause structure, with an
inverted subject, a topicalized heavy sentence adverbial and a sentence ad-
verbial placed before the complement, after the finite verb and the inverted
subject. In the embedded sentence in figure 85, on the other hand, a light
sentence adverbial is placed before the finite verb, after the subject, thus
marking the clause as having suborinate clause structure. In figure 85, the
subordinate clause is topicalized.

Figure 84 additionally contains a verb that takes a locative PP comple-
ment, namely satt (which is also a non-regular verb, with base form sitte).
The PP is not treated as an adjunct, but is combined with the verb phrase
via the head-complement rule.

36T must confess that the sentences suffer a bit under the attempt at combining far to
many phenomena into one structure, and that they for this reason might not be the most
natural-sounding utterances under most circumstances. Still, their structural grammati-

APPENDIX A

S-DECL
CP VP/CP
C S-BI VP/CP
| - —_—
At VP NP VICP NP
NP \ N trodde hun
DET N ADV V blomster V/CP
] —_— | | !
disse ADJ N sikkert likte N
| | \
blide guttene \%
ADJ N

Figure 85: Main clause with subordinate clause complement

Figure 84 and 85 both include varying types of NPs. The simplest form
is found in blomster (flowers) and bordet (the-table), both common nouns
that has been marked for definiteness and number via an inflection rule and
that can function as an NP on their own. The bare-np-rule has been applied
to both nouns to remove their specifier and so recognize them as NPs.

The more complex noun phrases, den forelskede jenta (the amorous girl)
and disse blide guttene (these cheerful boys), consist of a common noun, an
adjective and a determiner. The common noun has again been marked for
definiteness and number via an inflection rule. The adjective modifies the
noun and has been inflected with regard to definiteness, number and gender.
These feature values have to agree with the corresponding values of the noun,
both by the adjective and by the determiner that functions as the specifier
of the noun.

Finally, the personal pronouns jeg (I) and hun (she) can function as NPs
directly. They are both marked for case.

Figure 86 shows a structure where the complement henne (her) from the
subordinate clause has been extracted and topicalized in the main clause. It
also includes a construction with the auxiliary verb hadde (had) and shows
that more than one adjunct can be placed in the same adjunct position. All
verbs used in the figures has been inflected with regard to tense and verb
form. The varying suffixes (for instance -te vs. -et and -dde) are a result of
the three different regular patterns for verb inflection in Norwegian.

Figure 87 is included to show the different readings that arise from the
possibility of topicalizing complements. In this sentence, the NP jenten ved
bordet (the-girl by the-table) functions as indirect object, direct object and
subject, respectively. As a small p.s., the form jenten is used instead of the
form jenta to show that feminine nouns can be inflected by the same rules
as masculine nouns, in addition to their feminin-specific inflection.

cality can be defended.

xi

NORWEGIAN WORD ORDER IN HPSG

S-DECL
NP VP/NP
Henne VP/NP CP/NP
—_— -
VINP NP C/NP VP/NP
tror jeg at VP/NP V/NP
VINP NP VINP VINP
| - |

du ADV VINP likt
kanskje ADV VINP V/NP
allikevel hadde

Figure 86: Topicalization of complement from the subordinate clause

xii

APPENDIX A

S-DECL
-
NP VP/NP
NP PP VP/NP
N P NP VP/NP NP
| | | - —
Jenten ved N VINP NP DET N
| | | ! —_—
N bordet skjenket DET N en ADJ N
N VINP en ADJ N ADJ N
| | | |
ADJ N god bok
forelsket gutt
S-DECL
NP VP/NP
—_— -
NP PP VP/NP NP
| — | —
N P NP VP/NP DET N
Jenten ved N VINP NP en ADJ N
| | | - | |
N bordet skjenket DET N ADJ N
! ! ! — | |
N VINP en ADJ N god bok
ADJ N
| |
forelsket gutt
S-DECL
-
NP VP/NP
NP PP VP/NP NP
N P NP VP/NP NP DET N
| | | | - ! —
Jenten ved N VINP DET N en ADJ N
| | | 1 —_— | |
N bordet skjenket en ADJ N ADJ N
N VINP ADJ N god bok

| |
forelsket gutt

Figure 87: Main clause with ditransitive verb

xiii

NORWEGIAN WORD ORDER IN HPSG

xiv

APPENDIX B

B LKB Grammar Sources

Following is the file ‘norsk.tdl’ from the implemented grammar fragment.
The file contains all type definitions for the Norwegian grammar, in many
cases using basic types supplied by the Matrix (which is not included here).
The actual inventory of rules (instantiating phrase types) and lexical entries
(instantiating lexical types) is included towards the end of this section.

333 -%- Mode: tdl; Package: 1lkb -*-

pers := sort.

1st := pers.

2nd := pers.

3rd := pers.

num := sort.

sing := num.

mass := sing.

countsg := sing.

plur := num.

gender := sort.
masc-or-fem := gender.
masc := masc-or-fem.
fem := masc-or-fem.
neut := gender.
definiteness := sort.
indef := definiteness.
def := definiteness.
case := sort.

nom := case.

acc := case.
indicative := mood.
active := aspect.
passive := aspect.

norsk-png := png &
[PERS pers,
NUM num,
GEND gender,
DEF definiteness].

present := tense.
past := tense.
presperf := tense.
pastperf := tense.
future := tense.
viorm := sort.

XV

NORWEGIAN WORD ORDER IN HPSG

fin := vform.
inf-or-psp := vform.
psp := inf-or-psp.
inf-or-prp := vform.

inf := inf-or-prp & inf-or-psp.
prp := inf-or-prp.

pas := vform.

imp := vform.

2393923923923 9233333333333 33333333333 3333333333333 IIIIIIIIIIIIIIINIDIDINIIDID
det := head.

nominal := head &
[CASE case].

verb-or-noun := head.

noun := nominal & verb-or-noun.
noun-nom := noun &

[CASE nom J.

noun-acc := noun &

[CASE acc].

adverbee := head.
adj := adverbee.

verb-or-comp := head &
[VFORM vform].

verbal := verb-or-comp &
[AUX bool].
verb := verb-or-noun & verbal & adverbee.

comp := verbal.
at-comp := comp.
om-comp := comp.

mod := head.
final-or-strictly-final-mod := mod &
[MOD < [LOCAL [CAT.VAL [SUBJ olist,
COoMPS <> 1],
KEYS.MESSAGE 0-dlist 11 >].
strictly-final-mod := final-or-strictly-final-mod.
nex-or-final-mod := mod.
nex-mod := nex-or-final-mod &
[MOD < [LOCAL.CAT.NUC +] >].
final-mod := nex-or-final-mod & final-or-strictly-final-mod.
non-emph-mod := nex-mod.
emph-mod := nex-mod.

adv := adverbee.

nex-or-final-adv := adv & nex-or-final-mod.
final-adv := nex-or-final-adv & final-mod.
non-emph-adv := adv & non-emph-mod.
emph-adv := nex-or-final-adv & emph-mod.

xvi

prep := head.
final-prep := prep & strictly-final-mod.

APPENDIX B

nomp-cat-min := cat &
[HEAD nominal,
VAL [SUBJ olist,
SPR olist,
COMPS olist] J.

nomp-cat-acc-min := nomp-cat-min &
[HEAD.CASE acc].
nomp-cat-nom-min := nomp-cat-min &
[HEAD.CASE nom].

np-cat-nom-min := nomp-cat-nom-min &
[HEAD noun J].

np-cat-acc-min := nomp-cat-acc-min &
[HEAD noun J].

basic-nom-synsem := lex-synsem &
[LOCAL [CONT nom-obj,
CAT.HEAD nominal 1]].

nominal-synsem := basic-nom-synsem.

ref-synsem := nominal-synsem &

[LOCAL [CONT [LISZT.LIST.FIRST basic-nom-rel & #rel &
[INST #ind & ref-ind],

INDEX #ind],
KEYS.KEY #rel 1].

noun-synsem := ref-synsem & nonpronominal-synsem &

[LOCAL [CONT.INDEX #ind,
AGR #ind,
CAT.HEAD noun],
NON-LOCAL.SLASH 0-dlist].

nomod-local := local &
[CAT.HEAD.MOD < >].

nomod-synsem := lex-synsem &
[LOCAL.CAT [HEAD.MOD <>,
VAL.SUBJ <> 1].

mod-synsem := lex-synsem &
[LOCAL.CAT [HEAD.MOD < synsem >]].

xvil

NORWEGIAN WORD ORDER IN HPSG

pronominal-synsem := nominal-synsem &
[LOCAL [CAT [HEAD noun &
[MOD < >],

VAL.SUBJ < > 1 1 1.
nonpronominal-synsem := nominal-synsem.

non-ref-synsem := nominal-synsem & nomod-synsem & zero-arg &
[LOCAL.CAT.VAL [SPR < >,
COMPS < > 1 1.

ref-pro-synsem := pronominal-synsem & ref-synsem & nomod-synsem.

non-ref-pro-synsem := pronominal-synsem & non-ref-synsem &
[LOCAL [AGR #agr,
CONT.INDEX #agr] J.

common-noun-synsem := noun-synsem &
[LOCAL [CAT.VAL [COMPS #rest,
SPR < synsem & #first &
[OPT -,
LOCAL [KEYS.KEY.BV #bv,
CAT [VAL [SUBJ null,
SPR olist,
COMPS olist],
HEAD det 111 > 1,
ARG-S [FIRST #first,
REST #rest],
CONT [TOP #top,
INDEX #bv,
LISZT <! nom-rel & [HNDL #top 1!>,
H-CONS <! !>]1].

common-noun-nocomp-synsem := common-noun-synsem & nomod-synsem &
[LOCAL.CAT.VAL.COMPS <>].

nonpro-nomod-synsem := nomod-synsem & nonpronominal-synsem.
nomod-basic-onearg-synsem := nomod-synsem & basic-one-arg.
nomod-onearg-synsem := nomod-synsem & one-arg.
nomod-zero-arg-synsem := nomod-synsem & basic-zero-arg.
nonpro-nomod-onearg-synsem := nonpro-nomod-synsem & basic-one-arg.

noun-nocomp-synsem := common-noun-nocomp-synsem & nonpro—nomod—onearg—synsem.

mass-noun-synsem := noun-nocomp-synsem &
[LOCAL.CONT [INDEX [PNG norsk-png,
DIVISIBLE +],
LISZT <! relation !>]1].

533 lexical NPs

np-word := nontopkey &
[SYNSEM ref-synsem & [LOCAL.CAT [HEAD noun,
VAL [SPR < >,

SUBJ < >,
coMps < >1111.

xviil

APPENDIX B

np-synsem := noun-synsem & nomod-synsem.

basic-np-sing-word np-word &
[SYNSEM.LOCAL [KEYS.KEY.HNDL #keyhand,
CONT [INDEX.PNG norsk-png & [PERS 3rd, NUM sing 1],
LISZT <! basic-nom-rel &
[INST #ind 1],
quant-rel &
[BV #ind,
RESTR #rhand] !>,
H-CONS <! qeq & [SC-ARG #rhand,
OUTSCPD #keyhand] !> 1 1 1.

np-sing-word := basic-np-sing-word &
[SYNSEM np-synsem &
[LOCAL.CONT.LISZT <! relation, def-np-rel !>]].

proper-name-sg := np-sing-word &
[SYNSEM.LOCAL [KEYS.KEY named-rel]].

personal-pro np-word &
[SYNSEM ref-pro-synsem &
[LOCAL [KEYS.KEY.HNDL #hand,
CONT [TOP #hand,
LISZT <! pron-rel !>,
H-CONS <! !>] 11 1].

personal-pro-sg := personal-pro &
[SYNSEM.LOCAL.CONT.INDEX.PNG.NUM sing].
personal-pro-pl := personal-pro &

[SYNSEM.LOCAL.CONT.INDEX.PNG.NUM plur].
personal-pro-nom := personal-pro
[SYNSEM.LOCAL.CAT.HEAD.CASE nom
personal-pro-acc := personal-pro
[SYNSEM.LOCAL.CAT.HEAD.CASE acc
personal-pro-1st personal-pro
[SYNSEM.LOCAL.CONT.INDEX.PNG.PERS

&
]
&
]
&

ist J.

personal-pro-2nd
[SYNSEM.LOCAL.CONT
personal-pro-3rd :=
[SYNSEM.LOCAL.CONT
personal-pro-fem :
[SYNSEM.LOCAL.CONT
personal-pro-masc

personal-pro &
. INDEX.PNG.PERS
personal-pro &
. INDEX.PNG.PERS
personal-pro &

2nd J].

3rd].

.INDEX.PNG.GEND fem].

:= personal-pro &

[SYNSEM.LOCAL.CONT.INDEX.PNG.GEND masc J.

personal-pro-neut

:= personal-pro &

[SYNSEM.LOCAL.CONT.INDEX.PNG.GEND neut J.

perspron-3rd-sg

perspron-1st-sg-nom :
perspron-2nd-sg-nom :
perspron-3rd-sg-nom :

perspron-1st-sg-acc
perspron-2nd-sg-acc
perspron-3rd-sg-acc

perspron-1st-pl-nom :

personal-pro-sg
personal-pro-sg

perspron-3rd-sg

personal-pro-sg
personal-pro-sg
perspron-3rd-sg

personal-pro-sg

&
&
&

&

:= personal-pro-sg & personal-pro-3rd.

personal-pro-nom
personal-pro-nom

personal-pro-nom.

personal-pro-acc
personal-pro-acc

personal-pro-acc.

personal-pro-nom

& personal-pro-1ist.
& personal-pro-2nd.

& personal-pro-1st.
& personal-pro-2nd.

& personal-pro-1st.

perspron-2nd-pl
perspron-3rd-pl

:= personal-pro-sg & personal-pro-2nd.
:= personal-pro-sg & personal-pro-3rd.

xix

NORWEGIAN WORD

perspron-1st-pl-acc
perspron-3rd-pl-acc

perspron-3rd-sg-nom-fem
perspron-3rd-sg-nom-masc

perspron-3rd-sg-acc-fem
perspron-3rd-sg-acc-masc

perspron-3rd-sg-neut

expletive-det-word

ORDER IN HPSG

personal-pro-sg & personal-pro-acc & personal-pro-ist.
personal-pro-sg & personal-pro-acc & personal-pro-3rd.

:= perspron-3rd-sg-nom &

:= perspron-3rd-sg-acc &

personal-pro-fem.

:= perspron-3rd-sg-nom & personal-pro-masc.

personal-pro-fem.

:= perspron-3rd-sg-acc & personal-pro-masc.

:= perspron-3rd-sg & personal-pro-neut.

nontopkey &
[SYNSEM non-ref-pro-synsem &
[LOCAL [KEYS.KEY no-relation,
CONT [INDEX expl-ind,

LISZT <! !> 1 11 1.

isect-synsem := canonical-synsem &

[LOCAL [CAT.HEAD.MOD < [LOCAL intersective-mod] >,
CONT.TOP #hand,
KEYS.KEY.HNDL #hand]].

basic-adj-synsem :=

lex-synsem &

[LOCAL [CAT [HEAD adj,
VAL [SUBJ < >,
SPR < synsem &

[LOCAL local-min &

[CAT [VAL [SPR olist,

COMPS olist],

MC na],

KEYS.KEY de

[
OPT +] >,

COMPS <>],
POSTHEAD - 1],
CONT.LISZT.LIST < basic-adj-rel & #key &

[HNDL #ahand], ... >

KEYS.KEY #key 1 1.

adj-synsem := basic-adj-synsem & isect-synsem &
[LOCAL [CAT [HEAD.MOD < [LOCAL [CAT [HEAD noun,

VAL [

MC na]

XX

gree-rel &
HNDL #ahand]],

SUBJ < >,
SPR < synsem &

[LOCAL.CAT.HEAD det] >,
COMPS olist],

APPENDIX B

CONT.INDEX #ind & ref-ind,
AGR #agr 11 > 1,
CONT [LISZT <! abstr-adj-rel !>,
INDEX #ind],
KEYS.KEY abstr-adj-rel & [ARG #ind],
AGR #agr] 1].

adj-word := word &
[SYNSEM adj-synsem &
[LOCAL [CONT.LISZT <! abstr-adj-rel !>]]].

basic-det-synsem := nomod-synsem &
[LOCAL [CAT [HEAD det,
VAL [SPR < [LOCAL local-min &
[CAT.HEAD adv,
KEYS.KEY relation &
[HNDL #khand]],
NON-LOCAL [QUE 0-dlist,
REL 0-dlist],
OPT +] >,
SPEC < [LOCAL.CONT.TOP #nhand] >,
coMpPs < >] 1,
CONT nom-obj &
[INDEX #index,
LISZT.LIST < quant-or-wh-rel & #key, ... >,
H-CONS.LIST < qeq &
[SC-ARG #rhand,
OUTSCPD #nhand 1, ... > 1],
KEYS.KEY #key & [HNDL #khand,
BV #index,
RESTR #rhand],
ARG-S < >]].

det-synsem := basic-det-synsem &
[LOCAL.CONT [LISZT <! quant-or-wh-rel !>,
H-CONS <! qgeq !>]].

det-word := word &
[SYNSEM det-synsem].

det-word-sing := det-word &
[SYNSEM.LOCAL.KEYS.KEY.BV [PNG norsk-png & [PERS 3rd, NUM sing],
DIVISIBLE -]].

det-word-fem := det-word &

[SYNSEM.LOCAL.KEYS.KEY.BV.PNG.GEND fem].
det-word-masc-or-fem := det-word &

[SYNSEM.LOCAL.KEYS.KEY.BV.PNG.GEND masc-or-fem J].
det-word-neut := det-word &

[SYNSEM.LOCAL.KEYS.KEY.BV.PNG.GEND neut J].

det-word-sing-neut := det-word-sing & det-word-neut.
det-word-sing-masc-or-fem := det-word-sing & det-word-masc-or-fem.
det-word-sing-fem := det-word-sing & det-word-fem.

xx1

NORWEGIAN WORD ORDER IN HPSG

det-word-sing-indef-fem := det-word-sing-fem & word-indef.
det-word-sing-indef-masc-or-fem := det-word-sing-masc-or-fem & word-indef.
det-word-sing-indef-neut := det-word-sing-neut & word-indef.
det-word-sing-def-masc-or-fem := det-word-sing-masc-or-fem & word-def.
det-word-sing-def-neut := det-word-sing-neut & word-def.

det-word-plur := det-word &
[SYNSEM.LOCAL.KEYS.KEY.BV.PNG norsk-png & [PERS 3rd, NUM plur]].

det-word-pl-def := det-word-plur & word-def.

det-word-pl-indef := det-word-plur & word-indef.

word-def := word &
[SYNSEM.LOCAL.KEYS.KEY.BV.PNG.DEF def].
word-indef := word &

[SYNSEM.LOCAL.KEYS.KEY.BV.PNG.DEF indef].

full-index := index &
[DIVISIBLE bool]J.

full-ref-ind := ref-ind & full-index.

det-ind := expl-ind & full-index.

33333333335335333335333353533333333333333333333353333333333333333333333333333333
535
;33 relation types

basic-nom-rel := norm-relation &
[INST individual J.

nom-rel := basic-nom-rel &
[INST ref-ind J].

named-rel := nom-rel.
pron-rel := nom-rel.
quant-or-wh-rel := norm-relation &

[BV ref-ind,
RESTR handle].

quant-rel := quant-or-wh-rel &
[SCOPE handle].

number-or-degree-rel := relation.
degree-rel := number-or-degree-rel.
basic-adj-rel := relation.

abstr-adj-rel := basic-adj-rel & arg-rel &
[ARG non-expl].

adj-rel := abstr-adj-rel.

xxii

APPENDIX B

support-abstr-rel := event-rel.
support-argé4-rel := support-abstr-rel & argé4-rel.

all-rel := quant-rel.
some-rel := quant-rel.
udef-rel := quant-rel.
def-rel := quant-rel.

def-np-rel := def-rel.

prop-rel := proposition &
[PRED ’proposition J.

quest-rel := question &
[PRED ’question J].

adj-lxm := lexeme &
[SYNSEM adj-synsem]J.

adj-word-rule := lex-rule &
[ARGS < adj-1xm >].

pl-adj-word-rule := adj-word-rule &
[SYNSEM.LOCAL.AGR.PNG.NUM plur].

sg-adj-word-rule := adj-word-rule &
[SYNSEM.LOCAL.AGR.PNG.NUM sing].

sg-indef-mof-adj-word-const-rule := const-ltow-rule &
sg-adj-word-rule & sign-indef &
[SYNSEM.LOCAL.AGR.PNG.GEND masc-or-fem].

sg-indef-neut-adj-word-infl-rule := infl-ltow-rule &
sg-adj-word-rule & sign-indef &
[SYNSEM.LOCAL.AGR.PNG.GEND neut J.

pl-adj-word-infl-rule := infl-ltow-rule & pl-adj-word-rule.
sg-def-adj-word-infl-rule := infl-ltow-rule & sg-adj-word-rule & sign-def.
sign-indef := sign &

[SYNSEM.LOCAL.AGR.PNG.DEF indef 1].

sign-def := sign &
[SYNSEM.LOCAL.AGR.PNG.DEF def].

lexeme := word-or-lexrule &
[INFLECTED -,
SYNSEM.LOCAL.KEYS.MESSAGE 0-dlist].

xx1il

NORWEGIAN WORD ORDER IN HPSG

noun-lxm := lexeme &
[SYNSEM common-noun-nocomp-synsem J.

masc-or-fem-noun-1lxm := noun-lxm &

[SYNSEM.LOCAL.AGR.PNG.GEND masc-or-fem J].
neut-noun-lxm := noun-lxm &

[SYNSEM.LOCAL.AGR.PNG.GEND neut J.
fem-noun-1xm := masc-or-fem-noun-lxm &

[SYNSEM.LOCAL.AGR.PNG.GEND fem].
masc-noun-1lxm := masc-or-fem-noun-lxm &

[SYNSEM.LOCAL.AGR.PNG.GEND masc J].

noun-word-rule := lex-rule &
[ARGS < noun-lxm > J].

pl-noun-word-rule := noun-word-rule &
[SYNSEM.LOCAL.AGR.PNG.NUM plur].
sg-noun-word-rule := noun-word-rule &

[SYNSEM.LOCAL.AGR.PNG.NUM sing].

sg-noun-word-const-rule := const-ltow-rule & sg-noun-word-rule.
pl-noun-word-const-rule := const-ltow-rule & pl-noun-word-rule.
sg-noun-word-infl-rule := infl-ltow-rule & sg-noun-word-rule.
pl-noun-word-infl-rule := infl-ltow-rule & pl-noun-word-rule.

linking-type := lex-synsem.
;; Det sngr

atrans-1t := linking-type &
[LOCAL [CAT.VAL.SUBJ < [LOCAL local-min &
[KEYS.KEY.LABEL #label,
CONT.INDEX det-ind]] >,
KEYS.KEY no-relation & [LABEL #label]]].

argl-subj-1t := linking-type &
[LOCAL [CAT.VAL.SUBJ < [LOCAL local-min &
[CONT [TOP #top,
INDEX #subjind & non-expl 111 >,
CONT [TOP #top,
LISZT <! #key !>],
KEYS.KEY #key & argi-rel & [ARG1 #subjind,
HNDL #top 1 1 1.

argl3-1t := argl-subj-1lt &
[LOCAL [CAT.VAL.COMPS < [LOCAL local-min &
[CONT [TOP #top,
INDEX #objind & non-expl]] 1,
CONT.TOP #top,
KEYS.KEY argl3-rel & [ARG3 #objind]]].

trans-1t := argl3-1t.

XxXiv

. >

APPENDIX B

arglé-1t := argl-subj-1lt &
[LOCAL [CAT.VAL.COMPS < [LOCAL local-min &
[KEYS [KEY norm-relation,
MESSAGE 1-dlist &
<! [HNDL #mhand 1 !>111, ... >,
KEYS.KEY argl4-rel & [ARG4 #mhand]]].

ditrans-1lt := argl-subj-1lt &
[LOCAL [CAT.VAL.COMPS < [LOCAL local-min &
[CONT [TOP #top,
INDEX #o0bj2ind & nom-expl 1] 1,
[LOCAL local-min &
[CONT [TOP #top,
INDEX #objind & non-expl 1 1 1, ... >
CONT.TOP #top,
KEYS.KEY argl23-rel & [ARG2 #obj2ind,
ARG3 #objind]] J.

basic-prep-intrans-1t := linking-type &
[LOCAL [CAT.VAL.COMPS < [LOCAL local-min &
[KEYS.KEY prep-mod-rel &
[ARG #index],
CONT.TOP #top 1 1,

CONT [TOP #top,
INDEX #index,
LISZT <! #key !>],

KEYS.KEY #key] 1].

prep-intrans-1t := basic-prep-intrans-1t & argl-subj-1lt.

prep-trans-1lt := argl3-lt &
[LOCAL [CAT.VAL.COMPS < *top*,
[LOCAL local-min &
[CAT.HEAD.MOD < synsem-min >,
CONT.TOP #top,
KEYS.KEY prep-mod-rel &
[ARG #event]] 1,

CONT [TOP #top,
INDEX #event,
LISZT <! #key !>],

KEYS.KEY #key] 1].

ssr-1t := linking-type &
[LOCAL.KEYS.KEY support-abstr-rel].

ssr-v-1t := linking-type &

[LOCAL [CONT.LISZT <! #key !>,
KEYS.KEY #key]].

valence-type := lex-synsem.

unsat-subst := valence-type &
[LOCAL.CAT.VAL.SUBJ < synsem & [LOCAL.CAT nomp-cat-nom-min] >].

XXV

NORWEGIAN WORD ORDER IN HPSG

intrans-subst := unsat-subst & one-arg &
[LOCAL.CAT.VAL.COMPS < >].

unsat-two-arg-subst := unsat-subst &
[LOCAL [CAT.VAL.COMPS < synsem & [LOCAL local-min &
[KEYS.KEY #ckey] 1, ... >,
KEYS.--COMPKEY #ckey] 1J.
two-arg-subst := unsat-two-arg-subst &
[LOCAL.CAT.VAL.COMPS < *top* >].
trans-subst := unsat-subst &
[LOCAL.CAT.VAL.COMPS < synsem & [LOCAL.CAT np-cat-acc-min], ... >]J.
np-trans-subst := trans-subst & two-arg-subst & two-arg &
[LOCAL.CAT.VAL.COMPS < synsem >].
unsat-three-arg-subst := unsat-two-arg-subst &

[LOCAL [CAT.VAL.COMPS < synsem,
synsem & [LOCAL local-min &
[KEYS.KEY #ckey 1 1, ... >,
KEYS.--0COMPKEY #ckey 11].

three-arg-subst := unsat-three-arg-subst & three-arg.
basic-three-arg-subst := unsat-three-arg-subst & basic-three-arg.

three-arg-trans-subst := unsat-three-arg-subst & three-arg & trans-subst.
basic-three-arg-trans-subst := unsat-three-arg-subst & basic-three-arg &
trans-subst.

ditrans-subst := three-arg-trans-subst &
[LOCAL.CAT.VAL.COMPS < synsem & [LOCAL [CAT nomp-cat-acc-min] 1],
synsem & [LOCAL [CAT nomp-cat-acc-min]] >].

cp-intrans-subst := two-arg-subst &
[LOCAL.CAT.VAL [--KEYCOMP #comp,
COMPS < #comp & synsem &
[LOCAL [CAT [HEAD comp & [VFORM fin],
VAL [SUBJ < >,
COMPS <>,
SPR <>],
Mc - 111> 1 1.

prep-trans-subst := three-arg-trans-subst &
[LOCAL.CAT.VAL.COMPS < synsem & [LOCAL.CAT nomp-cat-acc-min],
synsem & [LOCAL.CAT [HEAD prep, VAL.COMPS < > 1] >].

inf-or-prp-intrans-subst := unsat-two-arg-subst &
[LOCAL.CAT.VAL [--KEYCOMP #comp,
COMPS < #comp &
[LOCAL local-basic &
[CAT [HEAD verbal &
[VFORM inf-or-prp 1,
VAL [SUBJ < synsem >,
COMPS olist 1111 > 1 1.

inf-intrans-subst := inf-or-prp-intrans-subst &

[LOCAL.CAT.VAL.COMPS < [LOCAL local-min &
[CAT.HEAD.VFORM inf]] >].

XXV1

APPENDIX B

ssr-subst := two-arg-subst &
[LOCAL [CAT.VAL [SUBJ < [LOCAL local-min & [CONT [TOP #top,
INDEX #cont 1]] >,
COMPS < [LOCAL local-min &
[CAT.VAL [SUBJ < [LOCAL.CONT.INDEX #cont,
NON-LOCAL [SLASH 0-dlist,
REL 0-dlist,
QUE 0-dlist 11>,
COMPS olist],
KEYS.MESSAGE 0-dlist]] >],
CONT.TOP #top] 1].

ssr-two-arg-subst := ssr-subst & basic-two-arg.
ssr-inf-subst := ssr-subst & inf-intrans-subst.
prep-intrans-subst := two-arg-subst &

[LOCAL.CAT.VAL.COMPS < synsem & [LOCAL.CAT [HEAD prep,
VAL.COMPS < > J] > 1].

verb-synsem := lex-synsem &
[LOCAL [CAT [HEAD verb,
VAL [SUBJ < synsem & #subj >,
COMPS #comps ,
SPR < anti-synsem >]],
ARG-S < #subj . #comps >],
NON-LOCAL [QUE 0-dlist,
REL 0-dlist] 1J.

atrans-verb := verb-synsem & intrans-subst & atrans-1t.

unerg-verb := verb-synsem & intrans-subst & argl-subj-1lt.
np-trans-verb := verb-synsem & np-trans-subst & trans-1t.

ditrans-verb := verb-synsem & ditrans-subst & ditrans-1t.
basic-prep-intrans-verb := verb-synsem & prep-intrans-subst & two-arg.
prep-intrans-verb := basic-prep-intrans-verb & prep-intrans-lt.

prep-trans-verb := verb-synsem & prep-trans-subst & prep-trans-lt.

basic-zero-arg := lex-synsem &
[LOCAL.ARG-S < >,
NON-LOCAL [SLASH 0-dlist,
REL 0-dlist,

xxvil

NORWEGIAN WORD ORDER IN HPSG

QUE 0-dlist] 1J.

zero-arg := basic-zero-arg &
[LOCAL.CONT.H-CONS <! !>].

basic-one-arg := canonical-synsem &

[LOCAL.ARG-S < [NON-LOCAL [SLASH #slash,
REL #rel,
QUE #que],

LOCAL.CONT.INDEX individual] >,
NON-LOCAL [SLASH #slash,
REL #rel,
QUE #que] 1].

one-arg := basic-one-arg &
[LOCAL.CONT.H-CONS <! !>].

basic-two-arg := lex-synsem &
[LOCAL.ARG-S < [NON-LOCAL [SLASH [LIST #smiddle,
LAST #slast],
REL [LIST #rmiddle,
LAST #rlast],
QUE [LIST #qmiddle,
LAST #qlast] 1],
LOCAL.CONT.INDEX individual],
[NON-LOCAL [SLASH [LIST #sfirst,
LAST #smiddle],
REL [LIST #rfirst,
LAST #rmiddle],
QUE [LIST #gfirst,
LAST #gmiddle] 1],
LOCAL.CONT.INDEX individual] >,
NON-LOCAL [SLASH [LIST #sfirst,
LAST #slast],
REL [LIST #rfirst,
LAST #rlast],
QUE [LIST #qgfirst,
LAST #qlast 1 1 1].

two-arg := basic-two-arg &
[LOCAL.CONT.H-CONS <! !>].

basic-three-arg := lex-synsem &
[LOCAL [ARG-S < [NON-LOCAL [SLASH [LIST #smiddle2,
LAST #slast],
REL [LIST #rmiddle2,
LAST #rlast],
QUE [LIST #qmiddle2,
LAST #qlast] 1,
LOCAL.CONT.INDEX individual],
[NON-LOCAL [SLASH [LIST #sfirst,
LAST #smiddlel],
REL [LIST #rfirst,
LAST #rmiddlel 1,
QUE [LIST #qgfirst,
LAST #gmiddlel] 1,
LOCAL.CONT.INDEX individual],
[NON-LOCAL [SLASH [LIST #smiddlel,
LAST #smiddle2 1],
REL [LIST #rmiddlel,
LAST #rmiddle2 1],
QUE [LIST #qgmiddled,

xxviil

APPENDIX B

LAST #gmiddle2] 1],
LOCAL.CONT.INDEX individual] > 1],
NON-LOCAL [SLASH [LIST #sfirst,
LAST #slast],
REL [LIST #rfirst,
LAST #rlast],
QUE [LIST #qgfirst,
LAST #qlast 1 1 1].

three-arg := basic-three-arg &
[LOCAL.CONT.H-CONS <! !>].

four-arg := lex-synsem &
[LOCAL [ARG-S < [NON-LOCAL [SLASH [LIST #smiddle3,
LAST #slast],
REL [LIST #rmiddle3,
LAST #rlast],
QUE [LIST #qgmiddle3,
LAST #qlast]],
LOCAL.CONT.INDEX individual],
[NON-LOCAL [SLASH [LIST #sfirst,
LAST #smiddlel 1],
REL [LIST #rfirst,
LAST #rmiddlel 1],
QUE [LIST #qgfirst,
LAST #gmiddlel] 1,
LOCAL.CONT.INDEX individual],
[NON-LOCAL [SLASH [LIST #smiddlel,
LAST #smiddle2],
REL [LIST #rmiddlel,
LAST #rmiddle2 1,
QUE [LIST #qgmiddlel,
LAST #gmiddle2] 1,
LOCAL.CONT.INDEX individual],
[NON-LOCAL [SLASH [LIST #smiddle2,
LAST #smiddle3 1],
REL [LIST #rmiddle2,
LAST #rmiddle3 1,
QUE [LIST #gmiddle2,
LAST #gmiddle3] 1],
LOCAL.CONT.INDEX individual] >,
CONT.H-CONS <! !>],
NON-LOCAL [SLASH [LIST #sfirst,
LAST #slast],
REL [LIST #rfirst,
LAST #rlast],
QUE [LIST #qfirst,
LAST #qlast 1 1 1].

verb-1lxm := lexeme &
[SYNSEM verb-synsem &
[LOCAL.CAT.NUC +] 1].

non-atrans-verb-lxm := lexeme &

xxix

NORWEGIAN WORD ORDER IN HPSG

[SYNSEM verb-synsem &
[LOCAL [CONT [INDEX #ind,
LISZT.LIST.FIRST event-rel &
#rel & [EVENT #ind]],
KEYS.KEY #rel 1]].

verb-word-rule := lex-rule &
[ARGS < verb-1lxm >].

verbl-1xm := verb-lxm.
verb2a-1xm := verb-lxm.
verb2b-1xm := verb-lxm.
verb2c-1xm := verb-lxm.

;33 ‘Det snoer’, ‘det regner’

verbl-atrans-1xm := verbl-1lxm &
[SYNSEM atrans-verb].
verb2c-atrans-1xm := verb2c-lxm &

[SYNSEM atrans-verb].

533 ‘Jenta smiler’

verbl-unerg-lxm := verbl-lxm & non-atrans-verb-lxm &

[SYNSEM unerg-verb 1J.

verb2a-unerg-lxm := verb2a-lxm & non-atrans-verb-lxm &
[SYNSEM unerg-verb].

verb2b-unerg-1lxm := verb2b-lxm & non-atrans-verb-lxm &
[SYNSEM unerg-verb J].

verb2c-unerg-lxm := verb2c-lxm & non-atrans-verb-lxm &

[SYNSEM unerg-verb 1J.

;33 ‘Gutten beundrer jenta’

verbl-trans-1xm := verbl-1lxm & non-atrans-verb-lxm &

[SYNSEM np-trans-verb].

verb2a-trans-1xm := verb2a-lxm & non-atrans-verb-lxm &
[SYNSEM np-trans-verb].

verb2b-trans-1xm := verb2b-lxm & non-atrans-verb-lxm &
[SYNSEM np-trans-verb].

verb2c-trans-1xm := verb2c-lxm & non-atrans-verb-lxm &

[SYNSEM np-trans-verb].
;55 ‘Gutten skjenker jenta ei bok’

verbl-ditrans-1xm := verbl-1lxm & non-atrans-verb-lxm &
[SYNSEM ditrans-verb J.

;33 ‘Hun putter boken p&a bordet?

verbl-prep-trans-1lxm := verbl-lxm & non-atrans-verb-lxm &
[SYNSEM prep-trans-verb].

;33 ‘Jenta sitter ved bordet’

verb2b-prep-intrans-1xm := verb2b-lxm & non-atrans-verb-lxm &
[SYNSEM prep-intrans-verb J.

;33 ‘Jenta trodde at gutten smilte’, ‘Gutten sjekker om hun spydde’

cp-prop-intrans-lxm := non-atrans-verb-lxm &
[SYNSEM cp-prop-intrans-verb].

XXX

APPENDIX B

om-at-cp-prop-intrans-1xm := cp-prop-intrans-lxm.
;33 ‘Jeg mener at hun smilte’

at-cp-prop-intrans-lxm := om-at-cp-prop-intrans-lxm &
[SYNSEM.LOCAL.CAT.VAL.COMPS < [LOCAL.CAT.HEAD at-comp] >].

om-cp-prop-intrans-lxm := om-at-cp-prop-intrans-lxm &
[SYNSEM.LOCAL.CAT.VAL.COMPS < [LOCAL.CAT.HEAD om-comp] >].

;35 ‘Han sjekker om/at blomsten har blomstret?
verbl-om-at-cp-prop-intrans-lxm := verbl-lxm & om-at-cp-prop-intrans-lxm.

verb2a-at-cp-prop-intrans-lxm := verb2a-lxm & at-cp-prop-intrans-lxm.

verb2c-at-cp-prop-intrans-1lxm verb2c-1xm & at-cp-prop-intrans-lxm.
;33 ‘Jenta proever a smile’

ssr-verb-1xm := non-atrans-verb-lxm &
[SYNSEM ssr-verb J.

verb2b-ssr-verb-1xm := verb2b-lxm & ssr-verb-lxm.

nomod-verb := sign &
[SYNSEM.LOCAL.CAT.HEAD.MOD <>].

fin-verb := sign &
[SYNSEM.LOCAL.CAT.HEAD.VFORM fin].
inf-verb := sign &

[SYNSEM.LOCAL.CAT [HEAD.VFORM inf,
VAL.SUBJ < unexpressed >]].

pas-verb := sign &
[SYNSEM.LOCAL.CAT.HEAD.VFORM pas].
imp-verb := sign &

[SYNSEM.LOCAL.CAT.HEAD.VFORM imp].

pres-verb := sign &
[SYNSEM.LOCAL.CONT.INDEX.E.TENSE present].
past-verb := sign &

[SYNSEM.LOCAL.CONT.INDEX.E.TENSE past].
prp-verb := sign &
[SYNSEM.LOCAL.CONT.INDEX.E.TENSE presperf].
psp-verb := sign &
[SYNSEM.LOCAL [CAT [HEAD.VFORM psp,
VAL.SUBJ < unexpressed >],
CONT. INDEX.E.TENSE pastperf]].

indicative-verb := sign &
[SYNSEM.LOCAL.CONT.INDEX.E.MOOD indicative].

active-verb := sign &
[SYNSEM.LOCAL.CONT.INDEX.E.ASPECT activel].
passive-verb := sign &

[SYNSEM.LOCAL.CONT.INDEX.E.ASPECT passive].

pres-fin-verb := pres-verb & fin-verb & nomod-verb.
past-fin-verb := past-verb & fin-verb & nomod-verb.
pres-verb-rule := infl-ltow-rule & pres-fin-verb & indicative-verb & active-verb.

xxx1

NORWEGIAN WORD ORDER IN HPSG

past-verb-rule := infl-ltow-rule & past-fin-verb & indicative-verb & active-verb.
psp-verb-rule := infl-ltow-rule & psp-verb & mnomod-verb.

inf-verb-rule := infl-ltow-rule & inf-verb.

pres-fin-psp-aux-verb-word := pres-fin-verb & indicative-verb & active-verb &
psp-aux-verb-word.

past-fin-psp-aux-verb-word := past-fin-verb & indicative-verb & active-verb &
psp-aux-verb-word.

nonslash := word &
[SYNSEM.NON-LOCAL.SLASH 0-dlist J].

nonque := word &
[SYNSEM.NON-LOCAL.QUE 0O-dlist 1J.

nonrel := word &
[SYNSEM.NON-LOCAL.REL 0-dlist J.

nonmsg := word &
[SYNSEM.LOCAL.KEYS.MESSAGE 0-dlist J].

topkey := word &
[SYNSEM.LOCAL [KEYS.KEY #key,
CONT.--TOPKEY #key]].

nontopkey := nonque & nonslash & nonrel & nonmsg & non-affix-bearing.

msg-amalg-word := non-affix-bearing & topkey.

basic-prep-synsem := lex-synsem &
[LOCAL [CAT [HEAD prep,
VAL [SUBJ <>,
SPR <>,
COMPS < synsem &
[LOCAL local-min &
[KEYS.KEY #ckey,
CONT [TOP #top,
INDEX #objind] 11, ... > 1,
POSTHEAD + 1],
CONT [TOP #top,
LISZT.LIST < #key, ... > 1,
KEYS [KEY #key & [ARG3 #objind 1],
ALTKEY #ckey,
--COMPKEY #ckey 11].

basic-mod-n-or-vp-synsem := isect-synsem &
[LOCAL [CAT [HEAD.MOD < [LOCAL [CAT [HEAD verb-or-noun,

xxxil

APPENDIX B

VAL [SUBJ olist,
SPR olist,
COMPS olist],
MC #mc],
CONT [INDEX #ind & non-expl 1],
KEYS.MESSAGE #msg 1] >,
POSTHEAD +,
MC #mc],
CONT.INDEX #ind ,
KEYS [KEY.ARG #ind,
MESSAGE #msg]11]

prep-mod-synsem := basic-prep-synsem & basic-mod-n-or-vp-synsem.

trans-prep-synsem := prep-mod-synsem & one-arg &

[LOCAL [CAT.VAL.COMPS < #comps & [LOCAL.CONT.INDEX ref-ind] >,
CONT.LISZT <! prep-mod-rel !>
ARG-S < #comps >]].

basic-prep-word := msg-amalg-word &
[SYNSEM trans-prep-synsem &
[LOCAL.CAT.VAL.COMPS < synsem &
[LOCAL [CAT nomp-cat-acc-min &
[VAL.SPR < > 111 > 1].

prep-word := basic-prep-word &
[SYNSEM.LOCAL.CAT.VAL.COMPS < [LOCAL.CONT.INDEX non-expl] >].

final-prep-word := prep-word &
[SYNSEM.LOCAL.CAT.HEAD final-prep].

complementizer-word := word &
[SYNSEM.LOCAL local-min &
[CAT [HEAD comp,
VAL.SPR < >],
CONT.INDEX non-expl,
KEYS.KEY event-rel] J].

plain-compl-word := complementizer-word &
[SYNSEM.LOCAL [CAT.VAL [SUBJ < #subj >,
COMPS #comps &
< [LOCAL local-min &
[KEYS.KEY #ckey &
[LABEL #label],
CONT.INDEX #ind],
OPT -1, ... >1,
CONT.INDEX #ind,
ARG-S < #subj . #comps >,
KEYS [KEY.LABEL #label,
--COMPKEY #ckey 1 1 1.

basic-compl-word := complementizer-word &
[SYNSEM nomod-basic-onearg-synsem &
[LOCAL [ARG-S #comps,
CAT [HEAD [VFORM #vform],

xxxiil

NORWEGIAN WORD ORDER IN HPSG

MC -,
VAL [COMPS #comps &
< synsem &
[LOCAL local-min &
[CAT [HEAD verb &
[VFORM #vform],
VAL [SUBJ < anti-synsem >,
COMPS <> 117,
CONT [TOP #chand],
KEYS.KEY #ckey],
OPT - 1>11,
CONT [TOP #mhand,

LISZT <! #msg !>,

H-CONS <! qgeq &
[SC-ARG #soahand,
OUTSCPD #chand] !>],
KEYS [KEY #ckey,

MESSAGE 1-dlist &

<! #msg & [HNDL #mhand,

SOA #soahand] !>,

--COMPKEY #ckey 1 1 1 1.

at-compl-word := basic-compl-word &
[SYNSEM.LOCAL [CAT [HEAD [VFORM fin,
Aux - 11,

KEYS.MESSAGE 1-dlist &
<! proposition !>]].

at-mcl-compl-word := at-compl-word &
[SYNSEM.LOCAL.CAT.VAL.COMPS < [LOCAL [CAT.MC +,
KEYS.MESSAGE 1-dlist &
<! proposition !> J] >].

at-subcl-compl-word := at-compl-word &
[SYNSEM.LOCAL.CAT.VAL.COMPS < [LOCAL.CAT.MC -] >].

om-compl-word := basic-compl-word &
[SYNSEM.LOCAL [CAT [HEAD [VFORM fin,
AUX - 1,

VAL.COMPS < [LOCAL.CAT.MC -] >],
KEYS.MESSAGE 1-dlist &
<! proposition !>]].

to-compl-word := plain-compl-word &
[SYNSEM basic-two-arg &
[LOCAL.CAT [HEAD [VFORM inf],
VAL [SUBJ < [LOCAL.CONT #cont] >,
COMPS < [LOCAL.CAT [HEAD verbal & [VFORM inf],
VAL [SUBJ < [LOCAL.CONT #cont,
NON-LOCAL [SLASH 0-dlist,
REL 0-dlist,
QUE 0-dlist]]
COMPS olist],
MC na 11 > 1111.

to-compl-nonprop-word := to-compl-word &
[SYNSEM.LOCAL nomod-local &
[CAT [VAL [COMPS < [LOCAL local-min &
[CONT.TOP #hand]] > 1],
MC na],
CONT [TOP #hand,

XXX1v

APPENDIX B

LISZT <! !>,
H-CONS <! 1> 1,
KEYS.MESSAGE 0-dlist] J.

basic-cp-prop-ques-verb := verb-synsem &
[LOCAL [CAT.VAL [--KEYCOMP [LOCAL local-min &
[CAT [HEAD verbal 1111,
CONT.LISZT.LIST < relation, ... >]].

cp-prop-ques-verb := basic-cp-prop-ques-verb.

fin-cp-prop-ques-verb := cp-prop-ques-verb &
[LOCAL.CAT.VAL.--KEYCOMP.LOCAL.CAT.HEAD.VFORM fin].

cp-intrans-verb := fin-cp-prop-ques-verb & cp-intrans-subst & two-arg & argl4-lt &
[LOCAL.CAT.VAL.COMPS < [LOCAL.CAT.MC - 1 >].

cp-prop-intrans-verb := cp-intrans-verb.
cp-ques-intrans-verb := cp-intrans-verb.

ssr-verb := verb-synsem & ssr-inf-subst & basic-two-arg & ssr-v-1t &
[LOCAL [CAT.VAL.--KEYCOMP.LOCAL.CONT.TOP #chand,
CONT.H-CONS <! geq &
[SC-ARG #arghand,
QUTSCPD #chand] !>,
KEYS.KEY.ARG4 #arghand] J.

5353555355555555555535355555555555555555555535535533353555535333333355555353333533
aux-verb := verb-synsem.

aux-verb-ssr := aux-verb & ssr-subst & basic-two-arg &
[LOCAL.CAT.VAL [--KEYCOMP #comp,
COMPS < #comp, ... >]].

aux-verb-word-super := nonmsg &
[INFLECTED +,
SYNSEM aux-verb-ssr J.

aux-verb-word := aux-verb-word-super &
[SYNSEM.LOCAL.CAT.HEAD.AUX +].

psp-aux-verb-word := aux-verb-word &
[SYNSEM aux-verb-ssr &
[LOCAL [CAT.VAL.COMPS < [OPT -,
LOCAL local-basic &
[KEYS.KEY.LABEL #label,
CONT.TOP #hand,
CAT [HEAD verbal &
[VFORM psp],

XXXV

NORWEGIAN WORD ORDER IN HPSG

VAL [SUBJ < synsem >,
COMPS olist,
--KEYCOMP.LOCAL.CONT.TOP #chand]]1]] >,
CONT [LISZT <! #key !>,
INDEX #event,
H-CONS < ! geq & [SC-ARG #arghand,
OUTSCPD #chand] !>],
KEYS.KEY #key & [EVENT #event,
HNDL #hand,
LABEL #label,
ARG4 #arghand]11].

basic-adverb-synsem := basic-zero-arg &
[LOCAL [CAT [HEAD adv &
[MOD < [LOCAL local-basic &
[CONT [INDEX #vevent &
individual],
KEYS.MESSAGE #msg 11 > 1,
VAL [SUBJ < >,
coMPs < > 1 1,
CONT [INDEX #vevent,
LISZT.LIST < #key, ... > 1,
KEYS [KEY #key & adv-rel,
MESSAGE #msg 1] 1.

basic-int-adverb-synsem := basic-adverb-synsem & isect-synsem &
[LOCAL [CAT.HEAD adv &
[MOD < [LOCAL.CONT [TOP #top, INDEX #vevent 1] > 1],
CONT [INDEX #vevent,
LISZT <! relation !>,
H-CONS <! !>],
KEYS.KEY [HNDL #top, ARG #vevent]]].

intersect-s-adverb-nospec-synsem := basic-int-adverb-synsem &
[LOCAL.CAT [VAL.SPR <>,
HEAD.MOD < [LOCAL.CAT [HEAD verb,
MC #mc]] >,
MC #mc]].

basic-int-adverb-word := topkey &
[SYNSEM intersect-s-adverb-nospec-synsem J.

non-emph-adverb-word := basic-int-adverb-word &
[SYNSEM.LOCAL.CAT.HEAD non-emph-adv J].

emph-adverb-word := basic-int-adverb-word &
[SYNSEM.LOCAL.CAT.HEAD emph-adv 1].

nex-or-final-adverb-word := basic-int-adverb-word &
[SYNSEM.LOCAL.CAT.HEAD nex-or-final-adv J].

final-adverb-word := basic-int-adverb-word &
[SYNSEM.LOCAL.CAT.HEAD final-adv J.

XXXV

APPENDIX B

det-subj-phrase := lex-rule &
[INFLECTED +,
KEY-ARG #keyarg,
ROOT #root,
STEM #stem,
SYNSEM synsem &
[LOCAL [CAT [HEAD #head & verb,
VAL [SUBJ < synsem &
[LOCAL.CONT.INDEX det-ind,
NON-LOCAL.SLASH [LIST #3, LAST #4]] >,
COMPS < #subj, #comps >,
SPR #spr 11,
CONT #cont,
KEYS #keys 1],
NON-LOCAL.SLASH [LIST #1, LAST #4],
LEX +],
DTR lex-rule &
[INFLECTED +,
STEM #stem,
KEY-ARG #keyarg,
ROOT #root,
SYNSEM prep-intrans-verb &
[LOCAL [CAT [HEAD #head,
VAL [SUBJ < synsem & #subj &
[LOCAL.AGR.PNG.DEF indef,
NON-LOCAL.SLASH.LAST #3] >,
COMPS < #comps & [NON-LOCAL.SLASH.LIST #1 1 >,
SPR #sprl],
CONT #cont,
KEYS #keys] 1],
C-CONT.LISZT <! !>].

yes-no-interrogative-phrase := unary-phrase & interrogative-clause &
[SYNSEM [LOCAL [CAT #cat,
CONT [TOP #top,
INDEX #index,
E-INDEX #e-index],
KEYS [KEY #key,
ALTKEY #altkey,
MESSAGE 1-dlist & <! quest-rel & #msg !>]],
NON-LOCAL.SLASH 0-dlist],
ARGS < sign & [SYNSEM [LOCAL [CAT #cat & [HEAD verb & [VFORM fin],
VAL [SUBJ < anti-synsem >,
COMPS <>],
MC +],
CONT [TOP #top,
INDEX #index,
E-INDEX #e-index],
KEYS [MESSAGE 0-dlist,
KEY #key,
ALTKEY #altkey 1],
NON-LOCAL.SLASH 0-dlist 1] >,
C-CONT.LISZT <! #msg !>].

s-int-phrase := isect-mod-phrase &
[HEAD-DTR.SYNSEM.LOCAL.CAT.HEAD verb & [VFORM fin]].

XxXXVil

NORWEGIAN WORD ORDER IN HPSG

s-main-nex-hadj-int-phrase := s-int-phrase & head-adj-int-phrase &
[SYNSEM.LOCAL.CAT.MC +,
NON-HEAD-DTR.SYNSEM.LOCAL.CAT.HEAD nex-mod J.

s-hadj-int-phrase := s-int-phrase & head-adj-int-phrase &
[NON-HEAD-DTR.SYNSEM.LOCAL.CAT.HEAD final-or-strictly-final-mod J.

s-sub-nex-adjh-int-phrase := s-int-phrase & adj-head-int-phrase &
[SYNSEM.LOCAL.CAT.MC -,
HEAD-DTR.SYNSEM.LOCAL.CAT [VAL.SUBJ < expressed-synsem >],
NON-HEAD-DTR.SYNSEM.LOCAL.CAT.HEAD nex-mod].

n-hadj-int-phrase := head-adj-int-phrase &
[HEAD-DTR.SYNSEM.LOCAL.CAT.HEAD noun].

n-adjh-int-phrase := adj-head-int-phrase &
[HEAD-DTR.SYNSEM.LOCAL.CAT.HEAD noun].

bare-np-phrase := head-valence-phrase & head-only &
[SYNSEM [LOCAL [CAT [VAL [SUBJ null,
SPR null,

COMPS null]],
KEYS [ALTKEY #altkey,
MESSAGE #hmsg 11,
NON-LOCAL.SLASH #slash],
C-CONT [H-CONS <! qeq & [SC-ARG #scopearg ,
OUTSCPD #outscoped] !>,
LISZT <! quant-rel & #key & [BV #bv,
RESTR #scopearg] !>,
INDEX #bv],
HEAD-DTR.SYNSEM [LOCAL [CAT [VAL [SPR < canonical-synsem &
[LOCAL.KEYS [KEY #key 1,
NON-LOCAL [SLASH 0-dlist,
REL 0-dlist,
QUE 0-dlist]]
SUBJ olist,
COMPS olist],
HEAD noun],
KEYS [KEY basic-nom-rel,
ALTKEY #altkey,
MESSAGE #hmsg 1],
CONT [TOP #outscoped,
INDEX #bv 11,
LEX +,
NON-LOCAL.SLASH #slash]].

bare-np-def-phrase := bare-np-phrase & rule &

[SYNSEM.LOCAL.AGR.PNG.DEF def,
HEAD-DTR.SYNSEM.MODIFIED notmod-or-rmod,
C-CONT.LISZT.LIST.FIRST def-rel & [PRED ’def-rel],
RULE-NAME ’bare-np-def].

bare-np-indef-phrase := bare-np-phrase & rule &
[SYNSEM.LOCAL.AGR.PNG [DEF indef,
NUM plur],

C-CONT.LISZT.LIST.FIRST udef-rel & [PRED ’udef-rell,
RULE-NAME °’bare-np-indef J.

head-specifier-phrase := basic-head-spec-phrase & head-final & rule &
[HEAD-DTR.SYNSEM.LOCAL [CONT [TOP #outscoped,
INDEX #bv],

xXxxviil

APPENDIX B

AGR.PNG #png 1],
NON-HEAD-DTR.SYNSEM.LOCAL [CONT [H-CONS.LIST.FIRST qeq &
[SC-ARG #scarg ,
QUTSCPD #outscoped 1],
LISZT.LIST.FIRST quant-rel &
[BV #bv,
RESTR #scarg],
INDEX #bv],
AGR.PNG #png],
RULE-NAME ’hspec].

head-subj-phrasel := basic-head-subj-phrase & rule &
[SYNSEM.LOCAL.CAT [MC #mc],
HEAD-DTR.SYNSEM.LOCAL.CAT.MC #mc, C-CONT [LISZT <! !>,
H-CONS <! !>]].

subj-head-phrase := head-subj-phrasel & head-final &
[SYNSEM [LOCAL.CAT.MC -],
RULE-NAME ’subjh].

head-subj-phrase := head-subj-phrasel & head-initial & non-clause &
[SYNSEM [LOCAL [CAT.MC + 11,
RULE-NAME ’hsubj].

head-comp-phrase := basic-head-comp-phrase & head-initial & rule &

[HEAD-DTR.SYNSEM.LOCAL.CAT.VAL.SUBJ olist,
NON-HEAD-DTR.SYNSEM.LOCAL.CAT.VAL [SPR olist, COMPS olist],
RULE-NAME ’hcompl].

extr-subj-phrase := basic-extracted-subj-phrase & head-compositional & rule &
[HEAD-DTR.SYNSEM.MODIFIED notmod-or-lmod,

C-CONT [LISZT <! !>,

H-CONS <! !>],

RULE-NAME ’extr-subj].

extr-comp-phrase := basic-extracted-comp-phrase & rule &
[SYNSEM [LOCAL.CAT.VAL.SUBJ olist],
RULE-NAME ’extr-comp J].

adv-extracted-adj-phrase := extracted-adj-phrase &

[SYNSEM.NON-LOCAL.SLASH.LIST.FIRST.CAT.HEAD emph-mod,
HEAD-DTR.SYNSEM.LOCAL [CAT.VAL.SUBJ < anti-synsem >,
KEYS.MESSAGE 0-dlist]].

adv-fin-extracted-adj-phrase := extracted-adj-phrase &
[SYNSEM.NON-LOCAL.SLASH.LIST.FIRST.CAT.HEAD strictly-final-mod,
HEAD-DTR.SYNSEM.LOCAL.KEYS.MESSAGE 0-dlist].

fillhead-phrase := basic-head-filler-phrase & head-final & rule &
declarative-clause & head-compositional &
[SYNSEM.LOCAL [CAT [VAL [SUBJ < anti-synsem >,
COMPS <>],
MC #mc & +,
NUC - 1,
KEYS [KEY.HNDL #chand,
MESSAGE 1-dlist & [LIST.FIRST #msg & prop-rel &
[SOA #soahand] J11,
ARGS < [SYNSEM.LOCAL.CAT.VAL.COMPS <>],
[SYNSEM.LOCAL.CAT [HEAD verb & [VFORM fin],
VAL [SUBJ < anti-synsem >, COMPS <>],
MC #mc]] >,
C-CONT [LISZT <! #msg !>,

XXXIX

NORWEGIAN WORD ORDER IN HPSG

H-CONS <! qeq &
[SC-ARG #soahand,
OUTSCPD #chand] !>],
RULE-NAME °fillhead].

xl

APPENDIX B

Following is the file ‘rules.tdl’ from the implemented grammar fragment.
The file contains the phrasal construction types described in section 7. In-
flectional and other lexical rules are not included in the appendix.

533 —*- Mode: tdl; Package: 1lkb -*-

bare-np-indef-rule := bare-np-indef-phrase.
bare-np-def-rule := bare-np-def-phrase.

head-specifier-rule := head-specifier-phrase.
s-main-nex-hadj-int-rule := s-main-nex-hadj-int-phrase.
s-hadj-int-rule := s-hadj-int-phrase.

s-sub-nex-adjh-int-rule := s-sub-nex-adjh-int-phrase.

n-hadj-int-rule := n-hadj-int-phrase.
n-adjh-int-rule := n-adjh-int-phrase.

subj-head-rule := subj-head-phrase.
head-subj-rule := head-subj-phrase.

head-comp-rule := head-comp-phrase.

subj-extr-rule := extr-subj-phrase.

comp-extr-rule := extr-comp-phrase.

adv-adj-extr-rule := adv-extracted-adj-phrase.
adv-fin-adj-extr-rule := adv-fin-extracted-adj-phrase.
yes-no-int-rule := yes-no-interrogative-phrase.

head-filler-rule := fillhead-phrase.

xli

NORWEGIAN WORD ORDER IN HPSG

Following is the file ‘lexicon.tdl’ from the implemented grammar fragment.
The file contains the vocabulary provided by the grammar, each entry in-
stantiating exactly one lexical type and supplying only small amounts of
additional information, i.e. the base orthography and the key semantic rela-
tion.

333 -%- Mode: tdl; Package: lkb -*-

det-expl := expletive-det-word &
[STEM < "det" >].

gyrd-pn := proper-name-sg &
[STEM < "Gyrd" >,
SYNSEM.LOCAL.CONT.LISZT.LIST.FIRST.PRED ’gyrd].

inge-pn := proper-name-sg &
[STEM < "Inge" >,
SYNSEM.LOCAL.CONT.LISZT.LIST.FIRST.PRED ’inge].

aud-pn := proper-name-sg &
[STEM < "Aud" >,
SYNSEM.LOCAL.CONT.LISZT.LIST.FIRST.PRED ’aud].

per-pn := proper-name-sg &
[STEM < "Per" >,
SYNSEM.LOCAL.CONT.LISZT.LIST.FIRST.PRED ’per].

Tranmzl-pn := proper-name-sg &
[STEM < "Tranmzl" >,
SYNSEM.LOCAL.CONT.LISZT.LIST.FIRST.PRED ’tranmel].

jeg-pp := perspron-lst-sg-nom &
[STEM < "jeg" >,
SYNSEM.LOCAL.CONT.LISZT.LIST.FIRST.PRED ’jeg].

du-pp := perspron-2nd-sg-nom &
[STEM < "du" >,
SYNSEM.LOCAL.CONT.LISZT.LIST.FIRST.PRED ’du].

han-pp := perspron-3rd-sg-nom-masc &
[STEM < "han" >,
SYNSEM.LOCAL.CONT.LISZT.LIST.FIRST.PRED ’han].

hun-pp := perspron-3rd-sg-nom-fem &
[STEM < "hun" >,
SYNSEM.LOCAL.CONT.LISZT.LIST.FIRST.PRED ’hun].

vi-pp := perspron-1lst-pl-nom &
[STEM < "vi" >,
SYNSEM.LOCAL.CONT.LISZT.LIST.FIRST.PRED ’vi].

dere-pp := perspron-2nd-pl &
[STEM < "dere" >,
SYNSEM.LOCAL.CONT.LISZT.LIST.FIRST.PRED ’dere 1].

de-pp := perspron-3rd-pl &
[STEM < "de" >,
SYNSEM.LOCAL.CONT.LISZT.LIST.FIRST.PRED ’de].

meg-pp := perspron-lst-sg-acc &
[STEM < "meg" >,

xlii

SYNSEM.LOCAL.CONT.LISZT.LIST.FIRST.PRED

deg-pp := perspron-2nd-sg-acc &

[STEM < "deg" >,

SYNSEM.LOCAL.CONT.LISZT.LIST.FIRST.PRED

ham-pp := perspron-3rd-sg-acc-masc &

[STEM < "ham" >,

SYNSEM.LOCAL.CONT.LISZT.LIST.FIRST.PRED

henne-pp := perspron-3rd-sg-acc-fem &

[STEM < "henne" >,

SYNSEM.LOCAL.CONT.LISZT.LIST.FIRST.PRED

0oss-pp := perspron-lst-pl-acc &

[STEM < "oss" >,
SYNSEM.LOCAL.CONT.LISZT.LIST

.FIRST.

dem-pp := perspron-3rd-pl-acc &

[STEM < "dem" >,
SYNSEM.LOCAL.CONT.LISZT.LIST

jente-noun := fem-noun-lxm &
[STEM < "jente" >,
SYNSEM.LOCAL.CONT.LISZT.LIST

gutt-noun := masc-noun-lxm &
[STEM < "gutt" >,
SYNSEM.LOCAL.CONT.LISZT.LIST

hjelm-noun := masc-noun-lxm &
[STEM < "hjelm" >,
SYNSEM.LOCAL.CONT.LISZT.LIST

dam-noun := masc-noun-1lxm &
[STEM < "dam" >,
SYNSEM.LOCAL.CONT.LISZT.LIST

larer-noun := masc-noun-lxm &
[STEM < "larer" >,
SYNSEM.LOCAL.CONT.LISZT.LIST

sjel-noun := masc-noun-lxm &
[STEM < "sjel" >,
SYNSEM.LOCAL.CONT.LISZT.LIST

barm-noun := masc-noun-lxm &
[STEM < "barm" >,
SYNSEM.LOCAL.CONT.LISZT.LIST

klem-noun := masc-noun-lxm &
[STEM < "klem" >,
SYNSEM.LOCAL.CONT.LISZT.LIST

sykkel-noun := masc-noun-lxm &
[STEM < "sykkel" >,
SYNSEM.LOCAL.CONT.LISZT.LIST

blomst-noun := masc-noun-lxm &
[STEM < "blomst" >,
SYNSEM.LOCAL.CONT.LISZT.LIST

.FIRST.

.FIRST.

.FIRST.

.FIRST.

.FIRST.

.FIRST.

.FIRST.

.FIRST.

.FIRST.

.FIRST.

.FIRST.

PRED

PRED

PRED

PRED

PRED

PRED

PRED

PRED

PRED

PRED

PRED

PRED

‘meg] .

’deg] .

‘ham] .

’henne] .

ro0ss].

’dem] .

’jente] .

‘gutt] .

’hjelm].

’dam] .

’larer] .

’sjell.

’barm] .

‘klem] .

’sykkel] .

’blomst].

xliii

APPENDIX B

NORWEGIAN WORD ORDER IN HPSG

bok-noun := fem-noun-1lxm &
[STEM < "bok" >,

SYNSEM.LOCAL.CONT.LISZT.LIST.FIRST.PRED ’bok].

dgr-noun := fem-noun-lxm &
[STEM < "dgr" >,

SYNSEM.LOCAL.CONT.LISZT.LIST.FIRST.PRED ’dgr].

ball-noun := masc-noun-lxm &
[STEM < "ball" >,

SYNSEM.LOCAL.CONT.LISZT.LIST.FIRST.PRED ’ball].

bane-noun := masc-noun-lxm &
[STEM < "bane" >,

SYNSEM.LOCAL.CONT.LISZT.LIST.FIRST.PRED ’bane].

fly-noun := neut-noun-lxm &
[STEM < "fly" >,

SYNSEM.LOCAL.CONT.LISZT.LIST.FIRST.PRED ’fly].

hjem-noun := neut-noun-lxm &
[STEM < "hjem" >,

SYNSEM.LOCAL.CONT.LISZT.LIST.FIRST.PRED ’hjem].

bord-noun := neut-noun-lxm &
[STEM < "bord" >,

SYNSEM.LOCAL.CONT.LISZT.LIST.FIRST.PRED ’bord].

hus-noun := neut-noun-lxm &
[STEM < "hus" >,

SYNSEM.LOCAL.CONT.LISZT.LIST.FIRST.PRED ’hus].

ei-det := det-word-sing-indef-fem &
[STEM < "ei" >,
SYNSEM.LOCAL [CONT.LISZT.LIST.FIRST.PRED
KEYS.KEY udef-rell].

et-det := det-word-sing-indef-neut &
[STEM < "et" >,
SYNSEM.LOCAL [CONT.LISZT.LIST.FIRST.PRED
KEYS.KEY udef-rel 1].

en-det := det-word-sing-indef-masc-or-fem &
[STEM < "en" >,
SYNSEM.LOCAL [CONT.LISZT.LIST.FIRST.PRED
KEYS.KEY udef-rel]].

det-det := det-word-sing-def-neut &
[STEM < "det" >,
SYNSEM.LOCAL [CONT.LISZT.LIST.FIRST.PRED
KEYS.KEY def-rell].

den-det := det-word-sing-def-masc-or-fem &
[STEM < "den" >,
SYNSEM.LOCAL [CONT.LISZT.LIST.FIRST.PRED
KEYS.KEY def-rell].

de-det := det-word-pl-def &
[STEM < "de" >,
SYNSEM.LOCAL [CONT.LISZT.LIST.FIRST.PRED
KEYS.KEY def-rell].

‘ei,

‘et,

’en,

’det,

’den,

’de,

xliv

dette-det := det-word-sing-def-neut &
[STEM < "dette" >,
SYNSEM.LOCAL [CONT.LISZT.LIST.FIRST.PRED ’dette,
KEYS.KEY def-rell].

denne-det := det-word-sing-def-masc-or-fem &
[STEM < "denne" >,
SYNSEM.LOCAL [CONT.LISZT.LIST.FIRST.PRED ’denne,
KEYS.KEY def-rell].

disse-det := det-word-pl-def &
[STEM < "disse" >,
SYNSEM.LOCAL [CONT.LISZT.LIST.FIRST.PRED ’disse,
KEYS.KEY def-rell].

alle-det := det-word-plur &
[STEM < "alle" >,
SYNSEM.LOCAL [CONT.LISZT.LIST.FIRST.PRED ’alle,
KEYS.KEY all-rel]].

noen-det := det-word-pl-indef &
[STEM < "noen" >,
SYNSEM.LOCAL [CONT.LISZT.LIST.FIRST.PRED ’noen,
KEYS.KEY some-rell].

god-adj := adj-lxm &
[STEM < "god" >,
SYNSEM.LOCAL [CONT.LISZT.LIST.FIRST.PRED ’god]].

blid-adj := adj-lxm &
[STEM < "blid" >,
SYNSEM.LOCAL [CONT.LISZT.LIST.FIRST.PRED ’blid]].

rgd-adj := adj-lxm &
[STEM < "rgd" >,
SYNSEM.LOCAL [CONT.LISZT.LIST.FIRST.PRED ’rgdl].

forelsket-adj := adj-lxm &
[STEM < "forelsket" >,

SYNSEM.LOCAL [CONT.LISZT.LIST.FIRST.PRED ’forelsket]].

regn-v := verbl-atrans-lxm &
[STEM < "regn" >,
SYNSEM.LOCAL.CONT.LISZT.LIST.FIRST.PRED ’regn-rel].

sng-v := verb2c-atrans-lxm &
[STEM < "sng" >,
SYNSEM.LOCAL.CONT.LISZT.LIST.FIRST.PRED ’sng-rell.

blg-v := verb2c-unerg-lxm &
[STEM < "blg" >,
SYNSEM.LOCAL.CONT.LISZT.LIST.FIRST.PRED ’blg-rel].

smil-v := verb2a-unerg-lxm &

[STEM < "smil" >,
SYNSEM.LOCAL.CONT.LISZT.LIST.FIRST.PRED ’smile-rel].

blomstr-v := verbl-unerg-lxm &

[STEM < "blomstr" >,
SYNSEM.LOCAL.CONT.LISZT.LIST.FIRST.PRED ’blomstre-rel].

svai-v := verbl-unerg-lxm &

xlv

APPENDIX B

NORWEGIAN WORD ORDER IN HPSG

[STEM < "svai" >,

SYNSEM.LOCAL.CONT.LISZT.LIST.FIRST.

kast-v := verbl-trans-lxm &
[STEM < "kast" >,
SYNSEM.LOCAL.CONT.LISZT.LIST.FIRST

tap-v := verb2a-unerg-lxm &
[STEM < "tap" >,

SYNSEM.LOCAL.CONT.LISZT.LIST.FIRST.

spy-v := verb2c-unerg-lxm &
[STEM < "spy" >,

SYNSEM.LOCAL.CONT.LISZT.LIST.FIRST.

les-v := verb2a-trans-lxm &
[STEM < "les" >,
SYNSEM.LOCAL.CONT.LISZT.LIST.FIRST

lik-v := verb2a-trans-lxm &
[STEM < "1lik" >,

SYNSEM.LOCAL.CONT.LISZT.LIST.FIRST.

beundr-v := verbl-trans-lxm &
[STEM < "beundr" >,

SYNSEM.LOCAL.CONT.LISZT.LIST.FIRST.

skjenk-v := verbl-ditrans-lxm &
[STEM < "skjenk" >,

SYNSEM.LOCAL.CONT.LISZT.LIST.FIRST.

putt-v := verbl-prep-trans-lxm &
[STEM < "putt" >,

SYNSEM.LOCAL.CONT.LISZT.LIST.FIRST.

sitt-v := verb2b-prep-intrans-lxm &
[STEM < "sitt" >,
SYNSEM.LOCAL.CONT.LISZT.LIST.FIRST

PRED ’svaie-rel].

.PRED ’kast-rel].

PRED ’tape-rel].

PRED ’spy-rel].

.PRED ’lese-rel].

PRED ’like-rel].

PRED ’beundre-rel J].

PRED ’skjenke-rel].

PRED ’putte-rel].

.PRED ’sitte-rel].

ha-aux-v := pres-fin-psp-aux-verb-word &

[STEM < "har" >,
SYNSEM.LOCAL.CONT.LISZT.LIST.FIRST

.PRED ’ha-rel J].

hadde-aux-v := past-fin-psp-aux-verb-word &

[STEM < "hadde" >,
SYNSEM.LOCAL.CONT.LISZT.LIST.FIRST

.PRED ’hadde-rel].

men-v := verb2a-at-cp-prop-intrans-lxm &

[STEM < "men" >,
SYNSEM.LOCAL.CONT.LISZT.LIST.FIRST

.PRED ’mene-rel].

tro-v := verb2c-at-cp-prop-intrans-lxm &

[STEM < "tro" >,
SYNSEM.LOCAL.CONT.LISZT.LIST.FIRST

.PRED ’tro-rel].

sjekk-v := verbl-om-at-cp-prop-intrans-lxm &

[STEM < "sjekk" >,
SYNSEM.LOCAL.CONT.LISZT.LIST.FIRST

prgv-v := verb2b-ssr-verb-lxm &
[STEM < "prgv" >,
SYNSEM.LOCAL.CONT.LISZT.LIST.FIRST

.PRED ’sjekke-rel].

.PRED ’prgve-rel].

xlvi

APPENDIX B

ved-v := final-prep-word &
[STEM < "ved" >,
SYNSEM.LOCAL.CONT.LISZT.LIST.FIRST.PRED ’ved-rel].

pa-v := final-prep-word &
[STEM < "pa" >,
SYNSEM.LOCAL.CONT.LISZT.LIST.FIRST.PRED ’pa-rel].

til-v := final-prep-word &
[STEM < "til" >,
SYNSEM.LOCAL.CONT.LISZT.LIST.FIRST.PRED ’til-rel].

at-m-c := at-mcl-compl-word &
[STEM < "at" >,
SYNSEM.LOCAL.CAT.HEAD at-comp].

at-sub-c := at-subcl-compl-word &
[STEM < "at" >,
SYNSEM.LOCAL.CAT.HEAD at-comp].

om-c := om-compl-word &
[STEM < "om" >,
SYNSEM.LOCAL.CAT.HEAD om-comp] .

4-c := to-compl-nonprop-word &
[STEM < "&a" >].

sikkert-adv := non-emph-adverb-word &
[STEM < “"sikkert" >,
SYNSEM.LOCAL.CONT.LISZT.LIST.FIRST.PRED ’sikkert-rel 1].

jo-adv := non-emph-adverb-word &
[STEM < "jo" >,
SYNSEM.LOCAL.CONT.LISZT.LIST.FIRST.PRED ’jo-rel].

kanskje-adv := emph-adverb-word &
[STEM < "kanskje" >,
SYNSEM.LOCAL.CONT.LISZT.LIST.FIRST.PRED ’kanskje-rel].

allikevel-adv := nex-or-final-adverb-word &

[STEM < "allikevel" >,
SYNSEM.LOCAL.CONT.LISZT.LIST.FIRST.PRED ’allikevel-rel].

xlvii

NORWEGIAN WORD ORDER IN HPSG

xlviii

APPENDIX C

C Test corpora

Following is the test suite that I constructed and used for the grammar
implementation. This collection of sentences and non-sentences exemplifies
all the syntactic phenomena discussed in the main sections of this thesis,
systematically tests for overgeneration (of which there is none), and also
demonstrates some of the variability in vocabulary and construction types
provided for by the implemented grammar fragment.

The columns of the table are, from left to right, the test item number,
the actual sentece (with a leading asterisk to mark ungrammaticality where
appropriate), and the number of distinct analyses assigned by the grammar.

i | test item input | analyses
1 | Inge smiler 1
2 | Gyrd beundrer Inge 2
3 | Gyrd skjenket Inge en bok 3
4 | Han skjenket henne en bok 1
5 | Henne skjenket han en bok 2
6 | En bok skjenket han henne 2
7 | *Han henne beundret 0
8 | *En bok skjenket henne han 0
9 | Smiler Inge 1
10 | Beundrer Inge Gyrd 1
11 | Skjenket Gyrd Inge en bok 1
12 | Beundret han henne 1
13 | *Beundret henne han 0
14 | Jeg sjekker om Gyrd beundrer Inge 1
15 | Jeg sjekker om Inge skjenker Gyrd en bok 1
16 | Jeg sjekker om hun beundrer ham 1
17 | *Jeg sjekker om ham beundrer hun 0
18 | Jeg tror at Gyrd beundrer Inge 3
19 | Jeg sjekker at Gyrd skjenker Inge en bok 4
20 | Jeg tror at hun beundrer ham 2
21 | Jeg tror at ham beundrer hun 1
22 | *Jeg sjekker at beundrer hun ham 0
23 | Det sngr 1
24 | Det regner 1
25 | Sngr det 1
26 | *Det sngr jenter 0
27 | *Jenta sngr 0
28 | En rgd blomst blomstrer 1
29 | De blide jentene smilte 1
30 | Blomstrer den rgde blomsten 1
31 | *Det smiler 0
32 | *Jenta smiler en gutt 0
33 | Jenta beundrer flyet 2

xlix

NORWEGIAN WORD ORDER IN HPSG

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
a7
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79

Gutten leser boka

Leser gutten boka

*Du beundrer

*Han leser henne boka

Jenta skjenket gutten en bok

De skjenket dem en bok

Skjenket hun ham boka

*De skjenket dem

*Han skjenket hun en bok

Jenta sitter ved bordet

Ved bordet sitter jenta

Sitter Gyrd ved bordet

*Jenta sitter

*Jenta sitter blomsten

*Sitter ved bordet Gyrd

Jenta puttet flyet pd bordet

Pa bordet puttet jenta flyet

Puitet jenta flyet pd bordet

*Vi puttet pd bordet

*Vi puttet flyet

Jenta trodde at gutten smilte
Jenta sjekket om gutten smilte
Jenta sjekket at gutten smilte

At hun smilte trodde han

Trodde du at Inge smilte

Sjekket du om Gyrd smilte

*Jenta trodde om gutten smilte
*Jenta trodde at

*Hun sjekket gutten smilte

Hun provde d smile

Gyrd provde d skjenke Inge en bok
A skjenke Inge en bok provde Gyrd
En bok provde Gyrd G skjenke Inge
Gyrd prgvde d tro at jenta smilte
Prgvde hun & smile

Progvde Gyrd & skjenke Inge en bok
*Hun provde G smilte

*Hun provde hun & smile

Gyrd har lest boka

Jeg hadde lest boka

Gyrd hadde beundret Inge

Gyrd har skjenket Inge en bok
Jenta hadde sittet ved bordet

Gyrd har provd d skjenke Inge en bok
Jeg har sjekket om du beundret henne
Har Gyrd beundret Inge

_— _ PF NP R PR PR OO RFRFNNRFRERRRFROODORFNNNEFEFNOORFFNODOORFRRFEFREFEFOORFRFEWODORFDN

80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

Hadde Gyrd provd a skjenke Inge en bok
Jeg trodde at henne hadde du beundret
Trodde du at jeg hadde beundret henne
*Jeg har leser boka

Gyrd smilte sikkert

Gyrd beundret sikkert Inge

Gyrd beundret Inge sikkert

Du beundret sikkert Inge

Gyrd skjenket sikkert Inge en bok

Gyrd skjenket Inge sikkert en bok
*Sikkert beundret Inge Gyrd

*Du beundret Inge sikkert

*Gyrd skjenket Inge en bok sikkert
*Hun skjenket Inge sikkert en bok

Gyrd provde sikkert @ smile

Gyrd trodde sikkert at Inge smilte

Gyrd har sikkert Inge skjenket en bok
Gyrd har Inge sikkert skjenket en bok
Gyrd har sikkert skjenket Inge en bok
Gyrd har sikkert trodd at Inge smilte
*Gyrd har trodd sikkert at Inge smilte
Jeg trodde at Inge sikkert smilte

Jeg trodde at Gyrd sikkert beundret Inge
Jeg trodde at Gyrd beundret sikkert Inge
Jeg trodde at Inge beundret Gyrd sikkert
Jeg trodde at du beundret sikkert Inge
*Jeg trodde at du beundret Inge sikkert
*Jeg trodde at Gyrd skjenket Inge en bok sikkert
*Jeg sjekket om Gyrd beundret sikkert Inge
*Jeg sjekket om Gyrd beundret Inge sikkert
*Jeg trodde at sikkert Inge smilte

Gyrd smilte kanskje

Gyrd beundret kanskje Inge

Gyrd beundret Inge kanskje

Meg beundret du kanskje

Gyrd skjenket kanskje Inge en bok

Gyrd skjenket Inge kanskje en bok

Jeg trodde kanskje at Inge smilte

Du beundret kanskje Inge

Kanskje beundret Inge Gyrd

Beundret kanskje jenta en gutt
Beundret jenta kanskje en gutt

*Du beundret Inge kanskje

*Gyrd skjenket Inge en bok kanskje
Gyrd provde kanskje G smile

Gyrd trodde kanskje at Inge smilte

li

APPENDIX C

N —m OO MFEFMEFFEFNNWHFEFRFNRFEFODODOOORF FEFNFEHFMFEFOINEFEFNDNNNEFEFODOOONWRFRFEFNDEFEODNRE =

NORWEGIAN WORD ORDER IN HPSG

126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171

Gyrd hadde kanskje Inge skjenket en bok
Gyrd hadde Inge kanskje skjenket en bok
Gyrd hadde kanskje skjenket Inge en bok
Gyrd hadde kanskje trodd at Inge smilte
*Gyrd hadde trodd kanskje at Inge smilte
Jeg trodde at Inge kanskje smilte

Jeg trodde at Inge kanskje beundret Gyrd
Jeg trodde at Gyrd beundret kanskje Inge
Jeg trodde at Inge beundret Gyrd kanskje
Jeg trodde at du beundret kanskje Inge

*Jeg trodde at kanskje Inge smilte

*Jeg trodde at du beundret Inge kanskje
*Jeg trodde at Gyrd skjenket Inge en bok kanskje
*Jeg sjekket om Gyrd beundret kanskje Inge
*Jeg sjekket om Gyrd beundret Inge kanskje
Gyrd smilte allikevel

Gyrd beundret allikevel Inge

Gyrd beundret Inge allikevel

Gyrd skjenket allikevel Inge en bok

Gyrd skjenket Inge allikevel en bok

Jeg trodde allikevel at Inge smilte

Du beundret allikevel Inge

Du beundret Inge allikevel

Gyrd skjenket Inge en bok allikevel
Allikevel beundret Inge Gyrd

Beundret Gyrd allikevel Inge

Beundret Gyrd Inge allikevel

Gyrd provde allikevel ¢ smile

Gyrd trodde allikevel at Inge smilte

Gyrd hadde allikevel Inge skjenket en bok
Gyrd hadde Inge allikevel skjenket en bok
Gyrd hadde allikevel skjenket Inge en bok
Gyrd hadde allikevel trodd at Inge smilte
*Jeg skjenket Inge allikevel en bok

*Gyrd hadde trodd allikevel at Inge smilte
Jeg trodde at Inge allikevel smilte

Jeg trodde at Inge allikevel beundret Gyrd
*Jeg trodde at allikevel Inge smilte

Jeg trodde at Gyrd beundret allikevel Inge
Jeg trodde at Inge beundret Gyrd allikevel
Jeg trodde at du beundret allikevel Inge

Jeg trodde at du beundret Inge allikevel

Jeg trodde at Gyrd skjenket Inge en bok allikevel
Jeg sjekket om Gyrd beundret Inge allikevel
*Jeg sjekket om Gyrd beundret allikevel Inge
Gyrd smilte ved bordet

lii

—H ONOOWKRMFEFINOFFEFODONFNNNFREFRFEFRFWFEFRFRNDDNDWWNNOODOOOOFHFEINDEMFODNRFDNDDN

172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217

Jenta beundret gutten ved bordet
Ved blomsten smiler jenta
*Jenta beundret ved bordet gutten
Det sitter ei jente ved bordet
Sitter det ei jente ved bordet
*Det snor det

*Det sitter ei jente
Blomsten sitter jenta ved
Blomsten trodde jeg at jenta satt ved
*Ved sitter jenta bordet

Ei jente smilte

En jente smilte

Fi dgr smilte

En dgr smilte

En dam smilte

En gutt smilte

Et fly smilte

Et hjem smilte

*En hjem smilte

*Et jente smilte

*Et dor smilte

*Fi dam smilte

*Et gutt smilte

*FEi fly smilte

*En gutten smiler

*Fi jenta smiler

*Et flyet smilte

Jenten smiler

Gutten smiler

Dammen smiler

Barmen smiler

*Flyen smiler

* Hiemmen smilte

*Jente smiler

*Guttn smiler

*Damen smiler

* Barmmen smiler

Jenta smilte

Boka smilte

*Gutta smilte

*Flya smilte

*Jentea smilte

*Boa smilte

Hjemmet smilte

Flyet smilte

*Guttet smilte

liii

APPENDIX C

O H HF OO OO HFEF OOODOOORFRMFEMEFMF OODOOODOOO OO MEHEFEMEFEMEFERERREMEOFERFEFOORFF=ORF

NORWEGIAN WORD ORDER IN HPSG

218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263

*Hjemet smilte
*Flymet smilte
Den jenta smilte
Den gutten smilte
Det flyet smilte
Dette flyet smilte
Denne jenta smilte
Denne gutten smilte
*Det jenta smilte
*Den flyet smilte
*Det fly smilte
*Det flyene smilte
*Dette fly smilte
*Dette flyene smilte
*Dette jenta smilte
*Denne flyet smilte
*Denne gutt smilte
*Denne gutter smilte
*De flyet smilte
Gutter smilte
Jenter smilte
Leerere smilte
Dgrer smilte
Dammer smilte
Barmer smilte
*Damer smilte

* Dgrere smilte

* Laererer smilte

* Barmmer smilte
*Guttr smilte
*Jenteer smilte
*Hjemmer smilte

* Hjemer smilte
*Flyer smilte

Fly smilte

Hjem smilte

*Gutt smilte

Noen gutter smilte
Noen fly smilte
*Noen jente smilte
*Noen guttene smilte
Alle jenter smilte
Alle jentene smilte
*Alle jente smilte
*Alle jenta smilte
Jentene smilte

liv

_— OO R HF OO MFEFOKFEFMFEFODOODOODOODOOHMEMEEMEMEFEFEFODOODOODOOOOOO R MMM MREBEOO

264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309

Guttene smilte
Hjemmene smilte
Barmene smilte
Leererene smilte

Flyene smilte

Husene smilte

*Jenteene smilte

*Guttne smilte

*Hjemene smilte

* Barmmene smilte

Disse jentene smilte
Disse flyene smilte

Disse guttene smilte

De flyene smilte

De guttene smilte

De jentene smilte

*De jenter smilte

*De gutt smilte

*Det flyene smilte

*Disse fly smilte

*Det fly smilte

*Disse disse flyene smilte
Ei blid jente smilte

En blid jente smilte

En blid gutt smilte

Et blidt fly smilte

Ei forelsket jente smilte
Ei blid god jente smilte
Et blidt godt fly smilte
*FEi blid gutt smilte

*En blidt gutt smilte

*Et blid fly smilte

*Blid jente smilte

*Fi jente blid smilte

Den blide jenta smilte
Den blide gode gutten smilte
Det forelskede flyet smilte
Denne gode gutten smilte
Dette gode blide flyet smilte
*Det god flyet smilte
*Den blide jente smilte
*Gode flyet smilte
Forelskede jenter smilte
Forelskede fly smilte
Blide jenter smilte

Blide gutter smilte

lv

APPENDIX C

— = O OO OO OOOREIERI R MMM EFEFOOOOOOR MM MHEFE OO OO

NORWEGIAN WORD ORDER IN HPSG

310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355

Blide fly smilte

Blide gode fly smilte

Blide gode blide jenter smilte
*Forelskete gutter smilte
*Forelskede jentene smilte

* Forelskede jenta smilte

Noen blide jenter smilte
*Noen blide jentene smilte

De blide jentene smilte

De blide gode flyene smilte
Disse gode guttene smilte
Disse forelskede guttene smilte
*De blide jenter smilte

*Disse blid jentene smilte
*Blide jentene smilte

Ei jente ved bordet beundret gutten
Blide jenter ved bordet smilte
Jenta beundret gutten pd blomsten
Beundret gutten pd blomsten jenta
*Péd blomsten gutten beundret jenta
Jeg beundrer deg

Du beundrer meg

Han beundrer henne

Hun beundrer ham

Vi beundrer dere

Dere beundrer oss

Dere beundrer dem

De beundrer dere

Hun sitter ved ham

Ved ham sitter hun

Henne beundrer hun

Meg beundrer du

* Hun beundrer hun

*Jeg sitter ved du

*Oss beundrer o0ss

Jeg provde G kaste ballen

Jeg provde & blg

*Jeg provde G kast ballen

*Jeg provde a blge

Jeg kaster ballen

Jeg blgr

*Jeg kastr ballen

*Jeg blger

Inge kastet ballen

Inge kasta ballen

*Inge kastte ballen

Ivi

O NN OO R FFRFOOHMFEF OO MFEFMEFEFEFNRFREFEFPEMERFRRFRRBEMEPFEFREFOFEPBARFEFNDMNODOORFERFEFMEFEEORFROOOR M= =

356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388

*Inge kastde ballen

Inge har kastet ballen

Inge har kasta ballen

*Inge har kastt ballen

*Inge har kastd ballen

Gyrd tapte

*Gyrd tapet

*Gyrd tapde

Gyrd har tapt

*Gyrd har tapet

*Gyrd har tapd

Jeg progvde & blomstre

*Jeg provte & blomstre

*Jeg provdde a blomstre

Jeg har provd G blomstre

*Jeg har provt a blomstre

*Jeg har provdd d blomstre

Det sngdde

*Det sngde

*Det sngte

Det har sngdd

*Det har sngt

*Det har sngd

Hun trodde jeg at beundret meg

Gyrd sjekker jeg om beundrer meg
Henne trodde jeg at du beundret
Henne sjekket jeg om du beundret
*Henne trodde jeg at beundret Gyrd
*Gyrd trodde jeg at meg beundret

hun trodde jeg at sikkert beundret meg
henne trodde jeg at jeg sikkert beundret
*hun trodde jeg at beundret sikkert meg
*henne trodde jeg at jeg beundret sikkert

Ivii

APPENDIX C

OO MR HF OO MFEFMFEFMFEFOOFHF OO OOHFOOFF OO OO OOFMEO

NORWEGIAN WORD ORDER IN HPSG

Finally, using the evaluation tool (called [incr tsdb()]; see Oepen and
Callmeier (2000)) that is available as on add-on to the LKB system, here is a
summary view of some interesting properties of the test set when aggregated
by sentence length. The columns are, again from left to right, the total num-
ber of sentences in each group, the number of grammatical examples within
the group, the average sentence length, the average number of analyses found
by the parser, the total number of sentences for which at least one analysis
can be found, and (finally) the resulting grammatical coverage.

‘livel /mar-03’ Coverage Profile

total |positive| word | parser | total | overall
Aggregate items| items |string|analyses | results|coverage
f f ¢ ¢ f %

8 <length < 10| 7 5 8.20 3.00 5 100.0

6 < length <8 | 88 65 6.57 1.69 65 100.0

4 <length < 6 | 121 84 4.40 1.27 84 100.0

2 <length <4 | 172 84 2.63 1.08 84 100.0
| Total | 388 | 238 [445 | 1.36 | 238 | 100.0 |

(generated by [incr tsdb()] at 19-jun-2003 (16:22 h))

lviii

LIST OF FIGURES

List of Figures

© 00 O Ot i W N+

—_
=)

O R R B O O O WL WL W LW NRNDNDNDDRNDNDDNDNDNDNRF e e e
= W NEFE OO U WNMEHEHOOOKDNIO ULk WK HOO©OW-=TIO Ok WhkN

Main clause scheme 13
Interrogative clause scheme 13
Subordinate clause schemeo 14
Directed acyclic graphs o o0 18
AVMS . o v v i e e e e e e e e e 19
Re-entrant and non-reentrant directed graphs 19
Reentrancy in AvM notation 19
Subsumption 20
Unification of feature structures 21
Appropriateness conditions 21
Excerpt from possible type hierarchy 22
Well-formed TFss through type inference 23
Type hierarchy below phrase 24
The Head Feature Principle 24
Constraint on headed-phrase 25
Head-Subject Phrase Structure Rule 25
Constraint on head-subject-phrase 26
Type hierarchy below lez-item 26
Types needed to build w-lem00 27
w-lem ... L 27
EPs as typed feature structures 33
MRS structure Lo 33
LKB notation vs. AVM notation 36
Paths and reentrancy in LB notation 37
Lists in LKB notation 38
Lexical entry in TDLo o oL 38
Grammar rulein TDL 38
Morphological rule in TDL, oo 39
Possible root TFS oo 39
MRS output for Jenta smiler 41
Indexed MRS output for Jenta smiler 41
Basic feature geometry Lo 44
The type signo 45
The type mrso 45
Types for semantic composition 46
General classesof rules oo 46
Abbreviated version of the type basic-unary-phrase 47
Abbreviated basic-head-subj-phrase 48
Abbreviated basic-head-comp-phrase 48
Abbreviated head-mod-phrase-simple 49
Inversion Lexical Rule from Sag and Wasow (1999) 53
Constraints on the type sai-ph from Ginzburg and Sag (2001) 54
A head-initial head-subject phrase 56
Inverted main clause structure 57

lix

NORWEGIAN WORD ORDER IN HPSG

45
46
47
48
49
50
51
52
53
54
bY)
56
o7
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81

82
83
84
85
86
87

Non-inverted main clause structure 58
Implementation trap oL 59
Main clause structure with topicalized subject 60
Structural ambiguity in Norwegian main clauses 61
Subordinate clause structure L. 64
Main clause structures oL L. 65
Constraints on clause types 66
Cross-classification of clause types and constructional types . 66
Structure with topicalized adjunct 67
Interoggative vs. declarative clause type 68
Main clause structure with nexus adjunct 70
Subordinate clause structure with nexus adjunct 70
Inverted clause structure with sentence-final adjunct 71
Possible structures with topicalized sentence adverbial 72
TDL definition of the head-subject phrase types 74
TDL definition of the type head-complement-phrase 75
TDL definition of the type psp-verb 75
TDL definition of the type eztr-subj-phrase 76
TDL definition of the types s-hadj-int-phrase 78
TDL definition of the type s-main-nez-hadj-int-phrase 78
TDL definition of the type s-adjh-int-phrase 78
TDL definition of the subtypes for adjunct extraction 79
Type hierarchy below mod 80
TDL definition of the types below adv and prep 81
TDL definition of the types below nez-mod 81
TDL definition of the types below final-or-strictly-final-mod . 82

TDL definition of the types below final-or-strictly-final-mod . 83

Inflectional rule for masculine and feminine noun lexemes . . 86
Inflectional rules for verb lexemes 86
Declarative main clause structures 5
Interrogative main clause structures 6
Declarative main clause with subordinate clause complement 6
Main clause with light sentence adverbials 6
Main clause with light sentence adverbials and topicalized object 7
Subordinate clause with light sentence adverbial 7
Main clause with nex-or-final-mod sentence adverbial 8
Main clause with topicalized nez-or-final-mod sentence adver-

bialo 8
Main clause with PP modifier 9
Main clause with topicalized PP modifier 9
Main clause with main clause complement 10
Main clause with subordinate clause complement 11
Topicalization of complement from the subordinate clause . . 12
Main clause with ditransitive verb 13

Ix

REFERENCES

References

Lars Ahrenberg. A grammar combining phrase structure and field struc-
ture. In Proceedings of COLING-90, volume 1, pages 1-6, Helsinki, August
1990a.

Lars Ahrenberg. Topological fields and word order constraints. In Edinburgh
Working Papers in Cognitive Science, volume 6, pages 1-19. University of
Edinburgh, 1990b.

Lars Ahrenberg. Positions vs. precedence as primitives of constituent order.
In Saetningsskemaet i Generativ Grammatikk. Institut for Erhvervsssprog-
lig Informatik og Kommunikation, Syddansk Universitet — Kolding, 1999.

Kjell Johan Szbg Anneliese Pitz. Kontrastive syntax norwegisch-deutsch.
Kompendium fiir Deutsch 220, Germanistisk institutt, Universitetet i
Oslo, Oslo, 1997.

Emily M. Bender, Dan Flickinger, and Stephan Oepen. The grammar matrix:
An open-source starter-kit for the rapid development of cross-linguistically
consistent broad-coverage precision grammar. In Procedings of the 19th
International Conference on Computational Linguistics, Taipei, Taiwan,
2002.

Gosse Bouma, Daniel Flickinger, and Frank van Eynde. Constraint-based
lexica. In Frank van Eynde and Daffyd Gibbon, editors, Lezicon Develop-
ment for Speech and Language Processing. Kluwer, Dordrecht, 2000.

John Carrol, Ann Copestake, Daniel Flickinger, and Victor Poznanski. An ef-
ficient chart generator for (semi-)lexicalist grammars. In Proceedings of the
7th European Workshop on Natural Language Generation (EWNLG’99),
pages 86-95, Toulouse, 1999.

Ann Copestake. Semantic transfer for verbmobile. Draft, August 1995.

Ann Copestake. Implementing Typed Feature Structure Grammars. CSLI
Lecture Notes. Center for the Study of Language and Information, Stan-
ford, California, 2001.

Ann Copestake and Dan Flickinger. An open-source grammar development
environment and broad-coverage english grammar using hpsg. In Proceed-
ings of the 2nd Linguistic Resources and FEwvaluation Conference, pages
591-600, Athens, Greece, 2000. ELDA.

Ann Copestake, Dan Flickinger, Rob Malouf, Susanne Riehmann, and Ivan
Sag. Translation using minimal recusion semantics. In Proceedings of the
Sizth International Conference on Theoretical and Methodological Issues
in Machine Translation (TM195), Belgium, 1995. Leuven.

Ann Copestake, Dan Flickinger, and Ivan A. Sag. Minimal recursion seman-
tics: An introduction. Manuscript, Stanford University: CSLI, 1999.

Ixi

NORWEGIAN WORD ORDER IN HPSG

Ann Copestake, Alex Lascarides, and Dan Flickinger. An algebra for seman-
tic construction in constraint-based grammars. In Proceedings of the 39th
Annual Meeting of the Association for Computational Linguistics (ACL
2001), Toulouse, France, 2001.

Paul Diderichsen. Elementer dansk grammatik. Gyldendal, Kgbenhavn, 3
edition, 1962.

Rolf Theil Endresen, Hanne Gram Simonsen, and Andreas Sveen, editors.
Innforing i lingvistikk. Universitetsforlaget, Oslo, 1999.

Hans-Olav Enger and Kristian Emil Kristoffersen. Innforing i norsk gram-
matikk : morfologi og syntaks. Landslaget for norskundervisning : Cappe-
len akademisk forlag, Oslo, 2000.

Jan Terje Faarlund, Svein Lie, and Kjell Ivar Vannebo. Norsk referanseg-
rammatikk. Universitetsforlaget, Oslo, 1997.

Dan Flickinger, Carl Pollard, and Thomas Wasow. Structure sharing in
lexical representations. In Proceedings of the 23rd Annual Meeting of the
Association for Computational Linguistics, pages 180-187. Association for
Computational Linguistics, 1985.

Daniel Flickinger. The Hierarchical Lexzicon. PhD thesis, Stanford University,
1987.

G. Gazdar, E. Klein, G. K. Pullum, and I. A. Sag. Generalized Phrase
Structure Grammar. Basil Blackwell, Oxford, 1985.

Gerald Gazdar and Christopher Mellish. Natural Language Processing in
PROLOG: an Introduction to Computational Linguistics. Addison-Wesley
Publishing Company, 1989.

Jonathan Ginzburg and Ivan A. Sag. Interrogative Investigations: the form,
meaning, and use of English Interrogatives. CSLI Publications, Stanford,
California, 2001.

Kjell Tgrres Heggelund. Setningsadverbial i Norsk. Number 2 in Tromsg-
studier i sprakvitenskap. Novus Forlag, Oslo, 1981.

Lars Hellan and Torbjgrn Nordgérd. Invited tutorial on norwegian gram-
mar: Challenges for hpsg. In The Proceedings of the 7Tth International
Conference on Head-Driven Phrase Structure Grammar, pages 130-146,
Berkeley, 2000. CSLI Publications.

Daniel Jurafsky and James H. Martin. Speech and Language Processing.
Prentice Hall, 2000.

Alex Lascarides and Ann A. Copestake. Default representation in constraint-
based frameworks. Computational Linguistics, 25(1):55-105, 1999.

Ixii

REFERENCES

Robert Malouf, John Carroll, and Ann Copestake. Efficient feature struc-
ture operations without compilation. Natural Language Engineering, 6 (1)
(Special Issue on Efficient Processing with HPSG):29—-46, 2000.

Stefan Miiller. Deutsche Syntax deklarativ. Head-Driven Phrase Structure
Grammar fiir das Deutsche. Number 394 in Linguistische Arbeiten. Max
Niemeyer Verlag, Tiibingen, 1999.

Stefan Miiller. Continuous or discontinuous constituents? In Proceedings
of the ESSLLI-2000 Workshop on Linguistic Theory and Grammar Imple-
mentation, pages 133-152, Birmingham, UK, August 14-18, 2000.

Anne Neville and Patrizia Paggio. Developing a danish grammar in the
grasp project: A construction-based approach to topology and extraction
in danish. Manuscript, 2001.

Qystein Nilsen. The Syntaz of Circumstantial Adverbials. Number 21 in
Tromsg Studies in Linguistics. Novus Press, 2000.

Stephan Oepen and Ulrich Callmeier. Measure for measure: Parser cross-
fertilization - towards increased component comparability and exchange.
In Proceedings of the 6th International Workshop on Parsing Technologies,
Trento, Italy, 2000.

Stephan Oepen and John Carroll. Parser engineering and performance pro-
filing. Natural Language Engineering, 6(1):81-97, 2000.

Thorbjgrn Nordgérd og Tor Anders Afarli. Generativ syntaks : ei innforing
via norsk. Novus, Oslo, 1990.

Gerald Penn. The Algebraic Structure of Attributed Type Signatures. PhD
thesis, School of computer science, Carnegie Mellon university, 2002.

Christer Platzack. A survey of generative analyses of the verb second phe-
nomenon in germanic. Nordic Journal of Linguistic, pages 49-73, 1985.

Carl J. Pollard and Ivan A. Sag. Information-Based Syntax and Seman-
tics. Number 13 in CSLI Lecture Note Series. Stanford University: CSLI
Publications, Chicago, 1987.

Carl J. Pollard and Ivan A. Sag. Head-Driven Phrase Structure Grammar.
University of Chicago Press, Chicago, 1994.

Ivan A. Sag and Thomas Wasow. Syntactic Theory: A Formal Introduction.
Center for the Study of Language and Information, Stanford, 1999.

Peter Sells. Scandinavian clause structure and object shift. In Miriam Butt
and Tracy Holloway King, editors, Proceedings of the LFG98 Conference,
Brisbane, 1998. The University of Queensland, CSLI Publications.

Ixiii

NORWEGIAN WORD ORDER IN HPSG

Peter Sells. Negation in swedish: Where it’s not at. In Miriam Butt
and Tracy Holloway King, editors, Proceedings of the LFG00 Conference,
Berkely, 2000. University of California, CSLI Publications.

Peter Sells. Structure, alignment and optimality in Swedish. Stanford mono-
graphs in linguistics. CSLI publications, Stanford, California, 2001.

Nancy L. Underwood. A typed feature-based grammar of danish. Nordic
Journal of Linguistics, 20(1):31-62, 1997.

Ixiv

