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ABSTRACT 

 
Authors: Martin Aker and Anne Marie Hoel 

Title: Cognitive endophenotypes in impulsivity: 5-HTTLPR influences inhibitory control in 

healthy subjects. 

Advisor: Professor Nils Inge Landrø 

Background: The serotonin transporter polymorphism (5-HTTLPR), related to serotonin 

transmission in the brain, has been associated with impulsive behavior. Impulsive behavior 

and lack of inhibitory control are components in various psychiatric disorders. Although 

several studies have associated 5-HTTLPR and impulsivity, the literature is ambiguous. By 

measuring impulsivity with objective behavioural measures, and applying the triallelic 

classification of genotypes, this study aimed to explore the association between impulsivity 

and 5-HTTLPR. A subordinate aim was to investigate a possible sex by 5-HTTLPR genotype 

interaction on impulsivity. 

Methods: The data were collected as part of the project “Cognitive control, mood, brain 

function and genetics in major depressive disorder and healthy people”. The authors 

participated in collection of the data. The principal investigator of this project is Nils Inge 

Landrø. Participants in this study were 87 healthy adults from 19 to 61 years. Blood samples 

were drawn from all participants for 5-HTTLPR genotyping. Inhibition and response style 

were assessed with the stop signal task and the continuous performance test.   

Results: Results showed a significant effect of genotype on stop signal reaction time. An 

unexpected age difference between groups moderated this effect. Assuming dominance of the 

low expressive alleles, SS and SL groups were collapsed. Reanalysis showed significant 

effects of genotype and age on stop signal reaction time. No significant effect of genotype 

was found on response style. No significant interaction between genotype and sex was found. 

The effect of the short allele on response style showed an opposite pattern in men and 

women, but this effect was not significant. 

Conclusion: The present study links the serotonin transporter polymorphism to inhibitory 

control. Inhibition is a central component of executive functions and impairment in these 

functions are associated with various psychological disorders. Through its effect on 

inhibition, the short allele may constitute a genetic vulnerability for impulse control disorders 

and depression. 
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INTRODUCTION 

 

The concept of impulsivity plays an important role in describing human behavior and 

behavioral tendencies in lay language as well as in academic psychology and psychiatry. The 

tendency to be spontaneous and impulsive is often regarded positively in everyday situations. 

This positive view of impulsivity is reflected in Norman’s taxonomy (1967) of personality 

descriptors, where impulsivity is pooled with positive adjectives such as “carefree, playful 

and zany” (as cited in Goldberg, 1990, p. 1218). Others consider impulsivity more negatively 

as part of neuroticism (McCrae & Costa, 1997). An analogue to these positive as opposed to 

negative concepts of impulsivity can be found in Dickman’s (1990) work, which 

distinguishes a functional from a dysfunctional type. According to Dickman, functional 

“impulsives” are lively, adventurous, and willing to take risks, and appear to have been 

rewarded for their style. The errors they inevitably sometimes commit as result of acting 

without forethought seem to be compensated by their productivity. Dysfunctional 

impulsivity, on the other hand, is the tendency to act with little forethought despite the fact 

that this frequently leads the individual into difficulties. According to Dickman, these two 

kinds of impulsivity are weakly related, he therefore describes them as separate and largely 

unrelated dimensions, rather than closely related traits or poles of one dimension.  

Barratt (1985) described impulsiveness with the three dimensions, motor, non-

planning, and cognitive impulsiveness. A more recent analysis suggested that cognitive 

processes concern impulsiveness in general and underlie all dimensions of impulsiveness 

(Patton, Stanford & Barratt 1995). Patton and his colleagues added attentional impulsiveness 

to their understanding of impulsivity and described impulsiveness as comprising the three 

factors, attentional, motor, and non-planning impulsiveness. This addition of an attentional 

impulsivity aspect is also in line with the cognitive theory of executive control functioning.  

 From a mental health perspective impulsivity is regarded as a central component in a 

wide range of pathological behaviors and disorders, such as ADHD, drug abuse, borderline 

and antisocial personality disorders, suicidal tendencies, and mania (American Psychiatric 

Association, 2000). Extensive research on underlying mechanisms has associated serotonin 

with impulsive behavior (Soubrié 1986, as cited in Evenden, 1999; Evenden, 1999; 

Fairbanks, Melega, Jorgensen, Kaplan, & McGuire, 2001). 
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THEORETICAL AND EMPIRICAL BACKGROUND 

 

Measures of Impulsivity: Psychometric and Cognitive Behavioral Assessment 

Impulsivity is an extensive term which can be described or defined by a wide variety of 

different behaviors. Within scientific research on personality and psychopathology several 

questionnaires and other instruments have been developed for the assessment of impulsivity. 

The most common method for assessing impulsivity stems from the psychometric personality 

assessment tradition. Here the subject evaluates him- or herself on a selection of statements 

about personal preferences and habits, which the researchers believe are related to 

impulsivity. Examples of such questionnaires are the Barratt Impulsiveness Scale (BIS; 

Patton et al., 1995), the Dickman Impulsivity Inventory (Dickman, 1990), and the I7 

(Eysenck, 1993). Also, many broader personality inventories include a subscale describing 

impulsivity, like the Impulsiveness facet from the NEO-PI (McCrae & Costa, 1997).  Lane, 

Cherek, Rhoades, Pietras, and Tcheremissine (2003) examined the relationship between four 

commonly used psychometric tests of impulsivity (BIS-11, I7, Dickman Impulsivity 

Inventory, and Wender Utah Rating Scale). They found correlation between these tests to be 

consistently high, and all four psychometric tests loaded onto a single factor.  

Impulsivity is a broad concept but although psychometric instruments provide good 

measures to separate more or less impulsive individuals, they do not provide much insight 

into how impulsivity influences cognitive processes. Experimental behavioral tests are 

typically more narrowly defined and often developed within a framework of cognitive or 

neurocognitive theories. Cognitive behavioral tests commonly used to measure impulsivity 

have been found to divide into several factors.  

Swann, Bjork, Moeller, and Dougherty (2002) examined two models of impulsivity, 

the reward-delay model and the rapid-response model. The tasks assumed to measure reward-

delay impulsivity did not correlate significantly with tasks assumed to measure rapid-

response impulsivity. Rapid-response impulsivity was associated with lifetime axis I and axis 

II diagnoses and was more strongly correlated and also contributed significantly to variance 

in BIS scores. This pattern was replicated by Dougherty et al. (2003) who found that 

compared with reward-delay tasks, rapid-response tasks were more sensitive to between 

group differences in impulsivity, in comparison between clinical and control groups. Lane et 

al. (2003) also found behavioral measures to load into two factors, but not exactly the same as 

the ones found by Swann et al. and Dougherty et al. They found the response inhibition tasks 

and the delay of reward tasks to divide into separate factors.  
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Reynolds, Ortengren, Richards, and de Wit (2006) examined the correlations between 

three personality measures (BIS-11, I7, and Multidimensional Personality Questionnaire), and 

four laboratory-task measures of impulsive behavior, in a healthy population. They found that 

although correlations between various self-report measures of impulsivity were high, self-

report measures were not correlated with behavioral-task measures. They also found that data 

from behavioral-tasks measures formed two components, impulsive disinhibition and 

impulsive decision making. Reynolds et al. suggested that self-report and behavioral 

measures probably measure different constructs, and also that among the behavioral 

measures, different tasks measure different components of impulsive behavior. This was 

supported by Lane et al. who found correlations between the behavioral tasks and 

psychometric instruments to be uniformly low. This illustrates the complexity of the 

phenomenon impulsivity and poses a challenge when choosing good behavioral measures of 

impulsivity.  

 

Impulsivity within a Cognitive Framework 

From a cognitive perspective, impulsivity can be conceptualized as an issue of controlling 

thought and action, more specifically, a lack of inhibitory efficiency (Logan & Cowan, 1984). 

Inhibition is widely accepted as a crucial part of executive functions. A central question in 

understanding executive functions is whether they are best classified as one unity or as 

several components (Jurado & Rosselli, 2007). Miyake and colleagues (2000) tried to resolve 

this issue and found evidence in support of both the unity and the diversity theory. They 

found three moderately correlated, but clearly separable executive aspects: shifting, updating 

and inhibition. The moderate correlation indicates a relationship between these aspects. One 

of their explanations of the common, underlying factor is that all the three targeted executive 

functions depend on one global inhibitory process.  

Greene, Braet, Johnson, & Bellgrove (2008) presented a somewhat different 

description of executive functions, entailing working memory, response inhibition, and 

sustained attention. In this description, inhibitory function is involved in at least two of the 

components. Response inhibition is the suppression of actions that are no longer required or 

are inappropriate (Logan, 1994). Inhibition is also highly relevant to attention, which relies 

on the ability to depress disrupting effects of non-pertinent stimuli (Baddeley, 1996).  

Executive functions operate on other cognitive functions (Friedman et al., 2008), and 

are therefore of primary importance in understanding human cognition. The role of 

impulsivity in a variety of mental and behavioral disorders, including attention deficit and 
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hyperactivity disorder (ADHD), borderline and antisocial personality disorders, suicidal 

tendencies, mania, and substance abuse (American Psychiatric Association, 2000) underlines 

the importance of an understanding of the cognitive processes involved in impulsivity, as 

well as in the etiology of maladaptive impulsivity.  

 

Response inhibition 

Different aspects and definitions of inhibition, such as response inhibition and 

attentional inhibition, pose the question whether the best theoretical model comprises only 

one or rather several inhibitory mechanisms. Based on empirical studies of response 

inhibition, a range of motor actions, including eye movements, hand movements, key presses, 

squeezes, and speech, can all be stopped very quickly and in approximately the same time 

(200 ms. for young adults). Logan argues that a single, amodal, central process is responsible 

for stopping all these actions (Logan, 1994; Logan & Cowan, 1984).  

In a study of response inhibition De Jong, Coles, Logan and Gratton (1990) included 

measurements of neural activity by EEG and obtained indications of two separate stopping 

mechanisms. Their data suggested that if the central cognitive processes underlying response 

are completed before the central inhibitory processes can interfere, the overt (motor) response 

can still be stopped by inhibition of motor commands from central to peripheral structures 

(De Jong et al.). De Jong and colleagues suggested that the inhibitory mechanism involved in 

stopping motor responses is faster than the central executive inhibitory mechanism. The 

central executive inhibitory mechanism is capable of highly specific inhibition, as opposed to 

a more general and nonspecific inhibition involved in stopping motor responses.  

The suggestion of two separate inhibitory mechanisms has later been supported by 

Aron and Verbruggen (2008) who attempted to tap each mechanism specifically. Subjects 

were instructed to respond simultaneously with both hands when cued, and to inhibit 

response from either the right or the left hand occasionally. Aron and Verbruggen’s 

hypothesis was that if response inhibition can be performed in either a slow/specific or a 

fast/nonspecific fashion, the researchers can facilitate activation of one or the other by 

manipulating the subjects’ knowledge about which response to inhibit. If subjects do not 

know beforehand which response to inhibit, a general inhibitory mechanism should be 

activated. If, however, subjects are preinformed which of the two responses to inhibit if any 

inhibition is required, then they have the necessary information to make specific, as opposed 

to general inhibition. The results supported the hypothesis. When preinformed, the subjects 

stopped slower, but conducted the non-inhibited response faster.  
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The relatively slower processing of selective inhibition was also found by Coxon, 

Stinear and Byblow (2007), but in this study inhibition was measured differently. Instead of 

inhibiting a response that was cognitively preprogrammed, the subjects were instructed to 

press and hold two buttons at the presentation of a visual cue. Following another visually 

presented indicator, the subjects were instructed to release one or both buttons. While the 

subjects in Aron and Verbruggen’s study needed to inhibit the completion of a cognitively 

preprogrammed response, the subjects in Coxon et al.’s study had to inhibit an action which 

was already being actively and overtly performed, making the speed of the inhibition more 

easily observable. Accordingly, Coxon et al. were able to register the inhibition response time 

simply as the time from onset of the stop signal to the subject’s release of the corresponding 

button. The shortcoming of this method is that it does not separate cognitive from peripheral 

nervous and muscular processes, so the reaction time obtained is a composite of cognitive 

and non-cognitive processes.  

 

The race model of inhibition 

From a cognitive perspective, an ordinary motor response can be said to be a process 

of programming and execution. Although we are not able to observe the cognitive process 

itself, the result of this process can be seen as overt behavior. Response inhibition however, is 

a process which purpose is to stop another process. Neither of the cognitive processes are 

directly observable. Because of this, researching inhibitory processes has an inherent 

problem. While measuring simple go reaction time is a fairly easy and straightforward 

procedure, measuring the stop reaction time is rather the opposite. Measuring efficiency of 

inhibition implies measuring the time it takes for a subject to realize that he or she should 

now withhold action. The result of a successful inhibition is absence of an overt response, but 

an absent response does not tell the researcher how long it took the subject to process and 

execute the instruction “do not respond”. To assess the efficiency of inhibitory control, it is 

necessary to find a way to estimate more precisely the time needed to inhibit a response. As 

previously described, Coxon et al. (2007) omitted this problem by making the subjects inhibit 

an ongoing overt action, at the cost of not being able to separate the time measurement of 

cognitive inhibition from the peripheral neural and muscular execution. The race model of 

inhibition provides a theoretical framework for calculating the time it takes to complete the 

cognitive inhibitory process without overt behavioral change. 

Logan (1994) depicts the relation between the go and stop processes as a race 

(originally a horse race: Logan & Cowan, 1984). The two processes are assumed to be 
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separate and independent of each other, one generating the primary response and the other 

generating the stop function. The purpose of the race analogy is to visualize the concept of 

two competitors racing toward a finishing line where the first to finish is the winner. If the go 

process wins the race (finishes first), action is executed. Contrarily, if the stop process 

finishes first, action processing is inhibited and no action is executed. From this model it 

follows that the relative speed and the relative starting point of the processes determine the 

outcome of the race. That is, if the stop process starts after the go process, the stop process 

can still win the race if it runs sufficiently faster than the go process.  

The assumption of go and stop as two separate processes was empirically investigated 

by De Jong, et al. (1990) who combined a choice reaction/inhibition task with EEG 

registration of participants. The EEG data showed independent activation by go and stop 

stimuli. Activity associated with go signals alone was clearly recognizable and 

distinguishable from activity associated with stop signals. When the stop process was 

initiated but failed to complete (i.e., inhibition failed and motor response was executed), the 

go-related EEG activity was not observably different from go-activity when stop-activity was 

absent. These results can be interpreted as indicating that the two processes are truly parallel 

and separate and do not influence each other until completion (Aron & Verbruggen, 2008), 

thereby supporting the fundamental assumption of the race model of inhibition. 

 

Impulsivity as cognitive response style  

From the description of the race model it is fair to say that stop signal reaction time 

constitutes a measure of proficiency with which we can range individuals according to who 

are better and who are worse at performing the task of response inhibition. The concept it 

intends to investigate is inhibitory speed and efficiency, and the task is designed to make the 

inhibition itself a challenge. However, in the stop signal task there is never a question about 

whether one should inhibit or respond in a given trial, because the go and the stop stimuli are 

very simple and easily perceptible. This simplicity is rare in the real world, where people 

typically have to process complex stimuli and make rapid decisions based on imperfect 

information about existing conditions and possible outcomes.  

Personality type ratings of impulsivity typically focus on people’s ability and 

willingness to decide and act rapidly, as opposed to preference for careful consideration, 

planning and security (Dickman, 1993; Patton et al., 1995). Such strategies tend to be 

relatively stable in individuals, while the effectiveness and success of each strategy depends 

greatly on the situation. Accordingly, individuals can be said to vary along a dimension from 
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impulsive to nonimpulsive, but we can not, on a general level, convert this into a normative 

scale, saying that individuals at one end perform better than individuals at the other end. It is 

a matter of individual preference and response style, which should not be confused with the 

ability to inhibit a response as discussed in the race model.  

Although typically assessed with questionnaires relying on subjects’ self evaluation, 

response style can also be measured by objective behavioral measures, such as the continuous 

performance test (CPT) (Cornblatt, Risch, Faris, Friedman, & Erlenmeyer-Kimling, 1988). 

The continuous performance test was originally developed by Mackworth and Taylor (1963) 

to examine the performance of radar operators. This test requires the subject to pay attention 

to stimuli presented on a computer screen and respond whenever a target stimulus is 

presented. Not long after its presentation, researchers started using the test on psychiatric 

populations in attempts to discover possible neuropsychological deficits (Grunebaum, Weiss, 

Gallant & Cohler, 1974). Because attentional control is a requirement of this test, it has been 

frequently used in the assessment of ADHD.  

Traditionally proportion of correct responses has been seen as a measure of vigilance 

(Cornblatt, et al. 1988). Errors of omission, when subjects fail to respond to target, has been 

interpreted as an indication of failure in vigilance or sustained attention (Halperin, Wolf, 

Greenblatt, & Young, 1991). Several different versions of CPT have been developed. A 

common feature is that target is defined by two consecutive stimuli (e.g. the same nonsense 

figure presented twice, or the letter X following the letter A).  

In the Continuous Performance Test - Identical Pairs (CPT-IP) (Cornblatt et al., 

1988), a quick decision is required of whether a presented stimulus is identical or not to the 

last presented stimulus. The essential challenge is to make a quick decision (respond or not 

respond) even when processing of stimuli is incomplete and one is uncertain whether the 

stimulus is a target or not. We can think of this decision process in two steps, the first 

involves comparing the present stimulus with the former. The second step is to handle the 

uncertainty resulting from incomplete processing of stimuli. When discrimination is less than 

perfect, one can choose to improve hit rate by increasing response rate, risking more false 

alarms. Conversely, fewer false alarms can be attained by reducing response rate, at the cost 

of fewer correct hits. Just as individuals differ in ability to discriminate stimuli, they also 

differ in how they balance the alternatives of responding or not responding, weighing correct 

responses against errors. The individual preference can be referred to as response style. 
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Impulsivity and the Serotonin System 

Impulsivity was first linked to central serotonergic function over 30 years ago (Walderhaug, 

2007). Through several studies Soubrié (1986, as cited in Evenden, 1999) found a connection 

between serotonergic neurons and behavioral inhibition, and the association of impulsive 

behavior with a low capacity of the serotonergic system has been demonstrated in both 

rodents (Evenden, 1999) and primates (Fairbanks, et al. 2001). It has been established that the 

serotonin system is somehow involved in impulsivity, however the influence of serotonin in 

impulsive behavior is only partially understood. Insight into the human genome raised 

optimism regarding the possibility of finding genotypes underlying mental disorders, but has 

been followed by awareness of the difficulty in associating genotypes to diagnostic 

definitions of disorders. 

 

The endophenotype concept 

Search for candidate genes for mental and behavioral disorders through the last two 

decades has revealed a need to understand the mediating neurological and cognitive 

processes. Endophenotype is a general term for intermediate phenotypes that form causal 

links between genes and overt expression of disorders. Endophenotypes link observable 

syndromes that constitute diagnostic categories of disorders to lower level biological 

processes, thus providing insight into which mechanism may be dysfunctional for a given 

disorder (Cannon & Keller, 2006).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. A general description of the connection between genotype, phenotype, and 

intermediate endophenotypes. Adapted from Cannon and Keller, 2006. 
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An endophenotype may be neurophysiological, biochemical, endocrinological, 

neuroanatomical, cognitive, or neuropsychological in nature, and is likely to be less complex 

than the phenotype disorder (Gottesman & Gould, 2003). Cannon and Keller describe the 

association between genotype and diagnostic phenotype (Figure 1), illustrating a (simplified) 

path from gene to syndrome.  

 

The serotonin transporter protein, 5-HTTLPR 

Research on impulsivity and the serotonin (5-HT) system has focused on a 

polymorphism in the promoter region of the gene coding for the serotonin transporter protein.  

The process of 5-HT reuptake into the presynaptic neuron, and thereby maintenance 

of the amount of 5-HT available for subsequent release, is performed by a single protein. This 

protein, known as the 5-HT transporter (5-HTT), removes 5-HT from the synaptic cleft and 

determines the magnitude and duration of postsynaptic receptor-mediated signaling, thus 

playing a pivotal role in the fine-tuning of 5-HT neurotransmission (Lesch & Gutknecht, 

2005; Lesch & Mössner, 1998). In other words the 5-HT transporter protein is a crucial 

element in the 5-HT system, and anything that changes the amount of available 5-HT 

transporter or alters its functional properties might in theory make significant impact on 

central nervous processes and subsequently on a subject’s behavior. A familiar example of 

imposed alteration of functional property is selective serotonin reuptake inhibitor drugs 

(SSRIs) that block the 5-HT transporter and thereby prevents the transporter protein from 

effecting reuptake. The presence of 5-HT in the synapse is thus prolonged.  

In 1996, a newly discovered common variation in the promoter region of the 5-HTT 

gene was discovered, a biallelic polymorphism comprising a long (L) and a short (S) variant 

(Heils et al.1996; Lesch et al.1996). This polymorphism is now commonly referred to as the 

serotonin transporter protein gene-linked polymorphic region, or the 5-HTTLPR. The 

promoter region of a gene is responsible for regulating transcription (mRNA synthesis) of 

that gene, subsequently leading to protein synthesis.  

Using in vitro studies of lymphoblast cells1

                                                           

1 Lymphoblasts are cells of the immune system that express functional 5-HT and possess an uptake system 
based on the 5-HT transporter protein (Faraj, Olkowski, & Jackson, 1994). Lymphoblast cells are not involved 
in central nervous 5-HT systems, but are more easily available than central nervous 5-HT cells, which make 
lymphoblasts eligible for research. 

  to investigate a potential functionality of 

the long/short polymorphism, Heils and colleagues found that the L variant was associated 
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with approximately three times higher transcriptional activity compared to the S variant. 

Lesch et al. supported this finding and also showed that the higher activity of the L allele is 

most effective in cells homozygous for the L allele, as opposed to heterozygous SL cells 

whose transcriptional activity more closely resembles that of homozygous SS cells. The rate 

of 5-HT uptake was double in LL cells compared SL or SS cells. The data for SS and SL 

were similar on both mRNA concentrations and 5-HT uptake, and these genotypes differed 

from LL genotype, indicating a functional dominance of the S allele over the L allele.  

Later this association has been clouded by Hranilovic et al. (2004) who found a 

similar but non-significant trend in mRNA expression, and by Lim, Papp, Pinsonneault, 

Sadée and Saffen (2006) who found no association. Further complicating the picture, 

Nakamura, Ueno, Sano and Tanabe (2000) identified several new varieties in the DNA 

sequence, revealing that the 5-HTTLPR can be found in at least 14 variants, and that the two 

alleles S and L are actually four and six different allelic variants, respectively.  

A more recent study concluded that three alleles are commonly found in North 

European, Caucasian American, African American and Indian American populations (Hu et 

al., 2006). These three allelic variants are S, LG and LA. The long alleles, LG and LA are 

distinguished by an AG single nucleotide polymorphism (SNP). Hu et al. found LG to be 

nearly equivalent to S regarding mRNA expression. Following this they argued that LG 

should be treated as analogous to S and separate from LA, when searching to explain 

neurological or behavioral characteristic by 5-HTTLPR variability. The recent discovery of a 

functionally significant SNP in the L allele poses a considerable challenge to the 

interpretation of previous findings as well as to the possibility of comparing results from 

studies using triallelic as opposed to biallelic classifications. The lack of differentiation 

between LG and LA is a possible explanation for inconsistencies in results across studies. 

Studies relying on PET methodology have found increased 5-HTT availability and 

increased 5-HTT binding potential in LL and LALA genotypes, respectively (Heinz et al., 

2000; Praschak-Rieder et al., 2007). However, two PET studies reported no significant 

difference in 5-HTT binding potential (Shioe et al., 2003; Parsey et al., 2006). Additionally, 

two SPECT studies reported no significant effect of genotype on 5-HTT binding in a range of 

sub cortical brain structures (Jacobsen et al., 2000; Willeit et al., 2001). Another SPECT 

study indicated a complex relation, reporting significantly greater 5-HTT availability in SS 

subjects compared to SL, a non-significant tendency of increased availability in LL compared 

to SL (p=0.09), and no difference in availability between SS and LL (van Dyck et al., 2004). 

Divergent results have also been found in studies of platelet 5-HT uptake (Nobile et al., 1999; 
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Preuss et al., 2000; Stoltenberg et al., 2002) and in studies of 5-HTT expression and binding 

potential in post-mortem brain tissue (Du et al., 2000; Lim et al., 2006; Little et al., 1998). 

Moreover, the repeatedly reported dominance of the S allele was challenged by Hu, Zhu, 

Lipsky and Goldman (2004) who found co-dominant effects in a lymphoblast cell study, and 

by Nobile et al. (1999) who reported 35% higher 5-HT uptake rate in SL compared to SS 

group. 

The combined results from in vivo studies are inconclusive about the effect of 5-

HTTLPR on 5-HTT function. Results are divergent within each methodological approach, 

suggesting that more research is needed before any conclusions can be drawn.  

It is possible that 5-HTTLPR has a smaller effect on the adult central nervous system 

than on earlier development. Neurotransmitters such as 5-HT appear to be endogenous 

growth signals regulating morphogenetic activities during early embryonic development, 

including cell proliferation, migration and differentiation (Lauder, 1993). Evidence suggest 

that allelic variation in functional 5-HTT expression plays a crucial role in synaptic plasticity, 

thus setting the stage for expression of complex traits and their associated behavior 

throughout adult life (Lesch & Mössner, 1998).  

Lack of in vivo effect of 5-HTTLPR has led some researchers to conclude that 

associations of the 5-HTTLPR polymorphism to clinical phenotypes appear to be due to 

developmental effects of 5-HTTLPR on expression rather than to its direct effect on serotonin 

transporter binding (Parsey et al., 2006). Even though studies of 5-HTT expression and 5-HT 

reuptake are ambiguous, an effect of the polymorphism on behavior may still be detected due 

to developmental mediation. 

 

5-HTTLPR and impulsive personality 

Several correlation studies have investigated the association between 5-HTTLPR and 

impulsive personality. Lesch et al. (1996) found a significant correlation between 5-HTTLPR 

and the NEO-PI facet Impulsivity in a primarily male population, where subjects with one or 

two S alleles tended to have more impulsive personality than subjects homozygote for L 

allele. A similar, but non-significant trend was found in a primarily female population 

(Greenberg et al. 2000). 5-HTTLPR S allele has also been associated with increased 

disinhibiton (Paaver, Kurrikoff, Nordquist, Oreland, & Harro, 2008; Aluja, Garcia, Blanch, 

De Lorenzo, & Fibla, 2009).  

Sakado and colleagues (Sakado, Sakado, Muratake, Mundt, & Someya 2003) assessed 

genotype and impulsivity, measured by BIS, in a nonclinical, male Japanese population. 
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Because of a very low frequency of LL genotype in their sample (as is typical of East-Asian 

populations; Katsuragi et al. 1999; Nakamura, et al. 2000), Sakado et al. (2003) collapsed LL 

and LS into one group. They found significantly higher impulsivity scores in the SS group 

compared to the L carriers. However, in a healthy male Korean population, Lee, Kim and 

Hyun (2003) separated high, low, and intermediate impulsive individuals by BIS scores and 

compared the high scorers with the low scorers. They found no significant differences in 

genotype frequency in the two groups, but allelic frequencies were significantly different. 

The most impulsive subjects possessed relatively fewer S alleles and more L alleles than the 

least impulsive subjects. That is, in Lee et al.’s sample, increased impulsivity was associated 

with fewer S alleles and more L alleles, which is opposite of what one would expect based on 

the studies cited above.  

Although only reporting data for the broad trait neuroticism, Sirota, Greenberg, 

Murphy and Hamer (1999) results are interesting because the reported association between 5-

HTTLPR genotype and personality trait was nonlinear. Subjects with extreme neuroticism 

scores were selected for genotyping based on the hypothesis of high frequency of S alleles in 

subjects high on neuroticism, and low frequency of S alleles in subjects low on neuroticism. 

Results of the genotype-neuroticism association showed that in the high-neuroticism group, S 

allele frequencies increased with neuroticism only to a certain point. Then it decreased and 

approximated the frequency for the population with neuroticism scores within normal range. 

Likewise, in the low-neuroticism group, S allele frequency decreased with neuroticism only 

to a certain point, and then increased to approximately the level of the normal-neuroticism 

population. The subjects with the most extreme neuroticism scores did not fit the predicted 

pattern and deviated strongly from the linear trend that was observed between S alleles and 

the less extreme scores of neuroticism. This finding, if replicable in relation to impulsivity, is 

potentially important for two reasons. First, a simple analysis of variance, which is typically 

applied when the relation between two variables is expected to be linear, is poorly suited for 

handling nonlinear relationships. A potent, nonlinear trend might thus appear weak or 

nonexistent. Second, clinical populations are often characterized by extreme personality 

scores, and clinical significant impulsivity may not be associated with 5-HTTLPR in the 

same way as impulsivity in normal populations. 

None of the cited personality studies investigated the SNP in the L allele, thus 

separating the LA and LG alleles may alter results or explain diverging findings.  
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5-HTTLPR and pathological impulsivity 

Impaired impulse control is included as a general diagnostic criterion for personality 

disorders, and impulsivity is associated with borderline and antisocial personality disorders in 

particular. 5-HTTLPR short allele has been associated with borderline and antisocial 

personality disorder. Incidence of BPD and APD traits was significantly increased for 

subjects with SS genotype compared to LL subjects, while the difference between LL and SL 

subjects was not significant (Lyons-Ruth et al. 2007).  

Jacob et al. (2004) compared healthy control subjects with patients with personality 

disorders within clusters B and C, and found no difference in 5-HTTLPR genotype 

distributions between any of the three groups. Later several studies have replicated this with 

regard to borderline personality disorder in particular (Ni et al. 2006; Pascual et al. 2008; 

Tadić et al. 2009). In summary, subjects who fulfill diagnostic criteria for BPD show no 

association with 5-HTTLPR. The findings of Lyons-Ruth et al. appear to contrast this. 

However, an important difference between these studies is that while all the studies 

reporting negative findings simply categorized subjects according to fulfilled as opposed to 

not fulfilled diagnostic criteria, Lyons-Ruth et al. investigated the association between 

genotype and number of pathological personality traits, as defined in DSM-IV (American 

Psychiatric Association, 2000). This difference has at least two implications.  

First, it is unlikely that a single, common genetic polymorphism directly causes or 

strongly influences a complex phenotype such as a personality disorder. The difference in 

allelic frequency between a population which reaches diagnostic threshold, and a population 

of all subjects who do not reach diagnostic threshold, should be very small. Second, 

measuring borderline and antisocial personality traits should have increased variance of 

personality and made the study of Lyons-Ruth et al. more sensitive to detect an association 

than the studies categorizing subjects according to diagnosis.  

Attention-deficit hyperactivity disorder is highly associated with impulsivity, and 

deficits in both inhibitory motor control and attentional inhibition are regarded central and 

defining components of this disorder (American Psychiatric Association, 2000; Barkley, 

1999). Several studies have found that the L allele is associated with ADHD symptoms and 

diagnosis (Kent et al., 2002; Manor et al., 2001; Retz, Thome, Blocher, Baader, & Rössler, 

2002; Retz et al., 2008), but a large study found no association between 5-HTTLPR and 

ADHD (Xu et al. 2008). 

One could argue that ADHD is a category too broad to be used as an operational 

definition of impulsivity. Hyperkinetic disorder (HD) (World Health Organization, 1993) is a 
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disorder with a high degree of conceptual similarity with ADHD, but defined by a stricter set 

of diagnostic criteria, essentially requiring a higher degree of impairment. Seeger, Schloss 

and Schmidt (2001) found that, compared to controls, patients with hyperkinetic disorders 

and patients with HD and comorbid conduct disorder showed an enhanced expression of the 

LL genotype. Unfortunately, few studies have investigated 5-HTTLPR in hyperkinetic 

disorder. 

Overall then, the results are mixed regarding 5-HTTLPR in ADHD and HD, but the 

main trend in published studies seem to be that ADHD and HD are associated with the L 

allele. 

Associating a specific allelic variation at the genetic level with a given syndrome is 

difficult because of the complexity of syndromes. Most syndromes are the phenotypic result 

of multiple genotypes and multiple intermediate levels that affect each other and are affected 

by other biochemical and environmental influences, making the explained variance from each 

gene very small. Endophenotypes are conceptually simpler and etiologically closer to the 

genotype, which makes it easier to find the genes associated with them.  

A simple and straightforward way to apply the concept of inhibition to an 

understanding of dysfunctional impulsivity is to say that people who are not impulsive are 

relatively good at inhibiting action, while impulsive individuals have trouble inhibiting 

action. The stop signal task has been found to differentiate pathologically impulsive from 

healthy populations. Response inhibition has been proposed as a candidate endophenotype for 

a variety of disorders related to dysfunctional impulsivity including ADHD (Aron & 

Poldrack, 2005; Schachar, et al., 2005; Slaats-Willemse, Swaab-Barneveld, de Sonneville, 

van der Muelen, & Buitelaar, 2003), obsessive-compulsive disorder (Chamberlain et al., 

2007; Menzies et al., 2007), psychopathic personality (Newman, Widom, & Nathan, 1985), 

pathological gambling and alcohol dependence (Goudriaan, Oosterlaan, de Beurs, & van den 

Brink, 2006). Extended knowledge about the genes affecting response inhibition can thus 

prove valuable in the understanding and treatment of disorders associated with deficient 

response inhibition. 

 

Are effects of 5-HTTLPR variability different in men and women? 

On the basis of observed differences in incidence of a variety of psychological 

disorders among men and women it has been speculated that men and women respond 

differently to variation in 5-HT function. Examples of disorders that occur unevenly among 

male and female populations are depression, ADHD, borderline personality disorder, and 



   20 

antisocial personality disorder. Men show a higher prevalence of impulsive control disorders, 

substance use and antisocial personality disorder (Holden, 2005; Kessler et al., 2005). It has 

also been found that men and women respond differently to serotonin deficiency that is 

experimentally induced by tryptophan depletion. A review of tryptophan depletion studies 

suggested that females are generally more vulnerable to the reduced serotonin availability 

that occurs from tryptophan depletion (Bell, Hood, & Nutt, 2005). A recent study found that 

tryptophan depletion significantly affected mood in women but not in men. Men employed a 

more impulsive response style when depleted, while women became more cautious 

(Walderhaug et al., 2007). Assuming that 5-HTTLPR variability contribute to variation in the 

5-HT system, it follows that sex should be included as a variable in studies of 5-HTTLPR and 

behavior. 

A majority of studies on 5-HTTLPR and impulsivity have either only studied one of 

the sexes, or have mixed men and women without attending to the possible effects of this 

variable. Thus, these studies are not able to reveal potential effects of sex, and their results 

might be confounded by dissimilar effects between sexes. Other studies have found that 5-

HTTLPR interacts with sex in relation to psychometrically assessed impulsivity (Paaver et 

al., 2008), suicide attempts (Baca-Garcia et al., 2002), and vulnerability to development of 

depression (Sjöberg et al., 2006). These results suggest a sex difference in how 5-HTTLPR 

contributes to behavioral phenotypes (Baca-Garcia et al., 2002). To avoid confounding and to 

strengthen validity of the present study we will consider the possible mediation by sex on the 

association between 5-HTTLPR and impulsivity. 

 

5-HTTLPR and objective behavioral assessments of impulsivity 

To our knowledge only three studies have investigated the association between 5-

HTTLPR and objective behavioral measures of impulsivity. Paaver et al. (2007) found that 

the S allele was significantly associated with more impulsive response style and higher error 

rate on a visual comparison task in a sample of nearly four hundred adolescents. Clark et al. 

(2005) found no association between 5-HTTLPR and stop signal reaction time on the SST, 

nor with sensitivity to tryptophan depletion. Walderhaug et al. (2007) found no main effect of 

5-HTTLPR on response style as indicated by the β measure from CPT-IP. However, men and 

women responded differently to tryptophan depletion. While there was no significant 

difference between men and women in the placebo control condition, men became more 

impulsive and women became more cautious during depletion, supporting the assumption 

that impaired 5-HT function affects men and women differently.   



   21 

As is typical of the reviewed literature on 5-HTTLPR and various aspects of 

impulsivity, findings are mixed. However, very few studies have investigated the effect of 5-

HTTLPR on objective behavioral measures of impulsivity, and more research is needed. 

 

Purpose of the Study 

1. The primary aim of this study is to investigate the association between 5-HTTLPR and 

impulsivity in healthy adults with the genotyping procedure respecting the functional 

SNP in the L allele.  

2. A subordinate purpose of the study is to investigate possible sex dependent effects of 5-

HTTLPR variation on impulsivity. 
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METHOD 

 

Participants 

The data analyzed in this report were collected as part of the project “Cognitive control, 

mood, brain function and genetics in major depressive disorder and healthy people” 

(http://humancognition.org). The principal investigator of this project is Nils Inge Landrø. 

The project was approved by the Regional committee for research ethics. Participants for this 

project were recruited in several ways. Some were recruited by newspaper advertisement. 

Others were acquaintances of the researchers working on this project, such as friends or 

family members.  

 

Psychiatric Evaluation 

Medical history was recorded for all participants. A structured interview screening for axis I 

disorders and the SCID I module for affective disorders were administered to all subjects. 

Depending on screening results, other SCID I modules were administered. For all subjects 

included in the analysis the administration of screening and SCID I was audiotaped. Cases 

that were difficult to diagnose were discussed in a group with other testers and a diagnostic 

expert. In addition, a few random cases were selected and audiotapes reviewed in the research 

group to ensure diagnostic reliability. Personality disorders were assessed by SCID II.  

From an overall database of nearly two hundred subjects, all subjects who met criteria 

for any axis I or axis II disorder (current or previous) or ADHD were excluded. Subjects who 

reported current or previous alcohol or drug abuse were also excluded. After excluding 

additionally two subjects who reported head injuries that had led to more than thirty minutes 

uncounsciousness, our remaining dataset consisted of 87 healthy subjects.  

 

Stop Signal Task 

Stop signal tests is a widely used paradigm for measuring inhibitory control (Aron, Dowson, 

Sahakian & Robbins, 2003a; Clark, et al. 2005; Logan & Cowan, 1984; Logan, Cowan & 

Davis, 1984; Logan, Schachar & Tannock, 1997). We used the Stop Signal Task (SST) from 

the CANTABeclipseTM software battery of neuropsychological tests (Cambridge Cognition 

Limited, 2006). The stop signal task is based on the race model depicting controlled action 

programming/execution (go) and inhibition (stop) as separate cognitive processes. In this 

paradigm participants are programmed to a choice reaction to a stimulus, and inhibitory 

control is defined as the subject’s ability to inhibit the prepotent motor response.  
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SST consisted of two parts. In the first part, the subjects were introduced to a two-

button press pad and told to press the left hand button when they saw a left-pointing arrow, 

and the right hand button when they saw a right-pointing arrow. There was one initial block 

of 16 trials, which was for practice and introductory purpose only and was excluded from 

analysis. In the second part, the subjects were told to continue pressing the buttons on the 

press pad when they saw the arrows, as before, but if they heard an auditory signal (a beep), 

they should withhold their response and not press the button. They were informed that they 

would not always be able to stop, but sometimes they would, and were encouraged to try their 

best. This part consisted of five blocks, each containing 64 trials, of which 16 (25%) were 

“stop” trials. Between each block the computer supplied graphic and written feedback on the 

subject’s performance. Subjects who responded relatively slow were encouraged to try to 

respond faster, while subjects with low inhibition success rate were reminded to inhibit 

response when the beep appeared. The experimenter repeatedly informed all subjects that fast 

response and inhibition were both equally important.  

The test provides the known variables go signal reaction time (GoRT) and stop signal 

delay (SSD). All else being equal, GoRT is an indicator of the subject’s psychomotor speed, 

reported as the time (milliseconds) between onset of go stimulus and registered correct 

response. SSD is the delay between the stimulus onsets of go signal and stop signal. This 

delay is manipulated experimentally (by the computer software), with the implication of 

making inhibition easier (if delay is decreased) or more difficult (if delay is increased).  

Several ways of calculating stop signal reaction time have been proposed (Logan, 

Cowan & Davis, 1984; Logan, et al. 1997; Osman, Kornblum & Meyer, 1986). The easiest, 

and probably most accurate, is the method developed by Osman et al. (1986) and refined by 

Logan et al. (1997). This is based on a tracking procedure in which SSD changes after every 

stop signal trial, increasing by 50 ms if subjects inhibit and decreasing by 50 ms if they fail to 

inhibit. The tracking converges SSD on a delay where each subject successfully inhibited on 

50% of the stop trials. Based on this, three assumptions are made: 1) the race is now “won” 

50% of the times by the go and stop processes respectively, 2) at this particular delay the go- 

and the stop processes finishes at the same time, 3) which process happens to win on a given 

trial depends on random variation (Logan et al., 1997). Because subjects inhibit 50% of the 

time, mean GoRT must equal SSD pluss SSRT.  

 

Go-signal reaction time  =   Stop signal delay   +   Stop signal reaction time  

(GoRT)     (SSD)    (SSRT) 
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In stop-signal paradigms relying on this calculation, GoRT is obtained from simple go trials 

and SSD is manipulated by the researcher, and so the values of these variables are known. 

Subsequently SSRT is calculated by subtracting SSD from GoRT (Logan et al., 1997). 

 

GoRT   -   SSD   =   SSRT 

 

The advantage of this method is that it isolates inhibition processing time from noncongitive 

processes.  

 

The Continuous Performance Test - Identical Pairs 

The continuous performance test - identical pairs (CPT-IP) (Cornblatt et al., 1988) required 

the subjects to identify identical stimulus pairs within a continuously presented series of 

stimuli. Subjects were instructed to respond as quickly as possible whenever two identical 

stimuli were presented in a row. The subjects responded by lifting their finger from the 

computer mouse held in the dominant hand. Before the test started the test administrator let 

the participants practice with cards illustrating the principles of the test. In addition there was 

a practice session before the test started where the participants were presented three digit 

numbers and required to respond whenever two identical numbers were flashed on the 

computer screen in a row. The practice session consisted of 25 trials. 

The test consisted of one session of four digit numbers and one session of nonsense 

shapes. The sequence in which the sessions were presented was randomized across subjects. 

Each stimulus was presented for a duration of 50 ms. at a constant rate of one stimulus per 

second. Each session consisted of 150 trials out of which thirty in each mode were target 

trials. These required response, and correct responses were named “hits”. An equal number of 

catch trials that were similar, but not identical to target stimuli, were also presented in each 

mode. Response to catch trials is referred to as “false alarm”.  

Traditionally, proportion of correct responses (hits) has been considered a measure of 

vigilance, and missing targets has been interpreted as an indication of failure in vigilance or 

sustained attention (Cornblatt et al. 1988). Two other types of errors are also possible. 

Responses to stimuli that are not similar to the target are considered random errors. These 

errors occur at a very low rate in normal controls. These errors may be explained by diffuse 

perceptuo-motor dyscontrol (Cornblatt et al., 1988). Random errors have received relatively 

little attention by researchers. Responses to target-similar stimuli, called false alarms, have 
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traditionally been interpreted as reflecting impulsivity (Dougherty et al. 1999, 2003; 

Halperin, et al. 1991). Yet proportion of false alarms is not a pure measure of impulsivity 

because false responses are likely moderated by the individual’s ability to discriminate 

stimuli. 

Signal detection analysis has been used to combine hits and false alarms into 

measures of attentional capacity and response style, the d’ (d-prime) and β (beta) (Swets, 

Tanner, & Birdsall, 1961; Walderhaug et al. 2002). β is a measure of response bias, 

essentially weighting the rates of hits and false alarms. Since target and catch trials were 

equally frequent in the stimulus material, no response bias is indicated by β = 1. When β < 

1.0 the individual has a risk-taking response tendency that results in overresponding (yielding 

more hits and more false alarms). β > 1.0 indicates that the individual has a cautious response 

style and is biased towards underresponding. Increasingly, the d’ and β measures have been 

considered the best approach for extracting and describing the processes underlying sustained 

attention and response style (Conners, Epstein, Angold, & Klaric, 2002; Cornblatt et al., 

1988; Epstein et al., 2003; Keilp, Herrera, Stritzke, & Cornblatt, 1997; Walderhaug et al., 

2007).  

 

5-HTT Genotyping and Classification 

A blood sample was drawn from each participant in cooperation with the 

Psychopharmacological department at Diakonhjemmet Hospital. Blood samples were 

analyzed at the Clinical Chemical Department at Oslo University Hospital, Ullevål, for 

genotyping. The procedure for genotyping the triallelic 5-HTTLPR polymorphism located in 

the SLC6A4 gene, coding the serotonin transporter protein (HTT), was performed essentially 

as described in detail elsewhere (Gelernter, Kranzler & Cubells, 1997; Stein, Seedat & 

Gelernter, 2006).  

Briefly, genomic DNA was amplified by polymerase chain reaction (PCR) 

on a real-time fluorescence LightCycler instrument in a final volume of 20 µl using 

LightCycler Faststart DNA SYBR Green kit (Roche cat no 12239264001) with specific 

primers (0.5 uM) (Gelernter, Kranzler & Cubells, 1997) generating a long (L) 419 bp or a 

short (S) 375 bp PCR product depending on the presence of a 16 bp or a 14 bp sequence 

repeat, respectively, in the promoter region. Cycle conditions were the following: 10 min 

denaturation (95o C), 45 cycles at 95 o C (10 s.), 66 o C (10 s.) and 72 o C (0 s.). For the 

detection of the additional A/G single nucleotide polymorphism (SNP) that occurs within the 

L fragment (L allele), the PCR fragments were digested with 1 U MspI restriction enzyme 
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(New England Biolabs, Beverly, Massachusetts) for 2 hours at 37o C. The PCR fragments 

contain two obligatory MspI sites, whereas the A/G substitution creates an additional MspI 

site. Thus, a single PCR reaction and restriction digest followed by size fractioning on a gel 

provides classification of the S, LG and LA alleles. To ensure reliability of genotyping, 

extracted DNA and classification from Yale University School of Medicine, used in 

Walderhaug’s (2007) doctoral dissertation, were used as control samples. 

Since the discovery of the A/G SNP in the L allele, many studies adhere to the 

triallelic classification of genotypes described in Table 1 (Neumeister et al., 2006; Ni et al., 

2006; Parsey et al., 2006;  Praschak-Rieder et al., 2007; Walderhaug et al., 2007). This was 

the primary mode of genotype organization in our study. Accordingly, when referring to our 

own data, SS, LGS, and LGLG genotypes are simply called SS. LAS and LALG genotypes are 

referred to as SL. LALA genotypes are referred to as LL.  

 

Table 1. Categorization of 5-HTTLPR genotypes according to functional quality, and 

reclassified codes for easier reporting.  

Genotype Functional quality Reclassified 

SS, SLG, and LGLG homozygous low expressive group SS 

SLA and LGLA heterozygous low/high expressive group SL 

LALA homozygous high expressive group LL 
 

With respect to the various ways the 5-HTTLPR genotypes have been organized and 

analyzed in previous research, data from the SSRT and the CPT β and false alarms was 

reanalyzed with genotypes classified the “old way”, ignorant of the A/G single nucleotide 

polymorphism. A dominance model where low expressive alleles were considered dominant 

was also investigated with and without consideration of the SNP. These analyses most often 

made little difference compared to the primary analyses, so results from the secondary 

analyses are only reported in detail when they deviate notably from primary analyses. 

 

Statistical Analysis 

Statistical analyses were performed using SPSS 16.0 for Windows. Criterion for exclusion of 

extreme values was set to two standard deviations for dependent variables.  

One-way analysis of variance (ANOVA) was used to investigate main effects of 

genotype. Dependent variable from the stop signal task was SSRT. Proportion of successful 
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stops (PSS) was used as a control variable to ensure that the combination of instructions and 

computerized tracking procedure had succeeded in converging on a 50% inhibition success 

rate. Dependent variables from the CPT-IP are β and false alarm, both potential measures of 

impulsivity. Possibly loading on different modules (Cornblatt et al. 1988; Walderhaug et al. 

2002), the shapes and numbers conditions were analyzed separately. The d’ measure of CPT 

is an indicator of the subjects’ ability to discriminate between stimuli. Because a difference in 

this ability could complicate interpretation of results, between-groups comparisons of d’ were 

also conducted. Univariate ANOVA was performed to investigate possible genotype x sex 

interaction effects on SSRT, β and false alarms. All alpha levels were set to 0.05. When 

ANOVA indicated significance, post hoc tests with Bonferroni corrections were performed. 
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RESULTS 

 

Demographic and Psychometric Characteristics 

The sample consisted of 87 subjects. Mean age was 36.4 years (SD = 12.4), ranging from 19 

to 61 years. Mean years of education was 16.6 (SD = 2.5) years. Mean estimated verbal 

intelligence was 10.8 (SD = 3.23), mean estimated nonverbal intelligence 13.4 (SD = 3.04). 

Median values for Beck´s Depression Inventory and Beck´s Anxiety Inventory were both 1 

(BDI SD = 3.9; BAI SD = 3.1).  

 

Genotype Distributions 

The genotype frequency distribution within the sample was similar to distributions reported 

in comparable North-European samples (Hu et al., 2006), thus representativeness of the 

population was assumed. The genotype distribution was SS 18%, SLG 6%, LGLG, 1%, SLA 

39%, LGLA 13%, LALA 23%. 

 

SST 

Two subjects exceeded two standard deviations on stop signal reaction time and were 

excluded from analyses. Mean proportion of successful stops across the remaining 85 

subjects was 0.51 (SD = 0.09). This indicated that the task was performed as intended and 

that the theoretical assumptions, on which the stop signal reaction time was calculated, were 

met. 

Mean reaction time to the stop signal (Figure 2) implied a pattern where participants 

in the SS group had longer stop signal reaction time (SSRT) than those in the SL group. The 

participants in the LL group had the shortest SSRT. This implied that LA allele was 

associated with better performance on the inhibition task. The same trend seemed to be 

present for both male and female participants (Table 2).  

Levene’s test of homogeneity confirmed that groups were not significantly different in 

variance (p = .267), thus validating use of the F test. A one-way ANOVA was applied to 

investigate the effect of independent variable genotype on dependent variable SSRT. Results 

showed that the observed effect was significant (F (2, 82) = 3.264, p = .043). Post hoc tests 

with Bonferroni corrections revealed that this significance was primarily due to the LL 

group’s faster reaction time compared with the other two groups. Although none of the post 

hoc comparisons were significant, the LL group approached significance with the SS group 
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(p = .058), and showed a tendency do differ from SL group (p = .104). The Bonferroni post 

hoc indicated no difference between SS and SL (p = 1.000).  

Stop signal reaction time
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Figure 2: Mean stop signal reaction time for each of the groups according to genotype. 

Values on the vertical axis are milliseconds; black lines indicate the standard deviations. 

Genotype descriptions are classified according to the triallelic model.  

 

Mean age of participants was higher in the SS group (42.3 years) than in the SL group (34.8 

years) and the LL group (32.9 years). A oneway ANOVA confirmed that the age differences 

were significant (F(2,82) = 3.722, p = .028). Therefore a univariate ANCOVA for genotype 

and SSRT with age as a covariate was conducted. This resulted in a significant effect of age 

on SSRT (F(1,81) = 4.482, p = .037), and a non-significant effect of genotype on SSRT 

(F(2,81) = 2.373, p = .100).  

Stop signal reaction time data were reanalyzed with a different classification of 

genotypes using ANCOVAs with age as a covariate. When assuming dominance of the S 

allele and not considering the SNP the effect of genotype approached significance (F(1,82) = 

3.472, p = .066) and the effect of age was significant (F(1,82) = 5.054, p = .027).  

When considering the SNP and assuming a dominance of the S and LG alleles over 

LA, both genotype (F(1,82) = 4.796, p = .031) and age (F(1,82) = 4.949, p = .029) 

significantly predicted stop signal reaction times.  
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A subordinate aim was to investigate the possible effect of sex on the relationship 

between genotype and inhibition. Univariate ANOVA with genotype and sex as independent 

variables showed no effect of sex (F(1,79) = 0.146, p = .703), and no genotype x sex 

interaction (F (2,79) = 0.585, p = .560) on stop signal reaction time. 

 

Table 2: Stop signal reaction times. Means, standard deviations (SD) and number of subjects 

listed for each group. 

Genotype 
(reclassified) 

Total Male Female 

Mean (SD) N Mean (SD) N Mean (SD) N 

SS 186 (38) 21 188 (39) 7 186 (39) 14 
LS 180 (43) 44 175 (52) 16 183 (38) 28 
LL 157 (31) 20 167 (31) 8 151 (30) 12 

Total 176 (40) 85 176 (44) 31 176 (38) 54 
 

 

CPT-IP 

Data from the CPT-IP were analyzed with one-way and univariate ANOVAs. The dependent 

variables d’, false alarm and β were analyzed from the shapes and numbers modes of the test. 

CPT data from one subject was missing due to technical problems, and so the total number of 

subjects available for analysis was 86. The criterion of maximum two standard deviations 

was applied to each dependent variable, which resulted in the following number of exclusions 

for shapes and numbers, respectively: 3 and 2 (d’), 1 and 5 (false alarms), 2 and 2 (β). 

Levene’s tests confirmed that after exclusion of extreme scores, the assumption of 

homogeneity of variances was not violated for any of the analyses performed. 

One-way ANOVAs yielded no significant differences between groups on either d’ 

measures (shapes F(2,80) = 0.601, p = .551; numbers F(2,81) = 1.549, p = .219). Thus we had 

no reason to believe that the groups differed on their ability to discriminate stimuli.  

 

False alarms measures 

From the means data (Table 3) the difference in proportion of false alarms between 

groups appeared to be generally small, but slightly higher among the heterozygous 

individuals compared to SS and LL. The one-way ANOVA showed no significant effect of 

genotype on false alarms in the shapes (F(2,82) = 0.904, p = 0.409) or the numbers (F(2,78) = 

1.699, p= 0.190) conditions.  
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In the reanalysis not considering the SNP, results approached significance on the false 

alarms numbers condition (F(2,78) = 3.015, p = .055). With this classification, SL subjects 

had the largest proportion of false alarms (0.24), followed by LL (0.19) and SS (0.16).  

 

Table 3: β and false alarms. Group means, standard deviations (SD) and number of subjects 

(N). 

Sex 

Genotype 
(reclassified) 

β False alarms 

shapes numbers shapes numbers 

Mean (SD) N Mean (SD) N Mean (SD) N Mean (SD) N 

Total SS 1.61 (0.87) 21 1.08 (0.66) 21 0.16 (.12) 21 0.18 (.11) 20 
LS 1.36 (0.98) 43 0.99 (0.54) 42 0.20 (.12) 43 0.23 (.12) 42 
LL 1.19 (0.73) 20 0.90 (0.41) 21 0.17 (.13) 21 0.19 (.08) 19 

Total 1.39 (0.90) 84 0.99 (0.54) 84 0.18 (.12) 85 0.21 (.11) 81 

Male SS 2.09 (1.01) 6 0.75 (0.54) 6 0.14 (.16) 7 0.23 (.12) 7 
LS 1.35 (0.93) 15 0.90 (0.49) 14 0.19 (.09) 15 0.25 (.15) 15 
LL 1.25 (1.06) 7 1.03 (0.40) 8 0.14 (.13) 8 0.18 (.09) 7 

Total 1.48 (1.00) 28 0.90 (0.47) 28 0.16 (.12) 30 0.23 (.13) 29 

Female SS 1.43 (0.77) 15 1.21 (0.67) 15 0.16 (.11) 14 0.16 (.10) 13 
LS 1.37 (1.03) 28 1.03 (0.57) 28 0.20 (.13) 28 0.22 (.10) 27 
LL 1.16 (0.53) 13 0.83 (0.41) 13 0.19 (.12) 13 0.20 (.08) 12 

Total 1.34 (0.86) 56 1.03 (0.57) 56 0.19 (.12) 55 0.20 (.10) 52 

 

β measures 

When visually examining the descriptive data of the β values for both sexes combined 

(Table 3) we observed a linear trend between the three groups, in the direction of highest β 

for SS subjects and lowest β for LL subjects. This was evident for both the shapes and the 

numbers conditions, indicating that LL subjects had a more impulsive response style than SS 

subjects. The between-groups difference was larger in the shapes condition, but here the 

standard deviations were also larger. A one-way ANOVA was performed and showed no 

statistically significant effects for either shapes (F(2,81) = 1.187, p = .310) or numbers 

(F(2,81) = .558, p = .574). The main reason for this may be the high within-group variance 

reflected by the high SDs.  

Although plots indicate an interaction effect of sex and genotype in the numbers 

condition (Figure 3), this effect was not significant according to univariate ANOVA (F(2,78) 
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= 1.724, p = .185). No interaction effect was found in the shapes condition, (F(2,78) = 0.874, 

p = 421). All β reanalyses of genotype main effects and of genotype x sex interactions 

resulted in higher p-values (less significant) compared to primary analysis. 
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Figure 3: Graphic presentation of β values for each genotype group, classified according to 

the triallelic model, in the shapes and numbers conditions. Graphs are separated for men and 

women. 
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DISCUSSION 

 

The main intention of the study was to investigate the relationship between the serotonin 

transporter polymorphism and impulsivity in healthy individuals. The available research 

literature did not allow clear predictions regarding whether an effect of genotype on 

inhibition and response style should be expected. Very few studies have applied objective 

laboratory measures to investigate the serotonin transporter polymorphism (5-HTTLPR) in 

relation to impulsivity. Based on this, we aimed to further examine the association between 

the serotonin transporter polymorphism and two objective behavioral measures of 

impulsivity, the stop signal task and the continuous performance test.  

 

Effect of 5-HTTLPR on Inhibition 

The primary results showed a significant effect of genotype on inhibition. LL was found to be 

associated with faster stop signal reaction time in the stop signal task, indicating more 

efficient inhibition. Subjects carrying the low expressive alleles (S and LG) were slower to 

complete the process of inhibiting a preprogrammed motor response, making them less 

efficient inhibitors.  

Examination of descriptive statistics revealed a significant age difference between the 

SS group and the two other groups by almost 10 years. Older adults have been found to 

perform poorer than younger on tasks involving inhibition (Kramer, Humphrey, Larish, 

Logan, & Strayer 1994), thus it is possible that age may have contributed to the differences in 

stop signal reaction time. The results showed a significant effect of age on SSRT, and the 

effect of genotype was insignificant. According to these results the difference between our 

groups is more strongly related to age than to genotype.  

Different distribution of genotypes in the population according to age seems unlikely. 

There was no obvious aspect of the sampling criteria that could explain the age difference 

between groups in the sample, thus we assume age difference between groups is a product of 

mere coincidence. Compared to the homozygous SS group and the LL group the 

heterozygous SL group achieved an intermediate stop signal reaction time closely resembling 

the SS group, suggesting a relatively smaller impact of the LA allele in heterozygous carriers. 

This is in line with results reported by Lesch et al. (1996) suggesting a functional dominance 

of the S allele over the L allele, and justifies collapsing SS and SL groups in analysis. In the 

literature of 5-HTTLPR and impulsivity there is no consensus about how to classify the 

different genotypes. Several researchers have applied the dominance model without 
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consideration of the SNP. When data were reanalyzed adhering to this model and controlled 

for age, genotype approached significance.  

 A problem with classifying genotypes without considering the SNP is that the LL 

group comprises both LA and LG alleles (LALA, LALG and LGLG genotypes). The stop signal 

reaction time of the LL group is here confounded by low-expressive LG alleles functionally 

similar to S alleles (Hu et al., 2006), possibly reducing the observed difference between 

homozygous SS and LL groups and concealing the potential effect of genotype on inhibition. 

The triallelic model omits this problem by limiting the LL group to LALA genotypes. The 

triallelic model is therefore preferable in studies of the effect of 5-HTTLPR on behavior. 

When analyzed with the triallelic dominance model, both genotype and age were 

significantly associated with inhibition. A possible limitation of this model is that LGLA 

genotypes are classified as low-expressive, even though the dominance between LG and LA 

alleles remains uncertain. 

In a comparable study Clark et al. (2005) found no association between 5-HTTLPR 

and inhibition. An important difference between Clark et al.’s study and the present study is 

the classification of genotypes. Clark et al. used the biallelic model, not considering the SNP 

in the L allele. The functionality of the LG allele may have confounded the results and could 

explain why Clark et al. failed to detect an association. Another important limitation was the 

relatively small number of participants (n=42) tested by Clark et al. Assuming a small effect 

size of genetic variance on behavior, a larger sample may be required to detect a significant 

effect. The doubled sample size and the triallelic classification of genotypes may have 

contributed to the detection of an existing effect of 5-HTTLPR genotype on inhibition in our 

study.   

A subordinate purpose of our study was to investigate a possible genotype by sex 

interaction effect on impulsivity. The results from the stop signal task indicated no such 

interaction.  

 

5-HTTLPR and Response Style 

The results from CPT showed no significant association between the polymorphism and false 

alarms or β. Our results suggest that 5-HTTLPR is not related to impulsivity measured by the 

CPT. However, CPT is similar to the visual comparison task applied by Paaver et al. (2007) 

who found a significant association between impulsivity and 5-HTTLPR. They applied a test 

where participants were instructed to respond to whether two complex visual figures were 

identical or not, and calculated a measure of impulsivity based on speed accuracy tradeoff. 
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Subjects with shorter response time and higher error rates were regarded as more impulsive. 

Even though this test is similar to the CPT in respect of detecting identical stimuli, the task in 

Paaver et al. lacks the element of rapid response. This element provokes uncertainty in the 

CPT test due to incomplete processing, and how participants handle this uncertainty seems to 

be a conceptually different phenomenon from the speed accuracy tradeoff. Perhaps the CPT 

and the visual comparison task tap different aspects of impulsivity. This may explain the 

diverging results between this study and Paaver et al.’s.  

No significant genotype x sex interaction was found on the CPT variables. However, 

graphic display of β means indicated an opposite pattern for men and women in the numbers 

condition. Whereas S allele was associated with impulsive response style in men (β lower 

than 1), S allele in women was associated with cautious response style (β higher than 1). 

Walderhaug et al. (2007) found the same sex-dependent effects on response style by 

experimentally induced 5-HT deprivation. They suggested that different function in the 

serotonin system for men and women may explain the discrepancy in distribution of 

psychiatric disorders between the sexes. Men have a higher prevalence of disorders related to 

impulse control and women a higher prevalence of mood and anxiety disorders (Holden, 

2005; Kessler et al., 2005). The pattern observed in our data on the numbers condition 

suggests that the same effect could be related to 5-HTTLPR function in the serotonin system.  

Means varied around 1 in the β numbers condition. In contrast, values exceeded 1 for 

all groups in the β shapes condition, reflecting cautious response styles independent of sex or 

genotype. A possible explanation for the high β shapes values is that the task was too difficult 

and led subjects to careful responding. In comparison, it appears that the degree of difficulty 

in the numbers condition was more apt to capture differences in response style.  

 

General Discussion 

All subjects were thoroughly evaluated for mental disorders, and all participants fulfilling any 

current or previous mental disorder by SCID I and II criteria were excluded. Additionally, 

Beck Depression Inventory scores were available for all subjects. A common cut-off criteria 

for healthy subjects in research is exclusion of BDI score larger than 10. The reason for 

excluding subjects who show symptoms of depression is that depression is significantly and 

robustly associated with impairment in a variety of cognitive abilities (Landrø & Andersson, 

2008), which makes depression a confounding element when studying cognitive 

performance. Diagnostic criteria on the SCID I module for affective disorders were relied on 

as exclusion criteria in relation to depression. Five of the 87 healthy subjects reached BDI 
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scores larger than 10 (scores 11, 11, 13, 16 and 16) which indicates that they had experienced 

some symptoms of depression during the last two weeks before testing. These subjects were 

included as they did not fulfill diagnostic criteria on the SCID I module for affective 

disorders. Informal investigation of data indicated that exclusion of these five subjects would 

have made very little impact on mean stop signal reaction times, thus depressive symptoms 

were not included as a covariate in our analysis.  

An important question is whether our sampling criteria, excluding all subjects with 

present or previous psychiatric disorders and drug abuse, could reduce the probability of 

detecting a true association, thus decreasing the validity. Cannon and Keller (2006) argue that 

it is not necessary to screen for disorders to study the genetics of endophenotypes because 

endophenotypes should vary continuously in the general population. The endophenotype 

should vary with level of genetic risk independent of the individual’s symptoms or diagnosis.  

Due to the several intermediate levels of influence between the genetic level and the 

cognitive processing level, it should be expected that any single genetic variation can only 

explain a modest proportion of variance in an endophenotype on the level of cognitive 

processing. Accordingly, multiple other determinants will be needed to explain the large part 

of variance in our targeted endophenotype. Perhaps the exclusion according to strict clinical 

criteria leaves us with subjects who possess such protective qualities in other genotypes that 

the effect of 5-HTTLPR on inhibitory control and response style appears less potent than it is 

in the general population. 

An advantage of neuropsychological measures is that they are not vulnerable to 

subjective judgment or evaluation of behavior, such as may often be the case when subjects 

answer questionnaires. The tests used were also computerized to reduce experimenter bias. 

The theoretical backgrounds for SST and CPT suggest that although they have both been 

used to assess impulsivity, they measure different aspects. In the stop signal task impulsivity 

is operationalized as stop signal reaction time. In line with Logan’s (1994; Logan et al., 1997) 

race model, inhibition of response occurs when the inhibition process is faster than the go 

process. These processes are seen as parallel processes. Other researchers have argued that 

response inhibition involves more than one process and that the stop signal task measures a 

global inhibition process. The global inhibition process may be involved in all inhibition and 

may be moderated by an additional disinhibitory or selective control process when selective 

inhibition is required (Aron & Verbruggen, 2008; Coxon et al., 2007; De Jong et al., 1990). 

In an executive function model inhibition is one of three postulated functions, the others 

being mental set shifting, and information updating and monitoring. These functions may be 
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considered separately, though they also seem to work as a unity. Inhibition has been proposed 

to be both a separate function, and a global inhibitory function, moderating other executive 

functions (Miyake et al., 2000).  Results implying both a global and a selective inhibition 

process seem to support this model. Yet inhibition may not only stop preprogrammed 

responses but also responses that are not preprogrammed. One example is in a choice 

situation where two or more responses are possible and the individual has to choose one of 

the response alternatives. Inhibition seems to involve various processes and have several 

important functions in cognition. The stop signal task is a measure that captures an essential 

element of the phenomenon.  

Whereas the stop signal task has been developed from a theory of cognitive processes, 

the continuous performance test has been evolved from signal detection theory, traditionally 

more concerned with perception. In the CPT the rapid response is an important element, 

requiring a decision of whether two stimuli are equal or not, when stimuli processing is 

incomplete. How subjects react to this uncertainty is assumed to reflect impulsive or cautious 

response style. Ability and willingness to decide and act rapidly or preference for careful 

consideration, planning and security are manifested as tendencies to over- or under respond. 

Response style is complex because it involves several processes. Planning, rapid decision 

making and memory are processes involved in response style. These are also processes 

moderated by executive functions. Thus variety in executive functions may influence 

response style. The response style measure is a broader concept than the response inhibition 

measure and it may be easier to detect an association between a genotype and a more 

narrowly defined concept.    

The results suggest that the S and LG alleles of the 5-HTTLPR are associated with 

slower and less efficient response inhibition compared to the LA allele. However, a common 

issue in correlation studies is the lack of control over extraneous variables that may have 

influenced the observed association. The effect of 5-HTTLPR on impulsivity has been found 

to interact with blood platelet monoamine oxidase (MAO) activity (Paaver et al., 2007) and 

with the MAOA gene polymorphism (Passamonti et al., 2008). A variable number tandem 

repeat region (VNTR) of the 5-HTT gene, and several genes related to the dopamine system 

have also been associated with impulsivity (Aluja, Garcia, Blanch, De Lorenzo, & Fibla, 

2009; Aron & Poldrack, 2005; Manuck et al., 2000). This study was limited to investigating 

the effect of 5-HTTLPR and did not explore these interactions. Thus it is possible that 5-

HTTLPR is also associated with inhibition through interaction with other genes. 
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During testing some participants reported experiencing both the stop signal task and 

the continuous performance test as very difficult. Although testers were instructed to 

encourage subjects and validate experience of frustration and annoyance, test experience may 

have led some subjects to sabotage the test by responding randomly. Others may have given 

up trying to respond correctly thus responded randomly or not at all. The stop signal task was 

designed to adjust the stop signal delay during the first half of the test to a point where the 

subject was able to inhibit correctly in 50% of the trials. This should have reduced frustration 

to some extent because the subject experienced a proportion of successful responses. 

Frustration and annoyance may have been greater in the continuous performance test because 

level of difficulty was not adjusted to subjects’ performance in this task. On the other hand, 

Bowman, Evans and Turnbull (2005) found that frustration did not affect cognitive 

behavioral performance. Outliers in our data were presumed to reflect random or erroneous 

task completion and were therefore excluded from statistical analysis to prevent confounding 

of the results. Although outliers were excluded from our statistical analyses to reduce error 

variance, we cannot be sure that experience of the test did not influence subjects’ 

performance. To enable control over possible effects of frustration systematic observations of 

how the tests were experienced could have been registered.  

A limitation in the analysis of our data is the lack of statistical power due to small 

group sizes when data were classified according to both genotype and sex. The validity of 

observations in small groups is generally more compromised by random errors. The β data 

were characterized by small groups and large within-group variances, possibly confounding a 

between-group difference. Even though an effect of genotype on response style was not 

found, the lack of statistical power in combination with few comparable studies necessitate 

further investigation to reject the hypothesis of an effect of the serotonin transporter 

polymorphism on response style. The sample size does not seem to have limited the SST 

results to the same extent, however a larger sample would increase statistical power and 

could have revealed nuances in stop signal reaction time between SL and SS groups.  

The stop signal task has been found to differentiate pathological impulsive from 

healthy populations. Poorer inhibitory control, reflected by prolonged stop signal reaction 

time, has been found in children with ADHD (Lijffijt, Kenemans, Verbaten, & Engeland, 

2005), various forms of substance abuse (Goudriaan et al., 2006; Fillmore & Rush, 2002; 

Monterosso, Aron, Cordova, Xu & London, 2005) and in people with obsessive compulsive 

disorder (Chamberlain, Fineberg, Blackwell, Robbins, & Sahakian, 2006) and Tourette’s 

syndrome (Goudriaan et al., 2006). In a longitudinal study, impaired response inhibition in 
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adolescence was found to predict problem drinking and drug use independent of IQ and 

ADHD (Nigg et al. 2006), indicating that impaired response inhibition constitutes a causal 

risk factor and is not just a result of alcohol and drug abuse. Impaired inhibitory control has 

also been found in siblings of children with ADHD, implying that this characteristic 

aggregates in families and may be associated with a genetic vulnerability (Schachar et al. 

2005). Based on these findings response inhibition has been proposed an endophenotype for 

various disorders related to impaired impulse control. The results of the present study suggest 

that S and LG alleles constitute vulnerabilities for impaired inhibition, forming a diathesis in 

disorders related to impaired impulse control. 

Healthy female adults, homozygote for the short allele, have been found to be biased 

towards negative information. They were more sensitive to sad faces than to other facial 

expressions when tested within the context of a working memory task (Landrø et al., 2009). 

This seems to support a cognitive vulnerability model for development of depression, where 

inability to fully inhibit previously relevant negative information lead to prolonged activation 

of negative information in working memory, resulting in sustained negative affect and 

recurring negative thoughts.  

 Attentional bias for negative information has been found in individuals with clinical 

depression and has been explained by difficulty in disengaging from negative information 

once it has become the focus of the individual’s attention (Gotlib et al., 2004). Thus 

depressed individuals seem to have impaired inhibition for negative information. Poorer 

inhibitory control in individuals with short allele in combination with bias towards negative 

information found in female SS carriers may render individuals with a short allele more 

vulnerable for depression. In line with this hypothesis short allele has been associated with 

increased risk for development of depression in people with experience of stressful life events 

(Caspi et al., 2003). It is noteworthy that even after excluding depressed individuals by 

diagnostic criteria, we found relatively higher depression scores, based on BDI, in the groups 

with the S allele. 

The endophenotype model (Cannon & Keller, 2006) is a tool for clearer 

understanding of intermediate processes between genotypes and syndromes. This model is 

useful when investigating the association between the different alleles of the serotonin 

transporter polymorphism and impulsivity. The results of the present study indicate that short 

allele is associated with poorer inhibition. According to the endophenotype model the short 

allele may contribute to depression and impulse control disorders by mediating central 

inhibitory control. 
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Future research should investigate the association between the serotonin transporter 

polymorphism and inhibition of negative emotional stimuli. Including individuals with 

clinical depression may increase understanding of how impaired function in inhibitory 

control influences cognitive processing in normal and depressed people. In the present study, 

no significant interaction between genotype and sex was found. Bias towards negative stimuli 

found in SS women, and higher prevalence of women suffering from mood and anxiety 

disorders, still suggest that possible sex differences in serotonin functioning should be further 

explored.  

 

Concluding Remarks 

The present study links the serotonin transporter polymorphism to inhibitory control. Short 

allele was associated with poorer performance on a theoretically and empirically validated 

measure of inhibition. 

Inhibition is a central component of executive functions and impairment in these 

functions are associated with various psychological disorders. Through its effect on 

inhibition, the short allele may constitute a genetic vulnerability for impulse control disorders 

and depression. 
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