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Preface

If the answer is to be simple, the assumptions must be heroic.
P. Samuelson, 1976

Cod from the Barents Sea, which is shared with Russia, is of cultural and economic impor-
tance to Norway. How should the resource be harvested to maximize its economic gain?
Which implications has a non-cooperative exploitation from the two bordering nations?
To answer these questions, simulations of a bio-economic model have been carried out.
The optimal harvesting regime is contrasted to the outcome of current management and
of competing exploitation.

The model explicitly considers the age-structure of the cod stock and it takes into
account that different gear types impact the stock development differently. The greater
realism comes at the expense of simple analytic answers. Consequently, the solutions to
the optimizations have been obtained numerically employing the Solver from Frontline
Systems. The age-structured modeling reveals that the mesh size of trawler nets should
be considerably increased from today’s 135 mm to around 200 mm. This would harbor the
younger fish from harvesting pressure and the natural growth potential of the fish could be
fully utilized. The resulting Net-Present-Value would then be more than twice the return
from a continuation of the current harvesting pattern.

The strategic situation in the Barents Sea is modeled as a non-cooperative dynamic
game. A procedure has been created which finds stable open-loop Nash Equilibria by
iteratively updating best responses. However, no Nash-Equilibrium, but a limit cycle of
pulse strategies emerged. The players find it optimal to always fish with great effort one
period before their opponent does. This implies a stalemate similar to the commonly known
game “rock-scissors-paper.” On the contrary, a stable Nash-Equilibrium was found when
the the agent’s cost function was made quadratic. This and the average effort path of limit
cycle result in a exploitation pattern which bears close resemblance to today’s regime.

The simulations suggest that the sub-optimality of the current management is mainly
caused by the strategic situation. The two nations fail to adequately account for the
positive stock externality. Increasing the minimum mesh size would be a policy with a
great impact for a better joint management of this renewable resource.

This thesis was part of a larger project on the bio-economic aspects of the North-East-
Arctic cod stock at the Centre for Ecological and Evolutionary Synthesis (CEES) through
which I was granted a stipend. I would like to express my gratitude towards Nils-Christian
Stenseth and the team of researchers at the centre, in particular Anne Maria Eikeset, Gjert
Dingsør, and Dag Hjermann. I greatly benefited from the possibility to write and present
my thesis in such an inspiring environment. Moreover, I am indebted to my fellow-students
Svenn Jensen, Yuanyuan Cai, and Qiu Zhang for inspiring discussions. Probably the most
important persons for the completion of this thesis was my supervisor Eric Nævdal. His
enthusiasm for research was infective and his critique was motivating. I would like to thank
him for his guidance and counsel during and beyond his supervision. Most of all, I would
like to thank my own little family for their love and support.
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Tragedy in the Barents Sea?

Optimal and Non-cooperative Exploitation of a Shared

Renewable Resource: The North-East Arctic Cod Fishery



Chapter 1

Introduction and Problem Statement

The Barents Sea is a rich and productive ecosystem, but it is also quite vulnerable. The

cod stock of the Barents Sea, the North-East Arctic Cod (Gadus morhua) is by far the

most important resource of this ocean. The fish stock is shared by the two adjacent

states Norway and Russia. The fundamental problem is that no fish can be caught twice.

Whatever the fishermen of one country catch, cannot be caught by fishermen of the other

country. Moreover, whatever one fisherman leaves in the ocean as an investment for future

harvesting, may be fished by others in the meantime. The implications of this biological and

institutional setup are ambiguous. The cod stock is one of the world’s largest populations

of Atlantic cod and it is considered to be within safe biological limits (ICES, 2006). A

Joint Norwegian-Russian Fisheries Commission manages the exploitation of the resource

by agreeing on a Total Allowable Catch (TAC) quota. However, scientific analysis has

repeatedly shown that the harvesting pattern is “hugely inefficient” (Arnason et al., 2004,

p.531). How would an optimal management regime look like? Which consequences has a

non-cooperative exploitation of the resource?

The individual fish show a strong growth potential which should be addressed by us-

ing age-structured/multicohort models. The fishery is exploited by different fleets whose

gear impact on the stock composition differently. Managers could therefore make serious

mistakes if such interrelations are not regarded (Hannesson, 1993). Moreover, it is difficult

to make international agreements enforceable in fisheries. This thesis presents a detailed

model of the resource which has been simulated to contrast three scenarios:

1. A continuation of the current harvesting pattern.

2. Optimal management of a sole owner who maximizes economic gain.

3. The regime of an exploitation from two agents unable to make binding agreements.
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The work aims to contribute to a better understanding of the management of this fishery

by explicitly simulating the use of different fleets whose gear selectivity is a choice variable.

The solutions are obtained numerically on a spreadsheet. Furthermore, a procedure has

been designed which is able to find stable open-loop Nash Equilibria. The thesis attempts

to extend the existing literature as it presents an application of a dynamic game to age-

structured model of shared renewable resources.

It is shown that competing exploitation does not allow full utilization of the cod stock’s

natural growth potential. The economic gains, which could be realized if the resource

is managed optimally, are squandered. By significantly enlarging the mesh size of trawl

nets and slightly reducing effort, the Net Present Value derived from optimal management

could be more than doubled vis-à-vis the present harvesting regime. Alternatively, if gear

selectivity is fixed at the current level, optimality requires a pulse fishing strategy. This is

a common result revealed by multicohort modeling.

The strong cohort growth and the late age at which cod achieves its highest biovalue

are also the reasons that non-cooperative exploitation does not lead to a stable situation

for a linear specification of the cost function. At the current mesh size, the players find

it optimal to let the stock grow until it has reached a sufficiently high value and then fish

with high effort. Consequently, in the game, the players would like to bring in the harvest

in the period before their opponent plans his fishing pulse. This produces a stalemate:

No agent would want reveal its plan of action as the opponent could adapt its strategy

accordingly. Allowing the mesh size to change does not alter this result as the players

choose make the net as tight as possible at each pulse. The solution procedure therefore

returns a cyclical sequence of best responses as in the commonly known game “rock-scissors-

paper.” The equal-sharing rule of the Joint Commission may provide an intuitive solution

to the emerging dilemma. For a quadratic cost function the algorithm converges to a

Nash-Equilibrium. Because the application of high fishing effort has become exceedingly

costly, the agents choose to harvest steadily in this situation. The resulting equilibrium

paths, as well as the average values of the limit cycle from the linear specification, yield

a harvesting pattern which is close to current exploitation regime. This indicates that

domestic management measures are reasonably adequate, and it suggests the conclusion

that the international strategic situation is responsible for the sub-optimality of today’s

harvesting regime.

The remainder of this chapter introduces the basic concepts of the problem and the

defining biological, economic, and political aspects of the situation in the Barents Sea. The
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thesis is then placed in the context of the main strands of research on this topic. In the

second chapter, the functions which make up the bio-economic model are derived. The

third chapter presents the formal foundations of the optimizations and it describes the

solution procedure which is applied to find the Nash Equilibria. The results are presented

in the fourth chapter. To begin with, general observations with respect to the development

of one cohort and with respect to the age-structured impact of gear selectivity are pointed

out. Then the outcome of the sole-owner optimization and the game are shown for the

linear and quadratic specification of the cost function. Chapter 5 concludes and discusses

policy implications. An appendix gives additional information on the biological model, on

the econometric work and on the employed spreadsheets.

1.1 Fisheries as Common Property Resources

Resources are defined as a stock or supply of money, materials, and other assets that can be

drawn on by a person or organization in order to support itself or become wealthier. Stock

and flow resources are distinguished. For any given point in time, stock resources such

as mineral deposits, land, or animal populations, exist in limited quantities. This implies

rivalry: One person’s consumption diminishes the amount of the good available for others

to consume. Moreover, resource use today has an implication for the availability tomorrow

(Perman et al., 2003). Neither of the above is true for flow resources such as air or solar

radiation. Stock resources are further divided in renewable and non-renewable resources.

Whereas the amount of the latter is fixed and given (at least in human time-scales), do

renewable resources replenish themselves. Their capacity of reproduction softens the static

rivalry. The amount of the resource may be indefinite over time, even though it is fixed

and therefore limited at any given point in time. Nevertheless, this potential of re-growth

is often stock-dependant: if the stock has been depleted too far, its reproduction may be

irreversibly damaged.

Resources are a ‘gift of nature’ as expressed by the term ‘asset’. That is, they occur

naturally and their use generates rents. These can be appropriated and – if efficiently man-

aged – maximized and distributed over time. However, it is often impossible to establish

enforceable property rights, other than to the extracted units. Resources of this kind are

then termed common property resources.

Hollick and Cooper (1997) distinguish three approaches to manage common property

resources. First, partition relates to the establishment or allocation of property rights.
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This is mostly feasible only within the jurisdiction of a country. Second, joint management,

applies to two or more independent parties. This is often politically difficult as it requires

the will to cede sovereignty and to engage in cooperation. Third, laissez-faire or open access

characterizes an institutional setup where no effective measures to restrict the overall or

individual consumption are taken.

In his article “The tragedy of the commons,” Hardin (1968) gave a vivid metaphor for

the problem of open access to common property resources. The argumentation goes that a

rational agent – given the behavior of the other participants – would want to increase his

consumption of the resource. The benefit will accrue to him alone while the cost will have

to be shared by all. Since all participants have the same incentives, the inevitable result

is overuse. Several approaches have been taken to answer the question if and under which

circumstances this characterization applies to fisheries. Gordon (1954) was the first to link

the dissipation of rents in many fisheries to the common property nature of the resource.

Scott (1955) contrasts the open access situation to that of a sole owner who optimally

manages the resource. These two classical papers lay the foundation of a large literature

on this issue. The standard reference in the field is Clark (1990) who covers almost all

aspects of fishery economics. Good overviews of the subject can be found in Hannesson

(1993) or in textbooks on resource economics (e.g. Conrad, 1999; Perman et al., 2003).

A recent book on advances in fisheries economics has been edited by Bjørndal, Arnason,

Gordon, and Sumaila (2007).

In between the complete dissipation of rents under open access with atomistic agents

and the first-best outcome obtainable by partition of the resource lie many nuanced sce-

narios of joint management. Clark (1980) and Levhari and Mirman (1980) were the first to

apply game theory to situations with a restricted number of agents. Levhari and Mirman

(1980) adopted a dynamic Cournot perspective. Their discrete-time model inspired the

analysis of this work. Clark (1980) developed a continuous time model. He showed that

the competition between as few as two agents (provided they are sufficiently large) may

give rise to the same outcome as open access: the complete dissipation of rents. Dutta

and Sundaram (1993) investigate the differences which result when one moves from the

first-best to a strategic situation. They show that even very well behaved models may lead

to complex and surprising non-cooperative dynamics. A review of game-theoretic models

of fishing can be found in Sumaila (1999). All in all, most papers deal with the problem

of non-cooperative resource exploitation on a theoretical level.

In fact, there appears to be a wide gap between the implications of these models and
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the reality of wide-spread cooperation in the commons (Ostrom, 2000). One way to find an

explanation of that observation is to resort to cooperative game theory (Meinhardt, 2002).

Munro’s (1979) seminal paper applied Nash’s bargaining theory to the case of transbound-

ary fish stocks. However, as Kaitala (1985, p.15) remarks with respect to Munro’s article:

“questions of the equilibrium properties and time consistency of the agreements are not dis-

cussed.” Vislie (1987) comments on exactly this issue. Juridical bindingness of international

agreements is undoubtedly a strong assumption. Vislie therefore proposes a self-enforcing

solution: dynamic consistency is achieved by taking into account that in the last round of

the game, the remaining resource is divided equally between the two countries.

Another approach is proposed by critics of neo-classical theory. They argue that the

conditions which are put up for analytical purposes “are taken for necessary theoretical

presumptions or even empirical facts” (Hønneland, 1999, p.197) Indeed, it is not the case

that humans act short-sighted or purely self-interested. Many, if not most people are willing

to provide public goods, to invest in social agreements, and are able to overcome collective

action problems. Rettig (1995, p.445) argues that the popular picture of the tragedy of

the commons “omits the efforts of people to engage in cooperation” and that the simplistic

conception of a single owner “omits the need to develop cooperation among the people in-

volved.” Ostrom (1990) presents a series of empirical examples of successfully self-organized

common property resource regimes. Sethi and Somanthan (1996) develop an evolutionary

game theoretic model that explains the emergence and stability of such regimes. Ostrom

(2000) claims that evolutionary theories are best suited to explain the findings from experi-

ments and empirical observations that many commons are not over-exploited but managed

by a system of self-governance. Indeed, the avoidance of the assumption of purely ratio-

nal behavior is an attractive property of evolutionary models. However, in the present

case the agents represent nations and the assumption of rationality is therewith much less

problematic (Barrett, 2003). Moreover, this strand of literature is mostly concerned with

local commons, while the cod stock in the Barents Sea is of larger nature. It is a global

common in the sense of Hollick and Cooper (1997) since it is large enough that a unifying

sense of community is missing and there is no overarching enforcement authority. Instead

two nations fish on the same stock.

Finally, there are several papers that analyze how the optimal outcome could be sus-

tained by joint management. A common approach is to resort to the use of threat strategies.

Hannesson (1997) for example formulates the problem as a repeated game of infinite du-

ration. He shows that the outcome critically depends on the number of agents. Kaitala
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(1985) discusses the credibility of threats. Finally, Polasky, Tarui, Ellis and Mason (2006)

develop a two part punishment scheme which can support the first-best cooperative out-

come as a time-consistent equilibrium. Their model is therefore able to “reconcile the

conclusions of an apparently conflicting social sciences literature regarding the tragedy of

the commons” (Polasky et al., 2006, p.72). These approaches to maintain the cooperative

outcome in a game without binding agreements are a very interesting avenue for further

research. Yet for the time being, the focus of this work to contrast the simulation of a

specific fishery under optimal and non-cooperative circumstances.

1.2 The North-East Arctic Cod

As a living resource, the North-East Arctic (NEA) cod stock depends in various and

complex ways on the conditions of its biotic and abiotic environment. Temperature and

salinity of the water, the inflow of warm currents and climatic factors fluctuate strongly in

this arctic region.

The food web is relatively simple in that it con-

Figure 1.1: Distribution of NEA cod

Source: FKD (2007)

sists of few species at the various trophic levels with

potentially high abundance (ICES, 2006). The two

most relevant species in relation to the NEA cod are

capelin and herring. Capelin is the most important

plankton feeder and a key link in the food chain

(Hjermann et al., 2007). It is an especially impor-

tant prey for cod. Capelin larvae are eaten mainly

by herring, which thereby have an indirect influence

on cod abundance. The cod is a top predator among

the fish species in the area.

Due to the increased fishing pressure, the cod’s

age of maturity has declined from 10 to currently 6-

7 years (Godø, 2000). The fish feed along the polar

front during summer-autumn and spawn in March-

April, mainly around Lofoten (Nakken, 1998). Cod

larvae drift with the Atlantic currents from the spawn-

ing grounds into its feeding grounds in the Barents

Sea. Predatory cod follow the schools of spawning capelin to the coasts of Northern Nor-
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way and Northwestern Russia. If there is not enough capelin available, the older cod turn

to their younger specimen as a source of food. The cannibalistic cod mainly consists of 3

to 6 year old immature cohorts (Hjermann et al., 2007). These fish do not migrate to the

spawning grounds yet and thus share the same area as juvenile cod for the whole year.

The survival probability during the larvae’s first five month depends on temperature

in general. A higher temperature also enhances capelin survival, which in turn leads to

reduced cannibalism and thus higher cod recruitment. Largely the same circumstances

determine growth and survival probability of fish in a given year class. Furthermore,

seasonal or periodic influences have a strong impact on growth and survival of the fish. In

addition, the fishing pattern is age dependent, because older and larger fish are more likely

to be caught by the nets then their smaller and younger counterparts. The individual fish

are hence summarized in cohorts.

How long and how heavy a given individual is, depends mainly on the availability of

prey and on its age. Cod keeps on growing with age and may become up to 24 years old and

40 kg in weight (Aglen et al., 2003). Due to natural mortality and the high fishing intensity

in recent times however, few fish survive an age of 12 years (ICES, 2006). In spite of that,

it is important to include more age-classes in the bioeconomic model, as the results of the

simulations could otherwise seriously underestimate the growth potential of the resource

(Hannesson, 1993). The main question therefore is, at which age and weight should the

cod be targeted? If one waits too long, nature takes its toll and too many will have died

from diseases or predators, while contrarily it should be avoided to fish inefficiently small

specimen. In fact, the danger may not only be “growth overfishing”, but also “reproductive

overfishing” where fish are caught before they are able to spawn (Kvamme, 2005). Due to

the late maturing age, this might lead to the collapse of the stock, as it probably happened

to the cod stock off the coast of Eastern Canada (Olsen et al., 2004).

Consequently, the dynamics of the cod stock cannot be realistically described by a sim-

ple lumped-parameter model. The fact that the commercial value and the reproductive

ability depends on the age of the individual fish plays a decisive role when determining opti-

mal policies. Unfortunately, “including age structure in the analysis introduces significant

new mathematical difficulties” (Clark, 1990, p.267).

Hannesson (1975) analyzed a multicohort model of the Icelandic cod. His general result

is that it is optimal to alternate intensive fishing effort with periods of stock recovery (a

so-called pulse-fishing policy) instead of a sustained harvesting. Getz (1985) combines lin-

ear cohort dynamics with a non-linear stock-recruitment relationship. He concentrates on
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theoretical results, but notes that in view of stochasticity a sub-optimal ‘constant catch’

policy may be preferred. Pulse fishing under uncertainty is further discussed in Spulber

(1983). Steinshamn (1993) applies a multicohort model to the NEA-cod stock and shows

that the revenue could have been considerably increased if the natural growth potential

would have been fully capitalized. He compares more realistic ‘constant catch’ and ‘con-

stant effort’ policies and concludes that the latter are preferable from an economic point

of view. Finally, Moxnes (2002) compares an lumped-parameter versus a cohort model of

the NEA cod stock. He highlighted that with the proper economic mechanisms in place,

the difference between the optimal harvesting policies is rather small. However, this result

need not hold when gear selectivity is considered as a choice parameter as well.

1.3 Fisheries Management in the Barents Sea

The cod stock of the Barents Sea has been fished ever since humans populated the area.

It plays a vital role in the economics and culture of the coastal communities (Nakken,

1998). Before the advent of distant-water trawlers, the fish was only attainable near shore.

The Barents Sea provided a natural marine reserve as mainly large and mature fish were

subject to harvesting (Kvamme, 2005). This situation has changed dramatically after 1945

when the industrial exploitation set in.1 Ever bigger boats lead to ever higher catch rates,

increasingly consisting of younger and smaller immature fish. The NEA-cod fishery could

have been a classic example of open access to a common property resource (Arnason et al.,

2004). Effective management did not start before the late 1970s (Nakken, 1998). Today,

the stock is above safe biological limits, but the harvesting regime is far from optimal.

International Management

Before the 1970s any nation capable and willing to exploit the marine resources of the

Barents Sea could do so. The two adjacent nations Russia and Norway therefore had the

common aim of excluding other nations from the fishery. In line with the general movement

in international law, the two countries established 200-mile exclusive economic zones (EEZ).

They installed the Joint Russian-Norwegian Fisheries Commission, but fishery management

is of course neither the only issue at stake in their international relations, nor can it be

analyzed in isolation from the broader political situation in the Barents Sea.

1Harvesting with trawlers began already around 1920-30, but World War II postponed the exploitation
on industrial scales.
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An important aspect is that the maritime boundary line between the two countries’

zones was and still is unsettled. While Russia claims that the delineation should follow

the sector line, do the Norwegians insist on the line of equidistance. At stake is a disputed

area of 155.000 sq.km – the so called gray hole – in which fishing grounds are rich and

the prospects of finding petroleum quite good (Stokke, 2003). International law links an

exercise of state authority with a strengthening of jurisdictional claims. The problem is

thus to ensure effective resource management while at the same time neither ceasing the

territorial claim nor affronting the other party (Stokke et al., 1999). In particular, conflict

escalation had to be avoided. The area is extremely sensitive in a military sense due to

the number of nuclear submarines deployed in the Barents Sea.

Perhaps contrary to intuition did this military aspect not obstruct regulation. Exactly

because a politicization of the affair was to be avoided by all means, fishery management

was successfully decoupled from the other issues at stake. The problem was deferred to

a technical level and dealt with in a pragmatic manner. The caution with which the two

parties approached the subject also resulted in a equal sharing rule for cod. Even though

such a rule is not backed by the biological system since more and larger cod thrive in

Norwegian waters, this norm proved to be unintentionally good; it frees the negotiations

from allocational bargaining (Stokke et al., 1999).

The Joint Commission meets annually and takes its decision consensually. Since the

division of the quota is given by the equal sharing rule, the most disputed issues are

the actual size of the TAC and technical regulations. Currently, there exists a minimum

mesh size regulation of 135mm in the Norwegian EEZ and 125mm in the Russian EEZ

as well as minimum fish sizes, seasonally closed areas, bycatch regulation and a discard

ban. Stokke and Hoel (1991, p.49) argue that the joint management has “failed to reach its

conservational goals” but that it has been politically successful in establishing cooperation.

While it is true that stability is a crucial aspect of the broader political context, this thesis

will argue that the biological and economic mismanagement is exactly the outcome of a

non-cooperative exploitation of the cod stock. A closer inspection of the meaning and

utilization of the term ‘cooperation’ is surely advisable.

‘Cooperation’ and ‘non-cooperation’ have a different connotation in everyday language

than in the context of game theoretical analysis. Non-cooperation in its game theoretical

use does not necessarily imply adverse or hostile behavior. In fact, two agents may have

common interests on some levels of their relationship while they have diverging interests on

others. For example, Russia and Norway have the same interest of keeping other nations
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out of the loophole.2 With respect to the amount of fish harvested by the other party

however, they clearly have opposing interests. Of course, even the most unintended of

negative external effects may lead to hostilities as Barrett (2003) illustrates.

Essentially, cooperative game theory allows for binding agreements, non-cooperative

game theory does not. This results in a different perspective: Whereas cooperative game

theory begins with maximizing the common good and then studies the allocation of shares,

does non-cooperative game theory start from the individual agent that chooses a strategy

maximizing his utility. The latter is in a way the more fundamental of the two (Binmore,

1992). Which framework is better suited to the problem at hand is by and large an

empirical question.

Cooperative agreements constitute a strong commitment to future actions. It is far from

obvious that such agreements can be made binding in international relations (Barrett,

2003). Although from a purely juridical perspective, international treaties are legally

binding on the contracting parties, the actual effectiveness of the treaty depends on the

political will of the contracting parties (Munro et al., 2004). In absence of a supreme

enforcing authority, each country will have an incentive to break such an agreement if

its cost outweigh its benefits (Vislie, 1987). Even when the countries pay lip service to

the agreement they may cheat. The actual fishing effort in the Barents Sea is basically

unobservable, let alone problems of discards or the use of illegal gear. The countries could

for example simply not enforce the regulations on their subjects with due diligence. The

facts hint in that direction: The agreed quota has been almost consistently in excess of the

scientific advice from ICES, and the actual catches have been even higher (Aglen et al.,

2003). Moreover, illegal, unreported and unregulated (IUU) fishing on a huge scale is a

major problem (Hjermann et al., 2007). In 2006, IUU fishing was estimated to amount to

137.000 t, a third of the total quota (FKD, 2006).

Hence, the circumstance that negotiations take place and result in joint decisions should

not be taken as proof for cooperation in the game-theoretical sense. If the actual behav-

ior is driven by the non-cooperative structure of the situation, the nations will agree on

what would have been the outcome even in absence of any negotiations. The claim from

Norwegian authorities that the stock is currently in “reasonable good condition” (FKD,

2007) cannot be used as an argument for a cooperative situation either, since not only does

the complete dissipation of economic rents necessarily imply a destruction of the biological

2The loophole is a pocket of High Seas in the Barents Sea, which otherwise belongs to the EEZ of
Russia or Norway. Hannesson (1997) shows that even a minor straddling of the fish stock into an area
with open access may result in significant losses of efficiency.
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stock but also could positive rents persist at the Nash-Equilibrium. Admittedly, commu-

nication might be necessary in order to ensure that the same game is played. Kaitala

(1986, p.263) notes that “successful non-cooperation requires mutual communication and

cooperation, too.”3 In order to avoid this sort of confusion, and because the two regulat-

ing nations inevitably compete for resource rents without binding agreements, the term

competing exploitation has been chosen to characterize the situation.

National Management

Large parts of the population in the North depend directly or indirectly on incomes from

the Barents Sea fisheries (Armstrong and Flaaten, 1991). The socio-cultural importance

of fishing goes well beyond the economic profit derived from the resource.

The cod fishery is predominantly driven by trawl. The Russian boats almost exclu-

sively employ this gear (ICES, 2006). The Norwegian statistics distinguish between 14

categories of boats that contribute in varying degrees to the exploitation of the resource.

The Norwegian TAC share is internally divided between the trawler- and the conventional

fleet and its subgroups. It is not surprising that conflicts arise not only on the interna-

tional level but also within the jurisdiction of one managing authority. The problem of

allocation today is intertwined with the question how the resource should be used over

time (Stokke et al., 1999). The more interest groups can rely on their bargaining strength,

the more they are willing to consider conservation for tomorrow. But the health of the

fish stock often demands severe cutbacks in the total allowable catch. And it seems hard

for the bargainers to resist the temptation to sidestep conservational needs to increase the

possibility of agreement. Especially the fishermen challenge the view that the fish stock is

in danger of overfishing by “inflating the margins of uncertainty that always accompany

scientific prognosis” (Hønneland, 2003).

The authorities have to accommodate a variety of diverging or even conflicting needs

when formulating their management strategy (Sandberg et al., 1998). The managers have

the goal of making the economic value-added as large as possible while at the same time

maintaining the existing employment and settlement patterns. Sustainability is demanded

not only on economic but also on ethical grounds. Finally do international commitments

further constrain the room for maneuver. This study focuses on the strategic interaction

on the international level, where the states are the relevant actors. They are assumed to be

monolithic agents which completely control resource exploitation. This means implicitly

3Usually, the assumption of common knowledge implies that such failures do not occur.
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that the fishermen are assumed to maximize profits at the micro-level. Furthermore, full

compliance is presumed. It is therefore possible to aggregate fleets whose effort and gear-

selectivity is the choice variable for the managing state. The concentration on profit max-

imization as the objective out of the many facets of optimal management should sharpen

the understanding of what arises from the strategic interaction.

Literature

There exist numerous studies on fisheries management in the Barents Sea. Arnason et al.

(2004) compare the efficiency of the cod fisheries in Denmark, Norway and Iceland and

find that in all three countries management has failed to cure overfishing. They derive an

optimal stock-harvest feedback rule, which is not feasible here due to the use of a multi-

cohort model. The already mentioned work of Steinshamn (1993) employs a multicohort

model of the NEA cod fishery but he concentrates on the Norwegian perspective. Similar

to this work, his simulations show that substantial gains in economic value are possible.

An early analysis of the joint Russian-Norwegian management has been undertaken

by Armstrong and Flaaten (1991). They apply the cooperative bargaining approach of

Munro (1979) to the NEA cod and conclude that cooperative management would bring

significant gains to the two parties. This is insofar not surprising as the threat point which

they contrast to the first-best outcome is not the second best Nash-Equilibrium of a non-

cooperative game but the complete rent dissipation of a hypothetical open access situation.

Moreover, they assume that the fleets consist solely of trawlers and use a lumped parameter

model which omits the age-distribution of the stock. Sumaila (1997a,b) emphasizes the

importance of biologically more realistic modeling. In one work (Sumaila, 1997b) he shows

that it is not only biologically but also economically important to take the interaction

between capelin and cod into account. By contrasting isolated optimization of the cod and

capelin fisheries with a common management he specifies the gain arising from multi-species

management. In his other work (Sumaila, 1997a) he again uses a multicohort model. This

time he focuses on cod and analyzes the interaction between the coastal and the trawler

fleet, but not between Russia and Norway. His general bioeconomic model is similar to the

one applied here, but he uses a cooperative game approach à la Munro (1979).

Armstrong and Sumaila (2001) analyze the implication of the different fleet types in

the Barents Sea. They use a lumped-parameter model and divide the mature from the

immature fish stock in order to take cannibalism explicitly into account. The coastal fleet

is assumed to target only the mature fish and the trawlers only the immature fish. Sandal
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and Steinshamn (2002) develop an optimal control model which is similar to Armstrong and

Sumaila (2001) in its construction and intention to analyze intra-species relations and the

different impact of fishing pressure from different fleet types. They analyze the sensitivity

of their results and concede that rather small changes in the biological parameters reverse

their conclusions with respect to which fleet should be favored. An age-structured model

is able to neglect the artificial assumption that the trawlers are unable to catch mature

fish. The high proportion of immature fish in the catch of the trawlers is then a result

of the gear selectivity. Moreover, this paper focuses on one specific gear type (gillnets)

out of the diversity of non-trawler groups. This makes it possible to exclude those vessels

that also fish in the high seas and to concentrate on a group with similar technological

characteristics, which in turn allows a more appropriate specification of gear selectivity for

that group. These benefits are believed to outweigh the cost of neglecting the variety of

boat categories which are neither trawlers nor gillnetters.

The literature reviewed so far relied on deterministic models. Kugarajh, Sandal, and

Berge (2006) develop a stochastic model for the NEA cod fishery. They confirm the result

that the resource is being economically overfished. In fact, Kugarajh et.al show that the

actual harvest rates are close to the theoretical prediction of an open-access situation.

Their explanation for this circumstance is threefold: First, they attribute it to issues of

non-compliance. Second, they argue that the quotas are set by politicians which do not

manage the resource with regard to economic criteria but focus on the short-term gain

for fishermen and industries. Finally, they emphasize that many management models do

not take uncertainty sufficiently into account. The present thesis highlights that the sub-

optimality of today’s harvesting regime may to a large part be the result of the strategic

situation between Russia and Norway.

The application of non-cooperative game theory to an age-structured model of the NEA

cod is the distinguishing feature of the thesis. To the best of my knowledge, the present

work is the first to pursue this approach. In general, the result that the current management

is sub-optimal is confirmed by the simulations of this more detailed bio-economic model.

Due to the fruitful inter-disciplinarity, a contribution to a better understanding of the NEA

cod fishery can be made in two ways: First, the age-structured modeling allows to explicitly

optimize the use of different gear technologies and thus to contrast the current with the

optimal mesh size. Second, the game-theoretical analysis offers a convincing explanation

of the current constraints to optimal exploitation.
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Model

Having illustrated the background of the problem, the system of equations that forms the

basis of the simulations will be presented. This ‘model’ should, in a sense, be named

‘framework of analysis’ as it consists of two distinct sub-models that describe in a stylized

way the most important features of the situation in the Barents Sea.

2.1 Biology

The biological dynamics of the fishery are described by a detailed system of equations.

The model has been provided by the Centre for Ecological and Evolutionary Synthesis

(CEES), University of Oslo, and stems from their ongoing research on this subject. Its

central output is the number of cod of a given year-class at a given time: Na,t denotes

the number of fish of age a at time t. Moreover, the system specifies the weight-at-age

wa, length-at-age la, and the maturity probability mata. The vector Xt = Ntw gives the

biomass of the cod stock at time t. The total biomass is the sum of all entries Xa,t which

denote the biomass of age-class a [= number of fish multiplied with their average individual

weight]. Age a runs from 3 to 151 The spawning stock biomass is calculated by multiplying

the age-specific biomass with the probability that the fish have matured, summed over all

ages: SSBt =
∑15

a=3Na,t·wa·mata. The two driving functions of the system are finally

1Three years is presumed to be the age of recruitment into the fishery. That is, 3 year old fish have
become large enough to be susceptible for being caught (ICES, 2006). Although cod may become quite
old, they are assumed to die when they are 15 years old. This modeling decision is a trade-off: On the one
hand, the individual growth potential needs to become visible, while on the other hand the computations
should not be overloaded. Cod reaches its maximum biomass with 12 years (see section 4.1.1). In addition,
few individuals would survive up to an age of 15 even in absence of fishing pressure.
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(2.1) the recruitment of new cod to the fishery, and (2.2) the development of a year-class

over time. The additional parameters length-at-age la, weight-at-age wa and the maturity

probability mata (Table 2.1) result from regressions on ICES data (Hjermann, pers.comm.)

These are stated more explicitly in Appendix A.

Age 3 4 5 6 7 8 9 10 11 12 13 14 15
Length in cm 33,9 44,2 54,1 63,6 72,9 81,9 90,8 99,7 108,6 117,0 125,5 133,9 142,4
Weight in kg 0,36 0,69 1,31 2,20 3,36 4,78 6,46 8,39 10,56 12,99 15,67 18,60 21,77
Maturity
Probability

0,01 0,02 0,07 0,21 0,47 0,75 0,91 0,97 0,99 0,997 0,999 1,000 1,000

Table 2.1: Biological Parameters

The recruitment function is adapted from Hjermann et al. (2007). The model first

assumes that the cod’s spawning stock biomass (SSB) and recruits are linked by the

Beverton-Holt relationship f · SSB/(1 + g· SSB). This relationship is then modified by

taking the positive effect of temperature (temp) in the year of spawning (year t − 3) and

the negative effect of the ratio between cannibalistic cod and capelin (cap) in t − 2 and

t− 1 into account . The resulting recruitment function is:

N3,t = f ·SSBt−3

1+g·SSBt−3
+ exp(c· tempt−3) +

(
1/2(Xcan,t−2+Xcan,t−1)

1/2(capt−2+capt−1)

)d
(2.1)

Here, Xcan,t−2 denotes the biomass of 3 to 6 year old cod. The estimated parameters are:

log(f) = −1, 12[SE = 0, 74], log(g) = −4, 68[SE = 0, 77], c = 0, 70[SE = 0, 18], d = −0, 16[SE = 0, 07]

From then on the number of cod develop according to the difference equation:

Na+1,t+1 = Na,t· e−M · (1− Fa,t). (2.2)

where Fa,t is the fishing mortality and M is the natural mortality, standardly set to 0,2.

With each time step a certain fraction dies from natural mortality, a certain fraction gets

fished, and the rest graduates to the next age. Fishing mortality is given as a probability

that a certain age-group is caught at a given time. It has therefore a direct impact on the

survival rate of a given age-class, but it also has an indirect impact on the stock dynamics

via the spawning stock biomass and via the effect of cannibalism. It is this fishing mortal-

ity Fa,t that constitutes the link between the biological and the economic part of the model.
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2.2 Economics

The economic part forms the core of the model as it establishes the objective function

which will be maximized subject to the biological system and the constraints of the strategic

situation. As discussed in section 1.3, the objective is to maximize economic profit. Because

not only profits today but the stream of profits over the time horizon is considered the

Net-Present-Value (NPV) of the resource is maximized. The NPV can be defined as the

discounted sum of annual profits. Necessary ingredients are the harvest function, the cost

structure and the demand schedule, which will be elaborated below.

In order to analyze the implications of the strategic situation on the management of

the NEA cod, three different sub-fisheries will be introduced. These constitute the most

relevant categories that can be grouped into distinguishable fleets of the diverse variety of

boat sizes and gear types. The Lofoten fishery (denoted Lof) targets the stock on its way

to or in its spawning grounds (mainly around Lofoten) and consists mainly of rather small

boats (8 to 20,9 m) using gillnet and handline. The Norwegian trawlers (denoted NTRL)

and the Russian trawlers (denoted RTRL) fish in the Barents Sea.

Differences in boat-size and technology have implications on the cost of one unit effort

exercised. Differences in gear and location have an impact on which fish are targeted and

hence on the productivity of one unit effort exercised (Steinshamn, 1994). The three fleets

differ in their harvest function and cost structure. For simplicity it is assumed that they

face the same demand schedule (the same price)2 and apply the same discount factor.

2.2.1 Harvest Function

The harvest or fisheries production function links what is caught to the effort applied.

There does not exist a generally valid relationship between effort and harvest (Hannesson,

1993). For demersal species such as cod economic textbooks usually give it by either

(Conrad, 1999):

H = XqE

H = X(1− e−qE)

where H denotes the harvest, X is the fish stock, E represents effort, and q is referred

to as “catchability coefficient”. While the first functional form exhibits constant returns

2This is not unreasonable since most part of the catch is exported to the world market.
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to scale, and is therefore often referred to as catch-per-unit-effort production, does the

second equation display diminishing returns. The first equation implies that as E → ∞,

the harvest H tends to infinity as well. By contrast, given the second functional form, it can

never be the case that more than the entire available stock is fished (as E →∞, H → X).

Certainly, the latter equation is more realistic and is therefore chosen.

Instead of summarizing the state by one variable, the interest of a more detailed study is

not only the level of fishing but also the effects of the exploitation pattern. Albeit, the link

between fishing activity and harvest cannot be readily established. The available selection

curve, defined as “the relative probability that a fish of length l is captured given that it

was available to (but possibly avoided) the gear” (Millar and Fryer, 1999, p.92), cannot be

estimated in practical terms. This is because the avoidance behavior as well as the localized

concentration of fish and its characteristics (which may differ from the distribution in the

population at large) are not known. Kvamme (2005) distinguishes between gear selectivity

and fleet selectivity. Gear selectivity r can be defined as “the probability that a fish of

length l is captured, given that it contacted the gear” (Millar and Fryer, 1999, p.92).

Fleet selectivity is closely related to gear selectivity but it is additionally influenced by the

composition of the fishing fleet, the skill of the fishermen, the effort exercised, as well as

the distribution and the behavior of the fish (Kvamme, 2005). It is the relative probability

that a fish of length l is caught by a given fleet. Fleet selectivity is thus identical to the

concept of fishing mortality.

Estimates of gear-selectivity exist in the fisheries management literature. However,

we seek after a function that relates “effort applied” to “fish being caught”. In order to

get this, we split the fishing mortality function in two parts. The first part is the gear

selectivity that gives those fish which are actually drawn out of the water as a proportion

of those fish which had contact to the gear. The other part links the percentage of fish that

contact the gear (i.e. the intensity of fishing) to the amount of effort exercised. We include

the differences between the fleets by introducing a fleet specific “catchability coefficient”

that summarizes all those aspects which are not captured by the gear selectivity.

The level of exploitation (i.e. how many fish caught) is determined by the amount of

effort which is being used. The exploitation pattern (which fish are caught) is determined

by the location of fishing and mainly by the type of gear which is being used. Trawl nets

hit different age groups with a different intensity than gill nets. But the same gear type

results in a different exploitation pattern if a different size of the mesh openings are used.
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Therefore we include the mesh size m as a choice variable.3 The fishing mortality with

which a given age group a is hit at time t by fleet j, is then a function of Effort Et and

mesh size m:

F j
a,t(Et,m) = r(la,m)· (1− e−qj ·Ej

t ) (2.3)

If information about length-at-age is available, it is possible to express age-specific harvest

as the fishing mortality function times the biomass of that age group:

Hj
a,t = Xa,tF

j
a,t (2.4)

This relationship makes it possible to specify the harvesting function since harvest and

biomass at a given year are known quantities. The gear specific selectivity r(la) will be

established below. Given information about the fish stock’s age-structure as well as the

effort applied, it is then possible to determine fleet specific catchability coefficient qj.

Gear specific selectivity

Trawlers catch the fish by actively pulling a net through the water with a speed higher

than the targets’ maximum speed. The fish is thereby overtaken and must pass through

the netting to escape. The vast majority of escape attempts occur in the rear part of the

net, the so-called cod end, and the size of the mesh openings determine the gear selectivity

(Millar and Fryer, 1999). Accordingly, few fish below a certain size and most fish above a

certain size are caught. The gear selectivity curve is presumed to be of S-shaped form. It

is commonly described by the length of 50% retention L50,4 and the selection range SR,

which specifies the distance between the length of 25% and 75% retention, thereby defining

the steepness of the curve. Kvamme and Isaksen (2004) selected a logistic curve to fit the

data:

rTRL(la) = (1 + exp(−4α(la − L50)))−1

L50 was estimated directly and SR was given by SR = ln3
2α

, where α was an estimated

parameter. However, if we want to include the mesh size m as a choice variable, we

3m is presumed to take values between 60-300 mm. This constraint is somewhat arbitrary to ease the
calculations. However, mesh size cannot vary indefinitely in reality. A netting of 60 mm is so tight that
it is doubtful whether it could be pulled through the water without prohibitive resistance. A mesh size of
300 mm on the other hand is so large that almost no fish would be caught by such a net.

4Describing the length of a fish which is captured with 50% probability, given that it had contact with
the gear (Millar and Fryer, 1999)
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need express the gear selectivity curve in dependence of m. Halliday et al. (1999) have

gathered data from selection studies or different mesh sizes and established the following

relationships between mesh-size m in mm, L50, and SR:

L50 = 0, 499m–16, 105; SR = 0, 112m− 4, 335

Using this information5, it is possible to incorporate mesh size as one choice variable which

determines L50 and SR and thus the exploitation pattern:

rTRL(la,m) =

(
1 + exp

(
−2, 2

{0,112m− 4,335}
· (la − {0,499m− 16.105})

))−1

(2.5)

The situation is different with respect to the gillnet fisheries. Gillnets and other sorts

of passive gear entangle the fish that swim into them. While sufficiently small fish pass

through the meshes, sufficiently large fish do not penetrate far enough to become wedged.

Therefore the selection curve is often assumed to be bell-shaped. Huse et al. (2000) found

the gamma function to fit best to the data.

rLof (la,m) =

(
La

(α− 1)·κ·m

)(α−1)

· exp

(
α− 1− La

κ·m

)
(2.6)

They estimated α to be 48,9558 and κ to be 0,0106. This gives a modal length of 94,7 cm

(spread: 13,7 cm) for the commonly used mesh size of m = 186 mm.

Figure 2.1: Gear selectivity curves for mTRL = 135 mm and mLof = 186 mm

5Since SR = ln 3/α→ α = ln 3/2SR and therefore −4α = −2, 2/SR.
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Fleet specific catchability

The catchability coefficient summarizes that part of the fishing mortality which is not

captured by the gear selectivity. q is obtained from equation (2.3) and (2.4):

qj =
1

Ej
· − ln

(
1−

∑
aH

j
a∑15

a=3 r(la,m)Nawa

)
(2.7)

Accordingly, qLof = 3, 87· 10−8; qNTRL = qRTRL = 2, 67· 10−8. The same value of q is

assumed for both trawling fleets, because the fish population and the fleet composition

is identical or largely similar and there is no reason to presume that the skill of Russian

fishermen differs in any systematic way from that of their Norwegian counterparts.

The nature of effort

The concept of fishing effort was developed by biologists for stock assessment. They tried

to find a measure of fishing activity that would be directly proportional to mortality. Until

today this concept remains evasive and no universally accepted definition can be found

(Hannesson, 1993). One reason is that effort is made up of a patchwork of components

which replace one another to some extent. For example, the same boat may maintain

its catch rate by spending less time at sea but employing a larger crew or more nets.

These possibilities shall be ignored and the rather abstract unit tonnage-days will be used

here. One tonnage-day of effort is being defined as one gross register ton (GRT) of vessel

fishing for one day at sea. This supposes that the fleets can be meaningfully represented

by standardized tons. In addition, it is presumed that the additional factors necessary to

catch fish either behave proportionally or else are captured by the catchability coefficient.

While there is a finite limit to the number of days-at-sea in a year, the fleet-tonnage is in

principle not limited. For the mathematical analysis it is assumed that effort is continuous

and the control region are all positive real numbers.

Avoiding that a fish is caught twice

A model which portrays the competitive exploitation of the NEA cod stock should take

its spatial distribution into account. Younger fish thrive predominantly in Russian waters

while the fish in Norwegian waters are older. Although the fish stock is genuinely shared,

the two nations have sovereignty only in their respective EEZ. When modeling the strategic
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decision making, the players should only be able to harvest from the biomass in their zones.

This aspect could theoretically be incorporated by multiplying each age-class with a factor

that expresses the part of that age-class which is attainable in the respective zone. To take

some hypothetical values: 60% of the 3-year old fish and 35% of the 9-year old fish could

thrive in Russian waters.

However, the two players could concede the other nation the right to fish in their zone.

Indeed this is done in reality. Russia has the right to fill almost 80% of its quota in the

Norwegian EEZ and vice versa.6 Hence these parameters should actually be modeled as

additional choice variables. As this would overly complicate the model, it is assumed that

both trawler fleets have mutual access to the entire biomass.

Nevertheless, a fish must not be caught twice in the model. To this end, the Lofoten

fleet is set up to harvest on the mature biomass first and what is left enters the feeding

grounds. The biomass in the harvest functions of the trawlers in the Barents Sea is therefore

multiplyed with the term (1−FLof ). This approach is somewhat arbitrary, but it could be

justified by the fact that spawning takes place in early spring. Still, the fishing mortality

resulting from the two trawler fleets must not exceed one. This is achieved by modifying

their mortality function (2.3) to:

F j
a,t = rTRL· (1− e−qj ·(Ej+Ei))· Ej

Ej + Ei
(2.8)

The sum of both trawler efforts in the exponent ensures that the combined mortality does

not exceed 1. The last term assigns the respective share according to the fleet’s effort.7

This completes the discussion of the harvest function. Consequently, the age-specific

harvest functions of the respective fleets are:

HLof
a,t = Xa,t·FLof

a,t (2.9)

HNTRL
a,t = Xa,t· (1− FLof

a,t )·FNTRL
a,t (2.10)

HRTRL
a,t = Xa,t· (1− FLof

a,t )·FRTRL
a,t (2.11)

6This is only rational since the Russians then take fewer fish to fill their quota (Stokke, 2003).
7Imagine Ej to be zero but Ei very large, then the term (1 − e−qj ·(Ej+Ei)) would be close to one. If

it were not for the last term Ej

Ej+Ei , then F j , the proportion of fish caught by player j, would be close to
one without player j exercising any effort. This would obviously be nonsense.
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2.2.2 Cost Structure

Linear cost function

When specifying the cost structure of the respective fleets, the main question is which

functional form to choose. It is common in the literature to assume constant costs per

unit of effort. This is reasonable, in particular when “effort” considers only removing

fish from the ocean but not going there, looking for fish or maintaining gear and vessels

(Hannesson, 1993). Even if the costs of effort are linear, the costs of catching fish grow

disproportionately due to the diminishing rate of return in the harvest function. Stated

differently, it costs the same whether the first or the hundredth unit of effort is used, but

a lot more effort is needed to catch the first or the last fish in the ocean. Furthermore,

neither technological change nor investment decisions are considered in this model. Brief,

the cost function is conjectured to be

cj(E) = cj·E (2.12)

Since it was presumed that effort could be broken down in standardized tonnage-days,

some insight was sought from looking at the industry as a whole. Taking data from the

profitability surveys of the Norwegian Directorate of Fisheries (Fiskeridirektoratet, 1998-

2002) from 1998-2002,8 the total cost were plotted against effort. The plot exhibits indeed

a remarkable linear trend (Figure 2.2).

Figure 2.2: Plot of Cost-Effort all categories

8The reason why the data set does not include more recent years is that in 2003 the statistics of the
Directorate of Fisheries have been re-categorized and information by gear is no longer available and/or
comparable.



CHAPTER 2. MODEL 23

Yet an overall linear trend does not necessarily imply a constant cost-effort relationship

within each fleet. A major problem when specifying the cost-effort relationship for each

fleet is the small number of observations and the fact that each observation consists of an

aggregated average of the respective category. This loss of variation results in plots that

show two “clouds” for both fleets (Figure 2.3 and 2.4).

Figure 2.3: Plot of Cost-Effort Lofoten Figure 2.4: Plot of Cost-Effort Trawl

Obviously it was possible to lay a straight line with very good fit through these clouds,

but the true nature of the relationship in the population could not be inferred. However,

only a rough approximation of the real cost which works in the model was sought. Given

the confines of this work, an OLS-estimation of the linear curve was found to be sufficient

(see Appendix B), well aware of the fact that a cost function which claims to be an exact

description would need much more careful analysis.

The cost parameters are then cLof = 315 for the Lofoten fishery and for the Norwegian

trawl fishery cNTRL = 190. There was no data on Russian cost, but benefiting from

the technical identity between Russian and Norwegian trawl, the latter cost-structure –

weighted by a factor to account for differences in labor cost etc. – is used for the former.

In lack of an adequate foundation for estimating such a factor, 0,9 was arbitrarily chosen.

This makes the Russian cost: cRTRL = 171.

Quadratic cost function

Although a linear function was found to be the best description of the cost structure,

it was not possible to find a Nash-Equilibrium for the game of competing exploitation.

The idea was that there might be a problem with the concavity of the objective functions.

Therefore, the cost function was made convex following the technique of Sumaila (1997a,b):
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Cost = kE1+b/(1 + b) where b is chosen so small that Cost remains “almost linear”.

However, this did not yield the expected results. On the contrary, using a quadratic cost

function did. Since this cost function was merely constructed for exemplary purposes,

there was no need for re-estimation. Instead, the function was assembled such that the

marginal and absolute cost for the current effort level were identical to the estimated linear

function. Hence, the quadratic cost function is:

cjquadratic(E) = k1E
2 + k2 (2.13)

where k1 = cj/(2E) and k2 = (cjE)/2.

2.2.3 Prices

The price per kg of fish presumably follows the laws of demand and supply where the price

should fall if there is a larger supply. The NEA cod is not a homogenous good because larger

fish get a better price per kg than smaller fish. Furthermore, cod competes with other forms

of whitefish not only in Norway but also in export markets, and a larger supply of other

species should have an influence on the price of cod (Sandberg et al., 1998). An appropriate

demand function for cod was not readily available. As the uncertainties associated with

estimating a demand schedule would outweigh its additional benefit, constant prices are

being assumed. Moreover, the focus is on the impact of the strategic interaction from jointly

exploiting the resource, and including the effects of interaction in the market place would

make the analysis overly complicated (Levhari and Mirman, 1980). A further justification

for assuming constant prices could be that 90% of the cod products are exported, and

the price which the Norwegian fishermen receive when delivering their catch is largely

determined by the negotiations between the organization for the fishing industry and the

fishermen’s sales organization (Sandberg et al., 1998).

In order to get the prices-at-age for the model, the minimum prices from the fishermen’s

sales organization have been taken as a starting point (Norges R̊afiskelag, 2007). These

prices are given for headed and gutted fish while the fish in the model and in the ocean

are whole. Therefore, the organization’s prices have to be divided by 1,5 (which is the

official conversion factor agreed upon by the Joint Commission). The prices (rounded up)

in Norwegian Krones (NOK) are then:
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pa =


10 if wa < 1kg

13 if 1 ≤ wa ≤ 2, 5kg

15 if 2, 5 < wa ≤ 5kg

17 if wa > 5kg

(2.14)

Age 3 4 5 6 7 8 9 10 11 12 13 14 15
Price in NOK 10 10 13 13 15 15 17 17 17 17 17 17 17

Table 2.2: Price at age

The simulations describe the development of the Barents Sea cod stock and the resulting

NPV for a given harvesting regime. The harvesting regime is characterized by the choice

of effort and mesh-size over time. The harvest of each age group (equations 2.9-12) is

multiplied with its specific price (equation 2.14) and the cost of applying the necessary

effort (equation 2.12 or 2.13) is subtracted. This yields the profit of a given fleet j in a

given year t:

πjt (X,E,m) =
15∑
a=3

pa·Hj
a,t(X,E,m)− cj(E) (2.15)

The NPV is the sum of discounted annual profits of the three fleets (equation 2.16). Dis-

counting with a rate of 5% was introduced to include a rate of time preference. The

discount factor δ converts the profits at time t, πt, into profits today, δtπt. Undoubtedly,

a discount rate of 5%, which implies a discount factor of δ = 0, 9523, is quite high: 1000

Krones profit in 75 years would only be worth 25,5 Krones today. In spite of being an

unrealistic measure of societies’ time preference, this discount factor is advantageous for

the simulation because it makes the distant periods less important for the NPV.

NPV =
T∑
t=0

δt· [πLof + πNTRL + πRTRL] (2.16)



Chapter 3

Simulation

After presenting the model which underlies the simulations, this chapter shall shed some

light on the formal foundations of the numerical optimizations. In order to analyze optimal

management of the Barents Sea cod stock and the implications of the strategic interaction,

two questions are pursued. First, how would one agent choose the exploitation level and

pattern if he were to solely own the resource? Second, how does this situation change when

there are two agents who each try to maximize their respective return from the resource?

3.1 Sole-Owner

The first question is a problem of optimal control. The sole owner’s objective will be to

maximize the Net-Present-Value (NPV) of all three fleets:

max
ut

T∑
t=0

δt· [πLof (xt, ut) + πNTRL(xt, ut) + πRTRL(xt, ut)]

subject to : the biological system xt; x0 = x0; and ut ∈ U

(3.1)

• The time horizon runs from t = 0 to T = 75. A period of 75 years has been chosen,

because on the one hand capacity constraints of numerical optimization tool had

to be respected, while on the other hand, the horizon had to be long enough so

that end-of-the-world effects had a negligible impact on the optimal path in the first

periods.
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• The control region U depends on the mode of this simulation. There will be two

modes: in the first, the exploitation can only be controlled by the choice of effort

for the respective gear. In this case U = E and ut = {ELof
t , ENTRL

t , ERTRL
t }. In the

second mode, effort and mesh size can be controlled directly. Thus U = (E,m) and

ut = {ELof
t , ENTRL

t , ERTRL
t ,mLof

t ,mNTRL
t ,mRTRL

t }. In either case, the control region

U is convex since E ∈ [0,∞) and m ∈ [60, 300].

• The biological system xt is specified by the recruitment function (2.1), the cohort

development according to (2.2), and the weight, length, and maturity parameters

summarized in table (2.1). As a short-hand notation it is written as the vector

function xt+1 = f(xt−2, xt−1, xt, ut−3, ut−2, ut−1, ut).

This problem can be solved by applying a discrete version of the maximum principle

(Sydsæter et al., 2005, p.438). In order to do so, define the Hamiltonian by:

H(t, x, u, λ) =

{
δt· [πLof (∗) + πNTRL(∗) + πRTRL(∗)] + λf(∗) for t < T

δt· [πLof (∗) + πNTRL(∗) + πRTRL(∗)] for t = T
(3.2)

where λ is called the co-state vector. A necessary condition for optimality is then:

Suppose (x∗t , u
∗
t ) is an optimal sequence pair for problem (3.1), and let H

be defined by (3.2). Then, there exist vectors λt, with λT = 0, such that for all

t = 0, ..., T ,

u∗(x0, t) = arg max
u∈U
H(t, x∗t , ut, λt) for all u ∈ U (3.3a)

Furthermore, λt is a solution to the difference equation

λt−1 =
∂H(t, x∗t , u

∗
t , λt)

∂xt
, t = 1, ..., T. (3.3b)

A sufficient condition for optimality is that H(t, xt, ut, λt) is concave with respect to (x, u)

for every t. Clearly, a model of the present complexity is analytically not tractable.1 The

solution is obtained numerically by using the optimization toll “solver”. It is provided by

1The reader can be comforted, even Colin Clark (1990, p.291) writes that in spite of “simplifying
assumptions [. . . ], an analytic solution for the general problem [of multicohort fisheries] seems completely
unattainable.”
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Frontline Systems and available as an add-in to Microsoft Excel. Its configuration is stated

together with a documentation of the spreadsheets in Appendix C.

3.2 Game

If the cod stock is exploited non-cooperatively, both players would want to maximize their

own return from the resource. However, the development of the state of the resource

depends not only on one’s own actions but also on the actions of the other agent. Since

these are not known in advance when choosing one’s strategy, the players face a non-

cooperative game.

Due to the discrete structure of the set-up, the problem can be best understood as a

multi-stage game with t = {1, 2, ..., T} being the index set of stages with final stage T . It

is supposed that each agent can make one move per stage, which, in this case, represents

one year. ‘Making a move’ corresponds to choosing an action from the set of permissible

actions. If the choice variable is continuous, that is, if there is more than a finite number

of possible actions to choose from, the game is said to belong to the class of infinite games

(Başar and Olsder, 1995).

The game theoretical term pay-off describes what the respective players receive upon

a given realization of actions. These pay-offs can be ranked according to preferences. The

agents’ objective is to maximize their NPV i.e. the sum of all yearly discounted profits.

At each stage of the game, the players must take not only the profit of that year but also

the value of future earnings into account. Due to the dynamic nature of the problem, the

possible pay-offs vary according to the development of the resource. One speaks of pay-off

relevant strategies (Fudenberg and Tirole, 1991). A repeated game approach is thus not

suited for the present context. Instead, a differential game in discrete time will be applied:

A set of difference equations link the development of the underlying decision process from

one stage to the next depending on the initial state and the realized actions. An overview

of differential games can be found in Clemhout and Wan (1994). Standard references in

the field are Başar and Olsder (1995) and Dockner et al. (2000).

The discrete time infinite differential game is then described by

(i) the number of players: Russia and Norway i = R,N .

(ii) the number of stages t = {0, 1, ..., T}.
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(iii) the control variable ui of player i which belongs to the set of admissible controls

U i, where UR = (ERTRL,mRTRL) and UN = (ELof , ENTRL,mLof ,mNTRL), and Ei ∈
[0,∞) and mi ∈ [60, 300] as in problem (3.1).

(iv) the state xt+1 = f(xt−2, xt−1, xt, u
i
t−3, u

i
t−2, u

i
t−1, u

i
t) describing the biological system

as above.

(v) finally, the pay-off functions of the players which are

JR =
T∑
t=0

δt·πR(xt, u
R
t , u

N
t )

JN =
T∑
t=0

δt·πN(xt, u
R
t , u

N
t )

for Russia and Norway respectively, where πR = πRTRL and πN = πLof + πNTRL.

What can be a solution to this problem? It is clear that agent i will choose a strategy

which maximizes his NPV. His choice will therefore be a best reply to the strategy of the

other player and the prevailing state. The outcome of this reciprocal optimization will thus

be a situation where no player can improve his pay-off by unilaterally altering his decision;

it will be a Nash-Equilibrium. The equilibrium strategies ui∗ thus satisfy:

J i(x, ui∗, u−i∗) ≥ J i(x, ui, u−i∗) for all x, u, i.

A best reply is synonymously called a reaction set as it maps for all states x and actions

u−i the corresponding reaction ui∗(x, u−i) = R(x, u−i). If u∗ is a singleton, R(x, u−i) is

called reaction curve. A Nash-Equilibrium is found where the two reaction curves cross.

If the game – as it is the case at hand – is infinite, it is however not guaranteed that

there exists a Nash-Equilibrium. Conversely, there may exist several or a continuum of

equilibria. The reaction curves could cross several times, they could overlap for some range,

or they could not cross at all. (It is indeed a result of this work that there does not exist a

Nash-Equilibrium for some specification of the fishing game.) The problem with multiple

equilibria is to find out which one will be selected. Since both players make their choices

independently, “it could so happen that the outcome of their joint (but non-cooperative)

choices is not an equilibrium point at all” (Başar and Olsder, 1995, p.176).

There are various ways of handling this problem (see e.g. Binmore, 1992, pp.295]),

and many are refinements of the Nash-Equilibrium concept. One classification which is
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especially applicable in this case is the notion of stability. Consider the following sequence

of moves: Given an equilibrium solution, player 1 deviates from his strategy (or player 2

makes a mistake in his observation of the situation). Player 2 now re-adjusts his strategy

to the best of his knowledge. Player 1 reacts to the new strategy of player 2, upon which

player 2 again optimally reacts to the optimal reaction, etc. Now, if this infinite sequence

converges regardless of the initial deviation, the equilibrium is said to be globally stable. If

convergence is valid under a small initial perturbation, the equilibrium is said to be locally

stable. Therefore (Başar and Olsder, 1995, p.178):

A Nash-Equilibrium ui∗ for i = 1, 2 is said to be stable if it can be obtained

as the limit of the iteration:

ui∗ = lim
k→∞

ui(k)

ui(k+1) = arg max
ui∈U

J i(x, ui, u−i(k))

The notion of stability is of particular importance in fishery games. The precise nature of

the state is – if at all – only vaguely known. The biological system is inherently uncertain

and volatile. If a deterministic model is used nonetheless, it should at least be provided

that a small error does not lead to an entirely different outcome.

The necessary conditions for a Nash-Equilibrium bear close resemblance to the maxi-

mum principle, but the co-state vector λit and the HamiltonianHi are player-specific (Başar

and Olsder, 1995, p.274):

Suppose {(x∗t , ui∗t ); i ∈ (R,N)} provides a Nash-Equilibrium to the game

(i)-(v), then there exists a finite sequence of co-state vectors λit, with λiT = 0,

for all i, such that the following relations are satisfied for all t = 0, ..., T

u∗(x0, t) = arg max
ui∈U i

Hi(t, x∗t , u
i
t, u
−i∗
t , λt) for all ui ∈ U i (3.4a)

Furthermore, λit is a solution to the difference equation

λit−1 =
∂Hi(t, x∗t , u

i∗
t , u

−i∗
t , λt)

∂xt
, t = 1, ..., T. (3.4b)
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where Hi(∗) is defined by:

Hi(t, x, u, λ) =

{
δt· πi(∗) + λf(∗) for t < T

δt· πi(∗) for t = T
(3.5)

These are conditions for an open-loop equilibrium. The reason is that each player commits

himself at the beginning of the game to a particular action over the entire planning horizon

and cannot revise his decisions later on (Meinhardt, 2002). The strategies are thus functions

of the initial states and time only. Closed loop strategies in contrast depend also on the

development of the state up to date when taking a decision. A closed loop information

structure would alter the first-order-condition of the co-state variable (3.5b) to

λit−1 =
∂Hi(∗)
∂xt

+
∂Hi(∗)
∂u−it

· ∂u
−i∗
t

∂xt
, t = 1, ..., T. (3.4b′)

The players are therefore able to take their influence on the reactions of their opponents ex-

plicitly into account. It is however not naturally given that u−i∗ is differentiable (Clemhout

and Wan, 1994). In general, finding closed-loop equilibria amounts to a formidable task.

Analytic solutions to closed-loop games are only obtainable in certain special cases, most

of whom are linear-quadratic games (Dockner et al., 2000). However, growth functions

regarding the stock of natural resources are mostly not linear. It is therefore not surprising

that according to Sumaila (1999, p.6), “there has been a tendency in the literature to resort

to the use of open-loop solution concepts.”

Open-loop strategies are not dynamically consistent in general. Consider as an example

the situation, where a person who is most happy to fish during sunshine and read a book

when it rains, is somehow forced to commit to a strategy for the next days. Then he might

choose “I will fish on Monday, read on Tuesday and fish on Wednesday”. Obviously, it may

or may not rain on Monday. On the contrary, the closed-loop strategy “I will fish when

the sun shines and read when it rains”, where the player chooses his action upon realiza-

tion of the state, will be time-consistent. Nevertheless, there are results in the literature

which show that open- and closed-loop equilibria may coincide. In particular, an open-loop

Nash-Equilibrium of a deterministic game in which action spaces depend only on time is a

closed-loop Nash-Equilibrium (Fudenberg and Tirole, 1991). Fershtman (1987) moreover

demonstrates that an open-loop solution is a special case of a closed-loop solution if the

control paths constitute an open-loop Nash-Equilibrium for all possible initial conditions.
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The game theoretical analysis of this thesis is inspired by the article of Levhari and

Mirman (1980). They assume that each player acts as a Cournot duopolist in a dynamic

framework. By equating the player’s reaction functions, they find each period’s equilibrium.

It is a Cournot-Nash solution and the sequence of decision by both countries is itself a stable

equilibrium.

If it is not feasible to analytically derive optimal control paths, closed form solutions of

the dynamic game are even less attainable. Numerical optimization finds specific solutions

to set values, but cannot be used to construct reaction functions in dependance of a variable.

The path of Levhari and Mirman seems barred. These problems are circumvented by

designing a procedure which exploits the desired property of stability. What the “solver”

can do is to solve one optimal control problem from the perspective of one player at a time

(see Appendix C). For example, the tool finds the path of Russian effort which is optimal

given the development of the state and specific Norwegian control values. The designed

algorithm then switches the perspective and “solver” optimizes the exploitation pattern of

the other player, etc. The best replies of the two players are iteratively updated, each time

taking the control path from the previous optimization as given. The procedure lets the

player’s strategies converge to the equilibrium paths.

In conclusion, the method finds stable open-loop Nash Equilibria even in complex

dynamic games with payoff-relevant strategies. Contrasting the outcomes of this procedure

with the simulations of optimal sole-owner management will be the content of the next

chapter.
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Results

In contrast to the bigger part of the literature on joint exploitation of commonly owned

fisheries, both the age-structure of the stock and the impact of different fleet technologies

are taken into account. Beyond showing that the NPV can be significantly increased and

demonstrating that the strategic interaction squanders a large part of these possible gains,

the simulations could therefore highlight which technologies should be used and which

year-classes of fish should be targeted. But before presenting the results, an attempt to

draw some general conclusions shall be made.

4.1 General Observations

4.1.1 The Age of Maximum Biovalue

The cod has reached its age of maximum biovalue 9 years after recruitment to the fishery,

that is when the fish is twelve years old. In order to demonstrate this result we embark on a

thought experiment of looking at one year-class of cod only. To begin with, two concepts to

be introduced: First “natural biomass”, which, in accordance with Clark (1990), denotes

the development of the biomass in absence of fishing. Second “biovalue”, which simply

denotes the economic value of a given mass of fish.

Now imagine that a number of fish of all the same age (conveniently the age of recruit-

ment, i.e. three year old) are put in a pond. The aim is to let them grow and to reel in

the harvest at the optimal point in time. The natural biomass is their number multiplied

with their (average) weight:

X(t) = N(t)·w(t) (4.1)
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It is assumed that the number of fish develop according to the function (since there is no

mortality from fishing):

N(t) = R + e−Mt (4.2)

where N(0) = R is the number of fish we have put in the pond at the beginning. The exact

form of w(t) is of no concern, as long as the following is assured: First, w(t) is bounded

and increasing (older fish get heavier, but not indefinitely). Second, the proportional rate

of increase in weight decreases with time (the 5 year old fish grows e.g. 70% of his weight

in one year while the 10 year old only grows 25% heavier). The individual weight increases,

but the number of fish declines steadily due to natural mortality. Consequently, the natural

biomass of that single year class grows in the beginning but levels out and decrease after

some time. Differentiating the function for natural biomass (4.1) we get its growth with

respect to time:
dX

dt
= R· e−Mt·

(
dw

dt
−Mw

)
(4.3)

Equating this term to zero gives time t = t∗ when the natural biomass attains its maximum.

It follows that this holds when:
ẇ(t∗)

w(t∗)
= M (4.4)

In the case where M is set to 0.2, the fish are between 11 and 12 years old. The biovalue is

additionally influenced by the price the fish would get when they were sold on the market.

Heavier fish receive a higher price, which strengthens the overall pattern. Table 4.1 and

Figure 4.1 summarize the results. Two things appear especially noteworthy: The late age

at which biovalue of the resource is highest, and the steep rise of the natural biomass in

the beginning.

Age 3 4 5 6 7 8 9 10 11 12 13 14 15

Number in
Mill.

568,1 465,1 380,8 311,8 255,2 209,0 171,1 140,1 114,7 93,9 76,9 62,9 51,5

Weight in
kg

0,36 0,69 1,31 2,20 3,36 4,78 6,46 8,39 10,56 12,99 15,67 18,60 21,77

Proportional
growth rate

-/- 0,48 0,47 0,41 0,34 0,30 0,26 0,23 0,21 0,19 0,17 0,16 0,15

Biomass in
thousand t.

203,3 320,7 498,6 687,1 858,7 999,6 1104,9 1174,6 1211,5 1219,9 1204,6 1170,5 1122,0

Biovalue in
billion NOK

2,03 3,21 6,48 8,93 12,88 14,99 18,78 19.97 20,60 20,74 20,48 19,90 19,07

Table 4.1: Development of a single year class of cod
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Figure 4.1: Development of natural biomass

Even though the age of maximum biovalue is 12 years (or 9 years after recruitment)

this is in general not the optimal time to take the fish out of the pond. Many additional

factors influence that decision, namely the cost of harvesting, a possible time-preference,

the opportunity value of space in that pond (a new generation of fish could replace the old

one whose growth has leveled off already), etc.

4.1.2 The role of selectivity

So far, only one year-class of fish has been considered. Hence the biovalue of the stock was

the biovalue of that cohort. If we stay within our example but now suppose that every

year fresh fish are added to the imaginary pond, the biovalue of the stock would be the

sum of all the cohorts in the pond.

In order to cope with the analysis of how to target fish in multicohort populations,

the hypothetical concept of “knife-edge selectivity” is introduced (see e.g. Clark, 1990).

Recall that selectivity was defined as the probability that a fish of a given age was caught.

Knife-edge selectivity then characterizes a gear where all fish above a certain size/age are

being caught and none below. Its opposite is a completely non-selective gear which targets

all fish with equal probability.

With knife edge selectivity, the best is obviously to calibrate the gear such that only

cod of optimal biovalue are targeted. To draw an analogy to forestry economics, this is

like the selective thinning of a forest. But what should be done if the gear is completely
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non-selective? The best is then to empty the pond and let the stock replenish before the

pond is emptied again. Because it is not possible to single out the cohort with the highest

biovalue, one has to wait until the stock itself has reached an adequate biovalue. A formal

proof that periodic fishing of this sort produces a greater average yield than continuous

catch given non-selective gear can be found in Clark (1990, pp.299).

This harvesting pattern is called pulse fishing. It is much like felling a stand of trees

and then starting a new nursery. Indeed, the problem to determine the optimal period of

stock recovery is parallel to the problem of finding the optimal rotation period known from

forestry economics. The standard answer is to apply the so-called Faustmann formula (see

e.g. Samuelson, 1976; Perman et al., 2003)

Now in real life, there is neither knife-edge selectivity nor completely non-selective gears

(See section 2.2.1). Unlike the imaginary pond, the fish stock in the Barents Sea consists

of many cohorts which have been subject to fishing in varying degrees. Nonetheless, the

reasoning from the example carries over: The better it can be controlled which fish are

targeted, the more profitable a continuous catch becomes, and the less adapted the gear

selectivity is, the more worthwhile pulse fishing becomes.1 The emergence of pulse fishing

is a result of not seeing the fish as a uniform mass but acknowledging that the cod stock

is composed of many fish with individual characteristics.

4.2 Sole-Owner Exploitation with Linear Cost

4.2.1 Presentation of Results

In this section the results of the Sole-Owner optimization will be presented and contrasted

to the current harvesting pattern. The latter will be named status quo exploitation. In

order to get a feeling for the effects of continuing the current exploitation pattern for the

next 75 years, the average effort values of the last five years have been applied over the

entire time horizon. Using the Lofoten fleet with 2 million tonnage-days and both trawler

fleets with 11 million tonnage-days yields a Net-Present-Value of 79 billion Norwegian

Krones. Since the model is essentially deterministic, using the same effort lets the state

settle down after 16 years. The composition of the stock therefore remains stable with

more than half being 5 years or younger and only 12% are 9 years and older. The total

biomass is a little bit less than 2 million tons. The average harvest from the status quo

1The practicability of pulse fishing is discussed in section 4.2.2
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(a) Effort is control variable (b) Effort and mesh size are controls

Figure 4.2: Biomass and Harvest Sole-Owner optimization

pattern is about 631 thousand tons. Almost half of it is less than 7 years old. Its age

composition is more specifically Age 3-4: 4%, Age 5-6: 44%, Age 7-8: 34%, and Age 9-15:

17% (See Figure 5.1).

In contrast to the current harvesting regime, we see that the NPV can be more than

doubled if effort is chosen optimally at today’s mesh size. We see moreover that the

current mesh-size regulation is maladapted since the simulation produces fishing pulses

(Figure 4.2). This makes the average values of biomass and harvest less meaningful. But

the stock composition right before the fishing pulse is interesting: More than 65% of the

fish in the Barents Sea are older than 9 years. With each harvesting pulse, around 9 million

tons of fish are brought in. To the most part (87%) the harvest consists of cod which are

7 years and older (See Figure 5.1). Averaged over all years, the pulse fishing regime yields

a harvest which is almost 50% higher than in the status quo simulation. Concerning the

fleets, almost all effort is exercised by the Russian Trawler fleet and the Lofoten fleet is

not used at all.

When the mesh size is adapted as well, the NPV obtainable from the resource is even

higher (around 215 billion Krones). Most important, the harvest is brought in continuously

after an initial phase of stock recovery. In addition all three fleets are employed (though

the Lofoten fleet is only marginally used). Effort is reduced. The mesh size is markedly

enlarged to 186 mm for trawlers and 234 mm for gillnets. This results in a starkly different

composition of the stock: Age 3-4: 8%, Age 5-6: 19%, Age 7-8: 28%, and Age 9-15: 44%.

The average total biomass is around 5,8 million tons (almost three times as high as under

the current harvesting pattern). The annual harvest is more than a million tons, consisting



CHAPTER 4. RESULTS 38

to more than 3/4 of fish which are older than 8 years. Table 4.2 summarizes the results

from the simulations with linear costs:2

Status Quo Sole-Owner E Sole-Owner Em Game
Joint NPV 79 billion NOK 200 billion NOK 215 billion NOK 106 billion NOK
Norway Harvest 330.225 t 207.515* t 372.817 t 311.046 t
Effort Lof 2.000.000 0 771.059 0
Effort NTRL 11.000.000 2.230.608* 4.562.118 10.927.753
Russia Harvest 301.584 t 911.608* t 655.065 t 334.853 t
Effort RTRL 11.000.000 9.152.406* 10.956.255 11.707.943
Mesh size (Lof / TRL) 186/135 mm 186/135 mm 234/201 mm 186/135 mm
Total Biomass 1.974.644 t 5.300.175* t 5.791.165 t 2.011.186 t

Table 4.2: Summary of simulation results with linear cost

4.2.2 Discussion

One striking feature of the simulations outcome is the little use of the Lofoten fleet. This

is surprising because this fleet has by its setup the better adapted harvest function: It

targets only the mature fish, its gear selects mainly for fish around the stock’s maximum

biomass and in the model, it even gets to catch the fish before the trawlers can. However,

the fleet’s better selectivity does not play out strongly under the optimal regime: When

the mesh-size of the trawlers can be adapted, it loses its comparative advantage, and under

pulse fishing, the gillnets do not catch the fish effectively enough. Above all, its costs are

prohibitively high. It costs 60% more to use one unit of effort with the Lofoten fleet than

with the trawlers. Granted, the cost function is but a rough approximation, yet this finding

is accordance with the literature (Steinshamn, 1994; Sumaila, 1997a).

With respect to the two trawler fleets, the Russian fleet costs less and is obviously

preferred. Since the costs of effort grow linearly, but the harvesting function displays

diminishing returns to scale, the marginal cost of catching fish are increasing. Consequently,

the Norwegian trawlers are used as well.3

2Note that all values except the Joint NPV and the mesh sizes are averages. The asterisk marks the
occurrence of pulse-fishing which make these averages less meaningful. The values for the game are put in
gray as there does not exist a Nash-Equilibrium.

3The further in the future harvest is taking place the more Norwegian effort is involved. The reason
is that discounting lowers the present value of profits which are further in the future. This makes the
marginal consideration more important.
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The other prominent aspect is the occurrence of pulse fishing. As it has been demon-

strated in section 4.1, its cause is the mal-adaptation of the gear. Although pulse-fishing

is not as unreasonable as it may seem at first glance, it is hardly a practicable choice.

It is hard to envisage that the fishermen in the northern communities sit idle for eight

years and then fish with very high effort in the ninth year. One could very well imagine

that other fish species are caught while the cod stocks are recovering, but the practical

problem would be how to dissuade cods from swimming into the nets when hunting for

other groundfish such as e.g. plaithe or haddock. Finally, the most important aspect is the

market: Unlike lumber, fish is a perishable good. Huge investments would be necessary to

store fish for eight years. Then again selling the complete catch at once would surely hit

the bottom out of the market. In the current model prices were assumed to be constant,

but Moxnes (2002) showed that pulse fishing is less pronounced if economic feedbacks such

as a changing price are included.

However, these problems seem to be of hypothetical nature if the superiority of the

solution with an adapted selectivity is considered. Choosing mesh-size as well as effort

produces not only a larger NPV but also a steady harvest. Moreover, with a continuous

catch, the stock would remain in a healthy condition whereas it is left at vulnerably low

levels right after a fishing pulse. This is particularly relevant in the sometimes erratically

fluctuating environment of the Arctic.

Sensitivity analysis indicated that the model’s main conclusions were robust to changes

in the economic and biological parameters. However, two drawbacks on the validity of the

results should not be suppressed: First, the harvest functions are based on an extrapolation

of empirical results. The gear selectivity curves were estimated for mesh sizes between 80

and 140 mm. It is not clear whether these curves maintain their properties with respect

to the length of 50% retention and the selection range when mesh size is enlarged to over

200 mm. Second, the model is completely deterministic while uncertainty abounds in real-

ity. Especially the environmental and climatic conditions may fluctuate strongly, but also

economic conditions change. Moreover, the level of uncertainty tends to be compounded

in the future (Clark, 1990). For example, a fish stock left for re-growth may be subject to

risk of food scarcity, climatic shifts, or catastrophes such as oil spills (Zhang, 2007). The

development of the biomass until the planned fishing pulse becomes increasingly uncertain,

which may “significantly affect the optimal rotation period” (Clark, 1990, p.343). Analyz-

ing how stochasticity would change the optimal harvesting pattern is clearly beyond the

scope of this work.
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To sum up, if the NEA cod were managed by a sole-owner, an optimization results

in significant improvements of the resource usage. The age-structured model reveals the

sub-optimality of the current harvesting pattern. For unchanged gear, optimality requires

pulse fishing due to its mal-adaptation. Conversely, adapting selectivity leads to a steady

harvest of older year-classes. The growth potential of the stock would be fully exploited

in both cases but in any optimization, the best strategy is to refrain form harvesting in

the beginning but to let the stock grow. The total stock, but in particular the older age-

groups, would achieve much higher levels. Hence, the NPV derived from the resource could

be more than tripled by relatively simple means.

4.3 Competing Exploitation

While the previous section showed that dramatic economic gains may be possible with a

different harvesting regime, this section argues that competitive exploitation hinders an

improvement of the current situation. If the results from the competitive simulation lay

far above the status quo, the sub-optimality of the current situation would be mainly due

to interior management problems. Otherwise, if the current situation would prove to be

much better than the competitive outcome, the assumption of non-cooperative behavior

would have to be rejected. Neither is the case, which suggests conclusion that the current

situation is probably the result of the strategic interaction in the Barents Sea.

The argument is complicated by the circumstance that there is no stable Nash-Equilibri-

um but a limit cycle of best responses to the linear specification of the game. However, three

factors support the conclusion: First, even if there is no Nash-Equilibrium to compare to the

current harvesting pattern, the current rule to equally share the harvest, can be intuitively

explained by the instability of the situation. Second, the average of the cyclically recurring

effort path is very close to the current situation. Third, a Nash-Equilibrium is found for

quadratic costs which yields exactly the same conclusions, this is discussed in the next

section.

4.3.1 Unstable Situation in the Barents Sea

No Convergence of the Dynamic Process of Updating Best Responses

The result that competing exploitation does not lead to a stable situation is best understood

if a slightly different perspective is adopted. In the following, the solution procedure itself



CHAPTER 4. RESULTS 41

is viewed as a dynamic process. The intuition of the algorithm was to iteratively update

best responses and thus gradually approach the Nash-Equilibrium (see section 3.3). This

process is now taken as a dynamic system where the outcomes of the iterations k, k+1, . . .

describe a trajectory. Steady states of this dynamic process are Nash-Equilibria to the

underlying game. It is clear that the trajectories converges only to asymptotic stable

equilibria. Since the procedure does not converge, two statements can be made. (1) There

does not exist a global asymptotic steady state. (2) There does not exist a local asymptotic

steady state for the set of initial values.

This will be exemplified for the case where only effort is chosen (the case where effort

and mesh-size are choice variables is almost identical). The procedure is started from an

application of the “status-quo” effort values over the entire time horizon. The first player

(Norway)4 finds it optimal to vary fishing in the beginning (first investing in the stock

and then reaping the gains). Naturally, fishing is also intensified at the end of the time

horizon (see Figure 4.3a). Upon this Russia chooses a similar but more intense exploitation

pattern (See Figure 4.3b). This pattern of delaying harvest and then reaping the gains of

the investment continues and becomes stronger (Fig. 4.3c,d).

After 35 iterations, the dynamic process has settled down in 5-periodic limit cycle

(Figure 4.4). Say, at iteration step 38a, player Norway chooses to harvest at time 5, 10,

15,. . . . Then Russia would obviously want to harvest at time 4,9,14. . . (iteration 38b).

Consequently, the Norway’s best reply is to harvest at 3,8,13,. . . (iteration 39a) upon which

Russia harvests at time 2, 7, 12, . . . (iteration 39b). It is then not worthwhile for Norway

to harvests at time 1, but rather to wait until time 6 (and at time 11,16,. . . ; iteration 40a).

Russia in turn chooses then to harvest at time 5, 10, 15,. . . (iteration 40b). The process

goes on until Norway harvests at year 5, 10, 15, etc and then repeats itself. Accordingly,

for each iteration, the best response to an effort path of the opponent is to apply one’s own

effort just before the opponent takes his harvest. This behavior is immediately intuitive.

Hence, there does not exist a globally asymptotically stable Nash-Equilibrium. The pro-

cedure has been started from several initial effort values5 but in neither case the trajectories

converged. Thus there is also no local asymptotic stable Nash-Equilibrium in a reasonably

large basin of attraction, but of course there might exist an unstable Nash-Equilibrium.

Indeed, the regularity of the limit cycle suggests that there could be a steady state at its

4It does not matter whether Russia or Norway is the first player, the outcomes of the librations are the
same.

5The following initial values have been tried in addition to the status quo: (a) An effort of zero, (b) the
average effort values from the 5 recurring control paths, and (c) a doubling of the standard initial values
which would imply using so much effort that one would make a loss in every year but the first.
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(a) (b)

(c) (d)

Figure 4.3: Outcomes of the first iteration steps

core, but as argued in section 3.2, the exact values of an unstable Nash-Equilibrium are not

of great interest. The existence of an apparently stable limit cycle is however no surprise

if the system is viewed as a two-predator one prey model (see e.g. Shone, 2002). Many

examples in nature exist where predator-prey dynamics lead to stable limit cycles.

In the economic literature Dutta and Sundaram (1993) show the inclusion of strategic

interaction may lead from monotone trajectories of the first-best solution to cyclical or

even chaotic state paths. Also Meinhardt (2002) describes such kind of limit-cycle behav-

ior around unstable fixed points for sufficiently high marginal cost. The strong growth

potential of resource can have the same effect.6

6Increasing the future value of the stock plays in the same direction as high marginal cost when equating
the first-order-condition to zero.
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Figure 4.4: Limit cycle (iterations 38-43)

Conjectures about the Nonexistence of a Stable Nash-Equilibrium

The technical reason for this outcome might be that the reaction curves of the players

are not continuous. The reaction function R of player i maps for every state x and every

action of the opponent u−i, the value of his control variables which maximize his payoff.

In differential games, not one realization of the reaction function R in (x, u−i)-space but

a continuum or sequence of reaction functions through time has to be considered. The

resulting dynamic system obstructs simple explanations. In the following, we will never-

theless try to get some intuition of what is going on by inspecting the situation at any

one stage. Which are the factors that influence the choice of control at any stage t? It is

known from equation (3.5) that the first order condition for the optimal choice of effort of

player i is determined by two terms: the stage profit function (a) and the future value of

the resource stock (b):

H i(t, x, u, p) = δt·πi(xt, uit, u−it )︸ ︷︷ ︸
a

+λf(xt, u
i
t, u
−i
t )︸ ︷︷ ︸

b

for t < T (3.5′)

For an interior solution, deciding the value of the controls amounts to equalizing the

first derivative of the Hamiltonian with respect to the controls to zero. This decision is

determined by two factors, namely the state of the system at stage t and the effort of the

other player.

• If the value of the biomass is not too small, the stage profits are increasing steeply in

one’s own effort ( ∂a
∂ui > 0) until the cost of applying one more unit of effort eventually
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outweigh its gain. The future value is however strictly decreasing in the effort applied

at time t ( ∂b
∂ui < 0). If the value of the biomass is too small it is not even worthwhile

to invest any effort since the stage profit function is then negative regardless of the

effort chosen.

• Beyond a certain threshold, the stage profits and future value of the game are in-

creasing ( ∂b
∂x
> 0). The future value of the stock is however increasing at a decreasing

scale. That is, if the biomass has reached its optimal size, it does not pay to delay

harvesting any further.

Taken together, these forces imply that pulse fishing is the optimal behavior. For small

values of the state, the first-order-condition would not become zero because the future loss

implied by harvesting today would outweigh any gains. On the contrary, the first-order-

condition would not become zero for large values of the state. The reason is that for one

unit of effort employed, the future value of the stock decreases much less than the stage

profit does increases. The reasoning so far is known from the Sole-Owner optimization.

Trying to understand the influence of the other player’s effort, things become considerably

more difficult.

• Any effort of the opponent today or tomorrow decreases the future value of the

resource stock ( ∂b
∂u−i < 0). The exact timing of the effort is crucial. Since both

players face the same incentive structure, we can argue as follows: For both players

by themselves, the exploitation pattern is characterized by pulses. Moreover, if the

time point of the opponents pulse is given, the future value of the resource drops

sharply in the stage right before. The importance of the harvest’s future value is then

very little in contrast to the stage profits, while at the same time the biomass has

reached its highest possible value. Consequently, the strategic interaction reinforces

this behavior.

Hence, the solution to the marginal consideration at any stage is probably “bang-bang”

and the stage-value function of player i is not continuous. For low levels of biomass and

the other player’s effort, the future value of the stock is higher than the obtainable profits

in that stage. Consequently, no effort is applied. If the biomass has reached its optimal

size or if the opponents harvest tomorrow makes the future value very small, it is optimal

to harvest as much as possible today. In conclusion, there seems to be a “jump” in the

reaction curve which produces the observed cyclical pattern. This reasoning does of course
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not preclude that there may exist a control path which moves along the brink of these

alternatives. However, this singular control would be a unstable. Any slight deviation

would return the process to the limit cycle sketched above.

Emerging Instability Explains Equal Sharing Rule

Looking at the game itself again, the strategic interaction has two main implications: First,

the periodicity of the fishing pulses is reduced to four years from the optimal 9-year period.

Second, and most importantly, competition implies a strategic dilemma: since each player

would want to catch the fish just before his opponent takes his harvest, no one would

want to move first. Yet, the players have to take a decision, they cannot stand idle forever

waiting for the other player to make a move.

On a more abstract level, one realizes that the competitive situation resembles the com-

monly known game “rock-scissors-paper”. This game does not admit a Nash-Equilibrium

in pure strategies either and it implies the same strategic dilemma. Still both players need

to move, and they have to move at the same time. “rock-scissors-paper” does however

admit a Nash-Equilibrium in mixed strategies (assigning a probability of 1/3 to each of

Rock, Scissors and Paper). This mixed Nash-Equilibrium is not stable (Binmore, 1992).

Contrary to a game with discrete choices, it is by no means straightforward to apply

the concept of mixed strategies to games with a continuum of choices. One runs into

problems of measurability very soon (Başar and Olsder, 1995) because it is not clear how

a probability distribution over a continuous set should be designed. Hence, this avenue of

equilibria in mixed strategies is not pursued further. Nevertheless we note that, because

the emerging limit cycle of the simulation is regular, we may calculate average values of

effort.7 The resulting control path assigns a positive effort to every year. In spite of being

well aware that the constructed effort path is not a Nash-Equilibrium,8 these average values

are applied to produce a benchmark case for the juxtaposition to the status quo.

It is the strategic dilemma of this stalemate that makes the equal sharing rule of the

Joint Commission imminent plausible. If there is no way to tell what the opponent will

do, but one’s own choice crucially depends on that information, the stalemate can be re-

7This notion is quite close to mixed strategies since the average value of Norwegian effort in, say, year
8 (which is xyz tonnage days in one out of 5 iterations) is the same as saying that Norway plays with a
probability of one fifth a strategy where it applies an effort of xyz tonnage days in year 8.

8It has of course been tested that the average effort paths do not constitute a Nash-Equilibrium. They
are not best-response complete, possibly due to the imprecision of the numerical approximation. Starting
from the derived average values the process of iteratively updating best responses wanders off to the limit
cycle.
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(a) Norway optimizes given the Russian
strategy

(b) Russia optimizes given the Norwegian
strategy

Figure 4.5: Typical iteration step of the limit cycle

solved by agreeing to share the resource consentingly. This makes especially sense when

the broader situation in the Barents Sea is taken into account. As it has been elaborated

in section 2.3, a destabilization of the area has to be avoided. By jointly deciding on an

annual catch quota, the Russians and Norwegians have created a channel of communica-

tion and de-linked the issue of fisheries management from the other issues at stake. The

predetermination of the harvesting shares can be viewed as a commitment in the sense

of Schelling (Stokke and Hoel, 1991) by which it is possible to remove a major source of

instability in the Barents Sea.

Note that the game theoretical analysis of this model has been left and a more vague

line of argumentation was followed. One could ask, if the nations are able to jointly

agree on a harvesting pattern to avoid instability, why wouldn’t they agree on the optimal

pattern? The answer would be that if each nation behaves self-interestedly (which one

has every reason to assume (Barrett, 2003)) and if the optimal harvesting regime is not a

Nash-Equilibrium (which it is not), then each nation would have an incentive to secretly

overfish its share or not to enforce the quota regulation on its subjects. Recall that the

assumption of non-cooperative behavior does not mean that the players cannot talk to each

other. It simply means that they are not able to make binding agreements, and therefore

any bargaining solution must be self-enforcing (Binmore, 1992). That is, the outcome of

such negotiations must be a Nash-Equilibrium to the underlying game.
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Figure 4.6: Comparison of Status Quo and Average of the limit cycle

4.3.2 Comparison of limit cycle averages to status quo

Continuing the current harvesting pattern yields a NPV of roughly 80 billion Norwegian

Krones. The average joint NPV from the game is 106 billion Krones. Compared to an NPV

of over 200 billion Krones which were possible if the resource were managed optimally, it

becomes evident that the strategic interaction implies a huge loss (see Table 4.2).

Also with respect to effort, harvest, size and composition of the stock, it is striking

how similar the status quo and the average of the limit cycle look (Fig. 4.6). The relevant

range of comparison is roughly from period 16 to 60, where the initial disturbances have

leveled out and the end-of-the-world effect has not set in yet. The average biomass is in

both cases close to 2 million tons. The age composition of the stocks is almost identical.

The resource’s biological growth potential cannot be utilized. The Norwegian and Russian

Effort is around 11 million tonnage-days in both cases. The average harvest in that range is

640.000 tons in the status quo case and 650.000 tons for competitive exploitation. Compare

this to a harvest of 1.000.000 tons if effort and mesh size are adopted optimally. Moreover,

given the optimal management regime, the same harvested biomass yields more money

since the individual fish are much larger.

The first victim of competing exploitation is the Lofoten fleet. Optimizing its exploita-

tion pattern, the player “Norway” does not use the Lofoten fleet at all. Even though the

set-up of the game favors the Lofoten fleet (recall that the trawler fleet harvest on the

remaining stock after the Lofoten fleet has taken its catch), this result is not surprising

given the disadvantageous technology of that fleet.
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Choosing Effort and Mesh Size Does Not Change the Outcome

When the sole owner is able to control mesh size as well as effort, he can control more

directly which fish are targeted. Thus a constant catch strategy with a markedly enlarged

mesh size is optimal instead of a pulse fishing regime. The continuity of the optimal effort

path invites the speculation that the game might admit a Nash-Equilibrium where positive

effort is applied every year. This turns out to be wrong. For various initial values, the

solution procedure develops a cyclical behavior similar to the one discussed above.

Due to the rivalry, the players cannot build on their conservational efforts. They may

be contravened by their opponent. If their opponent would harvest with a small mesh size

at any time, he would not only spoil the future development of the fish stock but also

reap the gains from the investments. The players have therefore every incentive to harvest

the resource before their opponent does, as in the case where only effort is the control

variable. Only this time, the mesh size is reduced to 60 mm at each pulse, so that fish are

caught more effectively. Apart from that, the results are analogous to the simulation of

non-cooperative exploitation with only effort as choice variable.

To sum up, a situation where two nations, each completely controlling their harvest, jointly

exploit the North-East-Arctic cod would lead to a serious overuse of the resource. Its re-

plenishing potential as well as the individual fish growth would not be taken into account

sufficiently. The simulation with a linear cost specification did not lead to a stable Nash-

Equilibrium, but the iterative updating of best responses yielded a regular limit cycle

whose average values could be used as a benchmark for comparison. It was shown that

the sub-optimal outcome of competing exploitation is close to the simulation of the cur-

rent harvesting pattern, while an optimal management regime would lead to a dramatic

improvement of the gains from the resource. This suggests the conclusion that today’s

strategic situation does not allow an exploitation pattern which substantially improves on

the current regime. This reasoning is reinforced by the simulations with a quadratic cost

function.

4.4 Results of the Simulations with Quadratic Costs

When a quadratic cost function is employed instead of a linear specification, the solution

procedure finds a stable Nash-Equilibrium. The technical reason is probably that the

Hamiltonian has become continuous due to inclusion of the quadratic cost term. Because

the costs of fishing now grow exponentially, the first order condition is fundamentally
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altered: The moment where marginal cost equals marginal revenue in the state function

is reached much earlier. Because high effort soon becomes exceedingly costly, it is not

as rewarding to let the biomass grow. Thus the future value is less sensitive both to the

biomass and to the effort of the other player. Even if the other player hypothetically would

delay harvesting for some periods and then fish intensively, it would not be worthwhile for

the first player to also delay harvesting and fish one period prior to his opponent: He could

not reel in the full gains of that investment. Because this is true for both players, there will

be a continuous application of effort. It thus seems plausible that the reaction functions

of the players are well defined and intersect.

The remainder of this section presents the results of the Status Quo and the Sole-Owner

simulations with quadratic costs and contrasts these to the Nash-Equilibrium of the game.

Status Quo and Sole-Owner Simulations

Parallel to the linear cost specification, the NPV can be dramatically increased from 80

billion NOK to 156 billion NOK (choosing only effort) and 199 billion NOK (controlling

effort and mesh size). Figure 4.7 and table 4.3 summarize the result from the simulations

with quadratic cost.9

Again it shows that the current mesh size of 135 mm is maladapted as the optimization

produces fishing pulses. These are less pronounced as in the linear cost specification. As

argued above, effort becomes increasingly costly and this kind of investing in the fish stock

thus becomes less profitable. Additionally, discounting levels these pulses further in the

future (Fig. 4.7a). Then again, the simulation where effort and mesh size is controlled is

very similar to the linear specification. Being able to adapt the gear selectivity results in a

steady harvest and the optimal mesh size is around 200 mm. A notable difference between

the linear and quadratic cost specification is the use of the Lofoten fleet, which is again due

to the increasing marginal cost. Moreover, the inclusion of a fixed term in the quadratic

cost function makes the employment of all three fleets rational.

Simulations of Competing Exploitation

The game with quadratic costs admits a unique stable Nash-Equilibrium for all tested

initial values. This result holds regardless whether only effort or effort and mesh size are

controlled. Contrary to the game with linear cost, the players do not fully exploit their

9Note that all values in the table except the Joint NPV and the mesh sizes are averages. The asterisk
marks the occurrence of pulse-fishing which make these averages less meaningful.
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Status Quo Sole-Owner E Sole-Owner Em Game E Game Em

Joint NPV 79 billion NOK 156 billion NOK 199 billion NOK 106 billion NOK 106 billion NOK
Norway Harvest 330.225 t 409.451* t 531.537 t 328.387 t 327.880 t
Effort Lof 2.000.000 866.842* 1.253.221 525.604 570.131
Effort NTRL 11.000.000 4.629.585* 8.068.856 9.797.728 9.665.932
Russia Harvest 301.584 t 393.653* t 506.176 t 339.239 t 333.027 t
Effort RTRL 11.000.000 5.077.548* 8.865.767 10.428.514 10.332.503
Mesh size (Lof / TRL) 186/135 mm 186/135 mm 237/204 mm 186/135 mm 195/132 mm
Total Biomass 1.974.644 t 4.154.283* t 5.702.131 t 2.481.447 t 2.107.588 t

Table 4.3: Summary of simulation results with quadratic cost

possibility to tighten the net. The mesh size chosen in equilibrium is around 132 mm for

Trawl. This is remarkably near the current regulation of 135 mm. Therefore, the stock

and harvest composition is very similar whether m is controlled or not (see Fig. 4.7d,e).

As with linear cost, the Lofoten fleet is used much less in the game than in the first-best

case. The joint NPV of the equilibrium is finally around 106 billion Krones.

The biomass of the cod stock stays above the declared safe biological limit of 500.000 t

even in the case of competing exploitation. In contrast to Clark (1980), non-cooperative

exploitation does neither result in zero profits for one agent, nor in the complete dissipation

of rents. This is well in accordance with the literature (e.g. Sumaila, 1997b; Hannesson,

1997). The reason is the strong growth potential of the individual fish revealed by the age-

structured analysis. Intuitively speaking, the marginal-cost constraint becomes binding for

both players before the biovalue of the stock is so low that the less efficient player makes

zero profits. Sandal and Steinshamn (2004) even find that one agent needs to be twice as

efficient in order to exclude the other from the fishery.

The same conclusions from the linear cost specification carry over to quadratic costs.

They are indeed reinforced, since this specification admits a stable Nash-Equilibrium. The

first-best outcome implies a substantial economic gain from a changed exploitation pattern.

But the second-best is so close to the current situation that it might be taken as evidence

that the sub-optimality of today’s extraction pattern is mainly caused by the strategic

interaction in the Barents Sea.

Note however, that the result that the Joint Commission agrees on nothing else than

what would have been the outcome even in absence of any channel of communication does

not mean that the existence of the Joint Commission is superfluous. Quite to the contrary,

the Commission serves many other purposes as well. In particular, it provides stability in

an essentially unstable environment and most importantly, it establishes a platform from

which measures that improve on the current situation might be taken.
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(a) (b)

(c) (d)

(e)

Figure 4.7: Development of biomass and harvest for simulations with quadratic costs



Chapter 5

Policy Implications and Conclusions

The sustainable management of renewable resources such as the North-East Arctic cod

stock opens vast opportunities for human benefit. Because the fish stock occurs naturally,

its use may generate economic rents. Moreover, reaping these gains may go on forever,

since new fish grow again as old fish are caught. It is therefore important to investigate

how the exploitation level and pattern should be designed to achieve the highest utility

from the resource. However, it is not obvious whether these opportunities can be realized.

Competition between stakeholders at various levels may ruin the incentives to harvest

responsibly and to invest in the future. The present work has concentrated on the two

nations Russia and Norway as the principal actors and has asked how the resource would

be exploited if each nation’s managers completely control their exploitation but are unable

to make binding agreements.

In order to fully acknowledge the possibilities created through optimal management,

the age-structure of the cod stock needs to be taken into account. It is not sufficient to

summarize its biomass by one parameter. This thesis benefits from a biological model

which does not only describe the development of a cohort’s biomass through time, but also

incorporates broader ecosystem aspects in its recruitment function. Building on this rich

and solid biological fundament, an economic model was constructed which explicitly ac-

knowledges that fish are targeted by different fleets with different gears at different places.

The bio-economic model was simulated over a period of 75 years. Greater realism came at

the expense of analytic tractability, and the analysis of the optimal and competitive regime

of catching cod in the Barents Sea had to rely on numerical approximation. In spite of its

realism, the model remains a highly stylized abstraction. Beyond that, a non-cooperative

game model must make even more heroic assumptions about human behavior. Its role
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must therefore stay merely suggestible. As McKelvey et al. (2007, p.182) nicely phrase it,

such a model can only be “a window into an artificial world – one which, we hope may, in

some ways resemble our own.”

The results of the Sole-Owner optimization show that there could be substantial economic

gains vis-à-vis the status quo. In particular, the current harvesting pattern does not allow

the cod to fully unfold its individual growth potential. Hence, the fish caught today are

inefficiently small. An adequate representation of older year-classes in the yield could be

attained for a mesh-size of 135 mm if the stock is harvested every ninth year and is allowed

to recover in the meantime. Alternatively, a continuous harvest with a mesh size adjusted

to roughly 200 mm would lead to an optimal age composition of the stock. The latter

harvesting regime would utilize all three fleets while the pulse fishing regime would be

carried out mainly with Russian trawlers and no use of the Lofoten fleet.

Figure 5.1: Harvest composition

Either optimization would lead to more than a doubling of the obtainable NPV. In

addition to producing the higher NPV, the continuous catch policy would satisfy manage-

ment objectives beyond economic returns. It could help to provide stability in a fluctuating

environment or preserve cultural values and existing settlement patterns. The policy im-

plication are thus clear: The mesh size should be substantially increased while effort should
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be slightly reduced. If this were somehow technically not feasible, the exploitation pattern

should be changed altogether to pulse fishing. However, whether these recommendations

can be put to work at all depends on various issues:

First of all, the national managing authorities have to respect diverse and potentially

conflicting needs in their respective jurisdiction. There do not only exist conflicts of interest

among different groups of fishermen employing different types of gear; views diverge on

how the ocean should be used in general. Some may want to draw the most money out

of it as quickly as possible, while some maintain a more cautious approach and underline

the importance of a non-market valuation such as leisure activities, other again may see

the ocean as one of the last refuges of the “wild” which should best be left untouched

altogether. Secondly, the inter-state interaction between Russia and Norway is neither

confined to fisheries management, nor does it take place in the void. Open conflicts need

to be avoided in the broader political situation of the Barents Sea. Finally, the joint

exploitation of a shared resource creates externalities. If no supreme authority can enforce

an internalization or no binding commitments can be made, the harvesting pattern of the

first-best outcome will not be feasible in general.

This thesis has analyzed the situation in the Barents Sea as a non-cooperative dynamic

game. A procedure has been designed which finds stable Nash Equilibria in such games.

However, competing exploitation does not lead to a stable situation in the case of linear

costs. In contrast, a Nash-Equilibrium is found with a quadratic specification of the cost

function. Both cases indicate that a large part of the possible resource rents are squandered.

In fact, it seems plausible that the current exploitation pattern is the outcome of non-

cooperative exploitation. Thus, the aforementioned policy recommendations cannot be

readily implemented.

International relations are much more complex than the simple structured game theory

suggests. Even if there is no possibility to make binding agreements, there are many

facets in the relations between Russia and Norway that facilitate negotiations. There is

a need to publicly agree or at least not to disagree in a way which would destabilize the

situation. Moreover, the interaction has continued and will continue for a long time and

the negotiators may have gotten to know each other personally. The various stakeholders

may have developed a common understanding of the issue. Last but not least, the strategic

interaction neither leads to an endangerment of the species nor does it imply zero profits

for one of the countries. Hence, focusing on relatively simple measures might be more

rewarding than trying to overcome the fundamental rivalry. A possible first step could be
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the enlargement of the mesh size, which would lead to a more beneficial stock composition.

This may in turn alter the incentive structure and thus enable the negotiators to coordinate

on a superior harvesting regime which was not attainable earlier (Barrett, 2003).

Carefully analyzing these possibilities is an interesting avenue for further research. Ven-

turing deeper in the gray area between cooperative and non-cooperative game theory seems

especially rewarding (Lindroos et al., 2007). Integrating the sub-national level and analyz-

ing the situation as a two-stage coalition game would have the advantage of abandoning

the assumption of perfect controllability. By including aspects of fishermen compliance

one could bridge the gap to evolutionary theories and take a broader perspective on what

is meant by optimal management. Beyond that, more effort should be put in determining

a disaggregated cost function for the cod fishery. This is highlighted by the dependence

of the qualitative result on the specification of the cost function in an otherwise robust

model. Finally, one could fully exploit the possibilities of the biological model and ask how

the underlying incentive structures change with regards to climatic fluctuations or fisheries

induced evolution.

In conclusion, the simulations of this thesis have shown that, on the one hand, the eco-

nomic value derived from the NEA cod may be dramatically increased through a changed

management regime, but that, on the other hand, a non-cooperative strategic situation

does not allow much of this improvement. The thesis asked a normative and a descrip-

tive question. It constructed a detailed model which aimed at a specific situation, but

allowed to draw some general conclusions. In the course of this bottom-up approach many

assumptions were made in a top-down manner. Especially the self-interested behavior of

the agents is neither meant as a description of reality nor prescription for action. On

the contrary, cooperation is fundamental to social interaction. Whether it is a rare or a

common good shall not be judged here. But there is no doubt that cooperation is needed

to overcome the social and environmental challenges that face humanity. And there is no

doubt that cooperation is possible, for without it, we would not be where we are.
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Appendix

A The Biological Model

This work is part of a larger project at the Centre for Ecological and Evolutionary Syn-
thesis (CEES), University of Oslo. The biological model was adapted from a more general
background which stems from hitherto unpublished work of Dag Hjermann (pers.comm).

Originally, these functions depended on time as they incorporate links to climatic and
ecosystem conditions. In order to focus on the essential aspects, the model is taken to be
deterministic and the characteristic of a given cohort are summarized by static parameters
(see 2.1). Although 5 year old cod will thus weigh 1,3 kg whether in 2005 and in 2057, it
is important to keep in mind that these parameters are the outcomes of specific functions,
which allow the model to be extended to address further questions. Interesting directions
could be for example to study the effects of a warming temperature or to make the model
stochastic in general. In the following, the form and the coefficients of the functions that
give length-at-age, weight-at-age and the maturity probability are presented.

Length-at-age is needed because the fishing mortality (the probability of getting caught)
depends on the size of fish. In general, variation of length-at-age between years is quite
large and there is a pronounced cohort-effect, and therefore length-at-age is explained
by two functions. First, the length of the cod entering the fishery (at age 3) is mainly
depending on the abundance of capelin one year ago.

l3,t = α + β· capt−1 (A.1)

Second, after entering the fishery, the average growth of cod in one year depends positively
on its length and capelin abundance in the year before as well as on its age.

la,t = α + β· la−1,t−1 + γ· capt−1 + δ·Agea, a = 4, 5, ..., 15 (A.2)

Coefficient Std. Error t-Stat R squared
Intercept 30,66 1,15 26,6 0,32
capt 1, 425e−3 4, 33e−4 3,28

Table A.1: Length at age 3
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Coefficient Std. Error t-Stat Adj. R squared
Intercept 9,5536 0,969 9,85 0,97
la−1,t−1 0,772497 0,052 14,64
capt 0,000362 0,0001 2,91
Agea 1,90339 0,533 3,56

Table A.2: Length at age

Weight-at-age, which determines the price of a fish, is a function of age itself, length-
at-age, capelin abundance (all entering negatively) and the interaction between age and
length-at-age (entering positively):

wa,t = α + β·Agea + γ· la,t + δ· capt + ε·Agea· la,t (A.3)

Coefficient Std. Error t-Stat Adj. R squared
Intercept 1,466 0,568 2,58 0,96
Agea -0,5329 0,122 -4,36
la,t -0,02582 0,011 -2,26
capt -0,000069 1, 64e−4 -4,20
Agea· la,t 0,015404 1, 56e−3 9,61

Table A.3: Weight at age

Finally, maturity probability which determines the spawning stock, is influenced mainly
by length and the temperature three years earlier following the functional form:

mata,t =
exp(α + β· la,t + γ· tempt−3)

1 + exp(α + β·La,t + γ· tempt−3)
(A.4)

Coefficient Std. Error z-value
Intercept -13,318 2,874 -4,63
la,t 0,13157 0,024 5,31
tempt−3 0,92276 0,493 1,87

Table A.4: Maturity probability
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B Econometrics

The regressions were carried out using the data analysis tool pack in Excel. The “known
y’s” were the indexed total cost (base year 2000) from the respective categories out of the
profitability surveys (Fiskeridirektoratet, 1998-2002). The “known x’s” were constructed as
a multiplication of the GRT of the categories’ average vessel times its days-at-sea. Where
days-at-sea was not available, the industries average for that year was used. First the
industries overall cost-effort relation was estimated (Fig. 2.2). As it can be seen, a linear
cost function is able to explain 98% of the variation.

Coefficient Std. Error t-Stat R squared Observations
cost 195,47 3,98 49,08 0,977 57

Table A.5: Regression all categories

Then the fleet specific cost parameters were estimated (Fig. 2.3 and 2.4). The problem of
few aggregated observations and the circumstance that the R squared has little explanatory
power was already pointed out in the main part. Nevertheless, the coefficients were again
significant at the 5% level.

Coefficient Std. Error t-Stat R squared Observations
costLof 315,29 12,927 24,39 0,985 10
costTRL 190,89 9,553 19,98 0,978 10

Table A.6: Regression fleets

C Documentation of Computer Code

The model from section 2.1 and 2.2 has been incorporated in a Microsoft-Excel spreadsheet.
This does not only enable the numerical optimization, using the Frontline Solver, but it
also eases the manipulation and modification of the model and its parameters. Moreover,
the visuality of the Excel-interface allows the complex model structure to be easily adapted
and modified to answer different research questions.

The biological part of the model is contained in the top part of the spreadsheet (Columns
A-CI and Rows 1-42). See also the screen shot for the status quo (Figure C.1). The
parameters for weight, length, and maturity as well as the parameters for the recruitment
and stock-development function are placed in front. The vectors giving the number of fish
(in million) run from column J-CI (year 2002-2079). The cell O12 for example specifies the
number of 5 year old cod in 2007, which are a function of cell M11, the fishing mortality F
and the natural mortality M according to equation (2.1). The fishing mortality is the link
between the biological and the economic part of the model. It is given first as observed
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values in the beginning and from year 2006 on (column N-CI, Row 44-56) it is the sum of
FLof , FNTRL, FRTRL.

The economic part is contained in the lower part of the spreadsheet. For each fishery,
the values for cost, prices and discount factor are given in the first columns, while the
crucial part of the model is placed in column M-CI. There, the age-specific fishing mortality
is defined as a consequence of the respective gear-selectivity (determined by the choice
variable m, Row 87, 122, and 157) and effort (Row 88, 123, and 157). For each fleet, the
control variables are chosen so as to maximize the discounted profit (sum of the value of
age-specific harvest minus cost). The sum of all discounted profits of the fisheries is finally
summarized in cell L90, L125, and L160.

The numerical optimization tool “solver” can be controlled via Visual Basics for Appli-
cations (VBA) in Excel. Its configuration is exemplified for the Sole-Owner optimization
where effort and mesh-size are controls:

Sub Sole-Owner-Em()

SolverReset erases all previous selections and restores the default values
SolverOk loads the solver and has the following mandatory arguments

SetCell:=”$C$49”, this cell will be objective
MaxMinVal:=1 the option 1 means “maximize”
ByChange:= ”$M$157:$CI$158,$M$122:$CI$123,$M$87:$CI$88” the cell ranges of control variables

SolverAdd adds a constraint to the current problem
cellRef:=”$M$158:$CI$158”, cell range forming the left-hand side of the constraint, here: effort values
relation:=3, “greater or equal”
formulaText:=”0” right hand side of the constraint, here: 0

–//– more constraints are added...
SolverGRGOptions command for setting options such as the max number of iterations,
–//– convergence criteria, etc. The specific arguments are omitted as they are
–//– of no general interest
SolverSolve carries out the actual optimization

UserFinish:=True if set to TRUE, the solution is returned without displaying a dialog box
End Sub
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Also the code for the procedure which finds the Nash-Equilibrium by iteratively updating
best replies was written in VBA. It is outlined below:

Sub Competing-Exploitation()

i = 1

Do Until i = 51 starting the loop (50 iterations are run here)
Sheets(”Game”).Select beginning the procedure with player1 (Norway) erasing his previous effort
Range(”CI88”).Select and filling in start-values
ActiveCell.FormulaR1C1 = ”2.000.000” / Range(”CI88”).Select

Selection.AutoFill Destination:=Range(”M88:CI88”), Type:=xlFillDefault

Range(”CI123”).Select / ActiveCell.FormulaR1C1 = ”11.000.000”

Range(”CI123”).Select / Selection.AutoFill Destination:=Range(”M123:CI123”), Type:=xlFillDefault

SolverOk ... letting the solver optimize for player Norway
... SolverSolve(UserFinish:=True)

Range(”M88:CI88”).Select the resulting effort values are documented to a seperate sheet
Selection.Copy / Sheets(”Documentation1”).Select / Cells(3 * i, 4).Select / Selection.Paste

–//– the same is then repeated for player Russia
i = i + 1 advancing the iteration counter
Loop returning to the top until i=51

End Sub
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(a) Screenshot of Rows 1-61

(b) Screenshot of Rows 58-116

Figure A.2: Excel Worksheet, linear specification
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