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Abstraction 

 

Bowhead whales is an endangered species but they are still hunted by Inuits. How to 

protect the endangered species and at the same time fulfill people’s need is an important 

topic in economics. Resource economics and Welfare economics are two branches of 

economics and both of them give some answer. However, economic efficiency may not be 

preferred because it doesn’t lead to society welfare in realities. Considering the bowhead 

whale problem, a simulation was done in this paper to find the catch limit which can 

fulfill the Inuits’ need and meanwhile, protect the whale from extinction. 

It is very important to make clear the structure of the stock to protect the biodiversity 

of the species. Chukchi Circuit hypothesis was put forward and Jorde. et. al (2004) found 

the “Oslo bump” of the pair-wise microsatellite differences in data from whales landed 

during the autumn migration at Barrow. The simulation of BCB whale migration 

hypothesis based on Dirichlet distribution has never been made before and will be done in 

this paper. 54 samples landed at Barrow in Autumn were studied, with genetic 

measurement on 11 loci. The results show that to get a neat bump, very extreme 

parameter will be required. 
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Chapter 1  Introduction 

 

Over the past three decades, we have become increasingly aware of environmental 

problems facing communities, nations, and the world. Species extinction is one of these 

problems. Most of the species extinctions from 1000 AD to 2000 AD are due to human 

activities, in particular destruction of plant and animal habitats. Some studies show that 

about one of eight known plant species is threatened with extinction. This figure indicates 

unsustainable ecological practices. Almost all scientists acknowledge that the rate of 

species loss is greater now than at any time in human history, with extinctions occurring 

at rates hundreds of times higher than background extinction rates. 

Should we allow the hunting of endangered species?  The answer that springs to 

mind is probably, "Of course not!".  However, issues such as these are much more 

complicated in real life. The bowhead whale has been declared an endangered species, but 

it is also an animal traditionally hunted by the Inuit, which is not only a source of food, 

but also part of their culture. Should they still be allowed to hunt the whales and how far 

should we go to protect the animals?  

The bowhead whale in the Bering-Chukchi-Beufort Seas(BCB) were killed in large 

numbers for their large quantities of baleen and oil. In 19th century, Victorian crinolines 

made from baleen plates came out of fashion and a large number of bowhead whales were 

killed. Fig1-1 is the number of bowhead whales killed from 1848 to 2004. In 1850 and 

1852, more than 2000 Bowhead whales were killed each year. It was absolutely a kind of 

depredation. There was no record in 1855 and 1856. In the following 50 years since 1857, 

the number of the Bowhead whales killed every year has been around 300 to 500 steadily. 

Whaling had not been effectively stopped until 1915 due to poor catch rates and collapse 

of markets(Bockstoce, 1986; Bockstoce & Burns, 1993). The Bowhead whale has been 

officially protected since 1946 by International Whaling Committee (IWC). However, 

these whales are still harvested in Alaska by Inuits. Currently the stock is estimated to 

hold about 8,000-12,000 bowhead whales world-wide[1]. 
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Fig1-1 BCB bowhead whale killed from 1848 to 2004 (IWC) 

 

Many elements of uncertainty may be able to affect the whale’s fertility rate, such as 

the feeding place, the environmental pollution, the sudden climate changes and so on. 

When the uncertainty is larger, the danger of extinction is larger and more conservative 

management is needed. The purpose of the management is to guarantee the sustainable 

growth of the whale’s population and in the meantime meets people's needs. According to 

IWC reference (J. Cetacean Res. Manage.7 (suppl). 2005, pp18), the Committee has until 

recently been unable to provide a satisfactory management advice. A management 

procedure for determining catch limit has been developed by the IWC scientific 

committee. In October 2002, the catch limits given below were agreed for the 

Bering-Chukchi-Beaufort Seas stock of bowhead whales at a Special Meeting of the 

Commission: A total of up to 280 bowhead whales can be landed in the period 2003 - 

2007, with no more than 67 whales struck in any year (and up to 15 unused strikes may be 

carried over each year).  
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A species is usually divided into many small groups, which have their own habit 

areas. The smaller the group, the higher risk of extinction will be with the same level of 

uncertainty. Due to uncertainty with respect to population structure (Jorde et al, 2004), the 

implementation of the management procedure will be reviewed in 2007. If the population 

turn out to be composed of two or more sub-stocks, the additional safeguards must be 

developed to ensure that no sub-population is being severely depleted in the long run. 

Five different stocks are presently recognized within the species’ distribution range. 

These stocks were all subject to extensive commercial hunting in the 19th century, and the 

BCB stock is the only one that is recovering successfully after commercial whaling ended 

in 1914 (Bockstoce, 1986; Bockstoce &Burns, 1993). BCB bowhead whales stay in arctic 

waters, making a northern migration in the spring to rich feeding waters. They migrate 

south again in the fall to breed and calve. Knowledge of its social behaviour, including 

the route of migration, is limited because they can be observed for only part of the year 

due to adverse weather conditions and ice cover in winter.  

The current dominant hypothesis about the feeding migration of the BCB Bowhead 

whales is Baseline Hypothesis: they migrate in one group along the Alaskan coast to the 

Beaufort Sea in spring and back again in fall. However, according to Russian 

observations and oceanographic data, there might be two distinct patterns in feeding 

migration for whales wintering in the Bering Sea (Melnikov 2004; Bogoslovskaya 2003), 

which leads to Chukchi Circuit hypothesis:  

There are two sub-populations, which are set to be E and W migrate in different 

ways:  

E-bowheads migrate in spring along the Alaskan coast to the Beaufort Sea and back 

again in fall. They pass Barrow at each migration, and are subject to harvest there. 

The W-whales leave the Beering Sea in late May and June and heads northwest on 

the Chukotka coast. Some summer further north and migrate south the Barrow canyon 

and passes Barrow on their way back to the Beering Sea in the autumn. Most of the 

commercial catch in 1848-1914 was also taken in central and western Bering and Chukchi 

Seas, which supports the existence of a western compound of the population. 
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Fig 1-2 Map of the western Arctic showing the range of the BCB stock of bowhead 

whales. 

 

In migration, whales are hunted for subsistence by aboriginal peoples, primarily in 

Alaska. Of the ten villages that hunt in Alaska, Barrow is the only community that 

harvests bowheads both during the spring and autumn migration, and lands about 70% of 

the total catch. According to traditional Inuit knowledge, both in spring and fall, bowhead 

whales pass Barrow in three pulses. If Chukchi Circuit hypothesis is right, then one of the 

fall pulses might be a W-pulse. A pattern based on pair-wise microsatellite differences is 

evident in data from whales landed during the autumn migration at Barrow. Larger 

genetic differences occurred when paired samples were 5-11 days apart than they were 

0-5 or 12-25 days apart. This pattern is hardly consistent with the population being well 

mixed. (Jorde et al, 2004) The pattern is named “The Oslo Bump”. The Oslo bump might 

have resulted from temporal segregation between two population compounds at Barrow in 

the fall migration. 

Dirichlet distribution is usually used to simulate the genetic structure. The simulation 

of BCB whale migration hypothesis based on Dirichlet distribution has never been made 
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before. In this study, I have constructed a genetic model based on Dirichlet distribution, 

with which to simulate the distribution of microsatellite alleles in bowhead whales. The 

null hypothesis that there is only one migration route was tested based on the simulation 

result. 

I will first review very briefly some basic genetics to help the reader understand how 

genetics data can be used to study a possible segregation in the bowhead whale 

population. Biodiversity is the diversity of life and is very important to our human being. 

I will discuss briefly the threats to biodiversity and the management to it. Then I will 

review the Dirichlet distribution and its special case, the Beta distribution. 

In Chapter 3, I will explain how potential genetics data can be simulated by the 

Dirichlet distribution, and how simulation can help to investigate whether the observed 

pattern found by Jorde et al (2004) and called the Oslo bump is consistent with the 

particular hypothesis of stock structure and differential migration called the Chukchi 

circuit hypothesis. 

In Chapter 4, I will try to discuss how to fulfil people’s need, which is an important 

topic of economics. I will introduce the answer given by resource economics and welfare 

economics and put forward the difficulties in realities. 

In Chapter 5, I will bring together what I found in Chapter 3-4, and give my very 

brief and tentative simulation and conclusions with respect to the economics of need and 

ecological constraints in the case of bowhead whales for Alaskan Inuits. 
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Chapter 2  Genes, Biodiversity and Dirichlet Distribution  

Introduction to genes 

A gene is a stretch of DNA (deoxyribonucleic acid) coding for a polypeptide chain.     

A protein is made up of one or more polypeptides. DNA is present in all cells. The genetic 

information in DNA is coded in the sequence of four nucleotides, abbreviated according 

to the identity of the nitrogenous base that each contains A, G, T or C. DNA molecules 

normally consist of two complementary helical strands held together by pairing between 

the bases: A in one strand is paired with T in another and G in one strand is paired with C 

in another. The entire DNA in a cell is collectively called the genome. Genome size is 

typically expressed as the amount of DNA in a reproductive cell (sperm or egg), and it 

differs greatly among species. 

Genes are arranged in linear order along microscopic threadlike bodies called 

chromosomes. A typical chromosome contains several thousand genes. The position of a 

gene along a chromosome is called the locus of the gene. At each locus there may be 

different sequence of information which leads to the difference in every individual of the 

group. All these different sequence are called alleles.  

 

 Fig.2-1 Gene Structure: chromosome, locus and allele 
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Fig.2-2 Gene Expression 

 

The process of creating proteins from the genetic code in DNA is called gene 

expression, which is shown in Fig1-3. This process is done by the help of RNA 

(ribonucleic acid). First, the DNA untangles itself by the help of some special enzyme and 

copies one of its strands to RNA by the rule: A is paired with U and G is paired with C. 

There is U in RNA instead of T. Then RNA goes out of cell and enters cytoplasm where 

the protein is created. In the translated part of the messenger RNA, each adjacent group of 

three nucleotides constitutes a coding group, which specifies a corresponding amino acid 

subunit in the polypeptide chain. (Wikipedia) 
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Hardy-Weinberg equilibrium 

Diploid means each individual cell contains two copies of each type of chromosome, 

one inherited from its mother through the egg and one inherited from its father through 

the sperm.  These two copies are the alleles of the gene in that individual. If the two 

alleles at a locus are same (indistinguishable according to any particular experimental 

criterion), then the individual is homozygous at the locus under consideration. If the two 

alleles at a locus are distinguishable, then the individual is heterozygous at the locus. 

(Jeffrey K. Conner,2004) 

If we mate two individuals that are heterozygous (e.g., Bb) for a trait, we find that  

� 25% of their offspring are homozygous for the dominant allele (BB) 

� 50% are heterozygous like their parents (Bb) 

� 25% are homozygous for the recessive allele (bb) and thus, unlike their parents, 

express the recessive phenotype. 

This is what Mendel found when he crossed monohybrids. It occurs because Meiosis 

separates the two alleles of each heterozygous parent so that 50% of the gametes will 

carry one allele and 50% the other. When the gametes are brought together at random, 

each B/b carrying egg will have a 1 in 2 probability of being fertilized by a sperm 

carrying B/b: 

 

 0.5B 0.5b 

0.5B 0.25BB 0.25Bb 

0.5b 0.25Bb 0.25bb 

 

If the frequency of two alleles in an entire population of organisms is not exactly the 

same, will it stay stable? Let us take as a hypothetical case, a population of hamsters in 

which  

• 80% of all the gametes in the population carry a dominant allele for black coat (B)  

• 20% carry the recessive allele for gray coat (b).  
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Random union of these gametes (right table) will produce a generation:  

 0.8B 0.2b 

0.8B 0.64BB 0.16Bb 

0.2b 0.16Bb 0.04bb 

 

Will gene b eventually disappear? No, because all the gametes (child) formed by BB 

will contain allele B as well and one-half the gametes formed by heterozygous (Bb). So, 

80% (0.64 + 0.5*0.32) of the pool of gametes formed by this generation with contain B. 

All the gametes of the bb group (4%) will contain b but one-half of the gametes of the 

heterozygous (Bb) will as well. So 20% (0.04 + 0.5*0.32) of the gametes will contain b. 

The proportion of allele b in the population has remained the same. The heterozygous 

group ensures that each generation will contain 4% gray hamsters. 

Now let us look at an algebraic analysis of the same problem using the expansion of 

the binomial (p+q)2. Since (p+q)2 = p2 + 2pq + q2  which indicates: 

• p + q = 1  

o p
2 = the fraction of the population homozygous for p  

o q
2 = the fraction homozygous for q  

o 2pq = the fraction of heterozygous  

In our example, p = 0.8, q = 0.2, and thus (0.8 + 0.2)2 = (0.8)2 + 2(0.8)(0.2) + (0.2)2 = 

0.64 + 0.32 + 0.04 .The algebraic method enables us to work backward as well as forward. 

So the recessive genes do not tend to be lost from a population no matter how small their 

representation is, so long as certain conditions are met (without mutation, genetic drift, 

migration and natural selection). The gene frequencies and genotype ratios in a 

randomly-breeding population remain constant from generation to generation which is 

known as the Hardy-Weinberg law in honor of the two men who first realized the 

significance of the binomial expansion to population genetics and hence to evolution. 

(Hardy, 1908, Stern, 1943) 
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Biodiversity 

Biodiversity is the diversity of life, which means the variety and variability of all 

living organisms and the ecological complexes of which they are parts. It includes genetic 

diversity, species diversity and ecosystem diversity (Wikipedia): 

genetic diversity ------  diversity of genes within a species. There is a genetic 

variability among the populations and the individuals of the 

same species.   

species diversity ------ diversity among species in an ecosystem. 

ecosystem diversity --- diversity at a higher level of organization, the ecosystem. 

If the gene is the fundamental unit of natural selection, according to E. O. Wilson, the 

real biodiversity is the genetic diversity. 

 

The Importance of biodiversity 

Biodiversity has contributed in many ways to the development of human culture, and, 

in turn, human communities have played a major role in shaping the diversity of nature at 

the genetic, species, and ecological levels. The contribution can be classified in two ways: 

ecological role of biodiversity and economic role of biodiversity.  

All species provide at least one function in an ecosystem. Each function is an integral 

part of regulating the species balance, species diversity and species health: all aspects 

which are intrinsic for the ecosystem as a whole to survive and prosper. Ecosystems also 

provide various infrastructures of production (soil fertility, pollinators of plants, predators, 

decomposition of wastes...) and services such as purification of the air and water, 

stabilization and moderation of the climate, decrease of flooding, drought, and other 

environmental disasters [12].  

Research suggests that a more diverse ecosystem is better able to withstand 

environmental stress and consequently is more productive. The loss of a species is thus 

likely to decrease the ability of the system to maintain itself or to recover from damage or 

disturbance [12]. Just like an ecosystem with high biodiversity, a species with high 
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genetic diversity may have a greater chance of adapting to environmental change. In other 

words, the more species comprising an ecosystem, the more resilient and stable the 

ecosystem is likely to be.  

For all humans, biodiversity is a resource for daily life. Many see biodiversity as a 

reservoir of resources to be drawn upon for the manufacture of food and pharmaceutical 

products. Since biological resources represent an ecological interest for the community, 

their economic value is also increasing. New products are developed because of 

biotechnologies, and new markets created. For society, biodiversity is also a field of 

activity and profit.  

Finally, biodiversity is important because each species can give scientists some clue as 

to how life evolved and will continue to evolve on Earth. In addition, biodiversity helps 

scientists understand how life functions and the role of each species in sustaining 

ecosystems. The availability of unique genetic material for each living species may have 

incalculable value as evidenced by medical and genetic research that can lead to 

discoveries that may reduce mortality. 

 

Threats to biodiversity 

Elevated rates of extinction are being driven by human consumption of organic 

resources, especially related to tropical forest destruction. While most of the species that 

are becoming extinct are not food species, their biomass is converted into human food 

when their habitat is transformed into pasture, cropland, and orchards. Because an 

ecosystem decreases in stability as its species are made extinct, studies warn that the 

global ecosystem is destined for collapse if it is further reduced in complexity. Factors 

contributing to loss of biodiversity are: overpopulation, deforestation, pollution (air 

pollution, water pollution, soil contamination) and global warming or climate change, 

driven by human activity.  

Some characterize loss of biodiversity not as ecosystem degradation but by 

conversion to trivial standardized ecosystems (e.g., monoculture following deforestation). 

In some countries lack of property rights or access regulation to biotic resources 
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necessarily leads to biodiversity loss (degradation costs having to be supported by the 

community). 

The widespread introduction of exotic species by humans is a potent threat to 

biodiversity. When exotic species are introduced to ecosystems and establish 

self-sustaining populations, the endemic species in that ecosystem, that have not evolved 

to cope with the exotic species, may not survive. The exotic organisms may be either 

predators, parasites, or simply aggressive species that deprive indigenous species of 

nutrients, water and light. These exotic or invasive species often have features due to their 

evolutionary background and environment that makes them very competitive, and 

similarly makes endemic species very defenseless and/or uncompetitive against these 

exotic species. 

The rich diversity of unique species across many parts of the world exist only 

because they are separated by barriers, particularly seas and oceans, from other species of 

other land masses, particularly the highly fecund, ultra-competitive, generalist 

"super-species". These are barriers that could never be crossed by natural processes, 

except for many millions of years in the future through continental drift. However 

humans have invented ships and airplanes, and now have the power to bring into contact 

species that never have met in their evolutionary history, and on a time scale of days, 

unlike the centuries that historically have accompanied major animal migrations. As a 

consequence of the above, if humans continue to combine species from different 

eco-regions, there is the potential that the world's ecosystems will end up dominated by a 

very few, aggressive, cosmopolitan "super-species" [12]. 

 

Biodiversity management 

The conservation of biological diversity has become a global concern. Although not 

everybody agrees on extent and significance of current extinction, most consider 

biodiversity essential. At national levels a Biodiversity Action Plan is sometimes prepared 
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to state the protocols necessary to protect an individual species. Usually this plan also 

details extant data on the species and its habitat. 

There are basically two main types of conservation options, in-situ conservation and 

ex-situ conservation. In-situ is usually seen as the ideal conservation strategy. However, 

its implementation is sometimes unfeasible. For example, destruction of rare or 

endangered species' habitats sometimes requires ex-situ conservation efforts. Furthermore, 

ex-situ conservation can provide a backup solution to in-situ conservation projects. Some 

believe both types of conservation are required to ensure proper preservation (Wikipedia). 

An example of an in-situ conservation effort is the setting-up of protection areas. 

Examples of ex-situ conservation efforts, by contrast, would be planting germplasts in 

seed banks. Such efforts allow the preservation of large populations of plants with 

minimal genetic erosion.  

 

Introduction to Gamma distribution  

A gamma distribution is a general type of statistical distribution that is related to the 

beta distribution. The general formula for the probability density function (pdf) of the 

gamma distribution is: 

      (2.1) 

where  is the shape parameter,  is the location parameter,  is the scale parameter, 

and  is the gamma function which has the formula: 

             (2.2) 

The case where = 0 and = 1 is called the standard gamma distribution. The 

equation for the standard gamma distribution reduces to  

          (2.3) 

The formula for the cumulative distribution function of the gamma distribution is  
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          (2.4) 

where  is the gamma function defined above and  is the incomplete gamma 

function. The incomplete gamma function has the formula  

             (2.5) 

The method of moments estimators of the gamma distribution are  

         

where  and s are the sample mean and standard deviation, respectively. 

The following is the plot of the gamma probability density function [2]. 

 

 

Fig. 2-3  the p.d.f of  some Gamma distributions 5.0=γ ,1,2,5 
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Introduction to Beta distribution 

The general formula for the p.d.f of the beta distribution is: 
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The case where a = 0 and b = 1 is called the standard beta distribution. The equation 

for the standard beta distribution is  
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The following is the plot of the beta probability density function for four different 

values of the shape parameters [2]. 

 

 

Fig. 2-4  the p.d.f of some Beta distributions 
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If and are independent random variables with a gamma distribution having 

parameters ),( 1 θα  and ),( 2 θα , then )/( 211 XXX +  is a beta distribution variable with 

parameters ),( 21 αα . This can be derived as follows:  
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Introduction to Dirichlet distribution 

In the model, the probabilities of the alleles at each locus are assumed to be Dirichlet 

distributed. The probability density of the Dirichlet distribution for 

variables ),( 1 nppP L
r
=  with parameters ),( 1 nααα L=  is defined by: 
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The parameters iα can be interpreted as prior observation counts for events 

governed by ip . The normalization constant )(αZ  is: 
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Proof: Since the marginal distribution of pi is Beta distributed ( ii ααα −0, ): 
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parameters iα  grows, ατα ×=′ : 
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When τ  goes up, )var( ip  will decreases. The pdfs of the Dirichlet distribution with 

certain parameter values are shown in the following figure [2]. 

 

 

5.0=α  

 

1=α  

 

2=α  

 

16=α  

Fig. 2-5  the p.d.f of some Dirichlet distributions ( ααα == 21  ) 
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CHAPTER 3  Simulation of “Oslo bump” 

 

The genetic method is powerful in species research and the lack of Hardy Weinberg 

equilibrium in the BCB population sampled at Barrow might indicate there being a 

mixture of two genetically distinct population compounds (Jorde et al, 2004).  In this 

chapter, I will build gene pools by Dirichlet distribution and simulate the distribution of 

microsatellite alleles in bowhead whales.  

 

The observation data and the distribution hypothesis 

The 54 whale samples landed at Barrow in fall, with genetic measurement on 11 loci 

(Tv7, Tv11, Tv13, Tv17, Tv19, Tv20, Ga28, Ev1, Tv14, Ev104, Tv16) in the 

micro-satellite (Jorde et al, 2004), are studied. The whale samples are distributed in 10 

years: 

 

Fig. 3-1.  Population allocation by year and day. 
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The whales’ period of migration changes from year to year. To facilitate the 

comparison, the data are moved to a same middle day for every year: 

2

))(_)(_(
)(_

yeardaylastyeardayfirst
yeardayMiddle

+
=  

Fig. 3-2 is the figure after the data was moved to a same middle day. It shows that the 

migration period lasts about 15 to 30 days.  

 

 

Fig. 3-2.  Population allocation after moving to the same middle day. 

 

It is difficult to find any pattern from the data in one year. To count the number of 

whales in each day, all the data in the same day was aggregated first and the result was 

depicted in Fig. 3-3.  
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Fig. 3-3.  The number of whales by day of year, centered within year 

 

It shows that most of the whales come in a period from the 290th day to the 310th day 

in a year and there are two peak points ------ the 295th and the 305th day respectively, with 

a valley between them. However, at the 300th day a small peak also shows up. This is 

proved by the traditional Inuit knowledge, which says that both in spring and fall, 

bowhead whales pass Barrow in three pulses. If Chukchi circuit hypothesis is right, we 

can imagine that there are two E groups pass Barrow strait around the 295th and the 305th 

day of the year respectively, while a small W group pass Barrow strait between them.  

Assuming the pulses having a normal distribution over days, in the sense that the 

expected number of whales passing Barrow in a particular day is proportional to: 
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The mean µ  should be the peak day, the variance σ  indicates how long the whale 



 26 

pulse lasts and the n stands for how large the pulse is. A fitting hypothesis is given first to 

the observing data in Fig. 3-3: 

 

 

Fig. 3-4. Sample distribution and hypothetical composition 

E-whales come in to pulses, solid line 

W-whales come in a middle pulse, broken line 
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Fig. 3-5.  The probability PE(t) (the solid line) and PW(t) (the broken line) 

 

Based on the distribution of E and W-groups, we can judge which group that every 

whale sample belongs to. The probability of a whale passing Barrow at day t belongs to 

E-group can be calculated by the following function: 

)()(

)(
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tDtD

tD
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WE

E
E +

=  , 

and the corresponding probability of a whale belongs to W-group is: 

)(1)( tptp EW −= . 

Then for each sample at day t, a random number which is uniformly distributed in the 

interval (0,1) is given by the computer and compared to PW(t). When the random number 

is larger than PW(t), the simulated whale is assigned to be in E-group, otherwise the whale 

is assigned to be in W-group. Fig. 3-6 depicts the belonging of each whale sample by 

using the above category method. 
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Fig. 3-6.  E and W population 

(E-group is described by “o” and W-group is described by “*”) 

 

From this figure, we can see the W-group mainly distributed from 295 to 305, while 

some of the E-group is also distributed in this interval.  

The program is “Whale_DataPro_Main.m” 

 

The construction of gene pools 

The model used in this paper should be stochastic with respect to the genetic 

composition in the two hypothetical populations E and W, and thus also with respect to 

the genetics of the sampled individuals in each simulation run. In each run, the gene pools 

in E and W are respectively generated by two draws from a common Dirichlet distribution. 

Each of the sampled whales is then randomly assigned with genes drawn from the E-pool 
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with probability )(tpE  and from W-pool with probability )(tpW , in which t is the day 

of sampling.  

At each locus of the individual’s gene, the distribution of the alleles is supposed to 

follow a Dirichlet distribution across the populations. The parameters of the Dirichlet 

distribution can be interpreted as “prior observation counts” and are estimated from the 

data as the observed frequencies coupled with a speculative value of iα : 

∑
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frequency
α , mi L,2,1=  

m is the number of unique alleles in the locus. The following table is an example for one 

of the locus, say TV16: 

 

allele 184 186 190 192 

frequency 7 160 57 10 

iα  0.0299 0.6838 0.2436 0.0427 

Table. 3-1. Probability iα at locus TV16 

  

The allele distribution in a gene pool is for each locus drawn from a Dirichlet 

distribution: 
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Thus for each locus a Dirichlet distribution is constructed. Two independent Dirichlet 

gene pools are constructed for E- and W -group respectively. The gene pool for E group is 
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generated as one draw from this distribution, as is the gene pool for W group. 

The method to assign alleles to individual whales is essentially the same as each 

individual is assigned E- or W-group in the simulation. Since the whale is diploid, it 

inherits one gene from its mother and another gene from its father, which are supposed to 

belong to the same pool. After population assignment is done, two independent draws 

(one for each parent) from the same gene pool is carried out for each locus.  

 

The genetic difference between the two individuals 

The observed pattern called the Oslo bump was recognized when pair wise genetic 

distance was plotted against days between catch within year. For two sampled whales 

taken d days apart, a measure of genetic distance a aggregated over loci was calculated. 

The plot of a versus d showed a bump centred at d is about 7 days. Now, I will explain the 

genetic distance a.   

Consider a pair of individuals i and j. Since the whale is diploid, then at each locus, 

comparing each of the two genes in individual i to those in individual j makes up four 

comparisons. There can be 0, 1, 2 or 4 matches, which are summarized in Table 3-2.  

 

Iij = 4 
Whale i (a,a) 

Whale j (a,a) 
Iij = 1 

Whale i (a,b) 

Whale j (a,c) 

Iij = 2 
Whale i (a,b) 

Whale j (a,a) 
Iij = 0 

Whale i (a,b) 

Whale j (c,d) 

Iij = 2 
Whale i (a,b) 

Whale j (a,b) 
  

Table. 3-2. Genetic difference 

 

The number of matches, Iijk, for whale pair (i,j) at locus k is contrasted to the 

locus-specific frequency of identity among genes within individuals. By averaging over 

loci with non-missing values, a measure of pair-wise genetic difference between the two 
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individuals can be obtained (Rousset, 2000): 
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in which Lij is the number of loci that were successfully scored in both individuals i and j. 

hk is the average homozygosity, which is the average of all individuals in the questioned 

sample at a single locus: 

∑
=

=
n

i

ik qh
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where iq  is the empirical frequency of the allele in the samples. For example, if 3 of 

the total 54 simulated whales are of genotype (6 6), (6 7), (6 6) at locus Tv7, while none 

of the remaining 51 have allele 6,  then the empirical frequency of the 6th allele of Tv7 is 

5/108. We can prove that the expectation of Iij/4 equals h, that is, hIE ij =)4/( by 

Hardy-Weinberg law under random mating in a mixed population. The probability of 

one of the four combinations to be “aa” is: 
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≠ ≠≠

++−+
ab acb

cbbaaa pppppp 2)1(2 22  ∑=
i

ip
2 ,  where ∑

=

=
n

i

ip
1

1. 

Since there are four possible combinations in each situation, we can get: 

hpIE
i

iij 44)( 2∑ ==  

Sometimes, kh  may equal 1 when iα  is small. This should not be a surprise since 

the probability is quite high that one allele will be predominant, which means almost all 

the members in the species will have this allele. To avoid computational error in the 

program, a judgment was introduced to let a = 0 when hk = 1.  

 

Simulation Results and Analysis 

The whole program can be expressed by the following structure diagram: 

For different distribution hypothesis p_E and p_W: 

For every τ , do the following 100 times: 
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Fig. 3-7. Program structure diagram. 

 

 

 

For each locus, draw p_E and p_W from the Dirichlet distribution 

specific for the locus to make two gene pools 

 

One population, draw genes for 

each sample  

(null hypothesis) 

For two population, assign 

randomly sampled whales to 

population according to Pw 

Calculate the genetic difference 

aij for all pairs within year 

Calculate the genetic difference 

Aij for all pairs within year 

Fit a smooth function (lowess) 

to the scatter 

Fit a smooth function (lowess) 

to the scatter 

Results for null hypothesis Results for Chukchi Circuit 

hypothesis  

Find the quantile band for 

null hypothesis 

Find the average value for 

the results 

Draw figure 
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As we have mentioned before, when 'α was defined as ατα ×=′ , ∑ = 1ikα for 

each locus k. Different values ofτ  leads to different results. In the present case, τ  was 

first set to be 0.1, 0.5, 1.0, 1.5 and 2.0. The results in the format of the scatter of pair wise 

genetic difference by days apart are showed in following figures: 

 

 

Fig. 3-8. Simulation result when τ =0.1 

Two populations, days apart. 
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Fig. 3-9. Simulation result when τ =0.5 

 

 

Fig. 3-10. Simulation result when τ =1.0 
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Fig. 3-11. Simulation result when τ =2.0 

 

 

Fig. 3-12. Simulation result when τ =10 

The program is “Whale_GenePro_Main.m” 
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From the figures above, it is clear that there are more positive points in the range of 3 

to 12 days. When the interval exceeds 20 days or diminishes to 0, the values of the 

pair-wise difference becomes remarkable small. When day apart is 0, the average of Aij is 

negative. According to the definition of Aij: 

∑ −

−
=

k k

ijkk

ij

ij
h

Ih

L
A

1

4/1
 

where ∑= 2

ik qh , and 0≥iq  , ∑ = 1iq , we can prove 1<kh . So Aij will be 

small when ijI  is large. The results indicate ijI  is large when days apart are 0 or 20 

days and we can conclude that there are more genetic matches then. When we calculate h, 

individuals from two groups were considered because of the hypothesis. This causes h to 

be smaller than the expectation of Iij when the day apart is 0. The average of Aij is positive 

when day apart is in the range of 3 to 12 days and this indicates that ijI  is small there are 

more differences between pair wise genes. 

From the variance formula (2.14), the variability in the Dirichlet distribution is large 

for small values of τ . In the case the two draws from the Dirichlet distribution tend to be 

much different, an E-whale will then tend to be genetically much different from an 

W-whale. Pairs of whales are most likely of type EW when days apart is about one week. 

This explains Fig. 3-8. 

Whenτ  becomes larger, the values of the pair wise genetic difference becomes 

smaller as shown in the figures above. The changing of the genetic difference with τ  

can be seen clearly from the following Fig. 3-13, in which the standard deviation of aij 

was plotted against τ . 
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Fig. 3-13. The standard deviation v.s different τ  

(hypothesis 0 means null hypothesis) 

 

To avoid accident result, the pairwise genetic difference was simulated for 100 times 

at eachτ and the average value was obtained. To demonstrate the general trend of the data, 

lowess function is used to get a smooth line. Fig. 3-14 depicts the results of pair wise 

genetic difference averaged for 100 times’ simulation when τ =1.0.  
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Fig. 3-14. Average result of 100 times simulation when τ =1.0. 

(The solid line shows the fitness result by using the lowess function) 

 

To compare the results from the null hypothesis and Chukchi circuit hypothesis, each 

τ  was simulated 100 times under both hypothesises. The trend from Chukchi circuit 

hypothesis was compared with the 50%, 90%, 95% and 99% quantile of result from null 

hypothesis at eachτ , that is the pointwise simulation. The following figures are the 

pointwise simulation results for τ =0.1, 0.3, 0.5, 1.0, 1.5 and 2.0 respectively: 
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Fig. 3-15 Simulation result with pointwise band when τ =0.1 

 

 

Fig. 3-16 Simulation result with pointwise band when τ =0.3 
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Fig. 3-17 Simulation result with pointwise band when τ =0.5 

 

 

Fig. 3-18 Simulation result with pointwise band when τ =1.0 
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Fig. 3-19 Simulation result with pointwise band when τ =1.5 

 

 
Fig. 3-20 Simulation result with pointwise band when τ =2.0 

The program is “test_1.R” 
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From the figures; first we can see that the variance of the Chukchi circuit hypothesis 

is much bigger than that of null hypothesis. The genetic differences are obviously larger 

when paired samples were 5-11 days apart than they were 0-5 or 12-25 days apart. 

Second, the curve of Chukchi circuit hypothesis becomes flat when τ  becomes big.  

Third, the null hypothesis can not be rejected at 95% significance level when τ >1.0. 

So it is important to study how much the genetic variance should be. In genetics, 

dissimilarity indexes (Fst) is used to indicate the molecular variance. It is calculated in the 

following way: 

 

 

 

There should be a functional relationship )(τgFst = . A program was built up and the 

simulation result is shown in the following Fig. 3-21. In the paper (LeDuc et al. 2005), 

they estimated the genetic difference between these two populations and give Fst=0.062.  
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τ  

Fig. 3-21 The relationship between Fst and τ , 11 loci were used 

The program is “Fst.R” 

 

In Fig. 3-21, when Fst=0.062, 10>τ  and this caused that the null hypothesis can 

not be rejected at 95% significance level, just as showed in Fig. 3-22. The ppoints 

analysis when 0.1=τ  and  10=τ  are showed in Fig. 3-23 and Fig. 3-24.  

 

Fig. 3-22 Simulation result with pointwise band when τ =10.0 
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A probability-probability (P-P) plot is used to see if a given set of data follows some 

specified distribution. It should be approximately linear if the specified distribution of 

alternative hypothesis follows the null hypothesis. The probability-probability (P-P) plot 

is constructed using the theoretical cumulative distribution function, F(x), of the specified 

model. The values in the sample of data, in order from smallest to largest, are denoted 

x(1),x(2),.....,x(n). For i = 1, 2, ....., n, F(x(i)) is plotted against [(i – ½)/n] 

 

 

Fig. 3-23 ppoints analysis when 0.1=τ  
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Fig. 3-24 ppoints analysis when 10=τ  

The program is “Whole Programe in R” 

 

The ppoints figures show that with the increasing ofτ , the trend becomes more linear, 

which means there is less difference between alternative hypothesis and null hypothesis. 

Then, a different distribution hypothesis is used to compare its influence on the result. 

The new hypothesis doesn’t move the samples less than two in a year and the W group is 

smaller than that in the first hypothesis: =1µ 293, =1σ 2.5, t1＝1; =2µ 300, 5.22 =σ , 

t2＝1; 3073 =µ , =3σ 2.5, t3＝1. 

The new distribution hypothesis and the whale samples were drawn in Fig. 3-25 and 

the results are showed in Fig. 3-26 and Fig. 3-27: 
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Fig. 3-25  new distribution hypothesis 
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Fig. 3-26 20 simulation results 10=τ  
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Fig. 3-27 Simulation result 10=τ  

 

 

Fig. 3-28 ppoints analysis when 10=τ  
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Comparing the results of the two different distribution hypothesis, the curve of the 

second distribution hypothesis is much more significant than that of the first distribution 

hypothesis.  

 

Summary 

 A framework for simulating the Chukchi Circuit hypothesis has been developed to 

investigate whether a plausible variants of the hypothesis is consistent with the observed 

Oslo bump. To get a bump neatly as marked as that found by Jorde et al (2004) rather 

extreme parameter values are required in the case I have considered. I therefore suggest 

that the Chukchi Circuit hypothesis cannot alone explain the observed pattern. 
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Chapter 4  The Economics of need 

 

How to fulfill people’s need is an important topic in Economics. Needs are defined as 

goods or services that are required, which include the needs for food, clothing, shelter and 

health care. Wants are goods or services that are not necessary but we desire or wish for. 

Sometimes needs and wants overlap.  For example, cake is a food, but it is a want, not a 

need. In general, you need a basic diet to survive, but that diet doesn’t need to include 

cake. An important part of the economics is the distribution of resources or goods so that 

people's needs are met. This is especially true in times of scarcity when there are not 

enough resources, goods or services. 

The objective of resources management should be achieving efficiency and at the 

same time, giving attention to equity. Taking care of posterity must be also set as a moral 

obligation and sustainability constraints have to be included in the optimality problem. 

 

Answer by resource economics  

Resource economics and welfare economics are two branches of economics. They 

answer the question of how to fulfill people’s need in different ways. Resource economics 

has evolved as the idea of "natural resources" and "human resources" were challenged by 

the ideas of "natural capital" and "human capital". It was a major influence on the theory 

of “Natural Capitalism” and of “eco-villages” [18]. Three themes are emphasized in 

resource economics about resource management: efficiency, optimality and sustainability.  

Economic efficiency is a general term for the value assigned to a situation by some 

measure designed to capture the amount of waste or "friction" or other undesirable 

economic features present. There are several measures of economic efficiency such as 

Pareto efficiency, productive efficiency and distributive efficiency.  

However, the economic concept of efficiency is not the only thing that a society 

might care about. In particular, the theorem says nothing about the distributional equity of 

the outcome. Economic efficiency means that the "correct people" (those who can afford 
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it) will get the "correct goods and services" (whatever they want). It may allocate 

resources to people who are the most successful at gaining social power. The rich may get 

richer and the poor may get poorer. Someone even think "Economic efficiency" means 

"economic anarchy" (no government regulations). It leads to "Social Darwinism" -- 

survival of the economically fittest -- the rest can suffer and die. 

Economics optimality means a society maximizing its overall objectives under 

relevant constraints. According to second welfare theorem, resource allocation cannot be 

optimal without being efficient, which is necessary, but not sufficient.  

The society’s overall objective may not concern the welfare of its posterity’s. In this 

situation, sustainability cannot be fulfilled. It is especially critical to the nonrenewable 

resources and the dying off species. Taking care of posterity must be set as a moral 

obligation and sustainability constraints have to be included in the optimality problem. 

According to first welfare theorem, any competitive equilibrium leads to an efficient 

allocation of resources [20]. This theorem appears to make a case for non-intervention: let 

the markets do the work and the outcome will be desirable. The theorem is often taken to 

be an analytical confirmation of Adam Smith's "invisible hand" hypothesis, namely that 

competitive markets tend toward the efficient allocation of resources.  

In realities, it is very difficult to find an equilibrium point between equity and 

efficiency. Take building bridge for an example. It is much more efficiency to give the 

contract to a company and let the company to manage it. However, it may be unfair to the 

people living in the near villages. They are poor and have to pay for every time passing 

the bridge. This is a problem happening in the developing countries like China. 

Development leads to unjust. It is believed that along with the development of economics, 

the market will allocate the resources to be more and more reasonable and the unjust will 

be lessened.  

It is the government’s duty to make the decision. Most of the developing countries 

are anxious to develop their economy and overlook the bad consequences. Gradually, 

people will realize the development of economy is not the only object and it will not 

necessarily lead to human happiness. 
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Answer by welfare economics 

Welfare economics is another branch of economics that uses microeconomic 

techniques to simultaneously determine the allocational efficiency of a macroeconomy 

and the income distribution consequences associated with it. Welfare economics concerns 

the welfare of individuals as opposed to groups, communities and societies and supposes 

the welfare can be adequately measured in monetary terms. There are two sides to welfare 

economics: economic efficiency and income distribution. 

One important measure of efficiency in welfare economics was Abba Lerner's 

proposed distributive efficiency. Situations are considered to have distributive efficiency 

when goods are distributed to the people who can gain the most utility from them. Many 

economists use Pareto efficiency as their efficiency goal. According to this measure of 

social welfare, a situation is optimal only if no individuals can be made better off without 

making someone else worse off. This ideal state of affairs can only come about if four 

criteria are met [20]: 

• The marginal rates of substitution in consumption are identical for all consumers. 

This occurs when no consumer can be made better off without making others 

worse off.  

• The marginal rate of transformation in production is identical for all products. 

This occurs when it is impossible to increase the production of any good without 

reducing the production of other goods.  

• The marginal resource cost is equal to the marginal revenue product for all 

production processes. This takes place when marginal physical product of a factor 

must be the same for all firms producing a good.  

• The marginal rates of substitution in consumption are equal to the marginal rates 

of transformation in production, such as where production processes must match 

consumer wants.  

There are a number of conditions that, most economists agree, may lead to inefficiency. 

They include: 

• Imperfect market structures, such as a monopoly, monopsony, oligopoly, 
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oligopsony, and monopolistic competition.  

• Factor allocation inefficiencies in production theory basics.  

• Market failures and externalities; there is also social cost.  

• Price discrimination and price skimming.  

• Long run declining average costs in a natural monopoly.  

• Certain types of taxes and tariffs.  

To determine whether an activity is moving the economy towards Pareto efficiency, 

two compensation tests have been developed. Any change usually makes some people 

better off while making others worse off, so these tests ask what would happen if the 

winners were to compensate the losers. Using the Kaldor criterion, an activity will 

contribute to Pareto optimality if the maximum amount the gainers are prepared to pay is 

greater than the minimum amount that the losers are prepared to accept. Under the Hicks 

criterion, an activity will contribute to Pareto optimality if the maximum amount the 

losers are prepared to offer to the gainers in order to prevent the change is less than the 

minimum amount the gainers are prepared to accept as a bribe to forgo the change. The 

Hicks compensation test is from the losers' point of view, while the Kaldor compensation 

test is from the gainers' point of view. If both conditions are satisfied, both gainers and 

losers will agree that the proposed activity will move the economy toward Pareto 

optimality. This is referred to as Kaldor-Hicks efficiency or the Scitovsky criterion [16]. 

A Pareto efficiency does not necessarily mean equity. Suppose a society with two 

men, a rich and a poor. The rich owns all and the poor has nothing. This is the Pareto 

efficiency of this society because we can not make the poor better off without making the 

rich worse off except that we can move the production frontier outward.  

The basic welfare economics problem is to find the theoretical maximum of a social 

welfare function, subject to various constraints such as the state of technology in 

production, available natural resources, national infrastructure, and behavioral constraints 

such as consumer utility maximization and producer profit maximization. To attain equity, 

the utility of the poor is seen to be greater value than that of the rich when a social welfare 

function is built by summing up the utility of each individual. 
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Theoretically, the optimal solution of the welfare function can be solved but in 

realities, it is almost impossible to solve a question like that because there are millions of 

consumers and thousands of producers, each of whom has his own utility function and 

production function. Even if you can find a solution to the complicated mathematical 

function, the result means little to an actual problem. 

To sum up, the resources management’s objective should be achieving efficiency and 

at the same time, giving attention to equity, the welfare of this generation and our 

posterity.    The rankings of allocation must be based on ethical criterions. Culture 

background must be taken into consideration when building utility functions.  

For an example, we can study the consumption of whales by Inuit and other people in 

an Edgeworth box: 

 

 

Fig. 2-1  An Edgeworth box 

  

The Pareto efficiency is achieved when the marginal rates of substitution in 

consumption are identical to the Inuit and other people in this world. The marginal rate of 

substitution in consumption should also equal to the marginal rate of transformation in 

production. Take sustainability into consideration, the marginal rate of the present value 

Other goods 

whale Inuit 

Other people 
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should be equal to the marginal rate of cost, the Hotelling’s rule of a renewable resource.  

Tax and quota can be used in resource management [18]. Assuming the utility 

function is f(x), the tax rate is t, maximize the utility:  

Max {f(x) – tx} 

)(xft ′=⇒  

Which means the tax rate should be equal to the marginal acquisition of the utility of the 

consumer at amount x.  

Inuit is poor and we can not use tax on them. However, we can give them subsidies 

for not consuming. The subsidy rate is s. To maximize their utility: 

)()( 0xfxf − = increased utility from consumption 

)( 0xxs −   = paid subsidy 

{ })()()( 00 xxsxfxfMax −−−  

)(xfs ′=⇒  

This is the same as the tax rate. 

 

Difficulties 

In realities, there are some difficulties in fulfilling people’s need. First, it is quite 

difficult to distinguish needs from wants because the difference between them is so fuzzy. 

It depends on the people’s purchasing power and the cost of production, the marginal 

utility of money. Different people have different standard. To the poor, they may have to 

live in a 5 m2 room and eat bread all day. But to a millionaire, he may need big houses 

and a dozen cooks to make meal for him and his friends. What’s more, the standard varies 

along with the time and place. In a rich harvest year, almost everyone can have barely 

good food. But in a bad harvest year, someone has to suffer hunger. In Europe, there is 

plenty of water, but in African desert, a bath can be a luxury.  

Second, it is difficult to value the things in this world. It fully depends on how people 

need it, in another world, how much people would like to pay for it. What is the price of a 
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beautiful sunset, a clean blue crystal sea, a song of a happy bird in the woods, the life of a 

dignity whale? The whale may be very important to the Inuit but means nothing to a 

businessman in Beijing. This will influence the environment policy since most of the 

people do not concern the things far away. 

Third, the economics tries to constrain its subject to be resources allocation, 

production, distribution and consumption. This is to avoid infringing on other disciplines, 

such as politics and sociology. Economists are trained to believe that "money" has nothing 

to do with politics and is simply a medium of exchange. But even the casual observer can 

see that money is a social power because it empowers people to buy and do the things 

they want -- including buying and doing other people: politics. In fact, economists do 

appeal to bring together all kinds of people, thinkers, activists, academics and policy 

makers, businessmen, economists and campaigners, writers and opinion formers to work 

for their ideal, which is politics.  

Fourth, the human society is perhaps the most complicated organization we have ever 

met. Everyone has his own sentiment, thought, and beliefs. What’s more, there are 

customs, traditions, cultures and religions around us. We cannot evaluate them precisely 

and we don’t know how these things will affect us. The bowhead whales, for an example, 

should certainly be protected as an endangered and dignity life. However, we must 

consider the need of the Inuit’s because it is not only a food resource of them, but also a 

culture. 
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Chapter 5  The simulation on bowhead whale management 

 

In the following, I will do some simulation based on Pella-Tomlinson model. First, if 

the growth parameter r is a constant, we can find the maximum we can catch per year. If 

the growth parameter varies, the risk of extinction goes up and I will try to estimate the 

probability at different number of harvest. 

Assuming the stock of the whales follows Pella-Tomlinson model, and there is a 

random noise in r: ')( 0 rrtr += . According to IWC, 0r  is about 0.03 and let 

)04.0,0(~' Nr . The simulation shows that the population growth will change greatly.  

 

 

Fig. 5-1  The Pella-Tomlinson model with noise in r, without consumption 

(K = 20000,  X0 = 1000,  r = 3%,  )04.0,0(~' Nr  z1 = 1,  z2 = 5) 

The program is “Fish Management: Pella_Tomlinson_seq.m”,  
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If we let the Inuit to consume a fix amount whales in the future, what will happen 

when r is a constant r and a variable.  

))(1(1

zt
ttt

K

X
rXXY −+=+  and ttt CXY +=+1  

First, we can find the maximum number C(t) which will make the whale stock constant in 

the future if r is a constant: 

 

 

Fig. 5-2  The simulation result when r is a constant 

(K = 20000,  X0 = 8000,  r = 3%,  z1 = 1,  C=144) 

The program is “Fish Management: constant and variable.m” 

 

The simulation result shows that 144 whales can be caught each year to keep the 

stock constant in the future. However if there is noise in r, the risk of extinction will be 

higher: 
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Fig. 5-3  The simulation result when there is a noise in r 

(K = 20000,  X0 = 8000,  r = 3%,  z1 = 1,  C=120) 

The program is “Fish Management: constant and variable m” 

 

Fig. 5-3 shows when there is a noise in r, the species will die off after 80 years if we catch 

120 whales per year. We have to catch less per year to prevent this happen which is 

showed in Fig. 5-4 as the catch number decrease to 100 per year. 
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Fig. 5-4  The simulation result when there is a noise in r 

(K = 20000,  X0 = 8000,  r = 3%,  z1 = 1,  C=100) 

The program is “Fish Management: constant and variable m” 

 

However, both of the figures are the random results of one-time simulation. They 

can’t be used to determine the risk of extinction. To study the risk of extinction, I 

simulated 50 times and calculate the frequency of extinction at each catch number.  
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Fig. 5-5  The relative frequency of extinction 

By constant harvest level 

(K = 20000, X0 = 8000, r = 3%, )01.0,0(~' Nr ,  z1 = 1,   

n=50 simulation for each constant level of catch) 

 

Regress the probability (Y) on the catch number (X):  

Y = 0, for X <= 76,   

Y =β1X+β0, for X > 76  

⇒  =1β 0.006416, =0β -0.488342 

Which means it is almost safe to catch less than 80 whales per year. When the number is 

more than 80, the risk of extinction will increase 0.6% if one more whale is caught. 

If there is a bigger noise in r, then a higher risk of extinction will be. The Fig. 5-6 is 

the simulation result when )04.0,0(~' Nr . 
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Fig. 5-6  The relative frequency of extinction 

By constant harvest level 

(K = 20000, X0 = 8000, r = 3%, )04.0,0(~' Nr ,  z1 = 1,   

n=50 simulation for each constant level of catch) 

 

 

Regress the probability (Y) on the catch number (X) and we can get: 

=1β 0.004925, =0β -0.045059 

Which means it is not safe to catch any whales. The risk of extinction will increase 

0.49% if one more whale is caught. 

On the other hand, if the stock is smaller, the risk of extinction will go up with the 

same harvest level. The following figure shows if there are only 4000 whales in stock, the 

safe catch limit should be less than 40 per year. 
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Fig. 5-7  The relative frequency of extinction 

By constant harvest level 

(K = 20000, X0 = 4000, r = 3%, )01.0,0(~' Nr ,  z1 = 1,   

n=50 simulation for each constant level of catch) 

 

The program is “Fish Management: statistics.m” 

 

To sum up, the risk of extinction depends on the variability of the growth rate r and 

the population of stock. What will influence the variability of r? There are many factors, 

such as the chance of a male meeting a female, the chance of pregnancy, the pollution and 

the change of climate may cause the food supply decline and so on. These unknown 

factors will make it difficult to estimate r. 

The population of the stock is another determining factor. If the stock is proved to be 

a smaller one, a more conservative policy should be implemented. 
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Conclusion 

Constant harvest rate seems dangerous. We really don’t know the stochastic element 

in the population dynamics. 

The adaptive procedure developed by the AWMP group seems reasonable. It sets the 

quota equal to the stated need (the quota required by the Inuits) if abundance estimates 

catch series and further biological information indicates that this catch limit is sustainable 

in the long run. If however the rather complicated calculations indicate this not to be the 

case, a lower catch limit is found that seems sustainable. 

If the Chukchi Circuit hypothesis can be proved to be true, then the catch limit has to 

be reconsidered in order to prevent the extinction of a small sub stock. 
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Appendix   Programs 

 

% Ch3 

% Whale_DataPro_Main.m (m is the suffix of programs in Matlab) 

clear; 

 

global data3; 

global E_hyp_p; 

global W_hyp_p; 

 

%data of observe and with same media 

data3=whale_observe; 

%aggregate whale data 

data_agg=aggregate(data3); 

%hypothesis probability 

mu_1=293; 

mu_2=300; 

mu_3=306; 

delta_1=3.5; 

delta_2=3; 

delta_3=5; 

R1=0.44; 

R2=0.41; 

R3=1; 

[E_hyp_p,W_hyp_p]=hypo_prob(mu_1,mu_2,mu_3,delta_1,delta_2,delta_3,R1,R2,R3); 

for i=1:10; 

    j=1; 

    while data3(i,j)>0; 

        P_W=W_hyp_p(data3(i,j)); 

        Prob_whale=rand(1); 

        if Prob_whale>P_W             

            Whale_E(i,j)=1; 

            Whale_W(i,j)=0; 

        else             

            Whale_E(i,j)=0; 

            Whale_W(i,j)=1; 

        end 

        j=j+1; 

    end 

end 

figure(6); 

plot_E_W(Whale_E,Whale_W,data3); 

hold off 
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% whale_observe.m 

function data3=whale_observe() 

data2=[303  304  305  305  306  312  312  318  319  320  322  322  323  324  325  326  327  0 

       311  314  314  0    0    0    0    0    0    0    0    0    0    0    0    0    0    0 

       297  299  300  306  0    0    0    0    0    0    0    0    0    0    0    0    0    0 

       318  0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0   

       300  0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0 

       284  287  290  291  292  293  0    0    0    0    0    0    0    0    0    0    0    0 

       281  282  285  285  285  285  288  290  290  293  295  295  299  0    0    0    0    0 

       277  326  0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0 

       276  277  277  289  0    0    0    0    0    0    0    0    0    0    0    0    0    0 

       306  314  0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0]; 

 

figure(1); 

plot_whale(data2); 

hold off; 

%same median time  

for i=1:10; 

    k=0; 

    j=1; 

    while data2(i,j)>0; 

        k=k+1; 

        j=j+1; 

    end 

    medial_data(i)=floor((data2(i,1)+data2(i,k))/2); 

    for j=1:k; 

        data3(i,j)=data2(i,j)+(300-medial_data(i)); 

    end 

    data3(i,k+1)=0; 

end 

 

 

% plot_whale.m 

function plot_whale(day); 

for i=1:8; 

    j=1; 

    while day(i,j)>0; 

        Tu_1_i(j)=day(i,j); 

        Tu_1_j(j)=2003-i; 

        j=j+1; 

    end 

    plot(Tu_1_i,Tu_1_j,'o'); 

    hold on; 

end 
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for i=9:10; 

    j=1; 

    while day(i,j)>0; 

        Tu_1_i(j)=day(i,j); 

        Tu_1_j(j)=1992-(i-9)*2; 

        j=j+1; 

    end 

    plot(Tu_1_i,Tu_1_j,'o');     

end 

 

 

% aggregate.m 

function data_agg=aggregate(data3) 

k=1; 

for i=1:10; 

    for j=1:17; 

        if data3(i,j)>0; 

            data_4(k)=data3(i,j); 

            k=k+1; 

        end 

    end 

end 

data_agg=sort(data_4); 

data_agg(54)=0; 

%give number according to day 

i=1; 

j=2; 

k=1; 

while data_agg(i)>0; 

    data_num(k)=data_agg(i); 

    num_day(k)=1; 

    while data_agg(i)==data_agg(j); 

        num_day(k)=num_day(k)+1; 

        j=j+1; 

    end 

    i=j; 

    j=j+1; 

    k=k+1; 

end 

figure(3); 

plot(data_num,num_day,'o'); 

axis([270,330,0,10]); 
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% hypo_prob.m 

function [E_hyp_p,W_hyp_p]=hypo_prob(mu_1,mu_2,mu_3,delta_1,delta_2) 

for i=270:330 

    E_hyp_1(i)=hypo_distribution(i,mu_1,delta_1); 

    E_hyp_2(i)=hypo_distribution(i,mu_3,delta_1); 

    W_hyp_1(i)=hypo_distribution(i,mu_2,delta_2); 

end 

E_hyp=E_hyp_1+E_hyp_2; 

 

figure(4); 

i=1:330; 

plot(i,E_hyp,'-',i,W_hyp_1,':'); 

axis([270,330,0,0.1]); 

set(gca,'xtick',[270,280,290,300,310,320,330]); 

%hyp_probability 

for i=270:330; 

    E_hyp_p(i)=E_hyp(i)/(E_hyp(i)+W_hyp_1(i)); 

    W_hyp_p(i)=W_hyp_1(i)/(E_hyp(i)+W_hyp_1(i)); 

end 

figure(5); 

i=1:330; 

plot(i,E_hyp_p,'-',i,W_hyp_p,':'); 

axis([270,330,0,1]); 

set(gca,'xtick',[270,280,290,300,310,320,330]); 

 

 

% hypo_distribution.m 

function y=hypo_distribution(i,mu,delta) 

s=(i-mu)^2; 

t=2*delta^2; 

u=1/sqrt(t*pi); 

y=u*exp(-s/t); 

% plot_E_W 

function plot_E_W(Whale_E,Whale_W,data3); 

for i=1:8; 

    for j=1:17; 

        if Whale_E(i,j)>0; 

            x1(j)=data3(i,j); 

            y1(j)=2003-i; 

            plot(x1(j),y1(j),'o'); 

            hold on; 

        end 

    end     

end 
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for i=1:8; 

    for j=1:17; 

        if Whale_W(i,j)>0; 

            x2(j)=data3(i,j); 

            y2(j)=2003-i; 

            plot(x2(j),y2(j),'*'); 

            hold on; 

        end 

    end     

end 

for i=9:10; 

    for j=1:17; 

        if Whale_E(i,j)>0; 

            x3(j)=data3(i,j); 

            y3(j)=1992-(i-9)*2; 

            plot(x3(j),y3(j),'o'); 

            hold on; 

        end 

    end     

end 

for i=9:10; 

    for j=1:17; 

        if Whale_W(i,j)>0; 

            x4(j)=data3(i,j); 

            y4(j)=1992-(i-9)*2; 

            plot(x4(j),y4(j),'*'); 

            hold on; 

        end 

    end 

end 

 

 

% Ch3 

% Whale_GenePro_Main.m 

clear; 

Agg_Aij(1:245,1:2)=0; 

Agg_Aij_1(1:245,1:2)=0; 

 

global data3; 

global E_hyp_p; 

global W_hyp_p; 

 

for time=1:100; 
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for i=1:10; 

    j=1; 

    while data3(i,j)>0; 

        P_W=W_hyp_p(data3(i,j)); 

        Prob_whale=rand(1); 

        if Prob_whale>P_W             

            Whale_E(i,j)=1; 

            Whale_W(i,j)=0; 

        else             

            Whale_E(i,j)=0; 

            Whale_W(i,j)=1; 

        end 

        j=j+1; 

    end 

end 

 

%generate E or W according to hypothesis 

tau=2.0; 

[Pi_e,Pi_w,Pi_prob_e,Pi_prob_w,Pi_e_num,Pi_w_num,alpha]=gene_pool(tau); 

 

for i=1:10; 

    for j=1:17; 

        if Whale_E(i,j)==1 

            Whale_num(i,j,:,:)=Whale_gene_e(Pi_prob_e,Pi_e_num); 

        else if Whale_W(i,j)==1 

                Whale_num(i,j,:,:)=Whale_gene_w(Pi_prob_w,Pi_w_num); 

            end 

        end 

    end 

end 

 

%calculate h 

h=homozygosity(Whale_num,data3); 

 

%Compare and calculate I 

I=Compare(Whale_num,data3); 

 

%Calculate Aij 

[Aij,Dij,Ai_j]=Calculate_Aij(h,I,data3); 

 

%Ai_j(m,1)=Aij(i,p,j) 

%Ai_j(m,2)=Dij(i,p,j) 

A_i_j=sortrows(Ai_j,2); 

Agg_Aij(:,time)=A_i_j(:,1); 
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end 

Agg_Aij(:,time+1)=A_i_j(:,2); 

save my_data_20_1.out Agg_Aij -ASCII 

figure(7); 

plot(A_i_j(:,2),A_i_j(:,1),'*'); 

 

 

% gene_pool.m 

function [Pi_e,Pi_w,Pi_prob_e,Pi_prob_w,Pi_e_num,Pi_w_num,alpha]=gene_pool(tau) 

 

global allele_number; 

global alpha_t; 

alpha_t=Alpha_Proc; 

 

 for i=1:11; 

     for j=1:allele_number(i); 

        alpha(i,j)=tau*alpha_t(i,j);%alpha after uniform 

        Y_gamma_e(i,j)=gamrnd(alpha(i,j),1); 

        Y_gamma_w(i,j)=gamrnd(alpha(i,j),1); 

    end     

    for j=1:allele_number(i); 

        Pi_e(i,j)=Y_gamma_e(i,j)/sum(Y_gamma_e(i,:)); %probability of a dirichlet distribution 

        Pi_w(i,j)=Y_gamma_w(i,j)/sum(Y_gamma_w(i,:)); 

        Pi_e_num(i,j)=j; 

        Pi_w_num(i,j)=j; 

    end 

     

    Pi_e_1(i,:)=Pi_e(i,:);      

    for j=1:allele_number(i); 

        Min_a=0; 

        Min_num=0; 

        for k=j+1:allele_number(i);            %Sequence, in case of calculation error 

            if Pi_e_1(i,j)>Pi_e_1(i,k); 

                Min_a=Pi_e_1(i,j); 

                Pi_e_1(i,j)=Pi_e_1(i,k); 

                Pi_e_1(i,k)=Min_a; 

                Min_num=Pi_e_num(i,j); 

                Pi_e_num(i,j)=Pi_e_num(i,k); 

                Pi_e_num(i,k)=Min_num; 

            end 

        end         

    end 
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    Pi_w_1(i,:)=Pi_w(i,:);     

    for j=1:allele_number(i); 

        Min_a=0; 

        Min_num=0; 

        for k=j+1:allele_number(i); 

            if Pi_w_1(i,j)>Pi_w_1(i,k); 

                Min_a=Pi_w_1(i,j); 

                Pi_w_1(i,j)=Pi_w_1(i,k); 

                Pi_w_1(i,k)=Min_a; 

                Min_num=Pi_w_num(i,j); 

                Pi_w_num(i,j)=Pi_w_num(i,k); 

                Pi_w_num(i,k)=Min_num; 

            end 

        end         

    end 

     

    Pi_prob_e(i,1)=Pi_e_1(i,1); 

    for j=1:allele_number(i)-1; 

        Pi_prob_e(i,j+1)=Pi_prob_e(i,j)+Pi_e_1(i,j+1); 

    end 

    Pi_prob_w(i,1)=Pi_w_1(i,1); 

    for j=1:allele_number(i)-1; 

        Pi_prob_w(i,j+1)=Pi_prob_w(i,j)+Pi_w_1(i,j+1); 

    end 

end 

 

 

% Alpha_Proc.m 

function alpha_t=Alpha_Proc() 

 

data=[147  155  157  159  161  163  165  167  171  181  183  185  187  189 

1    9    3    2    103  10   81    2    1    5    3    2    3   5 

 

239  241  243  245  247   0   0   0   0   0   0   0   0   0 

6    30   60   126   6    0   0   0   0   0   0   0   0   0 

 

295  299  301  303  305  307  309   0   0   0   0   0   0   0 

5    93   43    7    79   4    3    0   0   0   0   0   0   0 

 

193  195  197  199  201  203  205  207  209  211   0   0   0   0 

54    2   19   68    8   31   20   10    5    3    0   0   0   0 

 

172  174  176  178  180  182   0   0   0   0   0   0   0   0 

3    34   47   64   48   18    0   0   0   0   0   0   0   0 
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156  164  166  168  170  172   0   0   0   0   0   0   0   0 

117   8    7   57   44    1    0   0   0   0   0   0   0   0 

 

115  130  158  162  166  170  173  174  178  182   0   0   0   0 

50   40   14   31   21   23    7   33   14    1    0   0   0   0 

 

135  137  139  141  143  147   0   0   0   0   0   0   0   0 

55   26   15   35   83    6    0   0   0   0   0   0   0   0 

 

93  95  97   99  101  103  105  107   0   0   0   0   0   0 

7   14  126  4   58   22    2    1    0   0   0   0   0   0 

 

140  142  144  146  148  150  152  154  156  160   0   0   0   0 

1     1   42   42   42   37   38   13    6    2    0   0   0   0 

 

184  186  190  192   0   0   0   0   0   0   0   0   0   0 

7    160  57   10    0   0   0   0   0   0   0   0   0   0]; 

 

 global allele_number; 

 global alpha_t; 

  

 for i=1:11; 

    frequency(i,:)=data(2*i,:); 

    allele_number(i)=0; 

    for j=1:14; 

        if frequency(i,j)>0; 

            allele_number(i)=allele_number(i)+1;%allele's number at each locus 

        end 

    end 

    for j=1:allele_number(i); 

        alpha_t(i,j)=frequency(i,j)/sum(frequency(i,:)); 

    end 

end 

 

 

% Whale_gene_e.m 

function E_num=Whale_gene_e(Pi_prob_e,Pi_e_num) 

for i=1:11; 

    for j=1:2; 

        E_prob(i,j)=rand(1); 

        k=1; 

        while E_prob(i,j) > Pi_prob_e(i,k) 

            k=k+1; 
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        end 

        E_num(i,j)=Pi_e_num(i,k);         

    end     

end 

 

 

% Whale_gene_w.m 

function W_num=Whale_gene_w(Pi_prob_w,Pi_w_num) 

for i=1:11; 

    for j=1:2; 

        W_prob(i,j)=rand(1); 

        k=1; 

        while W_prob(i,j) > Pi_prob_w(i,k) 

            k=k+1; 

        end 

        W_num(i,j)=Pi_w_num(i,k);   

    end     

end 

 

 

% homozygosity.m 

function h=homozygosity(Whale_num,data3) 

for q=1:11; 

m=1; 

    for i=1:10; 

        for j=1:17; 

            if data3(i,j)>0; 

                for k=1:2;                 

                    Compare_1(m)=Whale_num(i,j,q,k); 

                    m=m+1; 

                end 

            end 

        end 

    end 

    Compare_1(109)=0;     

    p=109; 

    Dif_alle(q)=0; 

    while Compare_1(1)>0 

        k=1; 

        Agg=1; 

        Dif_alle(q)=Dif_alle(q)+1;%the number of different alle of the whale at the same loci 

        for j=2:p; 

            if Compare_1(1)==Compare_1(j); 

                Agg=Agg+1; 
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            else 

                Compare_2(k)=Compare_1(j); 

                k=k+1; 

            end 

        end 

        Pi_num(q,Dif_alle(q))=Agg/108; 

        p=p-Agg; 

        Compare_1=Compare_2; 

        Compare_2(1:k-1)=0; 

    end 

    h(q)=norm(Pi_num(q,:))^2; 

end 

 

 

% Compare.m 

function I=Compare(Whale_num) 

for m=1:52; 

    for n=m+1:53; 

        for j=1:11; 

            Same_alle(m,n,j)=0; 

            for k_m=1:2; 

                for k_n=1:2; 

                    if Whale_num(m,j,k_m)==Whale_num(n,j,k_n) 

                        Same_alle(m,n,j)=Same_alle(m,n,j)+1; 

                    end 

                end 

            end 

        end 

    end 

end 

I=Same_alle/4; 

 

 

% Ch3 

% Fst.R (R is the suffix of programs in R) 

#Loci=loci and allele data 

#nAllel=number of allels present in a locus 

#Gen_frequency=allel frequencies within loci 

#e_gamma=the gamma random of e-group 

#w_gamma=the gamma random of w-group 

#e_dirichlet=the dirichlet distribution of e-group 

#w_dirichlet=the dirichlet distribution of w-group 

#Input the Gen data 

Loci<-matrix(scan("../Loci.txt"), nrow=22, ncol=14, byrow=TRUE) 
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#Calculate the Gen_frequency 

temp_frequency=matrix(0,11,14) 

Gen_frequency=matrix(0,11,14) 

e_gamma=matrix(0,11,14) 

w_gamma=matrix(0,11,14) 

e_dirichlet=matrix(0,11,14) 

w_dirichlet=matrix(0,11,14) 

e_diri_pool=matrix(0,11,14) 

w_diri_pool=matrix(0,11,14) 

nAllel=c(1:11) 

for (i in 1:11){ 

    temp_frequency[i,]<-Loci[2*i,] 

    nAllel[i]=0 

    for (j in 1:14){ 

        if (temp_frequency[i,j]>0){ 

            nAllel[i]=nAllel[i]+1 

        } 

    }     

} 

Sample_num=50 

t_range=100 

FST=matrix(0,t_range,1) 

for (x in 1:t_range){ 

t_x=0.1*x 

 

for (i in 1:11){ 

    for (j in 1:nAllel[i]){ 

        Gen_frequency[i,j]=temp_frequency[i,j]/sum(temp_frequency[i,]) 

        e_gamma[i,j]=rgamma(1,shape=t_x*Gen_frequency[i,j]) 

        w_gamma[i,j]=rgamma(1,shape=t_x*Gen_frequency[i,j]) 

    }     

    for (j in 1:nAllel[i]){ 

        e_dirichlet[i,j]=e_gamma[i,j]/sum(e_gamma[i,]) 

        w_dirichlet[i,j]=w_gamma[i,j]/sum(w_gamma[i,]) 

        } 

    e_diri_pool[,1]=e_dirichlet[,1] 

    w_diri_pool[,1]=w_dirichlet[,1] 

    if (nAllel[i]>1){ 

       for(j in 2:nAllel[i]){ 

           e_diri_pool[i,j]=e_diri_pool[i,j-1]+e_dirichlet[i,j] 

           w_diri_pool[i,j]=w_diri_pool[i,j-1]+w_dirichlet[i,j] 

           } 

       } 

} 
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E_m_locinumber=matrix(0,100,11) 

E_f_locinumber=matrix(0,100,11) 

W_m_locinumber=matrix(0,100,11) 

W_f_locinumber=matrix(0,100,11) 

 

for (i in 1:Sample_num){ 

   for (j in 1:11){ 

      m_rand=runif(1) 

      m_k=1 

      while ( m_rand>w_diri_pool[j,m_k]){ 

            m_k=m_k+1 

            } 

      W_m_locinumber[i,j]=m_k           

      f_rand=runif(1) 

      f_k=1 

      while ( f_rand>w_diri_pool[j,f_k]){ 

            f_k=f_k+1 

            } 

      W_f_locinumber[i,j]=f_k 

   } 

   for (j in 1:11){           

          m_rand=runif(1) 

          m_k=1 

          while ( m_rand>e_diri_pool[j,m_k]){ 

               m_k=m_k+1 

               } 

          E_m_locinumber[i,j]=m_k           

          f_rand=runif(1) 

          f_k=1 

          while ( f_rand>e_diri_pool[j,f_k]){ 

               f_k=f_k+1 

               } 

          E_f_locinumber[i,j]=f_k 

   }    

} 

 

W_freq=matrix(0,11,14) 

E_freq=matrix(0,11,14) 

W_m_freq=matrix(0,11,14) 

E_m_freq=matrix(0,11,14) 

W_f_freq=matrix(0,11,14) 

E_f_freq=matrix(0,11,14) 

for (i in 1:11){ 

   for(j in 1:nAllel[i]){ 
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       W_m_temp_freq=0 

       E_m_temp_freq=0 

       W_f_temp_freq=0 

       E_f_temp_freq=0 

       for (k in 1:Sample_num){ 

          if(W_m_locinumber[k,i]==j) W_m_temp_freq=W_m_temp_freq+1 

          if(E_m_locinumber[k,i]==j) E_m_temp_freq=E_m_temp_freq+1 

          if(W_f_locinumber[k,i]==j) W_f_temp_freq=W_f_temp_freq+1 

          if(E_f_locinumber[k,i]==j) E_f_temp_freq=E_f_temp_freq+1 

       } 

       W_m_freq[i,j]=W_m_temp_freq 

       E_m_freq[i,j]=E_m_temp_freq 

       W_f_freq[i,j]=W_f_temp_freq 

       E_f_freq[i,j]=E_f_temp_freq 

   } 

} 

W_freq=(W_m_freq+W_f_freq)/(2*Sample_num) 

E_freq=(E_m_freq+E_f_freq)/(2*Sample_num) 

Z_freq=(W_freq+E_freq)/2 

 

Fst_ij=matrix(0,11,14) 

for(i in 1:11){ 

   for(j in 1:14){ 

      if (Z_freq[i,j]==0 | Z_freq[i,j]==1) Fst_ij[i,j]==0 

      else Fst_ij[i,j]=((W_freq[i,j]-Z_freq[i,j])^2+(E_freq[i,j]-Z_freq[i,j])^2)/(Z_freq[i,j]*(1-Z_freq[i,j])) 

   } 

} 

Fst_i=matrix(0,11,1) 

for(i in 1:11){ 

   Fst_i[i]=sum(Fst_ij[i,])/nAllel[i] 

} 

 

FST[x]=sum(Fst_i)/11 

} 

 

t<-seq(0.1,10,by=0.1) 

FST_smooth=matrix(0,t_range,1) 

FST_smooth<-lowess(t,FST)$y 

plot(t,FST,type="l")    

Bind_Fst=matrix(0.062,t_range,1) 

lines(t,FST_smooth) 

lines(t,Bind_Fst)  
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#test_1.R 

NullBand<- matrix(scan("C:/Economics/thesis/m/Whale_2/my_data_01.out", n = 245*1001), 245, 1001, 

byrow = TRUE) 

Data_Aij<- matrix(scan("C:/Economics/thesis/m/Whale_1/my_data_20.out", n = 245*101), 245, 101, 

byrow = TRUE) 

Band<-matrix(0,245,1000) 

for(i in 1:1000){Band[,i]<-lowess(NullBand[,1001],NullBand[,i])$y} 

Aij<-matrix(0,245,100) 

for(i in 1:100){Aij[,i]<-lowess(Data_Aij[,101],Data_Aij[,i])$y} 

Meanband<-matrix(0,245,7) 

for(j in 1:245){Meanband[j,]=quantile(Band[j,],prob=c(0.005,0.025,0.05,0.5,0.95,0.975,0.995))} 

MeanAij<-matrix(0,245,1) 

for(j in 1:245){MeanAij[j]=sum(Aij[j,])/100} 

plot (NullBand[,1001],Meanband[,4],type="l",lty=2,ylim=c(-1.5,0),xlab="days apart",ylab="effect") 

title("simultaneous nullbands") 

lines(NullBand[,1001],Meanband[,1],lty=5) 

lines(NullBand[,1001],Meanband[,7],lty=5) 

lines(NullBand[,1001],Meanband[,2],lty=4) 

lines(NullBand[,1001],Meanband[,6],lty=4) 

lines(NullBand[,1001],Meanband[,3],lty=3) 

lines(NullBand[,1001],Meanband[,5],lty=3) 

lines(NullBand[,1001],MeanAij,lty=1) 

legend(0,-1.1,c("50%","90%","95%","99%"),lty=c(2,3,4,5)) 

 

#plot(Agg_Aij[,1001],Agg_Aij[,1]) 

 

% Ch3 

% Whole Programe in R 

#Observation=days that the whale is observed 

#Day_Median=days that moved to a same median 300 

#Total_number=the total number of observations 

#t=the range of the shape of gamma function 

 

t=10 

 

Observation<-matrix(scan("../Observation.txt"), nrow=10, ncol=18, byrow=TRUE) 

 

#To move the observation data to a same median 300 

Day_Median=matrix(0,10,18) 

median_data=c(1:10) 

Total_number=0 

for (i in 1:10){ 

    j=1 
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    while (Observation[i,j]>0){ 

        j=j+1 

        Total_number=Total_number+1 

    } 

    median_data[i]=floor((Observation[i,1]+Observation[i,j-1])/2) 

    for (k in 1:j-1){  

        Day_Median[i,k]=Observation[i,k]+300-median_data[i] 

    } 

} 

 

#temp_ID=a data frame including three parts first: whale_ID, year and day 

Whale_ID=c(1:Total_number) 

Year=c(1:Total_number) 

day=c(1:Total_number) 

nTemp=0 

for (i in 1:10){ 

    j=1 

    while (Day_Median[i,j]>0){ 

        nTemp=nTemp+1   

        Year[nTemp]=i 

        day[nTemp]=Day_Median[i,j] 

        j=j+1 

     } 

}     

temp_ID<-data.frame(Whale_ID,Year,day) 

 

#the following is used to figure out the hypothesis 

#number_day=the number of observations in each day 

dayTemp=sort(day) 

number_day=c(1:Total_number) 

i=1 

j=2 

while (j<Total_number+1){ 

    x=1 

    while (dayTemp[i]==dayTemp[j]){ 

       x=x+1 

       j=j+1 

    } 

    number_day[i:j]=x 

    i=j 

    j=j+1 

} 

temp_Data<-data.frame(dayTemp,number_day) 
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#Hypothesis function 

#Mu=the median of each pulse 

#Delta=the width of each pulse 

#Range=the range of the each pulse 

#temp_Hyp=the hypothesis for the E and W groups 

#plot_E_hyp=the sum of the hypothesis for the E-groups to plot 

#plot_W_hyp=the hypothesis for the W-group to plot 

#p_E_hyp=Probability of E-groups 

#p_W_hyp=Probability of W-groups 

 

Mu=c(293,300,306) 

Delta=c(3.5,3,5) 

Range=c(0.55,0.6,1) 

 

Day_year<-c(1:365) 

temp_Hyp<-matrix(0,365,3) 

 

for (i in 270:330){ 

temp_Hyp[i,1]=Range[1]*dnorm(i-Mu[1],sd=Delta[1]) 

temp_Hyp[i,3]=Range[3]*dnorm(i-Mu[3],sd=Delta[3]) 

temp_Hyp[i,2]=Range[2]*dnorm(i-Mu[2],sd=Delta[2]) 

} 

k=5/temp_Hyp[Mu[3],3] 

plot_E_hyp<-k*(temp_Hyp[,1]+temp_Hyp[,3]) 

plot_W_hyp<-k*(temp_Hyp[,2]) 

p_E_hyp=plot_E_hyp/(plot_E_hyp+plot_W_hyp) 

p_W_hyp=plot_W_hyp/(plot_E_hyp+plot_W_hyp) 

 

rm(temp_Hyp) 

 

plot(dayTemp,number_day,xlim=c(270,330),ylim=c(0,5)) 

lines(Day_year,plot_E_hyp) 

lines(Day_year,plot_W_hyp,lty=2) 

 

plot(Day_year,p_E_hyp,xlim=c(270,330),ylim=c(0,1),type="l") 

lines(Day_year,p_W_hyp,lty=2) 

 

 

W_population<-(runif(53)<p_W_hyp[temp_ID$day]) 

         

Database<-data.frame(temp_ID,W_population) 

 

#Loci=loci and allele data 

#nAllel=number of allels present in a locus 
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#Gen_frequency=allel frequencies within loci 

#e_gamma=the gamma random of e-group 

#w_gamma=the gamma random of w-group 

#e_dirichlet=the dirichlet distribution of e-group 

#w_dirichlet=the dirichlet distribution of w-group 

 

#Input the Gen data 

Loci<-matrix(scan("../Loci.txt"), nrow=22, ncol=14, byrow=TRUE) 

 

#Calculate the Gen_frequency 

temp_frequency=matrix(0,11,14) 

Gen_frequency=matrix(0,11,14) 

e_gamma=matrix(0,11,14) 

w_gamma=matrix(0,11,14) 

e_dirichlet=matrix(0,11,14) 

w_dirichlet=matrix(0,11,14) 

e_diri_pool=matrix(0,11,14) 

w_diri_pool=matrix(0,11,14) 

 

nAllel=c(1:11) 

for (i in 1:11){ 

    temp_frequency[i,]<-Loci[2*i,] 

    nAllel[i]=0 

    for (j in 1:14){ 

        if (temp_frequency[i,j]>0){ 

            nAllel[i]=nAllel[i]+1 

        } 

    }     

} 

 

 

sim.time=100 

Aij.sim=matrix(0,246,sim.time) 

Band.sim=matrix(0,246,sim.time) 

 

for (time in 1:sim.time){     

 

for (i in 1:11){ 

    for (j in 1:nAllel[i]){ 

        Gen_frequency[i,j]=temp_frequency[i,j]/sum(temp_frequency[i,]) 

        e_gamma[i,j]=rgamma(1,shape=t*Gen_frequency[i,j]) 

        w_gamma[i,j]=rgamma(1,shape=t*Gen_frequency[i,j]) 

    }     

    for (j in 1:nAllel[i]){ 
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        e_dirichlet[i,j]=e_gamma[i,j]/sum(e_gamma[i,]) 

        w_dirichlet[i,j]=w_gamma[i,j]/sum(w_gamma[i,]) 

        } 

    e_diri_pool[,1]=e_dirichlet[,1] 

    w_diri_pool[,1]=w_dirichlet[,1] 

    if (nAllel[i]>1){ 

       for(j in 2:nAllel[i]){ 

           e_diri_pool[i,j]=e_diri_pool[i,j-1]+e_dirichlet[i,j] 

           w_diri_pool[i,j]=w_diri_pool[i,j-1]+w_dirichlet[i,j] 

           } 

       } 

} 

 

 

#To determine the loci number 

#m_locinumber=the locinumber of each whale coming from mother 

#f_locinumber=the locinumber of each whale coming from father 

m_locinumber=matrix(0,Total_number,11) 

f_locinumber=matrix(0,Total_number,11) 

for (i in 1:Total_number){ 

   if (W_population[i]==T){ 

       for (j in 1:11){ 

          m_rand=runif(1) 

          m_k=1 

          while ( m_rand>w_diri_pool[j,m_k]){ 

               m_k=m_k+1 

               } 

          m_locinumber[i,j]=m_k           

          f_rand=runif(1) 

          f_k=1 

          while ( f_rand>w_diri_pool[j,f_k]){ 

               f_k=f_k+1 

               } 

          f_locinumber[i,j]=f_k 

          } 

      } 

    else{ 

       for (j in 1:11){           

          m_rand=runif(1) 

          m_k=1 

          while ( m_rand>e_diri_pool[j,m_k]){ 

               m_k=m_k+1 

               } 

          m_locinumber[i,j]=m_k           
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          f_rand=runif(1) 

          f_k=1 

          while ( f_rand>e_diri_pool[j,f_k]){ 

               f_k=f_k+1 

               } 

          f_locinumber[i,j]=f_k 

          } 

      } 

} 

  

locinumber<-data.frame(m_locinumber,f_locinumber) 

Data_loci<-data.frame(temp_ID,W_population,locinumber) 

 

#calculate expected homozygosity at each locus 

allele.frequency.sim<-as.list(1:11) 

for (i in 1:11){ 

    allele.frequency.sim[[i]]<-table(c(m_locinumber[,i],f_locinumber[,i])) 

    allele.frequency.sim[[i]]<-allele.frequency.sim[[i]]/sum(allele.frequency.sim[[i]]) 

    } 

 

h.sim=matrix(0,1,11) 

for (i in 1:11){ 

    h.sim[i]=sum(allele.frequency.sim[[i]]^2) 

    } 

 

dayapart<-matrix(0,246,1) 

temp_matrix<-matrix(0,2,2) 

temp_X<-matrix(0,1,11) 

temp_Aij<-matrix(0,1,11) 

num=0 

m=1 

for (i in 1:10){ 

    while(Year[m]==i & m<Total_number){ 

       n=m+1 

       while(Year[n]==i & n<Total_number+1){ 

           for (k in 1:11){ 

               temp_matrix[1,]<-c(m_locinumber[m,k],f_locinumber[m,k]) 

               temp_matrix[2,]<-c(m_locinumber[n,k],f_locinumber[n,k]) 

               temp_X[k]=0    

                       for (col_1 in 1:2){ 

                       for (col_2 in 1:2){ 

                           if (temp_matrix[1,col_1]==temp_matrix[2,col_2]){ 

                           temp_X[k]=temp_X[k]+1 

                            } 
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                       } 

                       } 

               if(h.sim[k]==1){temp_Aij[k]=0} 

                else{temp_Aij[k]=(h.sim[k]-temp_X[k]/4)/(1-h.sim[k])} 

           } 

           num=num+1 

           dayapart[num,1]=day[n]-day[m] 

           Aij.sim[num,time]=sum(temp_Aij)/11  

           n=n+1 

        } 

    m=m+1      

   } 

} 

 

 

#The H0 hypothesis, there is only group e and give the band 

#m_locinumber=the locinumber of each whale coming from mother 

#f_locinumber=the locinumber of each whale coming from father 

 

H0_m_locinumber=matrix(0,Total_number,11) 

H0_f_locinumber=matrix(0,Total_number,11) 

for (i in 1:Total_number){ 

        for (j in 1:11){ 

          m_rand=runif(1) 

          m_k=1 

          while ( m_rand>e_diri_pool[j,m_k]){ 

               m_k=m_k+1 

               } 

          H0_m_locinumber[i,j]=m_k           

          f_rand=runif(1) 

          f_k=1 

          while ( f_rand>e_diri_pool[j,f_k]){ 

               f_k=f_k+1 

               } 

          H0_f_locinumber[i,j]=f_k 

          }    

     

} 

  

H0_locinumber<-data.frame(H0_m_locinumber,H0_f_locinumber) 

H0_Data_loci<-data.frame(temp_ID,W_population,H0_locinumber) 

 

#calculate expected homozygosity at each locus 

H0_allele.frequency.sim<-as.list(1:11) 
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for (i in 1:11){ 

    H0_allele.frequency.sim[[i]]<-table(c(H0_m_locinumber[,i],H0_f_locinumber[,i])) 

    H0_allele.frequency.sim[[i]]<-H0_allele.frequency.sim[[i]]/sum(H0_allele.frequency.sim[[i]]) 

    } 

 

H0_h.sim=matrix(0,1,11) 

for (i in 1:11){ 

    H0_h.sim[i]=sum(H0_allele.frequency.sim[[i]]^2) 

    } 

 

 

temp_matrix<-matrix(0,2,2) 

temp_X<-matrix(0,1,11) 

temp_Aij<-matrix(0,1,11) 

num=0 

m=1 

for (i in 1:10){ 

    while(Year[m]==i & m<Total_number){ 

       n=m+1 

       while(Year[n]==i & n<Total_number+1){ 

           for (k in 1:11){ 

               temp_matrix[1,]<-c(H0_m_locinumber[m,k],H0_f_locinumber[m,k]) 

               temp_matrix[2,]<-c(H0_m_locinumber[n,k],H0_f_locinumber[n,k]) 

               temp_X[k]=0    

                       for (col_1 in 1:2){ 

                       for (col_2 in 1:2){ 

                           if (temp_matrix[1,col_1]==temp_matrix[2,col_2]){ 

                           temp_X[k]=temp_X[k]+1 

                            } 

                       } 

                       } 

               if(H0_h.sim[k]==1){temp_Aij[k]=0} 

                else{temp_Aij[k]=(H0_h.sim[k]-temp_X[k]/4)/(1-H0_h.sim[k])} 

           } 

           num=num+1            

           Band.sim[num,time]=sum(temp_Aij)/11                            

           n=n+1 

        } 

    m=m+1      

   } 

} 

} 
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#Analyse the data 

z<-order(dayapart) 

Data.sim<-matrix(0,245,sim.time) 

Day.sim<-matrix(0,245,1) 

H0.Data.sim<-matrix(0,245,sim.time) 

for(i in 1:245) 

   {Day.sim[i]<-dayapart[z[i]] 

    Data.sim[i,]=Aij.sim[z[i],] 

    H0.Data.sim[i,]=Band.sim[z[i],] 

   } 

 

H1.Aij<-matrix(0,245,sim.time) 

for(i in 1:sim.time){H1.Aij[,i]<-lowess(Day.sim,Data.sim[,i])$y} 

 

H0.Aij<-matrix(0,245,sim.time) 

for(i in 1:sim.time){H0.Aij[,i]<-lowess(Day.sim,H0.Data.sim[,i])$y} 

 

Meanband<-matrix(0,245,7) 

for(j in 1:245){Meanband[j,]=quantile(H0.Aij[j,],prob=c(0.005,0.025,0.05,0.5,0.95,0.975,0.995))} 

MeanAij<-matrix(0,245,1) 

for(j in 1:245){MeanAij[j]=sum(H1.Aij[j,])/sim.time} 

plot (Day.sim,Meanband[,4],type="l",lty=2,ylim=c(-0.3,0.3),xlab="days apart",ylab="effect") 

title("simultaneous nullbands") 

lines(Day.sim,Meanband[,1],lty=5) 

lines(Day.sim,Meanband[,7],lty=5) 

lines(Day.sim,Meanband[,2],lty=4) 

lines(Day.sim,Meanband[,6],lty=4) 

lines(Day.sim,Meanband[,3],lty=3) 

lines(Day.sim,Meanband[,5],lty=3) 

lines(Day.sim,MeanAij,lty=1) 

legend(0,-1.1,c("50%","90%","95%","99%"),lty=c(2,3,4,5)) 

 

plot(Day.sim,MeanAij,type="l",col=2,ylim=c(-0.22,0.12),xlab="days apart",ylab="effect") 

for(j in 1:20) lines(Day.sim,H1.Aij[,j],lty=3) 

 

v1<-apply(H1.Aij,2,var) 

v2<-apply(H0.Aij,2,var) 

v1<-sort(v1) 

v2<-sort(v2) 

power<-rank(c(v1,v2))[1:sim.time]/(2*sim.time) 

plot(ppoints(sim.time),power) 
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% Ch5 

% Fish Management: Pella_Tomlinson_seq.m 

clear; 

year=100; 

x1(1)=8000; 

x2(1)=8000; 

r_num=0.03; 

k=50000; 

z1=1; 

z2=5; 

for i=1:year-1 

    r(i)=r_num+randn*0.2; 

    x1(i+1)=x1(i)+r(i)*x1(i)*(1-(x1(i)/k)^z1); 

    x2(i+1)=x2(i)+r(i)*x2(i)*(1-(x2(i)/k)^z2); 

end 

j=1:year; 

figure(1) 

plot(j,x1,'-',j,x2,'--'); 

%% 

 

 

%Ch5 

%Fish Management: constant and variable.m 

clear; 

r_num=0.03; 

year=200; 

K=20000; 

Y(1)=8000; 

x(1)=Y(1); 

C_num=144; 

C(1)=C_num; 

for t=2:year 

r(t)=r_num;%+randn*0.2 

    Y(t)=x(t-1)+r(t)*x(t-1)*(1-x(t-1)/K); 

    x(t)=Y(t)-C(t-1); 

    C(t)=C_num; 

end 

j=1:year; 

figure(1); 

plot(j,Y,'-',j,C,'--'); 

axis([0,200,0,20000]); 

%% 
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%Ch5 

% Fish Management: statistics.m 

clear; 

r_num=0.03; 

year=200; 

K=20000; 

Y(1)=8000; 

x(1)=Y(1); 

for C_num=1:140  

    lesstime(C_num)=0; 

    t=2; 

    for cycletime=1:50 

        while ((t<=year)&(Y(t-1)>0)) 

            r(t)=r_num+randn*0.1; 

            Y(t)=x(t-1)+r(t)*x(t-1)*(1-x(t-1)/K); 

            x(t)=Y(t)-C_num; 

            t=t+1; 

        end 

        if Y(t-1)<0 

            lesstime(C_num)=lesstime(C_num)+1; 

        end 

        t=2; 

    end 

    ratio(C_num)=lesstime(C_num)/cycletime; 

end 

figure 

j=1:140; 

plot(j,ratio,'*') 
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