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Executive summary 
 

In an economy like the Norwegian, where most of the energy is supplied by hydro power 

plants and the outdoor temperatures are very fluctuating, the domestic supply and the 

demand for energy can be expected to depend on climatical phenomena such as precipitation 

and temperature. This thesis will indicate how a change in the statistical distribution of the 

demand for electricity transmission capacity with the neighbouring countries, having their 

energy supply less directed by the weather, is likely to be affected by some of the 

consequences of global warming. 

 

The initial statistical model estimates the chosen climatical variables’ effect on net import. It 

turned out that the regression model of monthly net import on its first lag and lagged 

precipitation, explaining supply, and an aggregate of monthly temperatures, explaining 

demand, fitted the sample data well. However, the demand for transmission capacity 

depends on the distribution of transmission at points in time, and not the monthly average of 

net import. At all points in time the transmitted quantity will equal the absolute value of net 

import, so the estimated net import distribution were used to infer the transmission demand 

distribution.  

 

When the marginal costs of meeting the demand are different from the benefits, the optimal 

level of the transmission capacity depends on the demands’ volatility as well as its 

expectation. By the so-called “Newsboy model”, optimal capacity would be at a level where 

the probability of demand not being met equals the ratio of marginal costs to marginal 

benefits. When these are exogenously given and the demand distribution is known, the 

optimal capacity will equal the mean demand plus a fraction of its standard deviation 

depending on the cost benefit ratio. 

 

However, if the costs or benefits are non-linear functions of capacity it gets more 

complicated. A by-product of higher transmission capacity is that the losses for a given 

quantity of electricity will fall since the capacity utilisation falls. This will increase the 

average benefit of transmission since more of the transmitted energy becomes available to 

the consumers. However, what matters for the optimal capacity is the marginal benefit, 

which is less likely to change.  
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The other part of the marginal benefit of the ability to meet demand is the reduction in the 

penalty for not meeting demand. This is defined as the quantity that would be desirable to 

transmit, multiplied by the price difference, and shared equally between the markets 

separated by limited transmission capacity. At both sides of the border the price level is 

determined by the generator with the highest marginal costs. When these costs vary there 

would be efficiency gains by generating more at the low cost side, less at the other; and 

transmitting the difference. A marginal increase in transmission capacity would allow a 

marginal reduction in the production by the high cost side and a marginal increase at the low 

cost sides; reducing the price difference as well as the size of the bottleneck. Thus the 

marginal benefit of transmission would be an increasing function of capacity and the 

newsboy solution will understate the optimal capacity. 

 

The conclusion of the empirical study was that the monthly transmission demand standard 

deviation increased less than proportionately with the standard deviations in the explanatory 

climatical variables. Without having any estimate of the likely order of magnitude of their 

future increase, an eventual increase the cost of keeping the transmission at its optimal level 

cannot be estimated. However, the direction of the capacity cost change is unambiguous, if 

the weather becomes more volatile, net electricity import gets more volatile as well. Hence 

the optimal transmission capacity will increase unless the expected net import falls 

sufficiently to compensate it. Nevertheless, the global warming is likely to cause a more 

humid and warmer climate, and according the signs of the coefficients in the net import 

equation this will reduce energy demand and increase its supply. Consequently the total 

effect of the climate change on the costs of keeping the transmission capacity at its optimal 

level remains undetermined. 
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Preface 

The background for this thesis is a hypothesis that the domestic electricity supply and 

demand depends on climatical phenomena such as precipitation and temperature, which are 

likely to be affected by the potential global warming. The estimated model relies on the 

assumption that the variation in electricity demand can be explained by temperature 

variations in the largest cities, and that the hydro power supply varies with the precipitation 

over the regions with the largest dams. It turned out that the mentioned climatical variables 

explained most of the transmission demand volatility, but their influence on its mean could 

not be identified. The hypothetical climate change is likely to get many consequences. This 

project is limited to the cost of increasing the transmission capacity with our neighbouring 

countries in order to handle larger fluctuations between energy supply and demand. 

 

I would like to acknowledge my supervisor Finn Førsund for his guidance and inspiring 

comments, and Jan F. Foyn at Nordpool for giving me access to their ftp-server. Without 

supervision and access to this impressive database this project would have remained an idea. 

 

Any errors and mistakes are my responsibility. 
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1. Introduction  

1.1 Future distributions of temperature and precipitation 

As a response to the potential problem of global climate change the Intergovernmental Panel 

on Climate Change were established in 1988. In one of their published reports, IPCC (2001), 

I came across the following two figures: 

 

 

Figure 1 
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Figure 2 

 

As the changes in statistical distribution are not yet documented, I will only discuss the 

theoretical consequences if they do.  

1.2 Models of temperature dependent electricity demand 
Henley and Peirson have published three papers on the topic in Britain. In their 1997 paper 

they tested different non-linear models using household data and concluded the demand’s 

responsiveness to the temperature is greatest when it is between 10 and 20°C. When the 

temperature is below the lower threshold heating is capacity constrained, and at temperatures 

above the higher demand increases with temperature. This might be because of the use of 

alternative fuels at very low temperatures which cannot be fired up gradually, and because 

refrigeration equipment consumes more energy at higher ambient temperatures. 
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Unsurprisingly, the most extreme temperatures occurred less frequent than the temperatures 

near the mean, making the shape of the tails of the polynomial less reliable as it was based 

on less information than the middle. They also found income and price effects.  

 

There are important differences between the determinants of Norwegian and British 

temperature dependent electricity demand that makes the temperature dependence unlikely 

to be identical. The temperature varies over a wider range in Norway, and the mix of energy 

sources is different. Electricity accounted for 79 per cent of the Norwegian households’ 

energy consumption, fire wood 15 percent and fuel oil five per cent1. The UK domestic 

consumption on “energy supplied basis” were 2% coal, 1 per cent “other solid fuels,” 75% 

gas, and 23% electricity2. Thus, the temperature dependent electricity demand in Norway is 

unlikely to have the exact same functional shape. 

 

Døhl (1999) found a similar relationship for Norway, where the temperature explained short 

term variations around a long term trend. 

1.3 Models for the supply of hydro- and thermal power 

According to Førsund (2004) the supply of hydropower depends on the total usable inflow 

during a scarcity period, which usually is a year. The electricity price will be such that the 

available water just covers the sum of domestic demand and net export. In the real world 

where neither precipitation nor temperature is known in advance, the electricity price will 

fluctuate within the years as information is revealed.  

 

Higher precipitation volatility will make extremely dry or wet years more likely and increase 

the electricity exchange volatility. The long-term variation between years is relevant for 

hydropower plants since the reservoirs have insufficient capacity to compensate all of the 

precipitation variation between years. According to St. meld. nr 11 (1995-96), the annual 

variation in precipitation causes up to 40 TWh fluctuation in generation, which is relatively 

high compared with the 112 TWh annual production. 

 

                                                 
1 http://www.ssb.no/emner/01/03/10/husenergi/ 
2 http://www.dti.gov.uk/energy/images/icon_excel.gif 
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The prices vary between areas with mostly hydropower and regions with mostly thermal 

power when the transmission capacity between them is limited. Assuming both of the 

regions are competitive; the supply curve in the hydropower region is determined by ranking 

the power plants by increasing opportunity value of their available water, and in the thermal 

power region it is determined by ranking the plants by falling efficiency. The supply curve in 

the hydropower region will vary with the annual precipitation, whereas the supply curve in 

the thermal power region is independent of the weather. Assuming a downward sloping 

electricity demand curve, limited import and export capacities, and variable cost of 

transmission (losses); domestic prices will be higher in dry years, and lower in wet. In 

foreign electricity markets, where hydropower is not such a dominating energy source, the 

price does not fluctuate between years for the same reason. This gives an opportunity to 

reduce the domestic price variation between years by importing in dry and export in wet.  

1.4 The electricity transmission demand distribution 

I intend to investigate how the expected future changes in the statistical distributions of 

temperature and rainfall can be expected to alter the net import and transmission demand 

distributions.  

 

According to NVE (1999) the Norwegian electricity market has been vertically separated 

into competitive generators, and regulated monopolistic transmission companies since 1991. 

Thus one of the requirements of efficient demand allocation can be believed to be satisfied. 

The generators, large consumers and electricity retailers submit their hourly prices and 

expected quantities to Nordpool, who arranges them into supply and demand curves, and 

determines the spot price as the level where the curves intersect. The functioning of the 

competitive market between the generators requires that the transmission lines are not 

congested so electricity demand can be allocated efficiently to the generators with the lowest 

water values. 

 

As explained above; the prices in the hydro- and thermal power regions are not likely to 

follow the same paths unless there is unlimited transmission capacity. Theoretically it will be 

optimal to export hydropower at full capacity when the foreign price level exceeds the home 

price, and vice versa. If the foreign price path fluctuates around the fairly stable water value, 

the domestic hydropower generators can be expected exploit the price difference in excess of 
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the transmission tariff by importing to meet their supply responsibilities when the foreign 

prices are relatively low (during the night) and save their water for periods when it is 

relatively high (during the day). Nevertheless, the observations of hourly averages of 

electricity transmission sourced from the Nordpool ftp server, are not constantly at the 

capacity constraints but fluctuating between them. This might be because the capacity 

constraint varies over time if other bottlenecks appear between the generators and consumers 

than the cables physically crossing the borders. Furthermore, even if they were either 

importing or exporting at full capacity at all points in time; the hourly averages would be in-

between if the direction of the energy flow changed within the hours. 

 

The transmission tariffs in Norway are set by the Norwegian Water Resources and Energy 

Directorate (NVE)3. Ideally they should reflect long-run marginal costs. However, the 

networks consist of long-lived investments subject to economies of scale so the long run 

marginal costs are not easy to define. These economies of scale make network operators 

natural monopolies, which need to be regulated for economic efficiency. The Directorate 

regulate the transmission companies’ revenues such that their operating and depreciation 

costs are covered, and provide a reasonable return on capital given efficient operation, 

utilisation, and development of the grid.  

 

The usable inflow and temperature paths at individual households are obviously exogenous 

variables; however they cannot be measured directly so the observed proxies may need to be 

treated as endogenous. Other exogenous variables varying between the regions or over time, 

like the real prices of substitute energy sources, household incomes and the number of 

daylight hours, may be needed to improve the consistency of the model. 

1.5 Theoretical consequences of increased demand volatility 
Today, consumers can chose between fixed price contracts of lengths varying between a 

month and a year, allowing them to share parts of the price risk with the generator4. A side 

effect of these contracts is that the reduction in price volatility will increase the quantity 

volatility since it reduces the short term demand elasticity.  

 

                                                 
3 http://www.nve.no 
4 http://www.tussa.no 
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I have come across the following theoretical consequences of demand volatility when 

surveying literature for this project: 

• Assuming inelastic short term demand, and stationary mean, a volatility increase 

would increase the probability of extremely high demand to occur, requiring higher 

investment in capacity in order to keep the probability of rationing at the optimal 

level. This theoretical cost can be estimated as the cost of the increase in optimal 

capacity as explained in the “newsboy model.” Ravindran et al. (1987) 

• If the transmission companies had been regulated by a price cap, an asymmetric price 

regulation that limits the upside if the demand turns out to be higher than expected, 

but not the downside if demand turns out to be lower, there will be a real option value 

of delaying investment until actual demand is revealed, which will increase with 

volatility. Doobs (2004) 

• If more energy needs to be transmitted in order to even out the increased supply and 

demand fluctuations, and transmission losses increasing approximately with the 

square of the transmitted energy, the increased cost of losses will be a consequence 

of the distribution change. Giancoli (1987) 

 

Of the mentioned costs; only the first will be considered as the influence on expected 

quantity transmitted could not be identified, and the Norwegian transmission tariff regulation 

is symmetric. 
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2. Theory 

2.1 Econometric theory 

The plots in Figure 3 below of monthly import – export from Nordpool Elspot Flow (SFLO) 

and consumption – production from Production Operating Norway (PONO), show that the 

net import one month is correlated with its value the preceding month. In econometric terms, 

net import is likely to follow an autoregressive (AR) process.  
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Figure 3: Monthly net import 

2.1.1 Decomposition of the net import variance 

My hypothesis is that the volatility of net import can be explained by demand and supply 

variations caused by variations in temperature and precipitation. This statistical relationship 

will be used to decompose the net import variance by applying the definition of conditional 

variance, 

 

(2.1)  Var[y] = Varx[E[y| x]] + Ex[Var[y| x]],  
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where y represents the endogenous variable, x the variables explaining it. Varx[E[y| x]] is the 

regression variance and Ex[Var[y| x]] the residual variance. Equivalently it is written as total 

sum of squares = regression sum of squares + error sum of squares. The ratio of regression 

variance to residual variance is called the coefficient of determination, a frequently used 

measure of how well a model fits its sample. 

2.1.2 Tests of heteroscedasicity, autocorrelation and normality 

The model’s disturbance term is basically the sum of the impact of its omitted explanatory 

variables. In a time series where the omitted variables are likely to follow a seasonal pattern, 

the dynamic properties of the disturbances need to be tested to see if the assumptions for the 

estimation of the parameters are satisfied.  

 

Heteroscedasticity in the form of persistence of squared disturbances, called Auto Regressive 

Conditional Heteroscedasticity (ARCH) effects, is likely to cause imprecise estimates of the 

regression coefficients, called inefficiency. A more serious problem in time series with lags 

of the dependent variable is persistence of the level of the disturbances, called 

autocorrelation, because it makes the disturbance and the explanatory variable correlated as 

explained in 2.1.3. This correlation makes it impossible to distinguish statistically the effect 

of the disturbance and the explanatory variable and the estimators will be inconsistent.  

 

The relatively small sample size, around 70 months, makes it uncertain that the disturbances 

are normally distributed. The Chi square, F and t-tests of the hypothetical properties of the 

disturbances and coefficients require a normal distribution, and an improper assumption of 

normally distributed disturbances might lead to wrongly acceptance or rejection of the 

hypotheses about their statistical properties. 

 

The PC Give tests statistic for ARCH effects is obtained from an auxiliary regression of the 

squared disturbances on a given number of its own lags. The test statistic, TR2, is the number 

of observations multiplied with the coefficient of determination. This statistic is larger the 

higher the probability that the squared residuals are correlated. PC Give reports both the Chi 

square distributed statistic and its F approximation, which is assumed to be better behaved in 

small samples. The first parameter in the critical value for the F distribution is the number of 

lags (restrictions) in the auxiliary equation, and the second the degrees of freedom. The 
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parameter, s, in the χ2(s) critical value is the number of imposed restrictions, i.e. the number 

of lags in the auxiliary equation. A variable follows a χ2(s) distribution if it is a sum of s 

squared variables that individually are independently standard normal distributed. The ratio 

of two Chi square distributed variables divided by their degrees of freedom follows an F 

distribution. Green (2000) 

 

In PC Give, all reported test statistics are followed by the probability of observing a larger 

statistic under the null hypothesis. The null hypothesis is accepted at a five percent 

significance level if the chance of observing a larger test statistic in a sample where it 

actually is zero is between one and five per cent, and accepted at the one per cent level if it is 

smaller than one per cent. The opposite conclusion is made with the same confidence if the 

probabilities of observing a larger test statistic are 95 and 99 per cent respectively. 

2.1.3 Autocorrelation tests and consequences of its presence 

The Durbin Watson statistics indicating autocorrelation are automatically generated by PC 

Give. However, according to Green (2000) the DW method is not effective in models with 

lagged dependent variables, as the DW will be biased towards 2, i.e. towards not detecting 

autocorrelation. In single equation autoregressive time series models, the Portmanteu test is 

stronger. According to the PC Give manual, their Portmanteu statistic for a given number of 

lags, s, is the squared sample size, T, times the auxiliary equation sum of squared correlation 

estimates, rj, divided by its degrees of freedom. 

 

(2.2) ∑
= −

=
s

j

j

jT
r

TsLB
1

2
2)( ,  

 

Under the assumptions of the test, LB(s) is asymptotically distributed as χ2(s – n), where n is 

the lag length of the dependent variable in the main equation. The Lagrange multiplier (LM) 

test of autocorrelation is analogous to the ARCH effect test, but without squaring the 

disturbances in the auxiliary regression. Also in this case the test statistic, the square 

coefficient of determination, R2, times the sample size, T, will be modelled as F and χ2 

distributed under the null hypothesis. 
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In an equation with lagged dependent variables, error autocorrelation will result in 

inconsistent estimators. If for example the error term, εt, follows a first order autoregressive 

process, εt = ρεt-1 + ut, where ut is white noise, it can be demonstrated that the disturbance 

will be correlated with the explanatory variables in a model with lagged dependent variables. 

The following resembles the equation for net electricity import yt depending on its own lag 

and other explanatory variables represented by xt. 

 

(2.3)  yt = α0 + α1yt-1 + β1xt + εt. 

 

The following explanation of why autocorrelation causes inconsistent coefficients is a 

modification of an example in Green, W. (2000). 

 

(2.4) Cov(yt-1, εt)  

Inserting the autoregressive equation for the error term; 

= Cov(yt-1, ρεt-1 + ut)  

 the white noise ut is uncorrelated with everything that precedes it, 

= ρCov(yt-1, εt-1)  

 and since the process is stationary; 

= ρCov(yt, εt) 

 Inserting the equation for yt; 

= ρCov[α0 + α1yt-1 + β1xt + εt, εt],  

 and applying the definition of a covariance of a sum, 

= ρ{α1Cov[yt-1, εt] + β1Cov[xt, εt] + Cov[εt, εt]} 

since xt is measured without error and thus exogenous and uncorrelated with 

the disturbance Cov[xt, εt] = 0 

= ρ{α1Cov(yt-1, εt) + Var(εt)} = ρα1Cov(yt-1, εt) + ρσu
2 

 

Therefore by Cov(yt-1, εt) = ρCov(yt, εt) and the stationarity assumption; the covariance can 

be expressed explicitly by the regression parameters; 

 

(2.5) [ ]
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For the least squares estimator we can use the general result for the coefficient estimator 
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(2.6) 
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In order to express the limiting estimator explicitly in terms of the equation parameters, an 

expression for the denominator needs to be developed as well. 

 

(2.7) Var[yt] = α1
2Var[yt-1] + β1

2Var[xt] + Var[εt] + 2α1Cov[yt-1, εt] + 2β 1Cov[xt, εt] 

 

Since the process is stationary, Var[yt] = Var[yt-1], Var[xt] = σx
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Collecting terms to express the variance as a function of the moments, 
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rearranging it, 
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The variance and covariance in terms of the disturbance moments can be inserted into the 

estimator to demonstrate its inconsistency; 
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Therefore least squares is inconsistent unless ρ equals zero 

 

One explanation of autocorrelation in time series models are misspecification in the form of 

omission of variables that are correlated across periods. The obvious treatment would be to 

identify and include them if available. If not, the inconsistency caused by the autocorrelation 

could be amended using instrumental variables. This method requires that the potential 

instruments can be proved to be correlated with the endogenous explanatory variable and 

uncorrelated with the disturbance. 

2.1.4 Modelling persistent squared disturbances 

If the null hypothesis of no ARCH effects is rejected, the model can be made more efficient 

using the PC Give volatility package. According to Hamilton (1999) the ARCH model is 

basically a set of two equations modelled simultaneously; one for the statistical relationship 

we want to investigate and an autoregressive equation of the squared disturbances from the 

main equation.  

 

The simplest form of the model is the ARCH(1), 

(2.10) yt = βxt + εt 

 

(2.11) εt
2 = u2

t(α0 + α1ε2
t-1), 

 

where ut is white noise 

 

It follows that under the hypothesis of no autocorrelation,  

 

E[εt| xt, εt-1] = 0, so that E[εt| xt] = 0, and E[yt| xt] = βxt,  

 

but  

 

Var[εt| εt-1] = E[ε2
t| εt-1] = E[u2

t]·(α0 + α1ε2
t-1) = α0 + α1ε2

t-1

 

so εt is conditionally heteroscedastic with respect to εt-1. If the process is stationary such that 

the residual’s unconditional variance exists, it can be calculated using the definition of 

conditional variance. 
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(2.12) Var[εt] = Var[E[εt| εt-1]] + E[Var[εt| εt-1]] = α0 + α1 Var[εt-1] 

 

 if the distribution is stationary then  

(2.13) Var[εt] = Var[εt-1] = α0/(1- α1) 

 

The most efficient way of solving this set of regression equations is numerically by a non-

linear maximum likelihood.  

 

If the ARCH effects die out gradually a GARCH model with a small number of terms is 

likely perform better than an ARCH model with many. In the GARCH model, the 

disturbance, εt, conditional on information available at time t, Ψt, is assumed to be  

εt|Ψt ~N[0, σt
2

 ] 

 

The equation for the conditional variance will be, 

 

(2.14) σt
2 = α0 + δ1σ2

t-1+ δ2σ2
t-2 + ··· + δpσ2

t-p  

+ α1ε2
t-1+ α2ε2

t-2 + ··· + αqε2
t-q

 

or in lag operator polynomials 

 

(2.14b)  σt
2 = α0 + D(L) σ2

t + A(L) ε2
t

 

If the process is stationary, indicated by no unit roots in the lag polynomials, then the 

unconditional variance exists and will be the following; 

  

(2.15, 2.16) Var[εt] = α0/[1 – A(1) – D(1)], and Cov(εt, εs) = 0 for all s ≠ t 

 

2.1.5 Tests for normality and consequences of its absence 

The PC Give tests for normality are based on Doornik and Hansen (1994), who employ a 

small sample correction, and adapt the test for the multivariate case. The test is basically to 

check whether the main indicators of normality, the residuals’ skewness and excess kurtosis, 
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are significantly different from what would have been observed in a normally distributed 

simulated sample.  

Their test approximately χ2(2), statistic is; e2 = z1
2 + z2

2 where z1 and z2 denote the 

transformed skewness and kurtosis. The correction is supposed to create statistics much 

closer to standard normal in small samples. 

If the disturbances are non-normal, the parameters could be estimated by the pseudo 

maximum likelihood method. White (1982) and Weiss (1982) showed that maximizing the 

same maximum likelihood function as if it were correct produces consistent estimators 

despite the misspecification. However, the variances of the disturbances and slope 

parameters need to be adjusted in order to get the true probability of observing a larger value 

of the test statistic under the null hypothesis than what was actually observed. 

2.1.6 Measurement errors 

The degree day measure defined in chapter three is an aggregate measure of monthly 

temperatures at representative weather stations. It serves as a proxy for a continuous measure 

of the temperature path outside individual households, which cannot be measured directly. 

Similarly, the aggregation of precipitation measured at representative meteorological stations 

is a proxy for the individual dams’ unobservable usable inflow. In this case the observations 

themselves might not contain sufficient information to determine the effect of the latent 

variables, and additional information from instrumental variables could be required to get 

consistent estimators. 

 

The most important consequence of measurement errors is the same as for autocorrelated 

disturbances; the disturbance is correlated with the explanatory variable so their effect 

cannot be distinguished. The presence of autocorrelation makes lags of the regressors’ 

obviously ineffective as instruments as they will also be correlated with the disturbance.  

 

The reservoir levels, or their change from the preceding month, are likely to be correlated 

with the latent usable inflow, and perhaps uncorrelated with their measurement error. An 

instrument variable model could be made by defining the reservoir change or level as 

instruments and declaring the precipitation endogenous (because of its measurement error). 
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A lagged variable cannot be declared endogenous in PC Give, but it is possible to create a 

new variable of lagged observations and declare it as endogenous. 

2.2 Theoretical consequences of increased weather volatility 

2.2.1 Inferring transmission demand distribution from net import moments 

The model is based on the assumption that the temperature path explains local electricity 

demand and the history of net inflow explains local supply. The quantity transmitted at any 

point in time is the difference between local supply and demand. The difference between 

average supply and demand will obviously underestimate the transmission since the 

direction of the transmission can fluctuate within the period the average is taken over. The 

error will be smaller the shorter the interval, and at points in time when flow can only go in 

one direction, the transmitted quantity equals the absolute value of import. 

 

Since the supply cannot be expected to respond to precipitation at points in time, only its 

history since the water can be stored in dams, the observations need to be aggregated into 

longer series. This aggregation makes it impossible to identify transmission demand directly 

from observed local supply and demand, so only the conditional distribution of net import 

can be identified. The emphasis will be on the impact of the weather on the transmission 

volatility and not its level, so the expected values of net import and transmission demand 

will not modelled. 

 

Once the statistical relationship between the net import and the weather variables is 

estimated, the second moment can be decomposed in order to see how it is affected by the 

changes in the moments of precipitation and temperature. The response of the unconditional 

volatility to changes in the future moments of temperature and precipitation will be 

illustrated by plotting the net import standard deviation for various values of them. 

 

An estimated model makes it possible to decompose the net import volatility into two parts; 

the regression volatility which is the variation explained by precipitation and temperature, 

and the unexplained residual volatility. Defining net electricity import as import, Y, minus 

export, X, and transmission as import plus export, the second moment of the transmission 

quantity can be inferred from the second moment of net import after writing both of them as 
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functions of the unobservable import and export moments, and use the two equations to 

eliminate them. 

 

Variance of net import, Y – X; 

 

(2.17) Var(Y + (- 1)X) = 12Var(Y) + (-1)2Var(X) + 2 · 1(-1) Cov(X,Y)  

 

= Var(Y) + Var(X) - 2 · Cov(X,Y)  

 

Analogously for transmitted quantity, Y + X; 

 

(2.18) Var(X + Y) = 12Var(Y) + 12Var(X) + 2·1·1Cov(X,Y) = Var(Y) + Var(X) + 2Cov(X, Y) 

 

so the net import variance can be calculated by combining equations 17 and 18 above and 

cancelling the unobservable moments of gross import and export, Var(Y) and Var(X). 

 

(2.19) Var(Y – X) = Var(Y + X) – 4 Cov(X,Y) 

 

The covariance between export, X, and import, Y, is demonstrated to be zero by applying the 

definition of covariance and the physical constraint that the energy can only flow one way  

through a given connection at any point in time. 
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Separating the sum applying that X = 0 if Y > 0 and vice versa; 
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inserting the empirical means, ∑
=−

=
n

i
X X

n 11
1µ and ∑

=−
=

n

i
Y Y

n 11
1µ , shows that the 

covariance would have to be zero. Consequently, when the covariance between import and 

export is zero at points in time, the second moments of net import and transmission must be 

equal. 
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2.2.2 Conversion from monthly to hourly moments 

Conversion of the monthly demand moments to hourly will be necessary since the measure 

of transmission capacity is the maximum effect (MW) at points in time, and not monthly 

averages of energy transmission (MWh/month). The hourly moments will also be a 

simplification, but it is as close to a time path it is possible to get 

 

If necessary, the conversion of the mean would simply be to divide the monthly average by 

the number of hours in a month. Conversion of the second moment is slightly more 

complicated as it requires the covariance structure between all hours within each month. The 

simplest model of the covariance structure is to model the hourly transmission as following 

an AR(1) process. Then the correlation coefficient, ρ, is obtained from the following 

regression where xt is the hourly export, 

 

(2.22) xt = ρxt-1 + ut

 

Solving this recursively, the statistical relationship between two hours’ transmission an 

arbitrary length of time apart, can be calculated as follows.  

 

(2.23) xt = ρ(ρxt-2 + ut-1) + ut

  

 = ρ2xt-2 + ρut-1 + ut

etc 

 

= ρnxt-n + ρn-1ut-(n-1) +...+ ρ2ut-2 + ρut-1  + ut 

 

where the impact of lagged variables decline with the lag length when ρ < 1. 

 

Inserting 

 

xi = ρi-jxj + ρi-j-1uj-1+ ... + ρ2ui-2  + ρui-1 + ui ; i > j 

 

into, 
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(2.24) Cov(xi, xj) = E[(xi – E[x])(xj – E[x])] 

 

gives an expression for the covariance between two observations an arbitrary length, i – j,  

apart provided the hourly export covariance structure actually follows an AR(1) process.  

 

Inserting xi as a function of xj, omitting the zero terms E[ut] and Cov(xs, ut) when s ≠ t. 

 

(2.25) Cov(xi, xj) = E[(ρi-jxj + ρi-j-1uj-1+ ... + ρ2ui-2  + ρui-1 + ui – E[xi])(xj – E[xj])] 

  

= ρi-j E[xj
2] – ρi-j E[xj E[x]] – E[xj E[x]] + E[x]2 

 

E[xi ] = E[xj] = E[x], and E[xj
2] = E[x2]  when the distribution is stationary

 

= ρi-j E[x2] – ρi-j E[x]E[x] – E[x]2 + E[x]2 

 

 = ρi-j Var[x] 

 

Covariance between hour number i and j when their individual variances are identical and 

equal to σ2
h, σij = σh

2ρi-j , i > j. The monthly variance can be expressed as a function of the 

hourly variances using the definition of a variance of a sum; and sum all the hourly variances 

and covariances within each month. Assuming the correlation, ρ, between two adjacent 

months and hourly variance is stationary; the relation between the estimated monthly 

variance, σ2
m, and σ2

h, is the following in an M hour month: 
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The assumption that the correlation matrix is symmetric makes it possible to avoid the 

absolute value signs, 
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where M is the sum of elements on the diagonal, and the double sum the elements at its 

sides. 

 

The sums of correlation coefficients can be simplified as it is a finite geometric series, 

ρ
ρρρ = , provided the process is stationary so the correlations, ρ, are smaller than 

one.  −
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setting the non-indexed parameters outside the sum, 
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splitting up the sum, 
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applying the finite sum formula again, 
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collecting terms, 
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Solving with respect to σ2
h, 

 

(2.27) 
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Thus if the hourly variance is stationary, it will be proportional to the monthly. If it still 

holds that the hourly variance is a fixed fraction of the monthly even if the actual hourly 

covariance structure is more complicated than above; a slightly easier approach without 

estimating its exact covariance structure could be used. Then the assumed constant ratio of 

hourly to monthly sample moments could used to scale down the decomposed monthly 

variance to the level the hourly would have been if the monthly changed. 

2.2.3 The newsboy model 

In the model outlined in Ravindran et al. (1987) there are two deterministic equations for the 

net benefit of investment conditional on whether demand has exceeded capacity or not. If 

demand, x, has not exceeded capacity, Q, the net benefit will equal the demanded quantity 

times its value, s, less the fixed, a, and variable costs, c, of capacity. 

 

(2.28) B(Q|x) = sx – a – cQ  if x ≤ Q 

 

If demand exceeds capacity there will be a penalty of p per unit unmet demand. E.g. due to 

allocation inefficiency if the lowest cost generator becomes unavailable when the lines are 

congested. 

 

(2.29) B(Q|x) = sQ – p(x – Q)  – a  – cQ if x > Q 

 

Expected net benefit if the demand is modelled as following a continuous distribution f(x); 

 

(2.30)  [ ] ( )∫∫
∞

−++=
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If we assume for simplicity the parameters do not depend on the chosen capacity, net 

expected benefit can be maximised with respect to capacity applying Leibniz’s rule to the 

two parts of the equation individually. 
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rearranging and applying the definition of the cumulative distribution function, F(Q) 

 

(2.32) 
ps

cQFdxxf
Q +

=−=∫
∞

)(1)(  

 

When the transmission demand is following a normal distribution, the optimal capacity can 

be expressed explicitly using the inverse cumulative standard normal distribution, which can 

be converted to non-standard using the sample moments. Finally the optimal capacity will be 

as follows provided the fixed investment costs can be expected to be covered: 

 

(2.33) ⎥
⎦

⎤
⎢
⎣

⎡
+

−Φ+= −

ps
cQ 11σµ , where µ and σ are the moments of the demand. 

 

Thus, holding the mean constant, the optimal capacity will be a linear function of the 

transmission demands’ standard deviation. An estimate of the cost of increased weather 

volatility will be the cost of the increase in optimal capacity, which is directly proportional to 

the increase in the demand standard deviation.  
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3. Data and estimation method 

The final data set consists of monthly observations of temperatures, precipitation, and 

electricity production and consumption from January 1999 till October 2004. 

3.1 Weather data 

The data describing the weather are downloaded from the Norwegian Meteorological 

Institute5 eKlima service. This service does unfortunately not give away time series for all 

stations, so I have chosen the ones believed to be most representative. Populations for the 

cities, published by Statistics Norway, are used as weights for the temperature aggregate, and 

reservoir capacities, published by the Norwegian Water Resources and Energy Directorate, 

as weights for the precipitation observations.  

3.1.1 Construction of weighted degree day measure from city temperatures 

The area near the border between the two Norwegian Elspot areas are not densely populated 

so approximating the border by the closest county borders might not lead to an important 

error. Using county borders, NO1 represents about 74 per cent of the population, and about 

73 per cent of the reservoir capacity measured in energy-units and NO2 about 26 and 27 per 

cent respectively.  

 

The map in Figure 4 below of the Nordic Elspot regions was copied from www.statnett.no 

30.08.2004. 

                                                 
5 http://met.no/ 
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Figure 4: The Elspot regions 

 

Oslo/Bærum, Stavanger and Bergen represents about 29 percent of the population of NO1, 

and Ålesund, Trondheim, Bodø and Tromsø represent about 25 per cent of the population in 

NO2. The temperatures are measured daily and will be aggregated to monthly degree day 

measures applying the formula outlined below.  

 

Assuming the daily energy demand increases linearly by a energy units per degree the 

temperature falls within a limited interval, the monthly energy demand would be 

proportional to a weighted sum of them. Houses with modern winter insulation are getting 

some heat from electric appliances, humans, radiation through windows etc, giving an upper 

bound, u, for the temperature range where heating demand depend on the outdoor 

temperature. Similarly a lower threshold, l, would be a consequence of capacity constraints 

in heating appliances and installed wiring. Ignoring any causes of nonlinearities in demand, 

the contribution to energy demand a day i with temperature xi would be;  

 

a 0,   if xi ≥ u 

a( u –xi),   if  l ≤ xi < u 

a( u – l), if xi < l 

 

Graphically it can be illustrated as in Figure 5 below; 
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Figure 5 Hypothetical energy demand vs temperature 

 

A more accurate relationship might be modelled by allowing different slopes for varying 

temperature intervals. Total energy demand during an m day month with temperature xi a 

given day would be; 
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Where 1l<x<u is an indicator function. 

 

The demands sensitivity to the degree days defined above, a, will be a coefficient in the net 

import regression. The upper and lower thresholds, u and l, are coefficients that would need 

to be determined by the model using trial and error for values to see which ones give the best 

fit unless a suitable Maximum Likelihood could be formulated.  

 

The histogram below illustrates that the daily temperatures are slightly skewed. 
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Temperature histogram
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Figure 6: Daily temperatures 

 

3.1.2 Aggregation of precipitation to a representative measure 

Aggregate winter and summer precipitation in the counties having the largest reservoir 

capacities are used to represent the consequences of the precipitation variance for the energy 

supply within each Elspot region. According to NVE, the counties with the largest shares of 

NO1 reservoir capacity in descending order are; Hordaland (18%), Sogn & Fjordane (15%), 

Rogaland (13%), The largest in descending order in the NO2 area is; Nordland (45%), Møre 

& Romsdal (19%), and Sør-Trøndelag (14%). The representative precipitation will be the 

weighted by these relative shares. 

 

Precipitation is aggregated to monthly sums of daily precipitation measured in mm at the 

representative stations, and the aggregate for the Elspot region is simply the average of the 

representative station in the representative counties weighted by their reservoir capacities. As 
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for the degree day measures; using sums of the daily observations within each month instead 

of average will account for parts of the varying lengths of the months.  
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Figure 7: Daily precipitation 

The histogram in Figure 7 of the daily sample precipitation shows that its distribution is 

asymmetric, with wet days occurring less frequently the wetter they are. 

3.2 Electricity data 

3.2.1 Transfer losses 

In alternating current circuits there are two types of energy loss; fixed and loss varying with 

the current. The loss that does not vary with the current occurs in the fluctuating magnetic 

field in the iron core of the transformers. This is relatively small in comparison to the loss 

caused by current flowing through transmission lines, cables and transformer windings and 

causing them to heat up. DTI (2003) 
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According to Ohm’s law the variable loss of energy is proportional to the cables’ resistance, 

which depends linearly on their length and the square of the transmitted current, and non-

linearly on their temperature. Electrical energy is defined as current times its voltage, so for 

constant voltage; transmission losses will be proportional to the square of the transmitted 

energy for a given line.  

 

According to NordPool, Grid losses are treated as “electricity consumption” by the 

transmission system operator (TSO)6. When the reported quantities are the energy supply to 

the grid, the electricity “consumed” by the grid operator needs to be subtracted from imports 

as it is unavailable for household consumption. Thus the observed net import would 

overstate the actual net import unless it is adjusted for the transmission losses.  

 

Statnett publishes expected marginal losses for each hub intended to calculate tariffs for 

transmission companies. The published marginal losses can be negative if an operator can be 

expected to be relieving the grid if it supplies to a hub in a deficit area, or transports energy 

away from a hub in a surplus area. These losses are always symmetric, if energy demand 

leads to positive marginal losses of a given percentage, energy supply would lead to negative 

losses of the same magnitude but opposite sign. 

 

However, the marginal losses will overstate the average losses that become unavailable to 

the consumers since they increase more than proportionally with the transmitted quantity. 

Unfortunately, I have not come across any useful transmission loss time series.  

3.2.2 Production and consumption from Nordpool 
The two most relevant data sets I have come across that can be used to infer the net 

electricity import are downloaded from the Nordpool ftp server. “Operating data Norway” 

contains Nordic production and consumption on and off from 1996 onwards, with the 

relevant series continuously from January 1999 on. Another dataset called “Elspot flow” 

contains import and exports between Elspot regions from mid 1999 onwards for NO1 and 

end 2000 for NO2. Both of them are organized with observations as hourly rates measured in 

MWh/h for each hour. Only the longest data set that could not be separated into NO1 and 

NO2 turned out to have sufficient number of observations for the estimations. 

 

                                                 
6 http://www.nordpool.no/information/reports/Report%20Spot%20Market.pdf 8.9.2004 
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The files are updated once a day, after the price has been set. The series had to be aggregated 

and organized into monthly observations, and Visual Basic and Excel pivot table reports 

turned out to be handy. Some of the Elspot areas have merged and split over the years, so I 

have attempted to aggregate them into the same as the present in order to get longer 

continuous time series. Transmissions between the areas abroad are omitted because of the 

lack of weather data for the Elspot areas outside Norway. From the beginning of the sample 

until the end at October 2004 there are 70 months, the summer months do however not show 

much variation in the degree day measure and may not contribute to the identification of the 

temperature coefficients; however they are be kept in the sample to give more precise 

estimates of the other.  

3.3 Other explanatory variables 

Income growth can be expected to affect consumption multiplicatively and perhaps with a 

lag if the consumers prefer to even out short term variations in their consumption. From the 

beginning of the sample in January 1999 until the end in September 2004, GNP7 deflated by 

the CPI8 grew by 23 per cent. Over the four years up to September 2004, annual electricity 

consumption fell by 3.5 per cent, which could indicate that the effect of income growth is 

dominated by other factors during the length of the sample.  

 

Norsk Petroleumsinstitutt9 publishes annual averages of recommended retail hating oil prices 

from 1991 on, and from 2000 on they have continuously published all price changes and the 

dates when they occurred. Using the consumer price index as deflator and the average price 

in 1999 as base, the real price had risen by 31 per cent in September 2004. 

 

Investment and scrapping of domestic electricity generation capacity might also influence 

net import demand, but will be omitted as an explanatory because of its infrequent variation 

in the relatively short sample. 

                                                 
7 http://www.ssb.no/emner/09/01/knr/ 
8 http://www.ssb.no/emner/08/02/10/kpi/ 
9 www.np.no 
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3.4 Summary 

Indexing the monthly import, export, degree days, and precipitation at 100 in January 1999 

shows that production follows precipitation with a lag and degree days follows the same 

cycle as consumption. It also shows that production is higher than consumption when 

precipitation has been relatively high during the preceding months and vice versa. 
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Figure 8: Indexed plot of the most relevant variables 

 
Furthermore, as the variables show some persistence in levels the process can be expected to 

follow an autoregressive process. A regression of net import, i.e. consumption-production 

that is consistent with the plots above is the following; 

 

(3.2) (1 – L)(Consumption – Production) = β0 + L β1 Precipitation + β2 Degree days 

 

where L is a lag operator and the βi’s are the coefficients to be estimated. 
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4. Empirical analysis 

The empirical analysis will attempt to test my hypothesis that parts of the statistical variation 

in the energy transmission demand can be explained by variations in climatical conditions 

such as snow- or rainfall and temperature. 

4.1 Local electricity demand 

Henley and Peirson (1997) concluded that the daily electricity demand in the UK is a non-

linear function of the temperature. It is minimal at outdoor temperatures slightly less than 

normal indoor temperature, and it increases as its gets either colder or warmer. Døhl (1999) 

has found a similar relationship for Norway. He suggested that temperature variations 

explain short term demand variations around a long term trend, and the long term trend 

depends on income and relative prices. The emphasis in this project will be on the volatility, 

i.e. variations around the long term trend, so the likely influence of any long term 

explanators will only be modelled if necessary to get consistent estimates of the short term 

coefficients. Furthermore, the sample size is fairly short so it might not contain enough 

variation in the long term explanators to identify their likely effect.  

 

The closest substitute for electricity used for heating in Norway is heating-oil. The demand 

for electricity could not be expected to be affected much by price fluctuations in the short 

run unless as a fairly large share of the consumers are able to switch between these two 

energy sources. Including real heating oil price as an explanatory variable will reduce the 

already small sample for the NO region by a year, and the estimation of the coefficient itself 

reduces the degrees of freedom further. 

 

The standard deviation of a coefficient is inversely proportional to the variation in the 

corresponding variable so a plain temperature average, which evens out temperature 

variations within each month, will be an inefficient explanator of electricity demand 

variations. In order to capture most of the effects of its variations, the degree day measure 

defined in chapter three will be used instead. Looking at the time plot of consumption in 

Figure 8, chapter three; electricity demand could be expected to follow an autoregressive 
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process. However, when including the mentioned degree day measure, which is likely to 

explain parts of the seasonal variations; the autoregressive coefficient gets a low value and 

the t-probability reported by PC Give is near ½, and thus inconclusive. This t-probability 

basically says that the probability of observing the same t-value, a measure of the coefficient 

estimate precision, would have a fifty-fifty chance of being larger or smaller by coincidence 

in a random sample. After trying various upper and lower thresholds for the degree day 

measure it turned out that temperatures in the range between -10 and +17 Celsius gave the 

best fit. An OLS regression of Norwegian consumption on the degree day measure resulted 

in the following equation: 

 

(4.1) |NOcons = 6.81·106 + 9254*degree days,  R2    =   0.943578 

(SE):       (1.05·105)  (276)     
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Figure 9 Consumption versus weighted degree days 

As can be seen from the histogram in Figure 6, chapter three, most of the temperature 

observations are within the range where electricity demand is most sensitive to temperature 

variations, so the error from choosing a too narrow band is likely to be larger than the error 

from choosing a too wide one. 
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The Chi-square and the F-tests for the disturbance properties are based on that they are 

normally distributed, so it might be useful to test the probability that they are first. The χ2 

distributed test statistic of normality is higher the less likely the disturbances are to follow a 

normal distribution. The test concluded there was only a ten per cent chance of observing a 

larger statistic under the null hypothesis that the disturbances actually were normally 

distributed. The consequence of non-normality is that the tests assuming normality based on 

them could be misleading. 

 

Both the Chi-square and F-tests for error autocorrelation resulted in larger test statistics than 

almost certainly would be observed under the null hypothesis of no autocorrelation. The 

main consequence of autocorrelation in an equation without any lagged endogenous 

variables is inefficiency of OLS relatively to GLS. GLS is a regression on variables that are 

transformed by applying known- or consistently estimated correlation coefficients. The 

indicated error autocorrelation is illustrated in the Figure 10 below showing the residual 

persistence. 
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Figure 10: Regression residuals from consumption versus degree days  
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The null hypothesis of no ARCH effects was rejected by the F- test, as there was only a 0.15 

per cent chance of observing a larger test statistic. Furthermore, the Chi-square test of the 

null hypothesis of no variable dependent heteroscedasticity using squares was rejected at one 

per cent significance level. The equation below for squared consumption residuals is 

obtained by the general to specific procedure. 

 

(4.2) ut
2 = 1.286·106 degree days2

(SE):          (2.25·105) 

 

 

When regressing the squared residual on its first lag; both the lag and the intercept remained 

significant: 

 

(4.3) ut
2 = 1.212·1011 + 0.3854 ut-1

2  

(SE):          (4.63·1010)  (0.113) 
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Figure 11: Illustration of the ARCH effect 
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Despite the time- and variable dependent heteroscedasticity and the autocorrelation, the 

reasonably good fit shows that inefficiency is not a serious problem when estimating the 

effects of degree days on electricity consumption. 

 

A possible explanation of why the electricity demand disturbances would be correlated with 

the squared degree day measure could be the linear approximation of the relationship that the 

mentioned studies proved to be nonlinear. The linear approximation makes the expected 

demand further away from the actual at extreme temperatures, where the error from the 

linearization will be greatest. 

 

An explanation of the disturbance autocorrelation and ARCH effects could be that the 

disturbance term includes omitted variables that vary seasonally, for example that it is darker 

during the winter increasing demand for illumination, or higher prices reducing it relative to 

what the temperature explains. If the electricity demands’ sensitivity to changes in 

temperature, its coefficient, varies seasonally but is constrained to be constant; the 

unexplained part of the variation will vary seasonally. Furthermore, the extent of the 

measurement error might vary seasonally if the difference between the average temperatures 

at the representative stations and the temperature paths at the households who are actually 

consuming electricity for heating vary between the seasons. 

4.2 Local electricity supply 

The model is based on the assumption that the electricity supply in a given area is depending 

on the history of production and usable inflow. Aggregated precipitation over representative 

stations is used as a proxy for the unobservable inflow, which can be expected to result in the 

common measurement error problem; inconsistent estimators. Furthermore, the correlation 

between latent usable inflow and precipitation observed at representative stations might vary 

between the different regions if for example the reservoir capacities are different. If extreme 

inflow to the smallest reservoirs spill over and rainfall after extremely dry periods get 

absorbed, the available amount of energy is likely to be non-linearly depending on 

precipitation.  

 

The usable inflow is the sum of rainfall, melted ice and snow that finally reach the 

reservoirs, with melting dominating during the spring and rainfall during the autumn. Winter 
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precipitation can be expected to explain inflow with longer lags than summer rain, and it 

probably matters less when the snow fell during the winter as it cannot flow from the 

watershed into the reservoir until it melts. Thus usable inflow from precipitation is not 

unlikely to depend on the season it fell as well as its quantity. Bye (2002) has a more 

detailed explanation of how the usability of precipitation varies within the year. Furthermore, 

the magnitude of a possible measurement error could be expected to vary seasonally.  

 

In order to keep the model parsimonious, aggregated precipitation and lagged production for 

fairly long periods need to be used to explain electricity supply. The sample size made it 

necessary to aggregate summer and winter precipitation into one single measure, as the 

number of winter month observations is quite small. A quarter of the precipitation falls as 

winter precipitation, and it is only converted into usable water during the spring months. If 

the sample were larger it might have been possible to identify individual slopes for 

precipitation falling in different seasons. 

 

As suggested in chapter three, monthly electricity generation can be expected to be 

autoregressive as the history of production and usable inflow determines the quantity of 

available water, and thus its value relative to the market price. After trying different 

combinations of lagged production and precipitation it turned out that the first lags of 

production and precipitation gave the best fit. A theoretical reason for not including more 

than the first precipitation lag is that information about earlier precipitation lags is already 

contained in the lagged production variable through the autoregressive structure.  

 

An AR(1) of production on precipitation lagged one month resulted in the following 

equation, 

 

(4.4) NOprod = 0.7167×NOprod_1 + 1.092·106 + 1.641·104×precipitation_1, R2 = 0.74804 

 

(SE):        (0.0655)          (6.54·105)   (3.36·103)   

 

From the F test of ARCH effects for one lag it was hard to tell with any significance whether 

or not there was any effect, it was estimated that there was a 47 per cent probability of 

observing a larger test statistic. The evidence of error autocorrelation was far stronger, the 

Chi square and F-tests concluded there was only a 2.44 and 2.76 per cent chance respectively 
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of observing a larger statistic under the null hypothesis. In this equation, which includes a 

lagged endogenous variable, error autocorrelation causes inconsistent coefficients and 

consequently the residuals based on them will be inconsistent as well. Thus the estimated 

residual correlation coefficients cannot be used to transform the variables in order to make 

the residuals better behaved. A plot of residuals against time illustrates this misspecification 

of the model. 
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Figure 12: Residuals from the production versus precipitation regression 

 

Also in this case the most likely explanation of the error autocorrelation and ARCH effects 

could be omitted variables fluctuating seasonally. 

 

As explained in chapter one, the electricity prices in areas dominated by thermal plants 

depends on the efficiency of the marginal power plant, and will thus follow a the same 

predictable pattern as the load. When the transmission capacity is limited, the relative price 

difference with the neighbouring countries is likely to follow seasonal variations as well. 

Thus generators can be expected to use their water when the prices abroad are high in order 

to export even though the precipitation the preceding month was not particularly wet and 

vice versa. Furthermore, if the price sensitivity varies through the year, an electricity 
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generator with large enough market share to take advantage of it might optimize its 

production schedule with respect to it. 

 

Another source of seasonal variance is the reservoir filling cycle; the generators know almost 

he consequences of the mentioned error autocorrelation and measurement errors, 

s testing whether the instruments can be used is impossible, considering how the 

4.3 Estimation of transmission demand between regions 

s where 

                                                

certainly that the usable inflow increases every spring. When their capacity is limited they 

need to export the energy in their reservoirs at the end of the winter in order to avoid 

flooding at the end of the spring, thus their production might be high relative to the annual 

average even if the precipitation in the preceding period was not. 

 

T

inconsistency, could be avoided using instrumental variables. The sample correlation 

between monthly precipitation and reservoir levels10, published by SSB, were about 0.4. 

Testing whether or not the instrument is correlated with disturbances from a consistent 

regression is not possible, since none are available.  

 

A

instrument and the error are likely to be related in the real world might be a more feasible 

possibility. In this case the measurement error could possibly be correlated with the potential 

instrument, for example if the usable inflow from a given amount of precipitation depends 

on the reservoir level, which is not unlikely when less of the inflow is usable the higher the 

probability of flooding, it would be useless as an instrument.  

The demand for transmission is a consequence of the distance between the area

electricity is demanded and where it is generated. A small part of the supply is lost in 

transmission and is accounted for as “consumption” by the transmission line operator. This 

will lead to an overestimation of net import, unless it is subtracted, since parts of it never 

become available to the consumers. Unfortunately, I have not come across any time series of 

total or average losses, only expected marginal losses published by Statnett. Total losses 

cannot be estimated from marginal losses due to the non-linear relationship between losses 

and transmitted quantity. 

 
 

10 http://www.ssb.no/emner/10/08/vannmag/ 
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The so-called water value model, outlined in Førsund (2004), is much used to explain the 

.5)  Xt
XI  = Wt – Ht

 unexpected increase in the supply of usable water will reduce the price of local energy, but 

 addition to the availability of data, the optimal length of the time series will be 

he coefficients estimated by some of the mentioned procedures are reported in Table 4.1 

hydro power price level during a water scarcity period. In simplest deterministic model, the 

reservoir is assumed to be partly filled in the beginning of the scarcity period with no further 

inflow during the period. In this model the water value, λ(Wt), is constant for the whole 

scarcity period, t, and is by definition the price level that equates the available water, Wt, to 

the sum of the period’s deterministic home, Ht, and net export demand, Xt
XI. Thus, the net 

export during the scarcity period will be given by the following energy balance equation; 

 

(4

 

A

due to the inelastic short term demand the local consumption changes only up to a point, 

making the excess energy desirable to export and vice versa. Colder weather causes the 

demand curve to shift, increasing the demand for a given price level, instantly increasing the 

demand for import (or reducing the export). The relative prices will not be modelled 

explicitly; simply assumed to be doing their job allocating the electricity demand to the 

available generators with the lowest opportunity cost.  

 

In

constrained by inconsistency due to omitted variables that may vary in the very long term, 

such as technological progress, capital (for example heat pumps and improved winter 

insulation) that substitute for parts of the energy demand, energy supplied locally from new 

sources, changes demography and price sensitivity etc. Constrained by limited resources and 

lacking sufficiently long time series for all the relevant variables, time series that potentially 

are long enough to detect long term trends or even possible climate changes will not be 

applied. Thus the model will be limited to estimating the statistical relation between the 

present distributions of the two mentioned weather measures and the present distribution of 

net import demand fluctuations. 
 

T

below. In the model of net import, the indications of autocorrelation and ARCH effects were 

far lower than in the equations for supply and demand individually. The F-test of error 

autocorrelation at one lag showed that there was an 85 per cent chance, and the Chi square 

86 per cent, of observing a larger test statistic under the null hypothesis of no error 
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autocorrelation. Similarly, the F-test of ARCH effects indicated that there would be an 85 

per cent chance of observing a larger test statistic under the null hypothesis of no ARCH(1) 

effects. The disturbance normality test showed that there was a 96.5 per cent chance of 

observing a larger test statistic under the null hypothesis of normally distributed errors so it 

could be accepted at five per cent confidence level. 

 

F- and Chi-square tests for variable dependent heteroscedasticity using squares and cross 

cluding the variables that could be expected to account for the seasonally varying omitted 

 the conditional variance structure could be identified, the heteroscedasticy could be 

products indicated that the probability of observing higher statistics in a sample without 

heterosceasticity were 0.38 and 0.26 per cent respectively. As explained in chapter two; the 

consequence of heteroscedasticty in the form of residual variance depending on the level of 

the explanatory variables is inefficient estimators. The insignificance of the intercept may or 

may not be a consequence of the disturbance heteroscedasticity. It might have been caused 

by misspecifying the disturbances as heteroscedasitic, or simply an insufficient number of 

observations to identify it.  

 

In

variables, price difference, price ratio, heating oil price, heating oil price ratio, season 

dummies, reduced the probability of observing higher statistics for all the mentioned tests 

under their null hypotheses. A large increase in the coefficient standard deviations indicated 

that the loss of degrees of freedom matters more for the coefficient precision than a possible 

improvement in residual behaviour.  

 

If

modelled by applying Feasible Generalised Least Squares, which basically is to weigh the 

observations by the inverse conditional standard deviation. An attempt to transform the 

equation variables by diving them by the conditional standard deviation did not remove the 

problem of variable dependent heteroscedasticity and did not give any meaningful result. 

Green (2000) says it remains uncertain whether FGLS corrections are any better than OLS in 

small samples with known heteroscedasticity but unknown parameters. FGLS is clearly 

better asymptotically, but in small to moderately sized samples the variance incorporated by 

the estimated variance parameters may offset the gains to GLS. 
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Table 4.1: Regression results 

Method  

Lagged 

precipitation

Lagged 

Net import degree days Constant 

Endogenous precipitation and 

degree days with lagged 

reservoir levels and lagged 

degree days as instruments Coefficient -4 810 0,77 1663 -47274 

 Std.Error 6 115 0,08 1134 405600 

As above but no intercept Coefficient -3747 0,80 1241  

 Std.Error 1833 0,07 543  

Endogenous precipitation 

with lagged reservoir levels 

as instrument Coefficient -4 366 0,78 1566 -81772 

 Std.Error 5 363 0,07 574 418400 

As above but no intercept Coefficient -4707 0,79 1564  

 Std.Error 1593 0,06 456  

Endogenous degree days 

with lagged degree days as 

instruments Coefficient -4 747 0,79 1333 69795 

 Std.Error 2 051 0,06 458 199100 

As above but no intercept Coefficient -4326 0,79 1393  

 Std.Error 1461 0,06 453  

OLS Coefficient -5505 0,78 1678 40833 

 Std.Error 1970 0,06 388 196900 

OLS no intercept Coefficient -5194 0,78 1691  

 Std.Error 1269 0,06 380  

GARCH(1, 0) Coefficient -5505 0,78 1678 40833 

 Std.Error 1241 0,06 372 9 

 Robust.StE 1252 0,05 313 9 

GARCH(0, 1) Coefficient -5505 0,78 1678 40833 

 Std.Error 1241 0,06 372 9 

 Robust.StE 1252 0,05 313 9 

 

Having in mind the 15 per cent chance the residuals are following an ARCH(1) process it 

was estimated as if it were one. Modelling the disturbance using the PC Give volatility 

package as if it were following a GARCH(1, 0) or GARCH(0, 1) process did not change the 

coefficients in the main equation, but reduced the standard deviation of the intercept estimate 

enough to make it significant. The coefficient in the jointly determined auxiliary equation for 
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the lagged conditional disturbance variance was low and uncertain, and the coefficient in the 

lagged squared disturbance equation was practically zero. Omitting the insignificant constant 

term from the OLS equation only changed the disturbance test statistics slightly; it still tested 

positively for variable dependent heteroscedasticty at one percent significance, positively for 

normally distributed errors at five per cent level, no ARCH effects at 25 per cent level, and 

no autocorrelation at 14 and 13 per cent for the Chi square and F- tests respectively.  

 

The coefficients from the individual regressions of consumption and production are not 

directly comparable with the values above as simply subtracting production from 

consumption would result in lagged production instead of lagged net import on the right 

hand side.  

 

The improved behaviour of the residuals from the net import model relatively to the 

individual import and export models could possibly indicate that the temperature explains 

parts of the seasonal variation in production, or that precipitation explains parts of the 

seasonal variation in consumption. Even though the degree day- and precipitation measures 

are for different areas and one period apart, each of them might follow a seasonal pattern that 

is fairly correlated with what it would have been if it were measured for the same period and 

area as the other. The degree day measure could explain an increase of electricity supply 

because snow and ice melts when it gets warmer and increases the usable inflow. The 

precipitation could explain consumption if it serves as a proxy for the seasonal variable 

darkness, which increases the electricity demand for illumination. 

4.4 Interpretations of the regression result 

As it is impossible to test whether the instruments meet both of the requirements to be 

instrumental variables and because of their high coefficient standard deviations relatively to 

the plain OLS model, they will not be used in the next chapter. The volatility models are not 

justified by the tests for ARCH effects, but for some reason gave far lower estimate of the 

intercept than the plain OLS. However, they will not be used fearing the improved efficiency 

might be due to a misspecification. Nevertheless, the constant term falls out of the equation 

for the decomposition of the variance, so it might not be critical to get an exact value. 
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Expected net import can be calculated by inserting the expected values for the explanatory 

variables into the equation; 

(4.6) E[net import] = 0.78 E[net import_1] + 1691 E[degree days]  - 5194 E[precipitation_1] 

+ E[ut] 

 

If the net import distribution is stationary, the expected values at different points in time will 

be equal; 

 

(4.7) E[net import] = 7 713 E[Degree days] - 23 689 E[ precipitation]  

 

The sample first moments are: 

  

E[Degree days] = 310,  

E[Precipitation] = 103,  

E[Net import] = -139 000 

 

Inserting the regressors’ sample moments in the equation results in E[netimp] = -54 005 

MWh, which is not consistent with the sample monthly net import mean at -139 000. This 

might not come as a surprise knowing the high standard deviations of the intercept term and 

net import. The empirical mean is the average of 70 observations, and the net import 

standard deviation is about hundred times larger than its mean. 

 

Similarly, the explanatory variables effect on the stationary net import variance can be 

estimated using the formula for the variance of a sum. 

 

(4.8)   
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Where sNI is net import standard deviation, sPC_1 is lagged precipitation standard deviation, 

sDD is degree day standard deviation, and Var[ut] the residual variance. 
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This quadratic equation in the standard deviation for net import can be solved using the 

following equation; 

 

(4.9) as2 + bs + c = 0 ↔ 
a

acbbs
2

42 −±−
=  

 

where  

 

a = (1 - 0.782),  

),(519478.02),1_()169178.02( PCNICorrsDDNICorrsb PCDD ⋅⋅⋅⋅+⋅⋅⋅⋅−=  

[ ]( )tPCDDPC uVarPCDDCorrssssc
DD

+⋅⋅⋅⋅⋅+−+−= − )1_,(519416912)5194(1691 2
1

222  

 

 

Inserting the sample moments in the equation for the stationary standard deviation results in 

net import standard deviation of 1.1 MWh, which is consistent with the sample moment. 

 

In order to illustrate the sensitivity of the net import standard deviation on changes in the 

degree day and precipitation standard deviations, a plot holding every thing else constant 

could be useful. The plot below is made in Excel holding the precipitation and temperature 

correlation calculated from the sample constant at 0.4.  
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Figure 13: Net import standard deviation 

 

The model result indicates that net import standard deviation can be expected to be more 

sensitive to changes in degree day- than precipitation standard deviation; a ten per cent 

increase in degree day standard deviation leads to a 2.2 per cent increase in net import 

standard deviation. The same increase in the precipitation standard deviation leads to 1.5 per 

cent increase, and an increase of both to a 3.6 per cent increase, slightly less than the sum 

since the variables are positively correlated and have the opposite effect on net import. The 

correlation between temperature and precipitation has the physical explanation that cold air 

cannot contain as much humidity as warmer, so less will precipitate from it when the 

pressure or temperature falls. Giancoli (1988). 
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5. Theoretical implications of the volatility increase 

5.1 Change of net import distribution 

Chapter four concluded that the net monthly import was not unlikely to be an autoregressive 

linear function of the period’s degree-days and lagged precipitation. The explanatory 

variables’ effect on the net import’s mean is straight forward and their effect on its 

unconditional (long term) standard deviation were calculated by applying the definition of 

variance of a sum, which is the following second-order equation in net import standard 

deviation.  

 

(5.1) StDev2 [yt] = β1
2 StDev2 [yt-1] + β2

2 StDev2[xt] + β3
2 StDev2[zt-1]  

 + StDev[xt] StDev[yt-1]Corr[xt, yt-1] 

 + StDev[xt] StDev[zt-1]Corr[xt, zt-1] 

 + StDev[zt-1] StDev[yt-1]Corr[zt-1, yt-1] 

+ Var [ut] 

where yt is net import, xt is degree days, and zt is precipitation. 

If the variance is stationary as well, St Dev[yt] = St Dev[yt-1], then the square equation can be 

solved the usual way. 

5.2 The theoretical impact on optimal capacity 

The transmitted quantity will be the sum of the export and import, not the difference as the 

net export. As explained in chapter two, the distributions of net import and transmitted 

quantity will have the same variance. Their means will obviously be different, but since the 

mean cannot be identified and falls out of the final equation if it is held constant it will not 

be considered further. 

 

The hypothetical change in the demand distribution changes the optimal capacity estimated 

by the probabilistic one period “newsboy” model described in chapter two. This model 

basically says that the probability of demand exceeding capacity should equal the ratio of the 

marginal capacity cost to the marginal benefit of having enough. Unless this ratio is 
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symmetric, with equal marginal benefits and costs; optimal capacity will be different from 

mean demand.  

 

Application of the newsboy model requires the distribution of transmission demand at points 

in time, but the estimated distribution is for the net monthly energy transmission. This raises 

two problems, first the distribution of monthly transmission needs to be converted to hourly, 

and secondly the transmitted quantity is censored demand since not all demand is met. Green 

(2000) explains how the unobservable demand moments could have been inferred from the 

assumed distribution function for the censored variable and the moments of the observed 

variable if both moments were identified. 

 

5.2.1 Parameters in the probabilistic model 

The tree parameters for capacity cost, benefit per unit of met demand, and penalty per unit 

unmet demand, c, s, and p, must be measured in the same unit for the ratio between them to 

make sense. Since the economic benefit of transmitting, and the penalty for not being able to 

meet demand are rates of cost per unit of time and electric effect, the cost of capital must be 

expressed as a continuous rate as well. Furthermore, to make the parameters time 

independent all units must be expressed in real terms. These parameters are unfortunately 

hard to measure directly. In order to make a crude numerical example and see how consistent 

the model is with the real world, Statnett’s most recent investment, Nea-Järpstrømmen, will 

be investigated. An easier approach would be applied to the other regions, simply assuming 

the present capacity is optimal with respect to the present parameters and assume the 

cost/benefit ratio remain constant when the demand distribution changes. 

 

Cost of capital of Statnett’s most recent project 

According to Statnett (9/2004), their next planned 420 kV transmission line Nea 

Järpstrømmen will cost 155 MNOK for their quarter of the overhead line with the remaining 

paid by Svenska Kraftnät. The line replaces a scrapped 300kV line so the cost will be 

attributed to the total capacity and not only its increment. According to Sand (2003), 

transmission lines have an economic lifetime of 30 years, discounted by the ministry at a 6 

per cent annual nominal rate, and annual operating costs a small proportion of the initial 

investment. The report does not say the capacity of the line, but the old line’s capacity is 
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600MW, and new 420 kV AC lines have normally around 1000 MW capacity, so this value 

will be applied in the following crude numerical example.  

 

The cost of capital as a rate per unit of time could be modelled as the sum of the real interest 

rate on the initial investment continuously compounded, depreciation, and real maintenance 

costs measured as a rate per unit of time. 

 

The continuous cost of capital including both depreciation and interest, c, could be defined 

as the continuous cash flow for the project’s life time with the same present value as the 

initial expenditure, C. 

 

(5.2)  ∫=
T

rtceC
0

 

When the project’s life time is T years, the cost expressed as a cash flow rate would be; 
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If the annually compounded real interest rate is 3.50 per cent the continuously compounded 

interest rate is 3.44 per cent p.a. Inserting values from the capacity investment mentioned 

above gives the continuous cost of c = 33 MNOK/year for the installations 30 years life time. 

The cost of capital measured as an hourly cash flow will be NOK 3780/h, or NOK 

3.78/MWh if its capacity is 1000MW. 

 

Benefit per unit transmitted 

An estimate of the benefit per unit transmitted could be the tariff to the transmission 

company which is supposed to cover its long run marginal costs. If the regulation were 

efficient the long run marginal cost would equal the marginal benefit. This tariff consists of 

two parts; a variable part that covers the marginal transmission loss depending on load and 

the electricity price, and a fixed residual part covering the rest of the transmission 
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companies’ costs. Using numbers from Statnett11; the 2004 residual tariff is 6 kr/MWh and 

the energy tariff is the system price at the time of transfer multiplied the expected marginal 

loss, which is published by Statnett for around ten weeks ahead. In order to keep the model 

simple, the system price and the marginal losses are set equal to their unconditional 

expectations. The published loss estimates are separate for day and night and symmetric with 

marginal losses from demand equal to the negative of marginal losses from supply and 

truncated at ±10 per cent. After analysing hourly data from Nordpool, it turned out that 50-

56 per cent of total import and 79-86 percent of total export occurs during the day. This 

makes sense in regions exporting hydropower and importing thermal power, as the cost of 

thermal power is more sensitive to intra day demand variations than hydro power. Valuing 

marginal losses at system price like Statnett does in its tariff; the average variable component 

is about NOK 6/MWh. Thus the total average transmission tariff used as a proxy for the 

marginal benefit of transmission, s, will be around NOK 12/MWh. 

 

Marginal economic cost of unmet demand 

The economic bottleneck cost is defined in Statnett (8/2004) as half the price-difference 

between the areas where it would be desirable to transfer electricity, times the size of the 

bottleneck. This could be interpreted as if both sides of the border share equally the cost of 

inefficient demand allocation caused by the bottleneck, indicated by a difference marginal 

production costs in excess of the transmission tariff. Prices in the different Elspot areas are 

obtained from the Nordpool ftp-server, and for simplicity I will use half the mean price 

difference conditional on that a bottleneck has occurred. Half of the average absolute price 

difference between NO2 and SE, conditional that it is larger than the average transmission 

tariff calculated above; is NOK 23.9/MWh.  

 

5.2.2 Applying the estimated parameter values into the newsboy model 

Inserting the values for NO2 outlined above into the right hand side of the model, it would 

be optimal to set capacity at a level where the probability of demand exceeding capacity is 

around ten per cent. In the hourly price data there is a price difference larger than the average 

transmission cost between NO2 and Sweden 16 per cent of the time. This deviation is not 

horribly large considering the discontinuous steps of capacity investment as well as the 

models’ other unrealistic simplifications and the inaccuracy of the data. 
                                                 
11 http://home.statnett.no/tapssatser/ 
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The tests of the net import model in chapter four accepted the hypothesis of normally 

distributed disturbances at five per cent confidence level. Since transmission demand is a 

linear combination import and export, it can be considered normally distributed like the net 

import. Then optimal capacity, Q, can be expressed explicitly as in equation (2.33); 

 

(2.33) ⎥
⎦

⎤
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+

−Φ+= −

ps
cQ 11σµ , where µ and σ are the demand moments  

 

When the cost benefit ratio is 1:10, it would be optimal that demand is met 90 per cent of the 

time. In order to expect that, capacity should exceed the mean demand by 128 per cent of the 

standard deviation. 

 

If the prices can differ with the average transmission tariff, about NOK12 /MWh, before it is 

considered desirable to transmit more; capacity is constrained 35.2, 19.3, and 15.6 per cent 

of the time respectively at the DK1<->NO1, SE<->NO1 and SE<->NO2 connections 

respectively. If transmitted quantity at the maximum capacity indicates congestion; 

transmission demand is rationed 25.4, 26.7, 0.6 and per cent of the time. These deviations 

might be reasonable if the maximum capacity is not constant, but depending on other 

bottlenecks. Furthermore, the marginal transmission tariff varies with the electricity system 

price, and the hourly means do not reach extreme values as often as the pointwise 

transmission they are aggregated from. 

 

At the connection with Denmark, which is the one with highest cost/benefit ratio, optimal 

capacity would equal mean demand plus 38 per cent of the standard deviation, at the 

connection between south of Norway and Sweden it would be optimal to have capacity equal 

to mean demand plus 87 per cent of the standard deviation. Using the fraction of time 

capacity it would be desirable to transmit between northern Norway and Sweden instead of 

the crudely estimated cost/benefit ratio for Nea-Järpstrømmen it would be optimal to have 

capacity exceeding expected demand by 101 per cent of the standard deviation. 

 

Inferring optimal capacity for the remaining connections 

For the connections between south of Norway with Sweden and Denmark I have not come 

across the costs of capacity. However, assuming the capacities are optimal initially, the only 
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unknown variable in the expression for the optimal probability of meeting demand, 

ps
c
+

−=Φ 1 , is the marginal cost c. Half the price difference between NO and DK 

conditional on being over NOK 12/MWh is 39, between NO1 and SE is 23.9, and between 

NO2 and SE is 22.5. Setting the benefit of transmission equal to the estimated NOK 

12/MWh, lacking a more precise number, the estimated capacity cost is NOK 14/MW for the 

connection with Denmark, and about 7.5 for the connection between south of Norway and 

Sweden. 

5.2.3 Likely errors of considering the parameters constant 

As opposed to newspapers the electricity price is endogenous. Thus the price differences 

between the Elspot areas are not likely to be constant, but increasing with the size of the 

bottleneck. The plot below of net transfer versus price difference shows how the price 

difference increases as the transmitted quantity approaches the capacity constraints. This 

would make the “penalty” increase more than proportionally with the quantity of unmet 

demand. The more often a connection is congested in the same direction during the period 

the average net import is taken over, the closer it will be to the capacity constraint. The price 

difference will be endogenous to the size of the bottleneck in the sense that would be higher 

the more it would be desirable to transmit before the marginal electricity generating costs at 

both sides of the connection became equal. So even if the probability of bottlenecks 

occurring remains exogenously constant at the cost/benefit ratio; increased volatility would 

probably increase the size of them when they occur. 
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Figure 5.14: Net import and the price difference 

 

Another issue that makes the application to transmission lines more complicated is the fact 

that increased transmission capacity will reduce the transmission losses for a given 

transmitted quantity. According to Ohm’s law, the voltage drop is proportional to the 

resistance and the current, and by the definition of electric energy the loss would be the 

voltage drop times the current. Thus the energy loss, electric current multiplied by its voltage 

drop, would increase with the square of the current and thus with the square of the 

transmitted energy. The transmission losses will increase the temperature of the conductor 

which again increases its resistance. Hence, increasing the lines’ capacity by upgrading the 

voltage or reducing its resistance will thus reduce the losses for a given transmitted quantity 

of energy. In a more realistic model, benefit per unit of transmitted energy would have been 

a non-linear function of demand, and the optimal capacity would require a numerical 

solution. 

 

Since both of them are increasing functions of demand; this simplification will bias the 

optimal probability of demand exceeding capacity. 
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5.3 Expected cost of the capacity change 

When the cost/benefit relationship remains constant, the cost of increased capacity becomes 

directly proportional to the increase in standard deviation. Multiplying the change in optimal 

capacity with, c, the unit capacity cost gives the cost increase as function of changing 

standard deviation for a given connection. 

 

(5.4) ⎥
⎦

⎤
⎢
⎣

⎡
+

−Φ∆=∆ −

ps
ccQc 11σ  

 

Dividing by the standard deviation change, ∆σ, gives the cost per unit of standard deviation 

increase, which could be more useful while the expected increase in volatility remains 

unknown. 

 

(5.5) ⎥
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Multiplying the cost estimates with the estimates of capacity per unit standard deviation 

results in the following cost per unit increase in standard deviation for the three connections. 

Table 2: Costs of increased net import standard deviation 

Connection Cost per unit increase in net 

import standard deviation 

NO2<->SE 3.40 

NO1<->SE 6.50 

NO1<->DK1 5.30 

 

If the TSO behaves rationally in the sense that it always keeps capacity at the optimal level, 

and the weather volatility changes slowly relative to the investments lifetime, the loss from 

increasing weather volatility will be reflected in the cost of keeping the transmission 

capacity at the optimal level.  

 

If the price difference is endogenous to the size of the bottlenecks, it is not unlikely that 

higher weather volatility lead to higher electricity price variability. The income effect of 
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volatile prices will reduce the risk-averse consumers’ utility, and the increased transmission 

capacity costs alone will understate the actual costs.  

 

Furthermore, the estimated standard deviation understates the transmission demand volatility 

because of the censoring. All demand in excess of capacity is observed as if it were equal it, 

and since the mean demand is lower than the censoring limit the average observed squared 

deviations from the mean will understate the actual. 
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6. Conclusion 

The intention of this project was to investigate how the statistical distribution of electricity 

transmission demand in an economy relying mostly on hydro power can be expected to be 

affected by potential climatical changes. 

 
It turned out that a regression of monthly net import on its first lag and lagged precipitation, 

explaining supply, and an aggregate of temperatures, explaining demand, fitted the sample 

data well. However, the demand for transmission capacity depends on the distribution of 

transmission at points in time, and not the monthly average of net import. At all points in 

time the transmitted quantity will equal absolute value of net import, so the estimated net 

import distribution were used to infer the transmission demand distribution.  

 

When the marginal costs of meeting the demand are different from the benefits, the optimal 

level of the transmission capacity depends on the demands’ volatility as well as its 

expectation. By the so-called “Newsboy model”, optimal capacity would be at a level where 

the probability of demand not being met equals the ratio of marginal costs to benefits. When 

these are exogenously given and the demand distribution is known, optimal capacity will 

equal the mean demand plus a fraction of its standard deviation depending on the cost 

benefit ratio. 

 

However, if the costs or benefits are non-linear functions of capacity it gets more 

complicated. A by-product of higher transmission capacity is that the losses for a given 

quantity of electricity will fall when the capacity utilisation falls. This will increase the 

average benefit of transmission since more of the transmitted energy becomes available to 

the consumers. However, what matters for the optimal capacity is the marginal benefit, 

which is less likely to change.  

 

The other part of the marginal benefit of the ability to meet demand is the marginal reduction 

in the penalty for not meeting demand. This is defined as the quantity that would be 

desirable to transmit, multiplied by the price difference, and shared equally between each of 

the markets separated by limited transmission capacity. At both sides of the border the price 
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level is determined by the generator with the highest marginal costs. When these costs vary 

between the separated markets there would be efficiency gains by generating more at the low 

cost side; and less at the other and transmitting the difference. A marginal increase in 

capacity would allow a marginal reduction in the production by the high cost side and a 

marginal increase at the low cost sides; reducing the price difference as well as the size of 

the bottleneck. Thus the marginal benefit of transmission would be an increasing function of 

capacity and the newsboy solution will understate the optimal capacity. 

 

The conclusion of the empirical study was that the monthly transmission demand standard 

deviation increased less than proportionately with the standard deviations in the explanatory 

climatical variables. Without having any estimate of the likely order of magnitude of their 

future increase, an eventual increase the cost of keeping the transmission at its optimal level 

cannot be estimated. However, the direction of the capacity cost change is unambiguous, if 

the weather becomes more volatile, net electricity import gets more volatile as well. Hence 

the optimal transmission capacity will increase unless the expected net import falls 

sufficiently to compensate it. Nevertheless, the global warming is likely to cause a more 

humid and warmer climate, and according the signs of the coefficients in the net import 

equation this will reduce energy demand and increase its supply. Consequently the total 

effect of the climate change on the costs of keeping the transmission capacity at its optimal 

level remains undetermined. 
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