

Olga Kerimova

A study of Norwegian local government behaviour in a dynamic context

Submitted May 2010

In fulfillment of degree: Master of Philosophy in Environmental and Development Economics

Department of Economics, University of Oslo

Preface

It is always exciting to begin something new. It is also a little intimidating, especially when the words panel data econometrics are involved. This thesis is a product of many hours of deciphering econometrics textbooks, translating Norwegian articles and learning the ins and outs of programming. With each challenge, however, came moments of small triumphs when panel data became less mysterious, when I could pronounce the word *kommune* without eliciting smiles from Norwegian colleagues and the models I programed were (almost) error-free.

A special thank you to my supervisors, Audun Langørgen and Rolf Aaberge, for the challenging topic, many helpful comments and ideas, stimulating discussions, tireless guidance and patience. I am also grateful for the opportunity to have been a part of the Local Public Finance research group at Statistics Norway, where this thesis was written as part of a paid engagement.

To Quintin – for expert UNIX assistance, for spending your sunday making style sheets, and especially for always wanting to help, for your love and support – thank you.

Oslo, May 2010

Olga Kerimova

Table of Contents

1. I	Introduction	1
2. l	Literature review	3
3. ⁻	Theoretical foundations and methods	8
3	3.1. Advantages and limitations of panel data	8
	3.1.1. Incidental parameters problem	8
3	3.2. Fixed effects	9
	3.2.1. Interactive fixed effects	12
	3.2.2. Partial adjustment model	13
3	3.3. Random effects	14
3	3.4. A comparison of fixed and random effects	14
3	3.5. Random Coefficient Model	15
3	3.6. Balanced vs. unbalanced panel	17
4. I	Model	18
4	1.1. Norwegian local government fiscal responsibilities and financing	18
4	4.2. Baseline model description and specification	18
	4.2.1. Outline of model derivation	20
4	4.3. Practical issues	22
	4.3.1. Outlier municipalities	23
4	1.4. Price and income indices	23
5. l	Panel data models for a system of equations	25
	5.1. Time and municipality-constant effects on minimum required expenditures and marginal budget shares	25
5	5.2. Time variation in minimum required expenditures	27

5.3. Multiplicative time effect	28	
5.4. Municipality fixed effect	30	
5.5. Economic region fixed effect	32	
5.6. Region and time effects	33	
5.7. Partial adjustment model with time heterogeneity	33	
6. Empirical results	35	
6.1. Data and variables	35	
6.1.1. Factors that explain variation in the minimum required expenditures	37	
6.2. Results	39	
6.2.1. Effects on minimum required expenditures	47	
6.2.2. Effects on marginal budget shares	60	
7. Conclusion	70	
8. Bibliography	72	
9. Appendices	76	
Appendix A Outlier municipalities and income index derivation	76	
Appendix B Time-invariant variables and correlation plots	82	
Appendix C Residual plots	95	
Appendix D Finding significant fixed effects in Model 4	150	
Appendix E Economic regions and region fixed effects	183	

1. Introduction

The current research builds on existing work of examining the behaviour of local governments in Norway by Aaberge and Langørgen (2003), Aaberge and Langørgen (2006), Langørgen, Galloway, Mogstad and Aaberge (2005) among others. Using previous work on the subject as a foundation, the key purpose of this paper is to analyse local government spending behaviour in a dynamic framework facilitated by a panel dataset, combining municipality data for the years 2001 to 2008. A local government is represented by a dominant party or coalition and has preferences, given by a Stone-Geary utility function, over the budget surplus (sector zero) and output in 12 service sectors. Since local governments are assumed to be utility maximising agents, they choose the best combination of budget surplus or deficit and output of public services, subject to the budget constraint that total spending (spending and budget surplus) does not exceed total income, which consists of grants from the central government and local taxes. Furthermore, local government spending is analysed in a simultaneous framework, that is using a structural model where government expenditure in each service sector is endogenous and dependent on the expenditures in the other sectors, since allocating a larger share of income to one sector will reduce the share of income in other sectors.

Local government expenditure in each sector is modeled to consist of two components: the minimum required expenditure, that is expenditure required to meet the public service mandates dictated by the central government or the expert opinion consensus among local government, and the discretionary income – the remaining income after the minimum required expenditure has been covered – which is divided between the sectors according to local priorities. The share of discretionary income allocated to a sector is the marginal budget share for that sector.

Since data on public service prices are not available, this paper uses the method employed by Aaberge and Langørgen (2003, 2006), namely using information on municipality characteristics that capture variation in costs and capacity to produce local public services in order to estimate the expenditure for each sector. Minimum required expenditure (sector-specific subsistence spending) and minimum fiscal surplus are assumed to depend on central government regulations and technological constraints, represented by factors that include demographic variables (residents in specific age groups, civil status, employment status etc), settlement pattern within a municipality, economies of scale, climatic conditions (e.g. amount of snowfall), sewage purification regulations. Marginal budget shares are assumed to vary with local population's average education level, settlement density and the political party composition of the local council.

The independent contribution of this study is to extend the existing research on Norwegian local governments' behaviour, which uses cross-sectional data, by combining the cross-sections for the 8 available years (2001 - 2008). This will allow for a quasidynamic study and long-term analysis of local government behaviour, also allowing one to account for any municipality or time heterogeneity not captured by the included explanatory variables. This study is quasi-dynamic because it contains both static and dynamic elements. It is static in a sense that it is not based on intertemporal optimisation. That is local governments' preferences are observed at a point in time with no explicit relationship between preferences across time periods. Moreover, local governments are assumed to be subject to a static budget constraint; that is a budget condition that is not specified to include linkages between different time periods. However, this study analyses changes over time in local government spending behaviour, exploiting both cross-section and time-series variation in the data, and is therefore referred to as quasi-dynamic. Panel data is well-suited to analysing the dynamics of change as well as to controlling for the unobserved heterogeneity. Thus, a panel study allows for a richer analysis of how local government behaviour changes over time in the presence of unobserved municipality and time effects.

Well-known panel data methods such as fixed effects estimation are adapted to estimating a system of equations. Models with both municipality and time effects are developed and estimated using the Full Information Maximum Likelihood technique. All empirical analysis, including model estimations, is conducted using the SAS software¹.

Models with municipality fixed effects and/ or time effects are found to perform better than the benchmark model which accounts for increasing minimum required expenditures only through income growth. When unobserved time and municipality heterogeneity are not taken into account, the effects on the minimum required expenditures are usually biased. The municipality heterogeneity is modeled in two ways: by introducing municipality-specific dummy variables or dummy variables for labour market regions into which all municipalities are grouped. Many of the region effects are found significantly different from the Oslo region, which is chosen as the reference, particularly when region effects are included together with the time effects. Finally a dynamic model is estimated to analyse the dynamics of adjustment of municipality spending over time, where spending is modeled as a weighted average of optimal long-run spending and the spending in the previous period. The weight measures the speed of adjustment to equilibrium and is estimated to be relatively low, suggesting sluggishness in the municipalities' spending behaviour over time.

¹ Program code is available on request.

The rest of the paper is organised as follows. Section 2 contains a literature review of selected studies of local government behaviour and the different models used. Section 3 discusses some well-known panel data methods such as fixed effects and random effects regression as well as their application to balanced and unbalanced data sets. Section 4 presents the benchmark model used and comments on some of the issues that may arise in applying the model to a panel data set. Section 5 suggests some possible model variants that extend the benchmark model to account for unobserved heterogeneity. Section 6 outlines the data used and provides a discussion of the results obtained by estimating the models in Section 5. A discussion of the change in the parameters of interest between different model formulations is also provided. Section 7 concludes.

2. Literature review

A number of studies have already been conducted on various aspects of economic behaviour of local governments. Both the expenditure and the revenue sides of the local governments' budgets have been discussed, using models appropriate to the particular question under investigation. Some studies are based on cross-section data, while others make use of panel data to capture any possible unobserved heterogeneity.

Borge (1995) focuses on the revenue aspect and analyses determinants of fee income for Norwegian municipalities, using a representative voter model where the utility function of the pivotal voter is maximised subject to the relevant resource constraint (disposable income is spent on private consumption and user fees). A separable utility function is assumed. Its arguments are per capita service production of free services, services subject to user fees and the level of private consumption, as well as sociodemographic variables such as share of children, youth and the elderly in a municipality's population. Two additional variables are included to capture structural differences across local governments: population size and settlement pattern (average traveling distance to the center of the municipality). The estimation is conducted using panel data of 414 municipalities for the years 1980 - 1990; time dummies are included additively allowing the intercept to shift from year to year. These dummy variables capture the shift in the functional responsibility between the counties and the municipalities, and the effects of any left-out variables that vary over time. A municipality-specific term is also included, which is assumed constant, fixed or random depending on the specification. Borge (1995) finds among other things that higher private income and higher compulsory expenditures contribute to an increase in fee income.

Other studies focus extensively on the expenditure side of the budgets, analysing how a fixed total budget is allocated among different service sectors. In a dynamics-centred

analysis Borge, Rattsø and Sørensen (1995) develop a partial adjustment model with endogenous speed of adjustment to analyse how pressure from interest groups and mass media influence the adjustment process of local governments' spending. Based on a combined cross-section and time-series data set for Norwegian local governments, the sluggishness of the adjustment process is estimated for 6 service sectors², with pressure groups related to primary education explaining an important part of the sluggishness observed. Pressure groups promoting kindergartens and health care or care for the elderly are found to stimulate budget reallocations. Similarly to Borge (1995), the desired allocation is influenced by the share of youth, the share of the elderly and the share of children. Additional variables are population density, population growth and the inverse of the population size. As in Borge (1995), the intercepts are allowed to vary over time for the available years 1984 – 1990.

The reduced form of the partial adjustment model is estimated.

$$(2.1) A_{it} = \frac{1}{1 + h(\mathbf{POL})} (\alpha_{i0} + \alpha_{i1} \log Y_t + \alpha_{i2} \log I_t + \alpha_{i3} \mathbf{Z}_t + \alpha_{i4} \mathbf{POL}) + \left(1 - \frac{1}{1 + h(\mathbf{POL})}\right) A_{it-1}$$

where A_{it} is local government spending share in sector i in year t, Y_t is total local government spending per capita, I_t is per capita private consumption and \mathbf{Z}_t is a vector of sociodemographic characteristics. The budget constraint is satisfied with the spending shares adding up to 1 for all 6 sectors.

The adjustment coefficient $\overline{1+h(\mathbf{POL})}$ for each local government measures the share of the desired change which is implemented in the first year and **POL** is a vector of interest group variables. In the benchmark model a constant speed of adjustment is assumed with the **POL** vector empty.

The two extensions of the benchmark model are based on a non-constant speed of adjustment $\frac{1}{1+\mu_i}$ where $\mu_i = h(\textbf{POL})$ and POL includes variables that capture the pressure form special interest groups and pressure from the mass media.

All versions of the model are estimated in reduced form by a system technique. Borge, Rattsø and Sørensen (1995) cite three key reasons for analysing the sector expenditure

² The service sectors are: administration, education, health, kindergartens, culture and infrastructure.

shares simultaneously. First, the error terms of the demand equations are correlated due to the budget constraint and should therefore be estimated as a system instead of equation by equation to obtain efficient estimates. Second, a system technique is required to capture restrictions on the model's parameters. Third, since the demand equations are non-linear in the parameters in two of the model's specifications, a non-linear estimation method is needed. In estimating these models the Fixed Information Maximum Likelihood method is used, a system technique that handles non-linear restrictions. The benchmark constant speed of adjustment model is linear in the parameters, and is estimated by the SUR method (Borge, Rattsø and Sørensen, 1995). To avoid a singular covariance matrix, one of the equations is omitted from the estimation. The demand equation of this sector is determined by the budget restriction and the estimated coefficients for the other sectors. Borge, Rattsø and Sørensen (1995) chose cultural services as the residual sector.

Conclusions derived by Borge, Rattsø and Sørensen (1995) are mostly reasonable and in line with expectations. An increase in the share of youths contributes to a significantly higher expenditure share for primary education, while the share of elderly has a similar effect on resources allocated towards health care or care for the elderly. However, spending on kindergartens is not significantly related to the share of children in the community. As expected based on the budget constraint, higher expenditures in one sector are financed by cutbacks in other sectors. Borge, Rattsø and Sørensen (1995) report a negative effect of the share of elderly on the expenditure on primary education, kindergartens and cultural services, and similarly a negative effect of the share of youth (7-15 years) on kindergartens, cultural services and infrastructure. Evidence of economies of scale is found in the administration and primary education sectors. Although the current study is related to the Borge, Rattsø and Sørensen (1995) paper both in its goals, type of data used and the factors proposed to explain spending behaviour variation in different service sectors, some important differences must be highlighted. The key methodological difference between Borge, Rattsø and Sørensen (1995) and the present study is that the former estimates a simultaneous reduced form Almost Ideal Linear Demand System, while this paper follows the methodology of Aaberge and Langørgen (2003, 2006) in estimating a structural simultaneous Linear Expenditure System. By estimating the model in its structural form, we are able to derive the structural parameters directly, which facilitates the analysis of parameters of interest (the effects of service target groups and other sector-specific factors on the minimum required expenditures and marginal budget shares in different service sectors). Moreover, Borge, Rattsø and Sørensen (1995) are not able to include price effects in their model as prices of the local government services are not observed. Following Langørgen and Aaberge (2003), the present study incorporates prices into the model through the minimum required expenditure parameters.

In Aaberge and Langørgen (2003, 2006) variations in spending per capita in various service sectors are analysed by specifying the expenditure in each service sector to consist of two components: the minimum required expenditure according to the service provision standards set by the central government, and the additional expenditure in each sector after the minimum requirement has been met (the share of the discretionary income allocated to each service sector according to local priorities). Each municipality's operating expenses by service sector (indexed by i) are decomposed as follows:

(2.2)
$$u_{i} = \alpha_{i} + \beta_{i} \left(y - \sum_{i=0}^{12} \alpha_{i} \right) \qquad i = 0, ..., 12$$

where u_i is the per capita expenditure in service sector i, α_i is the minimum required expenditure and β_i is the marginal budget share in service sector i; y is total income.

The minimum required expenditure, marginal budget shares and discretionary income vary between municipalities as functions of observable characteristics. A detailed description of the way minimum required expenditures and marginal budget shares are modeled, as well as the derivation of the Linear Expenditure System, is provided in Section 4.2.

Allers and Elhorst (2007) investigate fiscal policy interaction, testing for interdependent behavior among Dutch municipalities with respect to taxation and spending in 9 public service sectors using a structural form simultaneous equation framework. The expenditure in a particular service sector is assumed to depend on the price or cost variables of other service sectors. A linear expenditure system (LES) is developed following the logic of Aaberge and Langørgen (2003, 2006) with some notational differences. However, Allers and Elhorst (2007) develop two extended versions of the model: the first includes a spatially lagged dependent variable and the second – a spatial autoregressive process in the error term of each equation.

The spatial lag model posits that a municipality's fiscal policy depends on the fiscal policy in neighbouring municipalities and on a set of observed local characteristics. Allers and Elhorst (2007) formulate the spatial lag by making minimum required expenditure dependent on the expenditure of neighboring municipalities. Using the notation of Aaberge and Langørgen (2003, 2006) described above and including an error term ε_i , the spacial lag model is given by:

(2.3)
$$u_i = \delta_i \mathbf{W} u_i + \alpha_i + \beta_i \left(y - \sum_{i=1}^9 \alpha_i \right) + \varepsilon_i \qquad i = 1, ..., 9$$

where $\mathbf{W}_{\text{U}_{i}}$ is the dependent variable observed in neighboring municipalities according to a spatial weights matrix \mathbf{W} describing the spatial arrangement of the municipalities in the sample, δ_{i} is the spatial autoregressive coefficient and α_{i} and β_{i} are a function of exogenous variables determining the cost of reaching the minimum standard for public service sector i and exogenous variables determining the share of discretionary income spent on service i, respectively.

The spatial error model, on the other hand, posits that a municipality's fiscal policy depends on a set of observed local characteristics and that the error terms are correlated across space, resulting in the following version of the LES:

(2.4)
$$u_i = \alpha_i + \beta_i \left(y - \sum_{i=1}^{9} \alpha_i \right) + \phi_i \quad i = 1, ..., 9 \text{ and } \phi_i = \lambda_i \mathbf{W} \phi_i + \varepsilon_i$$

where ϕ_i is the spatially autocorrelated error term, \mathbf{W} is a spatial weights matrix describing the spatial arrangement of the municipalities in the sample and λ_i is the spatial autocorrelation coefficient. The spatial error model is consistent with a situation where determinants of fiscal policy omitted from the model are spatially autocorrelated, and with a situation where unobserved shocks follow a spatial pattern (Allers and Elhorst, 2007).

To estimate the spatial LES Allers and Elhorst (2007) use cross-sectional data from 496 Dutch municipalities in 2002. However, the authors acknowledge that a panel data study would offer an opportunity to control for non-observed local characteristics, which do not vary over time. Thus, the estimation may be further extended by adding spatial fixed or random effects to each equation within LES to account for these characteristics.

Similarly to Allers and Elhorst (2007), the current paper closely follows the methodology and arguments of Aaberge and Langørgen (2003, 2006), which are outlined in Section 4.2. However, while the simple benchmark model is the same in all of these papers, the current research focuses on fixed effects estimation, extending the work of Langørgen and Aaberge (2003, 2006) in the context of panel data, rather than employing the spacial lag or spacial error models of Allers and Elhorst (2007). While these models certainly yield insight into possible interaction elements in the behaviour of local municipalities, this issue is not the primary focus of this paper. Rather, the objective is to analyse the dynamics of

municipalities' spending behaviour, comparing the estimated effects on the minimum required expenditures and budget shares with those based on cross-sectional estimations and a chosen baseline model.

3. Theoretical foundations and methods

3.1. Advantages and limitations of panel data

Advantages and limitations of panel data are discussed in, among others, Hsiao (1985), Baltagi (2005), Wooldridge (2002a) and Gujarati (2003). Panel data allows one to look at dynamic relationships and is better suited to analysis of dynamics of change or adjustment. Panel data also makes it possible to control for unobserved cross section heterogeneity (i.e. take into account unobserved individual or time effects by including them in the model) (Wooldridge, 2002a). Having access to a panel data set also significantly increases the number of observations, provides a more informative data set, less collinearity among variables, more variability and more degrees of freedom (Gujarati, 2003). Limitations include panel surveys design and data collection problems, measurement errors, self-selectivity, non-response and attrition (Baltagi, 2005). Some of these are less relevant for this study. However, an important and relevant problem associated with the short time-series panels is the incidental parameters problem.

3.1.1. Incidental parameters problem

A characteristic feature of a typical panel data set is a large number of cross-sectional units combined with a small time dimension (each unit observed only a few times). This feature causes a so-called incidental parameters problem, whereby the number of parameters increases with the sample size leading to a loss in consistency of these parameters (Beck, 2004). For example, when a fixed effects model is estimated, cross-sectional unit-specific intercepts are added to the regression in the form of dummy variables. Treating these parameters as parameters to be estimated leads to the incidental parameter problem as discussed by Neyman and Scott (1948) and Chamberlain (1980).

Whether the inconsistency in estimating the fixed effects will give rise to inconsistency for estimators of the structural parameters of interest, say $\tilde{\theta}$, depends on whether the estimators of $\tilde{\theta}$ satisfy the Neyman-Scott principle. That is, if there exist functions $\psi_{Nj}(\tilde{y}_1,....,\tilde{y}_N \mid \tilde{\theta}), j=1,....,m$ of observables $\tilde{y}_i=(y_{i1},.....,y_{iT})'$ which are independent of the incidental parameters such that when $\tilde{\theta}$ are the true values, $\psi_{Nj}(\tilde{y}_1,....,\tilde{y}_N \mid \tilde{\theta})$ converge to zero in probability as N tends to infinity, then an estimator $\hat{\theta}$ derived by solving

 $\psi_{Nj}\left(\tilde{y}_{1},....,\tilde{y}_{N}\mid\hat{\tilde{\theta}}\right)=0,\ j=1,...,m$, is consistent under suitable regularity conditions (Hsiao, 1985:136).

Green (2001) provides an accessible discussion of the problem. In a single linear equation case with fixed individual effects, the parameters can be estimated by the Least Squares Dummy Variable (LSDV) or 'within groups' estimator, denoted \mathbf{b}_{LSDV} . This is computed by least squares regression of the dependent variable, from which its mean over all time periods (T) is subtracted, on the same transformation of the explanatory variables. The slope parameters can also be estimated using first differences. Under the assumptions, \mathbf{b}_{LSDV} is a consistent estimator of the parameters associated with the explanatory variables. However, the individual fixed effects are each estimated with the T(i) individual specific observations for each cross-sectional unit i. Since T(i) is typically small, and is fixed, the LSDV estimator of the fixed effects is inconsistent. However this inconsistency is not transmitted to the LSDV estimator \mathbf{b}_{LSDV} because it is not a function of the fixed effects estimator (Green, 2001:2). That is the Neyman-Scott principle is satisfied.

The incidental parameter problem disappears if the effects are treated as random since they are assumed to possess a probability density function characterized by a finite number of parameters. However, making specific distributional assumptions imposes a degree of restrictiveness, whose severity depends on the type of the model being investigated (Hsiao, 1985:136).

3.2. Fixed effects

In a panel data set, the same unit (for example an individual, firm or municipality) is followed over a number of time periods. In this framework there may be effects that are not captured by the vector of explanatory variables. Wooldridge (2002a) represents these effects as an omitted random variable "c", called an unobserved effect. In the context of the local government expenditure model, this is a municipality effect c_k where k is a municipality index. The population regression function is then given by:

(3.1)
$$E[y_{kt} \mid \mathbf{x_{kt}}, c_k] = b_0 + \mathbf{x_{kt}} \mathbf{b} + c_k \qquad t = 1, 2, ..., T \qquad k = 1, 2, ..., K$$

where

(3.2)
$$\mathbf{x}_{kt}\mathbf{b} = b_1 x_{1kt} + \dots + b_J x_{Jkt}$$

and x_{jkl} indicates variable j at time t and municipality k, b₁, ..., b_J are slope parameters and b₀ is the intercept.

Hsiao (1985) offers a classification of variables used in panel data analyses, which is particularly useful in the discussion of fixed effects estimation that follows. Economic variables are divided into three types: individual time-invariant, period individual-invariant, and individual-time varying variables. The individual time-invariant variables are the same for a given cross-sectional unit through time but vary across cross-sectional units. Examples include ability, sex, and socio-economic background. The period individual-invariant variables are the same for all cross-sectional units at a given point in time but vary through time. Examples of these are prices, interest rates and widespread optimism or pessimism. The individual-time varying variables are variables that vary across cross-sectional units at a point in time and also exhibit variations through time, for example firm profits, sales, and capital stock (Hsiao, 1985:130).

In equation (3.1) c_k is assumed to be of the first type (time-invariant or time-constant), i.e. ck has the same effect on the mean response in each time period (Wooldridge, 2002a). If the unit of observation is a municipality, ck contains unobserved municipality characteristics—such as administrative structure and efficiency—that can be viewed as being roughly constant over the period in question. Allers (2007) also suggests work ethos as an unobserved effect which influences local government efficiency. In a model of municipality expenditures where the observed explanatory variables are factors affecting minimum required expenditures and the factors affecting the share of the discretionary income used on various sectors, an unobserved effect represents all factors affecting municipality expenditures that are constant (or roughly constant) over time. Geographical position for example is constant over time (except in cases where municipalities merge, in which case it is still approximately constant over the period of interest). Whether a municipality is located on relatively flat land or in a mountainous region may have an effect on some of the expenditures, such as road infrastructure, as it is more difficult and costly to build roads on mountainous terrain. Also, a mountainous area may be more suitable for skiing such that a municipality may spend more on sporting activities and skiing infrastructure in the culture and recreation sector.

In most applications, the main reason for collecting panel data is to allow for the unobserved effect to be correlated with the explanatory variables, i.e.

$$(3.3) E[\mathbf{x'}_{t}, c_{t}] \neq \mathbf{0}$$

where ${\boldsymbol x}$ is a vector of explanatory variables, c_k is the fixed effect and ${\boldsymbol 0}$ is a vector of zeros.

In this situation, a fixed effects model may be appropriate (Wooldridge,2002b). For example, in modelling municipality expenditures we may allow the unmeasured municipality factors to be correlated with some of the explanatory variables – for example geographic location may be correlated with population density and amount of snowfall.

A method commonly applied in the literature to model these time-constant unobserved effects is Least Squares Dummy Variable regression. Typically a dummy variable for each cross-sectional unit (here: municipality) is added, omitting a base category municipality to avoid the so-called dummy variable trap of perfect collinearity. However, when the number of cross-sectional units is very large (300 – 400 municipalities) and the time period is small (here: 8 years), the estimation may be difficult as there may not be enough degrees of freedom. The incidental parameters problem is also applicable in this situation.

We may also have unobserved effects that are constant across municipalities but not time (what Hsiao (1985) calls period individual-invariant effects, or more simply time effects). There may be omitted variables that capture effects or characteristics that at a given time are common to all municipalities. For example, central government legislation that affects spending behaviour of all municipalities in a given year is one such unobserved effect.

A potential pitfall of this type of model is that when we include a full set of year dummies —that is, year dummies for all years but the base—we cannot estimate the effect of any variable whose change is constant over time. This is a consequence of the fixed effects taking up the between unit variation in the variables, making it impossible to estimate the impacts of any variables that do not vary over time (Beck, 2004). On first examination, however, this does not seem to be relevant to the expenditure model for local governments; however, population size does appear to be roughly constant over time.

Moreover, the parameters of time-invariant variables cannot be estimated in the fixed effect model. This is a consequence of the fixed effects taking up the between unit variation in the variables, making it impossible to estimate the impacts of any variables that do not vary over time (Beck, 2004). For example Allers (2007) discusses soil condition as a time-invariant explanatory variable which impacts road and sanitation costs. This variable is effectively removed (its effect cannot be estimated) when fixed effects for municipalities are introduced. Similarly, if we have variables that change very slowly over time (such as institutional measures), then the fixed effects approach will essentially wipe them out (Beck, 2004).

However, the time-invariant variables can be interacted with variables that change over time and, in particular, with year dummy variables. For example, in a wage equation where education is constant over time for each individual, we can interact education with each year dummy to see how the return to education has changed over time. Even though fixed effects cannot be used to estimate the return to education in the base period – and hence in any period – we can see how the return to education in each year differs from that in the base period (Wooldridge, 2002b:444).

3.2.1. Interactive fixed effects

In the standard fixed effects models, fixed and time effects are typically introduced separately, either additively or multiplicatively depending on the model's assumption. However, it is also possible to introduce these effects in a way that links the time and cross-sectional heterogeneity. Arellano and Honoré (2000) discuss an example of a model where individual effects are interacted with the time effects. The model is formulated in the following way:

$$(3.4) y_{kt} = \mathbf{b}\mathbf{x}_{kt} + \delta_t \eta_k + v_{kt}$$

where **b** is a vector of parameters, \mathbf{x}_{kt} is a vector of explanatory variables, k represents a cross-sectional unit such as municipality and t is the time index.

In this specification the time effects could represent an aggregate shock, which is allowed to have individual-specific fixed effects on y_{kt} , measured by η_k . In this case we clearly cannot simply first difference away the fixed effects. The authors then go on to suggest a transformation first derived by Chamberlain (1984), which provides a solution (Arellano and Honoré, 2000:25). Generalising the previous specification to

$$(3.5) f_{kt} = g_{kt} \eta_k + v_{kt}$$

where $E(v_{kt} \mid x_k) = 0$, x_k are some predetermined variables and g_{kt} is a function of predetermined variables and unknown parameters. Dividing by g_{kt} and first differencing, they obtain

(3.6)
$$f_{k(t-1)} - (g_{kt}^{-1}g_{k(t-1)})f_{kt} = v_{k(t-1)} - (g_{kt}^{-1}g_{k(t-1)})v_{kt} = v_{kt}^{+}$$

Hübler (2006) suggests a similar model, specifying a time-varying individual effect where the effect varies e.g. with cyclical ups and downs, although individual characteristics stay the same. He argues that one cannot expect that unobserved individual effects to have the same effects in different situations, such as different time periods (Hübler, 2006).

3.2.2. Partial adjustment model

A dynamic variant of the fixed effects model can be specified as a partial adjustment model, which includes a lagged dependent variable as well as possibly lagged explanatory variables in addition to the fixed and time effects. Arellano and Honoré (2000) discuss a model of this type:

(3.7)
$$y_{kt} = \alpha y_{k(t-1)} + \beta_0 x_{kt} + \beta_1 x_{k(t-1)} + \delta_t + \eta_k + v_{kt}, \quad k = 1, ..., K, \quad t = 2, ..., T$$

$$(3.8.) E(v_{kt} \mid x_k^T) = 0$$

By construction $y_{k(t-1)}$ is correlated with the fixed effect η_k and may also be correlated with the past, present and future values of the residuals v_k since these may be autocorrelated.

A more general version of the partial adjustment model, however, is the specification employed by Borge, Rattsø and Sørensen (1995):

(3.9)
$$y_{kt} = \lambda y_{kt}^* + (1 - \lambda) y_{kt-1} + v_{kt}$$

or equivalently

(3.10)
$$y_{kt} = y_{kt-1} + \lambda (y_{kt}^* - y_{kt-1}) + v_{kt}$$

where λ is the speed of adjustment parameter, which shows how fast the dependent variable y_t adjusts to its equilibrium value y_{kt}^* . The desired allocation y_{kt}^* may be specified as a function of explanatory variables x_{kt} as well as time and/or fixed effects δ_t and η_k

respectively. This model is adapted to analyse the adjustment of the local government expenditures and is presented in Section 5, while the results are discussed in Section 6.

3.3. Random effects

If the unobserved effect c_k in equation (3.1) is assumed uncorrelated with each explanatory variable in all time periods,

(3.11)
$$Cov(x_{ikt}, c_k) = 0, t = 1, 2, ..., T j = 1, 2, ..., J k = 1, 2, ..., K$$

where t represents time period, j is a subscript on an explanatory variable and k represents observation,

then using a fixed effects model results in inefficient estimators and the random effects method is preferable. However, if the c_k are correlated with some explanatory variables, the fixed effects method is needed; if random effects is used, then the estimators are generally inconsistent (Wooldridge, 2002b:453).

A random effects model assumes c_k to be a component in the composite error ($v_{kt}=c_k+u_{kt}$) in each time period; the v_{kt} are serially correlated across time. Generalised Least Squares (GLS) may be used to solve the serial correlation problem. In order for the procedure to have good properties, it must have a large cross-sectional dimension and relatively small time dimension (Wooldridge, 2002b).

A random effects model allows for explanatory variables that are constant over time, which is an advantage of random effects over fixed effects. This is possible because the unobserved effect is assumed to be uncorrelated with all explanatory variables, whether they are fixed over time or not (Wooldridge, 2002b:450).

3.4. A comparison of fixed and random effects

In the fixed effects approach one is typically interested in measuring the effect of regressors holding unobserved heterogeneity constant, while in the random effects approach the parameters of interest are those characterising the distribution of the error components (Arellano and Honoré, 2000:1).

The fixed effect model involves making inferences conditional on the effects that are in the sample. The random effect model is one where inference is unconditional or marginal with respect to the population of all effects. Thus, whether the conditional likelihood function or the marginal likelihood function is used depends on the context of data and the manner in which they were gathered (Hsiao, 1985). Hsiao (1985) provides an illustrative example where several technicians care for machines. If one wants to assess differences between

specific technicians, then the fixed effect model is more appropriate. However, if the technicians are randomly sampled from all employees, the effects of technicians may be assumed random. Similarly, if an experiment involves hundreds of individuals that are considered a random sample from some larger population, random effects are more appropriate. But if one is interested in analyzing just a few individuals, then fixed individual effects would be more relevant.

When individual units in the sample are of interest, the effects are more appropriately considered fixed. When inferences will be made about the characteristics of a population from which those in the data are considered to be a random sample, then the effects should be considered random (Hsiao, 1985:132).

Hence, a fixed effect specification appears to be more appropriate to analysing the behaviour of local governments, which are viewed as the units of interest rather than a random sample of a larger population.

3.5. Random Coefficient Model

Beck (2006) suggests an alternative to the fixed and random effects models, namely a version of a random coefficient model (RCM). This model allows for cross-sectional unit heterogeneity, but also assumes that the various unit level coefficients are draws from a common (normal) distribution. Thus the RCM may be described by as

(3.12)
$$y_{kt} = \mathbf{x}_{kt} \mathbf{\beta}_k + \varepsilon_{kt}, \quad \mathbf{\beta}_k = \mathbf{\alpha} + \mathbf{z}_k \mathbf{\chi} + \mathbf{\mu}_k$$

where β_k is a vector of parameters, which are assumed to be random, composed of a vector of constants α , a vector of some exogenous variables z_k (χ is the vector of corresponding parameters) and a random effect μ_k which has a normal distribution; k indexes the cross-sectional units and t indexes time.

A feature of the above specification is that one can model the variation of the unit coefficients as a function of unit level variables (**z**). This allows us to move from saying for example that the effect of some variable is different in country A and country B to this impact differs because of some institutional difference between the two nations (Beck, 2006:9). While this model is often estimated by Bayesian methods, it is also feasible to estimate it via standard maximum likelihood as has been implemented by Pinheiro and Bates (2000).

In a classic paper, Hsiao (1975) discusses the estimation of a Random Coefficient Model, in which the random component is decomposed into a time and a cross-sectional

random effect. The coefficients of the explanatory variables are assumed to have common means, as well as some random components associated with the time and/or cross-section units. The model is specified in the following way:

(3.13)
$$y_{kt} = \sum_{j=1}^{J} \beta_{jkt} x_{jkt} + \varepsilon_{kt}$$
, $\beta_{jkt} = \beta_j + \delta_{jk} + \gamma_{jt}$, $k = 1, ..., K$ and $t = 1, ..., T$

where k indexes the individual units, for example municipalities, j represents an index of an explanatory variable such that x_{jkt} is an exogenous variable j for municipality k for year t. And each exogenous variable x_{jkt} is assumed to have a random parameter β_{jkt} , which consists of three components: a constant parameter β_j for each x_j , a cross-sectional random effect δ_{jk} and a time random effect γ_{jt} . The error term ε_{kt} and both of the random effects are assumed to have zero means and constant variances. The random effects are also assumed to be uncorrelated with one another, or with the error term.

It may be noted that the Random Effects model is a special case of the RCM. The RCM is reduced to Random Effects if it is only the intercept which is a random parameter, that is:

(3.14)
$$\beta_{jkt} = \begin{array}{cc} \beta_j + \delta_{jk} + \gamma_{jt} & x_{jkt} = 1 \\ \beta_j & otherwise \end{array}$$

Hsiao and Pesaran (2004) discuss a simplified variant of the above model, where in vector notation

(3.15)
$$\boldsymbol{\beta}_{kt} = \boldsymbol{\beta} + \boldsymbol{\delta}_k \text{ and } \boldsymbol{\delta}_k \sim N(\mathbf{0}, \Delta)$$

In other words, there are only individual-specific effects; these stay constant over time and are independently normally distributed over k with mean zero and covariance Δ . The error term has mean zero and a covariance matrix \mathbf{C} . If the errors and $\boldsymbol{\delta}_k$ are normally distributed and the errors are independently distributed across k and over t, i.e.

$$(3.16) E(\varepsilon_{kt}^2) = \sigma_k^2$$

where σ_k^2 is the variance of the errors,

then the GLS estimator of β is the maximum likelihood estimator of β conditional on Δ and σ_k^2 . Without knowledge of Δ and σ_k^2 , we can estimate β , Δ and σ_k^2 for $k=1,\ldots,K$ simultaneously by the maximum likelihood method, although computationally it can be tedious (Hsiao and Pesaran, 2004:9).

3.6. Balanced vs. unbalanced panel

Wooldridge (2002a:250) defines a balanced panel as a panel where we have the same time periods, denoted $t=1,\ldots,T$ for each cross sectional observation, i.e. the same time periods are available for all cross sectional units. Some panel data sets have missing years for at least some cross-sectional units in the sample. This is referred to as an unbalanced panel. The dummy variable fixed effects regression goes through in the same way as with a balanced panel. In the local government expenditure model, some of the municipalities have merged over the period 2001 to 2008. Provided that the reason the municipality leaves the sample is uncorrelated with the error term, the estimators will remain unbiased. This seems likely to hold in most cases of municipality mergers. However, a closer examination may be warranted (Wooldridge, 2002b:448).

Greene (2003) suggests that if a time effects estimation is theoretically justified and is performed (i.e. a full set of time dummies are added using the union of the dates represented in the full data set even though some of the dates have missing observations), then any missing data in any time period is accounted by a dummy variable for that time period. Thus the dummy variable regression with time effects automatically takes care of the unbalanced data set.

4. Model

4.1. Norwegian local government fiscal responsibilities and financing

In Norway municipalities play an important role in provision of public services. The services offered range from almost pure collective services such as administration, to 'quasi private goods' such as care for the elderly. The differences in central government control over these services, varying from a regulated primary education sector to an almost unregulated infrastructure sector, are the result of a compromise between the wish for local democracy and the requirement of national standards. This is partly reflected in the variation in per capita spending between municipalities. The variation is less in the more heavily regulated sectors, such as primary schools, and much higher in other sectors. It is of interest to examine if this variation in spending is a reflection of preferences (Rongen, 1995:254-255).

Municipalities' resources are largely concentrated on production of national welfare services. Child care, primary schools and social services (including care for the elderly) account for about 70 percent of the municipalities' gross operating expenses. Municipalities also have a local responsibility in water supply and sanitation, culture, economic development, planning and community development (NOU, 2005/18:66).

The revenues of Norwegian municipalities consist primarily of:

- Fee income (user fees), which includes sales and rental income
- Interest income, which includes interest on bank deposits and other receivables
- Tax revenue, consisting of taxes on income and wealth, property and other production taxes, as well as licensing fees
- Transfers from the state (general grants and earmarked grants) (NOU, 2005/18:68).

4.2. Baseline model description and specification

The model of municipality expenditures, referred to as KOMMODE, explains variations in spending per capita in various service sectors in which local governments have a responsibility to provide services to their constituencies. The model is designed such that the accounting relationships between revenues, expenses and net operating surplus are always maintained. The supply of funds is always equal to their use. For example, if a municipality receives 1 krone extra in income, this will be exactly offset by changes in expenditures and net operating surplus (Langørgen et al., forthcoming).

The present research will consider an extended version of KOMMODE, which consists of 12 service sectors:

- 1. Administration
- 2. Primary schools
- 3. Other education
- 4. Child care
- 5. Health care
- 6. Social services
- 7. Child protection
- 8. Care for the elderly and disabled
- 9. Culture 10.
- 10. Municipal roads
- 11. Water supply and sanitation
- 12. Other infrastructure

The analysis is conducted to determine how the minimum required expenditure (subsistence requirement) varies within the different sectors between municipalities based in part on demographic, social and geographic factors. Hypotheses about the variables that give rise to minimum required expenditures can be derived from knowledge of statutory responsibilities, minimum standards, production conditions and other conditions for municipalities.

Discretionary income shows economic freedom as measured by the revenues that the municipalities have at their disposal after the minimum required expenditures for all sectors are covered. The marginal budget shares show how the discretionary income is distributed among sectors, depending on local priorities. The marginal budget shares are assumed to vary from municipality to municipality depending on the local population's educational level, settlement density, and the political party composition of the council.

Based on these concepts, each municipality's operating expenses by service sectors (sector i) may be decomposed as follows:

(4.1) Expenditure(i) = Minimum required expenditure(i) + Marginal budget share(i) * Discretionary income

where the minimum required expenditure, marginal budget shares and discretionary income vary between municipalities as functions of observable characteristics.

There are thus three types of explanatory factors for municipality expenditures included in the model:

- Local income basis (given by tax rates, tax bases and transfers)
- Factors that explain variations in minimum required expenditures
- Factors affecting local government priorities over and above the minimum required expenditures

4.2.1. Outline of model derivation

In Aaberge and Langørgen (2003) and Pedersen (2008) a linear expenditure system is derived by constrained utility maximisation. The production function for sector i is assumed to be

(4.2)
$$q_i = f_i(\mathbf{x}_i, \mathbf{z}_i), i = 1,...,12$$

where \mathbf{x}_i is a vector of factor inputs and \mathbf{z}_i is a vector of community characteristics that affect production opportunities.

Under constant returns to scale and cost minimisation, the cost function is given by

(4.3)
$$C_i(q_i, \mathbf{w}_i, \mathbf{z}_i) = p_i(\mathbf{w}_i, \mathbf{z}_i)q_i$$

where \mathbf{w}_i is a vector of factor prices and p_i is unit cost in sector i.

Local governments (municipalities) are treated as utility maximising agents. A Stone-Geary utility function is given by

$$(4.4) W(u_0, q_1, q_2, ..., q_{12}) = (u_0 - \alpha_0)^{\beta_0} \prod_{i=1}^{12} (q_i - \gamma_i)^{\beta_i}$$

where

$$(4.5) \sum_{i=0}^{12} \beta_i = 1$$

and $0 \le \beta_i \le 1 \forall i$, $\gamma_i \le q_i$, $\alpha_0 \le u_0$ are assumed satisfied.

Equation (4.5) is the restriction which says that the marginal budget shares in all sectors must sum to 1.

The utility function (4.4) is maximised subject to a budget constraint

(4.6)
$$y = u_0 + \sum_{i=1}^{12} p_i q_i$$

where y is exogenous income inclusive of user fees, u_0 is budget surplus, p_i and q_i are price and quantity in service sector i and $u_i = p_i q_i, i \neq 0$ is the expenditure on service sector i (Aaberge and Langørgen, 2003).

As Allers and Elhorst (2007) note, the Stone-Geary utility function presupposes that all public services are normal and all pairs of public services are net substitutes. These conditions are likely to be satisfied as long as local public services are categorised into a limited number of broad groups, as is indeed the case in KOMMODE.

The resulting linear expenditure system is of the following form:

(4.7)
$$u_i = \alpha_i + \beta_i \left(y - \sum_{i=0}^{12} \alpha_i \right) \quad i = 0, 1, ..., 12$$

where price variation is included in the $\alpha_i = p_i \gamma_i, i \neq 0$

(4.8)
$$\sum_{i=0}^{12} \alpha_i = \alpha_0 + \sum_{i=1}^{12} \alpha_i = \alpha_0 + \alpha$$

and lpha is the minimum required expenditure on all services while $lpha_0$ is the minimum savings parameter.

The following heterogeneity in the parameters is introduced by translating the demand system in the sense described by Pollak and Wales (1981), whereby "translating can

sometimes be interpreted as allowing "necessary" or 'subsistence' parameters of a demand system to depend on the demographic variables" (Pollak and Wales, 1981:1534-1535).

(4.9)
$$\alpha_i = \alpha_{i0} + \sum_{j=1}^k \alpha_{ij} z_j$$

(4.10)
$$\beta_{i} = \beta_{i0} + \sum_{i=1}^{m} \beta_{ij} v_{j}$$

Equation (4.9) insures that the minimum required expenditures per capita depend on production technology and cost structure captured by exogenous variables $z_1, z_2, ..., z_k$, while (4.10) says that the marginal budget share parameters depend on local taste variables $v_1, ..., v_m$ that affect the allocation of discretionary income $(y - \alpha)$ between sectors.

Two additional restrictions are imposed such that (4.5) holds.

(4.11)
$$\sum_{i=0}^{12} \beta_{ij} = 0 \quad j = 1, 2, ..., m$$

$$(4.12) \sum_{i=0}^{12} \beta_{i0} = 1$$

4.3. Practical issues

In creating a panel data set, data are available for the years 2001 – 2008. However, the number of municipalities under observation differs slightly from year to year due to mergers of municipalities. This problem may be dealt with by selecting only those municipalities common to all the years. However, by taking all the municipalities in all the years, we are free to exclude the municipalities with missing data when performing the estimation, and hence both balanced and unbalanced panel estimation is possible.

4.3.1. Outlier municipalities

In the previous estimations of KOMMODE certain municipalities were considered outliers and excluded from the estimation. An outlier is defined in Langørgen et al. (forthcoming) as a municipality that does not fit into the model. If such municipalities are included in the model estimation, the estimates may be distorted. Thus, these outliers are excluded from estimation.

Several grounds for exclusion are used. First, municipalities that have special characteristics are considered outliers. Oslo municipality is excluded from estimation because it is both a municipality and a county government, and it is therefore not possible to distinguish completely between municipal and county expenditures in its accounts. If Oslo were included in the estimation, total expenditure would be overestimated. Other outliers in this category are: rich municipalities (Bykle, Eidfjord and Modalen), little municipalities (Utsira), very poor municipalities (Haram in 2002, Bø in 2006). Second, the municipalities that have particularly large residuals on initial estimation are excluded from the final model estimation. Third, Langørgen et al. (forthcoming) suggest that it is possible to determine which municipalities have an independent effect on the estimation results, that is whether there is a significant difference in the estimated coefficients with and without a particular municipality. If a significant difference is observed, that municipality is considered an outlier and omitted from the model. Finally, municipalities that have negative or large positive per capita expenditures as well as large net operating surpluses are excluded from estimation.

The outlier municipalities differ somewhat from year to year and hence need to be combined in a meaningful way for the panel model. It is reasonable to exclude municipalities that are outliers in at least 1 year or in at least 2 years. Both formulations may be used to estimate different versions of the model. Table A.1 in Appendix A shows these municipalities as well as the total number of outliers in each year.

4.4. Price and income indices

In order to remove the effect of inflation and make the coefficients comparable over the time period of consideration, the income and expenditure variables in the model may be adjusted by a price index such that all of these variables are measured at the base of a selected year, for example 2008. The price growth (ΔP) values are taken from the Ministry of Local Government and Regional Development (2009) report. The standard formula is used to calculate the price indices (PI), normalising 2008 to 1,

(4.13)
$$PI_{t} = \frac{PI_{t+1}}{1 + \Delta P_{t+1}}$$

Thus the price indices are calculated recursively from 2008 back to 2001.

As an alternative deflator, an income index measure may be used. As one of the key reasons for increasing minimum expenditures is the income growth over time, deflating the income and expenditure variables by the average income growth is the method employed in this paper. Adjusting the expenditures and income in this way accounts for the part of time heterogeneity in the minimum required expenditures that is due to the fact that municipality incomes are growing over time and ensures that the estimates are comparable over time. While the price index may be more suitable in other contexts and may be used in further studies on the subject, the income index has a better theoretical basis in the present context, as we expect the change in the minimum required expenditures to result primarily from growing incomes rather than prices.

The income index R_t is determined as the mean per capita income over all municipalities³ in each period as a fraction of the mean per capita income in the base year 2008. Thus, R_t =1 in 2008.

$$(4.14) R_t = \frac{\overline{y}_t}{\overline{y}_8}$$

where

(4.15)
$$\overline{y}_{t} = \frac{1}{K_{t}} \sum_{k=1}^{K_{t}} y_{kt}, \quad k = 1, ..., K_{t}, \quad t = 1, ..., 8.$$

 $\overline{\mathcal{Y}}_t$ is the mean per capita income in year t and K_t is the number of municipalities included in the estimation for a particular year. Calculations are shown in Tables A.2 – A.5 in Appendix A.

24

³ The index is calculated for municipalities included in the estimation; hence different indices are used for different versions of the model.

Table 4.1. Price and income indices

year	2001	2002	2003	2004	2005	2006	2007	2008
price growth	0.063	0.043	0.037	0.033	0.025	0.036	0.044	0.064
price index	0.759	0.791	0.821	0.848	0.869	0.900	0.940	1.000
income index (A)	0.656	0.683	0.730	0.764	0.803	0.895	0.939	1.000
income index (B)	0.655	0.682	0.733	0.765	0.802	0.896	0.939	1.000
income index (C)	0.654	0.683	0.731	0.765	0.804	0.895	0.939	1.000
income index (D)	0.654	0.683	0.733	0.765	0.803	0.896	0.940	1.000

- (A) unbalanced panel, excluding municipalities that are outliers in at least 1 year
- (B) unbalanced panel, excluding municipalities that are outliers in at least 2 years
- (C)balanced panel4, excluding municipalities that are outliers in at least 1 year
- (D)balanced panel, excluding municipalities that are outliers in at least 2 years

In addition to a close proximity between the price index and income index values, Table 4.1 demonstrates an even closer relationship between the four different specifications of the income index. The income index is insensitive to the number of outliers excluded from estimation as well as the structure of the panel (balanced or unbalanced). It is therefore expected that models with income growth adjusted expenditure and income, estimated using data specifications (A) – (D), will yield similar results.

5. Panel data models for a system of equations

5.1. Time and municipality-constant effects on minimum required expenditures and marginal budget shares

In the context of panel data the linear expenditure system (4.7) may be written as:

(5.1)
$$u_{it} = \alpha_{it} + \beta_{it} \left(y_t - \sum_{i=0}^{12} \alpha_{it} \right) + \varepsilon_{it}, \ i = 1, ..., 12 \text{ and } t = 1, ..., 8$$

where the index for municipality is implicit and y_t is total exogenous income.

⁴ In a balanced panel municipalities that have missing data in some of the years are excluded; these municipalities are given in Table A.6 in Appendix A.

The error terms in the sector equations are assumed to be correlated resulting in contemporaneous error correlation:

(5.2)
$$Cov(\varepsilon_{it}, \varepsilon_{jt}) \neq 0, \quad i, j = 1, ..., 12$$

Sspecification (5.2) is reasonable since the error terms for different expenditure categories are expected to reflect some common unobservable or omitted factors.

Estimating the model given by (5.1), however, will lead to biased estimates. This is a result of the fact that the effects on minimum required expenditure (α_{i0} and α_{ij} , j=1,...,r) are assumed to be constant over time and to vary only by sector. However, based on intuitive understanding and past estimations done on cross-sectional data for the years 2001 to 2007 documented in Pedersen (2008), it is known that the α 's are increasing over time, as prices and incomes are increasing over time. Secondly, we expect that there may be unobserved effects that may account for the minimum expenditures increasing over time (so-called time effects) as well as unobserved municipality effects that may explain differences between municipalities that are not explained by the included explanatory variables. If these unobserved effects are correlated with at least some of the explanatory variables in the model, model (5.1) will suffer from omitted variable bias and the estimates will be biased and inconsistent.

One approach to removing the time variation in the minimum required expenditure is to transform the data by the income index, thus accounting for time variation due to income growth. Model 1 is a benchmark model to which other more complex models can be compared.

(Model 1)
$$\tilde{u}_{it} = \alpha_{it} + \beta_{it} \left(\tilde{y}_t - \sum_{i=0}^{12} \alpha_{it} \right) + \varepsilon_{it}$$

where

$$\tilde{u}_{it} = \frac{u_{it}}{R_t}, \ \tilde{y}_t = \frac{y_t}{R_t}, \quad R_t = \frac{\overline{y}_t}{\overline{y}_8}, \quad \overline{y}_t = \frac{1}{K} \sum_{k=1}^K y_{kt} \ k = 1,...,K, \ t = 1,...,8,$$

(5.3)
$$\alpha_{it} = \alpha_{i0} + \sum_{j=1}^{r} \alpha_{ij} z_{jt}$$

and

(5.4)
$$\beta_{it} = \beta_{i0} + \sum_{i=1}^{m} \beta_{ij} v_{jt}$$

The expenditure and income variables in Model 1 are adjusted for growth in income, putting the model into real instead of nominal terms. The index R_t by which expenditures and income are deflated is determined as the mean income in each period as a fraction of the mean income in the base year 2008, as described in Section 4.4. The mean income is found as an average over K municipalities (indexed by k) included in the estimation in a given year. R_t is expected to be less than one in the years 2001 – 2007 since incomes have increased from 2001 to 2008 ($\overline{y}_t \leq \overline{y}_8$ for all t) and is equal to 1 in 2008 by definition.

Model 1 is consistent with the budget constraint $\sum_{i=0}^{12} u_{it} = y_t$ since $\frac{1}{R_t} \sum_{i=0}^{12} u_{it} = \frac{1}{R_t} y_t$ is consistent with the budget constraint and is by definition equal to $\sum_{i=0}^{12} \tilde{u}_{it} = \tilde{y}_t$, which follows directly from Model 1.

5.2. Time variation in minimum required expenditures

To account for other unobserved heterogeneity due to factors other than income growth, an alternative model that accounts for variation over time is introduced (α_{i0} and α_{ij} , j=1,...,r, are assumed to vary over time and are specified as α_{i0t} and α_{ijt}). Some of this variation is due to growing incomes and prices; the rest is due to any unobserved or omitted factors common to all municipalities in a given year. The effects on the marginal budget shares (β_{i0} and β_{ij} , j=1,...,m) are specified as time-invariant based on previous cross-sectional estimation where these parameters are found to be roughly constant throughout the years under consideration. The model is given by equation (5.5).

(5.5)
$$u_{it} = \tilde{\alpha}_{it} + \beta_{it} \left(y_t - \sum_{i=0}^{12} \tilde{\alpha}_{it} \right) + \varepsilon_{it}$$

where

(5.6)
$$\tilde{\alpha}_{it} = \alpha_{i0t} + \sum_{j=1}^{r} \alpha_{ijt} z_{jt}$$

and β_{it} is given by equation (5.4).

A potential problem with a model given by equations (5.5) and (5.6) is the large number of parameters to be estimated; with a separate minimum expenditure parameter for each sector and year.

5.3. Multiplicative time effect

A time effect implies that expenditures change over time because of unobserved factors such as changes in regulatory or government policies. Using standard panel data methods for fixed effects, we can introduce a dummy variable for each time period (i.e. year) to account for the differences in α s over time. Since from (4.9) α_i is a linear combination of parameters and exogenous variables \mathbf{z} that explain the variation in the minimum required expenditure, we need to introduce the time dummies in a way that would account for differences over time in the constant term α_{i0} as well as the growth over time in the slope parameters α_{ij} . If the time dummies are introduced additively, the increase in minimum required expenditures over time is not fully internalised because the effect of increasing income on the slope parameters is not accounted for. Thus, the time dummies need to be introduced multiplicatively. This results in Model 2, which is equivalent to model (5.5) with a specific time structure imposed on the α_{i0t} and α_{ijt} , i.e. $\alpha_{i0t} = \alpha_{i0} \tau_{it}$ and $\alpha_{ijt} = \alpha_{ij} \tau_{it}$ or equivalently $\tilde{\alpha}_{it} = \alpha_{it} \tau_{it}$.

(Model 2)
$$u_{it} = \alpha_{it} \tau_{it} + \beta_{it} \left(y_t - \sum_{i=0}^{12} \alpha_{it} \tau_{it} \right) + \varepsilon_{it}$$

where au_{it} is the time effect.

The model is estimated by introducing dummy variables h_t for each year such that for each sector i

$$u_{i} = \sum_{t=1}^{8} \alpha_{i0} \tau_{it} h_{t} + \sum_{t=1}^{8} \sum_{j=1}^{r} \alpha_{ij} \tau_{it} z_{j} h_{t} + \beta_{i} \left[y - \sum_{i=0}^{12} \left(\sum_{t=1}^{8} \alpha_{i0} \tau_{it} h_{t} + \sum_{t=1}^{8} \sum_{j=1}^{r} \alpha_{ij} \tau_{it} z_{j} h_{t} \right) \right] + \varepsilon_{i}$$

where
$$h_t = \begin{cases} 1, & year = t \\ 0, & otherwise \end{cases}$$
 $t = 1, 2, ..., 8$

The model has 8 year intercepts $\alpha_{i0i}\tau_{ii}$ and may be estimated given the normalisation $\tau_{i8}=1$, such that in 2001 the intercept for every sector i is $\alpha_{i0}\tau_{i1}$, in 2002 it is $\alpha_{i0}\tau_{i2}$, and in the base year 2008 α_{i0} .

It may also be desirable to test whether the beta parameters are indeed constant over time. If the betas are assumed to have time variation in the intercept parameters β_{i0t} then Model 2 can be specified with an additive time effect γ_{it} as follows:

(Model 3)
$$u_{it} = \alpha_{it} \tau_{it} + (\beta_{it} + \gamma_{it}) \left(y_t - \sum_{i=0}^{12} \alpha_{it} \tau_{it} \right) + \varepsilon_{it}$$

The model is estimated by introducing dummy variables h_t for each year such that for each sector i

$$u_{i} = \sum_{t=1}^{8} \alpha_{i0} \tau_{it} h_{t} + \sum_{t=1}^{8} \sum_{j=1}^{r} \alpha_{ij} \tau_{it} z_{j} h_{t} + \left(\beta_{i0} + \sum_{t=1}^{8} \gamma_{it} h_{t} + \sum_{j=1}^{m} \beta_{ij} v_{j} \right) \left[y - \sum_{i=0}^{12} \left(\sum_{t=1}^{8} \alpha_{i0} \tau_{it} h_{t} + \sum_{t=1}^{8} \sum_{j=1}^{r} \alpha_{ij} \tau_{it} z_{j} h_{t} \right) \right] + \varepsilon_{i}$$

where $\gamma_{i8} = 0$ and $\tau_{i8} = 1$.

5.4. Municipality fixed effect

Although models 2 and 3 account for unobserved time effects, it may be desirable to test both municipality and time effects and/or combination of the two. In the context of the KOMMODE model, a fixed municipality effect implies that there exist some municipality-specific characteristics that do not change over time and are correlated with the included explanatory variables.

Before introducing the municipality effect, the expenditure and income variables are adjusted for growth in income (R_t), putting the model into real instead of nominal terms. Having accounted for time effects owing to income growth, municipality effects are included by introducing municipality dummy variables. Two specifications are proposed:

$$(\textit{Model 4}) \ \ \tilde{u}_{ikt} = \alpha_{it} + \theta_{ik} + \beta_{ikt} \left[\ \tilde{y}_{kt} - \sum_{i=0}^{12} \left(\alpha_{it} + \theta_{ik} \right) \ \right] + \varepsilon_{ikt} \ \ i = 0,...,12 \ , \ k = 1,...,K \ , t = 1,...,8$$

$$(\textit{Model 5}) \, \tilde{u}_{ikt} = \alpha_{it} \theta_{ik} + \beta_{it} \bigg(\, \tilde{y}_{kt} - \sum_{i=0}^{12} \alpha_{it} \theta_{ik} \, \bigg) + \varepsilon_{ikt} \quad i = 0, ..., 12 \; , \; k = 1, ..., K \; , \; t = 1, ..., 8$$

where k is an index for municipality, θ_{ik} is the fixed municipality effect, and in Model 4 one base municipality \tilde{k} is excluded to avoid the dummy variable trap, i.e. $\theta_{i\tilde{k}}=0$.

Model 4 is estimated by including municipality dummies additively, based on an assumption that only intercepts vary between municipalities. However, if there is also municipality variation in the slope parameters (the marginal effects of the exogenous z variables differ from municipality to municipality), the dummies should be included multiplicatively as in Model 5. However, it is reasonable to assume that any such effects are due to municipality characteristics already included in the model (e.g. municipality size: a unit increase in population for example may be expected to have a higher marginal effect on a smaller municipality's expenditures than a larger municipality).

As there are over 400 municipalities in the sample, there will be many variables in the model making estimation difficult. However, three solutions are proposed and implemented. First, first-differencing may be used to make the model more tractable.

Model 4 then becomes:

$$(Model \ 6) \ \tilde{u}_{ikt} - \tilde{u}_{ikt-1} = \sum_{j=1}^{r} \alpha_{ij} \left(z_{jkt} - z_{jkt-1} \right) + \beta_{it} \left[\tilde{y}_{kt} - \tilde{y}_{kt-1} - \sum_{i=0}^{12} \sum_{j=1}^{r} \alpha_{ij} \left(z_{jkt} - z_{jkt-1} \right) \right] + \varepsilon_{ikt} - \varepsilon_{ikt-1}$$

Transforming Model 5 by first differencing does not decrease the number of explanatory variables. Other methods may be necessary if this model is to be estimated.

There are, however, a number of problems facing first-difference estimation. First, differencing can greatly reduce the variation in the explanatory variables, which can in turn lead to large standard errors. However, the problem is reduced when a large cross section is available. Further, using longer differences over time is sometimes preferred to using year-to-year changes as this may help to mitigate the reduced cross-sectional variation in the explanatory variables since the variation becomes more pronounced over longer periods (Wooldridge, 2002b:423). Alternatively, a within-estimator may be used. In our case, however, only 8 years are available, which does not allow for taking longer time differences. Thus, when Model 6 is estimated using year on year differences, most of the cross-sectional variation is expected to be removed causing many of the estimates to have low t-values and signs that are not in line with theoretical expectations. Since each municipality effect in Model 6 is estimated with 8 observations (one for each year), the poor performance of the model is not surprising (Beck, 2004). Moreover, by firstdifferencing we lose the first time period for each cross-section (municipality). Thus care must be taken in implementing a differencing model. Provided that the panel is arranged by municipality (each municipality has T consecutive observations for the T time periods under observation), differences for observation numbers 1, T+1, 2T+1, 3T+1,...,(N-1)T+1 must be set to missing as these observations correspond to the first time period for every cross section unit. Also, the explanatory variables (z and y) must be time-varying for at least some municipalities, otherwise these variables will fall away from the transformed model and their effect will not be estimated (Wooldridge, 2002a:280). In the KOMMODE model, many of the variables explaining the variation in the minimum required expenditures have only a small time variation. Correlation plots between the years 2001 and 2008 values are presented in Appendix B.

A second method of estimating Model 4 is to isolate and include only the significant municipality effects, thus limiting the number of dummy variables in the model and making it possible to estimate. The significance of the unobserved municipality effects may be judged based on a number of criteria. While it is possible to use the t-statistic or the adjusted R-squared to judge the significance of a given dummy variable or the improvement of the model's fit, respectively, this paper employs a criterion of economic rather than statistical significance.

If it is not possible to estimate the model from the general version (all municipality effects included) to specific (only the significant effects remain), the alternative would be to start by including one municipality and then carrying out an iterative estimation until all municipalities have been tested. The significance criterion used may be statistical or economic. Some researchers, such as Deirdre McCloskey, are proponents of economic significance. McCloskey and Ziliak (1996) caution against relying on statistical significance without reference to theoretical or policy importance, arguing that an effect can be statistically significant without being important for science or policy, and it can be economically significant without being statistically significant. This paper uses an economic relevance criterion, namely, a municipality effect is deemed significant if it is in absolute value at least as large as 50% of the relevant sector's per median capita expenditure adjusted by the income index. The selection of relevant municipality effects is carried out in 3 steps. First, the model is estimated 13 times (for sectors 0 to 13) for each municipality, including only one fixed effect at a time, while changing the service sector in which the fixed effect is included. After the significant fixed effects have been revealed, the second step is to include all the significant fixed effects in the model. This yields a more general model that is controlling for significant fixed effects. The third step is to test all the fixed effects again by iteration, while controlling for the fixed effects included in the second step. A second version of step 1 can also be conducted, testing each municipality in all sectors simultaneously. The details and results of the iterative procedure are presented in Section 6.2 and Appendix D.

Although the iteration procedure is instructive in isolating significant fixed effects, it is not without problems. The most significant pitfall is that statistical properties of the iteration procedure are unknown and could be producing poor results.

5.5. Economic region fixed effect

A third alternative specification is therefore proposed for the fixed effects model. In Model 7, fixed effects are included as dummy variables for economic regions into which municipalities may be grouped rather than for individual municipalities. The regional classification is developed in Bhuller (2009) and is based on commuting patterns between municipalities in order to categorise municipalities by the labour market to which they belong. A municipality must have at least 10 percent of its working population commuting to a neighbouring region if it is to be added to that region. The list of the 46 regions is provided in Appendix E.

$$(\textit{Model 7}) \tilde{u}_{it} = \alpha_{it} + \rho_{iR} + \beta_{it} \left[\tilde{y}_t - \sum_{i=0}^{12} \left(\alpha_{it} + \rho_{iR} \right) \right] + \varepsilon_{it} \quad i = 0, ..., 12 \; , \; R = 1, ..., 46 \; , \; t = 1, ..., 8$$

where ρ_{iR} is the fixed region effect and one base region \tilde{R} is excluded to avoid the dummy variable trap, i.e. $\rho_{i\tilde{R}}=0$.

5.6. Region and time effects

Once the region effects have been added, it is possible to test both fixed and time effects in one model. Adding region dummies to Model 2 and including an interaction term to account for any time variance in the region effects, Model 8 captures both municipality and time heterogeneity.

(Model 8)
$$u_{it} = (\alpha_{it} + \rho_{iR})\tau_{it} + \beta_{it} \left[y_t - \sum_{i=0}^{12} (\alpha_{it} + \rho_{iR})\tau_{it} \right] + \varepsilon_{it} \quad \tau_{i8} = 1, \rho_{i\tilde{R}} = 0$$

This may be specified by introducing dummy variables in the following way:

$$u_{i} = \sum_{t=1}^{8} \alpha_{i0} \tau_{it} h_{t} + \sum_{t=1}^{8} \sum_{j=1}^{r} \alpha_{ij} \tau_{it} \tau_{j} h_{t} + \sum_{R=1}^{46} \sum_{t=1}^{8} \rho_{iR} \tau_{it} h_{t} d_{R} + \beta_{i} \left[y - \sum_{i=0}^{12} \left(\sum_{t=1}^{8} \alpha_{i0} \tau_{it} h_{t} + \sum_{t=1}^{8} \sum_{j=1}^{r} \alpha_{ij} \tau_{it} z_{j} h_{t} + \sum_{R=1}^{46} \sum_{t=1}^{8} \rho_{iR} \tau_{it} h_{t} d_{R} \right) \right] + \varepsilon_{i} \left[y - \sum_{t=0}^{12} \left(\sum_{t=1}^{8} \alpha_{i0} \tau_{it} h_{t} + \sum_{t=1}^{8} \sum_{j=1}^{r} \alpha_{ij} \tau_{it} z_{j} h_{t} + \sum_{R=1}^{46} \sum_{t=1}^{8} \rho_{iR} \tau_{it} h_{t} d_{R} \right) \right] + \varepsilon_{i} \left[y - \sum_{t=0}^{12} \left(\sum_{t=1}^{8} \alpha_{i0} \tau_{it} h_{t} + \sum_{t=1}^{8} \sum_{j=1}^{r} \alpha_{ij} \tau_{it} z_{j} h_{t} + \sum_{R=1}^{46} \sum_{t=1}^{8} \rho_{iR} \tau_{it} h_{t} d_{R} \right) \right] + \varepsilon_{i} \left[y - \sum_{t=0}^{12} \left(\sum_{t=1}^{8} \alpha_{i0} \tau_{it} h_{t} + \sum_{t=1}^{8} \sum_{j=1}^{r} \alpha_{ij} \tau_{it} z_{j} h_{t} + \sum_{R=1}^{46} \sum_{t=1}^{8} \rho_{iR} \tau_{it} h_{t} d_{R} \right) \right] + \varepsilon_{i} \left[y - \sum_{t=0}^{8} \left(\sum_{t=1}^{8} \alpha_{i0} \tau_{it} h_{t} + \sum_{t=1}^{8} \sum_{j=1}^{r} \alpha_{ij} \tau_{it} z_{j} h_{t} \right) \right] + \varepsilon_{i} \left[y - \sum_{t=0}^{8} \left(\sum_{t=1}^{8} \alpha_{i0} \tau_{it} h_{t} + \sum_{t=1}^{8} \sum_{t=1}^{8} \alpha_{i0} \tau_{it} h_{t} \right) \right] + \varepsilon_{i} \left[y - \sum_{t=1}^{8} \left(\sum_{t=1}^{8} \alpha_{i0} \tau_{it} h_{t} + \sum_{t=1}^{8} \sum_{t=1}^{8} \alpha_{i0} \tau_{it} h_{t} \right) \right] + \varepsilon_{i} \left[y - \sum_{t=1}^{8} \left(\sum_{t=1}^{8} \alpha_{i0} \tau_{it} h_{t} \right) \right] + \varepsilon_{i} \left[y - \sum_{t=1}^{8} \left(\sum_{t=1}^{8} \alpha_{i0} \tau_{it} h_{t} \right) \right] \right] + \varepsilon_{i} \left[y - \sum_{t=1}^{8} \left(\sum_{t=1}^{8} \alpha_{i0} \tau_{it} h_{t} \right) \right] + \varepsilon_{i} \left[y - \sum_{t=1}^{8} \left(\sum_{t=1}^{8} \alpha_{i0} \tau_{it} h_{t} \right) \right] \right] + \varepsilon_{i} \left[y - \sum_{t=1}^{8} \left(\sum_{t=1}^{8} \alpha_{i0} \tau_{it} h_{t} \right) \right] + \varepsilon_{i} \left[y - \sum_{t=1}^{8} \left(\sum_{t=1}^{8} \alpha_{i0} \tau_{it} h_{t} \right) \right] \right] + \varepsilon_{i} \left[y - \sum_{t=1}^{8} \left(\sum_{t=1}^{8} \alpha_{i0} \tau_{it} h_{t} \right) \right] + \varepsilon_{i} \left[y - \sum_{t=1}^{8} \left(\sum_{t=1}^{8} \alpha_{i0} \tau_{it} h_{t} \right) \right] \right] + \varepsilon_{i} \left[y - \sum_{t=1}^{8} \left(\sum_{t=1}^{8} \alpha_{i0} \tau_{it} h_{t} \right) \right] + \varepsilon_{i} \left[y - \sum_{t=1}^{8} \left(\sum_{t=1}^{8} \alpha_{i0} \tau_{it} h_{t} \right) \right] + \varepsilon_{i} \left[y - \sum_{t=1}^{8} \left(\sum_{t=1}^{8} \alpha_{i0} \tau_{it} h_{t} \right) \right] \right] + \varepsilon_{i} \left[y - \sum_{t=1}^{8} \left(\sum_{t=1}^{8} \alpha_{i0} \tau_{it} h_{t} \right) \right] + \varepsilon_{i} \left[y - \sum_{t=1}^{$$

where
$$h_t = \begin{cases} 1, & year = t \\ 0, & otherwise \end{cases}$$
 $t = 1,...,8$ and

$$d_R = \begin{cases} 1, & region = R \\ 0, & otherwise \end{cases}$$
 $R = 1,...,46$.

5.7. Partial adjustment model with time heterogeneity

While Model 8 accounts for time and municipality heterogeneity, it is only a quasi-dynamic model in a sense that it can describe changes in local government behaviour over time and between economic regions but does not say anything about the way in which these changes take place. Model 8 thus assumes that all spending allocations are optimised at any point in time. A partial adjustment model 9 of the form presented in Section 3.2.2. estimates how quickly the spending allocation adjusts to the desired allocation, while also taking into account time heterogeneity. Model 9 assumes existence of inertia in the adjustment of spending to its equilibrium level; that is, it takes time for municipalities to

adapt their spending behaviour to changes in income, expectations, government regulation and so on. Langørgen et al. (forthcoming) discuss a number of possible reasons for inertia in spending allocation. Restructuring costs may contribute to spending inertia because it is costly to adapt service production to a desired level in the short term. These costs are a result of difficulty in terminating municipality workers, expensive resources required for faster restructuring and credit rationing (difficulty in obtaining funds needed for restructuring). Moreover, it takes time to free up resources and to adjust production of services to meet the changing needs of the service users or changes in the central government's policy. Thus, Model 9, which explicitly models the speed of adjustment of spending to its equilibrium level rather than assuming this adjustment to be instantaneous, may be an appropriate specification for local government spending.

(5.6)
$$u_{it} = \lambda u_{it}^* + (1 - \lambda) \frac{y_t}{y_{t-1}} u_{it-1} + v_{it}$$

(5.7)
$$u_{it}^* = \alpha_{it} \tau_{it} + \beta_{it} \left(y_t - \sum_{i=0}^{12} \alpha_{it} \tau_{it} \right) + \varepsilon_{it}$$

Substituting (5.7) into (5.6) gives Model 9.

$$(\text{Model 9}) u_{it} - \frac{y_t}{y_{t-1}} u_{it-1} = \lambda \left(\alpha_{it} \tau_{it} + \beta_{it} \left(y_t - \sum_{i=0}^{12} \alpha_{it} \tau_{it} \right) - \frac{y_t}{y_{t-1}} u_{it-1} \right) + \tilde{\varepsilon}_{it}, \quad \tilde{\varepsilon}_{it} = \lambda \varepsilon_{it} + v_{it} \quad \tau_{i8} = 1$$

where λ is the speed of adjustment parameter, which is assumed constant and equal for all service sectors – an assumption also made by Borge, Rattsø and Sørensen (1995). This assumption may be relaxed in future extensions of the model. When the speed of adjustment parameter is 1, adjustment is instantaneous and Model 9 reduces to the time effects Model 2. When the speed of adjustment parameter is 0, the expenditure in year t is simply equal to the previous year's expenditure adjusted for income growth, represented by the y_t term.

 y_{t-1}

Since the budget constraint holds by definition both out of and in equilibrium such that

(5.8)
$$\sum_{i=0}^{12} u_{it} = y_t \text{ for all t, } \sum_{i=0}^{12} u_{it}^* = y_t \text{ and hence}$$

(5.9)
$$\sum_{i=0}^{12} \left(\lambda u_{it}^* + (1-\lambda) \frac{y_t}{y_{t-1}} u_{it-1} \right) = \lambda y_t + (1-\lambda) y_t = y_t$$

using the fact that
$$\sum_{i=0}^{12} u_{it-1} = y_{t-1}$$
 ,

Model 9 is a logically consistent expenditure system that satisfies the budget constraint.

While it is possible to specify Model 9 to also include municipality heterogeneity, for instance via regional effects, this more complex version is beyond the scope of this paper and is therefore left to future research.

6. Empirical results

6.1. Data and variables

All models are based on KOSTRA⁵ data available from Statistics Norway. Expenditures (uit) are per capita expenditure in sector i. The expenditure in sector 4 (child care) excludes fee income from municipal kindergartens. Per capita income yt is inclusive of user fees in all sectors except child care and exclusive of employer payroll taxes.

Tables 6.1 and 6.2 summarise the differences in sector-specific per capita public spending averaged over the years 2001 – 2008, while Table 6.3 and 6.4 present the average sector-specific per capita spending grouped by year. Tables 6.1 and 6.3 exclude outlier municipalities, while Table 6.2 and 6.4 report the summary statistics for all municipalities in the sample. In the case where outliers are not excluded, average spending is higher in all sectors and negative spending is observed in sectors 1, 10, 11 and 12. This is reasonable since outlier municipalities include rich municipalities and those with negative spending. The largest expenditure component in all the years is care for the elderly and disabled, closely followed by primary education. Furthermore, average spending is increasing in all sectors from the year 2001 to 2008, with the greatest increase observed in care for the elderly and disabled, primary schools and child care.

⁵ As of 2001 all municipalities report their expenses via KOSTRA (Kommune-Stat-Rapportering/ Municipal statistical reporting) to Statistics Norway.

There are also considerable differences in per capita public spending across municipalities in all service sectors.

Table 6.1. Public spending per capita on different services across municipalities

Per capita sector expenditure	Mean	Std Deviation	Minimum	Maximum
0. Net operating result	889	2033	-7988	12432
1. Administration	4076	2033	1121	17513
2. Primary schools	8890	1845	4831	19393
3. Other education	1024	374	145	3448
4. Child care	2867	1173	619	7749
5. Health care	1956	868	587	7788
6. Social services	1215	545	128	3705
7. Child protection	938	389	75	2685
8. Care for the elderly and disabled	12010	3784	4201	30660
9. Culture	1542	631	417	5851
10. Municipal roads	707	369	24	2879
11. Water supply and sanitation	1687	665	0	4767
12. Other infrastructure	2676	1290	286	10179

Note: all values are in Norwegian kroner. Municipalities considered outliers in at least 1 year are excluded.

Table 6.2. Public spending per capita on different services across municipalities

Per capita sector expenditure	Mean	Std Dev	Minimum	Maximum
0. Net operating result	1309	4507	-84104	79316
1. Administration	4677	2784	-1151	29311
2. Primary schools	9325	2219	4506	22361
3. Other education	1048	483	29	6548
4. Child care	2940	1214	615	11091
5. Health care	2192	1122	587	9329
6. Social services	1227	595	0	5039
7. Child protection	965	500	0	10741
8. Care for the elderly and disabled	12883	4572	4201	51371
9. Culture	1737	1278	365	30253
10. Municipal roads	795	571	-3589	7384
11. Water supply and sanitation	1773	833	-79	8961
12. Other infrastructure	3097	2412	-5156	34019

Note: all values are in Norwegian kroner. All municipalities are included.

Table 6.3. Average public spending per capita on different services across municipalities by year Per capita sector expenditure 0. Net operating result 1. Administration 2. Primary schools 3. Other education 4. Child care 5. Health care 6. Social services 7. Child protection 8. Care for the elderly and disabled 9. Culture

Note: all values are in Norwegian kroner. Municipalities considered outliers in at least 1 year are excluded.

Table 6.4. Average public spending per capita on different services across municipalities by year

	• .	-					•	
Per capita sector expenditure	2001	2002	2003	2004	2005	2006	2007	2008
0. Net operating result	1035	429	713	1039	1948	3427	1604	280
1. Administration	4336	3686	4408	4471	4501	4749	5279	5997
2. Primary schools	7787	8315	8857	8984	9297	9859	10428	11090
3. Other education	871	980	1007	1026	1053	1075	1136	1237
4. Child care	1803	2085	2282	2564	2778	3408	3961	4660
5. Health care	1769	1934	2057	2106	2155	2306	2490	2724
6. Social services	1016	1112	1213	1203	1278	1294	1285	1414
7. Child protection	737	800	838	891	961	1046	1151	1305
8. Care for the elderly and disabled	10071	11150	11565	12175	12570	13804	15035	16734
9. Culture	1478	1564	1614	1685	1690	1815	1966	2090
10. Municipal roads	675	716	720	753	754	847	937	958
11. Water supply and sanitation	1522	1595	1658	1718	1771	1882	1939	2102
12. Other infrastructure	2720	2789	2863	2904	3039	3217	3593	3654
Number of municipalities	435	434	434	434	433	431	431	430

Note: all values are in Norwegian kroner. All municipalities are included.

10. Municipal roads

12. Other infrastructure

Number of municipalities

11. Water supply and sanitation

6.1.1. Factors that explain variation in the minimum required expenditures

Langørgen et al. (forthcoming) select the variables in Table 6.5 as significant factors affecting minimum required expenditures in the KOMMODE model, which the authors estimate for the years 2001 to 2008. The minimum quantity of service which must be provided in a given sector is assumed to depend on the size of the target groups for the services in that sector, while other factors affect the unit costs of providing the service. The target group variables and the variables affecting the unit costs of service provision are shown in Table 6.5 together with the sectors in which each variable is relevant.

Population age group variables ⁶ are included in sectors 2, 4 and 8 and are calculated as the number of municipality residents in a specified age group as a share of that municipality's total population. Since primary education, child care and care for the elderly and disabled are directed towards specific target groups, the age composition of the population is assumed to affect the demand for these services. Parameter estimates of these variables show the increase in minimum quantity when the target group is increased by one person.

Table 6.5. Variables that affect minimum required expenditures found to be significant in the cross-sectional analysis

	(0)	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
Population 1-5 years of age					Χ								
Population 6-12 years of age			Χ										
Population 13-15 years of age			Χ										
Population 67-79 years of age									Χ				
Population 80-89 years of age									Χ				
Population 90 years and above									Χ				
Children 0-15 years with single mother/ father								Χ					
Fulltime working women 20-44 years share of total population				Х	Х								
Refugees with integration grants *				Х			Χ						
Refugees without integration grants				Λ			X						
Divorced/ separated 16-59 years							X						
Unemployed 16-59 years							Χ						
Number of poor							Χ	Χ					
Disablement pensioners 18-49 years							Χ						
Mentally disabled 16 years and above without grants									Х				
Mentally disabled 16 years and above with grants									X				
High-cost recipients									Χ				
Kilometers of municipal roads											Χ		
Amount of snowfall											Χ		
Capacity of advanced purification												Χ	
Index of farming industry		Χ											
Distance to centre of municipal sub- district **			Χ		Χ	Χ			Χ				
Inverse population size		Χ	Χ		Χ	Χ			Χ	Χ		Χ	Χ
Growth in municipality incomes	Χ												

Note: All age-group variables are measured as shares of the total population. X shows the sector/s for which a variable is included in the minimum required expenditure.

Sector 0: Budget surplus Sector 5: Health care Sector 10: Municipal roads

Sector 1: Administration Sector 6: Social services Sector 11: Water supply and sanitation

Sector 2: Primary schools Sector 7: Child protection Sector 12: Other infrastructure

Sector 3: Other education Sector 8: Care for the elderly and disabled

Sector 4: Child care Sector 9: Culture

^{*} total number of refugees for whom a given municipality has received integration grants throughout a particular year.

^{**} in Norwegian miles (1 mile=10 km)

⁶ All population variables are measured as of 1 January of the relevant year and sourced from Statistics Norway Section for Population statistics (320).

6.2. Results

The models developed in Section 5 are summarised in Table 6.6. Four versions of each model are estimated. Version A excludes municipalities which are considered outliers in at least 1 year, while version B excludes municipalities which are considered outliers in at least 2 years. The procedure for classifying a municipality as an outlier is explained in Section 4.3.1. Versions C and D are parallel to A and B in their treatment of outliers; however, specifications C and D are estimated on a balanced panel, i.e. additional municipalities are removed which have missing values for some of the years. All 4 versions, however, yield similar results and only version A is reported here. The models' residual plots are reported in Appendix C. The residuals are well-behaved and approximately normally distributed, satisfying the critical assumption of residual normality of FIML estimation. Adjusted R-Squared values are presented in Table 6.7. These statistics show a reasonable to good fit in all service sectors. The values for the R-Squared in Model 6 (first-difference model) are not reported as these are not meaningful in a first-difference model where the constant is differenced away. Model 9 has relatively low adjusted R-Square values, particularly in sector 11. However, this model is specified with the difference between sector expenditure and income growth adjusted lagged sector expenditure as the dependent variable. Thus, adjusted R-squared values are not comparable to the adjusted R-squared values of the other models.

Table 6.6. Summary of estimated models

Model name	Model number	Adjusted by income index	Time effects	Municipality or regional fixed effects
Baseline	Model 1	Yes	No	No
Time effects	Model 2	No	Yes	No
Time effects with time heterogeneity in the budget shares	Model 3	No	Yes	No
Municipality fixed effects	Model 4	Yes	No	Yes
First difference	Model 6	Yes	No	No*
Regional effects	Model 7	Yes	No	Yes
Time and regional effects	Model 8	No	Yes	Yes
Partial adjustment **	Model 9	No	Yes	No

^{*}Municipality effects are differenced away

^{**} Estimates the sector expenditures as a weighted average of the desired allocation and the expenditure in the previous period multiplied by income growth. The weight is the speed of adjustment parameter estimated to be 0.169.

Table 6.7. Adjusted R-Squared

Sector	Model 1	Model 2	Model 3	Model 4*	Model 7	Model 8	Model 9
1. Administration	0.84	0.88	0.88	0.88	0.86	0.89	0.45
2. Primary schools	0.79	0.86	0.86	0.78	0.82	0.88	0.39
3. Other education	0.35	0.40	0.40	0.57	0.45	0.49	0.20
4. Child care	0.35	0.86	0.87	0.39	0.46	0.88	0.30
5. Health care	0.72	0.75	0.75	0.82	0.79	0.81	0.17
6. Social assistance	0.57	0.59	0.59	0.70	0.64	0.66	0.21
7. Child protection	0.23	0.37	0.37	0.45	0.35	0.46	0.13
8. Care for the elderly and disabled	0.87	0.91	0.91	0.86	0.90	0.93	0.38
9. Culture	0.61	0.65	0.65	0.74	0.67	0.70	0.15
10. Municipal roads	0.63	0.66	0.66	0.78	0.72	0.74	0.14
11. Water supply and sanitation	0.23	0.27	0.27	0.55	0.44	0.46	0.08
12. Other infrastructure	0.57	0.59	0.60	0.73	0.65	0.68	0.12
Log likelihood	-28811	-20450	-20255	-23691	-25532	-17037	-3505

^{*}Significant municipality effects are included in 12 service sectors

Model 1 is useful as a point of departure and comparison. The expenditures and income are adjusted by the income growth index, effectively removing time variation in the minimum required expenditures due to the increasing municipality incomes. However, any variation due to unobserved or omitted time-invariant factors is not accounted for in this model. As evident from the significant time effect estimates in Model 2, there is indeed strong justification to explicitly model minimum required expenditures as different for different years. Model 3 is estimated but not reported as the estimates are similar to Model 2 and most of the time-effects imposed on the budget shares are not significant (with the exception of child care and other education where the marginal budget share time effects are significant in 2001 - 2005) as shown in Table 6.8. Model 2 is therefore preferred to Model 3. Following the methodology employed by Langørgen et al. (forthcoming), models 1 and 2 are calibrated such that discretionary income⁷ approximately zero for the municipality with the lowest discretionary income. In Model 1, this is achieved by imposing a restriction on the sum of the constant terms in the minimum required expenditure in each sector⁸ to ensure that discretionary income is approximately zero for municipality 0228 (Rælingen). Model 2 is similarly calibrated for municipality 1089 (Songdalen) by imposing a restriction on the constant term in the residual sector's minimum required expenditure⁹.

⁷ Discretionary income is given by difference between total income and the sum of minimum required expenditures in all sectors, including the residual sector, that is $y - \sum_{i=1}^{12} \alpha_{iki}$.

 $[\]sum_{i=0}^{12} \alpha_{i0} = 10,72$

 $[\]alpha_{00} = -1.841$

Table 6.8. Additive time effects in the marginal budget shares in Model 3

	2001	2002	2003	2004	2005	2006	2007	2008
Administration	-0.017	-0.038	-0.010	-0.014	-0.016	-0.023	-0.014	0
	(1.66)	(4.18)	(1.09)	(1.80)	(2.10)	(2.86)	(2.11)	-
Primary schools	-0.013	-0.002	-0.000	-0.008	-0.006	-0.010	-0.011	0
	(1.50)	(0.26)	(0.06)	(1.03)	(88.0)	(1.74)	(2.09)	-
Other education	0.010	0.010	0.008	0.008	0.007	0.002	0.002	0
	(2.54)	(3.16)	(2.29)	(2.52)	(2.12)	(0.72)	(0.64)	-
Child care	0.040	0.043	0.029	0.021	0.010	-0.006	-0.003	0
	(6.62)	(8.46)	(5.19)	(4.09)	(2.26)	(1.78)	(1.06)	-
Health care	-0.002	0.012	0.006	0.001	-0.005	-0.005	-0.001	0
	(0.23)	(2.12)	(1.05)	(0.18)	(0.96)	(1.10)	(0.32)	-
Social services	0.000	-0.003	-0.005	-0.002	-0.001	-0.004	-0.003	0
	(0.11)	(0.65)	(1.32)	(0.56)	(0.39)	(1.24)	(1.03)	-
Child protection	-0.003	-0.005	-0.006	-0.004	-0.002	0.001	-0.000	0
	(0.61)	(1.23)	(1.61)	(1.06)	(0.58)	(0.50)	(0.15)	-
Care for the elderly and disabled	-0.013	0.006	0.006	0.018	0.009	-0.004	-0.011	0
	(0.69)	(0.35)	(0.39)	(1.28)	(0.67)	(0.29)	(1.00)	-
Culture	0.009	0.013	0.010	0.011	0.009	0.007	0.002	0
	(1.31)	(1.82)	(1.87)	(2.30)	(1.86)	(1.59)	(0.70)	-
Municipal roads	-0.005	-0.007	-0.002	-0.002	0.001	-0.002	0.003	0
	(1.39)	(2.17)	(0.65)	(88.0)	(0.61)	(0.79)	(1.56)	-
Water supply and sanitation	-0.013	-0.009	-0.003	-0.006	-0.004	-0.002	-0.002	0
	(1.70)	(1.15)	(0.37)	(0.96)	(0.70)	(0.42)	(0.52)	-
Other infrastructure	0.028	0.032	0.018	0.006	-0.010	0.007	-0.008	0
	(2.49)	(2.91)	(1.69)	(0.68)	(1.06)	(0.79)	(1.10)	-

It was not possible to estimate Model 4 with all municipality effects included (removing one to avoid perfect collinearity) using the SAS proc model procedure. A possible reason is the large number of parameters to be estimated and hence the large memory allocation required by SAS. However, the error¹⁰ encountered in trying to estimate this model points to a problem with the SAS software and it may be possible to estimate the model using a different econometric package, or a different version of the SAS software. This may be of interest to future research. Model 4 is therefore estimated including only significant municipality effects. The estimation is conducted in three steps using an economic relevance criterion to determine which municipality effects are significant; namely, a municipality effect is deemed significant if it is in absolute value at least as large as 50% of the relevant sector's per median capita expenditure adjusted by the income index. These values, together with the mean expenditures are given in Table 6.9. The median and the

¹⁰ A segmentation violation in task [Model] . SAS version used is 9.2.

mean values are fairly similar in magnitude, with the median values slightly lower. There is thus a higher probability of the effect being significant when the median is used as the critical value. Model 4 is calibrated in the way described above for municipality 1928 (Torsken) from step 2 onwards.

Table 6.9 Mean and median values of per capita income index adjusted expenditure, by service sector

Adjusted per capita expenditure by sector *	Median	Mean
0. Discretionary income	0.890	1.072
1. Administration	4.316	5.057
2. Primary schools	10.816	11.048
3. Other education	1.218	1.275
4. Child care	3.318	3.453
5. Health care	2.117	2.426
6. Social services	1.440	1.514
7. Child protection	1.117	1.154
8. Care for the elderly and disabled	14.293	14.825
9. Culture	1.761	1.918
10. Municipal roads	0.775	0.877
11. Water supply and sanitation	2.105	2.101
12. Other infrastructure	2.924	3.330

^{*}The expenditures are are calculated for the sample of 336 municipalities, where municipalities considered outliers in at least one of the eight years are excluded. Expenditures are divided by the income growth index given by equation (18), described in Section 4.4.

We find that when sector zero effects are tested in step 1, 215 significant fixed effects are revealed based on the median expenditure criterion. This is not surprising, however, as the net operating surplus can take on both positive and negative values, leading to the median being a poor criterium of significance. Instead we develop 2 additional versions of step1. First, only those sector 0 effects whose t-value exceeds a generous critical value of 1,5 are included in step 2 together with the significant effects in other sectors whose significance is based on the median criterion. In the second variant all fixed effects are evaluated based on their t-values. Estimation results are reported in Appendix D. The final version of model 4 was estimated based on the effects revealed in step 2 with the additional effects revealed to be significant in step 3. The effects revealed significant in step 3 are presented in Table D.10 in Appendix D. The parameters of interest are reported in Tables D.11 and D.12 in Appendix D. Most of the estimates are comparable to those of Model 7 or 8 where region effects are included, suggesting that economic regions are a good approximation of the municipality-specific effects. As in other models without time effects, the effect of the share of children on the minimum required child care expenditure is biased downwards, and is not significant. In the social services sector the effect of refugees without integration grants is underestimated. One reason for this is that there may be some municipalities whose effects are significant but that are not included in this sector. The small number of significant fixed effects in the sector care for the elderly and disabled results in most of the estimates being closer in magnitude to those of the baseline model than to the region effects model.

Since many of the variables explaining the variation in the minimum required expenditures have only a small time variation, the first difference model (Model 6) produces biased results. Although these near time-invariant variables remain in the model, their estimates have inflated standard errors and hence low t-values. Correlation plots of these variables for the years 2001 and 2008 and selected estimates with standard errors are presented in Appendix B.

Model 7 was first estimated with 45 regional dummy variables, omitting region 12 (Oslo) as the base category. The results with regards to the effects of the factors influencing minimum required expenditures were generally consistent with model 24. However, the estimate of the marginal effect of the share of children (1 – 5 years of age) on the minimum required expenditure in the child care sector was negative and significant (–7.291). The negative sign is not consistent with theoretical expectations as an additional child is expected to increase, not decrease, the minimum required expenditure on child care. Model 7, therefore, appears to produce biased results, possibly due to the fact that time effects are not accounted for in this model's specification. The estimate of the effect of small children on child care's minimum spending may then be capturing unobserved time heterogeneity, which is not accounted for in this model. The problem of the negative effect of small children in the child care sector is also encountered by Borge, Rattsø and Sørensen (1995). Similarly to Model 7, their study does not account for time heterogeneity; although a partial adjustment model is assumed, Borge, Rattsø and Sørensen (1995) do not explicitly model time effects.

Furthermore, the standard errors on the region 23 (Lillehammer) estimates are inflated in every service sector in Model 7, suggesting a problem with this region's inclusion in the model. On closer examination, it was found that only one of the three municipalities in this region was included in the data used for model estimation (municipality 0522), since the other two municipalities (0501 and 0521) were removed as outliers. Hence the dummy variable for region 23 had a value zero for all but 8 observations and was therefore approximately constant across observations leading to inflated standard errors. An alternate version of the model was therefore estimated, with municipalities 0501 and 0521 included in the sample. The regional effects are reported in Table E.3. in Appendix E and summarised in Table 6.10. The remaining parameters are reported in Tables 6.15 – 6.27. These are mostly very close in magnitude to the estimates in Model 1, where no regional effects are included. This finding, combined with the fact that few regional effects are

significant, suggests that a model with time effects, such as Model 2, is more appropriate than a model without time effects. The regions that have statistically significant effects on the minimum required expenditures in more than one service sector are: 34, 35 and 36 (Southern Norway), 44 (Bergen), 63 (Namsos), 72, 75, 76, 82 and 83 (Northern Norway). It is indeed plausible that the minimum required expenditures in these regions are on average different from those in the Oslo region.

Table 6.10 Significant region effects by service sector in model 7

Economic region	Number of sectors with significant effect	Service sectors with significant effect
23. Lillehamer	1	6
34. Arendal	2	1 and 5
35. Kristiansand	4	4, 6, 9 and 11
36. Lister	13	All sectors
44. Bergen	3	0, 7 and 11
51. Sunnfjord (Førde/ Florø)	1	6
53. Nordfjord	1	7
55. Ålesund	1	7
61. Trondheim	1	7
63. Namsos	2	0 and 7
71. Bodø	1	11
72. Narvik	2	0 and 7
75. Harstad	10	0, 1, 2, 3, 4, 5, 8, 9,10 and 11
76. Midt-Troms	4	2, 4, 10 and 11
81. Alta	1	0
82. Hammerfest	2	4 and 6
83. Vadsø	10	1, 2, 3, 4, 5, 6, 7, 8, 9 and 11

The effects are statistically significant at 10% significance level

In order to account for possible interaction between time and regional heterogeneity, Model 8 is estimated. Regional and time effects are included in all 13 sectors. The effects on the minimum required expenditures are reported in Section 6.2.1 and the marginal

budget shares in Section 6.2.2. Importantly, the effect of the 1-5 year old children on the minimum expenditure in the child care sector is no longer negative as in Model 7, and is statistically significant. We observe an increase of NOK 58154 in the minimum required child care expenditure for an additional 1-5 year old child in 2008. The regional effects are reported in Table E.4. in Appendix E. Table 6.11 summarises statistically significant regions and the service sectors in which these effects apply.

Table 6.11. Significant region effects by service sector in model 8

Labour market region	Region number	Number of sectors with significant effect	Service sectors with significant effect
Eastern Norway			
Sør-Østfold	11	1	6
Oslo	12		base region
Vestfold	13	2	6, 11
Kongsberg	14	2	3, 7
Hallingdal	15	5	1, 5, 7, 11, 12
Valdres	21	3	3, 6, 11
Gudbrandsdalen	22	6	1, 4, 7, 8, 10, 12
Lillehammer	23	0	none
Gjøvik	24	1	6
Hamar	25	1	6
Kongsvinger	26	2	6, 7
Elverum	27	3	6, 7, 10
Tynset/Røros	28	8	0, 1, 3, 4, 6, 7, 8, 10
Southern Norway			
Nordvest-Telemark	31	4	0, 1, 8, 10
Øst-Telemark	32	0	none
Sør-Telemark	33	2	3, 6
Arendal	34	3	5, 6, 11
Kristiansand	35	9	1, 2, 4, 6, 8, 9, 10, 11, 12
Lister	36	3	4, 7, 8
West Norway			
Stavanger	41	3	3, 6, 9
Haugesund	42	9	0, 1, 5, 6, 7, 8, 10, 11, 12
Sunnhordland	43	1	4
Bergen	44	6	0, 1, 4, 6, 7, 11
Sunnfjord (Førde/Florø)	51	4	0, 1, 6, 10
Sognefjord (Sogndal/Årdal)	52	7	0, 1, 3, 4, 9, 10, 12
Nordfjord	53	2	7, 11
Søndre Sunnmøre	54	6	2, 3, 4, 7, 8, 10
Ålesund	55	4	0, 1, 4, 7
Molde	56	1	7
Nordmøre	57	5	0, 1, 5, 6, 10
Kristiansund	58	0	none

Labour market region	Region number	Number of sectors with significant effect	Service sectors with significant effect
Mid-Norway			
Trondheim	61	6	0, 6, 7, 8, 10, 11
Midt-Trøndelag	62	1	11
Namsos	63	6	0, 1, 3, 7, 10, 11
Ytre Helgeland	64	6	0, 1, 6, 10, 11, 12
Indre Helgeland	65	0	none
Northern Norway			
Bodø	71	5	0, 1, 2, 6, 11
Narvik	72	2	0, 7
Vesterålen	73	0	none
Lofoten	74	1	11
Harstad	75	4	2, 3, 8, 10
Midt-Troms	76	5	0, 6, 7, 10, 12
Tromsø	77	6	0, 2, 7, 8, 9, 11
Alta	81	3	3, 9, 12
Hammerfest	82	6	0, 4, 7, 8, 9, 12
Vadsø	83	5	0, 4, 9, 10, 12

The effects are statistically significant at 10% significance level

Finally, the partial adjustment model (Model 9) explicitly estimates the dynamics of adjustment of municipality expenditures to their equilibrium values. To facilitate convergence of the model's parameters, a restriction is imposed on the constant term α_{00} in the residual sector's minimum required expenditure (minimum savings). Although this parameter may be given different values, it is set to zero in Model 9.

Aaberge and Langørgen (2003) provide a detailed discussion of the meaning and expected sign of the parameters in sector 0's minimum required expenditure α_0 . In KOMMODE and also in the models presented in this paper, α_0 is composed of a constant term α_{00} and a change in real exogenous income from the previous year. Hence $-\alpha_0$ is the present value of changes in future exogenous income. The negative of the constant term $-\alpha_{00}$ captures the present value of a long-term growth trend in exogenous income. Historically this trend is positive in Norway, implying that $\alpha_{00} < 0$. However, the Local Government Act contains a balanced budget rule that prohibits local governments to plan for persistent deficits, although temporary deficits are allowed and observed in practice (Langørgen and Aaberge, 2003). Thus, although $\alpha_{00} < 0$ may be an accurate description of the local governments' saving behaviour at a point in time, in the long run equilibrium the balanced budget rule can be seen to restrict α_{00} to be non-negative. Since in Model 9 this parameter describes the long-run growth trend of the desired/ equilibrium spending u_{it}^* , it is reasonable for it to be set to zero. Nevertheless, other specifications are possible and may be explored in future studies.

The adjusted R-Squared reported in Table 6.7 indicate that explanatory power of the model is fairly low, and hence conclusions should be drawn with care. It may be possible to improve the fit of the model by introducing municipality or region fixed effects in the desired expenditure. This is left to future work. The speed of adjustment parameter λ is estimated to be 0.169¹¹, which implies a fairly slow adjustment to the equilibrium allocation. The effects on the equilibrium minimum required expenditures and marginal budget shares are reported in Tables 6.15 – 6.27. Time effects are found in Table 6.14.

6.2.1. Effects on minimum required expenditures

Time effects estimated in models 2, 8 and 9 are reported in Tables 6.12-6.15. The marginal effects on the minimum required expenditures for the base year 2008, when the time effect is normalised to 1, are reported in Tables 6.15-6.27. The marginal effects on the minimum required expenditures for the years 2001-2007 may be calculated by multiplying the 2008 parameter values found in Tables 6.15-6.27 by the time effect in the corresponding year found in Tables 6-12-6.14. All estimate values are in 1000s Norwegian kroner, and all values in parentheses are t-statistics in absolute value.

Table 6.12 Time effects in the time effect model (Model 2)

		•	•				
Service sector	2001	2002	2003	2004	2005	2006	2007
Net operating result	0.605	0.881	1.006	0.682	0.550	0.958	0.498
	(9.20)	(13.42)	(10.37)	(9.11)	(7.61)	(11.33)	(9.08)
1. Administration	0.506	0.371	0.522	0.587	0.594	0.558	0.728
	(19.41)	(14.55)	(19.95)	(26.53)	(28.59)	(27.29)	(36.40)
2. Primary schools	0.640	0.689	0.732	0.754	0.785	0.811	0.888
	(58.90)	(69.05)	(67.17)	(78.81)	(86.87)	(93.00)	(96.96)
3. Other education	0.675	0.751	0.759	0.802	0.816	0.792	0.876
	(28.52)	(33.04)	(33.57)	(36.98)	(39.18)	(35.67)	(38.69)
4. Child care	0.237	0.306	0.358	0.456	0.518	0.640	0.805
	(21.07)	(27.40)	(27.82)	(39.85)	(46.13)	(66.33)	(77.60)
5. Health care	0.416	0.513	0.560	0.628	0.644	0.604	0.755
	(13.28)	(17.21)	(18.21)	(22.61)	(26.05)	(24.60)	(31.17)
6. Social services	0.619	0.631	0.630	0.635	0.706	0.767	0.846
	(35.77)	(40.75)	(40.46)	(41.44)	(43.98)	(44.34)	(47.76)
7. Child protection	0.529	0.590	0.598	0.660	0.703	0.747	0.857
	(21.19)	(23.83)	(24.68)	(30.40)	(33.76)	(36.22)	(42.13)
8. Care for the elderly and disabled	0.526	0.610	0.633	0.690	0.711	0.758	0.849
	(38.22)	(48.36)	(47.42)	(58.60)	(65.87)	(75.25)	(84.31)
9. Culture	0.405	0.497	0.462	0.577	0.585	0.436	0.658
	(7.01)	(9.44)	(7.67)	(11.28)	(12.41)	(8.72)	(13.11)
10. Municipal roads	0.545	0.608	0.581	0.660	0.710	0.761	0.841
	(18.19)	(20.05)	(19.58)	(23.58)	(27.61)	(28.68)	(35.67)
11. Water supply and sanitation	0.618	0.679	0.684	0.756	0.766	0.759	0.820
	(16.21)	(18.65)	(19.39)	(22.28)	(23.80)	(23.66)	(25.84)
12. Other infrastructure	0.501	0.560	0.529	0.647	0.629	0.498	0.744
	(8.24)	(8.85)	(8.23)	(11.32)	(10.92)	(8.76)	(13.20)

The 2008 time effects in all service sectors are normalised to 1.

¹¹ The estimate is statistically significant with the t-value = 66.71.

Table 6.13 Time effects in the time and region effects model (Model 8)

Service sector	2001	2002	2003	2004	2005	2006	2007
Net operating result	0.594	0.720	0.731	0.698	0.621	0.573	0.654
	(19.94)	(23.35)	(22.80)	(22.88)	(19.37)	(15.35)	(22.48)
1. Administration	0.633	0.442	0.639	0.656	0.667	0.699	0.809
	(30.74)	(20.46)	(37.69)	(36.80)	(38.68)	(37.39)	(48.11)
2. Primary schools	0.684	0.731	0.782	0.787	0.822	0.871	0.924
	(80.19)	(89.89)	(99.67)	(101.60)	(109.23)	(120.77)	(140.11)
3. Other education	0.770	0.859	0.870	0.894	0.905	0.894	0.941
	(23.53)	(25.61)	(26.67)	(27.51)	(28.66)	(30.92)	(32.90)
4. Child care	0.184	0.258	0.322	0.419	0.495	0.669	0.825
	(12.69)	(18.69)	(23.18)	(33.51)	(42.25)	(71.74)	(93.31)
5. Health care	0.500	0.604	0.680	0.695	0.724	0.766	0.853
	(16.08)	(21.97)	(25.65)	(27.25)	(29.17)	(32.61)	(41.17)
6. Social services	0.666	0.669	0.665	0.659	0.735	0.816	0.878
	(29.69)	(31.67)	(29.80)	(30.45)	(32.03)	(37.61)	(42.09)
7. Child protection	0.546	0.605	0.629	0.681	0.733	0.803	0.887
	(18.89)	(21.90)	(22.52)	(27.61)	(30.71)	(33.95)	(38.04)
8. Care for the elderly and disabled	0.552	0.640	0.673	0.713	0.737	0.817	0.880
	(45.30)	(58.97)	(63.47)	(68.94)	(76.78)	(86.24)	(100.31)
9. Culture	0.512	0.614	0.637	0.674	0.645	0.662	0.801
	(6.41)	(7.82)	(8.72)	(9.40)	(8.74)	(9.20)	(12.37)
10. Municipal roads	0.652	0.706	0.700	0.743	0.809	0.936	0.948
	(16.19)	(19.75)	(20.10)	(23.22)	(23.90)	(24.30)	(32.29)
11. Water supply and sanitation	0.686	0.754	0.780	0.823	0.846	0.904	0.896
	(18.30)	(21.76)	(21.50)	(23.05)	(23.52)	(26.20)	(27.94)
12. Other infrastructure	0.735	0.791	0.895	0.753	0.887	0.804	0.832
	(10.19)	(10.52)	(10.80)	(9.58)	(10.81)	(9.02)	(10.31)

The 2008 time effects in all service sectors are normalised to 1.

Table 6.14 Time effects in the partial adjustment model (Model 9)

Service sector	2002	2003	2004	2005	2006	2007
Net operating result	0.648	0.870	0.761	1.092	1.166	0.702
	(9.21)	(7.09)	(7.91)	(9.57)	(11.17)	(7.68)
1. Administration	-0.009	0.687	0.380	0.413	0.558	0.784
	(0.33)	(23.51)	(14.03)	(14.97)	(15.27)	(28.48)
2. Primary schools	0.664	0.636	0.534	0.656	0.713	0.871
	(25.01)	(26.43)	(21.39)	(24.85)	(25.14)	(35.21)
3. Other education	0.878	0.535	0.600	0.629	0.519	0.872
	(16.31)	(12.63)	(12.74)	(16.57)	(11.58)	(17.31)
4. Child care	0.395	0.357	0.481	0.475	0.760	0.870
	(19.09)	(21.49)	(24.24)	(26.09)	(47.09)	(54.15)
5. Health care	0.572	0.482	0.433	0.498	0.634	0.799
	(19.52)	(17.98)	(15.14)	(17.40)	(18.81)	(26.14)
6. Social services	0.674	0.587	0.375	0.641	0.402	0.552
	(16.90)	(15.45)	(11.96)	(18.18)	(10.33)	(13.17)
7. Child protection	0.528	0.455	0.555	0.598	0.666	0.851
	(10.92)	(9.63)	(12.65)	(13.48)	(17.86)	(20.89)
8. Care for the elderly and disabled	0.613	0.432	0.528	0.524	0.707	0.812
	(28.00)	(20.92)	(22.34)	(24.39)	(30.95)	(38.06)
9. Culture	0.545	0.401	0.459	0.554	0.728	0.861
	(12.13)	(9.91)	(10.27)	(12.37)	(13.92)	(20.48)
10. Municipal roads	0.650	0.435	0.640	0.669	0.960	1.039
	(10.58)	(7.58)	(10.96)	(11.94)	(15.70)	(20.13)
11. Water supply and sanitation	0.571	0.451	0.546	0.561	0.712	0.693
	(12.19)	(10.61)	(11.07)	(11.29)	(14.14)	(16.05)
12. Other infrastructure	0.676	0.576	0.699	0.700	0.958	1.202
	(7.80)	(6.17)	(8.63)	(8.40)	(11.14)	(12.27)

The 2008 time effects in all service sectors are normalised to 1. Time effects in 2001 are 0 as this year is effectively removed from estimation since lagged expenditure and income are not defined in 2001.

Most of the time effects are increasing as expected from 2001 to 2008. When a decrease in the time effect is observed, it may occur in different years in models 2 and 8. The decreases in time effects that are common to both models are: a small decrease in 2002 in the administration sector and a decrease in the other education sector in 2006, implying that the effects on the minimum required expenditures are smaller in these years. The culture sector exhibits decreasing time effects in 2005 (Model 8) and in 2003 and 2006 (Model 2). The other infrastructure sector shows a small decrease in 2006. The partial adjustment model shows decreasing time effects in the primary schools sector for the years 2002 – 2004. The increase in the primary schools minimum required expenditures from 2005 onwards could be a result of education policies of the newly

elected central government, Stoltenberg II¹², which came into power in October 2005. The time effects are increasing in the child care sector and also increasing from 2006 in the care for the elderly and disabled sector. Other infrastructure and municipal roads sectors have higher time effects in 2007 than in 2008.

The estimated marginal effects on minimum required expenditures are mostly reasonable. However, time effects in Model 2 appear to indicate a decrease in minimum fiscal surplus for the years 2004 to 2005 and in 2007. Model 8 shows decreasing time effects from 2004 to 2006. These results are unexpected and warrant further investigation. One possibility is that interactive time effects are not a good description of the dynamics in this sector. Some dynamic adjustment may be present in the net operating result, meaning that there may be some residual effects from the year before on the current year's net operating result. If this is indeed the case, then the time effect for a specific year may be capturing some effects from the years before. The partial adjustment model (Model 9) shows that the speed of adjustment of the sector expenditures to their respective desired values is indeed relatively small (0.169), suggesting a fairly slow adjustment. However, another possible explanation for the decrease in minimum savings is a change in municipalities' expectations. As the Stoltenberg II government came into power in Norway in 2005, municipality incomes saw a substantial increase and it is reasonable to suppose that the municipalities expected further income increases in the future, leading to higher spending on service provision and lower savings 13. This is confirmed by the fact that growth in incomes has a positive and significant effect on the minimum savings in all models estimated; anticipating higher incomes in the future, municipalities can decrease their savings in the current period, knowing that they will be able to finance higher savings in the future.

The effect of income growth on equilibrium savings is 5.014 in the partial adjustment model, implying that a 1 kroner increase in real income will increase savings by 5.014 kroners in the long-run. However, the short-run effect, comparable to the static models, is 0.847 (5.014 multiplied by the adjustment coefficient 0.169). That is each year municipalities allocate 84.7% of additional income to savings, with the long-run equilibrium reached after approximately 6 years ¹⁴.

¹² Stoltenberg II, or Stoltenberg's Second Cabinet, is the current government of Norway appointed on 17 October 2005. It is a coalition between the Labour Party, the Socialist Left Party and the Centre Party. Stoltenberg I was the first cabinet of Jens Stoltenberg, which was in power from 2000 to 2001.

¹³ An increase of NOK 5.4 billion in non-earmarked funds provided to municipalities in 2006 was promised by Jens Stoltenberg during his inaugural address (19 October 2005).

¹⁴ The number of time periods it takes to reach equilibrium is given by the inverse of the speed of adjustment (1/0.169) since the adjustment is implicitly assumed to be uniform. Actual spending is assumed to approach the long-run equilibrium asymptotically, closing the gap by a fixed percentage (16.9%) each period.

Table 6.15 Sector 0 Net budget surplus: effects on minimum required expenditure

	3 1			1	1	
Model number	(1)	(2)	(6)	(7)	(8)	(9)
Model name	Baseline	Time	First	Regional	Time and	Partial
- INOUGH HAITIE	model	effects	difference	effects	regional effects	adjustment
Time effects	No	Yes	No	No	Yes	Yes
Municipality or region effects	No	No	No	Yes	Yes	No
Adjusted by income index	Yes	No	Yes	Yes	No	No
Constant	-0.977	-1.841	-	-11.839	-3.549	0.000
	-	-	-	-	(8.47)	-
Growth in municipality incomes	0.533	0.595	0.516	0.553	0.567	5.014
	(29.33)	(20.09)	(20.23)	(24.59)	(17.30)	(11.04)

In the administration sector, both the inverse population size and the index of farming industry have positive and significant effects on the minimum required expenditure. Minimum required expenditure on administration is higher for smaller municipalities, as they use a larger share of resources on administration, suggesting that economies of scale play a significant role in this sector. The minimum required expenditures are increasing over time as expected, with the exception of a decrease in 2002. Both the effect of the inverse population size and index of farming industry are higher in model 2 and 8 than in the baseline model, suggesting that the baseline model underestimates these effects due to unobserved time variation in the minimum required expenditure. However, when compared to the cross-sectional estimates¹⁵ for the year 2008, the baseline model estimates are lower. The cross-sectional estimates of the effect of inverse population size and index of farming industry are 4.43 and 4.88 respectively.

Table 6.16. Sector 1 Administration: effects on minimum required expenditure

				•		
Model number	(1)	(2)	(6)	(7)	(8)	(9)
Model name	Baseline model	Time effects	First difference	Regional effects	Time and regional effects	Partial adjustment
Time effects	No	Yes	No	No	Yes	Yes
Municipality or region effects	No	No	No	Yes	Yes	No
Adjusted by income index	Yes	No	Yes	Yes	No	No
Constant	2.058	1.968	-	-5.099	1.253	6.080
	(31.47)	(17.99)	-	(1.25)	(5.84)	(16.37)
Inverse population size	4.102	5.255	4.603	4.589	5.073	8.172
	(34.31)	(44.93)	(2.08)	(30.77)	(34.82)	(18.70)
Index of farming industry	3.634	4.997	-18.133	3.650	5.772	15.493
	(5.46)	(6.35)	(1.49)	(3.60)	(4.82)	(6.91)

Primary schools are compulsory for children 6-15 years of age. Population shares of children of the primary school-going age have a positive and significant effect on the minimum required expenditure on primary schools, implying that service provision increases as a function of the number of children in this age group. Children aged 6-12

51

¹⁵ The latest cross-sectional estimates are presented in Langørgen et al. (forthcoming). All comparisons between cross-sectional estimates and those of the panel data models are based on the base year 2008, unless otherwise stated.

years receive less services than children aged 13 - 15 years. This difference is due to the fact that the latter group faces more extensive and demanding lessons, which requires teachers with higher qualifications. Table 6.16 shows that the estimate of the effect of population share of 6 - 12 year old children is in fact lower than that of the 13 - 15 year olds. This difference is most pronounced in the model with both time and regional effects. Compared to the cross-sectional estimates, the baseline, time effects and time and regional effects models predict a smaller effect of the 6 - 12 year olds, but the effect of the 13 - 15 year old children is larger than the cross-sectional estimate.

An extra kilometer to the municipal subdistrict increases the minimum required expenditure due to the fact that municipalities that are further from the district centre are more likely to have more schools locally (a decentralised school structure with relatively few pupils per school and small class sizes) so that pupils are not forced to travel long distances to school. The increase is NOK 1346 in the baseline model, marginally higher at NOK 1365 in the time effects model and only NOK 991 in the time and region effect model. The relatively lower effect of distance to centre of municipal subdistrict in models 7 and 8 may suggest that region effects are correlated with the distance variable and therefore account for some of the distance effect. Again economies of scale are present in this sector since class sizes are in general smaller in smaller municipalities, implying more teachers per student and therefore higher costs. Minimum required expenditures are increasing from 2001 to 2008 as expected. The effects of the inverse population size are only marginally higher in models 1, 2 and 8 than in the cross-sectional estimation. However, the effect of the 13 - 15 year old children is higher in all three models than the cross-sectional estimates, suggesting that the panel data models are able to capture more variation between these two effects.

Table 6.17. Sector 2 Primary schools: effects on minimum required expenditure

Model number	(1)	(2)	(6)	(7)	(8)	(9)
Model name	Baseline model	Time effects	First difference	Regional effects	Time and regional effects	Partial adjustment
Time effects	No	Yes	No	No	Yes	Yes
Municipality or region effects	No	No	No	Yes	Yes	No
Adjusted by income index	Yes	No	Yes	Yes	No	No
Constant	0.348	-0.676	-	-5.777	-0.407	1.270
	(1.61)	(2.69)	-	(1.75)	(1.04)	(1.40)
Population 6-12 years of age	52.391	50.451	30.324	54.294	44.327	82.177
	(22.92)	(21.19)	(9.65)	(18.31)	(14.58)	(8.87)
Population 13-15 years of age	64.720	86.446	19.465	68.390	78.142	67.213
	(14.84)	(19.75)	(5.98)	(12.88)	(15.01)	(4.01)
Distance to centre of municipal sub-district	1.346	1.365	0.114	1.030	0.991	1.297
	(30.48)	(31.95)	(0.57)	(16.24)	(14.99)	(8.19)
Inverse population size	2.395	2.461	4.435	2.414	2.205	3.712
	(19.63)	(23.06)	(3.93)	(16.01)	(15.97)	(11.44)

The service sector other education includes day care facilities for schoolchildren, music schools, special schools and adult education. Except for adult education, the relevant group that benefits from other education is the age group 6 – 15 years. Adult education is particularly directed toward recently domiciled refugees in the age group 20 – 59 years. Recently domiciled refugees include refugees who have resided in Norway less than five years.

Table 6.18 shows that the minimum required expenditure for other education is positively and significantly affected by the number of full-time working women and refugees with integration grants. Both effects are increasing from 2001 to 2008. In the time effects model an extra full-time working woman in the municipality's population increases the minimum expenditure in the other education service sector by NOK 5680 in 2008. In the cross-sectional model this effect is significantly smaller: NOK 3570; and only slightly smaller in the time and regional effects model. The cross-sectional effect of the share of refugees is also smaller than in models 1, 2 and 7 (an additional refugee increases minimum required expenditure on other education by NOK 3237).

Table 6.18. Sector 3 Other education: effects on minimum required expenditure

Model number	(1)	(2)	(6)	(7)	(8)	(9)
Model name	Baseline model	Time effects	First difference	Regional effects	Time and regional effects	Partial adjustment
Time effects	No	Yes	No	No	Yes	Yes
Municipality or region effects	No	No	No	Yes	Yes	No
Adjusted by income index	Yes	No	Yes	Yes	No	No
Constant	0.478	0.445	-	-0.677	0.306	0.762
	(10.44)	(9.34)	-	(1.02)	(3.35)	(5.03)
Full-time working women 20-44 years	5.983	5.680	-0.889	5.213	5.276	7.261
	(9.14)	(8.67)	(0.75)	(5.22)	(5.37)	(3.22)
Refugees with integration grants	38.131	35.992	17.773	38.318	30.745	51.658
	(27.60)	(21.97)	(10.69)	(19.34)	(13.04)	(10.15)

In the child care sector the service provision increases in the population share of children in pre-school age (1 – 5 years) but only in the models where time effects are included. The time effects model predicts that an extra child of age 1 – 5 years will increase the child care minimum expenditure by NOK 57137 in 2008, while in 2001 the increase is a much smaller one of NOK 13541 (calculated by multiplying 57137 by the 2001 time effect found in Table 6.12). The effects are NOK 58154 in 2008 and NOK 10700 (calculated by multiplying 58154 by the 2001 time effect found in Table 6.13) in 2001 when both time and region effects are included. The cross-sectional estimate is a marginal increase of NOK 60310 in 2008 and NOK 13880 in 2001. Thus, there is a large increase from 2001 to 2008 in the minimum required expenditures in the child care sector. This is suggestive of an increased priority placed on the child care sector during these 8 years. Model 1, 6

and 7 have poor explanatory power for this sector as both predict a negative (albeit not significant in Model 1) marginal effect of the population share of small children. Although all three models account for income growth, and models 6 and 7 account for municipality effects, they fails to explain the time effects, which seem to be important for this sector. Full-time working young women have a positive significant effect on the minimum child care expenditure since they are likely to require more child care such as kindergarten places for their children.

Table 6.19. Sector 4 Child care: effects on minimum required expenditure

			•	•		
Model number	(1)	(2)	(6)	(7)	(8)	(9)
Model name	Baseline model	Time effects	First difference	Regional effects	Time and regional effects	Partial adjustment
Time effects	No	Yes	No	No	Yes	Yes
Municipality or region effects	No	No	No	Yes	Yes	No
Adjusted by income index	Yes	No	Yes	Yes	No	No
Constant	1.374	-1.331	-	-1.236	-1.914	-0.239
	(9.25)	(11.53)	-	(0.80)	(9.30)	(0.71)
Population 1-5 years of age	-2.750	57.137	-14.335	-7.621	58.154	94.687
	(1.17)	(31.03)	(4.58)	(2.43)	(20.91)	(13.64)
Full-time working women 20-44 years	25.818	29.149	20.317	28.678	28.197	26.022
	(19.12)	(24.41)	(11.62)	(13.74)	(14.23)	(6.16)

Diseconomies of scale are present in the health sector as both the effect of the distance to the centre of municipal sub-district and the inverse population size have positive effects on the minimum required expenditure; that is the more dispersed the municipality's settlement pattern and the smaller the population, the larger the minimum required expenditure on health care. A possible explanation is that patients in primary health care are entitled to have a physician within reasonable travelling distance, which increases the cost of providing health care in smaller municipalities. Similarly, to maintain a basic capacity of primary physicians in smaller municipalities the physician-patient ratio becomes relatively large, which increases the unit cost. The time effect as well as the time and regional effect models provide smaller estimates of economies of scale than does cross-sectional estimation, indicating that the latter may be capturing additional effects of unobserved time heterogeneity, which is accounted for in models 2 and 8 through time effects.

Table 6.20. Sector 5 Health care: effects on minimum required expenditure

Model number	(1)	(2)	(6)	(7)	(8)	(9)
Model name	Baseline model	Time effects	First difference	Regional effects	Time and regional effects	Partial adjustment
Time effects	No	Yes	No	No	Yes	Yes
Municipality or region effects	No	No	No	Yes	Yes	No
Adjusted by income index	Yes	No	Yes	Yes	No	No
Constant	1.076	1.023	-	-1.906	0.770	2.855
	(27.60)	(17.39)	-	(1.09)	(6.52)	(16.98)
Distance to centre of municipal sub-district	0.230	0.269	0.019	0.123	0.104	0.403
	(8.40)	(8.05)	(0.26)	(3.26)	(2.20)	(4.81)
Inverse population size	1.508	1.841	3.858	1.454	1.514	3.222
	(22.29)	(27.67)	(7.96)	(18.91)	(16.44)	(18.17)

A large share of spending in the social assistance sector is cash transfers to support families with insufficient means from other sources of income. The sector also includes inkind benefits that aim to prevent alcohol and drugs abuse and other social problems. The potential recipients are either poor, unemployed, refugees or divorced/separated, or possess different combinations of those characteristics.

The number of refugees both with and without integration grants have a significant and positive effect on minimum social assistance expenditure. As expected, a refugee who has lived in Norway for less than 5 years and for whom, therefore, the central government will pay an integration grant to the municipality, increases the minimum required expenditure by a larger amount (NOK 62154 in the time effect model and NOK 56033 in the time and region effect model) than a refugee without a grant (NOK 11038 and NOK 11129 respectively). This is a reasonable result since the refugees qualifying for an integration grant are likely to require more social assistance from the local government. This difference is even more pronounced in the cross-sectional estimates. Other target groups of social assistance, such as the divorced and separated, unemployed, poor and disablement pensioners all have significant positive effects on the minimum required expenditure in this sector, with the unemployed having a relatively larger effect, and the poor relatively smaller. In models 7 and 8, however, disablement pensioners have a relatively small effect, which is not statistically significant. Thus, when the regional variation is taken into account, the share of disablement pensioners appears to be less important for determining minimum required expenditure in social assistance.

Table 6.21. Sector 6 Social assistance: effects on minimum required expenditure

Model number	(1)	(2)	(6)	(7)	(8)	(9)
Model name	Baseline model	Time effects	First difference	Regional effects	Time and regional effects	Partial adjustment
Time effects	No	Yes	No	No	Yes	Yes
Municipality or region effects	No	No	No	Yes	Yes	No
Adjusted by income index	Yes	No	Yes	Yes	No	<u>No</u>
Constant	-0.325	-0.503	-	-1.181	-0.718	-0.606
	(5.23)	(7.28)	-	(2.68)	(4.84)	(2.43)
Refugees with integration grants	54.507	62.154	24.131	53.241	56.033	92.381
	(32.91)	(30.40)	(11.96)	(23.88)	(19.44)	(10.64)
Refugees without integration grants	10.791	11.038	65.349	12.870	11.129	9.494
	(8.04)	(7.63)	(2.22)	(7.63)	(6.49)	(1.66)
Divorced/ separated 16-59 years	10.567	11.955	1.227	13.048	13.486	22.284
	(11.66)	(11.91)	(0.59)	(8.49)	(8.09)	(5.86)
Unemployed 16-59 years	18.421	25.922	13.689	19.542	28.412	33.785
	(11.22)	(10.74)	(8.56)	(8.80)	(7.48)	(4.57)
Number of poor	7.037	8.192	3.220	5.210	5.985	7.715
	(6.78)	(7.18)	(3.99)	(3.96)	(4.03)	(1.78)
Disablement pensioners 18-49 years	10.968	13.303	-6.776	3.187	4.817	5.494
	(6.46)	(6.87)	(1.80)	(1.01)	(1.38)	(0.71)

The child protection sector includes investigation of alleged child abuse, orphan homes, foster care, adoption services, and services aimed at supporting at-risk families so they can remain intact. Children less than 16 years of age are the primary target group for child protection. As expected children with a single parent have a positive marginal effect on the minimum expenditure, as do the poor. The models with time effects estimate that both effects are increasing over time. In contrast and somewhat surprisingly, cross-sectional estimations show a decrease in the marginal effect of share of children with a single parent, from 2007 to 2008. The downward bias in the 2008 estimate may be a consequence of unobserved time heterogeneity, which is taken into account by including time effects in the panel data models. Similarly, the share of poor estimate is much lower in the region effects model (Model 7), albeit not significant. It is also relatively low in model 8, and significant, suggesting that regional variation is accounting for what was previously supposed to be the effect of the poor on minimum expenditure in this sector.

Table 6.22. Sector 7 Child protection: effects on minimum required expenditure

Model number	(1)	(2)	(6)	(7)	(8)	(9)
Model name	Baseline model	Time effects	First difference	Regional effects	Time and regional effects	Partial adjustment
Time effects	No	Yes	No	No	Yes	Yes
Municipality or region effects	No	No	No	Yes	Yes	No
Adjusted by income index	Yes	No	Yes	Yes	No	No
Constant	0.312	0.291	-	-0.133	0.476	0.935
	(7.75)	(6.23)	-	(0.34)	(4.90)	(5.97)
Children 0-15 years with single mother/ father	15.988	17.358	4.506	17.317	17.840	21.412
	(14.76)	(13.12)	(2.53)	(10.02)	(8.59)	(6.05)
Number of poor	5.472	7.053	-0.773	1.787	2.521	6.996
	(7.57)	(8.62)	(1.29)	(1.90)	(2.20)	(2.45)

Care for the elderly and disabled includes nursing homes, ambulant nurses and home care. Since elderly people have a higher probability of becoming recipients of long-term care, spending needs are higher for the elderly than for younger people. Subsistence output is increasing with age, and is highest for the elderly 90 years and above, with an additional person over the age of 90 increasing minimum expenditure by NOK 170567 in 2008 in the time and region effects model, while the increase for a marginal person of 67 – 79 years is significantly smaller (NOK 41659). However, the group of mentally disabled, which by and large is a subgroup of the age group 0 – 66 years, is included to account for the additional cost from being mentally disabled. The cost is higher for those mentally disabled persons with intergovernmental grants than without; with model 8 showing the greatest variation between the effects of mentally disabled with and without grants. High cost recipients have a very large effect in panel data and cross-sectional models. More dispersed municipalities and smaller municipalities face larger minimum required expenditure in this sector (diseconomies of scale are present). This effect, however, is smaller than in the cross-sectional model.

Table 6.23. Sector 8 Care for the elderly and disabled: effects on minimum required expenditure

Model number	(1)	(2)	(6)	(7)	(8)	(9)
Model name	Baseline model	Time effects	First difference	Regional effects	Time and regional effects	Partial adjustment
Time effects	No	Yes	No	No	Yes	Yes
Municipality or region effects Adjusted by income index	No Yes	No No	No Yes	Yes Yes	Yes No	No No
Constant	2.545	1.615	-	-9.911	0.302	7.059
Constant						
B 1.: 07.70	(12.85)	(5.55)	-	(1.51)	(0.68)	(6.98)
Population 67-79 years of age	32.120	43.453	30.424	38.273	41.659	74.510
	(10.78)	(12.64)	(5.35)	(9.31)	(8.77)	(7.75)
Population 80-89 years of age	65.407	69.540	23.296	62.307	67.917	55.329
	(13.39)	(12.98)	(2.73)	(9.55)	(9.22)	(3.48)
Population 90 years and above	182.429	179.428	75.810	179.381	170.567	236.207
	(13.18)	(12.23)	(5.15)	(9.42)	(7.74)	(5.27)
High-cost recipients	692.089	768.367	400.545	677.446	685.275	1293.278
	(13.52)	(15.85)	(7.81)	(10.27)	(10.50)	(8.37)
Mentally disabled 16 years and above without grant	196.699	219.148	15.133	166.918	163.363	339.278
	(10.96)	(12.01)	(0.67)	(6.59)	(5.89)	(5.66)
Mentally disabled 16 years and above with grant	547.640	618.183	-115.539	571.485	634.630	518.110
J	(18.15)	(17.94)	(0.32)	(12.13)	(11.74)	(4.82)
Distance to centre of municipal sub-district	0.429	0.542	0.295	0.277	0.245	1.400
•	(5.09)	(5.76)	(0.95)	(2.26)	(1.63)	(5.07)
Inverse population size	2.096	1.990	7.799	2.314	1.894	3.313
	(10.99)	(10.01)	(4.19)	(9.02)	(6.75)	(5.11)
	(::::3)	()	()	(/	(3 0)	(/

The culture sector includes sports, arts, museums, libraries, cinemas and churches. According to the time effects model the minimum required expenditures in this sector have been increasing over the years 2001 – 2002 and 2004 – 2005, decreasing in 2006 and increasing again in 2007. The relatively smaller effect in 2006 is also found in the cross-sectional estimation. However, when region effects are also included, a decrease in minimum required expenditure is observed from 2004 to 2006, with an increase in 2007. Both models therefore seem to indicate that the sector was prioritised starting in 2007. Evidence of economies of scale is also found in this sector, with an additional person decreasing the unit costs of providing cultural services.

Table 6.24. Sector 9 Culture: effects on minimum required expenditure

Model number	(1)	(2)	(6)	(7)	(8)	(9)
Model name	Baseline model	Time effects	First difference	Regional effects	Time and regional effects	Partial adjustment
Time effects	No	Yes	No	No	Yes	Yes
Municipality or region effects	No	No	No	Yes	Yes	No
Adjusted by income index	Yes	No	Yes	Yes	No	No
Constant	0.925	0.877	-	-3.649	0.115	2.917
	(27.98)	(16.63)	-	(1.47)	(0.81)	(17.97)
Inverse population size	0.383	0.473	-0.004	0.410	0.455	0.793
	(7.71)	(9.72)	(0.01)	(5.91)	(6.59)	(5.11)

The minimum expenditure on municipal roads is increasing with the amount of snowfall due to the costs linked to the snow clearing and road maintenance, and is also positively related to the length of municipal roads. All the models estimated, with the exception of the first-difference model, provide estimates that are similar in magnitude.

Table 6.25. Sector 10 Municipal roads: effects on minimum required expenditure

Model number	(1)	(2)	(6)	(7)	(8)	(9)
Model name	Baseline model	Time effects	First difference	Regional effects	Time and regional effects	Partial adjustment
Time effects	No	Yes	No	No	Yes	Yes
Municipality or region effects	No	No	No	Yes	Yes	No
Adjusted by income index	Yes	No	Yes	Yes	No	No
Constant	0.115	0.012	-	-1.145	-0.070	0.289
	(5.99)	(0.45)	-	(1.58)	(1.51)	(3.22)
Amount of snowfall	0.079	0.088	0.023	0.053	0.056	0.130
	(16.57)	(15.86)	(6.12)	(7.93)	(7.76)	(6.72)
Kilometers of municipal roads	21.130	24.238	-6.157	22.732	22.373	31.334
	(32.13)	(31.24)	(1.38)	(24.98)	(21.17)	(13.79)

The water supply and sanitation minimum required expenditure is positively affected by the capacity for advanced purification and is subject to diseconomies of scale (smaller municipalities have higher minimum expenditures in this sector). Advanced purification refers to purification using chemical or biological methods, or a combination of the two.

Both effects are lower in the time effects model than in cross-sectional estimations, and lower still in the model with both time and region effects. The minimum expenditures appear to be increasing over time.

Table 6.26. Sector 11 Water supply and sanitation: effects on minimum required expenditure

Model number	(1)	(2)	(6)	(7)	(8)	(9)
Model name	Baseline model	Time effects	First difference	Regional effects	Time and regional effects	Partial adjustment
Time effects	No	Yes	No	No	Yes	Yes
Municipality or region effects	No	No	No	Yes	Yes	No
Adjusted by income index	Yes	No	Yes	Yes	No	No
Constant	1.264	1.100	-	-0.642	1.098	2.452
	(28.88)	(20.83)	-	(0.53)	(9.40)	(11.77)
Capacity of advanced purification	0.580	0.642	0.039	0.243	0.241	0.870
	(16.58)	(15.99)	(0.62)	(3.62)	(3.64)	(6.91)
Inverse population size	0.191	0.248	1.124	0.193	0.012	0.769
	(2.29)	(3.11)	(1.16)	(1.90)	(0.11)	(3.40)

The other infrastructure sector includes residential and commercial infrastructure, land-use planning, environmental management and fire protection. Larger municipalities have smaller minimum expenditures in this sector as a significant positive effect of inverse population size indicates evidence of economies of scale. This effect is relatively larger in the models with time effects than the cross-sectional estimates. The first-difference model has a large downward bias predicting a significant negative effect of inverse population size.

Table 6.27. Sector 12 Other infrastructure: effects on minimum required expenditure

			-	,		
Model number	(1)	(2)	(6)	(7)	(8)	(9)
Model name	Baseline model	Time effects	First difference	Regional effects	Time and regional effects	Partial adjustment
Time effects	No	Yes	No	No	Yes	Yes
Municipality or region effects	No	No	No	Yes	Yes	No
Adjusted by income index	Yes	No	Yes	Yes	No	No
Constant	1.526	1.356	-	-7.264	-0.079	3.335
	(22.60)	(13.44)	-	(1.52)	(0.36)	(10.22)
Inverse population size	1.037	1.112	-2.824	1.155	1.077	1.441
	(8.31)	(9.45)	(2.06)	(7.36)	(6.83)	(5.32)

6.2.2. Effects on marginal budget shares

The marginal budget shares are posited to depend on three factors common to all sectors: average education level, share of socialist politicians in the municipal government, and the share of residents in the densely populated areas.

Average education is found to have a positive effect on the budget shares of other education, child care, social services, child protection, culture, other infrastructure and net operating result (saving). The effect is negative for primary schools. This is surprising as one expects municipalities with higher average education level to prioritise education. This is indeed the case for other education with a positive marginal budget share in this sector

in all model versions. The partial adjustment model gives the opposite prediction: the effect on the primary schools marginal budget share is positive, and negative for other education. Neither of these are significant, however. The effect is also negative for the administration sector, indicating that this sector is under-prioritised in municipalities with higher average level of education. These conclusions are consistent with those based on the cross-sectional estimation. This is expected as marginal budget shares are assumed to be constant over time; and the time effects on the marginal budget share parameters in Model 3 are found to be mostly insignificant with the exception of the child care service sector.

Table 6.28. Effects of the average education level on the marginal budget shares

Model number	(1)	(2)	(6)	(7)	(8)	(9)
Model name	Baseline model	Time effects	First difference	Regional effects	Time and regional effects	Partial adjustment
Time effects Municipality or region effects	No No	Yes No	No No	No Yes	Yes Yes	Yes No
Municipality or region effects Adjusted by income index	Yes	No	Yes	Yes	No	No
Administration	-0.048	-0.039	0.050	-0.005	-0.016	-0.000
	(14.64)	(13.31)	(2.38)	(1.99)	(5.67)	(0.03)
Primary schools	-0.032	-0.012	0.048	-0.008	-0.006	0.012
	(10.33)	(4.56)	(3.42)	(2.02)	(1.96)	(1.27)
Other education	0.010	0.012	0.004	0.002	0.011	-0.004
	(6.86)	(8.78)	(0.69)	(1.94)	(7.75)	(1.24)
Child care	0.047	0.011	-0.001	0.012	0.008	-0.011
	(13.67)	(6.03)	(0.12)	(2.09)	(5.22)	(2.03)
Health care	-0.009	-0.008	-0.001	-0.000	-0.004	0.005
	(4.65)	(4.52)	(0.20)	(0.63)	(2.36)	(0.93)
Social services	0.009	0.009	0.006	0.001	0.007	-0.003
	(5.17)	(6.32)	(0.81)	(1.67)	(4.99)	(0.77)
Child protection	0.003	0.002	-0.004	0.000	-0.000	0.004
	(2.44)	(1.48)	(0.70)	(0.13)	(0.29)	(0.94)
Care for the elderly and disabled	-0.032	-0.029	0.010	-0.002	-0.013	0.022
	(5.54)	(5.17)	(0.43)	(0.95)	(2.59)	(1.38)
Culture	0.008	0.009	0.017	-0.000	0.005	-0.007
	(5.18)	(6.29)	(2.42)	(0.63)	(4.04)	(1.46)
Municipal roads	-0.002	-0.001	-0.010	-0.000	0.000	-0.002
	(2.81)	(1.57)	(2.19)	(0.49)	(0.46)	(0.78)
Water supply and sanitation	-0.006	-0.000	-0.027	-0.001	-0.002	0.007
	(1.99)	(0.09)	(2.63)	(1.41)	(0.99)	(1.16)
Other infrastructure	0.025	0.024	0.055	-0.001	0.006	0.004
	(7.37)	(7.78)	(2.68)	(1.01)	(1.90)	(0.29)
Net operating surplus	0.025	0.024	-0.147	0.002	0.004	-0.026

In agreement with Borge (1995) we expect the socialist parties to prefer a larger local public sector, which would imply a lower share of income allocated to savings. This is indeed the case in models 1, 2 and 8 where the effect of the socialist share on the marginal budget share of net operating surplus is negative. The effect is also negative in the primary schools sector, child care, culture, municipal roads and water supply and sanitation. However the effects on primary schools and culture are not statistically significant at 5% significance level. The effect on health care is positive in the baseline and time effects models but becomes negative when region effects are introduced. The effect on the care for the elderly and disables is relatively large and significant in all models except model 9, implying that the socialist parties place a high priority on care for the elderly.

Table 6.29. Effects of the socialist share on the marginal budget shares

Model number	(1)	(2)	(6)	(7)	(8)	(9)
Model name	Baseline model	Time effects	First difference	Regional effects	Time and regional effects	Partial adjustment
Time effects Municipality or region effects	No No	Yes No	No No	No Yes	Yes Yes	Yes No
Adjusted by income index	Yes	No	Yes	Yes	No	No
Administration	0.007	0.004	-0.029	0.001	0.004	0.016
	(0.95)	(0.66)	(0.58)	(0.21)	(0.54)	(0.61)
Primary schools	-0.016	-0.006	0.042	-0.001	-0.011	0.004
	(2.05)	(0.97)	(1.41)	(0.49)	(1.64)	(0.17)
Other education	0.005	0.006	-0.002	0.002	0.005	0.012
	(1.49)	(2.24)	(0.16)	(1.39)	(1.77)	(1.33)
Child care	-0.021	-0.011	0.112	-0.007	-0.014	0.040
	(2.25)	(3.11)	(3.81)	(1.69)	(3.32)	(3.07)
Health care	0.003	0.002	0.004	-0.004	-0.017	-0.020
	(0.75)	(0.40)	(0.26)	(1.68)	(4.19)	(1.90)
Social services	0.022	0.018	0.039	-0.001	-0.001	-0.021
	(5.16)	(5.62)	(2.10)	(0.86)	(0.13)	(1.87)
Child protection	0.004	0.002	0.019	0.001	0.001	0.002
	(1.26)	(0.78)	(1.35)	(0.58)	(0.39)	(0.26)
Care for the elderly and disabled	0.029	0.012	0.197	0.007	0.025	-0.023
	(2.16)	(1.12)	(3.80)	(1.32)	(2.17)	(0.60)
Culture	-0.003	-0.003	0.041	-0.001	-0.001	-0.011
	(0.72)	(0.83)	(2.42)	(0.89)	(0.13)	(0.84)
Municipal roads	-0.008	-0.007	-0.019	0.001	0.000	-0.009
	(4.13)	(4.09)	(1.65)	(1.39)	(0.26)	(1.15)
Water supply and sanitation	-0.032	-0.024	-0.036	-0.005	-0.013	-0.009
	(4.46)	(4.31)	(1.47)	(1.65)	(2.13)	(0.58)
Other infrastructure	0.040	0.031	0.118	0.004	0.028	0.018
	(5.79)	(5.09)	(2.14)	(1.26)	(4.41)	(0.51)
Net operating surplus	-0.031	-0.025	-0.487	0.005	-0.008	0.000

Densely populated municipalities appear to prioritise other education, social services, child protection, culture, municipal roads and water supply and sanitation. However, administration, primary schools, child care, care for the elderly and disabled and other infrastructure receive a smaller priority in densely populated areas. Health care appears to be prioritised in densely populated areas when only time heterogeneity is assumed. However, in the presence of regional differences, health care is seen to be underprioritised in densely populated areas.

Table 6.30. Effects of the share of residents in densely populated areas on the marginal budget shares

Model number	(1)	(2)	(6)	(7)	(8)	(9)
Model name	Baseline model	Time effects	First difference	Regional effects	Time and regional effects	Partial adjustment
Time effects Municipality or region effects Adjusted by income index	No No Yes	Yes No No	No No Yes	No Yes Yes	Yes Yes No	Yes No No
Administration	-0.013	-0.007	-0.008	-0.001	-0.001	-0.042
	(2.39)	(1.59)	(0.26)	(0.31)	(0.27)	(2.17)
Primary schools	-0.002	-0.007	-0.032	-0.002	-0.028	-0.008
	(0.39)	(1.78)	(1.67)	(0.82)	(5.44)	(0.52)
Other education	0.008	0.005	-0.013	0.002	0.001	-0.002
	(2.95)	(2.53)	(1.33)	(1.70)	(0.59)	(0.32)
Child care	-0.013	-0.008	-0.032	-0.009	-0.001	-0.023
	(2.12)	(3.41)	(1.56)	(1.95)	(0.19)	(2.67)
Health care	0.005	0.003	-0.007	-0.002	-0.007	-0.022
	(1.59)	(1.06)	(0.76)	(1.54)	(2.05)	(3.13)
Social services	0.010	0.005	-0.025	0.002	0.006	0.013
	(3.48)	(2.17)	(2.30)	(1.49)	(2.04)	(1.91)
Child protection	0.016	0.014	-0.009	0.003	0.009	0.004
	(7.77)	(7.89)	(1.00)	(1.89)	(4.24)	(0.63)
Care for the elderly and disabled	-0.003	-0.001	-0.187	0.002	-0.006	-0.126
	(0.30)	(0.16)	(5.42)	(0.71)	(0.73)	(4.66)
Culture	0.024	0.017	-0.054	0.005	0.013	-0.005
	(8.13)	(7.22)	(5.57)	(1.99)	(4.80)	(0.70)
Municipal roads	0.012	0.011	-0.004	0.002	0.005	-0.010
	(9.19)	(9.57)	(0.50)	(1.93)	(3.51)	(2.06)
Water supply and sanitation	0.035	0.026	0.009	0.007	0.013	-0.001
	(7.03)	(6.59)	(0.60)	(1.97)	(3.00)	(0.10)
Other infrastructure	-0.060	-0.049	-0.074	-0.002	-0.011	0.006
	(11.47)	(10.98)	(2.50)	(0.96)	(2.23)	(0.26)
Net operating surplus	-0.018	-0.008	0.435	-0.008	0.007	0.218

It may also be of interest to examine the changes over time in the average minimum required expenditures and average marginal budget shares. The average marginal budget shares are calculated using the parameter estimates from Tables 6.28 – 6.30 and the intercept parameters not reported here, such that $\overline{\beta}_{ii}$ is the average marginal budget share in sector i and year t given by:

(6.1)
$$\overline{\beta}_{it} = \frac{1}{K_t} \sum_{k=1}^{K_t} \left(\beta_{i0} + \sum_{j=1}^{3} \beta_{ij} v_{jkt} \right)$$

where v_{1kt} is average education in municipality k in year t, v_{2kt} is the socialists share in municipality k in year t and v_{3kt} is the share of residents in densely populated areas in municipality k in year t. K_t is the number of municipalities in the sample for year t.

Table 6.31 summarises the average budget shares based on the time effects Model 2 estimation. Although the budget shares are relatively stable over time, the administration, primary schools, health care and care for the elderly and disabled sectors show a slight decrease in their respective budget shares over time. However, other education, social assistance, culture and other infrastructure appear to have received a higher priority in the later years. Child protection, municipal roads and water supply and sanitation have very stable budget shares with no or slight change over time. Model 8 gives similar conclusions but with even smaller variation in the average budget shares over time. The other infrastructure average marginal budget share is almost constant over time in Model 8.

Table 6.31. Model 2: average marginal budget shares by year and service sector

Sector	2001	2002	2003	2004	2005	2006	2007	2008
Net operating surplus	0.145	0.146	0.148	0.149	0.150	0.152	0.153	0.157
Administration	0.142	0.140	0.138	0.135	0.132	0.130	0.127	0.123
Primary schools	0.110	0.109	0.109	0.108	0.107	0.106	0.105	0.104
Other education	0.013	0.014	0.014	0.015	0.016	0.017	0.018	0.019
Child care	0.050	0.051	0.052	0.052	0.053	0.054	0.054	0.056
Health care	0.066	0.065	0.065	0.064	0.064	0.063	0.063	0.062
Social assistance	0.008	0.009	0.010	0.011	0.011	0.012	0.012	0.013
Child protection	0.012	0.012	0.012	0.012	0.012	0.013	0.013	0.013
Care for the elderly and disabled	0.200	0.198	0.196	0.195	0.193	0.191	0.189	0.186
Culture	0.071	0.072	0.073	0.073	0.074	0.074	0.075	0.076
Municipal roads	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023
Water supply and sanitation	0.043	0.043	0.043	0.043	0.043	0.043	0.043	0.044
Other infrastructure	0.116	0.117	0.118	0.120	0.122	0.123	0.125	0.126
Number of observations	332	331	331	331	331	330	330	330
Sum	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

Table 6.32. Model 8: average marginal budget shares by year and service sector

Sector	2001	2002	2003	2004	2005	2006	2007	2008
Net operating surplus	0.207	0.207	0.208	0.208	0.208	0.209	0.209	0.210
Administration	0.112	0.111	0.110	0.109	0.108	0.107	0.106	0.104
Primary schools	0.087	0.086	0.086	0.085	0.085	0.085	0.084	0.084
Other education	0.013	0.014	0.015	0.016	0.016	0.017	0.018	0.019
Child care	0.057	0.057	0.058	0.058	0.059	0.059	0.060	0.061
Health care	0.052	0.052	0.052	0.051	0.051	0.050	0.050	0.050
Social assistance	0.010	0.010	0.011	0.011	0.012	0.012	0.013	0.013
Child protection	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.011
Care for the elderly and disabled	0.192	0.191	0.190	0.190	0.189	0.188	0.187	0.185
Culture	0.071	0.072	0.072	0.072	0.073	0.073	0.073	0.074
Municipal roads	0.021	0.021	0.021	0.021	0.022	0.022	0.022	0.022
Water supply and sanitation	0.037	0.037	0.037	0.036	0.036	0.036	0.036	0.036
Other infrastructure	0.130	0.130	0.131	0.131	0.132	0.132	0.132	0.132
Number of observations	332	331	331	331	331	330	330	330
Sum	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

The average minimum required expenditures are calculated using the parameter estimates from Tables 6.12 – 6.27 such that in Model 8 $\bar{\alpha}_{iRt}$ is the average minimum required expenditure in sector i, region R and year t given by:

(6.2)
$$\bar{\alpha}_{iRt} = \frac{1}{K_{Rt}} \sum_{k=1}^{K_{Rt}} \left(\alpha_{i0} + \sum_{i=1}^{r} \alpha_{ij} z_{jkt} + \rho_{iR} \right) \tau_{it} \quad \rho_{i12} = 0$$

and in Model 2 the average minimum required expenditure for sector i and year t is

(6.3)
$$\overline{\alpha}_{it} = \frac{1}{K_t} \sum_{k=1}^{K_t} \left(\alpha_{i0} + \sum_{j=1}^{r} \alpha_{ij} z_{jkt} \right) \tau_{it}$$

where z_{jkt} (j=1,...,r) are the variables assumed to affect the minimum required expenditures in a particular service sector for municipality k in year t, ρ_{iR} is the marginal effect of region R compared to region 12 on the minimum required expenditure in sector i, K_{Rt} is the number of municipalities in region R in year t, K_t is the number of municipalities in the sample for year t, and τ_{it} is the year t time effect on the minimum required expenditure in sector i.

In order to see the changes in the minimum required expenditures in all regions, the average minimum required expenditure $\hat{\bar{\alpha}}_{it}$ is calculated over all municipalities:

(6.4)
$$\widehat{\overline{\alpha}}_{it} = \frac{1}{K_t} \sum_{k=1}^{K_t} \left(\alpha_{i0} + \sum_{j=1}^r \alpha_{ij} z_{jkt} + \rho_{iR} \right) \tau_{it} \quad \rho_{i12} = 0$$

where K_t is the total number of municipalities in year t.

However, these values are not meaningful as minimum required expenditures exhibit significant regional differences. The average minimum required expenditure on other infrastructure is negative for all the years as a result of the fact that minimum required expenditures in some regions are higher and some lower than the expenditures in the Oslo region. Since the average minimum required expenditure on other infrastructure is fairly low in the Oslo region, regions that have even lower minimum spending are predicted to have negative spending. However, it is the relative and not absolute magnitudes of minimum required expenditures between regions that are of interest.

The average minimum required expenditures are increasing over time as a result of the significant time effects as well as increasing income, with child care and care for the elderly and disabled showing particularly high increases. The average minimum required expenditure in the culture service sector has increased significantly from 2001 to 2008, as well as from 2007 to 2008 showing an increased priority placed on culture.

Table 6.33. Model 2: average minimum required expenditures by year and service sector

Sector	2001	2002	2003	2004	2005	2006	2007	2008
Net operating surplus	-1.254	-1.573	-1.572	-0.898	-0.642	-0.166	-0.997	-1.442
Administration	1.876	1.379	1.944	2.204	2.231	2.095	2.742	3.766
Primary schools	5.948	6.487	6.969	7.221	7.519	7.756	8.417	9.362
Other education	0.676	0.782	0.795	0.826	0.839	0.803	0.867	0.992
Child care	1.016	1.306	1.480	1.835	2.051	2.554	3.139	3.976
Health care	0.718	0.888	0.968	1.087	1.116	1.048	1.308	1.731
Social assistance	0.887	0.987	1.084	1.067	1.143	1.106	1.098	1.243
Child protection	0.567	0.628	0.660	0.732	0.783	0.835	0.950	1.102
Care for the elderly and disabled	6.743	7.840	8.123	8.905	9.270	9.917	11.287	13.447
Culture	0.408	0.501	0.466	0.582	0.590	0.439	0.665	1.010
Municipal roads	0.317	0.354	0.328	0.391	0.394	0.409	0.497	0.606
Water supply and sanitation	0.913	1.006	1.011	1.126	1.143	1.127	1.227	1.501
Other infrastructure	0.829	0.929	0.878	1.077	1.047	0.829	1.240	1.667
Number of observations	332	331	331	331	331	330	330	330

Table 6.34. Model 8 Average minimum required expenditures by year and service sector for the Oslo region

Sector	2001	2002	2003	2004	2005	2006	2007	2008
Net operating surplus	-2.136	-2.355	-2.222	-1.997	-1.787	-1.196	-2.181	-2.848
Administration	1.275	0.888	1.281	1.313	1.332	1.393	1.606	1.974
Primary schools	5.202	5.644	6.131	6.262	6.570	6.936	7.274	7.737
Other education	0.658	0.766	0.790	0.804	0.818	0.816	0.847	0.894
Child care	0.808	1.124	1.369	1.723	2.010	2.758	3.382	4.174
Health care	0.495	0.598	0.672	0.686	0.714	0.754	0.839	0.981
Social assistance	0.775	0.896	1.003	0.997	1.080	1.110	1.070	1.152
Child protection	0.635	0.701	0.737	0.806	0.873	0.960	1.053	1.184
Care for the elderly and disabled	4.605	5.357	5.589	5.960	6.206	6.863	7.476	8.649
Culture	0.087	0.104	0.108	0.114	0.109	0.111	0.134	0.167
Municipal roads	0.114	0.141	0.113	0.136	0.103	0.163	0.159	0.201
Water supply and sanitation	0.916	1.002	1.025	1.091	1.124	1.211	1.200	1.339
Other infrastructure	0.037	0.039	0.043	0.036	0.042	0.037	0.038	0.044
Number of observations	48	48	48	48	48	48	48	48

Table 6.35. Model 8 Average minimum required expenditures by year and service sector

Sector	2001	2002	2003	2004	2005	2006	2007	2008
Net operating surplus	-3.260	-3.748	-3.648	-3.328	-2.869	-2.095	-3.536	-4.868
Administration	1.656	1.161	1.685	1.741	1.780	1.863	2.165	2.677
Primary schools	5.785	6.258	6.767	6.856	7.161	7.585	7.984	8.534
Other education	0.592	0.689	0.702	0.707	0.715	0.699	0.717	0.765
Child care	0.641	0.891	1.074	1.346	1.560	2.126	2.547	3.162
Health care	0.617	0.746	0.841	0.861	0.898	0.951	1.060	1.242
Social assistance	0.821	0.913	1.013	0.981	1.053	1.031	0.988	1.078
Child protection	0.511	0.564	0.602	0.660	0.720	0.795	0.872	0.979
Care for the elderly and disabled	5.833	6.769	7.111	7.581	7.926	8.847	9.690	11.148
Culture	0.039	0.046	0.048	0.051	0.050	0.054	0.066	0.082
Municipal roads	0.215	0.234	0.224	0.252	0.256	0.289	0.325	0.352
Water supply and sanitation	0.776	0.852	0.880	0.932	0.960	1.019	1.013	1.132
Other infrastructure	-0.046	-0.048	-0.053	-0.043	-0.049	-0.041	-0.041	-0.049
Number of observations	332	331	331	331	331	330	330	330

Comparing the baseline model (1) with the preferred panel data models (time effects and time and region effects models 2, 7, 8), some key differences are observed. In the administration sector, the effects on the minimum required expenditure are much lower in the baseline model than in the time effects and time and region effects models, implying that not including time and/or regional effects in the model specification produces estimates that are biased downwards in this sector. In the primary schools sector the baseline model predicts a higher effect of the 6 – 12 year old children than models with time effects, but underestimates the effect of 13 – 15 year olds. Furthermore, the effect of the distance to the district centre is much lower in the model with both time and region effects both in this sector and in health care, suggesting that the economies of scale are captured by region effects when regional heterogeneity is accounted for. Similarly, the effect of refugees on the minimum spending on other education is lower in the model with time and region effects and highest in the baseline model. This suggests that introducing

time effects into the model removes some of the upward bias on the estimates, and the same is true to an even greater degree for the regional effects. The most significant difference between the models is observed in the child care sector. The effect of small children is negative and not significant in the baseline model, which is in conflict with theoretical expectations. This effect is largest in the model with time and regional effects, with the time effects model predicting a slightly lower estimate. In fact the effect is only positive in the models where time effects are included, suggesting that omitting time effects produces biased results, particularly apparent in the child care sector. This is not surprising as we indeed expect the minimum required expenditure on child care to be increasing over the years, not only due to income growth but also due to policy measures that affect all municipalities.

In the social assistance sector the marginal effect of refugees with and without integration grants is lower in the baseline model. The baseline model also underestimates the effect of the unemployed and the divorced and separated on the social assistance minimum spending and the effect of children with a single parent on the minimum child protection spending. However, the effect of the poor is overestimated by the baseline model both in the social assistance and the child protection sectors. The effect of the disablement pensioners is small and not significant in the time and region effects model, but higher and significant when region effects are not included.

The baseline model underestimates the effect of the 67 - 79 year olds on minimum care for the elderly and disabled spending, and overestimates the effect of the share of people of age 90 years and above. Thus the difference between the effects of these two age groups is inflated in the baseline model. The economies of scale effect in culture and effect of road length in the municipal roads sector are also lower in the baseline model. The effects of snowfall in the municipal roads sector, and purification capacity and inverse population size in the water supply and sanitation sector are lowest in the model with both time and region effects and highest in the model with only time effects.

The effects of average education, the composition of the local council and the population density are generally lower in the model with time and region effects than in the baseline model. The share of socialists has a negative effect on the health care and social services marginal budget shares in the time and region effects model. The effect is however not significant in the social services sector. The health care marginal budget shares are also negative in densely populated areas according to the models with region and both time and region effects. A particularly surprising result is that the marginal budget share of primary schools spending is relatively large and negative in the time and region effect model for municipalities with higher average education. The result is surprising since one expects that primary education is prioritised by municipalities where the level of average

education is higher. The model with time and region effects also shows a higher savings (net operating result) in densely populated areas, while the effect is opposite in the other models.

Finally, the partial adjustment model yields some interesting results. However, these are not directly comparable to the estimates in other models as this model estimates the effects on the desired or equilibrium minimum required expenditures and marginal budget shares. The effects on the equilibrium minimum spending are generally higher in the partial adjustment model than in the baseline, time and fixed effects models. This is in line with the underlying assumptions of the partial adjustment model, where the short-term effects are lower than the long-term effects. Only a fraction of the optimal spending is achieved in each period as spending is relatively slow to adjust to its optimal level due to adjustment sluggishness (speed of adjustment is 0.169).

One can, however, calculate the estimated effects on the actual expenditure from the long-run values and the partial adjustment coefficient. The partial adjustment model may be written as:

(6.5)
$$u_{it} = \lambda \alpha_{it} + \lambda \beta_i \left(y_t - \sum_{i=0}^{12} \alpha_{it} \right) + \left(1 - \lambda \right) \frac{y_t}{y_{t-1}} u_{it-1} + \lambda \varepsilon_{it}$$

which is directly comparable to Model 2 with $\lambda = 1$.

Hence multiplying the coefficients in Tables 6.15 - 6.30 by 0.169 yields short-run effects comparable to the other models where adjustment is by definition instantaneous.

7. Conclusion

The primary focus of this paper is estimating a Linear Expenditure System model in a dynamic context. Although panel data methods such as fixed effects and random effects are well-documented in the literature, it is less so for their application to a system of equations estimated in structural form. This paper proposes specifying each equation in the system to include fixed effects, time effects and/or a combination of the two. These models are then estimated by the maximum likelihood method. The model with both time and fixed effects performs well in explaining the behaviour of local governments over the years analysed. The fact that this model produces markedly different results from the benchmark model with no time or fixed effects suggests that local government spending is subject to both time and economic region unobserved heterogeneity beyond that due to average income growth. This finding has important implications for policy conclusions with respect to the effect of different service target groups and technology factors on the service sector minimum required expenditures. The pitfalls of relying on the benchmark's model's estimates are particularly evident in the child care service sector, where the benchmark model predicts a theoretically unjustifiable negative effect of the share of small children on the minimum child care spending. The models with time effects, however predict the expected positive and significant effect. In the model where both time and region effects are included, an additional child increases minimum spending by NOK 10700 in 2001 and NOK 58154 in 2008. The estimates are particularly sensitive to the inclusion of time effects, suggesting that time heterogeneity is large, while municipality heterogeneity is significant but relatively smaller.

The average minimum required expenditures are increasing over time as a result of the significant time effects as well as increasing income, with child care and care for the elderly and disabled showing particularly high increases. This is consistent with the observed increase in average spending in these sectors. The average minimum required expenditure in the culture service sector has also increased significantly from 2001 to 2008, as well as from 2007 to 2008 showing an increased priority placed on culture. In the care for the elderly and disabled sector, subsistence output is increasing with age and the sector is prioritised by local councils with the larger share of socialists. However, the share of socialists has a negative effect on the share of the budget allocated to health care in the time and region effects model. The health care marginal budget shares are also negative in densely populated areas according to the models with region and both time and region effects. A particularly surprising result is that the marginal budget share of primary schools spending is relatively large and negative in the time and region effect model for municipalities with higher average education level. The result is surprising since one expects that primary education is prioritised by municipalities with higher average education.

In addition to the fixed and time effects models, a dynamic partial adjustment model is estimated, relaxing the assumption that municipality expenditures adjust instantaneously from one year to the next. In contrast to the other models, the partial adjustment model shows a positive, instead of negative, effect of average education on the marginal budget share in the primary schools sector. Thus, in equilibrium, the sign of this effect conforms to theoretical expectations. The model also shows a relatively slow speed of adjustment of municipality spending to its optimal level and relatively higher effects on the optimal minimum spending and marginal budget shares. Although this model yields some important insights into the dynamics of local governments' spending behaviour, it has low explanatory power and can be developed further. First, it is possible to estimate the model assuming that the speed of adjustment varies across service sectors. It is also possible to specify the speed of adjustment parameter as a function of explanatory variables, for example municipality size, given by the inverse population size variable. Second, the assumption on the minimum savings specification should be examined further, and a positive long-term growth trend in the real income (α_{00} < 0) considered as an alternative to the current zero long-term growth assumption. Third, the partial adjustment model may be extended to include municipality or region fixed effects in the optimal expenditure specification. Finally, as an alternative to fixed effects estimation, a random coefficient model may also be considered in future work, where the minimum required expenditure parameters can be assumed to be random draws from a Normal distribution. However, this assumption requires careful consideration as it is difficult to specify the correct distribution from which the random parameters originate.

Based on the results discussed in this paper, panel data methods are found to be very well suited to the analysis of local government behaviour in Norway over time, as unobserved time and municipality heterogeneity play an important role in the changes in spending patterns. Moreover, the observed sluggishness of adjustment over time suggests that a combination of fixed and/ time effects with a dynamic partial adjustment is a promising specification, which should be developed in future work on the subject.

8. Bibliography

Aaberge, R., Bhuller, M., Langørgen, A. and M. Mogstad (2010): "The Distributional Impact of Public Services When Needs Differ", IZA Discussion Paper 4826, Institute for the Study of Labor (IZA), http://ftp.iza.org/dp4826.pdf, accessed 12 April 2010.

Aaberge, R. and A. Langørgen (2003): "Fiscal and spending behaviour of local governments: Identification of price effects when prices are not observed", *Public Choice*, Vol. 117, 125 – 161.

Aaberge, R. and A. Langørgen (2006): "Measuring the Benefits from Public Services: The Effects of Local Government Spending on the Distribution of Income in Norway", *The Review of Income and Wealth*, Vol. 52, No. 1, 61 – 83.

Ahangarani, P. M. (1999): "Demand system estimation with panel data", www-scf.usc.edu/~mashayek/paper/AIDSpaper.pdf, accessed 2 April 2010.

Allers, M. (2007): "Deriving spending needs from local government budget data: an alternative approach", Paper to be presented at the IIPF Congress in Warwick, https://editorialexpress.com/cgi-bin/conference/download.cgi?db_name=IIPF63&paper_id=55, accessed 20 November 2009.

Allers, M. A. and J. P. Elhorst (2007): "Independent Behaviour of Local Governments: Dutch Evidence Using a Linear Expenditure System", Paper prepared for presentation at the Spatial Econometrics Conference in Cambridge 11-14th July and the 47th Congress of the European Regional Science Association in Paris, August 29th to September 2rd 2007, https://editorialexpress.com/cgi-bin/conference/download.cgi? db_name=IIPF63&paper_id=54, accessed 20 February 2010.

Arellano, M. (2003): Panel Data Econometrics. Oxford University Press, Oxford.

Arellano, M. and B. Honoré (2000): "Panel Data Models: Some Recent Developments", Working paper 0016, ftp://ftp.cemfi.es/wp/00/0016.pdf, accessed 2 March 2010.

Bai, J. (2006): "Panel Data Models with Interactive Fixed Effects", www.atl-res.com/macro/papers/Bai%20paper.pdf, accessed 20 February 2010.

Balestra, P. and S. Negassi (1992): "A Random Coefficient Simultaneous Equation System with an Application to Direct Foreign Investment by French Firms", *Empirical Economics*, Vol. 17, 205 – 220.

Baltagi, B. H. (2005): *Econometric Analysis of Panel Data, 3rd ed.* John Wiley & Sons Ltd., Chichester.

Beck, N. (2004): "Longitudinal (Panel and Time Series Cross-Section Data", Note, http://weber.ucsd.edu/~tkousser/Beck%20Notes/longitude20041short.pdf, accessed 30 March 2010.

Beck, N. (2006): "Time-Series-Cross-Section Methods", Draft of June 5, 2006, http://as.nyu.edu/docs/IO/2576/beck.pdf, accessed 30 March 2010.

Biørn, E. (1999): "Estimating Regression Systems from Unbalanced Panel Data: A Stepwise Maximum Likelihood Procedure", Department of Economics, University of Oslo, Memorandum No. 20.

Bhuller, M. (2009): "Inndeling av Norge i arbeidsmarkedregioner", Statistisk sentralbyrå, Notat 2009/24, http://www.ssb.no/emner/00/00/20/notat_200924/notat_200924.pdf, accessed 9 April 2010.

Borge, L-E., Rattsø, J. and R. Sørensen (1995): "Local government service production: The politics of allocative sluggishness", *Public Choice*, Vol. 82, 135 – 157.

Borge, L-E. (1995): "Economic and political determinants of fee income in Norwegian local governments", *Public Choice*, Vol. 83, 353 – 373.

Chamberlain, G. (1980): "Analysis of Covariance with Qualitative Data," *Review of Economic Studies*, Vol. 47, NO.1, 225-238.

Elhorst, J. P. (2003): "Specification and Estimation of Spacial Panel Data Models", *International Regional Science Review*, Vol, 26, No. 3, 244 – 268.

Greene, W. (2001): "Estimating Econometric Models with Fixed Effects", New York University, Leonard N. Stern School Finance Department Working Paper Series 01-10, New York University, Leonard N. Stern School of Business.

Greene, W. H. (2003): Econometric Analysis, 5th ed. Prentice Hall, New Jersey.

Gujarati, D.N. (2003): Basic Econometrics, 4th ed. McGraw-Hill, New York.

Hausman, J. A. and W. E. Taylor (1981): "Panel data and unobservable individual effects", *Econometrica*, Vol. 49, No. 6, 1377 – 1398.

Honoré, B. E. (2002): "Nonlinear Models with Panel Data", *Portuguese Economic Journal*, Vol. 1, No. 2, 163 – 179.

Hsiao, C: (1975): "Some estimation methods for a Random Coefficient Model", *Econometrica*, Vol. 43, No. 2, 305 – 325.

Hsiao, C. (1985): "Benefits and limitations of panel data", *Econometric Reviews*, Vol. 4, No. 1, 121 – 174.

Hsiao, C. (2003): *Analysis of Panel Data, 2nd ed.* Cambridge University Press, Cambridge.

Hsiao, C. and M. H. Pesaran (2004): "Random Coefficient Panel Data Models", CESifo working paper 1233, http://www.cesifo-group.de/DocCIDL/cesifo1_wp1233.pdf, accessed 9 April 2010.

Hübler, O. (2006): "Multilevel and nonlinear models", *Allgemeines Statistisches Archiv*, Vol. 90, 121 – 136.

Langørgen, A., Galloway, T. A., Mogstad, M. and R. Aaberge (2005): "Sammenlikning av simultane og partielle analyser av kommunenes økonomiske atferd", Rapporter 2005/25, Statistisk sentralbyrå.

Langørgen, A., Pedersen, S. and R. Aaberge (forthcoming): "Stabilitet og endring i kommunenes økonomiske atferd 2001-2008", Statistisk sentralbyrå.

McCloskey, D. N. and S. T. Ziliak (1996): "The Standard Error of Regressions", *Journal of Economic Literature*, Vol. XXXIV, 97 – 114.

Ministry of Local Government and Regional Development (2009): "Rapport fra Det tekniske beregningsutvalg for kommunal og fylkeskommunal økonomi", http://www.regjeringen.no/nb/dep/krd/dep/443466/Teknisk-beregningsutvalg-for-kommunal-og.html, accessed 3 November 2009.

Neyman, J. and E. L. Scott (1948): "Consistent estimates based on partially consistent observations", *Econometrica*, Vol. 16, No. 1, 1 – 32.

Norges offentlige utredninger NOU (2005/18): "Fordeling, forenkling, forbedring - Inntektssytemet for kommuner og fylkeskommuner", http://www.regjeringen.no/Rpub/NOU/20052005/018/PDFS/NOU200520050018000DDDPDFS.pdf, accessed 4 January 2010.

Pedersen, S. (2008): "Kommunenes økonomiske atferd 2001 - 2007", Notater 2008/60, Statistisk sentralbyrå.

Pinheiro, J. C. and D. M. Bates (2000): *Mixed Effects Models in S and S-Plus*, Springer, New York.

Polacheck, S. W. and M-K. Kim (1994): "Panel estimates of the gender earnings gap: individual-specific intercept and individual-specific slope models", *Journal of Econometrics*, Vol. 61, 23 – 42.

Pollak, R. A. and T. J. Wales (1981): "Demographic Variables in Demand Analysis", *Econometrica*, Vol. 49, No. 6, 1533 – 1551.

Rongen, G. (1995): "Efficiency in the provision of local public goods in Norway", *European Journal of Political Economy*, Vol. 11, 253 – 264.

Statistics Norway (2009a): "Culture Statistics 2007", http://www.ssb.no/english/subject/07/nos_cultural/nos_d410_en/nos_d410_en.pdf, accessed 4 January 2010.

Statistics Norway (2009b): "Kulturstatistikk 2008", http://www.regjeringen.no/upload/KKD/Kultur/Rapporter%20og%20utredninger/Kulturstatistikk2008-nos_d429.pdf, accessed 2 April 2010.

Stoltenberg, J. (2005): "The Stoltenberg II Government's inaugural address to the Storting", http://www.regjeringen.no/nb/dep/smk/aktuelt/taler_og_artikler/statsministeren/statsminister_jens_stoltenberg/2005/the-stoltenberg-ii-governments-inaugural.html? id=420704, accessed 20 April 2010.

Terzi, S. (1992): "Simultaneous Equations with Random Coefficients: Estimating the Structural Form", *Statistical Methods and Applications*, Vol. 1, No. 2, 275 – 286.

Wooldridge, J. M. (2002a): *Econometric analysis of cross section and panel data*. The MIT Press: Cambridge, Massachusetts.

Wooldridge, J. M. (2002b): *Introductory Econometrics: A Modern Approach, 2nd ed.* South-Western, div. of Thomson Learning.

9. Appendices

Appendix A Outlier municipalities and income index derivation

Table A.1. Municipalities that are outliers in 1 year or more

No.	Name	no. yrs out	2001	2002	2003	2004	2005	2006	2007	2008
0104	Moss	3				1	1		1	
0105	Sarpsborg	1		1						
0111	Hvaler	3				1	1		1	
0121	Rømskog	3				1		1	1	
0301	Oslo	8	1	1	1	1	1	1	1	1
0402	Kongsvinger	1								1
0434	Engerdal	8	1	1	1	1	1	1	1	1
0441	Os	1	1							
0501	Lillehammer	3		1	1		1			
0511	Dovre	1			1					
0512	Lesja	1			1					
0514	Lom	1			1					
0515	Vågå	1			1					
0520	Ringebu	1							1	
0521	Øyer	1							1	
0544	Øystre Slidre	2					1		1	
0545	Vang	1	1							
0619	ÅI	5				1	1	1	1	1
0632	Rollag	6		1		1	1	1	1	1
0821	Bø	1						1		
0830	Nissedal	1							1	
0831	Fyresdal	1								1
0834	Vinje	1	1							
0928	Birkenes	1			1					
0935	Iveland	1							1	
0938	Bygland	1				1				
0941	Bykle	8	1	1	1	1	1	1	1	1

1021	Marnardal	2				1			1	
1026	Åseral	5	1		1		1	1		1
1027	Audnedal	2		1						1
1029	Lindesnes	1								1
1046	Sirdal	7	1	1	1	1	1	1	1	
1129	Forsand	7	1	1		1	1	1	1	1
1133	Hjelmeland	1							1	
1151	Utsira	8	1	1	1	1	1	1	1	1
1219	Bømlo	1					1			
1224	Kvinnherad	2		1						1
1227	Jondal	1				1				
1232	Eidfjord	8	1	1	1	1	1	1	1	1
1233	Ulvik	5	1	1	1		1		1	
1242	Samnanger	1	1							
1243	Os	1		1						
1252	Modalen	8	1	1	1	1	1	1	1	1
1256	Meland	1							1	
1259	Øygarden	1						1		
1265	Fedje	1								1
1411	Gulen	1							1	
1412	Solund	1				1				
1417	Vik	3		1					1	1
1418	Balestrand	7	1	1	1	1	1	1	1	
1419	Leikanger	1								1
1421	Aurland	2					1	1		
1424	Årdal	1	1							
1431	Jølster	1						1		
1433	Naustdal	1			1					
1438	Bremanger	2							1	1
1503	Kristiansund	1							1	
1524	Norddal	1							1	
1534	Haram	2		1						1

1535	Vestnes	2		1	1					
1546	Sandøy	1								1
1547	Aukra	1								1
1554	Averøy	1							1	
1569	Aure	1				1				
1573	Smøla	3		1	1	1				
1617	Hitra	1								1
1664	Selbu	1	1							
1665	Tydal	2			1		1			
1721	Verdal	1					1			
1739	Røyrvik	6	1	1			1	1	1	1
1740	Namskogan	3	1	1				1		
1749	Flatanger	1							1	
1755	Leka	1							1	
1805	Narvik	1							1	
1811	Bindal	1	1							
1822	Leirfjord	4				1	1	1	1	
1826	Hattfjelldal	2							1	1
1827	Dønna	1	1							
1828	Nesna	1				1				
1832	Hemnes	1							1	
1833	Rana	1							1	
1834	Lurøy	4				1	1		1	1
1835	Træna	3	1	1						1
1836	Rødøy	3	1				1	1		
1840	Saltdal	1			1					
1842	Skjerstad	2	1	1						
1853	Evenes	1								1
1856	Røst	1			1					
1857	Værøy	1			1					
1859	Flakstad	1						1		
1911	Kvæfjord	8	1	1	1	1	1	1	1	1

1919	Gratangen	1					1			
1920	Lavangen	1				1				
1923	Salangen	4	1				1		1	1
1929	Berg	3				1	1	1		
1939	Storfjord	1							1	
1943	Kvænangen	1	1							
2003	Vadsø	2						1	1	
2014	Loppa	2	1	1						
2015	Hasvik	1							1	
2017	Kvalsund	1							1	
2021	Karasjok	3	1	1		1				
2027	Unjárga Nesseby	8	1	1	1	1	1	1	1	1
	Total by year (103 municipalities)	243	30	28	25	28	30	26	45	31

Table A.2. Descriptive statistics for total per capita income used in calculating the income index for an unbalanced panel data set where only municipalities that are considered outliers in at least 1 year are excluded

Year	Observat	ions Obs excl. r	nissing Mean	Std Dev	Minimum	Maximum
2001	332	329	32.837	7.322	21.68	62.415
2002	331	329	34.173	7.551	23.372	66.779
2003	331	329	36.554	7.803	22.768	72.80
2004	331	330	38.237	8.144	25.22	77.791
2005	331	330	40.175	8.371	26.946	77.785
2006	330	329	44.792	9.428	30.675	81.98
2007	330	329	46.976	10.425	32.543	87.118
2008	330	328	50.054	11.25	34.736	92.316

All values in thousands Norwegian kroner.

Table A.3. Descriptive statistics for total per capita income, used in calculating the income index for an unbalanced panel data set where municipalities that are considered outliers in at least 2 years are excluded

Year	Observations Obs exc	l. missing	Mean	Std Dev	Minimum	Maximum
2001	392	389	33.807	7.900	21.68	62.415
2002	391	388	35.19	8.194	23.372	66.779
2003	391	389	37.786	8.740	22.768	72.80
2004	391	390	39.445	8.963	25.22	77.791
2005	391	390	41.385	9.2	26.946	77.785
2006	389	388	46.20	10.405	30.675	86.914
2007	389	388	48.437	11.487	32.543	89.032
2008	388	385	51.577	12.4	33.949	96.907

All values in thousands Norwegian kroner.

Table A.4. Descriptive statistics for total per capita income used in calculating the income index for a balanced panel data set where municipalities that are considered outliers in at least 1 year are excluded as well as municipalities that have missing data in some of the years

Year	Observations	Obs excl. missing	Mean	Std Dev	Minimum	Maximum
2001	315	315	32.808	7.276	21.68	62.415
2002	315	315	34.242	7.561	23.372	66.779
2003	315	315	36.629	7.873	22.768	72.80
2004	315	315	38.33	8.243	25.22	77.791
2005	315	315	40.288	8.483	26.946	77.785
2006	315	315	44.89	9.528	30.675	81.98
2007	315	315	47.079	10.544	32.543	87.118
2008	315	315	50.132	11.402	34.736	92.316

All values in thousands Norwegian kroner.

Table A.5. Descriptive statistics for total per capita income used in calculating the income index for a balanced panel data set where municipalities that are considered outliers in at least 2 years are excluded as well as municipalities that have missing data in some of the years

Year	Observations Obs exc	l. missing	Mean	Std Dev	Minimum	Maximum
2001	370	370	33.786	7.885	21.68	62.415
2002	370	370	35.285	8.233	23.372	66.779
2003	370	370	37.872	8.818	22.768	72.80
2004	370	370	39.529	9.048	25.22	77.791
2005	370	370	41.506	9.279	26.946	77.785
2006	370	370	46.34	10.499	30.675	86.914
2007	370	370	48.567	11.611	32.543	89.032
2008	370	370	51.688	12.501	33.949	96.907

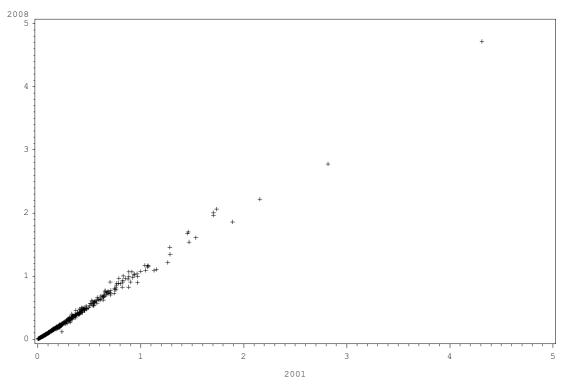
All values in thousands Norwegian kroner.

Table A.6. List of municipalities that have missing values for some of the years for the variables included in the model

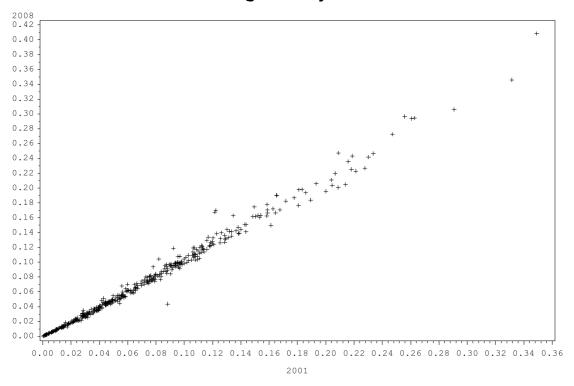
Number	Name	Years missing
0216	Nesodden	2002
0430	Stor-Elvdal	2002, 2003
0513	Skjåk	2002
0718	Ramnes	2001
1101	Eigersund	2005
1102	Sandnes	2005
1154	Vindafjord	2001, 2002, 2003, 2005
1159	Ølen	2002, 2003, 2004, 2005
1160	Vindafjord	2006
1201	Bergen	2001
1211	Etne	2001
1214	Ølen	2001
1216	Sveio	2005
1219	Bømlo	2005
1244	Austevoll	2001, 2002
1503	Kristiansund	2007
1505	Kristiansund	2008
1556	Frei	2007
1569	Aure	2001, 2002, 2003, 2005
1572	Tustna	2001, 2002, 2003, 2004, 2005
1576	Aure	2006
1842	Skjerstad	2001, 2002, 2003, 2004
1856	Røst	2002, 2003
1871	Andøy	2003, 2004
1874	Moskenes	2002, 2003, 2008
1928	Torsken	2003, 2004, 2005, 2006, 2007, 2008
1939	Storfjord	2008

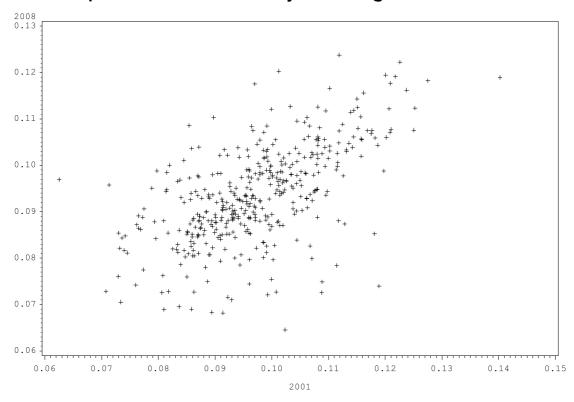

Appendix B Time-invariant variables and correlation plots

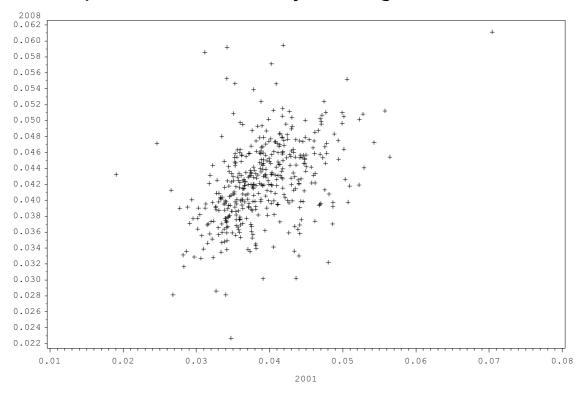
Table B1 Model 6 version A – inflated standard errors

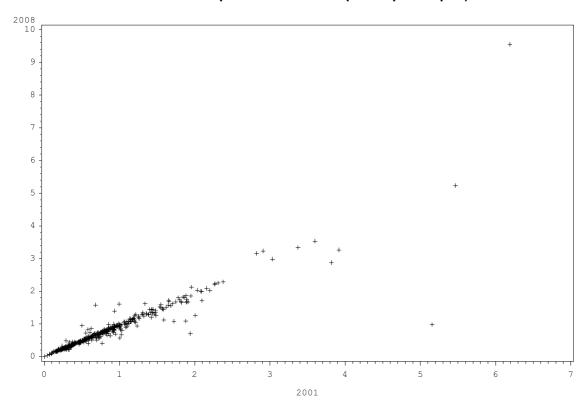

Sector	Variable (first difference)	Estimate	Std error	t-value
Budget surplus	Growth in municipality incomes	0.516	0.026	20.23
Administration	Inverse population size	4.603	2.217	2.08
	Index of farming industry	-18.133	12.195	-1.49
Primary schools	Population share 6-12 years of age	30.324	3.143	9.65
	Population share 13-15 years of age	19.465	3.256	5.98
	Distance to centre of municipal sub-district	0.114	0.199	0.57
	Inverse population size	4.435	1.129	3.93
Other education	Share of fulltime working women 20-44 years	-0.889	1.188	-0.75
	Refugees with integration grants	17.773	1.662	10.69
Child care	Population share 1-5 years of age	-14.335	3.127	-4.58
	Share of fulltime working women 20-44 years	20.317	1.748	11.62
Health care	Distance to centre of municipal sub-district	0.019	0.075	0.26
	Inverse population size	3.858	0.485	7.96
Social services	Refugees with integration grants	24.131	2.018	11.96
	Refugees without integration grants	65.349	29.465	2.22
	Share of divorced/ separated 16-59 years	1.227	2.067	0.59
	Unemployed 16-59 years share of total population	13.689	1.599	8.56
	Number of poor share of total population	3.220	0.806	3.99
	Share of disablement pensioners 18-49 years	-6.776	3.771	-1.80
Child protection	Share of children 0-15 years with single mother/ father	4.506	1.783	2.53
	Number of poor share of total population	-0.773	0.600	-1.29
Care for the	Population share 67-79 years of age	30.424	5.689	5.35
elderly and	Population share 80-89 years of age	23.296	8.525	2.73
disabled	Population share 90 years and above	75.810	14.710	5.15
	High-cost recipients share of total population	400.545	51.283	7.81
	Share of mentally disabled 16 years and above without grant	15.133	22.623	0.67
	Share of mentally disabled 16 years and above with grant	-115.539	365.500	-0.32
	Distance to centre of municipal sub-district	0.295	0.312	0.95
	Inverse population size	7.799	1.861	4.19
Culture	Inverse population size	-0.004	0.555	-0.01
Municipal roads	Amount of snowfall	0.023	0.004	6.12
	Kilometers of municipal roads	-6.157	4.476	-1.38
Water supply	Capacity of advanced purification	0.039	0.064	0.62
and sanitation	Inverse population size	1.124	0.969	1.16
Other infrastructure	Inverse population size	-2.824	1.370	-2.06

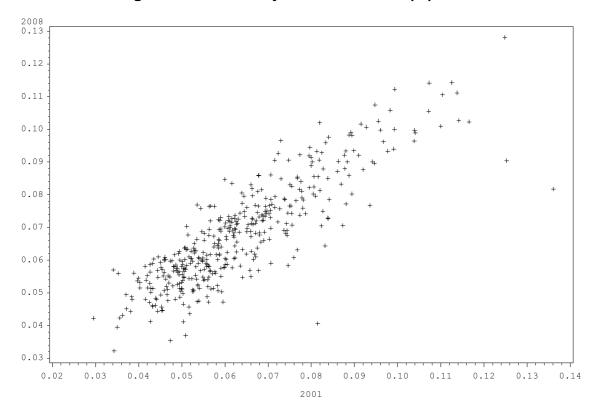
Correlation plots

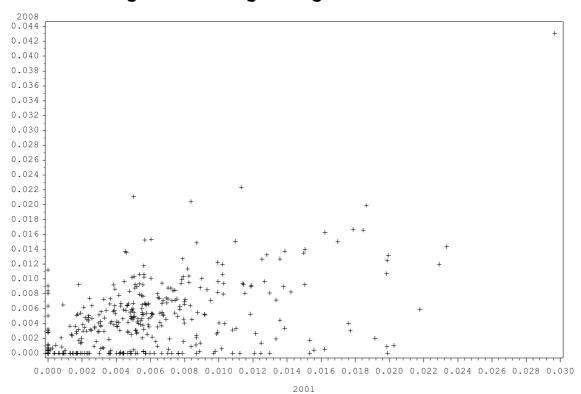

Growth in municipality incomes 2001 vs 2008

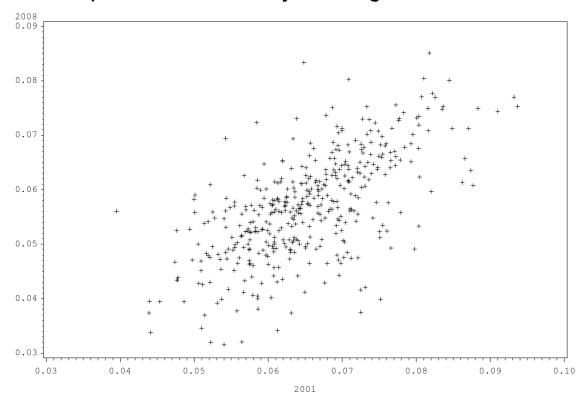

Inverse population size 2001 vs 2008

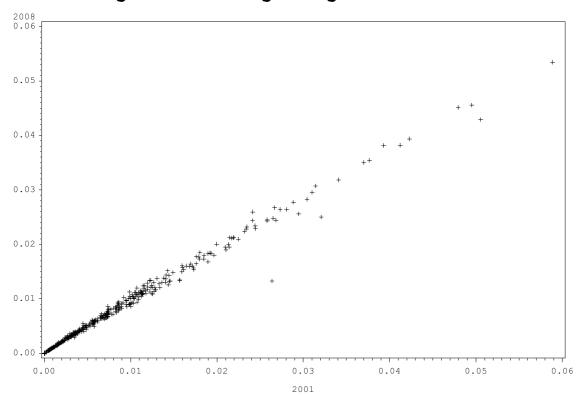

Index of farming industry 2001 vs 2008

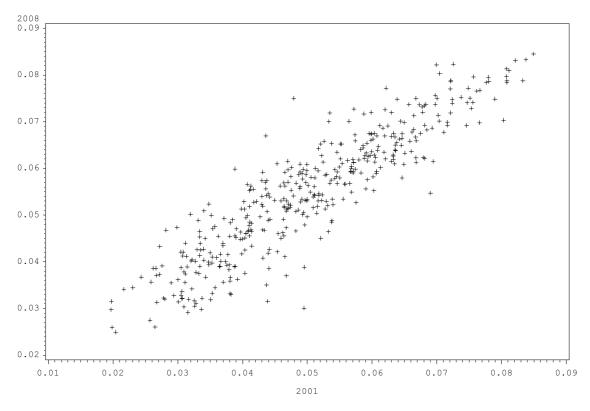

Population share 6 - 12 years of age 2001 vs 2008

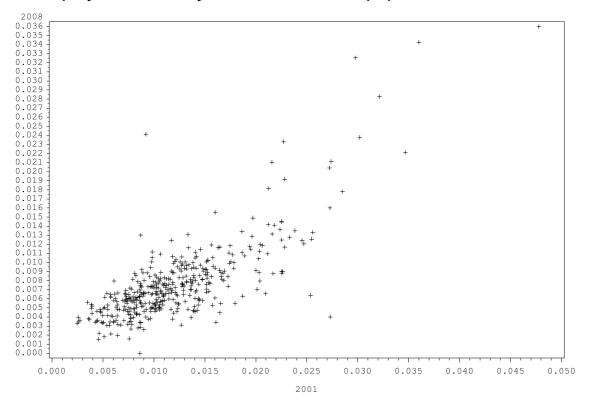

Population share 13 - 15 years of age 2001 vs 2008

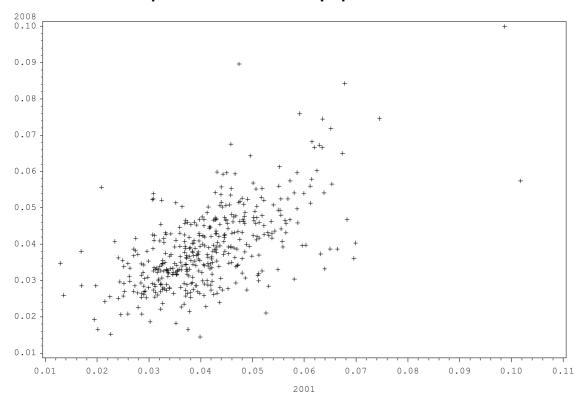

Distance to centre of municipal sub-district (miles per capita) 2001 vs 2008

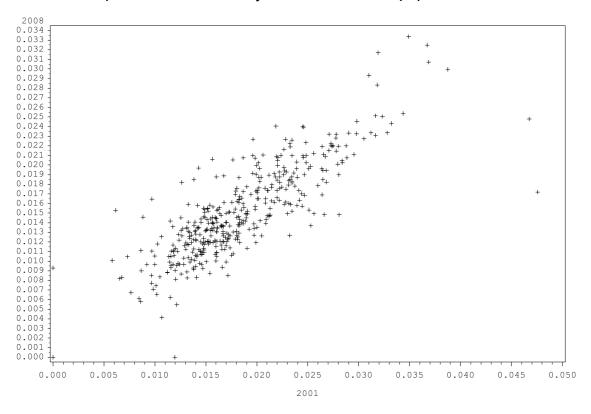

Full-time working women 20 - 44 years share of total population 2001 vs 2008

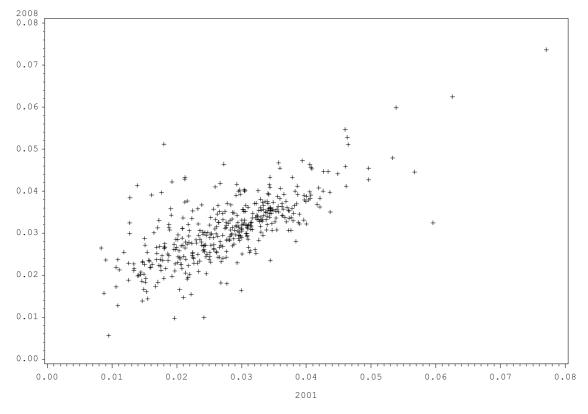

Refugees with integration grants 2001 vs 2008

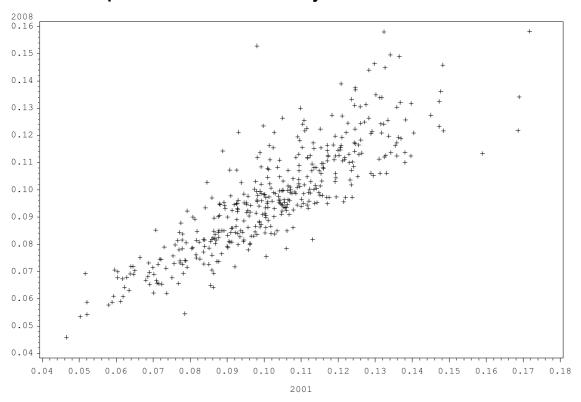

Population share 1 - 5 years of age 2001 vs 2008

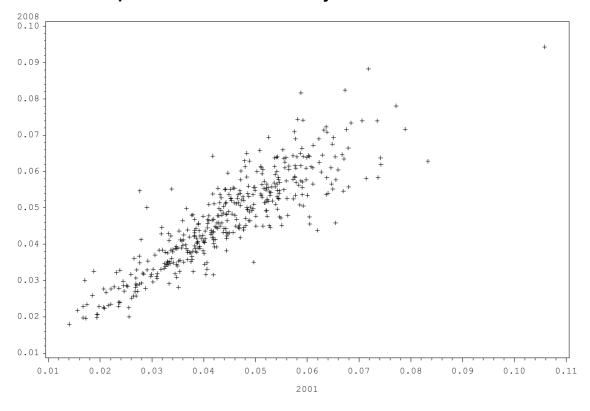

Refugees without integration grants 2001 vs 2008

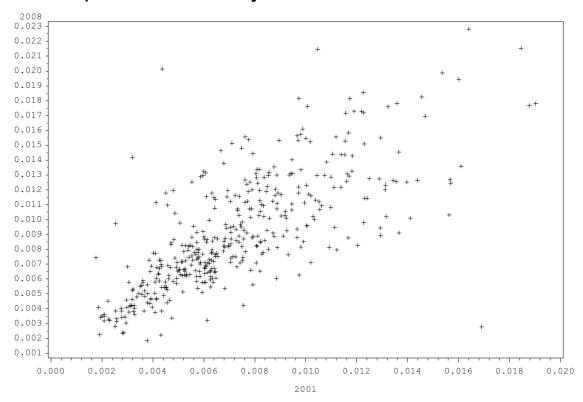

Divorced / separated 16 - 59 years share of total population 2001 vs 2008

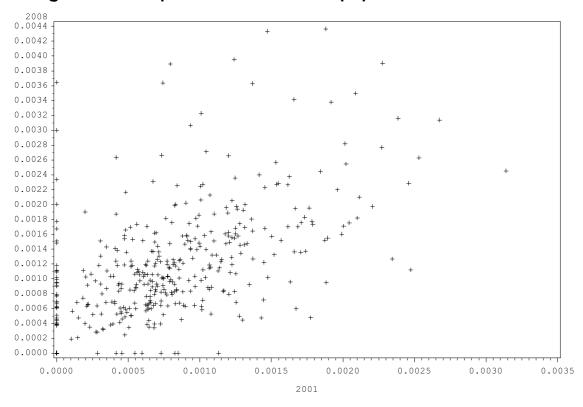

Unemployed 16-59 years share of total population 2001 vs 2008

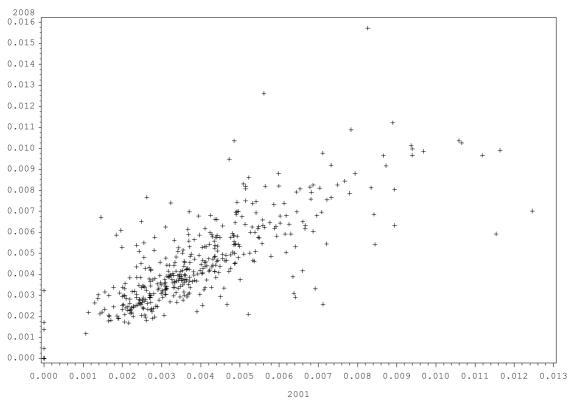

Number of poor share of total population 2001 vs 2008

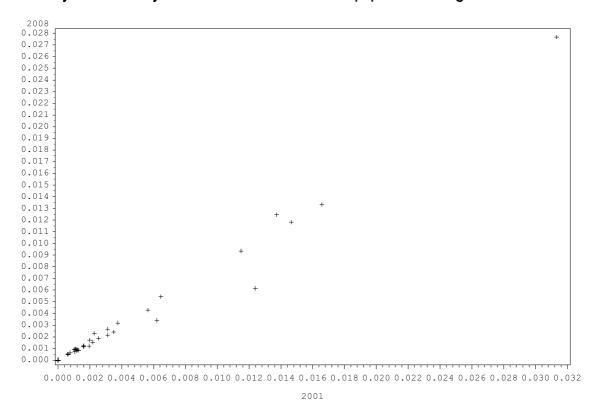

Disablement pensioners 18 - 49 years share of total population 2001 vs 2008

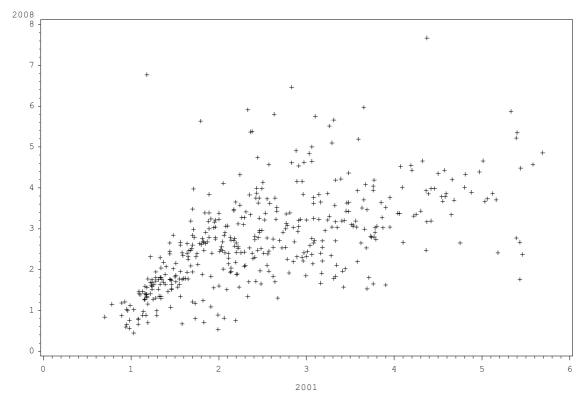

Children 0-15 years with single mother or father share of total population 2001 vs 2008 plot

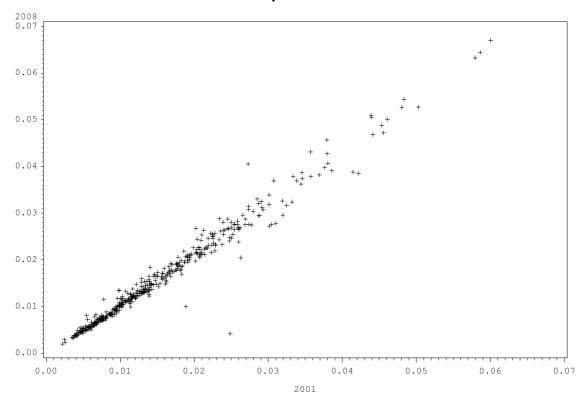

Population share 67-79 years 2001 vs 2008

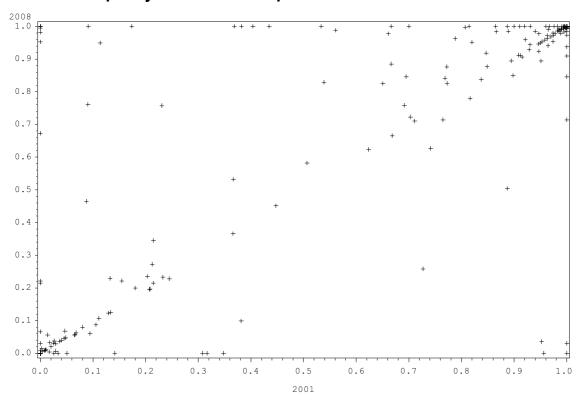

Population share 80-89 years 2001 vs 2008


Population share 90 years and above 2001 vs 2008

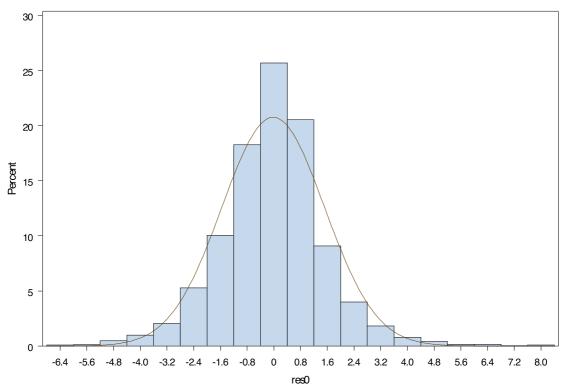

High-cost recipients share of total population 2001 vs 2008


Mentally disabled 16 years and above share of total population without grant 2001 vs 2008

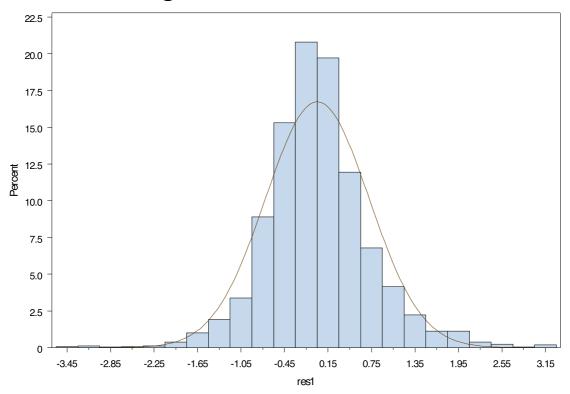

Mentally disabled 16 years and above share of total population with grant 2001 vs 2008


Amount of snowfall (meters) 2001 vs 2008 plot

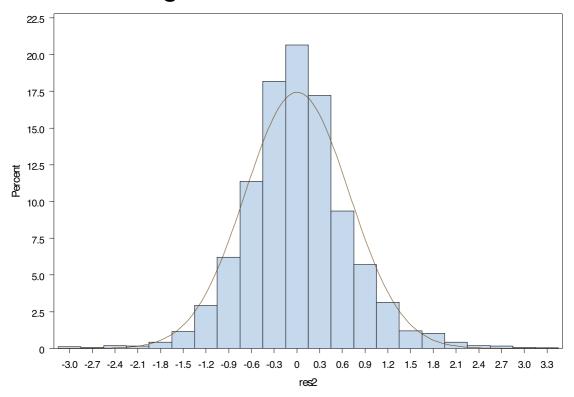
Kilometers of municipal roads 2001 vs 2008

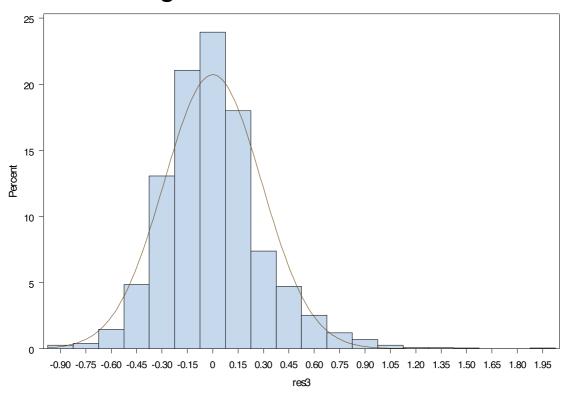


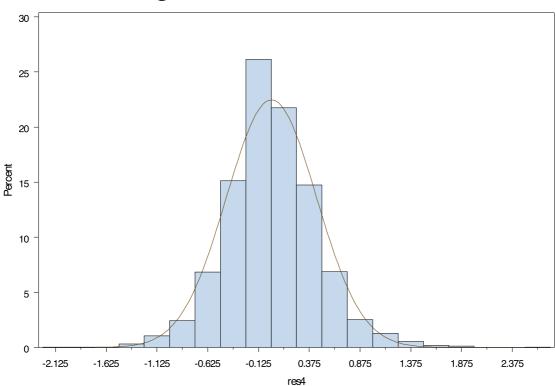
Capacity of advanced purification 2001 vs 2008

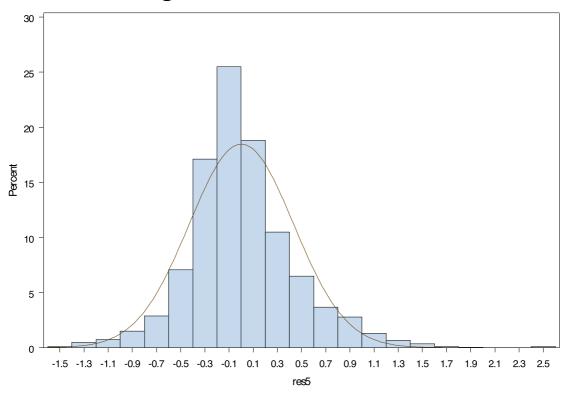


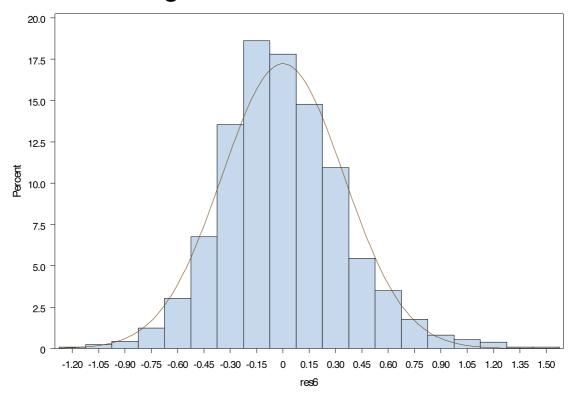
Model 2 (A)

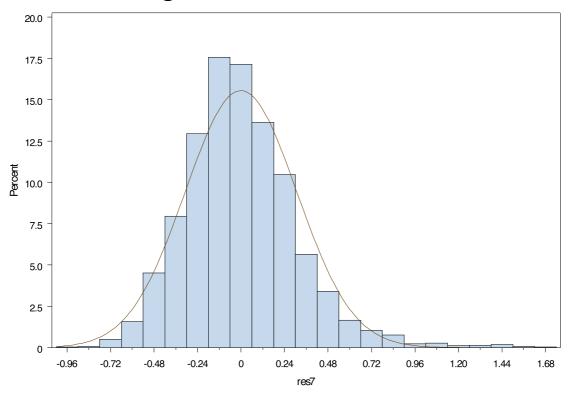

Histogram of the sector 0 residuals

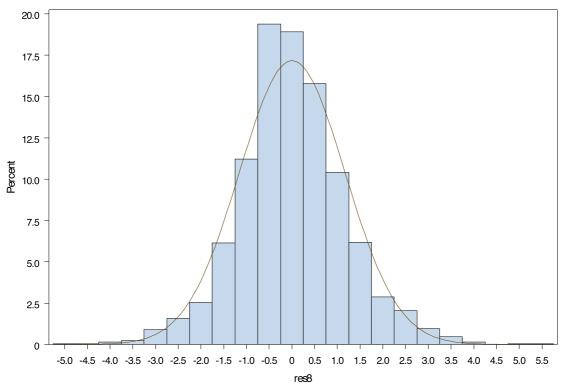

Histogram of the sector 1 residuals

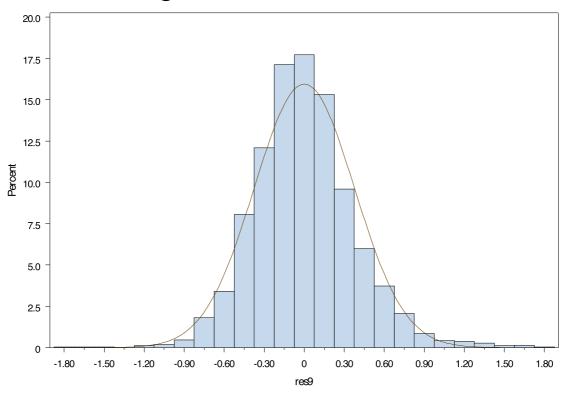

Histogram of the sector 2 residuals

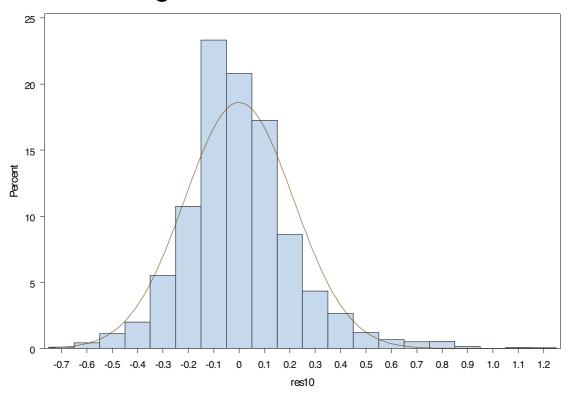

Histogram of the sector 3 residuals

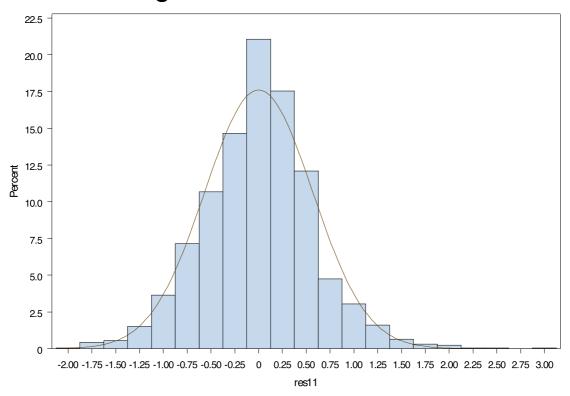

Histogram of the sector 4 residuals

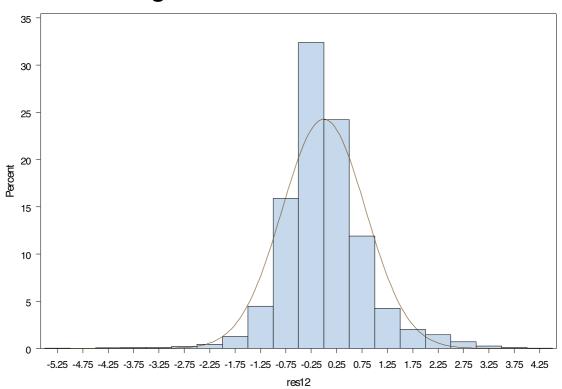

Histogram of the sector 5 residuals

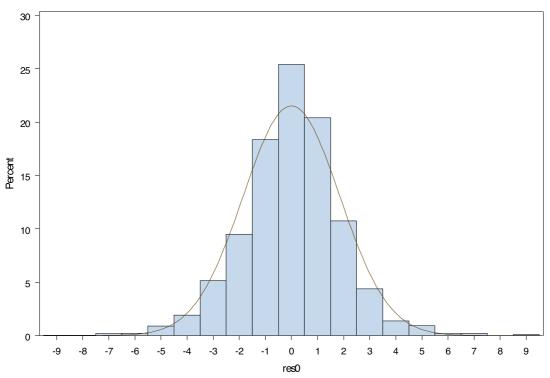

Histogram of the sector 6 residuals

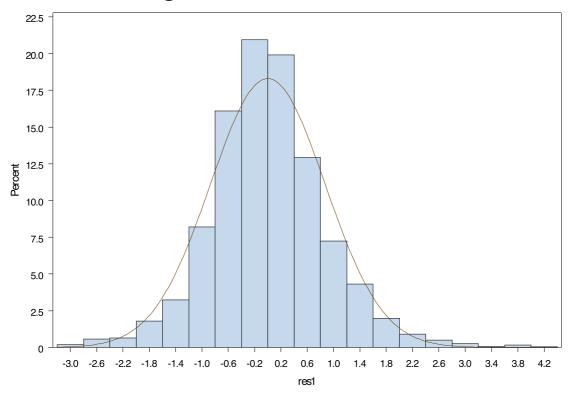

Histogram of the sector 7 residuals

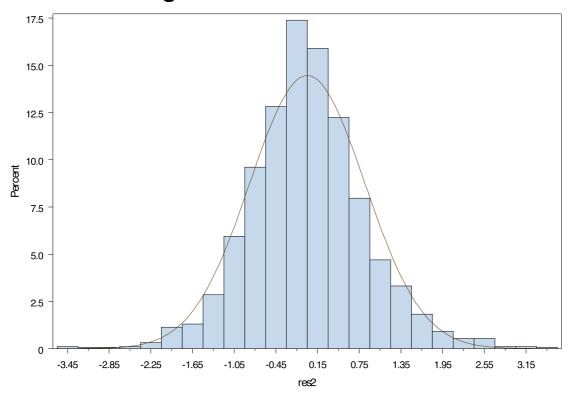

Histogram of the sector 8 residuals

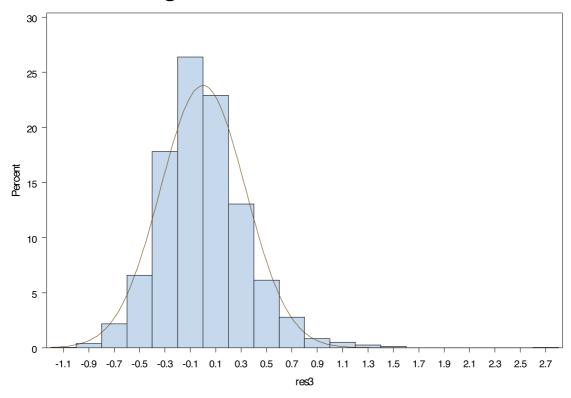

Histogram of the sector 9 residuals

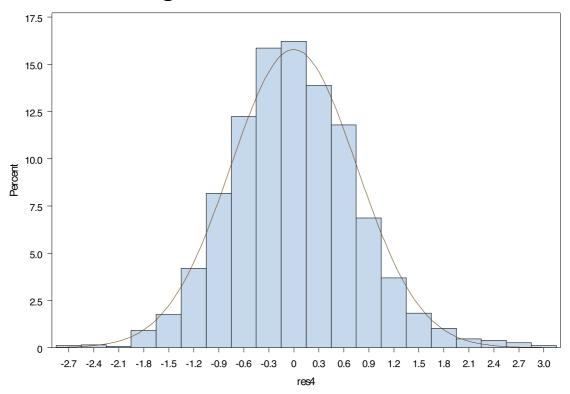

Histogram of the sector 10 residuals

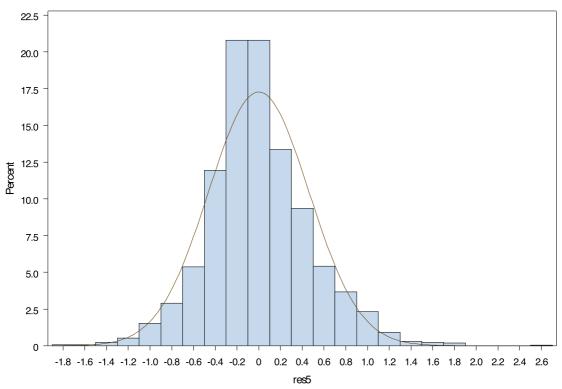

Histogram of the sector 11 residuals

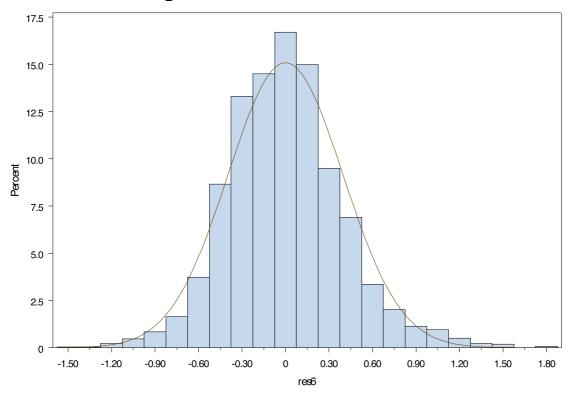

Histogram of the sector 12 residuals

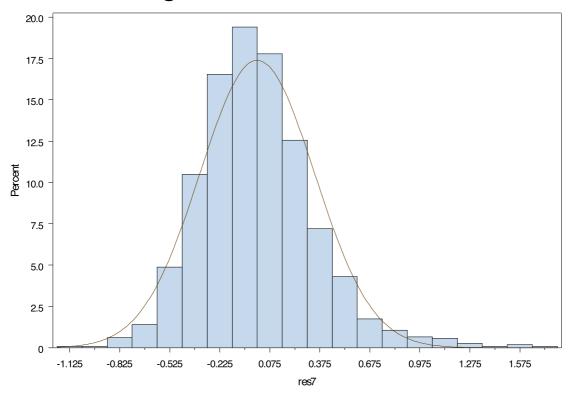

Histogram of the sector 0 residuals

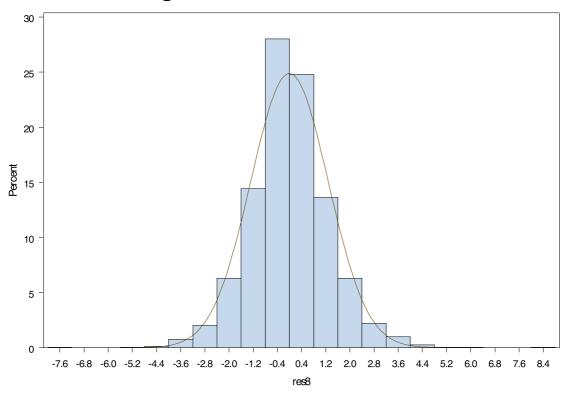

Histogram of the sector 1 residuals

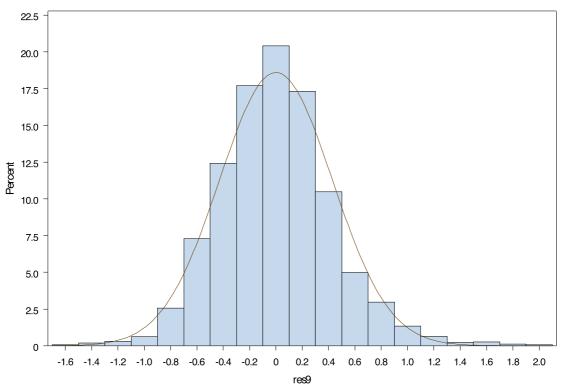

Histogram of the sector 2 residuals

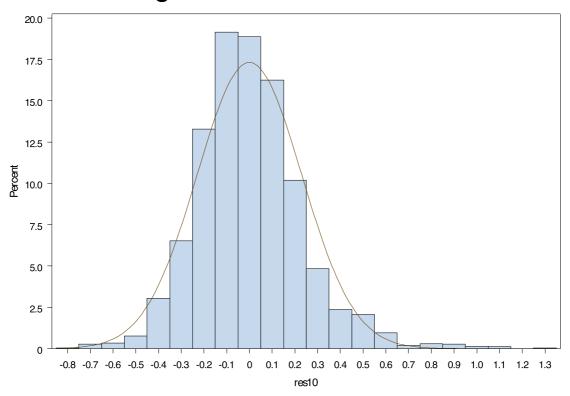

Histogram of the sector 3 residuals

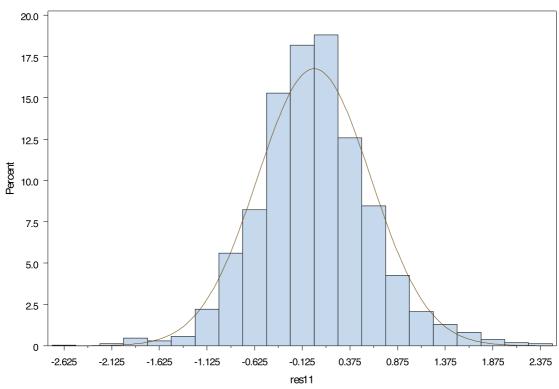

Histogram of the sector 4 residuals

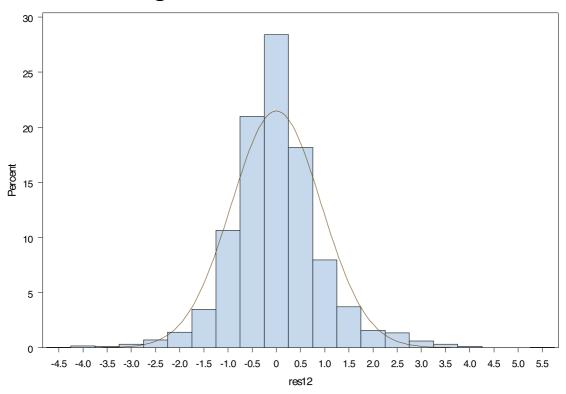

Histogram of the sector 5 residuals


Histogram of the sector 6 residuals

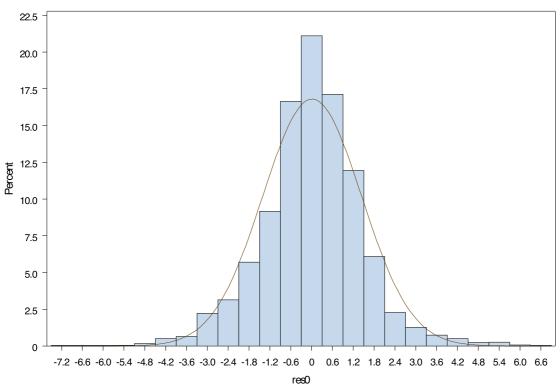

Histogram of the sector 7 residuals


Histogram of the sector 8 residuals

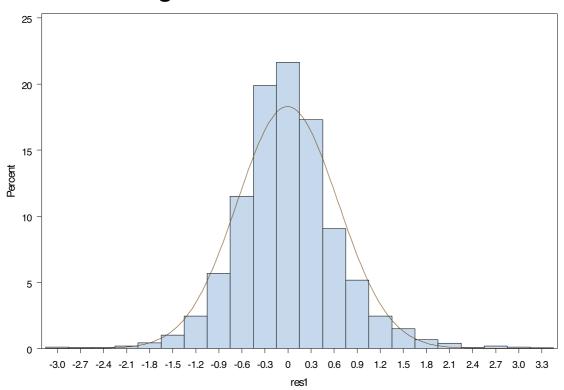

Histogram of the sector 9 residuals


Histogram of the sector 10 residuals

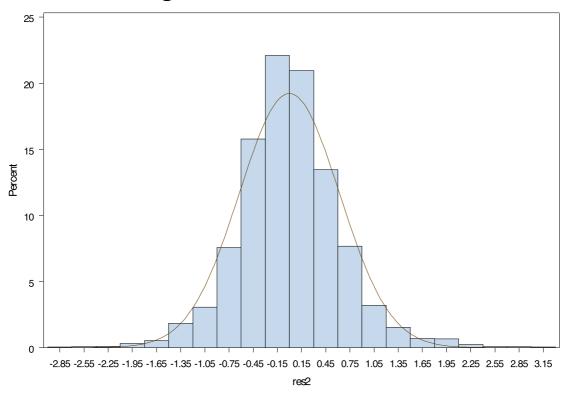
Histogram of the sector 11 residuals

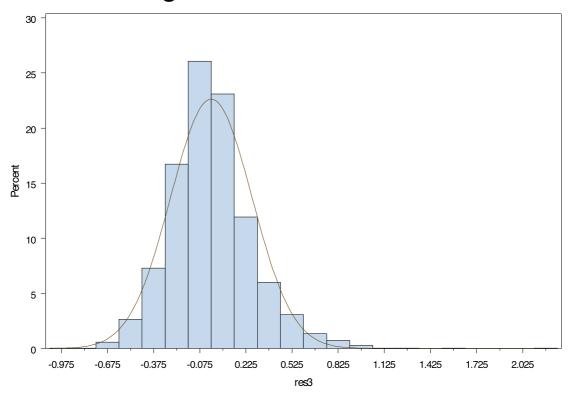


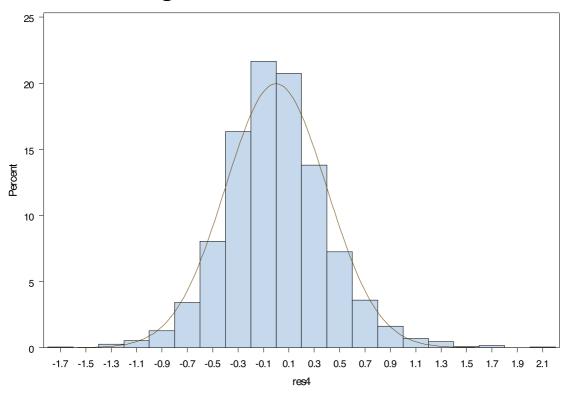
Histogram of the sector 12 residuals

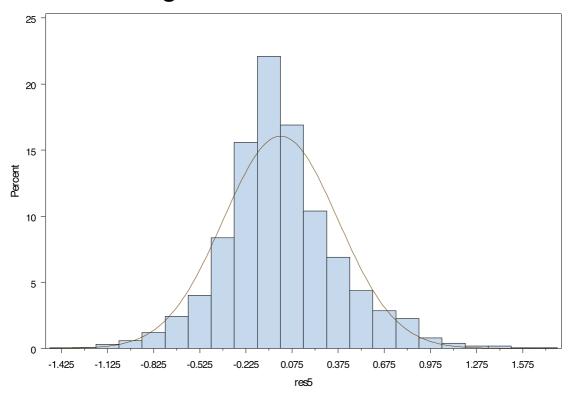


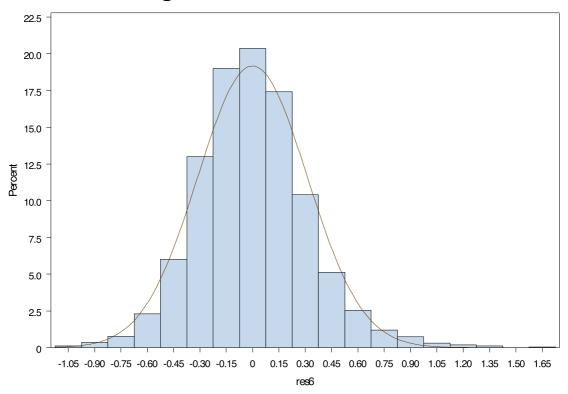
Model 8 (A)

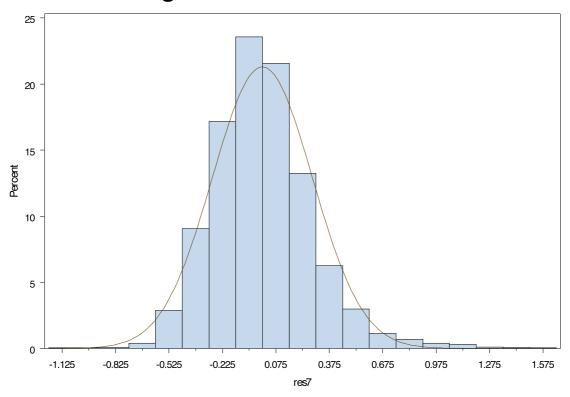

Histogram of the sector 0 residuals

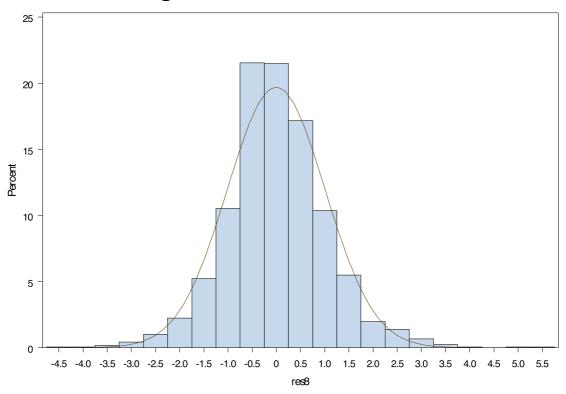

Histogram of the sector 1 residuals

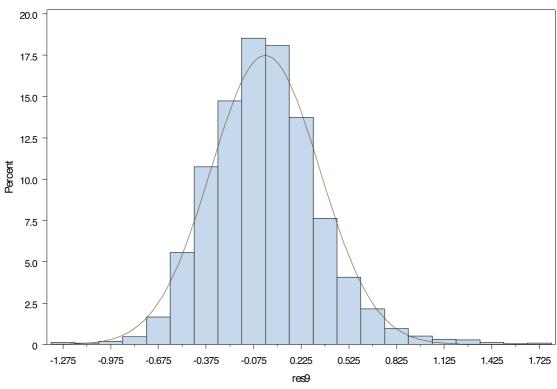

Histogram of the sector 2 residuals

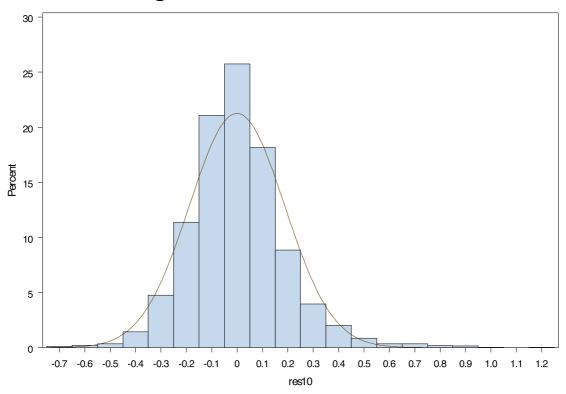

Histogram of the sector 3 residuals

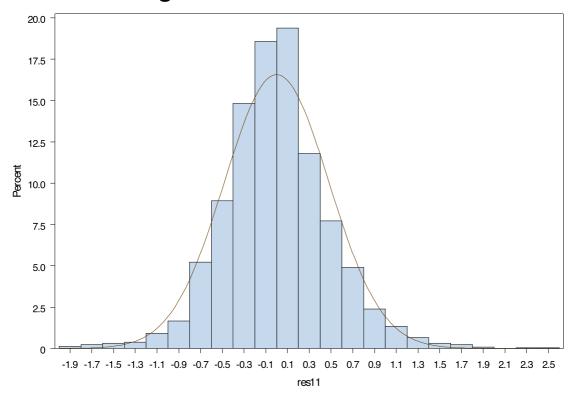

Histogram of the sector 4 residuals

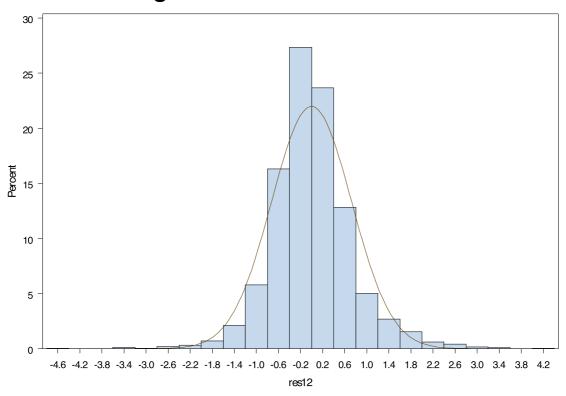

Histogram of the sector 5 residuals


Histogram of the sector 6 residuals

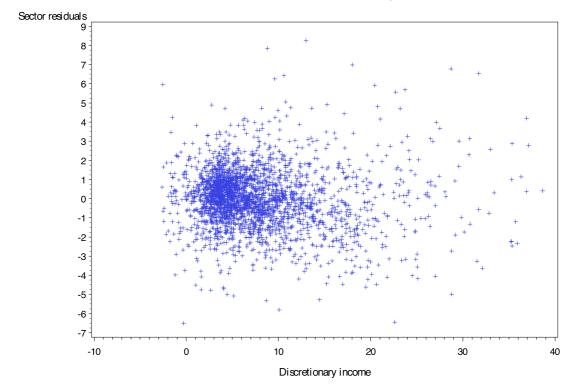

Histogram of the sector 7 residuals


Histogram of the sector 8 residuals

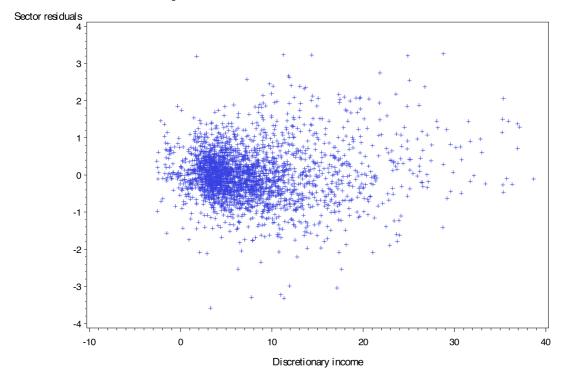

Histogram of the sector 9 residuals


Histogram of the sector 10 residuals

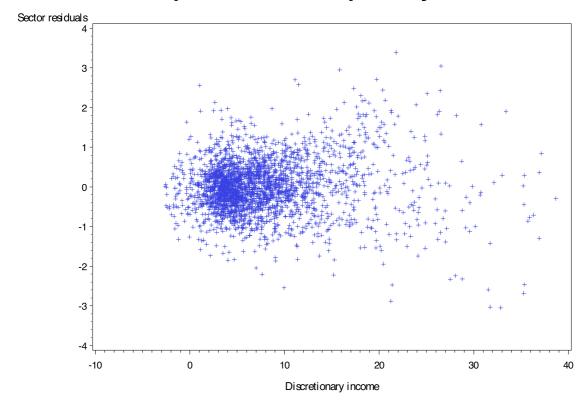
Histogram of the sector 11 residuals

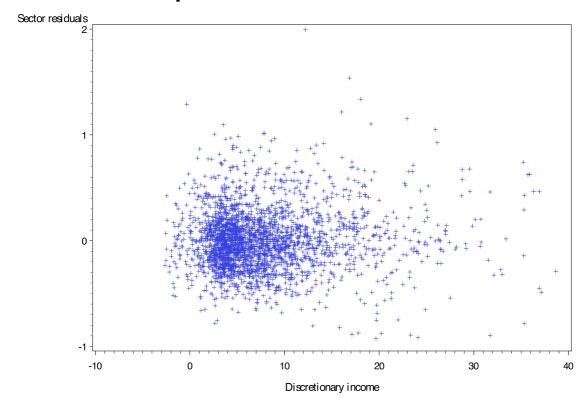


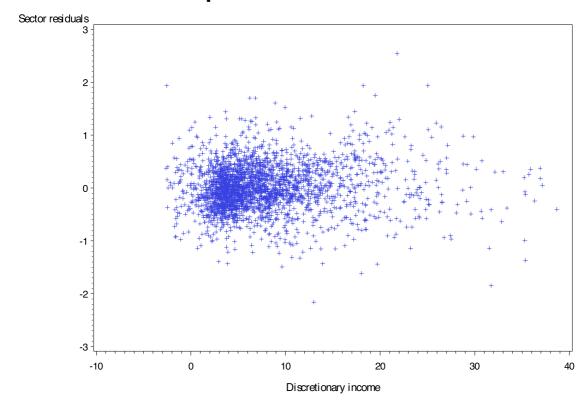
Histogram of the sector 12 residuals

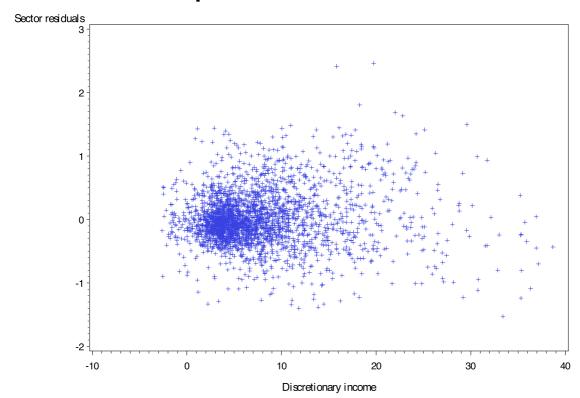


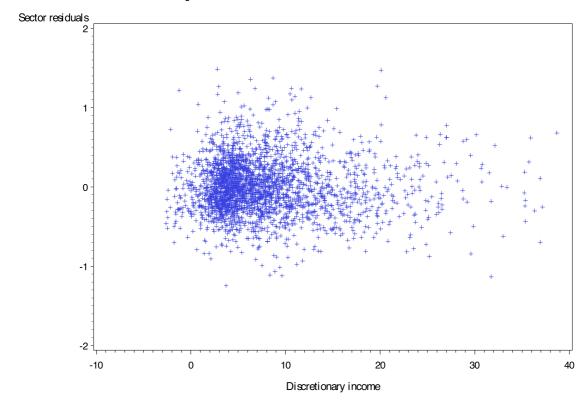
Model 2 (A)

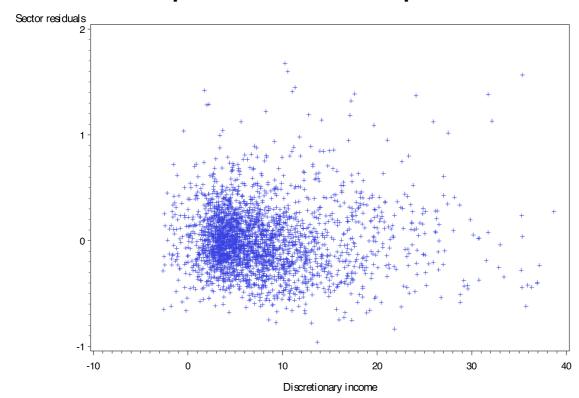

Residual plot for sector 0: budget surplus

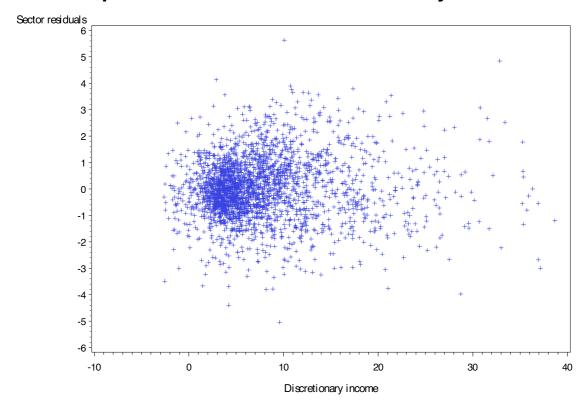

Residual plot for sector 1: administration

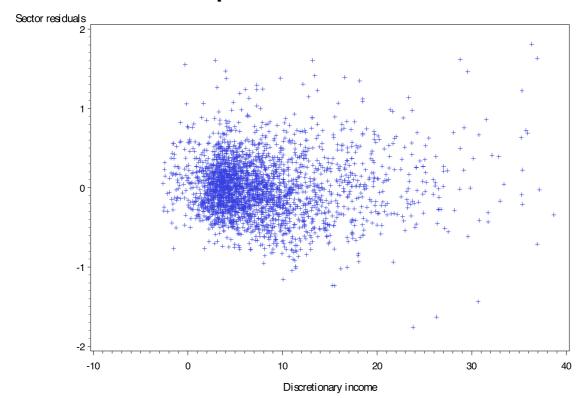

Residual plot for sector 2: primary schools

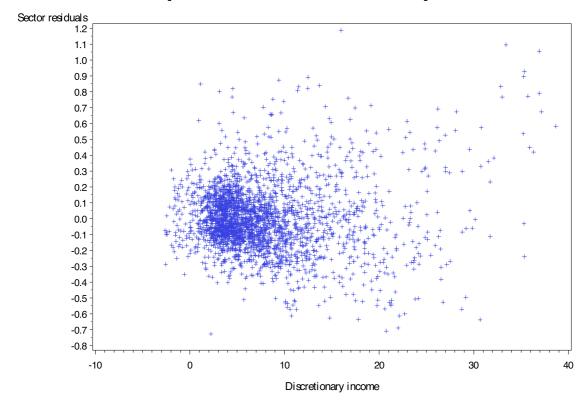

Residual plot for sector 3: other education

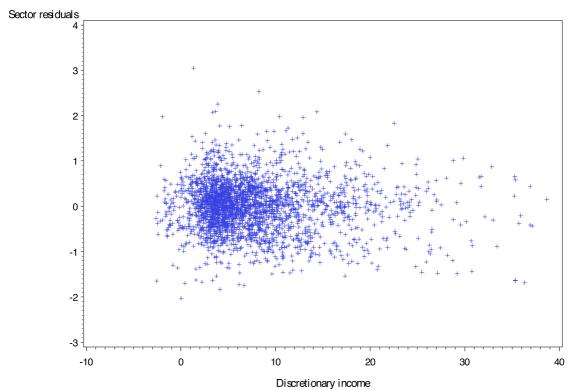

Residual plot for sector 4: child care

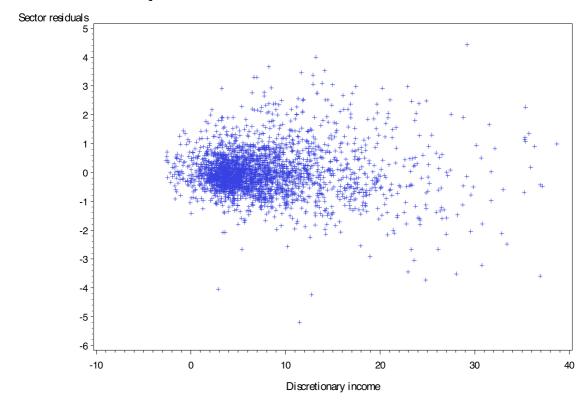

Residual plot for sector 5: health care


Residual plot for sector 6: social services

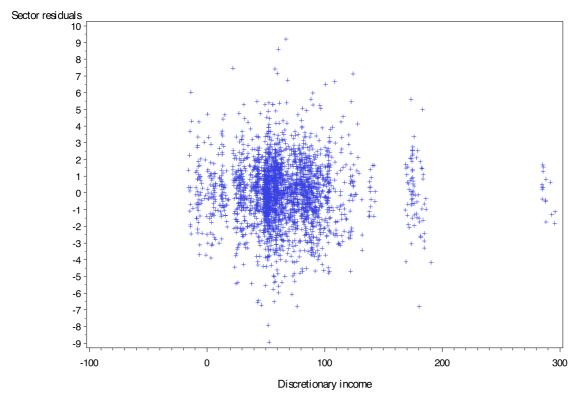

Residual plot for sector 7: child protection


Residual plot for sector 8: care for the elderly and disabled

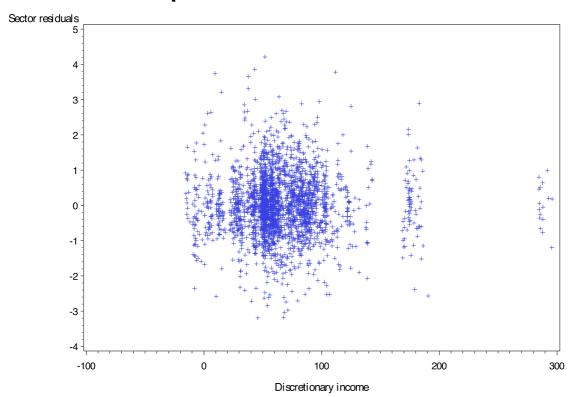

Residual plot for sector 9: culture


Residual plot for sector 10: municipal roads

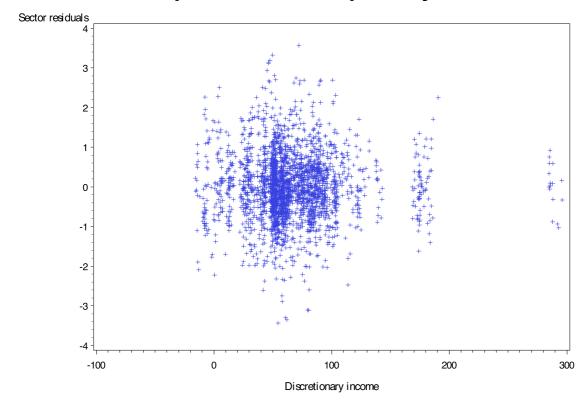
Residual plot for sector 11: water supply and sanitation

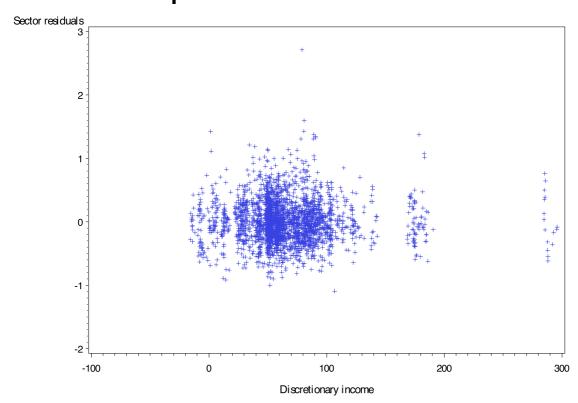


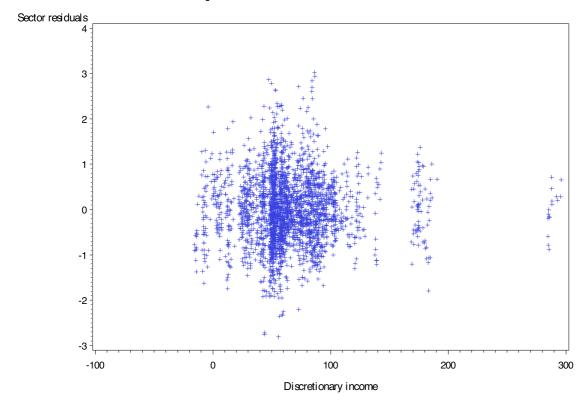
Residual plot for sector 12: other infrastructure

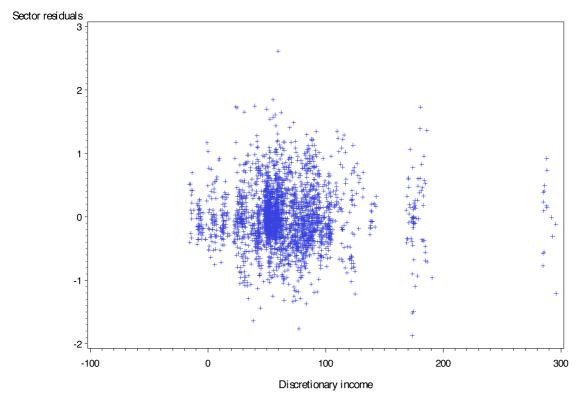


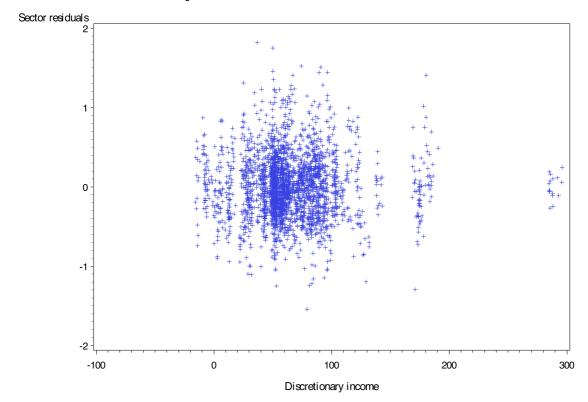
Model 7 (A)

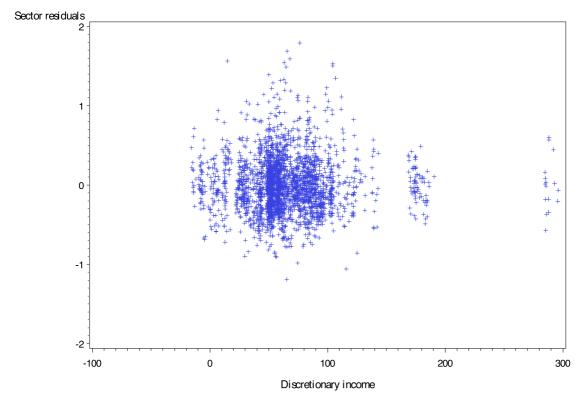

Residual plot for sector 0: budget surplus


Residual plot for sector 1: administration

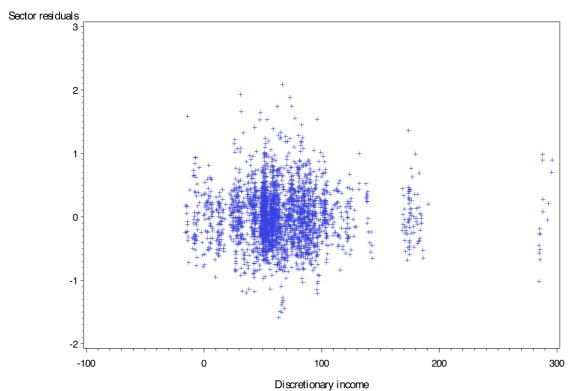

Residual plot for sector 2: primary schools

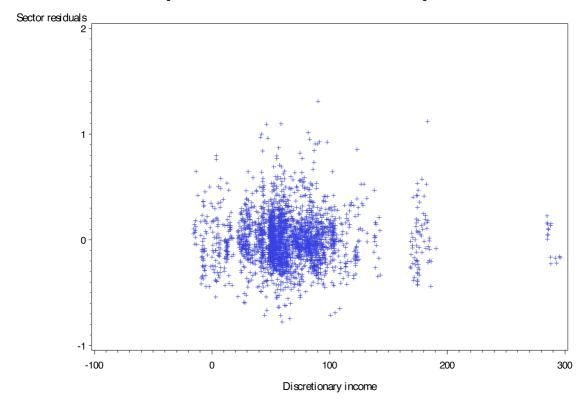

Residual plot for sector 3: other education

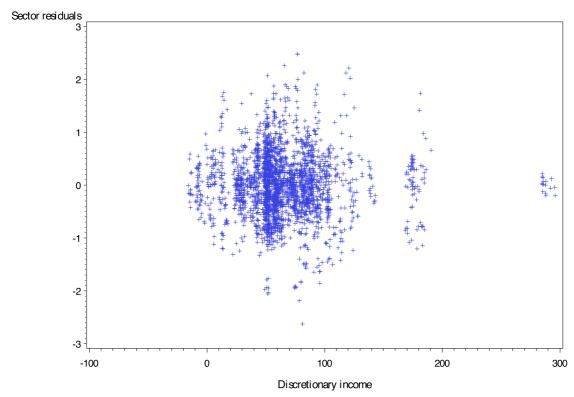

Residual plot for sector 4: child care

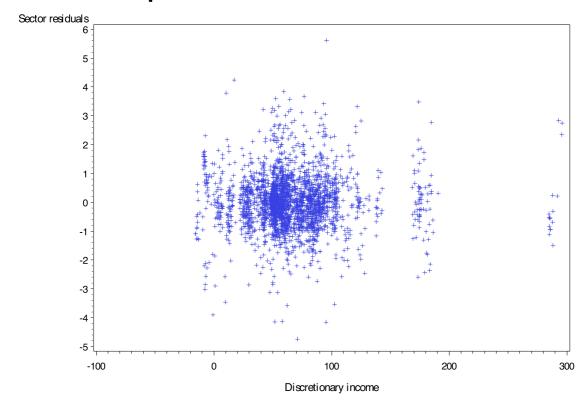

Residual plot for sector 5: health care

Residual plot for sector 6: social services

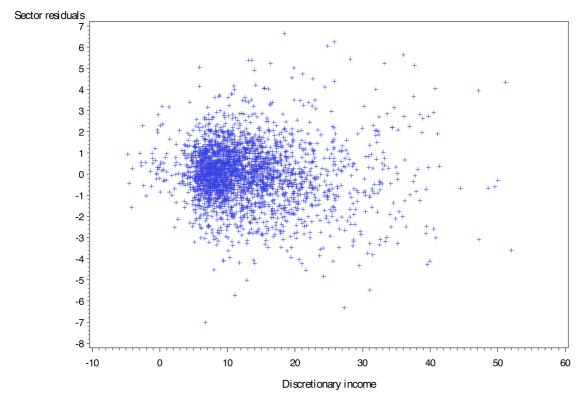

Residual plot for sector 7: child protection


Residual plot for sector 8: care for the elderly and disabled

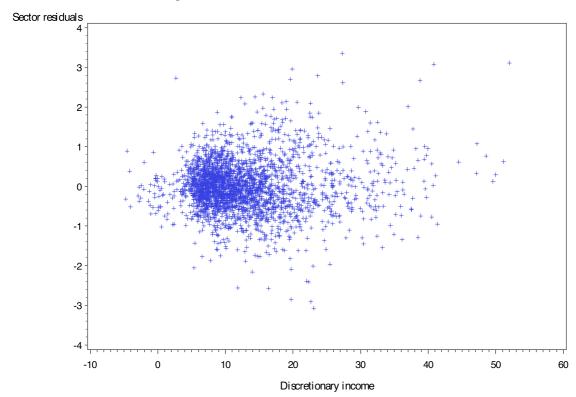

Residual plot for sector 9: culture


Residual plot for sector 10: municipal roads

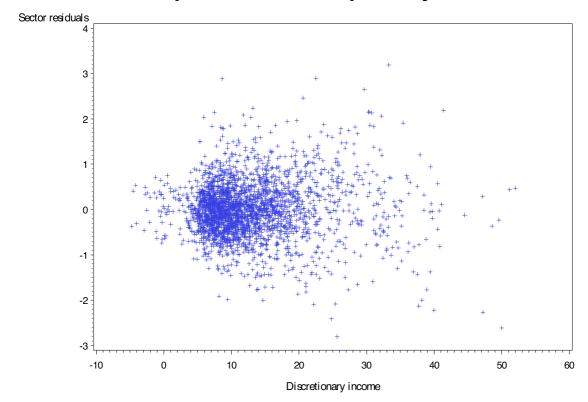
Residual plot for sector 11: water supply and sanitation

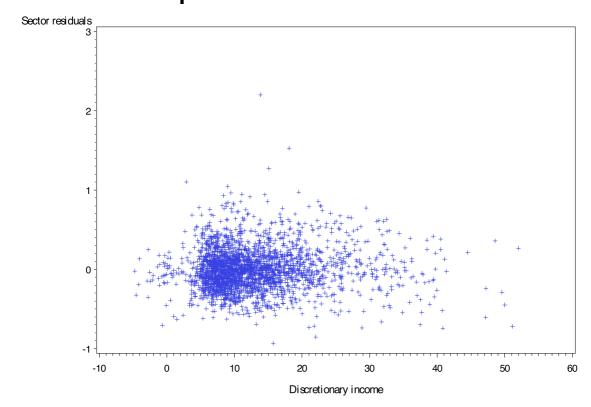


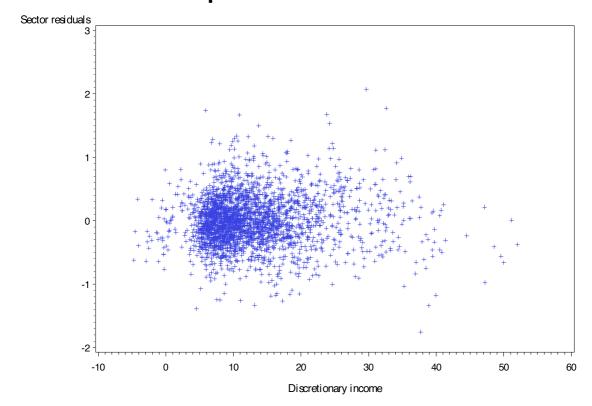
Residual plot for sector 12: other infrastructure

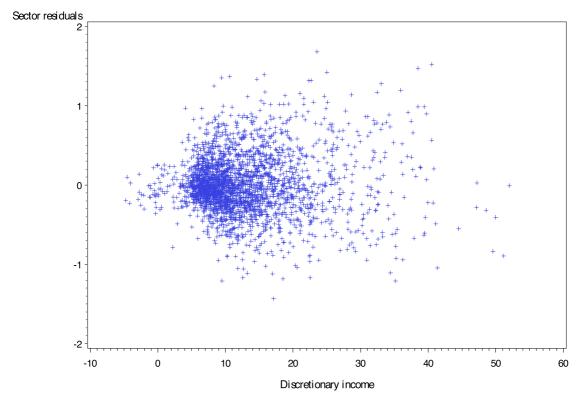


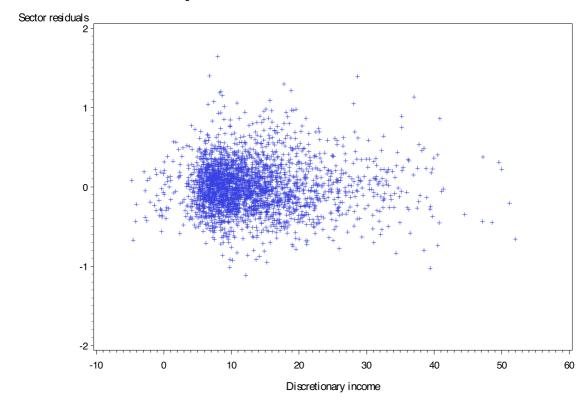
Model 8 (A)

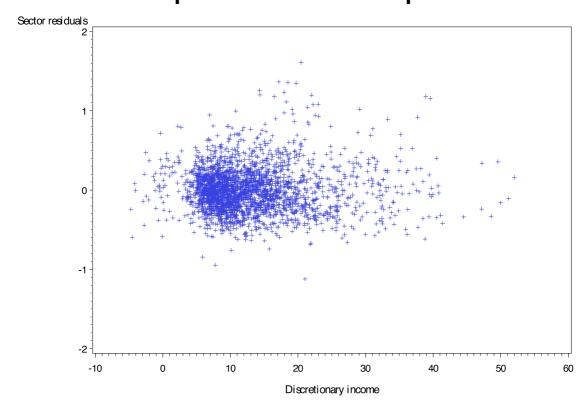

Residual plot for sector 0: budget surplus

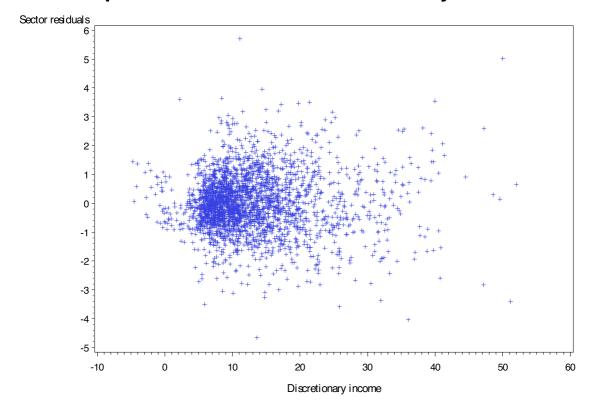

Residual plot for sector 1: administration

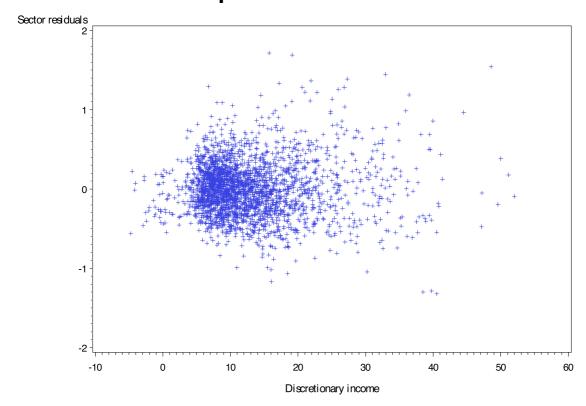

Residual plot for sector 2: primary schools

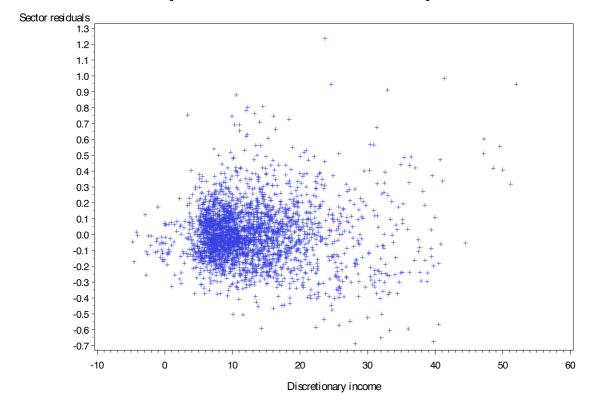

Residual plot for sector 3: other education

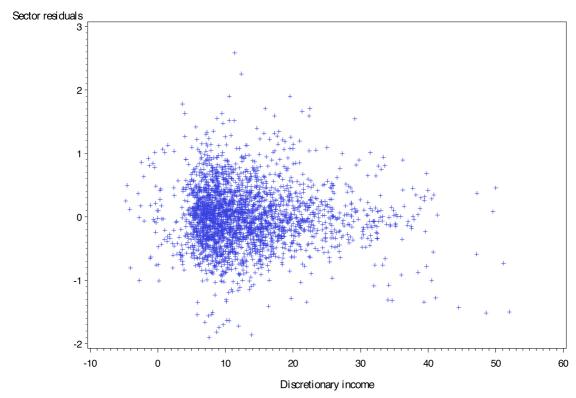

Residual plot for sector 4: child care

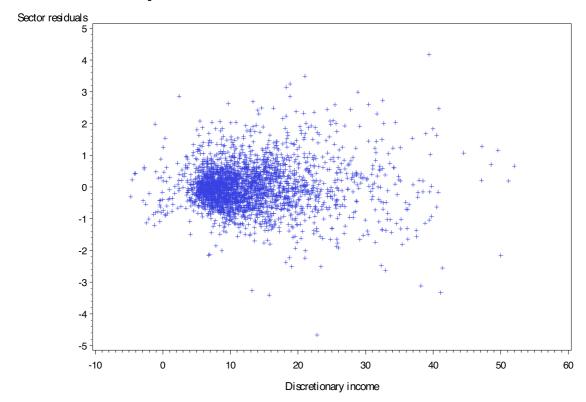

Residual plot for sector 5: health care

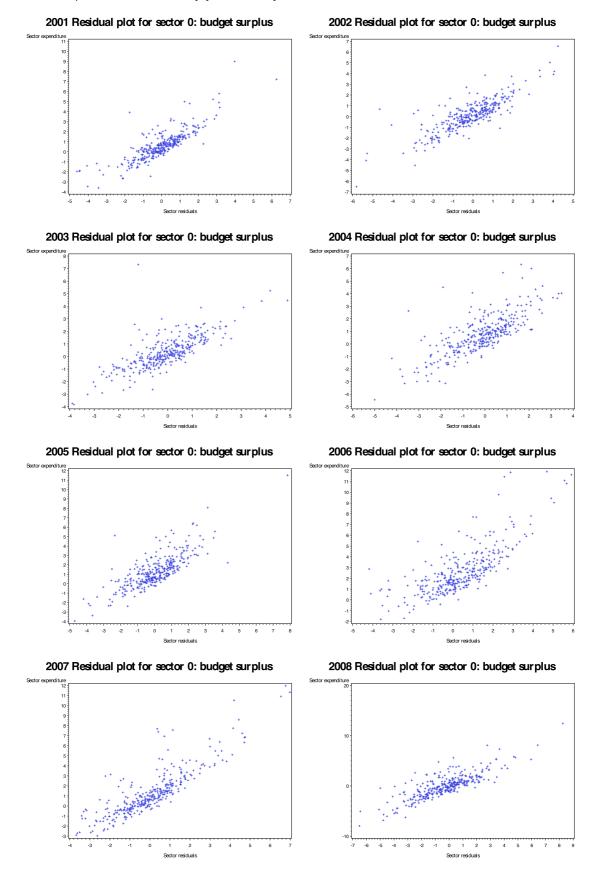

Residual plot for sector 6: social services

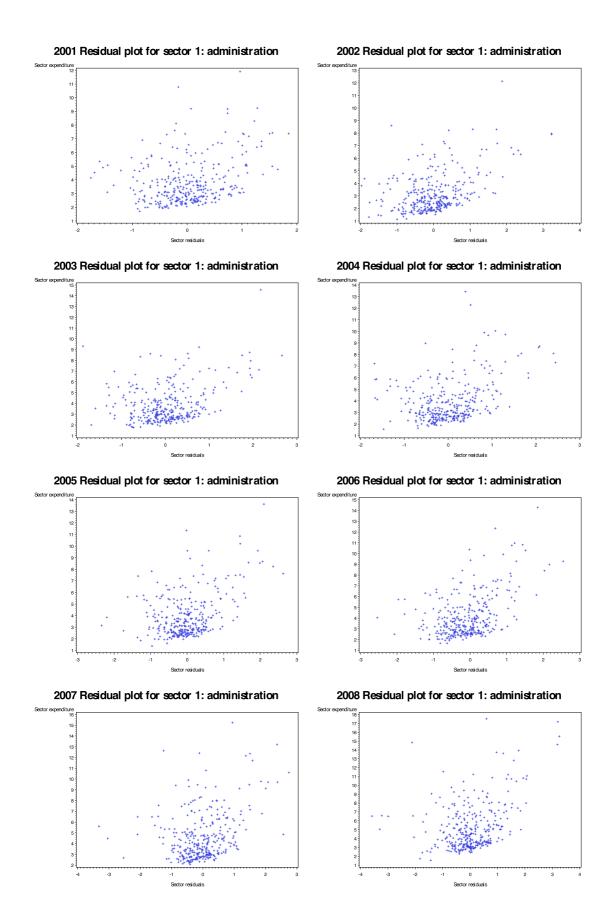

Residual plot for sector 7: child protection

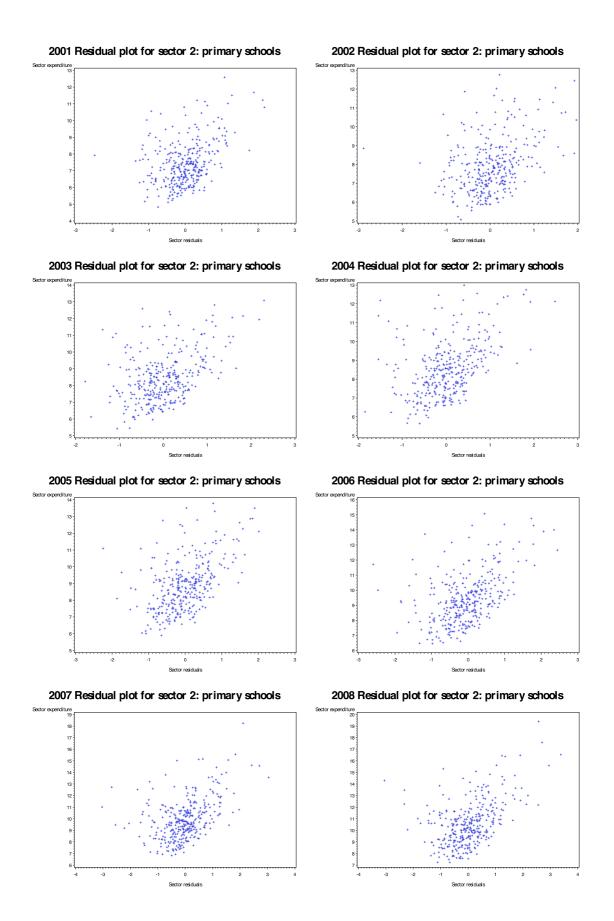

Residual plot for sector 8: care for the elderly and disabled

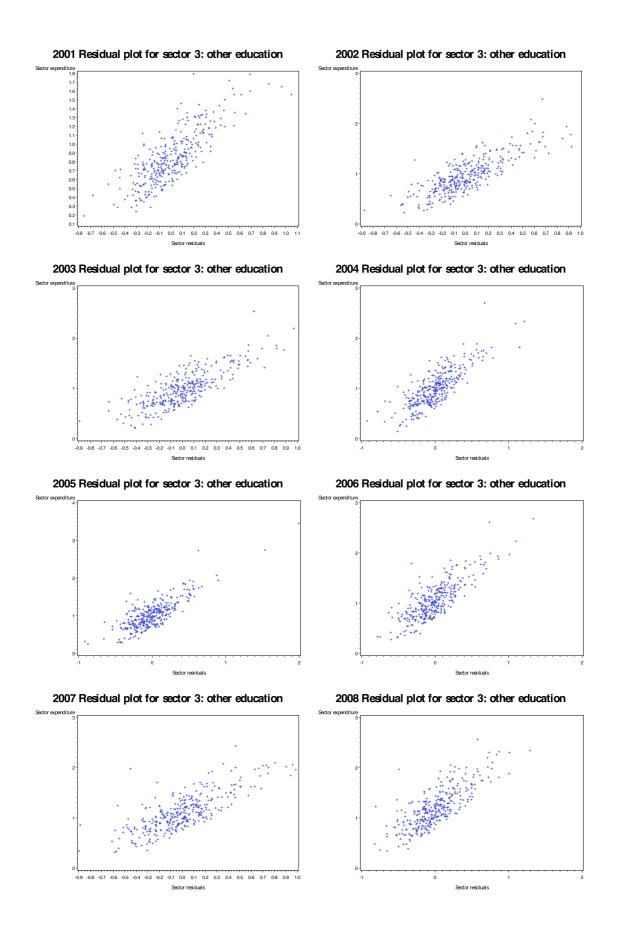

Residual plot for sector 9: culture

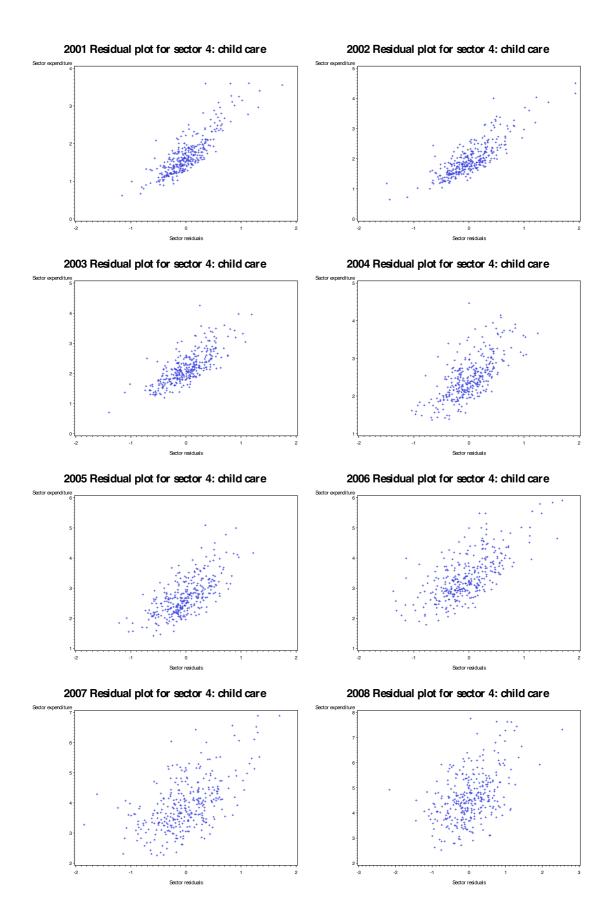

Residual plot for sector 10: municipal roads

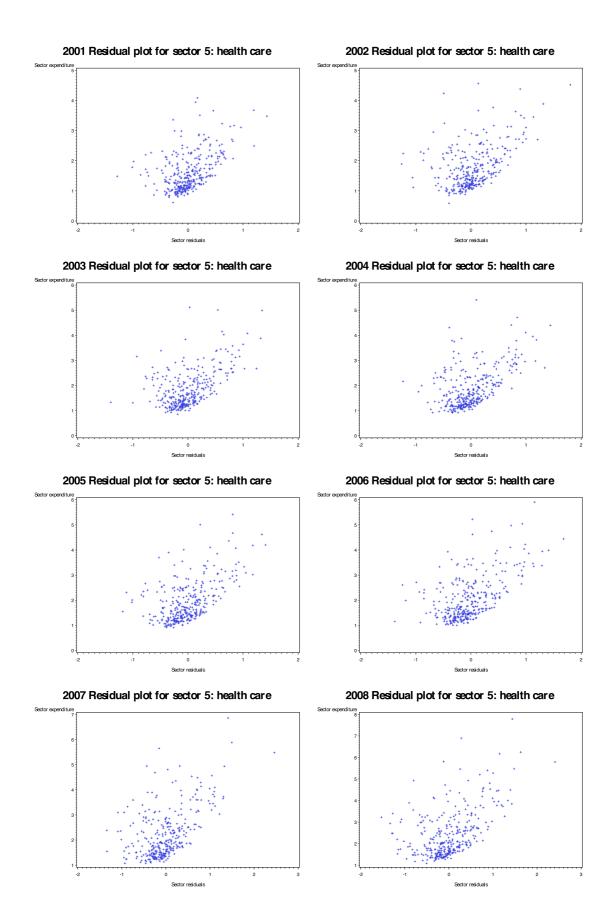

Residual plot for sector 11: water supply and sanitation

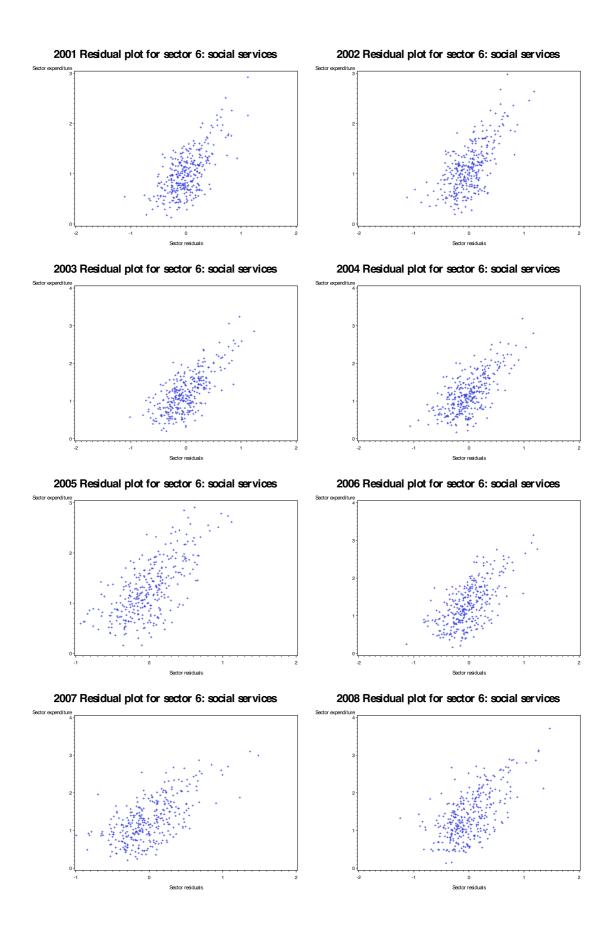


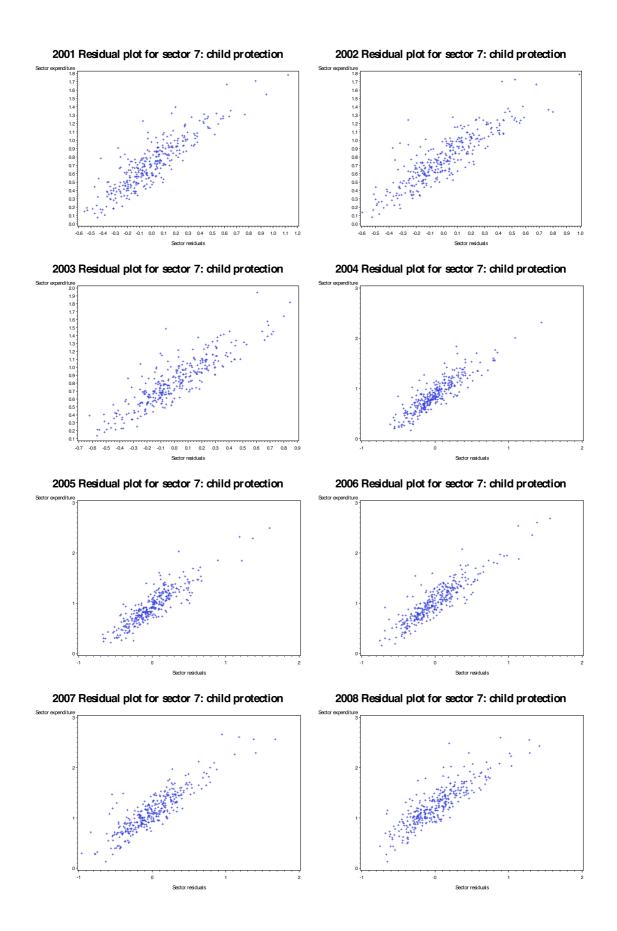

Residual plot for sector 12: other infrastructure

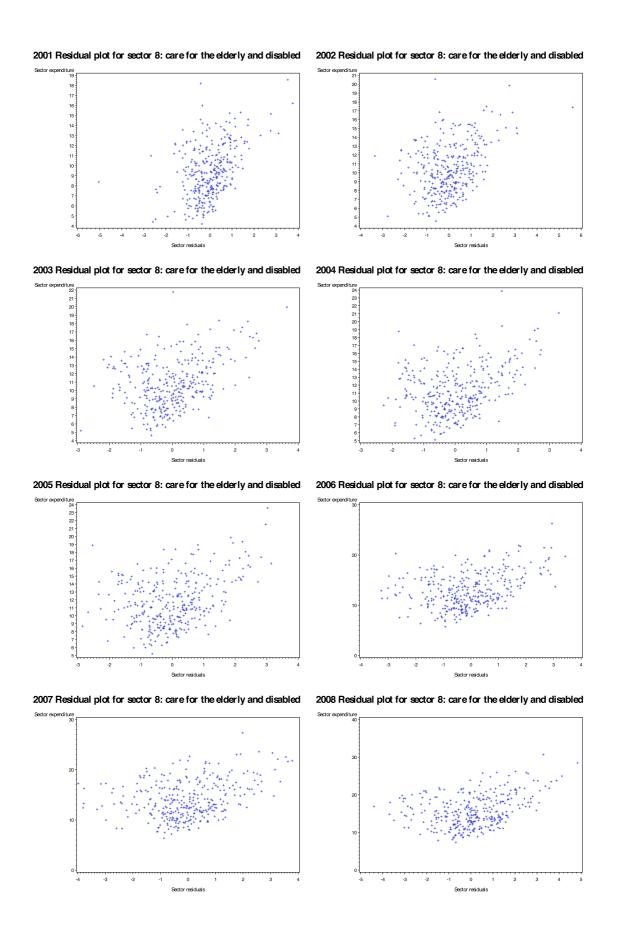


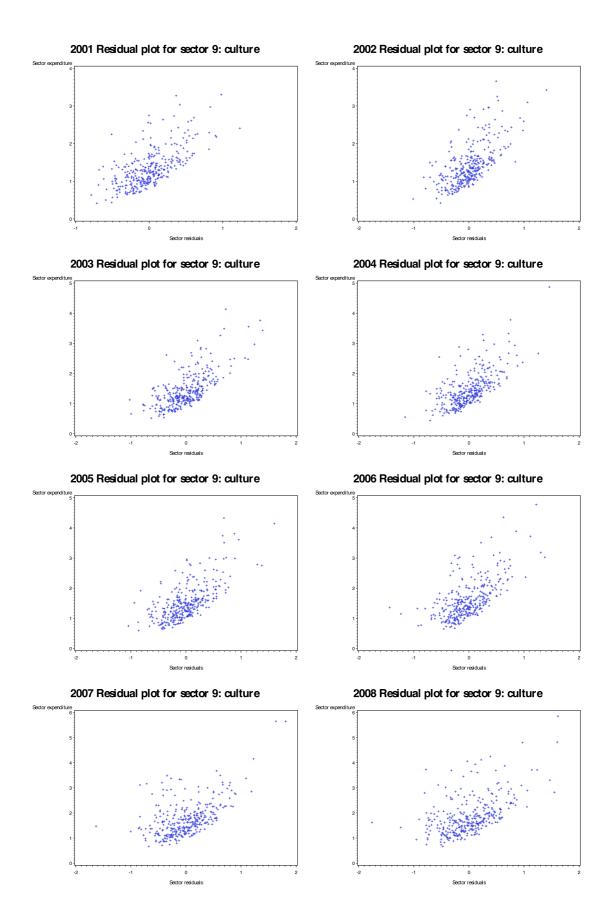

Residual plots for Model 2 by year and by sector

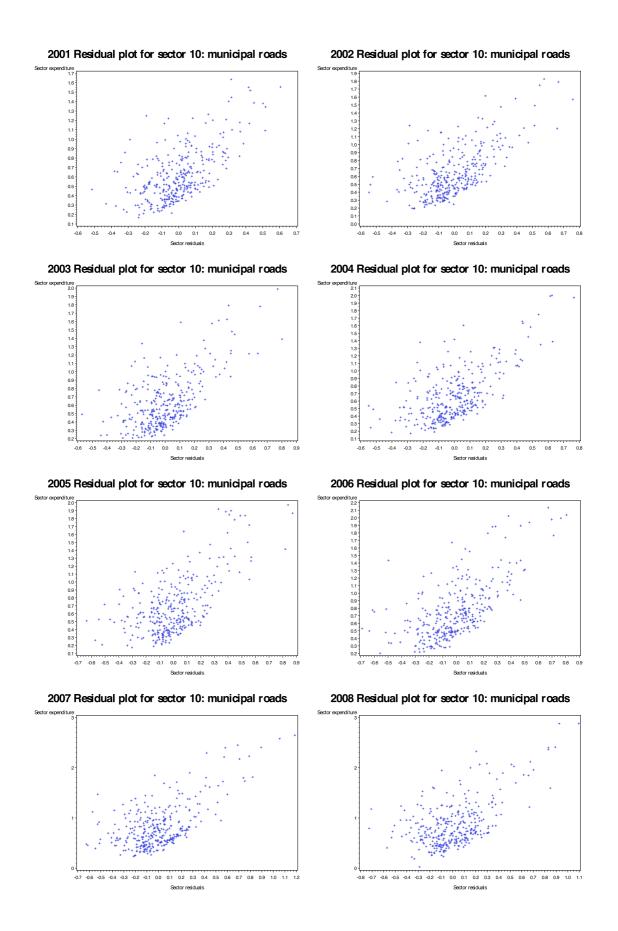


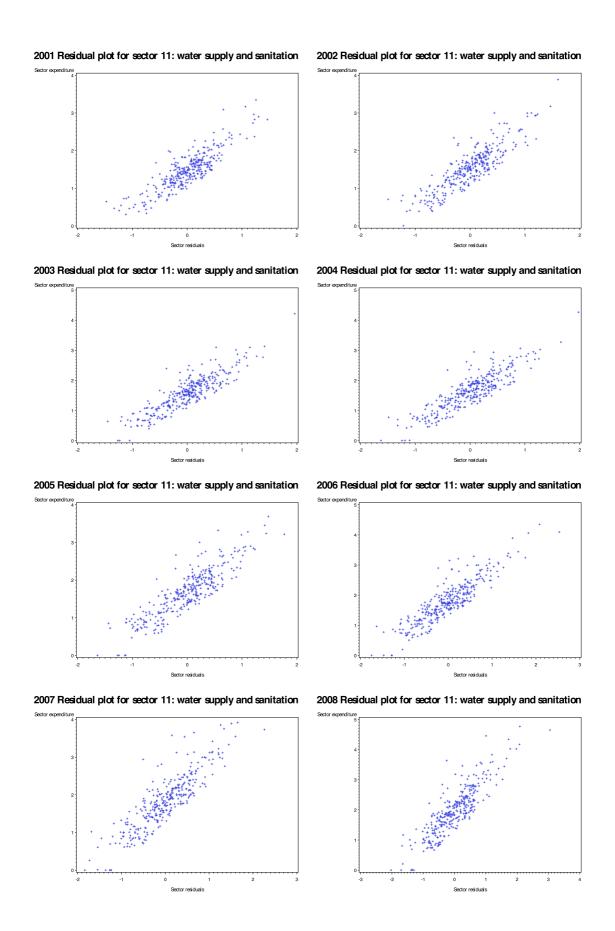


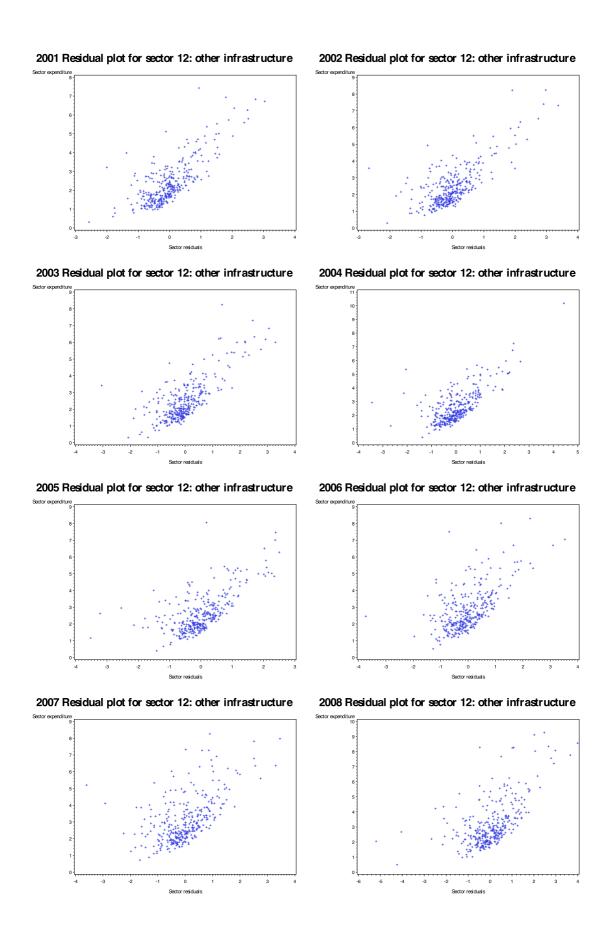












Appenaix D i effects in Mo	Finding signif	ıcanı fixea	48 49	Trysil Åmot	042 042
enecis in ivio	uei 4		49 50	Stor-Elvdal	042
<i>Table D. 1.</i> Mur	nicipality dummy	numbers	50 51	Rendalen	043
Dummy number	Name	Municipality #	52	Tolga	043
1	Halden	0101	53	Tynset	043
2	Fredrikstad	0106	54	Alvdal	043
3	Aremark	0118	55	Folidal	043
4	Marker	0119	56	Gjøvik	050
5	Trøgstad	0122	57	Skjåk	05
6	Spydeberg	0123	58	Nord-Fron	05
7	Askim	0124	59	Sel	05
8	Eidsberg	0125	60	Sør-Fron	05
9	Skiptvet	0127	61	Gausdal	05
10	Rakkestad	0128	62	Østre Toten	05
11	Råde	0135	63	Vestre Toten	052
12	Rygge	0136	64	Jevnaker	05
13	Våler	0137	65		05
14	Hobøl	0138		Lunner	
15	Vestby	0211	66 67	Gran	05
16	Ski	0213		Søndre Land	05
17	Ås	0214	68	Nordre Land Sør-Aurdal	05
18	Frogn	0215	69		05
19	Nesodden	0216	70 74	Etnedal	05
20	Oppegård	0217	71	Nord-Aurdal	05
21	Bærum	0219	72 72	Vestre Slidre	05
22	Asker	0220	73	Drammen	06
23	Aurskog-Høland	0221	74 75	Kongsberg	06
24	Sørum	0226	75 70	Ringerike	06
25	Fet	0227	76 77	Hole	06
26	Rælingen	0228	77 7 0	Flå	06
27	Enebakk	0229	78 7 0	Nes	06
28	Lørenskog	0230	79	Gol	06
29	Skedsmo	0231	80	Hemsedal	06
30	Nittedal	0233	81	Hol	06
31	Gjerdrum	0234	82	Sigdal	06
32	Ullensaker	0235	83	Krødsherad	06
33	Nes	0236	84	Modum	06
34	Eidsvoll	0237	85	Øvre Eiker	06
35	Nannestad	0238	86	Nedre Eiker	06
36	Hurdal	0239	87	Lier	06
37	Hamar	0403	88	Røyken	06
38		0403	89	Hurum	06
39	Ringsaker Løten	0415	90	Flesberg	06
			91	Nore og Uvdal	06
40 44	Stange	0417	92	Borre	07
41	Nord-Odal	0418	93	Holmestrand	07
42	Sør-Odal	0419	94	Tønsberg	07
43	Eidskog	0420	95	Sandefjord	07
44	Grue	0423	96	Larvik	07
45	Åsnes	0425	97	Svelvik	07
46	Våler	0426	98	Sande	07
47	Elverum	0427	99	Hof	07

100	Re	0716	150	Cicadal	1122
	_	0716	152	Gjesdal	1122
101	Ramnes	0718	153	Sola	1124
102	Andebu	0719	154	Randaberg	1127
103	Stokke	0720	155	Strand	1130
104	Nøtterøy 	0722	156	Suldal	1134
105	Tjøme	0723	157	Sauda	1135
106	Lardal	0728	158	Finnøy	1141
107	Porsgrunn	0805	159	Rennesøy	1142
108	Skien	0806	160	Kvitsøy	1144
109	Notodden	0807	161	Bokn	1145
110	Siljan	0811	162	Tysvær	1146
111	Bamble	0814	163	Karmøy	1149
112	Kragerø	0815	164	Vindafjord	1154
113	Drangedal	0817	165	Ølen	1159
114	Nome	0819	166	Vindafjord	1160
115	Sauherad	0822	167	Bergen	1201
116	Tinn	0826	168	Etne	1211
117	Hjartdal	0827	169	Ølen	1214
118	Seljord	0828	170	Sveio	1216
119	Kviteseid	0829	171	Stord	1221
120	Tokke	0833	172	Fitjar	1222
121	Risør	0901	173	Tysnes	1223
122	Grimstad	0904	174	Odda	1228
123	Arendal	0906	175	Ullensvang	1231
123		0911	176	Granvin	1234
	Gjerstad				
125	Vegårdshei	0912	177	Voss	1235
126	Tvedestrand	0914	178	Kvam	1238
127	Froland	0919	179	Fusa	1241
128	Lillesand	0926	180	Austevoll	1244
129	Åmli	0929	181	Sund	1245
130	Evje og Hornnes		182	Fjell	1246
131	Valle	0940	183	Askøy	1247
132	Kristiansand	1001	184	Vaksdal	1251
133	Mandal	1002	185	Osterøy	1253
134	Farsund	1003	186	Radøy	1260
135	Flekkefjord	1004	187	Lindås	1263
136	Vennesla	1014	188	Austrheim	1264
137	Songdalen	1017	189	Masfjorden	1266
138	Søgne	1018	190	Flora	1401
139	Lyngdal	1032	191	Hyllestad	1413
140	Hægebostad	1034	192	Høyanger	1416
141	Kvinesdal	1037	193	Sogndal	1420
142	Eigersund	1101	194	Lærdal	1422
143	Sandnes	1102	195	Luster	1426
144	Stavanger	1103	196	Askvoll	1428
145	Haugesund	1106	197	Fjaler	1429
146	Sokndal	1111	198	Gaular	1430
147	Lund	1112	199	Førde	1432
148	Bjerkreim	1114	200	Vågsøy	1439
149	Hå	1119	200	Vagsøy Selje	1439
				Seije Eid	
150 151	Klepp	1120	202		1443
151	Time	1121	203	Hornindal	1444

204	Gloppen	1445	256	Skaun	1657
205	Stryn	1449	257	Klæbu	1662
206	Molde	1502	258	Malvik	1663
207	Ålesund	1504	259	Steinkjer	1702
208	Kristiansund	1505	260	Namsos	1703
209	Vanylven	1511	261	Meråker	1711
210	Sande	1514	262	Stjørdal	1714
211	Herøy	1515	263	Frosta	1717
212	Ulstein	1516	264	Leksvik	1718
213	Hareid	1517	265	Levanger	1719
214	Volda	1519	266	Mosvik	1723
215	Ørsta	1520	267	Verran	1724
216	Ørskog	1523	268	Mandalseid	1725
217	Stranda	1525	269	Inderøy	1729
218	Stordal	1526	270	Snåsa	1736
219	Sykkylven	1528	271	Lierne	1738
220	Skodje	1529	272	Grong	1742
221	Sula	1531	273	Høylandet	1743
222	Giske	1532	274	Overhalla	1744
223	Rauma	1539	275	Fosnes	1748
224	Nesset	1543	276	Vikna	1750
225	Midsund	1545	277	Nærøy	1751
226	Fræna	1548	278	Bodø	1804
227	Eide	1551	279	Sømna	1812
228	Frei	1556	280	Brønnøy	1813
229	Gjemnes	1557	281	Vega	1815
230	Tingvoll	1560	282	Vevelstad	1816
231	Sunndal	1563	283	Herøy	1818
232	Surnadal	1566	284	Alstahaug	1820
233	Rindal	1567	285	Vefsn	1824
234	Halsa	1571	286	Grane	1825
235	Tustna	1572	287	Meløy	1837
236	Aure	1576	288	Gildeskål	1838
237	Trondheim	1601	289	Beiarn	1839
238	Hemne	1612	290	Fauske	1841
239	Snillfjord	1613	291	Sørfold	1845
240	Frøya	1620	292	Steigen	1848
241	Ørland	1621	293	Hamarøy	1849
242	Agdenes	1622	294	Tysfjord	1850
243	Rissa	1624	295	Lødingen	1851
244	Bjugn	1627	296	Tjeldsund	1852
245	Åfjord	1630	297	Ballangen	1854
246	Roan	1632	298	Vestvågøy	1860
				0 ,	
247	Osen	1633	299	Vågan	1865
248	Oppdal	1634	300	Hadsel	1866
249	Rennebu	1635	301	Bø	1867
250	Meldal	1636	302	Øksnes	1868
251	Orkdal	1638	303	Sortland	1870
252	Røros	1640	304	Andøy	1871
253	Holtålen	1644	305	Moskenes	1874
254	Midtre Gauldal	1648	306	Harstad	1901
255	Melhus	1653	307	Tromsø	1902

308	Skånland	1913
309	Bjarkøy	1915
310	Ibestad	1917
311	Bardu	1922
312	Målselv	1924
313	Sørreisa	1925
314	Dyrøy	1926
315	Tranøy	1927
316	Torsken	1928
317	Lenvik	1931
318	Balsfjord	1933
319	Karlsøy	1936
320	Lyngen	1938
321	Kåfjord	1940
322	Skjervøy	1941
323	Nordreisa	1942
324	Vardø	2002
325	Hammerfest	2004
326	Kautokeino	2011
327	Alta	2012
328	Måsøy	2018
329	Nordkapp	2019
330	Porsanger	2020
331	Lebesby	2022
332	Gamvik	2023
333	Berlevåg	2024
334	Tana	2025
335	Båtsfjord	2028
336	Sør-Varanger	2030

Table D.O. Cto	n 1 1 . fin din a				
Table D.2. Ste the significant		theta3_204	1.252457	theta5_298	1.458837
by iteratively to		theta3_212	0.738463	theta5_316	1.130055
municipality in	-	theta3_213	0.720791	theta5_320	1.388373
simultaneously		theta3_216	0.722032	theta5_326	2.982329
Significance ci		theta3_225	0.970766	theta5_327	1.264381
median adjust		theta3_227	0.985286	theta5_329	1.595299
expenditure		theta3_261	0.694881	theta5_330	1.113504
Parameter	Estimate	theta3_280	0.756862	theta5_334	1.739266
theta1 103	2.404057	theta3_282	-0.71083	theta5_335	1.206732
theta1_129	-2.66378	theta3_292	0.678692	theta5_38	-1.66219
theta1_131	2.290095	theta3_309	0.772991	theta5_43	2.192481
theta1_149	-3.2466	theta3_310	1.156009	theta5_49	-1.26666
theta1_149	-3.93952	theta3_316	1.221829	theta5_52	1.462753
theta1_161	-3.55073	theta3_327	0.736867	theta5_70	-1.47176
-		theta3_334	0.661489	theta5_77	-1.58851
theta1_176	-2.19223 2.270809	theta3_58	-0.68513	theta5_81	-1.70193
theta1_180		theta3_77	-0.83687	theta5_83	-1.80093
theta1_192	3.127054	theta3_81	-0.94337	theta5_9	-2.14543
theta1_195	-2.41826 3.447772	theta3_82	-0.75033	theta5_91	-1.55885
theta1_236		theta3_83	-0.62043		
theta1_247	-2.31918	theta3_91	-1.39847	theta6_100	0.763381
theta1_248	-2.39635			theta6_124	1.180949
theta1_253	2.215618	theta4_21	-2.07514	theta6_16	0.77392
theta1_291	2.414206	theta4_316	3.915541	theta6_167	1.126614
theta1_292	4.084143	theta4_321	2.395222	theta6_17	-0.93898
theta1_293	2.966558	theta4_326	2.080152	theta6_171	0.783714
theta1_294	2.949771	theta4_329	1.957284	theta6_199	0.762514
theta1_295	2.703473	theta4_332	1.746173	theta6_247	1.111636
theta1_296	2.968162	theta4_77	-2.52762	theta6_284	1.171212
theta1_309	3.628285	theta4_81	-2.32969	theta6_290	0.95498
theta1_315	3.794161			theta6_317	-1.20385
theta1_316	7.930382	theta5_106	-1.05959	theta6_324	0.93081
theta1_319	3.212174	theta5_110	-1.21387	theta6_328	-1.07171
theta1_321	4.829273	theta5_137	-1.18654	theta6_331	0.765217
theta1_326	2.547324	theta5_156	-2.07	theta6_43	0.977553
theta1_331	4.548194	theta5_160	-2.01137	theta6_44	1.151028
theta1_332	3.259316	theta5_161	-1.627	theta6_45	0.846589
theta1_38	-2.58827	theta5_186	1.424814	theta6_50	1.179623
theta1_43	3.171417	theta5_188	1.293389	theta6_52	1.269983
theta1_5	-2.82006	theta5_192	1.097574	theta6_58	-0.82491
theta1_57	-3.04013	theta5_194	1.546095	theta6_80	-0.78239
theta1_81	-4.94442	theta5_198	1.531417	theta6_81	-1.21995
theta1_82	-3.62313	theta5_204	1.085437	theta6_84	-0.74826
theta1_9	-3.44967	theta5_225	1.636792		
thata0 040	0.242402	theta5_236	1.540516	theta7_11	0.562993
theta2_316	6.342183	theta5_247	-1.05927	theta7_129	0.619829
4b - 4 - 0 44 0	0.000044	theta5_248	-1.28538	theta7_130	-0.56771
theta3_112	0.698214	theta5_272	1.615199	theta7_131	-0.56336
theta3_130	-0.86624	theta5_273	1.126029	theta7_140	-0.71193
theta3_131	1.013903	theta5_292	1.289591	theta7_158	1.003216
theta3_149	-0.65107	theta5_294	1.54802	theta7_160	-0.81661
theta3_162	0.645201	theta5_295	1.194185	theta7_174	0.67088
theta3_193	-0.69541				

theta7_176	-0.65609	theta9_260	1.049503	theta10_289	0.505231
theta7_185	0.67363	theta9_282	0.93606	theta10_291	0.877839
theta7_187	0.671623	theta9_286	-1.24486	theta10_292	0.3897
theta7_198	0.758549	theta9_29	-1.38128	theta10_301	0.640167
theta7_218	-0.73307	theta9_293	1.18994	theta10_309	0.84836
theta7_229	0.683547	theta9_294	1.085808	theta10_310	0.715607
theta7_239	0.931053	theta9_295	1.282079	theta10_313	0.63757
theta7_250	0.587988	theta9_3	1.695476	theta10_315	0.865825
theta7_261	-0.65074	theta9_30	-1.4425	theta10_316	1.3887
theta7_263	0.692625	theta9_316	2.293634	theta10_317	0.525375
theta7_281	0.817853	theta9_321	1.290059	theta10_319	0.899104
theta7_282	-0.62124	theta9_322	1.520106	theta10_320	0.395722
theta7_283	1.184047	theta9_323	0.891887	theta10_321	0.557889
theta7_286	-0.63074	theta9_326	1.738271	theta10_322	0.59834
theta7_316	1.061718	theta9_328	-1.08181	theta10_324	-0.4604
theta7_323	0.693972	theta9_329	1.621966	theta10_325	0.657532
theta7_331	0.587057	theta9_331	1.972695	theta10_331	1.121825
theta7_55	-0.56089	theta9_332	1.144739	theta10_332	0.679638
theta7_57	-0.7997	theta9_336	2.082639	theta10_333	-0.47974
theta7_78	0.823883	theta9_37	-0.94503	theta10_38	-0.39369
theta7_91	1.032027	theta9_38	-1.58528	theta10_49	-0.49275
		theta9_39	-1.31639	theta10_50	-0.45041
theta8_316	7.589541	theta9_43	1.56987	theta10_51	-0.55062
theta8_331	8.089162	theta9_61	-0.98052	theta10_55	-0.66427
theta8_77	-8.28568	theta9_64	-1.07913	theta10_57	-0.91424
theta8_81	-7.59881	theta9_65	-1.33154	theta10_61	-0.4643
		theta9_70	-0.88242	theta10_64	-0.38908
theta9_100	1.01388	theta9_72	-0.92107	theta10_65	-0.43242
theta9_110	-1.01464	theta9_77	-2.95127	theta10_77	-0.87967
theta9_118	0.923678	theta9_79	-0.89704	theta10_81	-0.62981
theta9_120	1.244113	theta9_81	-2.38197	theta10_83	-0.5096
theta9_124	-0.89083	theta9_83	-1.03935	theta10_9	-0.4905
theta9_131	1.914893	theta9_89	-0.92963	theta10_91	-0.43558
theta9_135	0.88411	theta9_9	-1.16864		
theta9_137	-1.10925			theta11_105	1.570932
theta9_141	1.26723	theta10_116	-0.41599	theta11_113	-1.13633
theta9_149	-1.20403	theta10_131	0.693728	theta11_121	1.397151
theta9_15	-1.01588	theta10_135	0.493697	theta11_126	1.746544
theta9_174	1.288746	theta10_148	-0.43757	theta11_129	-1.32254
theta9_176	-0.89274	theta10_149	-0.58219	theta11_140	-2.03057
theta9_192	1.78163	theta10_159	0.46295	theta11_148	-1.13767
theta9_203	-1.35044	theta10_160	-0.57921	theta11_156	-2.48381
theta9_21	-1.09607	theta10_189	-0.88912	theta11_160	-2.60046
theta9_216	-1.24239	theta10_191	0.406919	theta11_171	1.626438
theta9_224	0.966738	theta10_215	0.44846	theta11_182	-1.76152
theta9_229	1.01988	theta10_218	0.489732	theta11_189	-1.23077
theta9_23	-1.01279	theta10_225	0.388109	theta11_203	-1.50873
theta9_242	-1.03744	theta10_238	-0.51054	theta11_217	2.244192
theta9_245	-1.19931	theta10_245	-0.57854	theta11_230	1.060146
theta9_247	-1.45589	theta10_248	-0.48088	theta11_233	-1.23731
theta9_25	-0.89443	theta10_279	-0.42923	theta11_236	1.068391
theta9_252	1.387739	theta10_282	-0.69048	theta11_24	-1.2123

0.40	4 400070		0.44400
theta11_246	1.480379	theta12_194	3.11192
theta11_259	1.351866	theta12_216	-1.50363
theta11_260	1.162224	theta12_227	-1.73945
theta11_262	-1.06232	theta12_236	2.334612
theta11_266	-1.18993	theta12_238	-2.20622
theta11_272	1.128706	theta12_239	2.501142
theta11_276	1.287011	theta12_245	-1.7439
theta11_286	-1.15916	theta12_260	1.844493
theta11_287	-1.07203	theta12_261	-2.24588
theta11_289	-1.11993	theta12_271	3.715081
theta11_291	-1.11112	theta12_272	1.912137
theta11_294	1.497659	theta12_282	-2.9557
theta11_305	-1.22923	theta12_295	2.235561
theta11_309	1.239804	theta12_296	1.837957
theta11_312	1.150815	theta12_3	1.656567
theta11_316	2.589788	theta12_301	1.547405
theta11_318	-1.40946	theta12_309	-3.06046
theta11_319	1.241107	theta12_316	3.557688
theta11_329	1.317011	theta12_320	1.818825
theta11_331	1.362959	theta12_321	2.008455
theta11_332	1.562619	theta12_322	2.652602
theta11_334	1.413035	theta12 323	1.501828
theta11 47	-1.47334	theta12 326	2.471078
theta11 64	-1.0799	theta12 328	-1.63554
theta11 65	-1.19759	theta12 331	1.665773
theta11 69	1.11716	theta12 333	-3.80595
theta11_71	1.160781	theta12_335	-1.76931
theta11_72	1.066333	theta12_38	-3.03992
theta11_80	2.266015	theta12_39	-1.65795
theta11_9	-1.40978	theta12 4	-1.69906
theta11_90	1.071149	theta12 40	-1.77555
_		theta12 43	1.908517
theta12 103	1.806263	theta12 46	3.153131
theta12 110	-2.1854	theta12 5	-1.94082
theta12 114	2.435614	theta12 56	-1.75913
theta12_117	-2.32232	theta12_57	-3.71838
theta12_12	1.697484	theta12_62	-2.11997
theta12 120	2.963367	theta12_64	-1.75334
theta12_131	1.638038	theta12_65	-2.64933
theta12_137	-1.89879	theta12_78	2.634668
theta12_141	2.570161	theta12_80	2.521675
theta12 144	-1.69412	theta12_81	-2.44852
theta12_149	-3.43906	theta12 83	-3.79524
theta12_15	-1.51954	theta12_9	-3.14685
theta12_153	-1.71347	theta12 99	-1.60724
theta12_174	2.348354		
theta12 175	2.279476		
theta12_176	-1.95005		
theta12_179	-1.91504		
theta12_184	2.399103		
theta12_189	-2.09002		
theta12_193	-1.62494		
	1.02-70-7		

Table D.3. Ste	p 1.2 : finding	theta5 198	1.145146	theta7_239	0.840565
the significant		theta5_196	1.067865	theta7_250	0.635286
by iteratively t		theta5_282	1.185119	theta7 260	-0.5905
municipality in	-	theta5_291	-1.3611	theta7_263	0.745341
separately. Sig		theta5_296	-1.3892	theta7_203	-0.592
criteria: 50% d		_	-1.90145	_	0.745883
adjusted secto	or expenditure	theta5_316		theta7_281	
Parameter	Estimate	theta5_326	1.717065	theta7_283	1.203853
theta1_49	2.675429	theta5_328	1.221282	theta7_286	-0.57212
theta1_77	2.447552	theta5_333	1.438533	theta7_296	-0.70757
theta1_129	-2.61258	theta5_335	1.484908	theta7_329	-0.61393
theta1_161	-2.80228	H4-0 40	0.70074	414-0 0	4 005005
theta1_292	2.561889	theta6_16	0.76074	theta9_3	1.305605
theta1_293	2.174959	theta6_17	-0.91809	theta9_54	0.912712
theta1_296	2.944082	theta6_44	1.00963	theta9_57	1.050132
theta1_315	3.031456	theta6_45	0.759663	theta9_77	-1.10134
theta1_316	2.325234	theta6_50	1.189923	theta9_80	-0.89288
theta1_321	2.178223	theta6_52	1.084153	theta9_84	1.050792
116181_321	2.170225	theta6_80	-0.77019	theta9_131	1.384572
thota2 60	-0.72318	theta6_81	-0.89684	theta9_147	0.903929
theta3_69 theta3_91		theta6_84	-0.72857	theta9_161	1.060093
_	-0.89141	theta6_89	0.788844	theta9_194	-1.12884
theta3_108	0.653298	theta6_124	1.297489	theta9_225	-0.98143
theta3_112	0.790381	theta6_167	0.949125	theta9_247	-1.17927
theta3_130	-0.86873	theta6_190	-0.76672	theta9_252	1.557777
theta3_131	0.902343	theta6_247	1.318633	theta9_261	1.101456
theta3_162	0.619189	theta6_284	1.184726	theta9_267	-1.04635
theta3_189	0.740446	theta6_290	0.875752	theta9_282	1.863152
theta3_193	-0.67446	theta6_317	-1.18945	theta9_305	-0.9662
theta3_204	1.084486	theta6_324	0.803027	theta9_319	-0.97212
theta3_212	0.682027	theta6_328	-0.94841	theta9_330	-1.01706
theta3_213	0.7749			theta9_336	1.306519
theta3_216	0.790045	theta7_5	0.574164		
theta3_225	0.679343	theta7_55	-0.56491	theta10_48	0.430449
theta3_227	1.12961	theta7_57	-0.59888	theta10_51	-0.51072
theta3_261	0.769137	theta7_78	0.781906	theta10_55	-0.48696
theta3_280	0.682911	theta7_81	0.664595	theta10_57	-0.5422
theta3_282	-0.62712	theta7_83	0.654688	theta10_129	0.48258
theta3_310	1.106615	theta7_91	1.22706	theta10_131	0.49746
theta3_326	-1.13103	theta7_129	0.672908	theta10_159	0.503876
		theta7_130	-0.65441	theta10 173	0.47712
theta5_52	1.18638	theta7_131	-0.65921	theta10_176	0.526341
theta5_70	-1.11806	theta7_140	-0.67016	theta10 189	-0.61743
theta5_79	1.313334	_ theta7_158	0.917371	theta10_193	0.516093
theta5_117	1.279862	theta7_160	-0.71154	theta10_218	0.549219
theta5_119	1.308152	theta7_176	-0.58503	theta10_253	-0.41456
theta5_141	-1.28824	theta7_185	0.648741	theta10_282	-0.64367
theta5_156	-1.52663	theta7_187	0.602232	theta10_285	0.398382
theta5_161	-1.18956	theta7_189	0.568557	theta10_288	-0.40124
theta5_173	1.229448	theta7_198	0.615895	theta10_291	0.617929
theta5_186	1.291621	theta7_217	-0.58095	theta10_300	-0.45889
theta5_188	1.152739	theta7_218	-0.71089	theta10_301	0.467864
theta5_189	1.397765	theta7_219	0.607823	theta10_309	0.407804
theta5_194	1.116138		0.001020		5.51567

theta10_310	0.614615	theta12_83	-2.11764	theta0_38	3.220085
theta10_313	0.490303	theta12_91	2.715081	theta0_39	1.992623
theta10_314	0.396658	theta12_114	1.613251	theta0_40	1.280709
theta10_315	0.628729	theta12_117	-2.04918	theta0_42	0.952414
theta10_317	0.513632	theta12_120	1.56106	theta0_43	-2.5243
theta10_319	0.563562	theta12_144	-1.93198	theta0_44	-0.51509
theta10_324	-0.52513	theta12_156	1.485173	theta0_46	-0.90824
theta10_325	0.744901	theta12_157	2.050122	theta0_47	0.784008
theta10_326	-0.75253	theta12_158	-1.49348	theta0_48	0.561184
theta10_331	0.611699	theta12_160	3.254111	theta0_49	0.965651
		theta12_175	1.634188	theta0_52	-1.49464
theta11_24	-1.19743	theta12_184	1.548583	theta0_54	-0.535
theta11_47	-1.38467	theta12_194	2.734418	theta0_55	1.31035
theta11_55	1.076062	theta12_237	1.478127	theta0_56	1.071145
theta11_72	1.224848	theta12_239	2.892337	theta0_57	2.481737
theta11_75	-1.25027	theta12_247	1.885476	theta0_58	1.009483
theta11_80	2.443337	theta12_261	-1.61098	theta0_59	-0.46032
theta11_105	1.588572	theta12_271	2.919608	theta0_61	1.956757
theta11_121	1.28425	theta12_282	-3.01394	theta0_62	1.768722
theta11_126	1.745308	theta12_291	-1.49728	theta0_64	1.721936
theta11_129	-1.19009	theta12_294	-1.86956	theta0_65	2.530854
theta11_140	-2.0513	theta12_309	-4.7214	theta0_66	0.719493
theta11_156	-2.10452	theta12_315	-1.65668	theta0_67	0.723852
theta11_160	-1.96153	theta12_331	-1.4713	theta0_68	0.649073
theta11_171	1.360916	theta12_332	-1.47994	theta0_69	-1.40252
theta11_182	-1.38481	theta12_333	-3.13194	theta0_70	1.195802
theta11_203	-1.07476	theta12_335	-1.65296	theta0_71	-0.97487
theta11_217	2.131248	theta12_336	-1.80781	theta0_72	0.836836
theta11_246	1.655787			theta0_73	-1.28805
theta11_259	1.058892	theta0_2	-1.08427	theta0_76	1.605037
theta11_262	-1.11148	theta0_3	-1.85679	theta0_77	3.335019
theta11_276	1.43714	theta0_4	1.065492	theta0_78	-0.9109
theta11_277	1.068457	theta0_5	1.448805	theta0_80	-1.26168
theta11_287	-1.11591	theta0_6	0.502213	theta0_81	3.170913
theta11_288	-1.22303	theta0_7	0.620795	theta0_82	1.513362
theta11_289	-1.33623	theta0_9	3.212049	theta0_83	2.665912
theta11_290	-1.22585	theta0_10	-0.50797	theta0_86	0.517231
theta11_291	-1.54209	theta0_11	-0.45135	theta0_89	1.029835
theta11_293	-1.30073	theta0_12	-0.8952	theta0_90	-0.98953
theta11_305	-1.36397	theta0_13	0.565355	theta0_92	-0.89099
theta11_309	1.133231	theta0_15	1.350448	theta0_93	-1.21688
theta11_316	1.277997	theta0_18	-0.52221	theta0_96	-0.65276
theta11_318	-1.38101	theta0_19	0.473782	theta0_97	-1.00515
theta11_322	-1.46219	theta0_21	1.540622	theta0_99	0.548412
		theta0_23	1.517267	theta0_100	-0.86821
theta12_46	2.64055	theta0_25	0.840511	theta0_103	-1.44984
theta12_57	-2.01023	theta0_26	1.082202	theta0_106	0.788311
theta12_70	1.921818	theta0_28	-0.45771	theta0_107	-0.4936
theta12_77	2.569448	theta0_29	1.430644	theta0_109	-0.7943
theta12_78	2.433505	theta0_30	1.744571	theta0_110	1.764727
theta12_79	1.808474	theta0_34	0.714256	theta0_114	-1.3054
theta12_80	3.095128	theta0_37	1.570725	theta0_117	1.039107

theta0_118	-1.37758	theta0_199	-0.53516	theta0_290	-0.50994
theta0_120	-1.65463	theta0_203	1.892306	theta0_292	-1.8741
theta0_121	-0.49379	theta0_204	-0.94715	theta0_293	-1.99079
theta0_122	-0.57739	theta0_205	-0.46038	theta0_294	-2.10157
theta0_124	2.011116	theta0_206	-0.61526	theta0_295	-2.13101
theta0_125	1.127203	theta0_213	0.710306	theta0_296	-2.23417
theta0_129	0.5623	theta0_215	-1.12145	theta0_300	0.952365
theta0_131	-3.38981	theta0_216	1.814372	theta0_301	-1.4465
theta0_135	-1.46442	theta0_217	-1.15547	theta0_302	-0.93668
theta0_137	1.79168	theta0_218	-1.25263	theta0_307	-0.65346
theta0_138	1.059496	theta0_219	-0.66539	theta0_308	0.844743
theta0_139	0.761058	theta0_221	0.794129	theta0_309	-0.56257
theta0_140	0.728076	theta0_224	-1.34555	theta0_311	-1.43473
theta0_141	-1.34219	theta0_225	-1.09943	theta0_312	-0.91633
theta0_144	0.560805	theta0_227	1.843773	theta0_313	-0.86962
theta0_145	-1.13697	theta0_229	-0.87869	theta0_314	0.770876
theta0_147	-0.7315	theta0_230	-0.63382	theta0_315	-0.99681
theta0_148	1.542388	theta0_233	0.980511	theta0_316	-4.65528
theta0_149	2.592547	theta0_234	-0.93491	theta0_317	-0.88818
theta0_150	0.969751	theta0_236	-2.37316	theta0_318	0.948898
theta0_152	1.003066	theta0_238	1.624696	theta0_319	-1.89237
theta0_153	0.783099	theta0_241	-0.85586	theta0_320	-1.60093
theta0_154	1.118718	theta0_242	1.122105	theta0_321	-2.79152
theta0_155	0.639283	theta0_245	2.063861	theta0_322	-2.51557
theta0_156	1.036514	theta0_246	0.887386	theta0_323	-1.34995
theta0_158	-0.85289	theta0_247	2.273133	theta0_324	1.127504
theta0_159	-1.49675	theta0_248	1.596903	theta0_326	-3.57345
theta0_160	2.338303	theta0_249	1.15039	theta0_328	0.865011
theta0_161	0.893329	theta0_250	0.455395	theta0_329	-2.26257
theta0_164	0.595244	theta0_251	1.471437	theta0_330	-0.48776
theta0_168	0.887902	theta0_252	-1.81495	theta0_331	-4.00124
theta0_170	0.653876	theta0_253	-1.32105	theta0_332	-2.27405
theta0_171	-0.81488	theta0_254	-1.02625	theta0_333	1.167172
theta0_174	-2.05132	theta0_255	0.838881	theta0_334	-0.65499
theta0_175	-1.25682	theta0_259	-1.46131	theta0_335	0.603645
theta0_176	1.847951	theta0_260	-1.78362	theta0_336	-2.49253
theta0_178	-0.95782	theta0_261	0.670739		
theta0_179	1.094608	theta0_262	-0.65558		
theta0_180	-1.28312	theta0_264	-0.89529		
theta0_182	1.298062	theta0_266	1.001853		
theta0_184	-0.77795	theta0_269	0.454789		
theta0_186	-0.62131	theta0_271	-2.06453		
theta0_188	-0.63852	theta0_272	-1.13246		
theta0_189	2.003406	theta0_273	-0.47732		
theta0_190	-1.23224	theta0_275	-0.87427		
theta0_191	-1.04553	theta0_277	-0.7015		
theta0_192	-2.77074	theta0_279	1.164979		
theta0_193	1.215782	theta0_281	0.827389		
theta0_194	-0.98964	theta0_282	0.960478		
theta0_195	0.522417	theta0_286	1.156234		
theta0_196	-0.44554	theta0_288	0.515526		
theta0_198	-1.59018	theta0_289	-0.64542		

Table D.4. Step 1.3: finding the significant fixed effects by iteratively testing each municipality in each sector separately. Significance criteria: Significance criteria: t-value >=1.5

Cianificance crite	•	-		tneta1_292	_
-	eria: Significance d	riteria : t-		theta1_293	_
value >=1.5	Fation at a	4	1	theta1_294	_
Parameter	Estimate	t-value		theta1_296	_
theta0_124	2.011	2.99		theta1_297	theta1_297 1.914
theta0_137	1.792	2.88		theta1_300	theta1_300 1.129
theta0_149	2.593	1.61		theta1_305	theta1_305 1.707
theta0_15	1.350	1.92		theta1_309	theta1_309 2.128
theta0_156	1.037	2.18		theta1_315	
theta0_160	2.338	2.97		theta1_321	
theta0_161	0.893	1.70		theta1 331	_
theta0_176	1.848	2.45		theta1_332	_
theta0_189	2.003	5.00		theta1_333	_
theta0_203	1.892	1.74		theta1_47	_
theta0_21	1.541	1.85		theta1_49	_
theta0_216	1.814	2.57		theta1_60	_
theta0_227	1.844	3.52		_	_
theta0_245	2.064	1.89		theta1_77	_
theta0_247	2.273	3.29		theta1_80	_
_	1.002	1.52		theta1_90	_
theta0_266				theta1_91	theta1_91 1.207
theta0_333	1.167	1.71			
theta0_38	3.220	2.45		theta2_110	_
theta0_39	1.993	1.82		theta2_120	theta2_120 1.817
theta0_49	0.966	1.84		theta2_124	theta2_124 0.925
theta0_55	1.310	2.44		theta2_129	theta2_129 1.189
theta0_57	2.482	1.68		theta2_138	theta2_138 0.645
theta0_61	1.957	3.16		theta2_141	theta2_141 1.118
theta0_65	2.531	3.15		theta2_160	theta2_160 2.108
theta0_70	1.196	1.88		theta2_161	_
theta0_77	3.335	5.18		theta2_176	_
theta0_81	3.171	7.67		theta2_197	_
theta0_82	1.513	2.28		theta2_198	
theta0_83	2.666	2.38		theta2_200	_
theta0_9	3.212	2.76		theta2_229	_
				theta2_239	_
theta1_11	0.858	1.74		_	_
theta1_124	0.701	1.55		theta2_246	
theta1_131	0.630	2.04		theta2_247	
theta1_140	1.113	3.22		theta2_266	_
_				theta2_270	_
theta1_158	1.554	2.38		theta2_275	
theta1_170	0.465	1.50		theta2_281	_
theta1_22	1.425	2.89		theta2_288	theta2_288 1.254
theta1_234	0.894	1.75		theta2_291	theta2_291 2.713
theta1_242	1.071	1.72		theta2_308	theta2_308 1.635
theta1_246	1.382	3.11		theta2_311	theta2_311 1.951
theta1_253	1.933	4.95		theta2_321	theta2_321 2.870
_	0.756	1.50		theta2_326	
theta1_277		4 00		theta2_330	_
_	1.401	1.98		tilctaz 550	lilelaz 330 2.093
theta1_277	1.401 0.907	1.98 2.42		theta2_334	_

theta1_290

theta1_291

theta1_292

1.386

1.174

2.562

1.52

3.04

4.68

theta2_54	0.895 2.37	theta4_159	0.756	3.61
theta2_55	1.247 3.48	theta4_160	1.178	4.25
theta2_58	1.240 1.59	theta4_162	0.922	3.09
theta2_72	1.154 2.68	theta4_181	0.536	1.56
theta2_88	2.014 5.38	theta4_182	1.243	6.43
theta2_90	0.656 1.71	theta4_183	0.822	4.49
		theta4_191	0.866	1.50
theta3_108	0.653 1.57	theta4_212	0.900	7.61
theta3_112	0.790 1.62	theta4_221	0.797	2.71
theta3_121	0.588 1.82	theta4_222	0.314	1.62
theta3_131	0.902 4.93	theta4_225	0.958	1.87
theta3_156	0.402 1.51	theta4_227	0.504	1.88
theta3_162	0.619 2.05	theta4_229	0.992	3.37
theta3_189	0.740 3.77	theta4_247	1.205	2.64
theta3_19	0.459 3.93	theta4_248	0.719	1.70
theta3_191	0.507 1.82	theta4_262	0.572	1.66
theta3_204	1.084 7.38	theta4_264	0.857	2.59
theta3_212	0.682 3.32	theta4_276	0.887	3.96
theta3_213	0.775 5.26	theta4_296	0.789	2.31
theta3_216	0.790 2.39	theta4_30	0.644	2.81
theta3_225	0.679 3.67	theta4_317	0.823	2.12
theta3_227	1.130 5.10	theta4_32	0.346	2.26
theta3_229	0.320 2.78	theta4_321	1.407	3.70
theta3_23	0.523 2.43	theta4_326	0.933	2.04
theta3_230	0.446 4.76	theta4_329	1.472	2.20
theta3_238	0.556 2.86	theta4_33	0.394	1.56
theta3_24	0.336 1.83	theta4_332	1.066	3.39
theta3_261	0.769 2.93	theta4_335	0.895	1.77
theta3_269	0.489 3.35	theta4_42	0.687	1.56
theta3_279	0.346 1.56	theta4_6	0.379	1.90
theta3_280	0.683 2.30			
theta3_283	0.609 2.74	theta5_116	0.992	3.03
theta3_285	0.407 3.16	theta5_117	1.280	6.11
theta3_292	0.402 2.35	theta5_118	0.654	1.55
theta3_293	0.277 2.15	theta5_119	1.308	2.99
theta3_295	0.252 2.38	theta5_13	0.803	2.16
theta3_309	0.463 4.99	theta5_173	1.229	2.12
theta3_310	1.107 10.71	theta5_186	1.292	2.15
theta3_328	0.477 2.12	theta5_188	1.153	3.71
theta3_334	0.354 1.64	theta5_189	1.398	7.78
theta3_52	0.335 1.50	theta5_194	1.116	2.39
theta3_67	0.206 2.99	theta5_198	1.145	4.61
theta3_72	0.396 7.80	theta5_216	0.414	1.60
theta3_96	0.588 1.69	theta5_217	0.659	2.60
		theta5_218	0.674	1.82
theta4_116	1.214 2.90	theta5_225	0.626	1.66
theta4_136	1.054 3.78	theta5_240	0.513	2.00
theta4_14	0.340 1.76	theta5_25	0.505	1.54
theta4_145	0.752 2.75	theta5_261	0.409	1.51
theta4_151	0.413 1.54	theta5_264	0.699	1.73
theta4_153	1.028 4.19	theta5_268	0.670	3.29
theta4_155	0.804 3.59	theta5_270	0.489	2.29

hela5_272						
theta5_279	theta5_272	1.068	1.90	theta6_44	1.010	6.10
theta5_281	theta5_273	0.976	2.96	theta6_45	0.760	3.12
theta5_282	theta5_279	0.566	2.48	theta6_49	0.533	2.01
theta5_292	theta5_281	0.483	3.10	theta6_50	1.190	3.65
theta5_293	theta5_282	1.185	6.46	theta6_52	1.084	4.34
theta5_294	theta5_292	0.431	1.65	theta6_55	0.372	4.07
theta5_298	theta5_293	0.301	1.94	theta6_59	0.576	1.55
theta5_299	theta5_294	0.708	3.80	theta6_70	0.326	2.03
theta5_317	theta5_298	1.023	4.19	theta6_89	0.789	6.35
theta5_318	theta5_299	0.340	2.11	theta6_96	0.546	1.78
theta5_320	theta5_317	0.662	1.60			
theta5_326	theta5_318	1.011	2.20	theta7_10	0.471	2.58
theta5_327	theta5_320	0.809	2.96	theta7_115	0.395	2.47
theta5_328	theta5_326	1.717	9.78	theta7_119	0.377	2.20
theta5_333	theta5_327	0.555	2.46	theta7_129	0.673	8.09
theta5_334	theta5_328	1.221	7.24	theta7_137	0.478	1.80
theta5_335	theta5_333	1.439	5.59	theta7_14	0.448	2.05
theta5_43	theta5_334	0.944	1.89	theta7_142	0.545	2.34
theta5_50	theta5_335	1.485	5.84	theta7_15	0.450	1.97
theta5_52	theta5_43	0.655	3.22	theta7_158	0.917	3.82
theta5_71	theta5_50	0.824	3.18	theta7_174	0.554	4.52
theta5_79	theta5_52	1.186	1.86	theta7_185	0.649	1.93
theta7_189	theta5_71	0.605	3.05	theta7_186	0.221	1.60
theta6_100	theta5_79	1.313	3.78	theta7_187	0.602	2.65
theta6_104				theta7_189	0.569	3.20
theta6_108	theta6_100	0.656	2.33	theta7_191	0.445	2.91
theta6_124	theta6_104	0.294	1.70	theta7_198	0.616	3.16
theta6_126	theta6_108	0.421	2.28	theta7_229	0.608	7.54
theta6_131	theta6_124	1.297	6.14	theta7_239		9.12
theta6_16	theta6_126	0.388		theta7_243	0.469	1.77
theta6_167	_			_		
theta6_171	theta6_16	0.761		-		
theta6_176	_			-	0.460	
theta6_199	theta6_171			-	0.347	1.77
theta6_2	theta6_176		1.57	theta7_281		3.68
theta6_225						
theta6_230	_			_		
theta6_247 1.319 3.48 theta7_331 0.365 1.97 theta6_278 0.363 1.81 theta7_335 0.223 1.74 theta6_284 1.185 4.50 theta7_5 0.574 2.90 theta6_287 0.509 1.69 theta7_59 0.215 2.46 theta6_290 0.876 2.44 theta7_70 0.285 2.10 theta6_291 0.283 1.55 theta7_78 0.782 6.24 theta6_294 0.586 2.99 theta7_81 0.665 3.54 theta6_324 0.803 5.69 theta7_83 0.655 5.69 theta6_329 0.398 2.23 theta7_91 1.227 10.87 theta6_331 0.408 2.45 theta7_93 0.467 2.02 theta6_37 0.619 1.97 theta8_125 4.655 3.40	_			-		
theta6_278 0.363 1.81 theta7_335 0.223 1.74 theta6_284 1.185 4.50 theta7_5 0.574 2.90 theta6_287 0.509 1.69 theta7_59 0.215 2.46 theta6_290 0.876 2.44 theta7_70 0.285 2.10 theta6_291 0.283 1.55 theta7_78 0.782 6.24 theta6_294 0.586 2.99 theta7_81 0.665 3.54 theta6_324 0.803 5.69 theta7_83 0.655 5.69 theta6_329 0.398 2.23 theta7_91 1.227 10.87 theta6_331 0.408 2.45 theta7_93 0.467 2.02 theta6_37 0.619 1.97 theta8_125 4.655 3.40	-			-		
theta6_284	_			-		
theta6_287	_			_		
theta6_290 0.876 2.44 theta7_70 0.285 2.10 theta6_291 0.283 1.55 theta7_78 0.782 6.24 theta6_294 0.586 2.99 theta7_81 0.665 3.54 theta6_324 0.803 5.69 theta7_83 0.655 5.69 theta6_329 0.398 2.23 theta7_91 1.227 10.87 theta6_331 0.487 1.96 theta7_93 0.467 2.02 theta6_333 0.408 2.45 theta8_125 4.655 3.40	_			_		
theta6_291 0.283 1.55 theta7_78 0.782 6.24 theta6_294 0.586 2.99 theta7_81 0.665 3.54 theta6_324 0.803 5.69 theta7_83 0.655 5.69 theta6_329 0.398 2.23 theta7_91 1.227 10.87 theta6_331 0.487 1.96 theta7_93 0.467 2.02 theta6_333 0.408 2.45 theta8_125 4.655 3.40	_			-		
theta6_294 0.586 2.99 theta7_81 0.665 3.54 theta6_324 0.803 5.69 theta7_83 0.655 5.69 theta6_329 0.398 2.23 theta7_91 1.227 10.87 theta6_331 0.487 1.96 theta7_93 0.467 2.02 theta6_333 0.408 2.45 theta8_125 4.655 3.40	_			_		
theta6_324 0.803 5.69 theta7_83 0.655 5.69 theta6_329 0.398 2.23 theta7_91 1.227 10.87 theta6_331 0.487 1.96 theta7_93 0.467 2.02 theta6_333 0.408 2.45 theta6_37 0.619 1.97 theta8_125 4.655 3.40	_					
theta6_329 0.398 2.23 theta7_91 1.227 10.87 theta6_331 0.487 1.96 theta7_93 0.467 2.02 theta6_333 0.408 2.45 theta8_125 4.655 3.40	-			_		
theta6_331 0.487 1.96 theta7_93 0.467 2.02 theta6_333 0.408 2.45 theta6_37 0.619 1.97 theta8_125 4.655 3.40	_					
theta6_333 0.408 2.45 theta6_37 0.619 1.97 theta8_125 4.655 3.40	_					
theta6_37 0.619 1.97 theta8_125 4.655 3.40	_			theta7_93	0.467	2.02
	_					
theta6_43 0.708 3.35 theta8_140 1.766 2.24	_			-		
	theta6_43	0.708	3.35	theta8_140	1.766	2.24

theta8_141	3.806	3.21	theta9_230	0.696	1.56
theta8_180	1.910	1.57	theta9_252	1.558	3.89
theta8_184	3.637	5.55	theta9_261	1.101	3.41
theta8_191	2.215	1.94	theta9_275	0.619	2.20
theta8_192	1.552	2.85	theta9_277	0.683	2.01
theta8_203	3.100	3.27	theta9_282	1.863	7.99
theta8_210	4.546	7.29	theta9_293	0.754	2.10
theta8_225	2.203	2.11	theta9_296	0.505	3.04
theta8_233	2.567	1.76	theta9_3	1.306	4.92
theta8_254	1.767	2.01	theta9_50	0.377	1.64
theta8_257	1.921	1.95	theta9_54	0.913	3.30
theta8_266	2.599	4.66	theta9_57	1.050	4.12
theta8_268	2.288	1.97	theta9_59	0.750	2.53
theta8_271	2.784	3.61	theta9_83	0.451	1.94
theta8_281	4.653	3.75	theta9_84	1.051	1.87
theta8_282	5.073	7.20	theta9_91	0.400	2.45
theta8_288	3.546	4.57	theta9_95	0.656	1.96
theta8_289	1.569	1.50	theta9_99	0.823	1.78
theta8_300	2.613	3.62	theta9_329	0.473	1.91
theta8_302		2.12	theta9_331	0.398	1.66
theta8_304		2.75	theta9_333	0.353	1.76
theta8_306		3.36	theta9_336	1.307	6.82
theta8_308		3.05			
theta8_309		1.92	theta10_129	0.483	3.69
theta8_312		2.46	theta10_131	0.497	6.62
theta8_314		2.60	theta10_135	0.352	2.58
theta8_324		3.69	theta10_140	0.191	2.60
theta8_331		5.09	theta10_146	0.229	1.55
theta8_44		3.14	theta10_159	0.504	4.17
theta8_48		1.56	theta10_161	0.167	1.65
theta8_69		2.82	theta10_173	0.477	3.64
theta8_75	1.718	1.83	theta10_176	0.526	8.28
			theta10_181	0.299	1.79
theta9_10		1.51	theta10_191	0.230	2.92
theta9_118		4.09	theta10_193	0.516	2.14
theta9_120		2.38	theta10_195	0.226	1.70
theta9_131		3.00	theta10_198	0.226	3.89
theta9_135		1.84	theta10_203	0.369	2.00
theta9_144		3.43	theta10_215	0.372	4.51
theta9_147		2.73	theta10_218	0.549	6.72
theta9_153		2.12	theta10_220	0.298	2.90
theta9_156		6.87	theta10_226	0.258	1.69
theta9_160		2.52	theta10_271	0.137	2.91
theta9_161		6.52	theta10_285	0.398	3.08
theta9_162		1.73	theta10_287	0.317	2.10
theta9_174		2.03	theta10_289	0.368	4.24
theta9_190		1.56	theta10_291	0.618	4.51
theta9_192		1.53	theta10_299	0.218	1.53
theta9_2		1.54	theta10_301	0.468	3.49
theta9_202		1.59	theta10_309	0.514	4.27
theta9_218		2.17	theta10_310	0.615	5.55
theta9_229	0.527	1.76	theta10_313	0.490	2.46

11 40. 04.4	0.007	4 70
theta10_314	0.397	1.76
theta10_315	0.629	5.59
theta10_317	0.514	3.65
theta10_319	0.564	4.19
theta10_320	0.183	1.85
theta10_325	0.745	6.05
theta10 331	0.612	4.54
theta10 332	0.273	3.49
theta10_48	0.430	3.28
trieta 10_46	0.430	3.20
theta11_105	1.589	2.95
theta11_121	1.284	1.90
theta11_126	1.745	3.85
theta11_128	0.800	4.23
theta11_130	0.903	3.48
theta11 138	0.919	2.43
theta11 171	1.361	2.24
theta11 18	0.779	1.91
theta11_217	2.131	5.54
theta11_241	0.786	2.24
theta11_246	1.656	4.52
theta11_259	1.059	5.16
theta11_267	0.684	2.02
theta11_276	1.437	3.36
theta11_294	0.867	3.30
theta11_30	0.938	1.78
theta11_309	1.133	1.88
theta11_312	0.889	2.63
theta11_332	1.042	3.08
theta11_54	0.775	1.79
theta11 59	0.760	1.61
theta11 70	0.818	5.78
theta11 72	1.225	2.29
theta11 80	2.443	5.66
_		
theta11_94	0.962	2.60
theta12_114	1.613	1.84
theta12_116	1.459	3.14
theta12_12	1.163	3.12
theta12_120	1.561	4.88
theta12_130	0.699	2.30
theta12_156	1.485	7.13
theta12_157	2.050	8.96
theta12 160	3.254	5.65
theta12 175	1.634	4.17
theta12 18	0.566	1.51
theta12 184	1.549	3.23
theta12_194	2.734	5.76
theta12_194	1.278	1.80
_	-	
theta12_237	1.478	2.42
theta12_239	2.892	6.51
theta12_247	1.885	5.51

theta12_266

theta12_271

theta12_272

theta12_275

theta12_296

theta12_301

theta12_305

theta12_320

theta12_46

theta12_49

theta12_70

theta12_72

theta12_77

theta12_78

theta12_79

theta12_80

theta12_81

theta12_91

theta12_92

0.767

2.920

0.982

0.946

1.117

0.997

1.429

0.780

2.641

0.839

1.922

1.101

2.569

2.434

1.808

3.095

1.205

2.715

0.829

1.76

6.44

2.66

2.39

2.50

1.66

2.57

1.53

5.30

1.60

4.20

1.72

8.15

4.36

5.88

12.59

2.05

5.28

1.92

1	64	

Table D. 5. Summary of the number of significant effects in estimating model 4

	Number of	Number of	Number of significant	Number of significant
		significant fixed	fixed effects (13	fixed effects (13
Service sector	fixed effects	effects (13	sectors separately	sectors separately
	(12 sectors	sectors	tested). Significance	tested). Significance
	simultaneously		criterium: 50% median	criterium: t-value >=
-	tested)	tested)	adjusted expenditure	1,5
Budget surplus	0	328	215	30
1. Administration	35	310	10	37
2. Primary schools	1	273	0	35
3. Other education	27	283	20	37
4. Child care	8	288	1	37
5. Health care	40	310	23	45
6. Social assistance	23	256	19	37
7. Child protection	29	274	31	38
8. Care for the elderly and disabled	4	286	0	34
9. Culture	59	316	20	41
10. Municipal roads	50	309	30	38
11. Water supply and sanitation	49	303	33	25
12. Other infrastructure	65	319	35	35
Total without sector 0	390	n/a	222	439
Total with sector 0	390	3855	437	469

•	2.1: Model 4 estir		theta3_280	0.672	;
ie signincani ni	xed effects found i		theta3_282	-0.397	-
	Estimate	t-value	theta3_292	0.576	4
neta1_103	1.207	1.40	theta3_309	0.857	
neta1_129	-2.146	-6.03	theta3_310	1.309	10
eta1_131	2.447	5.92	theta3_316	0.868	(
eta1_149	-0.918	-1.05	theta3_327	0.499	•
eta1_160	-2.345	-6.48	theta3_334	0.454	•
eta1_161	-3.065	-7.28	theta3_58	-0.529	
eta1_176	-1.289	-1.75	theta3_77	-0.259	-(
eta1_180	0.536	0.78	theta3_81	-0.345	-(
eta1_192	1.780	2.63	theta3_82	-0.473	-(
eta1_195	-1.263	-2.43	theta3_83	-0.356	-(
eta1_236	2.739	0.24	theta3_91	-0.961	-3
eta1_247	-1.591	-3.64	theta4_21	-1.962	-3
eta1_248	-0.579	-0.51	theta4_316	2.793	(
eta1_253	1.719	5.79	theta4_321	1.844	2
eta1_291	2.014	5.56	theta4_326	1.498	•
eta1_292	3.246	6.95	theta4_329	1.677	•
eta1_293	2.630	4.72	theta4_332	1.676	2
eta1_294	2.725	7.69	theta4_77	-1.573	^
eta1_295	1.303	1.92	theta4_81	-1.062	-(
eta1_296	3.140	9.20	theta5_106	-0.678	_^
eta1_309	2.263	5.07	theta5_110	-0.273	-(
eta1_315	3.908	8.38	theta5_137	-0.526	-(
eta1_316	6.463	0.18	theta5_156	-1.659	-4
eta1_319	2.233	3.50	theta5_160	-1.285	-3
eta1_321	2.690	5.38	_ theta5_161	-1.461	-8
eta1_326	1.029	1.81	theta5_186	1.325	2
eta1_331	3.856	1.35	_ theta5_188	1.203	2
eta1_332	1.977	4.17	theta5_192	0.264	(
_ eta1_38	-0.693	-0.54	_ theta5_194	1.325	3
eta1_43	0.481	0.55	_ theta5 198	1.080	6
eta1_5	-1.356	-2.99	theta5_204	0.666	,
eta1_57	-1.173	-1.26	theta5_225	0.814	2
eta1_81	-0.771	-0.30	theta5_236	1.007	(
eta1 82	-1.580	-3.87	theta5_247	-0.893	-2
eta1_9	-1.224	-1.16	theta5_248	-0.364	-(
eta2_316	3.917	0.09	theta5_272	1.257	2
eta3_112	0.792	1.98	theta5_273	0.936	3
eta3_130	-0.749	-3.49	theta5_292	0.739	
eta3 131	0.999	3.69	theta5_294	1.022	6
eta3 149	-0.270	-0.63	theta5_295	0.424	(
eta3_162	0.684	3.41	theta5 298	1.169	-
eta3_193	-0.585	-1.66	theta5_316	0.116	(
eta3_193 eta3_204	1.231	10.32	theta5_320	0.806	(
eta3_204 eta3_212	0.754	4.67	theta5_326	2.209	(
eta3_212 eta3_213	0.734	7.62	-	0.894	į
eta3_216	0.816	3.13	theta5_327		
-			theta5_329	0.831	2
eta3_225	0.760	4.65 5.70	theta5_330	0.178	(
neta3_227	1.130	5.70	theta5_334	1.134	2
neta3_261	0.802	3.52	theta5_335	1.359	5

theta5_38	-0.734	-0.70	theta7_282	-0.367	-1.22
theta5_43	0.982	5.31	theta7_283	1.256	16.57
theta5_49	-0.715	-1.27	theta7_286	-0.436	-1.94
theta5_52	1.069	2.59	theta7_316	0.919	0.10
theta5_70	-1.309	-3.53	theta7_323	0.605	3.31
theta5_77	-0.424	-0.90	theta7_331	0.580	0.69
theta5_81	-0.038	-0.02	theta7_55	-0.517	-2.42
theta5_83	-0.887	-1.17	theta7_57	-0.678	-1.99
theta5_9	-1.098	-0.84	theta7_78	0.824	7.92
theta5_91	-0.759	-1.46	theta7_91	1.203	8.77
theta6_100	0.756	3.48	theta8_316	4.386	0.06
theta6_124	1.338	8.56	theta8_331	6.132	4.74
theta6_16	0.789	5.45	theta8_77	-2.942	-2.60
theta6_167	1.016	2.84	theta8_81	-1.633	-0.27
theta6_17	-0.779	-3.81	theta9_100	0.531	1.97
theta6_171	0.738	3.20	theta9_110	-0.077	-0.15
theta6_199	0.728	5.01	theta9_118	0.503	5.39
theta6_247	1.189	3.11	theta9_120	0.787	5.92
theta6_284	1.172	6.00	theta9_124	-0.540	-1.82
theta6_290	0.880	3.05	theta9_131	1.568	2.94
theta6_317	-1.155	-5.94	theta9_135	0.664	2.85
theta6_324	0.751	6.52	theta9_137	-0.375	-0.57
theta6_328	-1.099	-3.07	theta9_141	0.416	1.80
theta6_331	0.732	0.96	theta9_149	-0.022	-0.03
theta6_43	0.832	2.42	theta9_15	-0.225	-0.51
theta6_44	1.121	8.99	theta9_174	0.787	3.24
theta6_45	0.856	4.53	theta9_176	-0.519	-2.34
theta6_50	1.198	3.71	theta9_192	0.990	3.28
theta6_52	1.193	5.75	theta9_203	-0.879	-3.04
theta6_58	-0.684	-2.92	theta9_21	-0.646	-1.24
theta6_80	-0.593	-2.00	theta9_216	-0.830	-1.64
theta6_81	-1.078	-0.64	theta9_224	0.198	0.81
theta6_84	-0.726	-5.00	theta9_229	0.505	2.38
theta7_11	0.526	1.28	theta9_23	-0.232	-0.42
theta7_129	0.719	8.16	theta9_242	-0.255	-0.72
theta7_130	-0.613	-1.90	theta9_245	-0.160	-0.87
theta7_131	-0.589	-1.19	theta9_247	-1.173	-5.62
theta7_140	-0.551	-2.30	theta9_25	-0.406	-0.50
theta7_158	0.945	5.52	theta9_252	1.444	5.30
theta7_160	-0.685	-0.84	theta9_260	0.928	1.77
theta7_174	0.590	5.87	theta9_282	1.456	6.00
theta7_176	-0.557	-2.75	theta9_286	-0.588	-1.38
theta7_185	0.645	2.69	theta9_29	-0.511	-1.78
theta7_187	0.598	3.83	theta9_293	0.997	2.92
theta7_198	0.614	4.23	theta9_294	0.843	3.41
theta7_218	-0.739	-2.13	theta9_295	0.578	1.07
theta7_229	0.571	8.75	theta9_3	1.417	7.18
theta7_239	0.903	12.61	theta9_30	-0.736	-2.57
theta7_250	0.702	6.50	theta9_316	1.331	0.07
theta7_261	-0.494	-1.52	theta9_321	0.178	0.35
theta7_263	0.702	4.34	theta9_322	0.600	2.70
theta7_281	0.754	4.88	theta9_323	0.106	0.21

theta9_326	0.758	2.96	theta10_324	-0.446	-2.54
theta9_328	-0.474	-1.78	theta10_325	0.726	7.38
theta9_329	0.877	4.66	theta10_331	1.048	3.36
theta9_331	1.731	1.83	theta10_332	0.549	7.16
theta9_332	0.681	2.12	theta10_333	-0.346	-3.76
theta9_336	1.361	10.79	theta10_38	-0.126	-0.31
theta9_37	-0.177	-0.40	theta10_49	-0.307	-2.56
theta9_38	-0.702	-0.91	theta10_50	-0.363	-1.01
theta9_39	-0.600	-0.99	theta10_51	-0.520	-3.29
theta9_43	0.061	0.07	theta10_55	-0.495	-3.30
theta9_61	-0.355	-0.72	theta10_57	-0.586	-4.85
theta9_64	-0.187	-0.35	theta10_61	-0.272	-1.04
theta9_65	-0.521	-0.62	theta10_64	-0.112	-0.61
theta9_70	-0.790	-4.11	theta10_65	-0.212	-1.04
theta9_72	-0.726	-2.61	theta10_77	-0.315	-1.13
theta9_77	-1.466	-5.01	theta10_81	0.053	0.13
theta9_79	-0.802	-4.34	theta10_83	-0.154	-0.64
theta9_81	-0.380	-0.21	theta10_9	-0.101	-0.14
theta9_83	-0.007	-0.01	theta10_91	-0.055	-0.24
theta9_89	-0.623	-1.39	theta11_105	1.584	4.75
theta9_9	-0.052	-0.04	theta11_113	-1.009	-1.45
theta10_116	-0.200	-2.46	theta11_121	1.197	3.06
theta10_131	0.753	7.03	theta11_126	1.695	5.98
theta10_135	0.413	4.33	theta11_129	-1.299	-1.52
theta10_148	-0.239	-2.05	theta11_140	-1.859	-2.59
theta10_149	-0.204	-0.46	theta11_148	-0.781	-2.08
theta10_159	0.410	5.23	theta11_156	-2.063	-3.20
theta10_160	-0.210	-0.66	theta11_160	-1.731	-2.58
theta10_189	-0.579	-2.13	theta11_171	1.444	4.14
theta10_191	0.219	3.87	theta11_182	-1.289	-5.91
theta10_215	0.373	7.01	theta11_189	-0.984	-4.49
theta10_218	0.523	7.72	theta11_203	-1.193	-2.12
theta10_225	0.132	0.52	theta11_217	2.302	9.71
theta10_238	-0.306	-1.54	theta11_230	0.938	0.77
theta10_245	-0.225	-1.48	theta11_233	-0.926	-1.76
theta10_248	-0.184	-0.88	theta11_236	0.745	0.07
theta10_279	-0.331	-2.62	theta11_24	-1.177	-12.35
theta10_282	-0.325	-2.16	theta11_246	1.604	6.95
theta10_289	0.500	4.43	theta11_259	1.102	8.92
theta10_291	0.876	7.44	theta11_260	1.093	2.37
theta10_292	0.215	0.95	theta11_262	-1.031	-0.81
theta10_301	0.560	4.95	theta11_266	-1.222	-2.12
theta10_309	0.837	6.06	theta11_272	0.837	1.14
theta10_310	0.777	10.38	theta11_276	1.442	5.41
theta10_313	0.539	3.18	theta11 286	-0.776	-0.92
theta10_315	0.836	10.32	theta11_287	-0.902	-1.24
theta10_316	1.167	0.17	theta11_289	-1.275	-1.27
theta10_317	0.556	4.57	theta11_291	-1.285	-2.86
theta10_319	0.779	5.74	theta11_294	1.430	7.70
theta10_320	0.257	3.20	theta11_305	-1.216	-1.99
theta10_321	0.275	3.30	theta11_309	0.790	1.78
theta10_322	0.320	2.82	theta11_312	0.923	4.05
· · · · · · · · · · · · · · · · · · ·	0.020	5_		0.020	

theta11_316	2.104	0.12	theta12_309	-4.315	-7.39
theta11_318	-1.287	-5.50	theta12_316	1.448	0.04
theta11_319	1.000	1.71	theta12_320	0.946	2.34
theta11_329	0.811	0.99	theta12_321	0.122	0.14
theta11_331	1.227	0.64	theta12_322	0.927	1.81
theta11_332	1.085	2.56	theta12_323	0.136	0.28
theta11_334	1.072	0.70	theta12_326	1.147	2.01
theta11_47	-1.258	-0.76	theta12_328	-1.763	-3.18
theta11_64	-0.613	-0.82	theta12_331	0.527	0.45
theta11_65	-0.799	-0.83	theta12_333	-3.700	-9.44
theta11_69	0.741	1.95	theta12_335	-1.661	-2.81
theta11_71	0.838	1.72	theta12_38	-1.529	-0.80
theta11_72	1.074	2.45	theta12_39	-0.391	-0.23
theta11_80	2.507	7.31	theta12_4	-0.484	-0.90
theta11_9	-0.747	-0.34	theta12_40	-0.948	-0.91
theta11_90	0.894	1.91	theta12_43	-0.371	-0.36
theta12_103	1.024	0.99	theta12_46	2.599	8.37
theta12_110	-0.565	-0.72	theta12_5	-1.018	-0.65
theta12_114	1.460	2.86	theta12_56	-0.686	-0.70
theta12_117	-2.204	-6.04	theta12_57	-2.628	-5.05
theta12_12	1.078	4.91	theta12_62	-1.145	-0.63
theta12_120	1.954	7.84	theta12_64	-0.481	-0.36
theta12_131	0.610	0.62	theta12_65	-1.248	-0.72
theta12_137	-0.783	-0.63	theta12_78	2.472	5.97
theta12_141	1.568	2.24	theta12_80	3.242	17.39
theta12_144	-1.531	-3.38	theta12_81	0.455	0.13
theta12_149	-1.561	-0.38	theta12_83	-2.287	-2.86
theta12_15	-0.263	-0.17	theta12_9	-1.470	-0.87
theta12_153	-0.845	-0.89	theta12_99	-1.154	-1.33
theta12_174	1.487	3.37			
theta12_175	1.838	7.06			
theta12_176	-1.526	-3.74			
theta12_179	-1.060	-0.99			
theta12_184	1.545	5.13			
theta12_189	-1.411	-2.29			
theta12_193	-0.631	-0.75			
theta12_194	2.805	9.01			
theta12_216	-0.881	-0.97			
theta12_227	-0.415	-0.26			
theta12_236	1.707	0.99			
theta12_238	-1.269	-1.93			
theta12_239	3.382	11.56			
theta12_245	0.114	0.13			
theta12_260	1.618	2.31			
theta12_261	-2.225	-4.53			
theta12_271	2.432	7.62			
theta12_272	1.288	3.30			
theta12_282	-2.989	-5.25			
theta12_295	0.823	1.26			
theta12_296	1.454	4.63			
theta12_3	1.265	3.27			
theta12_301	0.793	1.78			

	2.2: Model 4 estin		theta5_316	-1.432
e sigrillicarit II	ixed effects found i		theta5_326	1.363
-1-1 10	Estimate	t-value	theta5_328	1.357
eta1_49	2.563	5.86	theta5_333	1.675
eta1_77	2.128	6.11	theta5_335	1.710
eta1_129	-2.194	-1.72	theta6_16	0.766
eta1_161	-2.908	-5.40	theta6_17	-0.755
ta1_292	2.527	5.18	theta6_44	1.084
eta1_293	1.887	4.38	theta6_45	0.846
eta1_296	2.199	3.16	theta6_50	1.131
eta1_315	3.503	6.04	theta6_52	1.106
eta1_316	2.116	0.60	theta6_80	-0.665
eta1_321	2.119	4.46	theta6_81	-0.935
eta3_69	-0.728	-1.24	theta6_84	-0.609
eta3_91	-0.887	-4.45	theta6_89	0.851
eta3_108	0.732	2.22	theta6_124	1.358
eta3_112	0.837	2.45	theta6_167	0.991
eta3_130	-0.735	-3.51	theta6_190	-0.656
eta3 131	0.880	4.74	theta6_247	1.258
eta3_162	0.670	3.40	theta6_284	1.197
eta3_189	0.719	3.44	_ theta6_290	0.855
eta3_193	-0.517	-1.38	theta6_317	-1.163
eta3_204	1.183	10.61	theta6_324	0.790
eta3_212	0.744	4.79	theta6_328	-0.911
eta3_213	0.801	7.54	theta7_5	0.546
eta3_216	0.815	3.32	theta7_55	-0.467
eta3_225	0.648	4.44	theta7_57	-0.581
eta3_227	1.100	7.10	theta7_78	0.853
eta3_261	0.854	3.42	theta7_81	0.529
eta3_280	0.632	3.42	theta7_83	0.613
eta3_282	-0.371	-0.88	theta7_91	1.325
eta3_262 eta3_310	1.239	-0.66 15.51	-	0.671
eta3_310 eta3_326	-0.993		theta7_129	-0.577
-		-2.53 0.53	theta7_130	
eta4_316	2.390	0.52	theta7_131	-0.449 0.401
eta5_52	1.184	2.73	theta7_140	-0.491
eta5_70	-0.912	-3.04 5.47	theta7_158	0.872
eta5_79	1.375	5.47 7.50	theta7_160	-0.583 0.540
eta5_117	1.192	7.50	theta7_176	-0.549 0.605
eta5_119	1.324	4.44	theta7_185	0.605
eta5_141	-1.251	-4.22 2.02	theta7_187	0.592
eta5_156	-1.642	-3.93 5.13	theta7_189	0.615
eta5_161	-1.136	-5.12 4.00	theta7_198	0.551
eta5_173	1.146	1.90	theta7_217	-0.545
eta5_186	1.287	2.80	theta7_218	-0.743
eta5_188	1.194	5.94	theta7_229	0.534
eta5_189	1.404	9.01	theta7_239	0.873
eta5_194	1.267	3.55	theta7_250	0.655
eta5_198	1.064	7.44	theta7_260	-0.629
eta5_272	1.053	3.13	theta7_263	0.633
eta5_282	1.285	4.45	theta7_271	-0.412
eta5_291	-1.317	-3.07	theta7_281	0.858
eta5_296	-1.025	-3.17	theta7_283	1.249

theta7_286	-0.452	-3.63	theta10_331	0.662	6.47
theta7_296	-0.648	-2.15	theta11_24	-1.212	-11.67
theta7_329	-0.668	-2.16	theta11_47	-1.294	-0.79
theta9_3	1.252	6.46	theta11_55	0.959	1.37
theta9_54	0.832	4.17	theta11_72	1.132	3.63
theta9_57	0.787	2.10	theta11_75	-1.267	-2.08
theta9_77	-0.586	-1.93	theta11_80	2.360	6.11
theta9_80	-0.448	-1.20	theta11_105	1.655	4.56
theta9_84	0.999	2.02	theta11_121	1.151	2.61
theta9_131	1.421	9.04	theta11_126	1.739	5.47
theta9_147	0.940	3.53	theta11_129	-1.306	-0.91
theta9_161	0.777	5.64	theta11_140	-1.998	-2.62
theta9_194	-0.666	-7.50	theta11_156	-2.265	-3.63
theta9_225	-0.861	-2.89	theta11_160	-1.238	-2.28
theta9_247	-0.752	-5.15	theta11_171	1.404	3.82
theta9_252	1.457	4.95	theta11_182	-1.224	-5.33
theta9_261	1.032	3.69	theta11_203	-0.957	-2.14
theta9_267	-0.948	-1.93	theta11_217	2.247	7.52
theta9_282	1.831	7.00	theta11_246	1.520	6.92
theta9_305	-0.851	-2.59	theta11_259	1.104	8.33
theta9_319	-0.737	-1.50	theta11_262	-1.070	-0.96
theta9_330	-0.990	-3.67	theta11_276	1.348	4.81
theta9_336	1.083	7.65	theta11_277	0.901	1.70
theta10_48	0.435	5.06	theta11_287	-1.028	-1.29
theta10_51	-0.492	-2.77	theta11_288	-1.420	-3.44
theta10_55	-0.466	-3.09	theta11_289	-1.351	-1.71
theta10_57	-0.491	-3.68	theta11_290	-1.206	-1.18
theta10_129	0.381	1.08	theta11_291	-1.713	-2.66
theta10_131	0.711	11.90	theta11_293	-1.331	-2.14
theta10_159	0.419	5.21	theta11_305	-1.586	-2.86
theta10_173	0.408	3.40	theta11_309	0.482	1.13
theta10_176	0.533	10.83	theta11_316	0.801	0.19
theta10_189	-0.483	-1.72	theta11_318	-1.432	-5.57
theta10_193	0.504	2.65	theta11_322	-1.592	-2.89
theta10_218	0.526	8.80	theta12_46	2.696	8.64
theta10_253	-0.379	-2.85	theta12_57	-1.560	-3.57
theta10_282	-0.337	-1.90	theta12_70	1.853	5.92
theta10_285	0.455	5.00	theta12_77	2.207	6.33
theta10_288	-0.265	-1.98	theta12_78	2.558	6.02
theta10_291	0.703	4.64	theta12_79	2.068	10.00
theta10_300	-0.348	-3.87	theta12_80	2.939	9.59
theta10_301	0.487	5.41	theta12_83	-1.785	-2.81
theta10 309	0.645	7.14	theta12_91	2.593	6.40
_ theta10_310	0.678	8.88	theta12_114	1.580	2.94
_ theta10_313	0.557	3.78	theta12_117	-1.595	-3.92
theta10_314	0.504	2.71	theta12_120	1.508	6.17
theta10_315	0.851	9.23	theta12_144	-1.569	-3.27
theta10_317	0.546	4.52	theta12_156	0.345	1.56
theta10_319	0.603	5.74	theta12_157	1.929	13.40
theta10_324	-0.442	-2.41	theta12_158	-0.859	-1.53
theta10_325	0.790	8.69	theta12_160	0.898	2.23
theta10_326	-0.748	-3.94	theta12_175	1.843	6.60
	5.170	0.04		1.0-10	0.00

theta12_184	1.514	4.84	theta0_9	3.619	3.27
theta12 194	2.374	7.37	theta1_49	2.627	5.95
theta12 237	1.602	4.59	theta1_77	2.541	4.25
theta12_239	3.121	10.04	theta1_129	-2.216	-1.69
theta12_247	1.458	5.43	theta1_161	-2.893	-5.06
theta12_261	-1.121	-3.74	theta1_292	2.520	5.25
theta12_271	2.389	7.35	theta1_293	1.870	4.31
theta12_282	-2.075	-4.07	theta1_296	2.176	3.08
theta12_291	-1.676	-3.69	theta1_315	3.469	6.06
theta12_294	-1.859	-4.45	theta1_316	2.067	0.57
theta12_309	-4.687	-10.67	theta1_321	2.108	4.46
theta12_315	-0.584	-1.07	theta3_69	-0.717	-1.27
theta12_331	-1.856	-8.96	theta3_91	-0.906	-4.30
theta12_332	-1.679	-5.47	theta3_108	0.730	2.25
theta12_333	-2.715	-6.09	theta3_112	0.838	2.32
theta12_335	-1.456	-2.20	theta3_130	-0.733	-3.59
theta12_336	-0.823	-0.59	theta3_131	0.873	4.50
			theta3_162	0.670	3.37

theta3_189

theta3_193

theta3_204

theta3_212

0.691

-0.528

1.188

0.744

2.30

-1.40

10.69

4.76

Table D. 8. Step 2.3: Model 4 estimates with the sector 0 significant fixed effects found in step 1.3 and the other effects found in step 1.2

			theta3_213	0.80
	Estimate	t-value	theta3_216	0.809
eta0_124	1.364	2.33	theta3_225	0.667
ta0_137	1.901	3.33	theta3_227	1.092
ta0_149	2.528	1.94		0.848
a0_15	1.173	1.81	theta3_261	
a0_156	-0.383	-0.57	theta3_280	0.635
eta0_160	2.437	2.64	theta3_282	-0.377
ta0_161	0.837	1.36	theta3_310	1.239
a0_176	2.345	2.65	theta3_326	-0.987
a0_189	2.071	1.89	theta4_316	2.421
a0_203	1.811	1.60	theta5_52	1.178
ta0_21	1.643	2.19	theta5_70	-0.873
a0_216	1.682	1.55	theta5_79	1.366
a0_227	1.508	2.40	theta5_117	1.182
a0_245	2.142	1.89	theta5_119	1.317
a0 247	2.243	1.65	theta5_141	-1.246
a0 266	1.676	2.64	theta5_156	-1.623
_ a0_333	2.053	2.91	theta5_161	-1.132
a0_38	3.127	2.60	theta5_173	1.142
_ ta0_39	1.901	1.98	theta5_186	1.280
a0_49	1.601	3.24	theta5_188	1.187
a0_55	1.319	0.81	theta5_189	1.448
ta0_57	2.602	1.05	theta5_194	1.261
ta0_61	1.990	3.49	theta5_198	1.059
eta0_65	2.535	3.42	theta5_272	1.049
ta0_70	1.952	1.63	theta5_282	1.241
a0_70 a0_77	4.432	4.21	theta5_291	-1.327
ta0_81	3.545	4.48	theta5_296	-1.030
a0_82	1.999	3.32	theta5_316	-1.447
eta0_83	2.132	2.02	theta5_326	1.369

theta5_328	1.340	8.99	theta7_329	-0.674	-2.16
theta5_333	1.660	6.02	theta9_3	1.240	6.45
theta5_335	1.684	7.14	theta9_54	0.822	4.16
theta6_16	0.767	5.07	theta9_57	0.894	2.32
theta6_17	-0.764	-3.62	theta9_77	-0.428	-1.40
theta6_44	1.086	8.50	theta9_80	-0.465	-1.23
theta6_45	0.851	4.31	theta9_84	0.997	2.03
theta6_50	1.134	4.72	theta9_131	1.409	8.98
theta6_52	1.112	5.67	theta9_147	0.932	3.51
theta6_80	-0.661	-2.09	theta9_161	0.767	4.81
theta6_81	-0.955	-2.21	theta9_194	-0.678	-7.65
theta6_84	-0.600	-3.98	theta9_225	-0.866	-2.95
theta6_89	0.855	9.25	theta9_247	-0.710	-4.19
theta6_124	1.342	8.77	theta9_252	1.450	4.97
theta6_167	0.981	2.46	theta9_261	1.024	3.68
theta6_190	-0.661	-5.22	theta9_267	-0.951	-1.93
theta6_247	1.239	2.78	theta9_282	1.752	6.49
theta6_284	1.197	5.94	theta9_305	-0.866	-2.61
theta6_290	0.848	2.29	theta9_319	-0.736	-1.49
theta6_317	-1.164	-6.14	theta9_330	-0.992	-3.69
theta6_324	0.802	7.02	theta9_336	1.083	7.69
theta6_328	-0.887	-3.19	theta10_48	0.430	5.05
theta7_5	0.553	3.81	theta10_51	-0.493	-2.82
theta7_55	-0.473	-0.87	theta10_55	-0.457	-2.95
theta7_57	-0.592	-1.63	theta10_57	-0.468	-2.98
theta7_78	0.853	8.32	theta10_129	0.378	1.03
theta7_81	0.525	2.64	theta10_131	0.700	11.52
theta7_83	0.606	3.05	theta10_159	0.423	5.30
theta7_91	1.338	14.63	theta10_173	0.408	3.39
theta7_129	0.680	4.03	theta10_176	0.563	11.42
theta7_130	-0.575	-1.70	theta10_189	-0.481	-1.34
theta7_131	-0.434	-2.00	theta10_193	0.503	2.65
theta7_140	-0.480	-1.76	theta10_218	0.535	8.91
theta7_158	0.877	4.71	theta10_253	-0.370	-2.80
theta7_160	-0.560	-1.35	theta10_282	-0.344	-1.91
theta7_176	-0.547	-2.40	theta10_285	0.454	4.97
theta7_185	0.609	2.68	theta10_288	-0.271	-2.06
theta7_187	0.593	3.60	theta10_291	0.693	4.63
theta7_189	0.597	2.03	theta10_300	-0.353	-3.97
theta7_198	0.558	3.82	theta10_301	0.478	5.32
theta7_217	-0.545	-1.09	theta10_309	0.641	7.13
theta7_218	-0.733	-2.28	theta10_310	0.673	8.90
theta7_229	0.541	8.67	theta10_313	0.562	3.84
theta7_239	0.883	12.61	theta10_314	0.508	2.67
theta7_250	0.655	6.04	theta10_315	0.854	9.29
theta7_260	-0.630	-1.77	theta10_317	0.542	4.52
theta7_263	0.647	4.08	theta10_319	0.598	5.69
theta7_271	-0.407	-1.71	theta10_324	-0.446	-2.45
theta7_281	0.861	5.64	theta10_325	0.790	8.66
theta7_283	1.248	16.32	theta10_326	-0.757	-3.97
theta7_286	-0.450	-3.60	theta10_331	0.657	6.46
theta7_296	-0.638	-2.10	theta11_24	-1.216	-11.66

theta11_47	-1.299	-0.82
theta11_55	0.974	0.94
theta11_72	1.132	3.59
theta11_75	-1.272	-2.04
theta11_80	2.341	5.97
theta11_105	1.646	4.53
theta11_121	1.149	2.59
theta11 126	1.739	5.48
theta11 129	-1.309	-0.90
theta11_140	-1.997	-2.49
theta11_156	-2.240	-3.51
theta11_160	-1.209	-2.22
theta11_171	1.400	3.75
theta11_182	-1.225	-5.30
theta11_203	-0.945	-1.83
theta11_217	2.238	7.42
theta11 246	1.515	6.91
theta11_259	1.100	8.27
theta11_262	-1.073	-0.96
theta11_276	1.341	4.80
theta11_277	0.911	1.72
theta11_287	-1.019	-1.26
theta11_288	-1.416	-3.43
theta11_289	-1.350	-3. 4 3 -1.61
theta11_289	-1.210	-1.16
theta11_291	-1.710 -1.710	-1.10 -2.54
theta11_293	-1.330	-2.5 4 -2.08
theta11_305	-1.607	-2.81
theta11_309	0.454	1.05
theta11_316	0.754	0.18
theta11_318	-1.424	-5.54
theta11_322	-1.606	-2.93
theta12_46	2.691	8.65
theta12_57	-1.321	-3.00
theta12_70	1.993	4.02
theta12_77	2.691	6.21
theta12_78	2.554	5.98
theta12_79	2.062	9.94
theta12_80	2.905	9.34
theta12_83	-1.693	-2.65
theta12_91	2.627	6.40
theta12_114	1.579	2.94
theta12_117	-1.609	-3.94
theta12_120	1.519	6.23
theta12_144	-1.559	-3.25
theta12_156	0.363	1.33
theta12_157	1.934	13.39
theta12_158	-0.893	-1.58
theta12_160	0.844	1.89
theta12_175	1.816	6.44
theta12_184	1.509	4.82
theta12_194	2.357	7.26

theta12_237

theta12_239

theta12_247

theta12_261

theta12_271

theta12_282

theta12_291

theta12_294

theta12_309

theta12_315

theta12_331

theta12_332

theta12_333

theta12_335

theta12_336

1.612

3.082

1.612

-1.134

2.376

-2.165

-1.679

-1.875

-4.712

-0.613

-1.865

-1.706

-2.727

-1.461

-0.830

4.60

9.81

3.28

-3.75

7.29

-4.14

-3.61

-4.44

-10.75

-1.12

-8.96

-5.47

-6.18

-2.18

-0.59

Table D. 9. Step 2 all significant fixed			theta1_294 theta1_296	1.946 3.531	8.17 6.51
an organicant into	Estimate	t-value			
theta0_124	1.738	1.33	theta1_297	1.695	5.88
	1.730		theta1_300	0.858	1.84
theta0_137		3.13	theta1_305	1.639	4.19
theta0_149	2.446	1.8	theta1_309	2.531	4.52
theta0_15	1.364	1.77	theta1_315	3.571	8.02
theta0_156	1.282	1.45	theta1_321	2.834	5.89
theta0_160	4.317	1.82	theta1_331	2.806	3.51
theta0_161	2.547	4.46	theta1_332	1.210	3.14
theta0_176	1.739	1.41	theta1_333	2.316	3
theta0_189	1.192	1.16	theta1_47	0.624	1.69
theta0_203	1.987	1.38	theta1_49	2.824	5.6
theta0_21	1.777	2.21	theta1_60	1.061	3.39
theta0_216	1.817	1.2	theta1_77	2.815	6.77
theta0_227	1.590	1.89	theta1_80	1.628	3.53
theta0_245	1.965	1.75	theta1_90	1.569	3.61
theta0_247	2.832	1.49	theta1_91	2.347	5.2
theta0_266	0.705	0.47	theta2_110	1.295	3.44
theta0_333	2.965	0.82	theta2_120	2.150	6.71
theta0_38	3.393	2.77	theta2_124	0.934	2.2
theta0_39	2.142	2.1	theta2_129	1.251	2.44
theta0_49	1.425	2.61	theta2_138	0.495	1.54
theta0_55	0.484	0.56	theta2_141	1.499	5.06
theta0_57	2.872	1.74	theta2_160	2.253	5.55
theta0_61	2.279	3.85	theta2_161	1.751	2.27
theta0_65	2.556	3.39	theta2_176	1.124	2.18
theta0_70	1.668	0.57	theta2_197	0.950	2.27
theta0_77	4.979	4.83	theta2_198	1.612	2.45
theta0_81	2.598	4.26	theta2_200	1.467	6.86
theta0_82	1.461	2.32	theta2_229	1.580	2.16
theta0_83	2.758	2.33	theta2_239	1.746	4.51
theta0_9	3.572	2.89	theta2_246	1.231	5.84
theta1_11	0.673	2.05	theta2_247	1.682	5.78
theta1_124	0.770	1.05	theta2_266	1.407	2.57
theta1_131	2.516	7.03	theta2_270	1.357	2.7
theta1_140	1.278	3.66	theta2_275	1.480	3.63
theta1_158	1.425	2.79	theta2_281	1.838	5.01
theta1_170	0.358	1.7	theta2_288	1.692	4.6
theta1_22	1.118	3.81	theta2_291	2.690	6.84
theta1_234	0.789	2.19	theta2_308	1.828	1.64
theta1_242	1.006	2.44	theta2_311	1.923	7.51
theta1_246	1.723	3.96	theta2_321	2.871	3.47
theta1_253	1.775	6.59	theta2_326	2.869	5.69
theta1_277	1.027	2.05	theta2_330	2.730	7.14
theta1_286	1.356	2.75	theta2_334	1.591	3.64
theta1_288	1.370	3.11	theta2_43	1.410	2.7
theta1_289	1.169	3.25	theta2_54	1.261	3.87
_ theta1_290	1.111	1.49	theta2_55	1.035	2.61
_ theta1_291	2.289	6.37	theta2_58	1.148	2.41
theta1_292	3.069	7.08	theta2_72	1.459	3.82
110ta 1_202					

theta2_90	0.971	2.55	theta4_212	1.160	6.18
theta3_108	0.718	2.27	theta4_221	0.873	3.26
theta3_112	0.827	2.72	theta4_222	0.502	2.87
theta3_121	0.692	3.64	theta4_225	1.419	2.34
theta3_131	1.358	7.47	theta4_227	0.458	1.29
theta3_156	0.549	1.99	theta4_229	1.156	1.67
theta3_162	0.694	2.84	theta4_247	0.954	2
theta3_189	0.841	3.9	theta4_248	0.662	1.64
theta3_19	0.606	7.75	theta4_262	0.795	2.61
theta3_191	0.497	0.98	theta4_264	0.829	2.02
theta3_204	1.238	13.03	theta4_276	0.580	2.61
theta3_212	0.688	3.16	theta4_296	1.476	2.51
theta3_213	0.824	8.48	theta4_30	0.809	2.6
theta3_216	0.830	2.57	theta4_317	0.867	1.02
theta3_225	0.808	2.57	theta4_32	0.424	2.91
theta3_227	1.120	5.42	theta4_321	1.544	2.43
theta3_229	0.417	1.54	theta4_326	1.045	1.71
theta3_23	0.428	3.19	theta4_329	1.779	3.39
theta3_230	0.593	8.18	theta4_33	0.319	1.34
theta3_238	0.646	5.39	theta4_332	1.587	2.9
theta3_24	0.339	2.49	theta4_335	1.299	1.98
theta3_261	0.918	3.05	theta4_42	0.450	1.18
theta3_269	0.584	6.1	theta4_6	0.260	1.37
theta3_279	0.369	1.82	theta5_116	1.188	6.35
theta3_280	0.701	4.13	theta5_117	1.285	10.04
theta3_283	0.526	2.21	theta5_118	0.724	2.29
theta3_285	0.454	4.56	theta5_119	1.280	5.13
theta3_292	0.622	5.54	theta5_13	0.796	4
theta3_293	0.571	3.04	theta5_173	1.164	2.01
theta3_295	0.242	3.28	theta5_186	1.280	3.2
theta3_309	0.942	9.92	theta5_188	1.159	6.69
theta3_310	1.420	19.99	theta5_189	1.500	7.15
theta3_328	0.463	2.84	theta5_194	1.309	4.55
theta3_334	0.542	2.4	theta5_198	1.227	1.99
theta3_52	0.559	3.4	theta5_216	0.561	2.27
theta3_67	0.220	4.66	theta5_217	0.850	4.79
theta3_72	0.669	14.49	theta5_218	0.684	2.52
theta3_96	0.664	2.37	theta5_225	0.950	1.81
theta4_116	1.364	2.82	theta5_240	0.584	4.27
theta4_136	0.963	3.77	theta5_25	0.481	2.7
theta4_14	0.616	1.51	theta5_261	0.668	1.96
theta4_145	0.857	3.17	theta5_264	0.695	2.2
theta4_151	0.706	2.76	theta5_268	0.796	4.36
theta4_153	1.479	4.72	theta5_270	0.660	3.84
theta4_155	0.819	4.08	theta5_272	1.165	3.5
theta4_159	1.276	5.79	theta5_273	0.978	4.64
theta4_160	1.381	3.19	theta5_279	0.676	3.64
theta4_162	1.265	2.41	theta5_281	1.063	4.45
theta4_181	0.790	2.24	theta5_282	1.468	12.92
theta4_182	1.678	9.35	theta5_292	0.787	4.9
theta4_183	0.885	4.97	theta5_293	0.761	3.59
theta4_191	1.136	1.56	theta5_294	1.046	8.11

theta5_298	1.038	7.61	theta6_96	0.592	2.4
theta5_299	0.397	4.47	theta7_10	0.521	2.29
theta5_317	0.681	1.36	theta7_115	0.438	4.07
theta5_318	1.011	4.12	theta7_119	0.473	4.32
theta5_320	0.880	4.74	theta7_129	0.816	10.11
theta5_326	1.954	13.77	theta7_137	0.502	2.51
theta5_327	0.725	5.73	theta7_14	0.517	1.49
theta5_328	1.383	11.73	theta7_142	0.546	3.41
theta5_333	1.940	2.11	theta7_15	0.517	2.89
theta5_334	1.281	3.82	theta7_158	1.011	5.32
theta5_335	1.647	8.66	theta7_174	0.476	4.97
theta5_43	0.917	6.87	theta7_185	0.659	2.92
theta5_50	1.044	3.46	theta7_186	0.264	2.45
theta5_52	1.210	2.82	theta7_187	0.612	3.83
theta5_71	0.656	6.01	theta7_189	0.712	2.79
theta5_79	1.345	6.52	theta7_191	0.410	1.03
theta6_100	0.624	2.97	theta7_198	0.673	4.45
theta6_104	0.410	3.48	theta7_229	0.654	4.41
theta6_108	0.596	4.3	theta7_239	1.004	10.77
theta6_124	1.279	7.69	theta7_243	0.526	2.92
theta6_126	0.486	3.44	theta7_250	0.741	7.09
theta6_131	0.643	3.97	theta7_263	0.755	4.84
theta6_16	0.832	6.06	theta7_266	0.617	3.95
theta6_167	1.054	2.98	theta7_27	0.408	2.98
theta6_171	0.769	3.61	theta7_281	0.895	2.68
theta6_176	0.362	1.32	theta7_283	1.280	15.72
theta6_199	0.755	5.57	theta7_309	0.568	5.26
theta6_2	0.787	2.48	theta7_323	0.611	4.25
theta6_225	0.481	1.75	theta7_324	0.218	1.55
theta6_230	0.697	3.22	theta7_331	0.476	1.42
theta6_247	1.240	2.21	theta7_335	0.244	2.09
theta6_278	0.448	3.01	theta7_5	0.612	4.15
theta6_284	1.322	8.48	theta7_59	0.345	3.94
theta6_287	0.445	2.22	theta7_70	0.509	2
theta6_290	0.955	3.7	theta7_78	0.892	8.96
theta6_291	0.156	1.19	theta7_81	0.694	3.51
theta6_294	0.645	2.41	theta7_83	0.687	3.18
theta6_324	1.122	8.28	theta7_91	1.435	10.75
theta6_329	0.646	3.44	theta7_93	0.468	3.04
theta6_331	0.852	1.89	theta8_125	4.221	5.02
theta6_333	0.594	1.02	theta8_140	1.924	2.76
theta6_37	0.718	3.01	theta8_141	3.924	3.54
theta6_43	0.883	4.65	theta8_180	1.600	1.71
theta6_44	1.248	8.68	theta8_184	3.778	8.31
theta6_45	0.889	5.02	theta8_191	3.410	1.83
theta6_49	0.607	2.44	theta8_192	2.212	5.85
theta6_50	1.409	4.53	theta8_203	3.451	4.2
theta6_52	1.265	6.43	theta8_210	4.406	10.76
theta6_55	0.611	6.64	theta8_225	3.321	4.43
theta6_59	0.774	2.68	theta8_233	2.650	2.93
theta6_70	0.487	1.65	theta8_254	2.184	4
theta6_89	0.914	10.85	theta8_257	1.344	1.93

theta8_266	2.985	6.09	theta9_59	0.834	3.54
theta8_268	2.948	2.08	theta9_83	0.538	1.47
theta8_271	2.752	4.46	theta9_84	1.048	2.81
theta8_281	5.636	5.54	theta9_91	0.794	5.62
theta8_282	5.740	9.5	theta9_95	0.686	3.1
theta8_288	4.187	4.45	theta9_99	0.783	2.8
theta8_289	2.215	2.24	theta9_329	0.679	3.66
theta8_300	2.538	2.76	theta9_331	1.149	5.34
theta8_302	2.035	2.89	theta9_333	0.932	2.05
theta8_304	1.632	3.85	theta9_336	1.248	10.6
theta8_306	2.339	4.44	theta10_129	0.510	2.54
theta8_308	3.811	4.35	theta10_131	0.888	13.47
theta8_309	1.845	1.87	theta10_135	0.383	4.05
theta8_312	1.482	0.98	theta10_140	0.346	5.29
theta8_314	3.458	4.18	theta10_146	0.209	2.19
theta8_324	3.000	3.38	theta10_159	0.434	4.98
theta8_331	5.235	8.93	theta10_161	0.287	3.05
theta8_44	3.560	4.81	theta10_173	0.430	3.3
theta8_48	3.141	3.06	theta10_176	0.542	10.5
theta8_69	2.149	4.27	theta10_181	0.252	1.97
theta8_75	2.081	3.24	theta10_191	0.344	4.64
theta9_10	0.350	1.01	theta10_193	0.496	2.73
theta9_118	0.595	5.01	theta10_195	0.375	4.06
theta9_120	0.928	6.57	theta10_198	0.219	1.03
theta9_131	1.558	8.97	theta10_203	0.480	2.86
theta9_135	0.559	2.84	theta10_215	0.377	6.99
theta9_144	0.763	6.03	theta10_218	0.591	9.85
theta9_147	0.827	3.36	theta10_220	0.323	4.69
theta9_153	0.604	3.14	theta10_226	0.304	3.14
theta9_156	1.096	9.05	theta10_271	0.323	5.23
theta9_160	1.741	3.7	theta10_285	0.465	4.64
theta9_161	1.388	7.89	theta10_287	0.346	3.42
theta9_162	0.572	1.71	theta10_289	0.636	9.1
theta9_174	0.484	2.32	theta10_291	0.933	8.04
theta9_190	0.339	2.12	theta10_299	0.255	2.38
theta9_192	0.801	3.12	theta10_301	0.589	5.56
theta9_2	0.487	1.39	theta10_309	0.915	9.72
theta9_202	0.562	1.95	theta10_310	0.745	9.95
theta9_218	0.775	4.15	theta10_313	0.589	4.1
theta9_229	0.654	2.2	theta10_314	0.599	3
theta9_230	0.691	1.48	theta10_315	0.923	11.34
theta9_252	1.528	5.58	theta10_317	0.558	3.68
theta9_261	1.160	3.14	theta10_319	0.759	8.83
theta9_275	1.099	5.06	theta10_320	0.240	3.06
theta9_277	0.609	1.93	theta10_325	0.764	8.08
theta9_282	2.279	12.36	theta10_331	0.992	7.81
theta9_293	0.918	1.89	theta10_332	0.442	5.11
theta9_296	1.123	10.29	theta10_48	0.514	5.68
theta9_3	1.251	6.68	theta11_105	1.685	3.78
theta9_50	0.567	2.19	theta11_121	1.364	2.51
theta9_54	1.027	5.66	theta11_126	1.813	3.88
theta9_57	1.124	6.77	theta11_128	0.866	5.81

theta11_130	1.051	4.72	theta12_80	3.751	16.31
theta11_138	1.109	3.15	theta12_81	1.936	4.3
theta11_171	1.430	3.1	theta12_91	3.766	7.51
theta11_18	0.958	2.42	theta12_92	0.656	2.31
theta11_217	2.482	3.76			
theta11_241	0.764	2.78			
theta11_246	1.749	4.88			
theta11_259	1.191	7.32			
theta11_267	0.633	2.37			
theta11_276	1.325	3.59			
theta11_294	1.122	3.21			
theta11_30	1.077	1.88			
theta11_309	0.956	1.42			
theta11_312	0.902	0.86			
theta11_332	0.681	1.07			
theta11_54	0.941	2.22			
theta11_59	0.922	1.77			
theta11_70	0.938	1.9			
theta11_72	1.469	3.44			
theta11_80	2.652	5.84			
theta11_94	0.986	3.15			
theta12_114	1.503	2.76			
theta12_116	1.643	4.75			
theta12_12	1.092	4.51			
theta12_120	2.316	8.59			
theta12_130	1.023	4.63			
theta12_156	2.086	8.57			
theta12_157	2.113	14.09			
theta12_160	3.172	3.43			
theta12_175	1.646	5.47			
theta12_18	0.729	2.26			
theta12_184	1.676	4.27			
theta12_194	2.967	8.66			
theta12_217	1.533	1.63			
theta12_237	1.540	4.25			
theta12_239	3.363	9.86			
theta12_247	2.459	4.38			
theta12_266	1.022	1.88			
theta12_271	2.682	3.98			
theta12_272	1.141	4.02			
theta12_275	1.762	4.97			
theta12_296	2.514	6.65			
theta12_301	1.193	2.42			
theta12_305	1.205	2.79			
theta12_320	0.772	1.6			
theta12_46	2.620	7.88			
theta12_49	1.309	2.72			
theta12_70	2.491	1.2			
theta12_72	1.591	2.78			
theta12_77	3.496	9.82			
theta12_78	2.642	5.91			
theta12_79	2.256	10.2			

Table D.10. Additional significant fixed effects revealed in step 3 of estimating Model 4 where each municipality is tested in 12 service sectors simultaneously conditioning on the effects found to be significant in step 1.1

Service sector	Municipality name	Municipality number
1. Administration	Moskenes Nordkapp	1874 2019
2. Primary schools	none	none
3. Other education	Risør Masfjorden Sør-Aurdal	0901 1266 0540
4. Child care	none	none
5. Health care	Åmli Snillfjord Tjeldsund	0929 1613 1852
6. Social services	Valle Kristiansand Fredrikstad	0940 1001 0106
7. Child protection	Stranda Tjeldsund	1525 1852
8. Care for the elderly and disabled	none	none
9. Culture	Suldal Bardu	1134 1922
10. Municipal roads	Åmli Odda Vefsn Dyrøy	0929 1228 1824 1926
11. Water supply and sanitation	Vevelstad Ringerike	1816 0605
12. Other infrastructure	Sauda Askøy Nore og Uvdal	1135 1247 0633

Table D.11. Model 4 parameter estimates where step 3 was carried out in 12 sectors simultaneously

Sector	Parameter	Estimate	t-value
Budget surplus	Intercept	-2.340	-
	Growth in municipality incomes	0.556	25.15
Administration	Intercept	1.411	17.92
	Inverse population size	4.390	29.10
	Index of farming industry	5.463	6.87
Primary schools	Intercept	-0.917	-3.61
	Population share 6-12 years of age	54.939	19.77
	Population share 13-15 years of age	70.270	13.13
	Distance to centre of municipal sub-district	1.691	31.58
	Inverse population size	2.510	14.12
Other education	Intercept	0.463	10.44
	Share of fulltime working women 20-44 years	5.373	8.90
	Refugees with integration grants	33.241	25.80
Child care	Intercept	1.114	6.56
	Population share 1-5 years of age	0.440	0.16
	Share of fulltime working women 20-44 years	22.329	13.97
Health care	Intercept	0.601	13.77
	Distance to centre of municipal sub-district	0.357	13.27
	Inverse population size	1.823	22.13
Social services	Intercept	-0.317	-5.25
	Refugees with integration grants	52.401	30.81
	Refugees without integration grants	3.475	2.39
	Share of divorced/ separated 16-59 years	11.383	12.81
	Unemployed 16-59 years share of total population	13.654	7.98
	Number of poor share of total population	6.534	6.72
	Share of disablement pensioners 18-49 years	8.978	4.74
Child protection	Intercept	0.248	5.53
	Share of children 0-15 years with single mother/ father	14.738	13.49
	Number of poor share of total population	4.875	6.79
Care for the	Intercept	1.068	4.49
elderly and	Population share 67-79 years of age	30.925	9.16
disabled	Population share 80-89 years of age	66.160	11.93
	Population share 90 years and above	203.886	12.91
	High-cost recipients share of total population	739.977	13.17
	Share of mentally disabled 16 years and above without grant	222.763	11.47
	Share of mentally disabled 16 years and above with grant	505.276	16.33
	Distance to centre of municipal sub-district	0.795	8.55
	Inverse population size	2.117	8.17
Culture	Intercept	0.614	15.70
	Inverse population size	0.451	6.23
Municipal roads	Intercept	0.021	1.13
	Amount of snowfall	0.065	14.73
	Kilometers of municipal roads	25.190	36.26
Water supply	Intercept	1.000	21.85
and sanitation	Capacity of advanced purification	0.585	19.71
	Inverse population size	0.423	3.67
Other infrastructure	Intercept	0.799	9.89
	Inverse population size	1.573	10.57

Table D.12. Effects on the marginal budget shares in Model 4 with municipality effects included in 12 service sectors

Sector	Explanatory variable	Estimate	t-value
1. Administration	Constant	0.184	20.65
	Average education	-0.027	-10.09
	Share of socialists	0.001	0.14
	Share of residents in a densely populated area	0.004	0.71
2. Primary schools	Constant	0.167	18.18
	Average education	-0.024	-7.78
	Share of socialists	-0.001	-0.07
	Share of residents in a densely populated area	0.002	0.29
3. Other education	Constant	-0.014	-4.56
	Average education	0.007	6.56
	Share of socialists	0.017	5.55
	Share of residents in a densely populated area	0.008	4.02
4. Child care	Constant	-0.060	-6.89
i. Offiid date	Average education	0.050	17.70
	Share of socialists	-0.018	-1.91
	Share of residents in a densely populated area	-0.023	-4.22
	chare of residents in a densely populated area	0.020	7.22
5. Health care	Constant	0.072	13.53
	Average education	-0.005	-3.27
	Share of socialists	0.006	1.41
	Share of residents in a densely populated area	0.002	0.81
6. Social assistance	Constant	-0.009	-2.40
	Average education	0.004	3.07
	Share of socialists	0.012	3.23
	Share of residents in a densely populated area	0.016	5.52
7. Child protection	Constant	0.001	0.33
	Average education	0.003	2.97
	Share of socialists	-0.007	-2.40
	Share of residents in a densely populated area	0.016	9.14
8. Care for the elderly and disabled	Constant	0.245	14.75
·	Average education	-0.019	-3.41
	Share of socialists	0.007	0.54
	Share of residents in a densely populated area	-0.005	-0.65
9. Culture	Constant	0.058	14.08
	Average education	0.001	1.08
	Share of socialists	-0.000	-0.08
	Share of residents in a densely populated area	0.012	4.55
10. Municipal roads	Constant	0.017	6.93
	Average education	-0.001	-0.95
	Share of socialists	-0.010	-4.67
	Share of residents in a densely populated area	0.013	9.42
11. Water supply and sanitation	Constant	0.045	6.75
Hator ouppry and samitation	Average education	-0.003	-1.72
	Share of socialists	-0.012	-1.72
	Share of residents in a densely populated area	0.017	4.15
12 Other infrastructure	Constant	0.100	1174
12. Other infrastructure	Constant Average education	0.123 0.003	14.74 1.04
	Share of socialists	0.003	4.72
	Share of residents in a densely populated area		
	Share of residents in a defisely populated area	-0.041	-7.75

Appendix E Economic regions and region fixed effects

Table E.1. Labour market regions

	E.1. Labour market regions Labour market region	Region number
	ØST-NORGE	
1	Sør-Østfold	11
2	Oslo	12
3	Vestfold	13
4	Kongsberg	14
5	Hallingdal	15
6	Valdres	21
7	Gudbrandsdalen	22
8	Lillehammer	23
9	Gjøvik	24
10	Hamar	25
11	Kongsvinger	26
12	Elverum	27
13	Tynset/Røros	28
	SØR-NORGE	
14	Nordvest-Telemark	31
15	Øst-Telemark	32
16	Sør-Telemark	33
17	Arendal	34
18	Kristiansand	35
19	Lister	36
	VEST-NORGE	
20	Stavanger	41
21	Haugesund	42
22	Sunnhordland	43
23	Bergen	44
24	Sunnfjord (Førde/Florø)	51
25	Sognefjord (Sogndal/Årdal)	52
26	Nordfjord	53
27	Søndre Sunnmøre	54
28	Ålesund	55
29	Molde	56
30	Nordmøre	57
31	Kristiansund	58
	MIDT-NORGE	
32	Trondheim	61
33	Midt-Trøndelag	62
34	Namsos	63
35	Ytre Helgeland	64
36	Indre Helgeland	65
	NORD-NORGE	

37	Bodø	71
38	Narvik	72
39	Vesterålen	73
40	Lofoten	74
41	Harstad	75
42	Midt-Troms	76
43	Tromsø	77
44	Alta	81
45	Hammerfest	82
46	Vadsø	83

Table E.2. Municipalities grouped by labour market region

region	
Region	Municipality
11	0101
	0105
	0106
	0111
	0118
	0128
12	0104
	0119
	0121
	0122
	0123
	0124
	0125
	0127
	0135
	0136
	0137
	0138
	0211
	0213
	0214
	0215
	0216
	0217
	0219
	0220
	0221
	0226
	0227
	0228
	0229
	0230
	0231
	0233
	0234
	0235
	0236
	0237
	0238
	0239
	0301
	0532
	0533
	0534
	0602
	0605
	0612
1	0004

	0622
	0623
	0624
	0625
	0626
	0627
	0628
	0711
	0713
13	0701
	0702
	0704
	0706
	0709
	0714
	0716
	0719
	0720
	0722
	0723
	0728
14	0604
	0631
	0632
	0633
15	0615
	0616
	0617
	0618
	0619
	0620
21	0540
	0541
	0542
	0543
	0544
20	0545 0511
22	0512
	0513 0514
	0514
	0516
	0516
	0517
	0519
23	0520
LU	0521
	0521
24	0502
£7	0502
	0528

	0536
	0538
25	0403
	0412
	0415
	0417
26	0402
	0418
	0419
	0420
	0423
	0425
27	0426
	0427
	0428
	0429
	0430
	0434
28	0432
	0436
	0437
	0438
	0439
	0441
	1640
	1644
31	0826
	0828
	0829
	0830
	0831
	0833
	0834
32	0807
	0821
	0822
	0827
33	0805
	0806
	0811
	0814
	0815
	0817
	0819
34	0901
	0904
	0906
	0911
	0912
	0914
	0919
	0929

		1			_		
35	0926			1222			1444
	0928			1223			1445
	0935			1224			1449
	0937		44	1201		54	1511
	0938			1227			1514
	0940			1228			1515
	0941			1231			1516
	1001			1232			1517
	1002			1233			1519
	1014			1234			1520
	1017			1235		55	1504
	1018			1238			1523
	1021			1241			1524
	1026			1242			1525
	1027			1243			1526
	1029			1244			1528
36	1003			1245			1529
	1004			1246			1531
	1032			1247			1532
	1034			1251			1534
	1037			1252			1546
	1046			1253		56	1502
41	1101			1256			1535
	1102			1259			1539
	1103			1260			1543
	1111			1263			1545
	1112			1264			1547
	1114			1265			1548
	1119			1266			1551
	1120			1411			1557
	1121		51	1401		57	1560
	1122			1412			1563
	1124			1413			1566
	1127			1416			1567
	1129			1418			1571
	1130			1428		58	1503
	1133			1429			1554
	1141			1430			1573
	1142			1431			1576
	1144			1432			1576
42	1106			1433		61	1601
	1134			1438			1612
	1135		52	1417			1613
	1145			1419			1617
	1146			1420			1620
	1149			1421			1621
	1151			1422			1622
	1160			1424			1624
	1211			1426			1627
	1216		53	1439			1630
43	1219			1441			1632
	1221			1443			1633
		1			_		

	1634	
	1635	
	1636	
	1638	
	1648	
	1653	
	1657	
	1662	
	1663	
	1664	
	1665	
	1711	
	1714	
	1718	
	1723	
62	1702	
	1717	
	1719	
	1721	
	1724	
	1725	
	1729	
	1736	
63	1703	
	1738	
	1739	
	1740	
	1742	
	1743	
	1744	
	1748	
	1749	
	1750	
	1751	
	1755	
64	1811	
	1812	
	1813	
	1815	
	1816	
	1818	
	1820	
	1822	
	1827	
	1834	
	1835	
65	1824	
	1825	
	1826	
	1828	
	1832 1833	
	1000	

71	1804	
	1836	
	1837	
	1838	
	1839	
	1840	
	1841	
	1845	
	1848	
	1849	
72	1805	
	1850	
	1851	
	1852	
	1853	
	1854	
73	1919 1866	
/3	1867	
	1868	
	1870	
	1871	
74	1856	
-	1857	
	1859	
	1860	
	1865	
	1874	
75	1901	
	1911	
	1913	
	1915	
	1917	
76	1920	
	1922	
	1923	
	1924	
	1925	
	1926	
	1927	
	1928	
	1929 1931	
77	1902	
' '	1933	
	1936	
	1938	
	1939	
	1940	
	1941	
	1942	
	1943	

81	2011	
	2012	
	2014	
	2015	
82	2004	
	2017	
	2018	
	2019	
	2020	
	2021	
	2022	
	2023	
83	2002	
	2003	
	2024	
	2025	
	2027	
	2028	
	2030	

Table E.3. Regional effects in model 7 for sector 0 – 12

Reg	ion 0	1	2	3	4	5	6	7	8	9	10	11	12
11	4 440	3.220	2.900	0.387	1.213	1.474	0.731	0.445	5.594	2.690	0.573	1.276	4.539
13	-2.685	-1.386	-0.718	-0.272	-0.550	-0.800	0.149	-0.213	-2.103	-0.547	-0.220	-0.027	-1.352
14	4.010	3.891	2.500	0.008	1.218	1.060	0.468	0.577	4.853	2.184	0.497	1.389	4.510
15	-12.824	-8.127	-7.243	-1,738*	-3.877	-3.266	-0.934	-0.471	-15.558	-5.602	-1.504	-1.552	-8.054
21	-5.666	-3.383	-1.748	-0.716	-1.418	-1.139	0.163	-0.298	-4.318	-1.895	-0.594	0.263	-2.489
22	-9.880	-6.816	-4.927	-1.448	-1.836	-2.556	-0.306	-0.943	-10.881	-3.387	-1.344	-1.245	-7.665
23	12.408	8.321	7.320	1.261	2.802	3.484	1,273*	0.380	14.165	5.208	1.398	3.254	9.455
24	4.894	3.061	2.572	0.668	0.989	1.420	0.723	0.205	5.458	2.226	0.489	1.281	3.571
25	-3.695	-2.966	-2.498	-0.510	-0.958	-1.333	0.310	-0.524	-4.557	-1.997	-0.609	-0.543	-3.749
26	3.866	3.753	3.517	0.717	1.352	1.756	1.153	0.169	7.716	2.145	0.547	1.171	4.252
27	-1.279	0.053	-0.519	-0.212	-0.254	0.116	0.616	-0.379	-0.590	-0.332	-0.248	-0.386	0.355
28	-7.662	-4.803	-2.975	-0.819	-1.816	-1.484	0.172	-0.541	-7.475	-2.159	-1.087	-0.679	-4.578
31	14.065	9.467	8.942	1.486	3.884	5.146	1.029	0.869	14.684	6.521	1.647	3.109	12.345
32	-12.761	-7.993	-5.164	-1.188	-2.973	-2.633	-0.291	-0.786	-12.519	-4.625	-1.414	-1.800	-9.110
33	-11.909	-7.562	-5.995	-1.049	-2.589	-3.130	-0.436	-0.772	-12.531	-4.540	-1.318	-2.403	-8.213
34	-10.554	-6,961*	-4.804	-1.064	-2.232	-3,104*	0.030	-0.635	-9.423	-3.852	-1.079	-1.403	-7.242
35	7.527	5.427	4.477	0.755	2,304*	2.174	0,807**	0.399	8.775	3,470*	1.009	2,015**	6.434
36	-29,160*	-18,540*	-14,293*	-2,871*	-6,830*	-8,354*	-1,742*	-1,933**	-27,411*	-11,091*	-3,174*	-5,638*	-21,161*
41	-0.084	-0.430	-0.041	-0.244	0.512	-0.271	0.126	0.077	-0.205	0.206	-0.033	-0.354	-0.310
42	-3.201	-2.356	-0.696	-0.254	0.023	-1.110	0.228	-0.312	-2.324	-0.560	-0.325	-0.658	-1.607
43	-17.083	-10.641	-7.797	-1.811	-4.171	-4.365	-0.720	-1.208	-16.669	-6.635	-1.843	-2.567	-12.139
44	-8,541*	-5.137	-3.220	-0.843	-1.656	-1.963	-0.082	-0,524*	-7.193	-2.944	-0.838	-1,821*	-5.748
51	0.842	1.164	1.721	0.234	0.808	0.997	0,491*	0.152	3.100	1.141	0.252	0.412	2.006
52	0.170	1.113	1.595	-0.067	0.637	1.131	0.587	0.075	2.469	0.700	0.232	0.384	1.908
53	-8.938	-6.198	-4.238	-0.845	-2.093	-2.518	-0.426	-0,790*	-7.450	-3.359	-0.827	-2.160	-6.120
54	0.451	0.521	1.556	0.371	0.738	0.276	0.102	-0.151	2.293	0.514	0.297	0.168	1.147
55	-6.138	-4.008	-2.609	-0.410	-1.149	-1.314	-0.277	-0,802**	-5.468	-2.391	-0.431	-0.962	-4.337
56	-8.047	-4.514	-3.082	-0.518	-1.365	-1.936	-0.142	-0.798	-5.530	-2.609	-0.569	-1.277	-5.216
57	-5.322	-3.112	-1.892	-0.347	-0.854	-1.443	0.093	-0.328	-3.899	-1.296	-0.538	-0.718	-3.319
58	-6.085	-3.359	-2.735	-0.544	-1.288	-1.562	-0.037	-0.453	-4.916	-2.003	-0.594	-1.113	-3.809
61	-2.104	-1.071	-0.592	-0.099	-0.123	-0.459	0.126	-0,229*	-1.923	-0.617	-0.268	-0.437	-0.838
62	2.186	1.859	1.639	0.249	1.108	1.063	0.311	0.059	3.418	1.073	0.336	0.206	2.438
63	-7,859*	-4.513	-2.895	-0.764	-1.283	-1.432	-0.221	-0,680**	-5.676	-2.395	-0.835	-0.498	-4.035
64	-3.269	-1.715	-0.602	-0.163	-0.228	0.032	0.379	-0.015	-0.297	-0.758	-0.440	-0.925	-2.064
65	-18.667	-11.698	-9.465	-1.793	-3.462	-4.791	-0.747	-1.518	-19.749	-7.455	-1.866	-3.869	-13.984
71	-3.122	0.536	0.409	-0.150	-0.291	0.038	0.371	-0.054	0.202	-0.449	-0.030	-1,275*	-1.056
72	-28,005*	-15.474	-13.075	-2.765	-5.832	-7.146	-1.427	-2,077**	-26.899	-10.169	-3.025	-4.817	-20.041
73	9.607	7.579	6.079	1.145	2.905	3.450	0.791	0.363	13.965	4.359	1.327	2.049	8.118
74	-8.103	-4.317	-3.011	-0.660	-0.919	-1.125	-0.163	-0.815	-5.745	-2.970	-0.649	-2.286	-5.458
75	12,483*	9,419*	8,631**	1,743**	3,487*	3,974*	0.542	0.668	17,219**	5,524*	2,060**	2,919**	9.171
76	4.240	4.120	3,863*	0.685	1,771*	1.804	0.284	0.141	7.404	2.483	1,070**	1,469*	4.108
77		-0.029	1.017	-0.105	0.442	0.273	0.130	-0.233	1.352	-0.385	0.112	-0.911	-0.434
81	-53,380*		-23.014		-11.378		-3.120		-51.989		-6.224	-9.736	-39.090
82		4.031	3.540		1,740**		0,606**	0.198	5.663	1.925	0.848	1.202	2.295
83	5.839	5,479*	5,020**	0,859*	1,/82**	3,188**	0,987**	0,549*	9,342*	3,391*	0.772	1,837*	4.324

Region 12 (Oslo) is the base region.

^{*} indicates significance at 10% significance level

^{**} indicates significance at 5% significance level

Table E.4. Regional effects in model 8 for sectors 0 – 12.

Region		1	2	3	4	5	6	7	8	9	10	11	12
11	-1.364		0.075	-0.126	-0.466		0,447**	0.123	-0.334	0.469	-0.084	0.185	0.374
13	-0.601	0.058	0.367	-0.006	0.286		0,283**		0.333	0.418		0,423**	0.367
14	-1.391	0.634		-0,483*		-0.449	,	0,358*	-0.759	-0.032	-0.126	0.355	0.423
15		1,936**	0.490			0,981**		0,510**	0.134			1,127**	
21		-0.362		-0,192**		•	0,496**	•	0.640	-0.114		1,133**	1.039
22		-1,943**	-0.567		-0,975*	-0.485	•	-0,485**			-0,428**	•	-1,678*
23		-1.174	-0.357	0.172	•	-0.503	0.386	•	•		•	0.358	0.059
		-0.122	0.125	0.172	-0.302		0,422**		0.112	0.349	-0.075	0.341	-0.106
24	-0.794	-1.037	-0.815	-0.140	-0.114		0,425*		-1.576	-0.917	-0.073	-0.020	-1.352
25	-2.408	-0.722	0.169	0.066	-0.104		0,787**		0.774			-0.020	-0.637
26							•	-0,199			-0.194		0.360
27	-1.828	0.005	-0.430	-0.136			•	-0,425 -0,304**					-0.849
28		-1,692**			-0,922**		•		•		-0,526**		
31	· ·	-1,645*	0.108		-0.649	0.462		-0.178	•		-0,317*		-0.594
32	-3.688		-0.292		-0.994	0.034	0.277		-2.730			-0.036	-1.712
33	-1.268			0,215**			0,226*		-0.738	-0.019	0.014		0.324
34	-0.981	-0.682	0.180	-0.004		•	0,609**		0.818	0.009		0,381**	0.220
35		1,621**	•		0,941**		0,423**		,	,	,	0,757**	,
36	-1.092		0.587		-0,635**			-0,311*	•		0.066	-0.143	0.571
41	0.234			-0,172**			0,159*		0.198	•		-0.225	0.053
42	′	-1,904**	-0.204		,	,	,	,	,		,	-0,525**	,
43		-0.873	0.009		-0,873**			-0.360	-0.663		-0.078	0.274	-0.468
	-2,102**		0.283		-0,358**		•	-0,145**				-0,601**	-0.509
	-2,709**		-0.166		-0.382		•	-0.047	-0.315		-0,144*		-0.572
52	-5,218**	-1,532**	-0.366	-0,517*	-1,126*	0.046	0.238	-0.165	-1.775	-1,373**	-0,265**	-0.436	-1,369*
53		-0.945	-0.030	-0.008	-0.358	-0.189	0.050	-0,369**	1.138	-0.118	0.086	-0,577*	0.144
54	-0.492	-0.046	1,071**	0,284**	0,715**	0.047	0.050	-0,197*	1,343*	0.207	0,167*	-0.005	0.489
55	-1,599*	-0,704*	0.088	0.121	-0,441*	0.080	0.052	-0,498**	-0.060	-0.380	0.119	0.065	-0.420
56	-2.055	-0.173	0.506	0.215	-0.151	-0.027	0.290	-0,418**	1.587	0.048	0.173	0.002	-0.055
57	-3,202**	-1,364*	-0.463	-0.014	-0.722	-0,759*	0,231*	-0.119	-0.936	-0.225	-0,237**	-0.240	-1.039
58	-1.525	-0.019	-0.335	-0.090	-0.070	-0.160	0.244	-0.165	0.146	-0.204	-0.072	-0.221	-0.094
61	-1,075*	-0.319	0.084	0.028	-0.096	-0.164	0,172**	-0,157**	-0,814*	-0.210	-0,144**	-0,260**	0.058
62	-1.671	-0.432	-0.250	-0.126	0.101	0.124	0.042	-0.108	-0.510	-0.486	-0.086	-0,436**	-0.328
63	-2,909**	-0,960**	-0.147	-0,172*	-0.273	0.136	0.030	-0,420**	0.104	-0.354	-0,197**	0,442**	0.067
64	-3,145**	-1,169**	0.053	0.040	-0.508	0.265	0,412**	0.033	0.531	-0.484	-0,347**	-0,662**	-1,308**
65	-3.254	-1.062	-0.375	0.019	-0.752	-0.339	0.152	-0.580	-2.669	-1.025	0.057	-0.701	-1.367
71	-3,228**	0,996*	0,721*	-0.022	-0.339	0.230	0,386**	-0.039	0.965	-0.251	0.033	-1,144**	-0.557
72	-4,852**	0.759	0.062	-0.163	-0.603	-0.228	0.014	-0,698**	-0.846	-0.294	-0.225	0.016	-0.960
73	-2.231	0.167	0.288	0.044	0.116	0.266	0.034	-0.318	2.304	-0.201	-0.014	-0.170	-0.416
74	-3.044	-0.354	0.467	0.067	-0.253	0.527	0.125	-0.506	0.700	-0.623	0.062	-0,994*	-0.682
75	-0.959	0.862	1,659**	0,368**	0.778	0.260	-0.230	-0.036	4,160**	0.308	0,529**	0.478	-0.749
76	-3,167**	-0.441	0.163	-0.066	-0.241	-0.152	-0,200*	-0,227**	0.082	-0.414	0,232**	0.166	-1,285**
77	-4,076**	-0.044	1,111**	-0.048	0.270	0.268	0.054	-0,253**	1,274*	-0,491*	0.081	-0,983**	-0.428
81	-9.102	-2.377	1.118	-0,495**	-1.144	0.485	-0.485	-0.287	-2.681	-1,882**	-0.793	-0.783	-3,389**
82	-6,626**	-0.465	0.618	-0.013	-0,897**	0.317	0.076	-0,352**	-1,985*	-1,093**	0.028	-0.115	-2,772**
83	-6,130**	-1.275	0.333	-0.016	-1,808**	0.423	0.251	-0.161	-1.929	-0,973**	-0,489**	-0.162	-3,216**

Region 12 (Oslo) is the base region.

^{*} indicates significance at 10% significance level

^{**} indicates significance at 5% significance level