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Abstract 

 

This work presents the first reported thin film deposition of α-Bi2O3 by ALD (Atomic Layer 

Deposition). In addition, thin films of Co3O4 and CoO are for the first time reported deposited 

by ALD from the respective novel precursor combinations Co(thd)3/O3 and Co(thd)2/H2O (thd 

= 2,2,6,6-tetramethyl-3,5-heptanedionate). Finally, BiPh3 (Ph = phenyl), Bi(t-OBu)3 (t-OBu = 

tert-butoxide) and Bi(thd)3 were all investigated for potential use as bismuth precursors in the 

ALD process. 

 

Thin films of Co3O4 deposited from the novel precursor combination Co(thd)3/O3 was 

investigated and a comparison to the already well investigated precursor combination 

Co(thd)2/O3 is given. 

 

It was found that BiPh3 can be used as a bismuth precursor for deposition in the Bi-Co-O 

system by ALD, although the concentration of bismuth, with respect to the metal content, was 

limited to a maximum of 22.8 at.%. Bi(t-OBu)3 was synthesized and investigated for the 

potential use as an ALD precursor, however, it was found that this compound has too low 

thermal stability to be applicable in the ALD processes. 

 

Bi(thd)3 was synthesized and investigated for use as precursor in the ALD process. It was 

found that uniform films of α-Bi2O3 could be deposited from the Bi(thd)3/H2O precursor 

combination, however, in-situ QCM measurements indicated a non-ideal ALD growth 

behavior. It is suggested that a surface controlled reaction occurs between Bi(thd)3∙n(H2O) 

and its own crystal water. In addition, a suggestion for a new and yet unreported phase of 

Bi(thd)3 is given. 

 

Deposition and investigation of thin films in the Bi-Co-O system are also presented. 

However, an etching process was observed between the Bi(thd)3 precursors and the Co3O4 

surface. A possible mechanism is presented. Thin films of composition near 50:50 at.% of Bi 

and Co has been obtained. Mild heat-treatment under oxygen atmosphere resulted in the 

formation of multiple phases such as Co3O4 and a sillenite phase, with the proposed 

composition Bi3.43Co0.57O5.90. 
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Abbreviations 

 

ALD Atomic Layer Deposition 

ALCVD Atomic Layer Chemical Vapor Deposition 

ALE Atomic Layer Epitaxy 

CVD Chemical Vapor Deposition 

XRD X-ray Diffraction 

GIXRD Grazing Incidence X-ray Diffraction 

XRR X-ray Reflectometry 

In-situ Lat. in the place, the experiment is carried out while deposition occurs 

AFM Atomic Force Microscopy 

RMS Root Mean Square 

FT-IR Fourier Transform Infrared Spectroscopy 

MS Mass Spectrometry 

TGA Thermogravimetric Analysis 
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List of precursors 

 

 

β-diketonato complexes 

 

 

Abbreviation Name R1 R2 

 

acac 

 

Pentane-2,4-dionate 

(acetylacetonate) 

 

CH3 

 

CH3 

 

tfac 

 

1,1,1-trifluoropentane-2,4-

dionate 

(trifluoroacetylacetonate) 

 

CH3 

 

CF3 

 

hfac 

 

1,1,1,5,5,5-hexafluoropentane-

2,4-dionate 

(hexafluoroacetylacetonate) 

 

CF3 

 

CF3 

 

thd 

 

(also called 

dpm) 

 

2,2,6,6-tetramethylheptane-3,5-

dionate 

 

(dipivaloylmethanate) 

 

 

C(CH3)3 

 

 

C(CH3)3 
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Alkoxides [M-(OR)x] 

 

Abbreviation 

 

Name 

Chemical 

formula 

 

Structure 

 

 

Bi(mmp)3 

 

 

tris(1-methoxy-2-

methyl-2-

propoxy)bismuth 

 

 

 

Bi(O2C5H11)3 

 

 

 

 

 

Bi(t-OBu)3 

 

 

bismuth tert-

butoxide 

 

 

 

Bi(OC4H9)3 

 

 

 

Organometallic [M-(R)x] 

 

Abbreviation 

 

Name 

 

Chemical formula 

 

Structure 

 

 

BiPh3 

 

 

triphenyl 

bismuth 

 

 

Bi(C6H5)3 

 

 

 

TMA 

 

 

 

Trimethyl 

aluminium 

 

 

Al(CH3)3 

 

 

 

 

BiMe2(dmp) 

 

 

dimethyl(2-N,N-

dimethylamino

methylphenyl)bi

smuth 

 

 

 

Bi[(CH3)2-(2–

(CH3)2NCH2C6H4)] 
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Co(MeCp)2 

 

 

Dimethylcyclo-

pentadienyl 

cobalt 

 

 

 

Co(CH3C5H5)2 

 

 

 

 

 

 

Amines 

 

Abbreviation 

 

Name 

Chemical 

formula 

 

Structure 

 

 

Co(
i
PrAMD)2 

 

bis(N,N′-

diisopropyl- 

acetamidinato) 

cobalt(II) 

 

 

Co(CN2(C3H7)2)2 
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1 Background 

This chapter describes the motivation for synthesis of thin films of BiCoO3, 

and how this challenge was approached. Prior work for bulk and in thin 

films synthesis in the Bi-Co-O system will be presented together with work 

performed on both cobalt and bismuth oxides with ALD (Atomic Layer 

Deposition). Finally theory for the magnetic and electric properties of the 

multiferroic material BiCoO3 will be given, together with some potential 

applications. 

 

1.1 Aim, motivation and approach 

The aim of this work was to synthesize thin films in the Bi-Co-O system 

using the ALD technique, with main focus on the multiferroic phase 

BiCoO3. Multiferroic materials, which are rare in nature [2], have received 

renewed interest in the recent years [3], because obtaining a better 

understanding of these materials is of high fundamental and technological 

importance [4-7]. The first and maybe greatest challenge for deposition of 

BiCoO3 with ALD is to find a suitable bismuth precursor for deposition of 

bismuth oxide (Bi2O3) films. There have been several attempts to deposit 

thin films of bismuth oxide with ALD, however none have yet succeeded 

[8-11]. It may seem that finding a suitable bismuth precursor is notorious 

more difficult than for most other elements. As many functional materials 

such as ferroelectrics contain bismuth, it is not due to lack of interest that 

there still are so few suitable bismuth precursors for the ALD process. 

 

The initial plan was to begin with a literature survey on suitable bismuth 

precursors before reattempting to obtain control over thin film deposition of 

bismuth oxide with ALD, thereafter, binary films of bismuth and cobalt 
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oxide would be deposited to investigate the Bi-Co-O system. Finally thin 

films of the BiCoO3 phase would be tried deposited by utilizing strain 

engineering on various substrates. The precursor for deposition of cobalt 

oxide was already well investigated in our group [12-15]. However, a search 

for a better cobalt precursor would be investigated as well.  

 

1.2 Prior art 

The Bi-Co-O system is relatively unexplored in the scientific literature; 

therefore in the following overview a complete presentation of all the work 

previously performed on this system, both in bulk form and as thin films, 

will be attempted given. A complete Bi-Co-O phase diagram is difficult to 

obtain in the available literature [16], however, both phase diagrams for the 

Bi2O3 – CoO and Bi2O3 – Co3O4 systems will be presented in the following, 

and some work on a few closely related systems will also be mentioned. 

Thereafter work on deposition of thin films consisting of cobalt and bismuth 

oxide by ALD will be covered, and finally the predicted physical properties 

of BiCoO3, by DFT (density functional theory) calculations, will be 

presented. 

 

1.2.1 Bulk studies of the Bi-Co-O system 

BiCoO3 is only stable at high-pressures and thus to be regarded as 

metastable under ambient conditions [17].  

The first reported study on BiCoO3 is provided by Tomashpol'Skii et 

al. in 1969 [18] where BiCoO3 was obtained as bulk material by high-

pressure synthesis at 6 GPa and 700 
o
C. They reported that BiCoO3 prepared 

at 700 
o
C at atmospheric pressure by the solid state reaction of the 

corresponding oxides had a defect pyrochlore structure with a = 10.52 Å, 
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while BiCoO3 prepared at 6 GPa and 700 
o
C had a cubic structure with a = 

4,228 Å. 

Vasudevan et al. reported in 1978 a study on BiCoO3 synthesized by 

high temperature solid state reaction at atmospheric pressure [19]. This 

resulted in a compound with a bcc structure (Im3) and a ≈ 10.2 Å. They also 

reported that the BiCoO3 samples prepared from the mixed oxides showed a 

few additional reflections in the X-ray patterns, which could be indexed 

taking basis in a primitive cubic (Pn3) structure with a ≈ 10.2 Å. Magnetic 

measurements performed on BiCoO3 samples proved them to be 

paramagnetic in the range -173 to 572 
o
C, with a magnetic moment of 2.3 

µB per cobalt ion. They emphasize that this magnetic moment is much lower 

than what expected for high-spin Co
3+

 (S=2) ions which should be 4.0 µB. 

They postulate that this could be explained by the coexistence of both high- 

and low-spin (S=0) in preferred sites or due to partial antiferromagnetic 

alignment of the high-spinn ions. An equal population of low- and high-spin 

ions would indeed result in a magnetic moment of 2.3 µB [19]. In addition, it 

was not possible to identify any Néel temperature in the investigated 

temperature range, and they suggested therefore that TN is below -173 
o
C. 

Further, they report that BiCoO3 is an insulator at room temperature, where 

the activation energy for conduction in the region 127 – 327 
o
C is ~0.4 eV 

while at still higher temperatures it is ~1 eV. It should be mentioned that as 

the synthesis was carried out under ambient pressure, it is highly unlikely 

that the BiCoO3 phase was obtained in this study. 

In 1979 Rozaj-Brvar et al. reported a study of reactions of Bi2O3 

with CoO in argon in mixtures of compositions up to 20 mol % CoO [20]. A 

compound with a bcc sillenite-type structure, a = 10.206 Å, melting 

incongruently at 790 
o
C and presumably having the composition Bi24CoO37 

(12Bi2O3:1CoO) was detected. In addition a eutectic in the Bi2O3-CoO 

system was found to be at 720 
o
C and at 15 mol % CoO. Samples with 
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increasing CoO content up to 80 mol % CoO were found to be two-phase 

mixtures, which showed increasing amounts of the CoO phase. The phase 

diagram is shown in Figure 1-1. 

 

 

 

Figure 1-1. The Bi2O3 -rich part of the Bi2O3 – CoO system  [20]. 

 

A study of reactions between Bi2O3 and Co3O4 was reported by Ramanan et 

al. in 1981 [21]. The resulting ternary oxide had the general formula 

Bi26−xCoxO40−y and exhibited a bcc structure related to α-Bi2O3. They found 

that the cobalt ion replaced bismuth randomly at the octahedral 24r sites 

(space group 123).  

In 1982 Dance et al. performed an ESR (electron spin resonance) 

study that implied the presence of Co
3+

 in the tetrahedral sites of the sillenite 

phase Bi12[Co
3+

1/2 Bi
5+

1/2]O20, which was prepared in air at 797 
o
C from 

Bi2O3 and Co3O4 [22]. 

A phase diagram of Bi2O3-Co2O3 mixtures in the range from 0 to 16 

mol % Co2O3 was published in 1985 by Gorashchenko et al. [23]. The 

region of two-sided solid solutions based on the sillenite compound 

12Bi2O3:1Co2O3, which melts congruently at 780 
o
C, is mapped in this 

diagram. The oxidation number of cobalt after the synthesis was neither 
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checked in that work, nor was the unit cell parameter of the resulting phase 

reported. 

J. Gopalakrishnan reported a study on some oxides of bismuth in 

1986 [24]. He suggested that two sillenite phases occurs in the Bi-Co-O 

system, namely Bi25CoO40 and Bi10Co16O40-δ. He also believed that in Bi26-

xCoxO40-δ sillenites, bismuth atoms can be substituted for cobalt atoms in the 

tetrahedral Co positions at x < 2 to form (Bi
5+

Co
3+

)[Bi24
3+

]O40, and cobalt 

atoms can substitute for bismuth atoms in the 24f positions at x > 2 to form 

((Co
2+

)2[Bi10
3+

Co14
3+

]O38). 

In 1996 Mary et al. reported a study [25] on single crystal X-ray 

diffraction refinements of the sillenite phase Bi12.7CoO0.3O19.35 crystallized 

from the melt of composition 3Bi2O3:1Co3O4. They found that the 

compound is cubic (I23) and a = 10.172 Å. The structure consists of five 

coordinated Bi atoms at the 24f site and a mixture of Co and Bi at the 

tetrahedral 2a site. Bi atoms at the tetrahedral sites are apparently displaced 

toward vacant O sites leading to a typical lone pair environment for Bi. 

A new study on reactions of Bi2O3 with cobalt oxides in air and in 

vacuum was reported in 1998 by Kargin et al. [26]. This report presents 

phase diagrams of Bi2O3–CoO (Figure 1-2) and a Bi2O3–Co3O4 (Figure 

1-3). Two sillenite compounds with the composition 44Bi2O3:1Co3O4 (a = 

10.200 Å) and 19Bi2O3:1CoO (a = 10.185 Å) were prepared in air and in 

vacuo, respectively. 
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Figure 1-2. The phase diagram for Bi2O3–CoO mixtures in argon. The 

composition at the eutectic point approximates 16 mol % CoO [26]. 

 

 

Figure 1-3. The phase diagram for Bi2O3–Co3O4 mixtures in air in a 

temperature range from 25 to 852 
o
C [26]. 

 

The synthesis in vacuum (p = 0.0267 Pa) from Bi2O3 and CoO resulted in 

the sillenite phase 19Bi2O3:1CoO (Bi38CoO58), with a = 10.185 Å, which 

melted incongruently at 780 
o
C. From the data obtained they suggest that the 

type of sillenite compound formed – either with Co
2+

 (19Bi2O3:1CoO) or 

with Co3O4 (44Bi2O3:1Co3O4) – is a function of synthesis variables 

(temperature and oxygen partial pressure). They also establish that the Bi-

Co-O system in air does not form any compounds with the Co2O3 phase. 

This observation contradicts earlier work carried out in Ref. [23]. 
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A.Belik et al. reported in 2006  a new high pressure synthesis of bulk 

BiCoO3 at 6 GPa and 970 
o
C [27]. The crystal- and magnetic structures of 

polycrystalline BiCoO3 was determined from data obtained by neutron 

diffraction in the temperature range -268 to 247 
o
C, and they report it to 

have antiferromagnetic long-range order below TN= 197 
o
C. They proposed 

a model for the antiferromagnetic order where the magnetic moments of the 

Co
3+

 ions are parallel to the c-axis and align antiferromagnetically in the ab 

plane. The antiferromagnetic ab layers stack ferromagnetically along the c-

axis, forming a C-type antiferromagnetic (C-AFM) structure. They found 

from the obtained data that the refined magnetic moments at -268 and 27 
o
C 

are 3.24(2) µB and 2.93(2) µB, respectively. In addition they report that 

BiCoO3 has the space group P4mm, a = 3.72937(7) Å and c = 

4.72382(15) Å at room temperature, the tetragonality (c/a) is 1.267, and that 

BiCoO3 is an insulator with resistivity of about 10
5 

Ωcm at 127 
o
C. They 

suggested that BiCoO3 should be considered as a pyroelectric material 

rather than a ferroelectric, since the measured resistivity is too low for the 

application of a large electric field. However they did find a noticeable 

amount of impurities in the sample, grains of Co3O4 were embedded into 

grains of BiCoO3, and Bi2O2-CO3 was found as separate particles. This 

could have influenced the electrical measurements, as Co3O4 is a p-type 

semiconductor [28]. They also report that BiCoO3 decompose in air to form 

Co3O4 and a sillenite-like Bi25CoO39 at 447 
o
C, and if the sample was heated 

to 327 
o
C the oxygen content of the sample slightly changed.  

Another high pressure synthesis of bulk BiCoO3 was reported by T. 

Oguchi et al. in 2007, to support first-principles calculations. However, they 

report no measured properties and provide no parameters [29].  
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1.2.1.1  Bulk study on the Bi-Fe-Co-O system 

A (1-x)BiCoO3–xBiFeO3 solid solution have also been reported synthesized 

by high-pressure by Azuma et al. in 2008 [30]. They reported a BiCo1-

xFexO3 phase diagram, see Figure 1-4. 

 

 

Figure 1-4. A composition-temperature phase diagram for the BiCo1-xFexO3 

system. In the figure C, T and R stands for the cubic, tetragonal and 

rhombohedral phases, respectively [30]. 

 

1.2.2  Thin films 

BiCoO3 has previously been synthesized as thin films in a (1-x)BiCoO3–

xBiFeO3 solid solution system by MOCVD [17, 31]. The precursors used 

for deposition of BiCoO3 with MOCVD was Bi[(CH3)2-(2–

(CH3)2NCH2C6H4)] and Co(MeCp)2 together with oxygen (O2). In both 

studies, the deposition temperature was 700 
o
C and (100)SrTiO3 was used as 

substrate.  
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As mentioned earlier depositions of BiCoO3 by the ALD technique 

has not previously been reported, probably due to lack of suitable bismuth 

precursor for the ALD process [10]. 

 

1.2.2.1 Cobalt 

Thin films of Co3O4 films have been reported deposited by ALD using 

Co(thd)2 and ozone (O3) [12, 32], CoI2 and oxygen (O2) [33], Co(acac)2 and 

O2 [34, 35] as well as Co(acac)3 and O2 [34-41]. Thin films of CoO have 

been reported deposited using Co(
i
PrAMD)2 and water (H2O) [42].  

Co(thd)2 was used in Ref. [32] as precursor for depositions on 

corning glass in the temperature range 200 – 400 
o
C, the sublimation 

temperature of the precursor was 100 
o
C and the applied pulse and purge 

parameters was 1.8s and 2.5s, respectively for Co(thd)2, and 1.0s and 3.0s 

respectively for O3. Films containing the Co3O4 phase and a mixture of the 

two phases Co3O4/CoO were obtained at the temperatures 200 – 300 
o
C and 

350 – 400 
o
C, respectively. An upper deposition temperature of 400 

o
C was 

used due to decomposition of Co(thd)2.  

Klepper et al. report in Ref. [12] deposition from Co(thd)2 in the 

temperature range 138 – 283 
o
C, with an growth rate of 21 pm/cycle. The 

pulse and purge parameters employed for the deposition were 1.5s pulse of 

Co(thd)2, 1.0s purge, 6.0s pulse of ozone and 1.5s purge. The as deposited 

films were found to have a epitaxial growth of the cubic Co3O4 phase, on 

MgO(100), α-Al2O3(001) and SrTiO3(100).  

CoI2 and O2 was used for deposition in the temperature range from 

450 – 700 
o
C in Ref. [33]. The growth rate was shown to be heavily 

influenced by the deposition temperature. On SiO2/Si(100) substrates, a 

growth rate of 200 pm/cycle was observed at 450 
o
C, decreasing to 4 

pm/cycle at 700 
o
C. On MgO(001) substrates the growth rates were found to 
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be 120 pm/cycle at 475 
o
C, while no growth could be detected at 700 

o
C. 

The as deposited films were observed to grow as the cubic Co3O4 phase 

throughout the temperature range 475 – 700 
o
C, polycrystalline on 

SiO2/Si(100), and epitaxial on MgO(100).  

Both Co(acac)2 [34, 35] and Co(acac)3 [34-41] have been used with 

O2 for deposition of metallic cobalt for catalytic purposes by ALD. The 

Co3O4 phase was identified by X-ray diffraction. Typically a source 

temperature around 170 – 180 
o
C was used for sublimation of the Co(acac)2 

and Co(acac)3 precursors. 

CoO is reported deposited at 250 
o
C with a growth rate of 40 

pm/cycle by Lim et al. in Ref. [42] using Co(
i
PrAMD)2 and H2O. 

Cobalt is also a constituent in deposition of (Co1-xFex)3O4 with ALD 

using Co(thd)2, Fe(thd)3 and O3 in Ref. [15]. The pulse/purge parameters for  

Co(thd)2 was the same as used in Ref. [12], the temperature range for 

deposition was 185 – 310 
o
C.  

Co(thd)2 has also been used together with La(thd)3 and O3 to deposit 

LaCoO3 in the temperature range 200 – 400 
o
C [32]. 

 

1.2.2.2 Bismuth 

Previously, there have been some attempts to deposit films of binary 

bismuth oxide using ALD. In 2000 Schuisky et al. reported an unsuccessful 

attempt to deposit bismuth oxide using BiPh3 and H2O [8]. The report 

unfortunately lacked descriptions about observations and parameters. 

Different bismuth precursors for the ALD-technique was 

investigated by Vehkamäki et al. in 2004 [9]. They studied silylamides 

Bi(N(SiMe3)2)3, Bi(N(SiMe2Et)2)3 and Bi(N(SiMe2Bu
n
)2)3, alkylamides 

Bi(NEt2)3 and Bi(NPr
i
2)3, donor functionalized alkylamide 

Bi(Bu
t
NC2H4NMe2)3 and thioamidate Bi(SC(Me)NPr

i
)3. Among the studied 
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compounds they found that with regards to volatility and thermal stability, 

Bi(N(SiMe3)2)3 seemed to be the most potential precursor for ALD. By 

using Bi(N(SiMe3)2)3 and H2O as precursors, they were able to deposit films 

of BiOx on silicon and borosilicate glass substrates at temperatures 190 – 

200 
o
C. Uniform, amorphous BiOx films were deposited with growth rates 

between 15 – 23 pm/cycle, although the reproducibility of these results were 

poor. Further, they reported that the precursor decomposed above 200 
o
C, 

and that BiOx formation also were observed at 170 – 190 
o
C, but this 

temperature range was not studied any further as the pulse and purge lengths 

for the different precursors was too long. They suggested that a possible 

explanation for the poor reproducibility of the BiOx films where due to 

reduction of bismuth to metallic form when no other metal oxides are 

present in the film, leading to termination of the growth. And that in ALD, 

the periodic exposures to low vapor pressures of H2O in a flow type reactor 

may not be effective enough to fully oxidize bismuth. As support they point 

to a study done by Schuisky et al. in [8], where they observed metallic 

bismuth in their as deposited films of Bi-Ti-O systems. However, the 

metallic bismuth in the as deposited films grown by Schuisky et al. was 

probably caused by using a higher deposition temperature than the 

decomposing temperature for the bismuth precursor utilized, BiPh3. 

In 2006 Vehkamäki et al. reported again an attempt to deposit 

bismuth oxide using Bi(N(SiMe3)2)3 and H2O as precursors at 190 
o
C [10]. 

They now report a growth rate of 8 pm/cycle which is lower than the growth 

rate previously reported, and the result was an amorphous BiOx film with 

large grains with radius of about 30 nm that were uniformly distributed over 

the film. As a possible explanation of the observed morphology and also for 

the variations in the BiOx growth, it is suggested that bismuth was reduced 

to metallic form during the metal precursor pulse or the purging steps. The 

metallic bismuth would diffuse on the surface, coalesce and form small 
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islands. It is mentioned that Terajima and Fujiwara have previously reported 

an average diffusion length for bismuth of 5 – 13 nm on mica surfaces at 

175 
o
C during bismuth film deposition by evaporating in a high-vacuum 

system, and that bismuth re-evaporation was considered to take place [43]. 

It is also mentioned that Hwang et al. considered evaporation of bismuth 

during ALD as the cause of decrease in bismuth content in their films as 

they increased the deposition temperature form 225 to 300 
o
C in their 

Bi2Ti2O7 process [44]. Further they report an attempt to anneal the 

amorphous bismuth film containing the 30 nm grains distributed on the 

surface. Since metallic bismuth melts at 271.3 
o
C, they annealed the sample 

for 1 hour at 300 
o
C in N2 atmosphere. Since no change could be observed 

in the annealed sample, they suggested it is likely that if reduction of 

bismuth indeed takes place on the surface of the growing film, it seems 

likely that reoxidation has followed during further deposition cycles.  

An attempt to grow binary bismuth oxide using BiPh3 and O3 as 

precursors was reported by Harjuoja et al. in 2006 [11]. This resulted in 

visually dark and patchy films with a steep thickness profile, indicating poor 

ALD growth. They did, however, not report any of the parameters used for 

this deposition. 

Bismuth has been deposited together with titanium by ALD in the 

Bi-Ti-O system using Bi(mmp)3 and O3 [45], and H2O [44] as precursors. In 

Ref. [44] Hwang et al. varied the deposition temperature from 225 – 300 
o
C, 

and observed that the bismuth concentration in the film decreased with 

increasing growth temperature. This decrease could anyhow be controlled 

within a certain range by increasing the bismuth pulse at a given 

temperature. The as grown Bi2Ti2O7 films
 
were amorphous and contained 

metallic bismuth at high growth temperatures
 

and high bismuth 

concentrations. They reported a growth rate of 75 pm/cycle at 225 
o
C which 

decreased to 55 pm/cycle at 300 
o
C.  
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Cho et al. used ALD with direct liquid injection (DLI) method to 

deposit films in the Bi-Ti-O system in Ref. [45], with the Bi(mmp)3/O3 

precursor combination. They reported an ALD window in the temperature 

range of 250 – 350 
o
C, and that the bismuth concentration in the films 

decreased above 425 
o
C, which is a higher temperature than reported by 

Hwang et al. in Ref. [44] for the same decrease in bismuth concentrations. 

They also found that the as deposited films at 300 
o
C were amorphous. 

However they observed no metallic bismuth incorporated in the deposited 

films as Hwang et al. did, probably due to the use of O3 which is a stronger 

oxidizing precursor than H2O.  

BiPh3 has also been reported used as precursor with H2O as the 

oxygen source [8], for depositions together with TiCl4 in the Bi-Ti-O 

system. Schuisky et al. reports in [8] that at 260 
o
C the growth rate is about 

20 pm/cycle. With an increasing number of BiPh3 pulses, the growth rate 

drops, and they suggest that the previously as-deposited TiOx layer acts as a 

catalyst which enhance the reactivity of the BiPh3 precursor, and thus with 

increasing bismuth pulses this catalytic effect is suppressed as the TiOx 

layer becomes covered with increasing amounts of BiOx. However, for the 

films deposited at 260 
o
C, bismuth was incorporated in a metallic form 

rather than as an oxide. This is, as mentioned earlier, probably due to the use 

of a deposition temperature above the decomposition temperature of BiPh3  

(see results in section 4.1.3.2 on page 95 ). They were also unsuccessful in 

obtaining bismuth titanates with higher Bi to Ti ratios than 0.61 due to the 

difficulties with the decreasing growth rate for subsequent bismuth pulses.  

Thin films in the Ba-Ti-O system have also been deposited using 

BiPh3 and O3, together with the precursor pair T(O
i
Pr)4/H2O [11]. In Ref. 

[11] Harjuoja et al. reported good control of the film stoichiometry at the 

deposition temperature of 250 
o
C, and that the as deposited films were 

amorphous. Annealing in N2 at temperatures from 700 to 1000 
o
C resulted 



   1.Background 

 

14 

 

in crystalline films, however, the total bismuth content was significantly 

reduced by the annealing procedure. This effect was most notable for the 

samples with high bismuth contents after annealing at 1000 
o
C. By reference 

to the phase diagrams in Figure 1-2 and Figure 1-3 on page 6, it is evident 

that pure Bi2O3 melts below 825 
o
C. Stoichiometric loss due to the volatile 

nature and the high vapor pressure of low melting point oxides, such as 

Bi2O3, is according to Ref. [46] well-known in the literature. Hence 

evaporation of bismuth oxide could therefore be a possible explanation of 

the observed decrease in bismuth content during the annealing. 

Bi(CH2SiMe3)3 and O3 as precursor pairs have been used to deposit 

thin films in the Bi-Si-O system [47]. In Ref. [47] Harjuoja et al. reports that 

in the temperature range 250 – 350 
o
C they managed to deposit amorphous 

films in the Bi-Si-O system with a constant growth rate of 40 pm/cycle.  

Harjuoja et al. further report in Ref. [11] that the bismuth content in 

the Bi–Si–O thin films was successfully controlled by adding BiPh3/O3 

ALD cycles into the Bi(CH2SiMe3)3/O3 process at 250 
o
C, and the as-

deposited films were amorphous. 

  

1.2.3 Physical properties of BiCoO3 

The magnetoelectric properties of BiCoO3 are rather unexplored. This is 

mainly due to the difficulties in preparing high quality samples [48]. No 

such measurements have previously been reported for thin film samples. 

The expected magnetoelectric properties of this material are based on ab-

initio calculations performed on BiCoO3 using DFT (density functional 

theory) [48-50]. 

 Uratani et al. predicted that BiCoO3 has an insulating and 

antiferromagnetic (G or C-type) ground state in Ref. [49]. They also 

predicted a giant electric polarization of 179 µC cm
-2

 in BiCoO3. 
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In Ref. [50] Cai et al. reports that the C-AFM structure is lowest in 

energy and thus more stable than other possible configurations, in addition 

they predict a band gap of 2.11 eV in the insulating ground state of the C-

AFM ordering. 

A giant magnetoelectric coupling in BiCoO3 is predicted by 

Ravindran et al. in Ref. [48], which means that the magnetic state of the 

cobalt atom can be switched between a magnetic high spin state (HS, S=2) 

and a nonmagnetic low spin state (LS, S=0) by an electric field. They also 

predict a giant electric polarization of 170 µC cm
-2

 in good agreement with 

Ref. [49]. Their calculations also show that the magnetic ground state for 

the ferroelectric phase of BiCoO3 will be C-AFM which is in agreement 

with Ref. [27, 50]. In addition they report a calculated total moment of 3.10 

µB, which is comparable with 3.24 µB as measured from neutron diffraction 

measurements at -268 
o
C in Ref. [27]. 

 

1.3 Multiferroics: Magnetic and electric properties 

This chapter gives a short and general description of magnetic and electric 

properties which can be found in multiferroic materials. The term 

multiferroic is also explained, together with why there are so few 

multiferroic materials. 

 

1.3.1 Magnetism 

Materials with magnetic dipoles can be divided into four different 

fundamental configurations: ferro-, antiferro-, ferri- and paramagnetic. 

Figure 1-5 shows a principal sketch of how the magnetic dipoles (spins) are 

ordered in these four different cases. 
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Figure 1-5. The different alignments of magnetic dipoles for a) 

ferromagnetic-, b) antiferromagnetic-, c) paramagnetic- and d) 

ferrimagnetic material. 

 

As mentioned earlier, BiCoO3 is reported to have an antiferromagnetic 

ordering [27], thus this configuration is explained more in detail together 

with ferromagnetism. Ferrimagnetism is not possible in such compounds, as 

it requires two subsets of magnetic moments [51], and will therefore not be 

discussed any further. 

 

1.3.1.1 Ferro- and antiferromagnetism 

This subchapter elaborates on the origin of ferromagnetism and 

antiferromagnetism and how such materials behave in an external magnetic 

field. 

 

1.3.1.1.1 Origin of ferromagnetism 

There are only nine crystals of pure elements which are ferromagnetic: three 

3d metals, Fe, Co, and Ni, and six 4f metals, Gd, Dy, Tb, Ho, Er, and Tn 

[52]. However the number of ferromagnetic alloys and compounds is 

a) Ferromagnetic b) Antiferromagnetic

c) Paramagnetic d) Ferrimagnetic
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practically unlimited. A material that undergoes changes from a random 

distribution of its magnetic dipoles (Figure 1-5 c)) to an ordered parallel 

magnetic structure (Figure 1-5 a)), below a certain temperature, called the 

Curie temperature TC, is called ferromagnetic. The Curie-Weiss law which 

describes this transition is given in Eq. 1-1 [51]; 

 

 
𝜒 =

𝐶

𝑇 − 𝑇𝐶
 

 

Eq. 1-1 

 

where χ is the magnetic susceptibility, C is the Curie constant, T is the 

absolute temperature and TC is explained above. The driving force for 

ferromagnetic ordering is the exchange energy, which gives the system a 

gain in free energy by ordering the magnetic moments (electron spins) 

parallel.  

 

However, when the atom is introduced into a solid or a molecule another 

interaction, chemical bonding, is important. In general, the bonding energy 

is greater than the exchange energy, however the d- and f-orbitals are 

localized and do not extend far from the atomic nucleus, hence the bonding 

energy between these orbitals are weak. As a consequence they are strongly 

influenced by the exchange energy and ferromagnetic properties can 

therefore occur in materials with incompletely filled d- or f-orbitals. 

 

1.3.1.1.2 Properties of ferromagnets in magnetic fields 

When an external magnetic field H is applied to a ferromagnet an internal 

magnetic field M will be created. The total magnetization B given by Eq. 

1-2, and the resulting magnetization curve B(H), shown in Figure 1-6, is a 

distinguishing feature of a ferromagnet. 
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 𝑩 = 𝜇0 𝑯 + 𝑴  Eq. 1-2 

 

where B, H and M is described above and µ0 is the vacuum permeability. 

 

 

Figure 1-6. The magnetization curve B(H) for a ferromagnetic material. 

 

As Figure 1-6 shows in the absence of a field (H=0) there is no 

magnetization (B=0), meaning there is no resultant magnetization of the 

sample in the initial state (O). With an increase in the external field some of 

the domains start to align themselves with the external field. As the field is 

increased further the domains that are aligned with the external field will 

grow at the expense of those domains that are poorly aligned, until 

saturation is reached. At this point all the magnetic domains are aligned 

parallel with the external field. When the external field is removed a large 

amount of these domains remain locked in this alignment, and the 

magnetization B will drop to Br = µ0M, which is called the remanent 

magnetization, giving rise to a net magnetization of the sample. As the 



   1.Background 

 

19 

 

external field is set in reverse the magnetization of the sample decreases 

until a critical field is reached (-Hc), which is called the coercive field. At 

this point the net magnetization of the sample is back to zero. A further 

increase in the external field leads again to a saturation with a net magnetic 

moment for the sample.  

 

1.3.1.1.3 Origin of antiferromagnetism 

As mentioned earlier the d- and f-orbitals on the magnetic atom in a 

ferromagnet do only participate in weak bonding, however, for an 

antiferromagnet this is not the case. In an antiferromagnet, the transition 

metal ions are separated by a nonmetal such as oxygen, and the d orbitals on 

the metal ions participate in the bonding. And this interaction of the d 

orbitals on the cations via the intermediate anion is called superexchange, 

leading to a long range ordering of antiparallel spins on the metal ion. A 

schematic illustration of this antiparallel spin ordering, due to overlap of the 

metal d orbitals with the oxygen p orbitals, is shown in Figure 1-7. 

For an antiferromagnetic material the temperature at which the 

material undergoes a transition from paramagnetic to antiferromagnetic is 

called the Néel temperature, TN. 

 

 

Figure 1-7. Schematic illustration of superexchange leading to 

antiferromagnetic alignment of spins on metal catios. 
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1.3.2 Ferroelectrics 

Ferroelectric materials are characterized by a spontaneous polarization in 

absence of an electric field. Thus a ferroelectric material has to be an 

insulator; otherwise any polarization in the material would be canceled out 

by mobile electrons. Insulating materials are often referred to as dielectrics 

and one of the most important parameters used to describe an insulator is its 

dielectric constant, properly called the relative permittivity, εr. The relative 

permittivity describes the response of a solid to an electric field. As an 

example, the ferroelectric crystallographic polymorph of barium titanate 

(BaTiO3) has a relative permittivity in the order of 1∙10
4
 [51], while silicon 

(Si) has a relative permittivity of 11.8 [53]. Materials with high dielectric 

constant can be used in a capacitor, where an increased permittivity allows 

the same charge to be stored with a smaller electric field (and thus a smaller 

voltage), leading to an increased capacitance. 

 

1.3.2.1 The origin of ferroelectricity 

The ferroelectric phase is obtained below a critical temperature called the 

Curie temperature. There are several different mechanisms which results in 

ferroelectricity, however, only the two that are relevant for the work in this 

thesis will be presented here. The first mechanism is often found in 

perovskites, having an ABO3 formula, where the B-atom has a d
0
 electronic 

configuration. In typical ferroelectrics as BaTiO3 and lead titanate (PbTiO3) 

the titanium cation is situated in an off-centre position in the oxygen 

octahedron. It is shown for BaTiO3 that the hybridization between the empty 

Ti 3d orbitals and O 2p orbitals stabilizes the off-centering of the Ti atom 

[54, 55]. As a consequence the center of gravity of the anion array will now 

not coincide with the positive cation, and each unit cell in the structure now 

contains a dipole. As a centre of symmetry in the structure would force the 

http://en.wikipedia.org/wiki/Capacitor
http://en.wikipedia.org/wiki/Electric_charge
http://en.wikipedia.org/wiki/Voltage
http://en.wikipedia.org/wiki/Capacitance
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generated dipole moment to be canceled out by symmetry, a ferroelectric 

material must therefore be non-centrosymmetric. In perovskite ferroelectrics 

this cation displacement is bi-stable with respect to the center, meaning that 

the displacement can take place in more than one direction, making it 

possible to switch the polarization by applying an external electric field. 

As ferroelectricity exists in BiCoO3 and other materials which do not 

have d
0
 electronic configuration on the B atom, there must be another 

mechanism for the origin of ferroelectricity in these materials. In fact the 

lone pair electrons of some main group elements (Tl
+
, Pb

2+
, Sn

2+
, 

Sb
3+

,Bi
3+

,Se
4+

,Te
4+

) is known to be stereochemically active. It is shown that 

the Bi lone pair (6s
2
) instead of remaining spherical mix with the Bi 6p 

states and creates a space-filling localized lobe, which in turn pushes away 

its neighboring atoms causing a structural distortion [56-58]. This distortion 

stabilizes the polarization of the material, and it is also reported in the case 

of BiCoO3 that Bi-O hybridization plays an important role in increasing and 

further stabilizing this polarization [48, 50]. Thus, in the perovskite 

structure, the properties of the A-atom can also significantly influence the 

formation of a ferroelectric phase in a material. 

 

1.3.2.2 Properties of ferroelectrics in electric fields 

A ferroelectric material in an electric field behaves much like a 

ferromagnetic material in a magnetic field. In general the polarization of a 

ferroelectric crystal will be zero, as the crystal is composed of an equal 

number of domains oriented in all the equivalent directions allowed by the 

symmetry. If a small electric field, E, is applied the crystal will behave like 

a normal dielectric. This corresponds to the segment O-A in Figure 1-8. As 

E increases, domains will gradually change orientation and the observed 

polarization will increase rapidly. Ultimately all the dipoles will be aligned 
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parallel; this is the state of saturation. Extrapolation of the linear portion at 

saturation to E = 0 gives the value of the spontaneous polarization Ps. The 

most important characteristic of a ferroelectric is that the spontaneous 

polarization can be reversed by the application of a suitably oriented electric 

field. As the field is removed, the polarization will drop to Pr, which is 

called the remanent polarization. Reversal of the field, will cause a reversal 

of the dipole direction, and at a field value called the coercive field, Ec the 

sample has again no net polarization. Further reversal of the field will again 

lead to saturation, and the spontaneous polarization has been switched. 

 

Figure 1-8. Hysteresis behavior of the polarization, P, in relation to the 

applied electric field, E, for a ferroelectric crystal. 
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1.3.3 Multiferroics 

This subchapter will first explain the term multiferroics, followed by an 

explanation for why these materials are so rare in nature. Then an 

explanation will be given on how the different mechanisms, resulting in 

antiferromagnetic and ferroelectric properties in BiCoO3, can be combined 

together. Finally its predicted properties will be mentioned, together with 

some possible applications for multiferroic materials. 

 

Materials in which two or all three of the properties ferroelectricity, 

ferromagnetism, and ferroelasticity occur in the same phase are called 

multiferroic [59]. Only multiferroic materials, which also are 

magnetoelectric, will be discussed in this work. By definition, a 

magnetoelectric multiferroic must be simultaneously both ferromagnetic and 

ferroelectric [60], see Figure 1-9, therefore ferroelastic materials will not be 

discussed any further. In a magnetoelectric materials there is also often a 

coupling between the two order parameters, which can give induction of 

magnetization by an electric field or polarization by a magnetic field [3]. 

The promise of coupling between the magnetic and electronic order 

parameters and the potential to manipulate one through the other has 

captured the imagination of researchers worldwide. 
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Figure 1-9. Relationship between multiferroic and magnetoelectric 

materials. The requirements to achieve both in a material is illustrated [61]. 

 

It should be noted, however, that the current trend is to extend the definition 

of multiferroics to include materials possessing two or more of any of the 

ferroic or corresponding antiferroic properties such as antiferroelectricity 

and antiferromagnetism, and it is this definition that will be used in this 

thesis.  

 

Apart from that there is only 13 point groups that can give rise to 

multiferroic behavior, the scarcity of multiferroics can be explained by: 

 

I. A ferroelectric material must by definition be an insulator, and as 

earlier pointed out many ferroelectric materials have d
0
 electronic 

configuration. 

II. Many ferromagnets are metals, and magnetic ordering is only 

possible due to the presence of d-electrons. 

 

Thus from point I and II there seem to exist a mutually exclusion between 

the conventional mechanism of off-centering in a ferroelectric and the 

formation of magnetic order, which explains why multiferroic materials are 

rare in nature. 
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As stated earlier the origin of ferroelectricity in BiCoO3 is a result of the 

lone-pair on the Bi
3+

 ion, which hybridize with the O 2p orbital to stabilize a 

polarization of the structure. Resulting in a tetragonal structure with a c/a 

ratio of 1.27 which is remarkably large compared with ordinary perovskite-

type oxides (for example, 1.06 for tetragonal PbTiO3) [49]. And the 

calculated polarization of 179 µC cm
-2

 for BiCoO3 is the largest among the 

multiferroic materials identified so far [48]. 

The four unpaired electrons on the Co
3+

 ion is the origin of the 

magnetic properties, which by superexchange results in an (C-AFM) 

antiferromagnetic ordering [27], see Figure 1-10. The calculated value of 

3.10 µB is less than the expected value of 4.00 µB, due to strong 

hybridization between Co 3d and O 2p states [49]. 

 

   

Figure 1-10. (Left picture) Crystal structure of BiCoO3 with solid lines 

displaying the chemical cell. Arrows at the Co atoms indicate the C-type 

spin ordering below TN = 197
o
C [27]. (Right picture) The unit cell of 

BiCoO3  seen along the b-axis. 

 

Given the unique magnetic and electric properties of mulitferroic materials, 

one can easily think of many different applications. First, the ability to 

couple the two order parameters together allows an additional degree of 

freedom in the design of conventional actuators, transducers, and storage 
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devices [62]. Other applications include multiple state memory elements, in 

which data is stored both in the electric and magnetic polarization, or novel 

memory media, which might allow writing of a ferroelectric data bit, and 

reading of the magnetic field generated by association. 

In the literature it is stated that the ultimate goal for device 

functionality would be a single phase multiferroic with strong coupling 

between ferroelectric and ferromagnetic order parameters making for simple 

control over the magnetic nature of the material with an applied electric 

field at room temperature [61]. In fact, as mentioned earlier, BiCoO3 is to 

this date the only material shown to be able to exhibit such strong coupling 

[48]. Where BiCoO3 transforms from the high spin state to a nonmagnetic 

low spin state with 5% volume compression, which can be done by an 

external electric field, see Figure 1-11. 

 
Figure 1-11. Variation of total energy with magnetic moment for BiCoO3 

for different volumes [48]. 
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However, BiCoO3 is an antiferromagnet and today the technological 

applications of antiferromagnets are rather limited. They are used in spin 

valves, where an antiferromagnet is used as a pinning layer for the magnetic 

spins on a ferromagnet [63]. However, aside from the potential applications, 

the fundamental physics of multiferroic materials are rather rich and 

fascinating. 
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2 Methods 

In this chapter a general introduction will be given on the different methods 

utilized in this work. The chapter is divided in two main parts, the first part 

goes through the methods used for synthesis of both thin films and 

precursors. The second part describes the methods used for characterization 

of the synthesized thin films and precursors. 

 

2.1 Synthesis 

As extensive work has been done on synthesis of metalorganic compounds 

in this work, this subchapter is divided in two main parts, synthesis of thin 

films by ALD and synthesis in inert atmosphere using Schlenk line and 

glove box. 

 

2.1.1 The ALD technique 

In this section first a short review of the history of the ALD technique will 

be given, followed by a description of the theoretical aspects. 

 

2.1.1.1 History 

ALD is a chemical gas phase thin film deposition technique based on 

alternating self-limiting gas-to-surface reactions.  This approach makes it 

extremely easy to control the thickness and the stoichiometry of the 

deposited films. 

The motivation behind the development of this technique was the 

desire to produce thin films electroluminescent flat panel displays (TFEL). 

This is a demanding application as it requires thin films with high dielectric 

strength, low pin-hole density and uniformity over large-area substrates. 
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Nevertheless thin films deposited by ALD managed to meet these 

requirements. The technique was developed and introduced as atomic layer 

epitaxy (ALE) in the late 1970s by Suntola and his co-workers in Finland 

[64, 65], and was patented already in 1977 [66]. Shortly after the successful 

introduction of ALE, the method was investigated for its ability to grow 

epitaxial semiconductors based on the III-V compounds [67, 68]. Though 

there were reported many outstanding results, the method has had a limited 

successes in this field with no reported commercial applications. 

Meanwhile, depositions for nonepitaxial applications where slowly but 

steadily taken into investigation, some of the areas examined were solar 

cells, optics, protective coatings and gas-sensors.  

In the 1990s the interest towards ALD increased, mainly due to the 

fact that the silicon-based microelectronics started to look for new thin film 

deposition methods. Their present deposition techniques were foreseen to 

meet major problems with conformality in its next years, due to the ever 

decreasing device dimensions with also increased aspect ratios. 

 

2.1.1.2 Alternative names 

The technique has been given many different names since its introduction in 

1977. As mentioned earlier the method was initially introduced as ALE, 

where the word “epitaxy” translated from Greek means “arranged on”. 

Epitaxial growth is today commonly used to describe the growth of a single 

crystalline film on a single crystalline substrate with a well-defined 

structural relationship between the two. The term epitaxy was in the case of 

ALE used to emphasize the sequentially controlled surface reactions upon 

the previously deposited layer [64, 69]. However this use of the term has led 

to unfortunate confusion when describing growth of amorphous or 

polycrystalline films by ALE. The ALE name is presently limited to 
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depositions where epitaxial growth occurs and the most common name 

today is Atomic Layer Deposition (ALD), which therefore is the chosen 

name in this thesis. However, in a transition period, the name Atomic Layer 

Chemical Vapor Deposition (ALCVD) was used. This name emphasizes its 

relationship with the Chemical Vapor Deposition (CVD) technique. Further 

names for this technique are: Molecular Layer Epitaxy (MLE) which 

highlight the use of molecular precursors, Digital Layer Epitaxy (DLE) 

which emphasizes digital control of the thickness and Molecular Layering 

(ML) which comes from old Russian literature [70, 71]. 

 

2.1.1.3 The ALD-cycle 

The main characteristic feature of the ALD-technique is the altering self-

limiting gas-to-surface reactions obtain by sequential pulsing of the 

precursors below their decomposition temperatures. The individual 

precursor pulses are separated by pulses of inert gas to remove excess 

reactants. This eliminates gas phase reactions between the different 

precursors as they never meet in the gas phase.  In the simplest case, where 

only two different precursors are used, one ALD cycle will consist of four 

steps:  

I) Precursor 1 is pulsed into the reaction chamber.  

II) The reaction chamber is purged with an inert gas to remove any 

surplus of precursor 1.  

III) Precursor 2 is pulsed in to the reaction chamber.  

IV) The reaction chamber is purged with an inert gas again.  

 

This is repeated until the desired thickness of the deposited film is reached. 

The deposition rate for one cycle depend on the type of precursors used and 

can vary between 10-1200 pm per cycle [72]. Figure 2-1 shows the 
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principles behind one ALD-cycle for the deposition of alumina (Al2O3) 

from trimethylaluminium (TMA, Al[(CH3)]3 ) and H2O. 

 

 

Figure 2-1. A principle sketch of the ALD-process for deposition of Al2O3 

from TMA and H2O [73]. 

 

In Figure 2-1, TMA is first pulsed into the reaction chamber (Figure 2-1 b) 

where it reacts with the available OH-groups on the surfaces present. The 

result is formation of methane and an aluminum complex chemically 
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bonded to the surface. The reaction ceases when all available OH-groups 

have reacted, and a monolayer of aluminum complexes are formed on the 

surface (Figure 2-1 c). At this point the excess TMA molecules will only be 

physisorbed to the already chemically bonded monolayer on the surface. 

Due to the weak van der Waal forces involved in the physisorption process 

this process is fast and reversible. The previous chemical adsorption process 

is often connected with an activation energy and require thus a certain 

temperature to proceed. This may therefore be a limiting factor for growth at 

lower temperatures [70, 74]. The surplus of the TMA precursor, including 

any physisorbed TMA and byproducts is purged away by an inert gas, in 

this case N2 (Figure 2-1 d). As mentioned earlier, this purge step is a 

decisive factor that separates the ALD-technique form other gas phase 

deposition methods. By purging, unwanted gas phase reactions between the 

different precursors are avoided. After this purging step the surface is now 

terminated by methyl groups (Figure 2-1 e). When water is pulsed in 

(Figure 2-1 f), the water molecules react chemically with the adsorbed 

monolayer of aluminium complexes. The reaction again ceases upon 

completion where there are no more methyl-groups available for reaction 

with water. Surplus water is then purged away with an inert gas (Figure 

2-1 h) whereupon the surface again is terminated by OH-groups (Figure 

2-1 i). The cycle is thereafter repeated until the desired thickness is 

obtained. This growth mechanism also makes the ALD technique able to 

perfectly cover surfaces with a complex geometry [70]. 

 

2.1.1.4 Demands for the ALD-process 

To obtain the characteristics of an ALD process there are some conditions 

that has to be met. These conditions will be discussed in this section as well 

as their effect on the quality of the deposited film. 
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2.1.1.4.1 Precursors 

A range of different precursors can be used in the ALD processes such as 

pure elements, halides, organometallics, metalorganics and pure organic 

compounds. However a usable precursor must meet some requirements. 

Probably the most important is that the precursor must be volatile enough to 

enable transport to the reaction chamber through the gas phase. A rough 

limit for a suitable vapor pressure is 0.1 mbar at the source temperature used 

[70]. In order to maintain a self limiting growth it is of paramount 

importance that the precursor is chemically inert towards reactions with 

itself and also does not undergo decomposition. This also applies to the 

byproducts formed during the reactions. However, in some cases precursor 

decomposition may be accepted, provided that the decomposition proceeds 

in a surface reaction rate limited manner, thereby maintaining the good 

uniformity and conformality. Thereafter, the precursor must be sufficiently 

reactive with the functional groups available on the surfaces present. For 

instance depositions of metallic films are difficult, due to a lacking 

chemistry. The ALD growth mechanism does not require a constant flux of 

the precursor pulsed. The only demand is that the pulse length must be 

sufficient for a complete coverage of the surface. This allows for use of 

solid precursors even though the sublimation of these often  gives a varying 

flux [75]. However liquid or gaseous precursors should be preferred, if 

available, as small particles from a solid precursor may be transported into 

the reaction chamber and cause detrimental defects. Ideally the precursors 

used should also be non toxic, inexpensive, as well as easy to synthesize and 

handle. 

It is beneficial to use very reactive precursors, as this often implies 

low activation energies for surface reactions. This is also termed as having a 

high sticking coefficient which also involves a high utilization factor of the 

precursor. Figure 2-2 shows two different Langmuir-models for how 
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adsorption can take place on the surface. These models are further used to 

describe the two different reactions that can take place, depending on the 

precursors used and on the sample surface during an ALD process. 

 

 

Figure 2-2. Langmuir model of surface energies [69]. In (a) chemisorption 

of atom A on a B(s) surface take place without a precursor state or an 

activation energy. In (b) chemisorption of reactant molecule Bn(g) on a A(s) 

surface via a precursor state B‟(s). 

 

Additive reaction 

In its early stages, ALD was used with elementary precursors that reacted 

additive on the surface [70]. Additive ALD growth is based on the use of 

elements A and B of the compound AB as the precursors. This process 

demands that both elements must have a suitable vapor pressure for the 

necessary vapor transport at the growth temperature. Examples of successful 

additive ALD processes are the growth of several II-VI compounds, such as 

ZnS, ZnSe, ZnTe, CdS, CdSe and CdTe [69]. 

In simple words, the basic requirement for monolayer formation is 

selective desorption, i.e. the desorption rate of atoms A from an A(s) surface 

should be higher than that of atoms A from B(s) surface. Depending on 

whether the binding positions are directly available on the surface, the 
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reaction can take place without any activation energy as shown in Figure 

2-2 a). However if a reconstruction of the surface or the precursor molecule 

is needed, the reaction have an activation energy as shown in Figure 2-2 b). 

 

Exchange reaction using compound precursors 

The use of compounds as precursors extends the use of ALD process to 

materials where the vapor pressures of the elemental components are too 

low to give rise to the additive mode of the ALD process. The compound 

precursors reacts with the surface by an exchange reaction, also called 

ligand exchange reaction [70, 71]. The reaction between TMA and water, 

which is shown in Figure 2-1 on page 32, where the methyl groups are 

exchanged with hydroxyl groups is an example of such an exchange 

reaction. With use of compound precursors, the self limiting growth 

mechanism is caused by the remaining ligands on the precursor molecule, 

which sterically hinders other precursor molecules from binding to the 

surface, such as the methyl groups in Figure 2-1 c on page 32. These 

ligands need to be reactive towards the second precursor and, as mentioned 

earlier, the byproducts from this reaction should not react with the surface or 

with anything in the gas phase, as this could lead to incorporation of 

impurities in the film. Exchange reactions follow the reaction pathway 

described in Figure 2-2 b) on page 35, and the byproducts can be important 

factors regarding the quality and the growth conditions of the deposited 

film. A deposition process of calcium carbonate (CaCO3), using Ca(thd)2 

and O3 as precursors, was improved by pulsing carbon dioxide (CO2), which 

is a byproduct from the reaction, into the reaction chamber [76]. On the 

other hand, deposition of CaO was not feasible due to reactions with the 

CO2 byproducts. 
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Decomposing reaction 

Another method that can be used for the ALD-process is in fact 

decomposing reactions. Here the precursors are first absorbed onto the 

substrate, in a partial or complete monolayer, before it is exposed to an 

energy pulse, i.e. laser beam or plasma pulse. The energy pulse decomposes 

the absorbed precursors and the desired material is deposited in a controlled 

manner.  

 

The film thickness obtained in one ALD-cycle may be a full monolayer, 

corresponding to the density of atoms in the corresponding crystal plane of a 

bulk crystal, or it may be a partial monolayer due to preferred surface 

reconstructions or steric-hindrance effects related to the precursors used. In 

ALD the former is true for most processes [77]. Steric-hindrance happens 

when the physical size of the precursor is so large that it prevents further 

reactions with the substrate by physically blocking reactive sites from other 

molecules [69]. The effect of steric-hindrance because of increasing ligand 

size is illustrated in Figure 2-3 below. 

 

 

Figure 2-3. An illustration of steric-hindrance as consequence of increasing 

ligand size on the precursor molecule. M represents a metal atom [14]. 
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2.1.1.4.2 ALD temperature window 

The most important parameter available to control the saturation mechanism 

of an ALD process is the deposition temperature. To keep the precursors in 

the gas phase a specific minimum temperature is needed, some temperature 

is also necessary to desorb any physisorbed byproducts or excess precursor 

molecules. Assuming that sufficient pulse times are being used, the effects 

of different deposition temperatures on the growth rate can be studied, see 

Figure 2-4. 

 

Figure 2-4. Temperature windows of ALD deposition. The letters denotes 

the different growth conditions, which is described in the text below. 

 

It’s important to note that the saturation mechanism is unlike for the 

different precursors utilized, and that the total growth rate is a consequence 

of the whole process. The temperature can be mainly divided into three 

regions, low, medium and high temperature. 

For the first region low temperature (L): A decrease in growth rate 

as the temperature is raised may indicate that the temperature at deposition 

is too low and that the precursor is condensed in monolayers on the surface 

(L1). An increase in growth rate per cycle as the temperature is raised may 

denote that the process is limited by an activation energy, meaning that the 
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precursor molecules do not form chemical bonds readily with the surface 

(L2). By increasing the pulse time of the precursor, a saturated growth can 

be obtained in this region as well, at the expense of an increased deposition 

time. 

Medium temperature (M): A constant growth rate of one monolayer 

(1 ML) over a certain processing window, means that a complete saturation 

of the surface is obtained by the precursor molecules. This also indicates 

that steric-hindrance and surface reconstructions are of negligible 

importance (M1). A slow increase in growth rate per cycle as the 

temperature is raised denotes the case when improved surface diffusion of 

the precursors makes them pack more closely together (M2). A constant 

growth rate of less than one monolayer per cycle in a given temperature 

window denote that steric-hindrance or surface reconstructions may take 

place (M3). 

High temperature (H): An increase in growth rate per cycle as the 

temperature is raised indicates that the precursor is decomposing, leading to 

an uncontrolled deposition (H1). A decrease in the growth rate per cycle as 

the temperature is raised denote that adsorbed precursor molecules are 

evaporating from the surface, or that surface ligands that is essential for the 

reaction with the next precursor is dissociating. 

 

2.1.1.4.3 Pulse- and purge window 

In the same manner as for the temperature window for the ALD process, 

there also exist pulse- and purge windows. Figure 2-5 below shows how the 

growth rate can be affected by the pulse time of a given precursor. 
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Figure 2-5. Pulse window for the ALD process. The letters denotes the 

different growth conditions, which is described in the text below [70]. 

 

If a reactive precursor is used, the kinetics for the surface reactions is fast, 

giving rise to a rapid saturation of one monolayer (1 ML) of precursors 

molecules on the surface Figure 2-5 (a). If a less reactive precursor is used 

the reaction kinetics is slower, meaning a longer pulse time is needed to 

reach the saturation of one monolayer at the surface Figure 2-5 (b). As the 

pulse time is increased in both cases (a) and (b) the growth rate may 

increase due to decomposing of the precursor after chemisorption, Figure 

2-5 (c), or a decrease in growth rate due to etching reactions or diffusion of 

the precursor into the substrate after the chemisorption, Figure 2-5 (d) [70]. 

As Figure 2-5 indicates, too small pulse times results in incomplete 

saturation of the substrate, which results in gradients in the deposited film. 

The steepness of such gradients can give a indication on the reactivity of 

precursors where a steep gradient indicates highly reactive precursors [69]. 

 

Regarding the purge time, an increase in growth rate as it is reduced, with 

also increased thickness gradients, may indicate a too short purging time. 

The increase in growth rate for too short purging times may be due to a gas 

phase reactions as the different precursor may meet in the gas phase, or 
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insufficient desorption of physisorbed precursors. On the other hand if the 

purge time is too long, a decrease in thickness may result due to desorption 

of the precursor or the film material. 

 

It is therefore important to keep the pulse and purge times sufficient to 

respectively saturate the surface and remove any excess precursors, while 

avoiding the undesirable effects described above. However, the length of the 

pulse- and purge times is often more dependent on the reactor used rather 

than the type of precursor [70]. 

Since a constant flux of the precursors is not demanded the process 

is rather robust. This together with the fact that the process is also often 

unaffected by small changes in the temperature gives good reproducibility, 

and makes the process straightforward to scale-up. 

 

2.1.1.5 The quality of the deposited film material 

For the ALD-process the type of substrate material is not a critical factor for 

obtaining the characteristic ALD-growth. After deposition of the first 

monolayer the further growth conditions is ideally only affected by the 

chemical reactions. Formation of the first monolayer may however be 

strongly affected by the substrate [78]. This can result in almost non-linear 

growth in the beginning of a deposition, owning to nucleation problems at 

the surface. This is often observed for growth on hydrogen terminated 

surfaces, obtained by etching silicon in hydrofluoric acid [79]. The result is 

that a complete coverage of the substrate may not be obtained before a 

certain number of deposition cycles are reached, maybe resulting in as much 

as 10 nm of film material. This phenomena needs to be considered when 

depositing very thin films.  
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A good overview over nucleation in the ALD-process, and the 

effects substrates has on the deposited film can be found in a review article 

from 2005 [71] and simulations in the following references [80-82]. 

 

Good adhesion between the substrate and first deposited monolayer is 

critical for the potential use of the deposited film in different applications. A 

weak adhesion between the substrate and the deposited film may result in 

delamination of the film. Differences in the thermal expansion coefficient 

between the substrate and the film can build enough strain to delaminate the 

film from the substrate. This is especially important when dealing with thick 

films deposited at a high temperature, as the tension that builds up in the 

film under cooling is larger for thicker films [74].  

The choice of substrate material is, however, important for the 

texture of the deposited film. The substrate can influence the orientations of 

the first crystals that form on the surface, thereby effectively directing the 

orientation of the deposited film. If the material that is being deposited has 

the possibility of many meta-stable phases, the substrate can guide which 

one of these phases that will be formed [83]. The factors mentioned above 

concerns crystalline substrates; however it’s important to note that the 

deposited film can be amorphous when deposited on a crystalline substrate 

and vice versa on amorphous substrates. 

However, crystalline substrates with different orientations can affect 

the growth rate, as the first crystals can align with the substrate resulting in 

different growth directions with their respective growth rates [69, 74]. 

 Contaminations in the deposited film are often a result of 

incomplete reactions giving incorporation of ligands. By increasing the 

temperature the probability of incomplete reactions decreases, however, if 

the temperature is raised too high the precursor may start to decompose, 

giving rise to new impurities [70]. The pulse time can also be increased to 
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obtain complete reactions, and thereby decreasing the amount of impurities 

incorporated in the film, however, this will increase the process time and 

consumption of precursor [69, 70]. 

The good control of thickness and stoichiometry makes the ALD 

process well suited for deposition of multilayer structures and complex 

oxides, and crystallinity is enhanced by formation of a mixture of different 

atoms at an atomic level [69, 70, 74]. 

 

2.1.1.6  Advantages and limitations of the ALD method 

The largest limitation of the ALD technique is usually the low growth rate. 

This can, however, be compensated by scaling-up so that deposition can be 

done on a large numbers of substrates, or a large substrate-area at the same 

time. Also the ever shrinking film thicknesses utilized in integrated circuits 

overcomes this major limitation. A more widespread problem has been the 

lack of good and cost-effective processes for deposition of some important 

materials such as Si, SiO2, Si3Ni4 and metals [70]. However, this is an area 

of increased research [71]. Selective surface growth is beneficial for 

patterning of films, but is generally difficult to obtain for ALD growth due 

to the use of highly reactive precursors. There have, however, been some 

successful attempts in this area. Surface-selective ALD growth was obtained 

by using PMMA poly(methyl methacrylate), which acted as a passivating 

layer for ALD growth for some materials [84]. 

 

The advantages and limitations of the ALD technique are summarized 

below in Table 2-1. 
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Table 2-1. Advantages and limitations of the ALD process. 

Advantages Limitations 

- Accurate and simple 

thickness control 

- Low growth rate 

- Precise and easy 

stoichiometry control 

- Depend on that favorable 

chemical reactions exist 

- Can utilize highly reactive 

precursors 

- Difficult to obtain a surface 

selective growth 

- High quality materials are 

obtained at low processing 

temperatures 

- Lack good and cost-effective  

processes for deposition of 

some important materials as 

Si, SiO2, Si3Ni4 and metals 

- No problems with 

inconstant vaporization 

rates of solid precursors 

 

- Excellent conformality  

- Good reproducibility 

- Straightforward scale-up 

- Good purity 

- Depositions can be done 

over a large temperature 

window 

- Can utilize many different 

materials for substrates 

 

 

 

2.1.1.7 Finding suitable bismuth precursors 

From the prior art given in section 1.2.2.2 it is obvious that a new bismuth 

precursor has to be found in order to successfully deposit thin films of Bi2O3 

and BiCoO3 by ALD. When planning a new ALD process and choosing 

precursors for it, prior art should be investigated. Therefore the goal of the 

following literature survey was to search for possible candidates for a new 

bismuth precursor, by excluding precursors based on the information found 

in the literature. When searching for new ALD precursors one should keep 

in mind the requirements discussed in section 2.1.1.4.1 on page 34. 
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A short version of the different types of ALD precursors used can 

more or less be summarized as: In the first ALD experiments in the 70s 

elements and metal halides were used. In the 80s the selection of precursors 

widened to metal complexes (alkoxides, β-diketonates) and simple 

organometallics (alkyl compounds). Before new metal (Cp-compounds, 

alkylamides) precursors was introduced in the 90s [85]. 

The types of bismuth precursors that were chosen to investigate in 

this work were metalorganic and organometallic, as both amines [9] and 

inorganic precursors as halides [70, 77, 86] seems like a dead-end, due to 

poor thermal stability and due to contamination and corrosive by products, 

respectively. 

 

2.1.1.7.1 Metalorganic precursors 

The metalorganic precursors discussed below can be divided into two 

groups, alkoxides and β-diketonate precursors. 

 

Alkoxides 

Alkoxides reacts readily with water, and have been used for the growth of 

several different oxide materials by ALD [70, 77]. Bismuth alkoxides as 

methoxide, ethoxide and isopropoxide have been investigated in ref. [87]. 

Bismuth methoxide is insoluble in all common solvents whereas the 

ethoxide and isopropoxide is slightly soluble, reflecting a polymeric or 

obligomeric structure. These compounds also indicates poor thermal 

stability as they gives low yields under sublimation, which is likely to be 

caused by decomposing [87]. These alkoxides of bismuth are therefore not 

promising candidates as ALD precursors. However, Bi(t-OBu)3 is soluble in 

common solvents and is volatile [88]. The crystal structure of Bi(t-OBu)3 

have not been established, even though several attempts have been made 
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[89, 90]. The molecule have, however, been characterized in the gas phase 

by electron diffraction and it is reported to be monomeric [91]. Bi(t-OBu)3 

seems, based on the available literature, as a promising candidate for a 

bismuth precursor for ALD. The alkoxide precursor Bi(mmp)3 will not be 

investigated, as it is reported deposited with ALD in the Bi-Ti-O system 

[44, 45], and it is therefore likely to assume that it also has been tried for 

deposition of Bi2O3. 

 

β-diketonate complexes 

Metal β-diketonate complexes have been used extensively in oxide 

MOCVD [92] and ALD [70]. Compared to the alkoxides the β-diketonate 

precursors are generally not reactive towards water, due to having a stronger 

metal oxygen bond than the alkoxides. Instead O3 has to be used as 

oxidizing precursor, which has the drawback that it is more likely that some 

impurities as carbonates can be incorporated in the film. Bi(thd)3 have been 

utilized in MOVCD for deposition of Bi2O3 films [93]. The other β-

diketonate precursors such as tfac and hfac can lead to fluorine 

contamination in the deposited films [94], and Bi(acac)3 is not reported used 

in the literature. From the β-diketonate complexes Bi(thd)3 seems like an 

good candidate for precursor in ALD depositions. 

 

2.1.1.7.2 Organometallic precursors 

Organometallic precursors have been widely utilized for ALD as they are 

very reactive, the TMA and H2O process described earlier is an example 

[77]. However, regarding the BiMe3 precursor, there are some conflicting 

reports in the literature. In ref. [95] it is reported to only react slowly with 

O2 and H2O, and in ref. [96] it is reported to be explosive. If it indeed is 

explosive it could be suitable as a bismuth precursor for ALD. However, if 
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it is less reactive towards O2 and H2O, the similar compounds with longer 

organic chains, as BiEt3, will most likely also be less reactive. Based on the 

conflicting statements in the literature, as well as the compound is not 

available commercially, and a potential synthesis involves a product that 

may or may not be explosive, it was decided not to investigate this type of 

compounds any further. 

Cyclopentadienyl compounds [97] and cyclopentadienyl derivatives 

[98]  have been used for ALD. Therefore these types of compounds are 

interesting to investigate as potential bismuth precursors. However, BiCp3 

undergoes polymerization already around 15
o
C [99], and are extremely light 

sensitive. These types of compounds do not seem suitable as bismuth 

precursors in this work. 

 BiPh3, as mentioned earlier, grows if deposited in the Bi-Ti-O [8, 11] 

and Bi-Si-O [11] system, it would therefore be interesting to test if it also 

grows in the Bi-Co-O system. In addition it would also be interesting to try 

to obtain a better understanding for why this precursor can be used for 

deposition of complex oxides and not bismuth oxides. 

The bismuth precursor used for deposition of the (1-x)BiCoO3–

xBiFeO3 solid solution system by MOCVD [17, 31], BiMe2(DMP), seems 

like an interesting candidate for a suitable bismuth precursor for ALD. It 

was first reported synthesized in 2006 by T. Furukawa et al. in Ref. [96, 

100]. It is reported to be a liquid with a high vapor pressure and a 

reasonable thermal stability, as it decomposes at 230 
o
C. It is relatively 

stable towards moisture and air which is not ideally for an ALD precursors, 

however, it makes it is easy to handle. Also no evidence was found for any 

incorporated nitrogen in the deposited films by MOCVD [96]. 
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2.1.1.7.3 Summary and choice of bismuth precursors 

Based on the literature survey in this section the chosen precursors for 

investigation are: BiPh3, Bi(thd)3 and Bi(t-OBu)3. The precursors will be 

investigated in said order, which is based on availability as BiPh3 is 

available commercially and Bi(thd)3 have been synthesized in our group 

before. The chosen precursors are also chosen as they are from different 

types of precursors, aryl-, β-diketonate- and alkoxide-complex. Synthesizing 

and investigating BiMe2(DMP) as an ALD precursor would also be 

interesting, if time allows it. 

 

2.1.2 Synthesis of metalorganic precursors for ALD 

Here the reactions and techniques for synthesizing the metalorganic 

precursors used in this work, Co(thd)2, Bi(t-OBu)3 and Bi(thd)3, will be 

given. The synthesis of the mentioned bismuth precursors needs inert 

conditions, which was done utilizing a schlenk line and a glove box. 

 

2.1.2.1 Synthesis under inert atmosphere 

For the synthesis of air/moister sensitive compounds, a Schlenk line and a 

glove box can be used, see Figure 2-6 and Figure 2-7 respectively. The 

Schlenk line, which is named after its creator Wilhelm Johann Schlenk, 

consists of two connected glass tubes where one is connected to an inert gas 

flow and the other to vacuum. This allows for switching between vacuum 

and inert gas conditions, which again allows for the following to be carried 

out on the line without exposure to air: reactions, filtration, removal of 

solvents, mixing of reagents, degassing of liquids and distillation. 

The glove box is a sealed box with an inert atmosphere in which 

reactions, that are air sensitive, can be carried out. In the glove box one can 

bring most of the equipment needed to carry out a synthesis, however, as 
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vacuum has to be pumped on everything that goes in, liquids are more 

cumbersome to bring inside. Also due to cross contamination solvents 

cannot be evaporated inside the glove box, neither is it suitable to work with 

volatile compounds, for the same reason. 

 

 

Figure 2-6. A schematic illustration of a Schlenk line. The valves 1, 2 and 3 

control the vacuum on the line. Tube 4,5 and 6 is where compounds can be 

connected to the line, allowing for switching between inert gas and vacuum 

conditions. 7 and 8 are cooling traps, where trap 7 is lowered in liquid 

nitrogen when volatile compounds are connected to the line. 

 

 

Figure 2-7. A picture of a glove box. The two airlocks can be seen on the 

right side. 
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2.1.2.1.1 Techniques for synthesis in inert atmosphere 

Working with a Schlenk line requires some techniques, these are explained 

below. The main point can be summarized as to always use the overpressure 

of an inert gas on the line to keep air away from the system. For the 

following procedures a Schlenk flask is used, see Figure 2-8. 

 

 

Figure 2-8. An illustration of a Schlenk flask. The side entrace allows the 

flask to be attached and removed from a Schlenk line without exposing its 

content to air, by feeding inert gas trough it. 

 

Before attaching the inert gas supply onto the side entrance of a Schlenk 

flask, the air inside the entrance tube has to be removed. This can be done in 

two different ways. If the Schlenk flask is attached to a Schlenk line, let the 

inert gas flow go through the flask and out the side tube before attaching the 

inert gas supply to it, Figure 2-9 A). If the flask is not attached to a Schlenk 

line, a septum and a needle is used, Figure 2-9 B). 
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Figure 2-9. Procedures for attaching the nitrogen supply to the side 

entrance of a Schelnk flask. A Schlenk line can be used as shown in A), or a 

septum and a needle as shown in B). The flask can now be 

mounted/detached from a Schlenk line without exposing its contents to air. 

 

In the description of the following procedures the nitrogen supply has 

already been mounted on the side entrance on the Schlenk flask. 

 

For removing a Schlenk flask from the Schlenk line, with minimal exposure 

to air, the following steps are carried out, see Figure 2-10. 

 

A) Open the inert gas supply on the side of the flask. 

 

B) Remove the flask from the line. The overpressure of inert gas keeps 

the air away. Proceed to step C) as fast as possible. 
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C) Seal the flask with a cap or a septum, and close the valves on the line 

and on side of the flask. 

 

 

Figure 2-10. Illustration of procedure for detaching a Schlenk flask from 

the Schlenk line, with minimal exposure to air. When attaching the Schlenk 

flask, the procedure is done in reverse. The small arrows indicates nitrogen 

flow. 

 

For attaching a flask to the Schlenk line the reverse order is used. 

 

For transferring liquids from one Schlenk flask to another, the following 

steps are done, see Figure 2-11. 

 

A) 

1. Pump vacuum on the flask the liquid is going to be transferred to. 

2. Then fill it with inert gas. 

Step 1 and 2 are repeated three times for “washing” the flask 

properly. 
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B)  

On the flask with the liquid, open up the side valve so inert gas flows 

in.  

Stick a teflone tube trough the septum, however do not let the teflon 

tube get in contact with the liquid. 

C) 

Stick the teflon tube through the septum on the line, thus connecting 

the two flasks. Push the teflon tube into the liquid, and open up the 

side valve on the flask which the liquid is being transferred to. The 

overpressure of nitrogen will now push the liquid through. 

 

 

Figure 2-11. Illustration of procedure for transferring liquids from one 

Schlenk flask to another. The small arrows indicate nitrogen flow. 

 

When filtering a liquid, a needle is used on the flask show in B) in Figure 

2-11. How the needle is mounted is shown below in Figure 2-12. 
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Figure 2-12. How a needle is mounted, trough a septum on a Schlenk flask, 

for filtering liquids. 

 

2.1.2.1.2 Drying of solvents 

Solvents may be dried using conventional distillation apparatus. However, 

in order to avoid dangerous or undesirable reactions, it is important to make 

the right choice of drying agent. For the hydrocarbons used in this work, 

hexane and tetrahydrofuran (THF), sodium together with benzophenone was 

used as a drying agent. Sodium was chosen as it is widely used to dry 

hydrocarbons and ethers [101], and it also reacts with benzophenone to give 

a dark blue ketyl radical, see Eq. 2-1, which is protonated by water to give 

colorless products. Thus the sodium-benzophenone system is particularly 

convenient because it is self-indicating, as to if there are water left in the 

solution. 

 

 Na s + Ph2CO 𝑠𝑜𝑙𝑣   

→ Na+
(𝑠𝑜𝑙𝑣 ) + Ph2CO−

(𝑠𝑜𝑙𝑣 )
 

Eq. 2-1 

 

When the liquid is dark blue the solvent is dry and is distilled off. The 

sodium residues are destroyed by slow and careful addition of ethanol until 
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hydrogen evolution ceases. When this method was applied for drying of 

hexane a small amount of (50-100 ml/L) of diglyme (dietylene glycol 

dimethyl ether, b.p. 162 
o
C) was added in order to dissolve the ketyl. The 

high boiling point of diglyme allows for easy separation during distillation. 

This method was not used for drying of methanol, as alcohols reacts 

with sodium to forms sodium alkoxides. Methanol was dried by distillation 

with added CaH2. 

 

2.1.2.1.3 Transportation of solvents to glove box 

When transporting chemicals into the glove box they have to go through an 

airlock, where vacuum is first pumped before the lock is filled with inert 

gas. This means that the container, in which the chemicals are, needs to 

withstand vacuum conditions. Therefore, before a liquid can be transported 

into a glove box it has to be degassed. The degassing is done by connecting 

the flask, containing the liquid, onto the Schlenk line. The liquid is then 

freezed solid by lowering the flask into liquid nitrogen, and then vacuum is 

pumped on the flask. The liquid is allowed to melt under a static vacuum, 

resulting in that only the vapor pressure of the liquid is left inside the 

Schlenk line and the flask. The flask is then closed and removed from the 

Schlenk line. The flask containing the degassed liquid can then be 

transported into the glove box. This procedure also removes any air that 

could be solved in the liquid, which would ruin the air sensitive compounds. 

 

2.1.2.1.4 Purification of products 

Synthesizing precursors often yields some unwanted phases, together with a 

mixture of salts, solvents or other by-products. The wanted product has to 

be separated from these, before it can be used as a precursor. This is 

performed in a sublimation oven, see Figure 2-13. 
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Figure 2-13. A schematic picture of a sublimation oven. The temperature on 

the glass finger is controlled by water from a temperature controlled bath. 

The TCO (transparent conducting oxide) heats the oven. 

 

During sublimation, vacuum is maintained by constant pumping. The 

sublimation is performed by heating the oven up to a certain temperature, 

where the wanted compound starts to sublimate, leaving less volatile by-

products behind. The glass finger is kept at a lower temperature allowing the 

sublimated compound to condensate on the finger, however, the temperature 

on the finger is high enough that any volatile by-products will not 

condensate. 

 

2.1.2.2 Reactions for manufacturing metalorganic compounds 

Metalorganic compounds can be synthesized by reacting a metal with an 

organic group, reacting two metalorganic compounds with each other or 

reacting a metalorganic compound with an inorganic compound [102]. 

However, only highly electropositive metals like alkali and some of the 

alkali earth reacts directly with organic groups and these are even limited to 
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relative reactive organic compounds, such as alcohols [88]. As a 

consequence synthesizing metalorganic compounds often involves many 

steps. In this work four different reactions are used for the synthesis of 

metalorganic compounds, given in Eq. 2-2 to Eq. 2-5. 

 

 M(solv ) + xRH(solv )  → MRx (solv )
+

x

2
H2(g) Eq. 2-2 

 MRx (𝑠𝑜𝑙𝑣 )
+ xR′H(𝑠𝑜𝑙𝑣 ) → MR′

x (𝑠𝑜𝑙𝑣 )
+ xRH(𝑠𝑜𝑙𝑣 ) Eq. 2-3 

 MXx (𝑠𝑜𝑙𝑣 )
+ xM′R(𝑠𝑜𝑙𝑣 )  → MRx (𝑠𝑜𝑙𝑣 )

+ xM′X(𝑠𝑜𝑙𝑣 ) Eq. 2-4 

 MXx (𝑠𝑜𝑙𝑣 )
+ xRH(𝑠𝑜𝑙𝑣 ) → MRx (𝑠𝑜𝑙𝑣 )

+ xHX(l) Eq. 2-5 

 

In Eq. 2-2 a metal (M) reacts directly with an organic group (RH). The 

reactions in Eq. 2-3 and Eq. 2-4 are called ligand substitution. In Eq. 2-3 a 

metalorganic compound (MR) substitutes its ligands with an organic 

compound (R’H). In Eq. 2-4 a metal halide (MX) substitutes its ligands with 

the ligands of a metalorganic compound (M’R). In Eq. 2-5 a metal halide 

(MX), where chlorides are the most common, reacts directly with an organic 

group (RH).  

 

2.1.2.2.1 Synthesis of metalalkoxides 

As mainly only alkali earth metals reacts directly with alcohols, the 

synthesis of other metalalkoxides can be done by reacting a metal halide 

with sodium alkoxide. The resulting ligand exchange reaction is shown in 

Eq. 2-6. The starting compounds are complexed with THF, and the reactions 

are carried out under inert conditions. 

 

 xNaOR THF  + MXx THF  → MORx (THF )
+ xNaX(s) Eq. 2-6 
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The solvent is then removed, and the resulting product is dried and 

sublimated. 

2.1.2.2.2 Synthesis of β-diketonato complexes 

There are many methods for synthesizing β-diketonato complexes [92, 103-

106]. In this work two different methods are used, hereafter called method 1 

and method 2. 

 

Method 1, described by Baum et al. in ref. [105], is a ligand substitution 

between a sodium β-diketonato complex and a metal chloride. The first step 

is to make sodium methoxide (NaOMe) in a surplus of methanol, see Eq. 

2-7. 

 

 xNa s + MeOH l → xNaOMe(MeOH ) +
x

2
H2(g) Eq. 2-7 

   

The sodium methoxide from Eq. 2-7 can then be reacted with the β-diketone 

to yield sodium β-diketonato complex, see Eq. 2-8. 

 

 

NaOMe(MeOH ) + H − β − diketone(MeOH )

→ Na β − diketonato (MeOH ) + MeOH(l) 

 

Eq. 2-8 

 

The solvent (MeOH) is removed under vacuum. The obtained sodium β-

diketonato complex and the metal chloride are dissolved in a solvent, 

mixing these two solutions yield the metal β-diketonato complex, see Eq. 

2-9. 

 



2.Methods 

 

59 

 

xNa β − diketonato (solv ) + MClx (solv )

→ M β − diketonato x (solv )
+ xNaCl(s) 

Eq. 2-9 

 

The solvent is removed, the product is dried and the wanted metal β-

diketonato complex can be separated by sublimation. 

 

Method 2, which are described by Hammond et al. [104], is a direct 

reaction between the metal chloride and the β-diketone in aqueous ethanol, 

where concentrated ammonia is added to push the reaction towards 

completion, see Eq. 2-10. 

 

MClx ∙ yH2O aq + x H − β − diketone  EtOH  + xNH4OH aq  

→ M β − diketonato x s + xNH4Cl(aq ) +  y + x H2O 

Eq. 2-10 

 

The product is filtered, dried and the wanted metal β-diketonato complex is 

separated by sublimation. 
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2.2 Characterization techniques 

This section is divided in four parts, the first describes methods based on X-

ray diffraction, the second spectroscopy, the third microscopy, and the 

fourth characterization of growth mechanisms and thermal properties of 

precursors. 

 

2.2.1 X-ray diffraction (XRD) 

First X-ray diffraction will be discussed generally, before a more detailed 

description will be given on the different methods used in this work. 

 

X-rays have a wavelength that is comparable to the distance between 

crystallographic planes in a crystal, which makes X-rays very suitable to 

characterize crystalline materials by diffraction. XRD can give information 

on the crystallographic structure, composition, texture and the size of the 

crystallites in the studied material. XRD can be used to characterize single-

crystals, powders and thin films. For analysis of thin films X-rays can also 

be used to measure the thickness of deposited films, even if they are 

amorphous. In addition, information about surface roughness and density of 

the films can be obtained. 

 

Diffraction occurs as the incident X-rays are scattered elastically from the 

crystal planes in a crystal. For diffraction to take place, Braggs law (Eq. 

2-11) has to be fulfilled [107]. 

 

 2𝑑ℎ𝑘𝑙𝑠𝑖𝑛𝜃 = 𝑛𝜆 Eq. 2-11 
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where λ is the wavelength of the X-rays, n is a whole number, d is the 

distance between the crystallographic planes in the crystal and θ is the angle 

between the incident beam and the crystal plane. By keeping λ constant, 

different values of d can be determined by varying the θ angle for the 

incident X-rays. Figure 2-14 below shows the principle for X-ray 

diffraction. 

 

 

Figure 2-14. Schematic representation of the atoms in a crystal, and how 

the crystallographic planes give rise to diffraction. The phase difference 

between the scattered X-rays determines whether constructive or destructive 

interference occurs. 

 

As a reminder the scattering vector Q, which will be used in the following 

explanations, is defined as the scattered beam minus the incident beam 

[108], see Figure 2-15. 



2.Methods 

 

62 

 

 

Figure 2-15. Definition of the scattering vector Q such that the incident 

beam k + Q equals the scattered beam k’. In elastic scattering the 

magnitude satisfy k’ = k. 

 

2.2.1.1 Diffraction from thin films 

The intensities of diffractograms from thin films are generally different 

from the ones from their respective bulk materials. The reason for this 

difference is that the majority of crystallites in thin films may be oriented in 

some preferred direction with respect to the substrate surface. This is called 

preferred orientation or texture. The reason for these variations in intensities 

is that some crystallographic planes reflects the beam more often than in a 

randomly oriented sample. With respect to the shape of the reflections in 

bulk diffractograms, the observed reflections from thin films may also be 

broader and have a slightly different position due to strain between the film 

and the substrate, or due to small crystallites sizes [109]. The broadening of 

the reflections can provide information about the approximate crystallites 

sizes by using the Scherrer equation, see Eq. 2-12. 

 

 
t =

𝐾𝜆

𝐵 𝑐𝑜𝑠 𝜃𝐵
 

Eq. 2-12 
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where t is the diameter of the crystallites, K is a shape factor that normally is 

0.9 and λ is the wavelength of the incident X-rays. θB is the Bragg-angle, the 

angle of the initial reflection that is being studied, and B is the full-width at 

half-maximum (FWHM) value in radians of the peak being studied with 

respect to a standard, see  Eq. 2-13. 

 

 
𝐵 =  𝐵𝑀

2 − 𝐵𝑆
2 

 

Eq. 2-13 

 

where BM and BS is the FWHM value in radians of the peak being studied 

and the standard material, respectively. By using the value 0.9 for the shape 

factor, the crystallites are assumed to be spherical [109]. It should be noted 

that the calculated crystallites sizes obtained by this equation is only a very 

rough approximation. 

 

2.2.1.2 Diffraction techniques 

This chapter explains the different diffraction techniques used in this work.  

 

2.2.1.2.1 θ-2θ Reflection geometry 

In this setup a monochromatic parallel beam illuminates the sample at an 

angle θ and the diffracted beam is registered by a detector at the same angle, 

see Figure 2-16. As a consequence, this technique gives the intensities of 

the diffracted planes as a function of the 2θ angle. In the reciprocal space 

the scattering vector Q is always perpendicular to the sample surface, and it 

only changes its length during the measurement. Thus this setup can only 

give information about the crystallographic planes that are aligned parallel 

with the surface [109], and the preferred orientations of the film are the 

same as the observed peaks. By measuring the broadening of these peaks, an 
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approximation about the sizes of the crystallites in the direction normal to 

the substrate can be obtained by the Scherrer equation. 

Preferred orientation is not a problem when analyzing powder 

samples in this setup, as the powder is randomly oriented on the sample 

holder. In this work θ-2θ reflection geometry was used to analyze thin films 

and powder samples. 

 

 

Figure 2-16. Illustration of θ-2θ reflection geometry. The sample can be 

rotated around its plane (Ф axis). 

 

2.2.1.2.2 Grazing incident X-ray diffraction, GIXRD 

In GIXRD the incident beam is kept at a constant low angle, α, with regard 

to the sample surface during the measurement [109]. The measurement is 

performed by moving the detector along the diffraction circle. This is the 

decisive distinction compared to the symmetric configuration where the 

entrance angle θ is also varied during the measurement. However, the 

scattering angle 2θ again denotes the angle between the outgoing beam and 

the elongation of the incoming beam. By plotting the measured intensity 

versus 2θ, Bragg reflections are found at comparable positions as with the θ-

2θ measured pattern. During the measurement the Q vector starts almost 
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parallel with the sample surface normal, it increases in length and moves 

towards the incident beam, as the detector is moved in the same direction. 

Therefore in the GIXRD configuration reflections with distinct Bragg angles 

θhkl are caused by lattice planes that are neither parallel with the substrate 

surface nor with each other. As a low incident beam angle is used, this 

technique gives little to none reflections from the substrate and a large area 

of the film is analyzed. In this work GIXRD was used to give 

supplementary information, regarding analysis of thin films, to the θ-2θ 

reflection measurements. 

 

2.2.1.2.3 θ-2θ Transmission geometry 

In this setup the intensity is recorded as a function of the 2θ angle. The 

sample is crushed into a fine powder which is then placed inside a capillary 

tube, with a typical diameter of 0.5 mm. The use of a capillary tube allows 

for air sensitive samples to be measured, as the sample can be prepared 

inside a glove box. During the measurement the tube is rotated, and is 

placed such as the X-rays goes through the sample before reaching the 

detector. By rotating the sample the effect of preferred orientation of the 

crystallites are eliminated. In this work this technique is used for 

characterization of powder samples of air sensitive compounds. 

 

2.2.1.2.4 X-ray reflectivity, XRR 

For characterization of thin films the XRR method is a useful tool. In XRR 

parallel X-rays are sent towards the sample surface at a very low incident 

angle, usually between 0 to 5˚ [109]. The use of low angle incident X-rays 

can give information on the thickness and the density of the films as well as 

the surface and interface roughness. From 0˚ up to a critical angle θc the 

incident beam will be totally reflected. At incident angles larger than the 
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critical angle some of the X-ray beam will enter the film material, see 

Figure 2-17. 

 

Figure 2-17. Schematic representation of the beam line in XRR. The θi 

angle is larger than the critical angle θc, allowing the beam to enter the film 

material. The incident beam is reflected both from the surface and from the 

interface between the film and substrate. 

 

As the beam enters the film material, it will first be refracted and bent and 

then reflected at the interface between the film and substrate, due to 

variations in density at the interface. If the sample consists of a multilayered 

film, the beam will be reflected by all the different layers, and the result will 

become much more complicated than described here. The reflected beams 

from the different layers will interfere with each other, giving rise to 

constructive and destructive interference as the θ angle is varied. This 

results in a diffractogram with an oscillating curve. For thicker films the 

number of oscillations will increase, see Figure 2-18. The intensity will 

decrease for increasing θ angles, as the X-ray beam penetrates deeper into in 

the material as well as a smaller surface area is irradiated by the incident 

beam [109]. 

qi
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Figure 2-18. Simulation of a XRR diffractogram from cobalt oxide films on 

a silicon substrate, where the films have different thickness. 

 

The thickness, density and roughness parameters are obtained by fitting the 

measured diffractogram from experiments with a theoretical model. The 

thickness is determined from the number of oscillations, the density can be 

determined from the critical angle and the roughness can be determined 

from the amplitude of the oscillations. The XRR method is most suitable for 

films with thickness between 5 to 100 nm, although the upper limit is 

dependent on the roughness of the deposited film. If the film is very rough, 

the amplitude will decrease so much that it can be difficult to detect the 

deposited film [109]. 

 

2.2.1.3 Program used for analysis of XRD data 

For processing and presenting the obtained X-ray diffraction data the 

program EVA was used. The program is made by Bruker AXS, and is part 

of a program package called DIFFRAC
plus

 Evaluation. 
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2.2.2 Spectroscopy 

In this section a description of the characterization method, based on 

spectroscopy, used for analyzing the deposited thin films will be given. 

 

2.2.2.1 Fourier transform infrared (FT-IR) spectroscopy: 

Radiation in the infrared region (IR radiation) of the electromagnetic 

spectrum is of relative low energy. As a consequence IR radiation cannot 

excite electrons, however, it can excite the phonons of chemical bonds. A 

chemical bond can have one or more vibrational modes with a given self-

resonant frequency, which is determined by the mass of the atoms at its ends 

and the strength of the bond. Thus, the frequency of these vibrations can be 

used to identify a particular bond type. For a vibrational mode to be IR 

active it must be associated with changes in the permanent dipole. A bond 

will absorb IR radiation which has the same frequency as the self-resonant 

frequency of the bond. A FT-IR measurement gives information about such 

absorptions from the studied material [110]. 

 

In FT-IR spectroscopy the sample is scanned with all wavelengths at the 

same time. The incident IR beam goes first through a beam splitter, before 

the two beams are reflected from a stationary and movable mirror 

respectively. Depending on the position of the movable mirror, interference 

occurs as the two separate beams are merged again at the beam splitter, 

before the merged beam goes through the sample, see Figure 2-19. 
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Figure 2-19. A schematic illustration of the beam path during a FT-IR 

measurement. The position of the movable mirror determines the 

interference conditions when the two separated beams are merged. 

 

The signal obtained from the detector is an interferogram, which contains 

intensity information about all frequencies present in the infrared beam. The 

interferogram must then be analyzed with a computer using Fourier 

transforms to obtain the FT-IR spectra, which are usually presented as plots 

of intensity versus wavenumber, given in cm
-1

. Wavenumber is the 

reciprocal of the wavelength. The intensity can also be plotted as the 

percentage of light transmittance or absorbance at each wavenumber. 

 

2.2.2.2 X-ray fluorescence spectrometry (XRF) 

XRF is a quantitative method for chemical analysis. The method is based on 

that when atoms are irradiated with X-rays, electrons may be transferred to a 

higher energy level in the respective atoms, hence exciting the atoms. As the 

exited atoms undergo de-excitation by relaxation, where an electron in a 
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higher energy level jumps down to the vacant position, characteristic X-rays 

are emitted. This type of radiation is called characteristic fluorescent X-ray, 

and gives an emission spectrum that is element specific. These characteristic 

emission lines are used in XRF analysis to identify the elements present in a 

sample and their specific amounts. This is done by comparing the intensities 

of the sample with specific standards and compare for absorption from the 

sample itself. For the analysis of thin films this method is cumbersome, and 

an alternative method using general standards is utilized. This can be done 

through the program Uniquant [111]. Uniquant utilizes known universal 

standards to calibrate the sensitivity of the XRF-equipment. By comparing 

the standards and the film samples the program can calculate elements 

present and the composition of the films [111]. 

 

2.2.3 Microscopy 

In this section the microscopy technique used for analyzing the deposited 

thin films will be given. 

 

2.2.3.1  Atomic force microscopy (AFM) 

When it comes to surface analysis of a sample, AFM is an excellent tool 

where some of the properties that can be measured is topography, as well as 

chemical-, electrical-, and magnetic properties. The method can be used on 

almost all materials which has a relatively hard surface as metals, 

semiconductors, ceramics, composite materials, glass, thin films, polymers 

and biological samples [112]. 

 

The main component in an atomic force microscope (AFM) is a micro scale 

cantilever with a sharp tip (probe) mounted on one of its ends, which is used 

to scan the specimen surface, see Figure 2-20. The dimensions of the 

http://en.wikipedia.org/wiki/1e-6_m
http://en.wikipedia.org/wiki/Cantilever
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cantilever is usually in the order of 100 – 200 µm long, 20 – 40 µm in 

width, and 0.5 – 1 µm thick. The cantilever is typically made of silicon or 

silicon nitride (Si3N4), with a tip radius of curvature in the order of 

nanometers. The Si tips gives a sharper image, due to a smaller tip size, 

however, they become more easily worn than the Si3N4 tips. As the 

cantilever is brought into close proximity of the sample surface, forces 

between the tip and the surface will deflect the cantilever. This deflection is 

measured by using a laser which is reflected form the top surface of the 

cantilever into a position sensitive photodiode. The difference in light 

intensity is calculated into a voltage which is then used to adjust the distance 

between the cantilever-tip and the sample surface so the force between them 

is kept constant [113].   

 

 

Figure 2-20.  A schematic picture of an operating AFM-instrument. 

 

The topography of the sample is determined by recording the deflection of 

the cantilever as it moves over the sample surface. The movement along the 
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x-, y- and z-axis is done by a piezo scanner made of piezoelectric ceramics 

like e.g. lead zirconate titanate (PZT). 

The AFM can be run in two different modes, contact- or tapping 

mode. In contact mode the tip is in contact with the sample during the 

measurement. The cantilever deflection, and thus the force, is kept constant 

by readjusting the sample in vertical direction following the topographic 

features on the surface and recoding the adjusted height [113]. If contact 

modus is done in air, the surface tension of adsorbed layers of water vapor 

can pull the tip towards the sample surface. This can damage the sample and 

deform the image.  

The effects of surface tension can be avoided using tapping mode 

which also images the topography under more gentle conditions for the tip 

and the sample. In taping mode the cantilever with the tip is driven near its 

resonance frequency by means of a piezo oscillator. Thus, only intermittent 

contact between tip and sample occurs. As the tip is in contact with the 

surface, the oscillating amplitude is reduced compared to the resonance 

frequency, which is used as feedback in order to adjust the height of the 

sample and to produce the topographic information. 

The resolution of an AFM-instrument is limited by two factors: the 

size of the tip utilized and the mode of AFM operation. A small tip diameter 

will give better resolution, and also tapping mode provides better resolution 

than contact mode. An advantage of the AFM measurements is that it does 

not require vacuum conditions. 
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2.2.4 Characterization of precursors 

In this section a description of the methods used for characterization of the 

thermal properties and growth mechanics of the different precursors will be 

given. 

 

2.2.4.1 Thermogravimetric analysis (TGA) 

In thermogravimetric analysis the mass of the sample is measured as a 

function of temperature. As the sample is gradually heated any increase or 

decrease in mass of the sample can be monitored. Weight reduction can be 

due to sublimation, decomposition or desorption. An increase in weight can 

be due to oxidation or absorption. 

 

In this work TGA is used for determination of the sublimation temperature 

of different precursors. However, the TGA measurements performed in this 

work was done under atmospheric pressures of N2-flow, as a result the 

determined sublimation temperature will be higher than for the vacuum 

conditions utilized in the ALD-process. 

 

2.2.4.2 Thermal decomposition of precursors 

A simple method to measure the decomposition temperature of a precursor 

is to place it into a long tube in an oven with a controlled temperature 

gradient, see Figure 2-21. In order to simulate the conditions under the 

ALD-process the tube, in which the precursor is placed, is sealed under 

vacuum. As the precursor starts to sublimate, diffusion will bring the 

compound through the tube until it reaches an area where the temperature is 

high enough for it to decompose. After some time, one can easily observe 

where the precursor has decomposed through optical effects. By measuring 

the distance from the end of the tube to the area where the precursor has 
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decomposed, and comparing to the heat profile of the oven, it is possible to 

determine the decomposing temperature of the precursor. 

 

Figure 2-21 (a): Schematics of a thermal gradient furnace used for 

measuring the decomposition temperature of a precursor. Separate power 

supply to each heating zone is indicated. (b) Typically temperature profile. 

This figure is based on figure 1 (a) and (b) in reference [114]. 

 

2.2.4.3 Quartz crystal microbalance (QCM) 

QCM is a useful method for monitoring the growth of thin films under 

vacuum. A study regarding deposition on QCM was done in 1959 by 

Sauerbrey [115], and today QCM analysis is regarded as a standard 

procedure in many commercial thin film deposition methods to obtain better 

control of the deposition [116]. 

 The principle of QCM analysis is based on changes in the self-

resonant frequency, f0, of a quartz crystal as a function of the systems mass. 

The quartz crystal is piezoelectric and an applied external electric field set it 
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in oscillation at its self-resonant frequency. The strength of this technique is 

its extreme sensitivity for very small changes in mass of the system. QCM 

analysis can register changes in mass of much less than a monolayer. The 

crystals change in frequency as a function of the change in the mass can be 

expressed as: 

∆f = −
2f0

2∆𝑀

A μρ
= −C∆𝑚 

Eq. 2-14 

 

 

Where f0 is given above, ∆M is the total change in mass, A is the surface 

area, μ is the shear modulus of the quartz crystal, ρ is the density of quartz, 

∆m is the added mass per unit area and C is a crystal dependent constant 

[117]. For QCM-measurements it is assumed that the surface area of the 

quartz crystal is constant. As seen from Eq. 2-14 an increase in mass will 

lead to a decrease in frequency. 

There are several factors than can alter the self-resonant frequency of 

a quartz crystal. In the ALD technique, however, temperature is the only 

other factor besides change in mass that is taken into consideration [118]. 

An increase in temperature will increase the self-resonant frequency of the 

quartz crystal. To minimize the effects of temperature, the system should be 

kept at a constant temperature for some time in order to reach thermal 

equilibrium. For very exothermal reactions, the measurement can be 

affected by the local increase in temperature as a result of the reactions. It is 

possible, however, to calculate what impact the exothermic reaction may 

have on the QCM results. 

In the ALD-process, QCM is can be used to determine the optimal 

pulse- and purge times for the precursors. This is done by recording the 

changes in frequency as a function of time. A QCM measurement showing 

the change in frequency during a TMA and H2O process is given in Figure 

2-22. 



2.Methods 

 

76 

 

 

Figure 2-22. A QCM measurements showing the change in frequency 

trough all the steps of one cycle of TMA with H2O at 200 
o
C. 

 

As the first precursor is pulsed in and adsorbs on the surface of the quartz 

crystal the mass increases. When the second precursor is pulsed in a new 

change in mass can be observed as the precursors reacts with each other. To 

make sure that the decided pulse and purge times are sufficient to maintain 

the self-limiting growth mechanism, pulse and purge times are kept longer 

than necessary. When complete saturation of the surface is obtained, 

plateaus can be observed in the frequency. Information on growth rate can 

be obtained by comparing the change in frequency of the sample of interest 

with a standard that has a given growth rate. The standard used in this work 

was the TMA and H2O process. In this work QCM was used for 

investigation of the growth conditions for different precursors. 
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3 Experimental work 

This chapter provides a detailed description of the chemicals and reactions 

used for synthesis of the different precursors. Thereafter the ALD 

equipment used for deposition of thin films by said precursors is described. 

Finally a description of the substrates, precursors and the characterization 

equipments used to study the precursors and the deposited films will be 

given. 

 

3.1 Precursor synthesis 

This section gives a detailed description of the different precursor synthesis 

methods used in this work. 

 

3.1.1 Synthesis of Co(thd)2 

The synthesis of Co(thd)2 is based on method no. 2, described in section  

2.1.2.2.2 on page 58.  As Co(thd)2 is stable towards water and air the 

synthesis is much less demanding than synthesis of the bismuth precursor, 

as inert synthesis procedures are not required. For synthesis of Co(thd)2 the 

following reaction was used: 

 

CoCl2 ∙ 6H2O(aq ) + 2H thd (EtOH ) + 2NH4OH(aq )

→ Co thd 2(s) + 2NH4Cl(aq ) + 8H2O(l) 

Eq. 3-1 

 

Cobalt chloride was dissolved in aqueous ethanol, 50%, and H(thd) was 

added slowly with stirring. As aqueous ammonia was added drop-wise 

while stirring, a pink precipitate deposited. Distilled water was added and 

the solution was allowed to stir for 6 hours. The precipitate was filtered 
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using a glass-funnel, washed with distilled water, dried in vacuum at 60 
o
C 

for 1 day, before it was purified by sublimation using 90 and 60 °C on the 

oven and finger, respectively. 

 

3.1.2 Synthesis of Co(thd)3 

Co(thd)3 was synthesized at the Department of Chemistry at the University 

of Oslo, by Mohammed A. K. Ahmed, according to the procedure described 

in ref. [106]. 

 

3.1.3 Synthesis of Bi(thd)3 

The synthesis of Bi(thd)3 was based on method no. 1, described in section 

2.1.2.2.2 on page 58. All reactions described below were carried out under 

inert atmosphere inside a glovebox. The following reaction was used for the 

synthesis of Bi(thd)3 in this work:  

 

BiCl3 hexane  + 3Na thd  hexane   

→ Bi thd 3 hexane  + 3NaCl(s) 

Eq. 3-2 

 

This reaction is claimed to yield anhydrous mononuclear Bi(thd)3 as 

described in the patent by Baum et al. in Ref. [105]. 

  The first step is to obtain Na(thd), which was done by the following 

reactions shown in Eq. 3-3 and Eq. 3-4. Sodium metal was first reacted with 

dry methanol. 

Na s + MeOH(l) → NaOMe(MeOH ) +
1

2
H2 g  

Eq. 3-3 
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Then appropriate amounts of H(thd) was added to the sodium methoxide 

solution. 

 

NaOMe MeOH  + H thd  MeOH  → Na thd  MeOH  + MeOH(l) Eq. 3-4 

 

The solvent (MeOH) was removed under vacuum, leaving a white powder 

of Na(thd) which was dissolved in dry hexane. BiCl3 was dissolved in dry 

hexane before the Na(thd) solution was added, see Eq. 3-2, and the resulting 

white solution was left to stir for 5 hours. The solvent was removed under 

vacuum, first at room temperature for 1 hour, then for overnight at 50 – 

55 
o
C. The resulting white compound was then dried at 60 

o
C, before the 

product was sublimed. Unreacted Na(thd) was first removed by sublimation 

at 75 
o
C, the product was then sublimed at 120 

o
C for 4 hours, and finally at 

137 
o
C, with 65 

o
C at the finger, for 1 day. The product was transferred to 

the glove box, where it was weighted and stored. 

 

3.1.4 Synthesis of Bi(t-OBu)3 

The synthesis of Bi(t-OBu)3 was based on the method described in section 

2.1.2.2.1 on page 57, and was carried out as described in Ref. [88]. All 

reactions and steps described below were done under inert atmosphere using 

a glove box and a Schlenk line. For the synthesis of the Bi(t-OBu)3 

compound the chemical reaction given in Eq. 3-5 was used. 

 

BiCl3  THF  + 3Na t − OBu  THF   

→ Bi(t − OBu)3 THF  + 3NaCl(s) 

Eq. 3-5 

 

BiCl3 was complexed in dry THF under cooling by liquid nitrogen, as this 

complexation reaction is very exothermic. Na(t-OBu) was then dissolved in 



3.Experimental work 

 

80 

 

dry THF, and mixed with the BiCl3 solution under stirring. The resulting 

milk white solution was heated gently under reflux over the night, while 

covered in alumina foil to protect the product from light. NaCl was 

separated from the solution by centrifuging for 20 minutes. The solvent 

(THF) was removed under vacuum. The remaining yellow-compound was 

sublimed, first for half an hour with 40 
o
C on both the finger and oven, to 

remove any volatile impurities, then for 2 days with the oven and the finger 

at 60 and 30 
o
C, respectively. The product was transferred to the glove box 

where it was weighted and stored. 

 

3.2  The ALD reactor 

The ALD reactor used in this work was a commercial F-120 Sat reactor 

from ASM Microchemistry Ltd. The reactor is a hot wall reactor, which 

means that films are deposited on all the surfaces inside the reaction 

chamber. The reactor consists of a large silica glass tube, with heating coils 

around it, in which the schematically viewed parts in Figure 3-1 are placed. 

The reactor has eight temperature zones and eight supply pipes, one of these 

supply pipes are used for exhaust and one for thermocouples. The remaining 

six supply pipes are connected three by three to two assembly pipes, which 

again leads to the reaction chamber. To avoid film growth inside the pipes, 

only precursors that do not react with each other are placed inside supply 

pipes that are connected to the same assembly pipe. 
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Figure 3-1. A schematically overview of the supply pipes, the reaction 

chamber and the eight temperature zones in the ALD reactor. The 

temperature increases from zone 1 to 5, zone 5 to 8 are adjusted to give  the 

same temperature. Two precursors placed in different zones are also 

indicated. 

 

The pulsing of the precursors is controlled by an inert gas flow barrier, 

schematically viewed, in Figure 3-2. 

 

Figure 3-2. Schematic view of the pulsing system using a inert gas flow 

barrier. The situation shown at the top is when the gas flow barrier keeps 

the precursor away from the reaction chamber. At the bottom of the picture, 

the precursor is transported into the reaction chamber [14]. 

 

When the precursors are not pulsed a nitrogen flow of 300 cm
3
/min in the 

direction towards the vacuum pump, keeps the precursors away from the 

reaction chamber. When pulsed, the nitrogen flow is directed in the opposite 

direction which transports the precursor vapor into the reaction chamber.  
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3.2.1  The reaction chamber 

The reaction chamber is composed of a glass tube with an inner diameter of 

5.5 cm. It becomes narrower at the end where the precursors are pulsed in, 

where it ends in two separate tubes that can be connected to the two separate 

assembly pipes, described earlier. During deposition the substrates are 

placed upon an aluminum plate, which are cut to fit the profile of the 

reaction chamber, see Figure 3-3. 

 

 

Figure 3-3. A picture of the reaction chamber with two silicon substrates 

[119]. 

 

3.2.2 Transport gas 

An inert gas of nitrogen, N2(g), was used as transport gas and for purging 

the reaction chamber. A crucial aspect of the transport gas is purity as it is 

the main source of impurities in an ALD process. As a minimum for 

transport gases, 99.999% purity should be used [70]. The transport gas used 

in this work was produced in a Schmidlin UHP3001 N2 purifier with a 

claimed purity of 99.999% with regard to N2(g) + Ar(g) content. The gas 

was further purified by passing it through P2O5 in order to remove remains 

of water and an oxygen trap type Mykrolis MINI XL. 
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3.2.3 Growth parameters for deposition of thin films 

For the different precursors used in this work, the sublimation temperatures 

together with the pulse and purge schemes for depositions done with ALD 

are given below in Table 3-1. 

 

Table 3-1. The sublimation temperatures together with the pulse and purge 

schemes used for the different precursors, for deposition with ALD. 

Precuror 

pair 

Co(thd)2 

+ O3 

Co(thd)2 

+ H2O 

Co(thd)3 

+ O3 

BiPh3 + 

H2O 

Bi(thd)3 + 

H2O 

Sublimation 

temperature 

(
o
C) 

 

115 

 

115 

 

95 

 

90 

 

137 

Metal pulse 

(s) 

2.5 3.0 3.0 2.0 5.0 

Purge (s) 1.0 1.0 1.5 0.5 2.0 

Non-metal 

pulse (s) 

3.0 5.0 6.0 1.5 1.5 

Purge (s) 1.5 1.5 2.0 1.0 1.5 

 

The listed parameters for Bi(thd)3 + H2O are the ones used in the second 

round of investigation. In the first round of investigation a pulse and purge 

scheme of 2.0s Bi(thd)3, 0.5s purge, 1.5s H2O, 1.0s purge was used. 

 

3.3 Substrates 

The depositions in this work where mainly done on Si(111) and silica glass 

substrates. A large soda lime glass plate, with the dimensions 5.1 x 7.6 cm 

and 1 mm thickness, was used as a supporting substrate on which both the 

Si(111) and small glass substrates was placed. The large soda lime glass 
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plate acts as an indicator whether any film has been deposited or not, as it is 

easy to observe “shadow effects” after a deposition as the area under the 

substrates are usually not covered by the deposited film. The dimensions on 

the Si(111) and small glass substrates used were 3.5 x 3.5 cm with 0.7 mm 

thickness,  and  18 x 18 mm with 0.1 mm thickness, respectively. 

The large glass plate and the smaller glass substrates where cleaned 

with ethanol and then blown clean with pressurized air. The Si(111) 

substrates are sufficiently clean as delivered, and where therefore only 

blown with pressurized air to remove any possible dust particles. 

 

3.4 Precursors 

The precursors used in this work are listed in Table 3-2, together with purity 

and supplier. 

Table 3-2. The different precursors used in this work, together with purity 

and supplier. 

Precursor Purity Supplier 

Co(thd)2 sublimed In house 

Co(thd)3 sublimed In house 

Bi(thd)3 sublimed In house 

Bi(Ph)3 99% ABCR GmbH 

Bi
t
O(Bu)3 sublimed In house 

Water 

(distilled) 

 

- 

 

Distilled at UiO 

Oxygen 99.999% AGA 

Ozone 99.999%(O2) OT-020 ozonegenerator from Ozone 

technology O2, gives 15 volume % O3 

Nitrogen 99.999% Schmidlin UHPN3001 N2 purifier, inert gas 

(N2+Ar) 
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3.5 Characterization equipment 

This section describes the different instruments used for characterization of 

the synthesized samples in this work. 

 

3.5.1 X-ray based methods 

In this work three different instruments where used to characterize samples 

using X-rays, these are described in the sections below. 

 

3.5.1.1 X-ray diffraction on capillary powder samples 

X-ray analysis of capillary powder samples was performed using a Siemens 

D5000 diffractometer in transmission mode in θ-2θ configuration. A 

Johansson-type monochromator with a germanium crystal provides CuKα 

radiation and the detector used was a position sensitive detector (PSD). 

 

3.5.1.2 X-ray diffraction on thin films 

X-ray analysis of deposited thin films was performed with a Siemens D5000 

diffractometer using a Bragg-Brentano reflection setup in θ-2θ 

configuration. A Göbel mirror was used as a monochromator, which gives a 

parallel beam of CuKα radiation. The Göbel mirror consists of parabolically 

bent multilayers and gives a higher intensity than a Johansson-type 

monochromator, which is desirable when working with thin films.  

However, the intensity comes at an expense of beam purity and the radiation 

consists of both Kα1 and Kα2, and fragments of Cu Kβ and WLα. The 

detector used was a scintillation counter equipped with a secondary Si(111) 

monochromator. During GIXRD measurements a incident beam angle of 

0.5
o
 was used. 
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3.5.1.3 XRF 

In this work XRF was used for determination of the elemental composition 

of the deposited films. The instrument was a Philips PW2400 X-ray 

fluorescence spectrometer, which can detect concentrations from ppm to 

100 %. The results were analyzed by using the program Uniquant [111]. 

 

3.5.2 FT-IR 

FT-IR was used in this work to investigate the deposited thin films for 

possible carbonate contaminations. The instrument used was a VERTEX 80 

FT-IR spectrometer from Bruker.  

 

3.5.3 AFM 

AFM was used to investigate the topography, and roughness of the 

deposited films. The instrument used was a NanoScope Dimension 3100 

from Digital Instruments. The measurements were performed in tapping 

mode and both Si and Si3N4 tips where used. The Si tips often gives a 

sharper image, due to a smaller tip size, however, they become more easily 

worn than the Si3N4 tips. 

 

3.5.4 Equipment used for characterization of precursors 

The sublimation and decomposing temperature together with the ALD 

growth parameters was investigated for the precursors used in this work. 

The instruments by which this was done are described in this section. 
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3.5.4.1 TGA 

TGA was used to investigate the sublimation temperature of different 

precursors. The instrument used was a TGA 7 Thermogravimetric Analyzer 

from PerkinElmer. The data was analyzed by using the program Pyris. TGA 

analysis relies on a high degree of precision in three parameters: weight, 

temperature, and temperature change. The equipment used in this work is 

able to detect a change in mass of 1 µg. 

 

3.5.4.2 Thermal decomposition of precursors 

For determination of the decomposing temperature of the precursors a 

thermal gradient furnace was used, as described in section 2.2.4.2 on page 

73. 

3.5.4.3 QCM analysis 

In this work QCM was used for in-situ analysis of the growth mechanisms 

of the different precursors. The obtained data was logged with a Maxtek.inc 

TM400 data logger and the program Labveiw. The quartz crystals used were 

AT-cut, 6 MHz quartz crystals with gold electrodes. 

 

3.6 Heat treatment of the deposited thin films 

Some of the deposited thin films were heat treated in oxygen atmosphere in 

order to investigate the crystal structure in more detail. For this procedure a 

standard tube furnace was used which was connected to temperature 

controller from Eurotherm. 4.0 O2 gas from AGA was led through a pre-

combustion furnace in order to remove any organic impurities, whereupon 

any possible CO2 products were removed by filtering the gas through CaO 

before the entering the tube furnace. 

http://en.wikipedia.org/wiki/Precision
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4 Results 

This chapter is divided in three sections, where the first section presents 

results obtained during this work on the different precursors in the order 

Co(thd)2, Co(thd)3, BiPh3, Bi(t-OBu)3 and Bi(thd)3. The second section give 

results regarding deposition and investigation of thin films in the Co-O and 

Bi-O systems. The final section present results from depositions and 

investigations of thin films in the Bi-Co-O system. This chapter contains 

some discussions to enlighten on the path chosen during this work. Where it 

is appropriate, some parts will be concluded in order to keep the following 

discussion in chapter 5 more clear and tidy. 

 

4.1 Synthesis and investigation of precursors 

In this section, the synthesis and investigation of the different precursor 

used in this work will be presented. Work carried out on the precursors will 

be presented in the following order: First the cobalt precursors, Co(thd)2 and 

Co(thd)3, then the bismuth precursors, BiPh3, Bi(t-OBu)3 and Bi(thd)3. 

 

4.1.1 Co(thd)2 

Here the results obtained from the work on the Co(thd)2 precursor are given. 

 

4.1.1.1 Synthesis of Co(thd)2 

Two batches of Co(thd)2 was synthesized in this work according to the 

procedure described in section 3.1.1. The chemicals used for the synthesis 

of Co(thd)2 and their respective amounts are given in Table 4-1. 
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Table 4-1. The chemicals and their respective amounts used for the 

synthesis of Co(thd)2. 

Batch 1 2 

Chemicals Amounts 

CoCl2 ∙ 6 H2O 7.20 g 7.20 g 

H(thd) 11.05 g 11.09 g 

NH4OH (2.5M) 25 ml 25 ml 

Theoretical yield 12.76 g 12.76 g 

Yield 5.24 g (41%) 4.9 g (38 %) 

 

Co(thd)2 is reported to adopt a tetragonal crystal structure with the space 

group I41/a [14, 120]. A recorded powder pattern, by XRD, from the 

synthesized Co(thd)2 together with a silicon standard is given in Figure 4-1. 

 

Figure 4-1. Powder x-ray diffractogram of synthesized Co(thd)2 together 

with a silicon standard (*), background is subtracted. The blue Co(thd)2 

diffractogram is simulated based on Ref. [14, 120]. 

 

As can be seen from the diffractogram presented in Figure 4-1 the observed 

peaks from the synthesized powder corresponds fairly well with the 

simulated powder diffraction file (PDF) based on Ref. [14, 120]. 
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During storage and use the cobalt precursor may become hydrated 

and as a consequence it changes color from dark purple to pink [104]. This 

reduces its performance in the ALD process, and in order to remove the 

hydrated water the precursor has to be resublimated. 

 

4.1.2 Co(thd)3 

Co(thd)2 is well investigated in the literature [12, 13, 32] as an ALD 

precursor whereas the similar precursor Co(thd)3 is not. It was therefore 

decided to include a study of this novel precursor for possible use in an 

ALD process. If an ALD process was obtained, it would be interesting to 

compare the two growth systems from the two similar precursor Co(thd)2 

and Co(thd)3. Furthermore, this novel cobalt precursor could turn out to be 

an important parameter when trying to obtain thin films of the multiferroic 

phase BiCoO3 as well. This assumption was based on that the cobalt ion is 

in the 3+ oxidation state in the Co(thd)3 precursor, which is the same 

oxidation state as for cobalt in the phase BiCoO3. 

 However, before starting depositions with a new precursor it is 

useful to determine its sublimation and decomposition temperature, as these 

two parameters in principle determines the lower and upper limit for the 

precursors ALD window, respectively. 

 

4.1.2.1 Sublimation temperature 

From the literature it is know that Co(thd)3 sublimes at ca. 90 
o
C under 

0.5 mbar pressure [106] for purification purposes. A TG analysis was 

carried out in order to check the sublimation temperature of Co(thd)3 against 

the reported values in Ref. [106], see Figure 4-2. 
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Figure 4-2. Thermogram for Co(thd)3, heating rate 5 
o
C/min under ambient 

pressure of nitrogen atmosphere. The temperature for sublimation onset is 

determined to be 230  
o
C. 

 

The thermogram in Figure 4-2 shows that under ambient pressure of 

nitrogen, the onset temperature for sublimation is at 230 
o
C, and the 

maximum rate of evaporation was found from the second derivative to be 

around 250 
o
C. In Ref. [106] it is reported that, with a heating rate of 

5 
o
C/min, Co(thd)3 samples with weight in the range 15-30 mg had a 

sublimation onset at ca. 150-160 
o
C and that the sublimation was completed 

at ca. 260-280 
o
C. The onset temperature determined in this work is much 

higher than the reported value. However, it has been confirmed by the 

author of Ref. [106] that a the definition of the onset temperature used was 

where the TG curve stated to drop. In addition, Figure 4-2 shows that 

Co(thd)3 can be subject to almost total sublimation, where only 0.8% of the 

initial mass remains at 275 
o
C. The small remaining mass may be due to the 

system not being in a complete steady state when the sample weight was 

measured initially. Nevertheless, this observation is also in good agreement 
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with Ref. [106], where a total sublimation of Co(thd)3 is reported. From the 

TGA results together with the know sublimation temperature from [106], 

the sublimation temperature to be used for depositions was chosen to be 

95 
o
C. A higher temperature than 90 

o
C was chosen since the ALD reactor 

used in this work operates under a slightly higher pressure than 0.5 mbar. 

 

4.1.2.2 Decomposition of Co(thd)3 in an closed ampoule 

A glass ampoule for thermal decomposition was placed 12 cm into the oven 

from the cold side. The temperature at the sample position was measured to 

be 120 
o
C. A higher temperature than 90 

o
C was used to ensure good 

sublimation, as it was unlikely that the precursor would decompose already 

at this temperature. The ampoule was left in the furnace for 36 hours and the 

result of this experiment is shown schematically in Figure 4-3. 

 

Figure 4-3. Schematic drawing of the glass ampoule after 36 hours of heat 

treatment in thermal gradient furnace. Measured temperatures: at the 

sample 120 
o
C, at 59 cm 436 

o
C and at 73 cm 630 

o
C.  

 

The temperature at the first and second decomposition, at 59 cm and 73 cm, 

was measured to be 436 and 630
 o

C, respectively. The measurement 

indicates that Co(thd)3 is thermally stable up to around 430 
o
C, which is a 

relatively high temperature for the ALD process, and a much higher 

temperature than used for the depositions in this work. For comparison the 

decomposition temperature of Co(thd)2 has been measured by the same 

method to be 310 
o
C [14]. The observed decomposition at 630 

o
C is likely to 
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be due to the subsequent decomposition of the organic products from the 

decomposition of the precursor. 

 

4.1.3 BiPh3 

BiPh3 has been, as mentioned earlier in the prior art (section 1.2.2.2), used 

for deposition of bismuth containing films with the ALD method. Since it is  

reported in Ref. [8] that metallic bismuth was found in the films deposited at 

260 
o
C, it was decided to first check the sublimation and decomposing 

temperature of BiPh3 before starting any depositions. 

 

4.1.3.1 TGA of BiPh3 

The sublimation temperature of BiPh3 was investigated by TGA and the 

obtained thermogram is given in Figure 4-4. As mentioned earlier, 

indications that BiPh3 decomposes at 260 
o
C can be assumed based on the 

results obtained in Ref. [8]. In addition, based on the sublimation 

temperatures used for BiPh3 in the ALD process in Ref. [8] and [11], it can 

be assumed that BiPh3 has a sublimation onset below 200 
o
C.  In the 

following TG analysis of BiPh3 it was therefore decided not to raise the 

temperature higher than 200 
o
C, to avoid any decomposition. As a 

consequence of this decision, the result has to be presented as shown in 

Figure 4-4 to better show the decrease in mass during the whole 

measurement. 
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Figure 4-4. Thermogram for BiPh3, heating rate 10  
o
C/min under ambient 

pressure of nitrogen atmosphere. The temperature for sublimation onset is 

determined to be 156 
o
C. 

 

The remaining mass at the end of the measurement is a consequence of a too 

short dwell time at 200 
o
C. By analyzing the obtained data, the onset of 

sublimation was determined to be 156 
o
C, and the maximum rate of 

evaporation was found, from the second derivative, to be 193 
o
C. In Ref. [8] 

and [11] a sublimation temperature of 125 and 115 
o
C was used for BiPh3, 

respectively. Based on the observations in the Co(thd)3 system it was 

assumed that an even lower sublimation temperature could be used, hence it 

was decided to use a sublimation temperature of 90 
o
C for BiPh3. 

 

4.1.3.2 Decomposition of BiPh3 in an closed ampoule 

The sample was placed at 36 mm into the gradient furnace, where the 

temperature was measured to be 100 
o
C, which is higher than the 
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sublimation temperature for BiPh3. The sample was left in the oven for 29 

hours. The decomposition was observed as a grey-brown shadow on the 

walls of the ampoule, 40 cm into the oven, where the temperature was 

measured to be 240 
o
C. 

 

4.1.4 Bi(t-OBu)3 

In this section the results regarding the work on the Bi(t-OBu)3 precursors 

are given. 

 

4.1.4.1 Synthesis of Bi(t-OBu)3 

The synthesis of Bi(t-OBu)3 was performed as described in section 3.1.4. In 

this work four attempts for the synthesis of Bi(t-OBu)3 has been carried out. 

The three first attempts were unsuccessful due to leakage on the Schlenk 

line, which destroyed the desired product. The chemicals and their 

respective amounts used in the forth and successful synthesis are given 

below in Table 4-2. 

 

Table 4-2. The chemicals used and their respective amounts for the 

synthesis of Bi(t-OBu)3. 

Chemicals Amounts 

BiCl3 18.43 g 

Na(O
t
Bu) 16.82 g 

Theoretical yield 24.99 g 

Yield  3.40 g (13.6%) 

 

4.1.4.2 Decomposition of Bi(t-OBu)3 in an closed ampoule 

The sample placed at 36 mm in the gradient furnace where the temperature 

of the source was 100 °C and left in the oven for 4 days. When investigating 

the ampoule afterwards it became clear that Bi(t-OBu)3 decomposed already 
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at the sample temperature. To investigate the decomposing temperature 

more thoroughly, an in-situ QCM measurement was performed at 65 
o
C 

which showed that the precursor decomposed heavily already at this 

temperature [1]. 

 

4.1.4.3 Concluding remarks 

The decomposition temperature of Bi(t-OBu)3 is too low for it to be used for 

depositions in the Bi-Co-O system together with Co(thd)2 or Co(thd)3, as 

these precursors need a deposition temperature of at least 114 and 162 
o
C, 

respectively. It was therefore chosen not to investigate this precursor further 

in this work. 

However, the crystal structure of the Bi(t-OBu)3 precursor 

synthesized in this work was solved in Ref. [1]. The crystal structure is 

reported to be trigonal with the space group P3c, and the molecules in Bi(t-

OBu)3 are packed monomerically. This is the first time the crystal structure 

of Bi(t-OBu)3 is solved, in addition it is also the first reported solved 

structure of an alkoxide that only contains bismuth. 

 

4.1.5 Bi(thd)3 

Here the results regarding the synthesis and investigation of Bi(thd)3 are 

given. 

 

4.1.5.1 Synthesis of Bi(thd)3 

In this work a total of five syntheses of Bi(thd)3 has been carried out. All the 

syntheses have been performed as described in section 3.1.3, except for the 

last synthesis hereafter called E. In E BiI3 was used instead of BiCl3, and a 

commercially bought powder of NaOMe (Fluka, purum; > 97.0%) was used 
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instead of homemade NaOMe. A lack of BiCl3 powder was the reason for 

the exchange done in E. An overview of the reactants and the obtained yield 

for the different syntheses are given below in Table 4-3. The labels given for 

different syntheses are traceable in the Appendix (9.1). 

 

Table 4-3 shows that there are large differences in the yield from the 

syntheses performed in this work. However, there were some changes in the 

parameters and the execution for the different syntheses, which may have 

influenced both the obtained product and the yield. These factors are listed 

below in Table 4-4  and discussed more in detail in the following text. 

 

Table 4-3. Reactants and products given with their respective amounts from 

the Bi(thd)3  syntheses. Samples A-D use BiCl3 whereas sample E use BiI3. 

Sample 

name 

Na(thd) 

(g) 

BiCl3 / BiI3 

 (g) 

Yield 

(g) 

Theoretical 

Yield (g) 

% theoretical 

yield 

A 16.66 8.28 5.30 19.92 27 

B 16.25 8.28 9.36 19.92 47 

C 16.62 8.278 4.12 19.92 21 

D 17.04 8.32 16.80  20.02 84 

E 18.56 17.69 5.29 22.76 23 
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Table 4-4. Different factors that may have influenced the syntheses of 

Bi(thd)3. 

Sample name A B C D E 

Contamination 

of methanol 

 

Yes 

 

No 

 

No 

 

Yes 

 

Yes 

Exposed to air No Yes No No No 

Sublimed two times No No Yes Yes Yes 

Dry solvents No No No Yes Yes 

One-phase Unknown No No No No 

Reactants used BiCl3 BiCl3 BiCl3 BiCl3 BiI3 

 

 

In the first synthesis, A, H(thd) was, by an error, reacted with NaOMe after 

the methanol solvent was removed under vacuum. When H(thd) reacts with 

NaOMe and forms Na(thd), methanol is formed as a by-product. This may 

lead to contamination of methanol in the final product, and it was assumed 

that this contamination could have had an effect on the final product. 

Therefore this was attempted to be reproduced, however, it turned out that 

the possible contamination of methanol did not have any significance on the 

properties of the synthesized precursor. 

 

The second synthesis B was exposed to air during the synthesis due to 

leakage on the Schlenk line. This turned out to not have any significant 

impact on the yield, the final product or the properties of the synthesized 

precursor. Some loss of product occurred most likely during this synthesis, 

due to lack of stirring while the solvents were removed under vacuum which 

resulted in eruptions of sudden boiling. 

 

Some samples, C, D and E were sublimed two times in order to increase the 

yield of the syntheses. This was done by removing the sublimed product 
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from the finger inside the glove box, whereupon the remaining product was 

sublimed again. The samples from the first and second sublimation was 

stored separately, and in all cases the compounds from the first sublimation 

was more sticky with a faint yellow color, in contrast to the dry white 

powder obtained from the second sublimation. In addition, for the first 

sublimations some of the crystals crystallized on the finger as long needle 

shaped crystals, in contrast to the second sublimations where more square-

like crystals were obtained. 

 

Dry solvents were used in D and E in order to try to obtain a phase without 

crystal water. Compared to the other syntheses where BiCl3 was used as a 

reactant, D showed an extremely high yield, which may indicate that the use 

of dry solvents are beneficial. However, as other parameters also were 

changed in that synthesis, it is uncertain that the increased yield can be 

subscribed to the use of dry solvents alone. 

For the synthesis where BiI3 was used, it should be noted that BiI3 

appeared to have a very poor solubility in hexane, which was the solvent 

used. In addition, the product obtained from both the first and second 

sublimation was a mixture of a white and red powder. It was observed that 

the red powder seemed to have a higher sublimation temperature than the 

white powder, and in order to separate the white powder a new sublimation 

was done. The products from both the first and second sublimation was 

mixed and placed in the sublimation oven. The temperature in the oven and 

the finger was kept at 128 and 40 
o
C, respectively. After three days most the 

white powder had been recrystallized on the finger, while a fluffy faint red 

colored powder remained in the flask. 

 



4.Results 

 

101 

 

In addition, the θ-2θ transmission XRD measurements performed on the 

synthesized precursors indicated that they all consisted of more than one 

phase. 

 

4.1.5.2 Purification of Bi(thd)3 

During deposition with the synthesized Bi(thd)3 precursors, it was found 

that recrystallization occured in two different temperature-zones in the ALD 

reactor, see Figure 4-5. This indicated the precence of at least two different 

phases which had different sublimation temperatures. 

 

 

Figure 4-5. The observed recrystallization inside the precursor tube, during 

ALD deposition, at two different temperature zones for the Bi(thd)3 

precursor. 

 

A TG measurement was performed in order to check if separate sublimation 

of the different phases could be observed. The obtained thermogram is 

given in Figure 4-6. 
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Figure 4-6. Thermogram for Bi(thd)3, heating rate 10  
o
C/min under 

ambient pressure of nitrogen atmosphere. The temperature for sublimation 

onset is determined to be 259 
o
C. 

 

As the TG curve in Figure 4-6 shows, only one step sublimation can be 

observed. A possible reason for this may be that a too high heating rate was 

used in the measurement. The onset temperature for sublimation was 

determined to be 259 
o
C, and the rate of maximum rate of sublimation was 

determined, from the second derivative, to be at 291 
o
C. It should be noted 

that the remaining mass at 310 
o
C is probably due to some decomposition of 

the precursor. Yellow bismuth oxide could be observed in the quartz 

container used as sample holder at the end of the measurement. 

Additionally, the sudden drop in weight with a following increase observed 

above 325 
o
C is most likely due to malfunction of the TG equipment. 

 

In an attempt to separate and study these two fractions in more detail, the 

sublimation oven was used. By reference to Figure 4-5 it was decided to 

heat the sublimation oven up to 100 
o
C, while keeping the finger at 40 

o
C. 
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By doing so it was assumed that the fraction that recrystallized below 

100 
o
C would be deposited on the finger.  

 

The amounts of D purified are given in Table 4-5, together with the 

obtained amounts of powder from the finger and the flask. The compound 

was left inside the sublimation oven for 5 days. 

 

Table 4-5. The amounts of Bi(thd)3 purified, together with the obtained 

amounts from the finger and the flask. 

Pre purification Post purification 

Sample 

Unit 
Amounts 

(g) 
From finger 

(g) 
From flask 

(g) 
Loss 

% 

D 3.69 0.66 2.31 19.5 

 

 

Capillary powder samples were made of the compounds obtained from both 

the finger and the flask and was studied with XRD. A comparison of the 

diffractograms obtained from the two separated fractions is given in Figure 

4-7.  

 

As Figure 4-7 shows, the two obtained diffractograms are almost identical. 

The broad peak in the area 3-6
o
 for the blue line is due to background noise, 

which most likely hides the peak observed around 4.5
o
 on the red line. The 

only noticeable difference can be seen in the area around 8.5-9.2
o
, which is 

magnified in the insert in Figure 4-7. Here, the compound from the flask 

shows two small peaks which is absent in compound from the finger. 
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Figure 4-7. The measured diffractograms, by XRD on capillary powder 

samples, from the purification of D. The insert shows a magnified view of 

the marked box on in the figure. 

 

In both cases the compound obtained from the finger was observed to have a 

faint yellow colour in contrast to the white powder remaining in the flask. In 

addition during capillary XRD measurements, it was observed that the 

compound from the finger melted to a faint yellow oil, while the compound 

from the flask remained a dry white powder. 

 

 

 

 

 

 

4 6 8 10 12 14 16 18 20 22 24 26 28 30

 

 

D_finger

In
te

n
s
it
y
 (

A
rb

. 
U

.)

2q (o)

D_flask

8,4 8,8 9,2 9,6

 

 

 

 



4.Results 

 

105 

 

4.1.5.3 Structural investigation of Bi(thd)3 

The recorded diffractograms, obtained by capillary powder XRD, of the 

synthesized Bi(thd)3 compounds were compared with reported phases of 

Bi(thd)3 in the literature. There are reported three phases of Bi(thd)3, these 

are given below in Table 4-6. 

 

Table 4-6. An overview over the three reported phases of Bi(thd)3. 

Labeled 

Ref. 

Fukin 

[103] 

Armelao1 

[121] 

Armelao2 

 [121] 

Year 1993 1998 1998 

Compound [Bi(thd)3]2∙ 0.5Hthd Bi(thd)3∙ H2O Bi(thd)3∙ 3H2O 

Crystal system monoclinic monoclinic orthorhombic 

Space group C2/c P21/n Pbcn 

a (Å) 43.396 12.426 20.953 

b (Å) 20.455 19.565 19.619 

c (Å) 18.499 15.820 19.475 

α, β, γ (°) 90/104.27/90 90/94.31/90 90/90/90 

V (Å
3
) 15914 3835 8006 

Z 8 4 8 

λ (Å) 0.71073 0.71073 0.71073 

 

 

The synthesized compounds, given in Table 4-7, was found to correspond 

well with the reported phase labelled Armelao1, see Figure 4-8. The 

diffractogram of Armelao1, was simulated based on the values given in Ref. 

[121]. 
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Table 4-7. The synthesized Bi(thd)3  compounds in this work, that contains 

the phase Bi(thd)3 ∙H2O (Armelao1). 

Compound Labeled 

The fraction from the second sublimation of D D2 

B B 

The fraction from the second sublimation of C C2 

The red powder obtained in the synthesis of E R 

 

Figure 4-8. Diffractogram, obtained by XRD, of the synthesized compounds 

in this work together with the reported phase Bi(thd)3 ∙H2O (Armelao1). 

Unknown phase is marked with (*). 

 

The diffractograms in Figure 4-8 shows that there are some peaks that do 

not correspond with Armelao1, which may suggest the presence of another 

phase. It should be noted that the other reported phases Armelao2 and 

Fukin, given in Table 4-6, did not correspond with any of the compounds 

synthesized in this work. 

 

The remaining synthesized compounds in this work, given in Table 4-8, 

shows little resemblance to Armelao1, see Figure 4-9. 
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Table 4-8. Synthesized Bi(thd)3 compounds in this work, that contain little 

or no amounts of Armelao1. 

Compound Labeled 

The fraction from the first sublimation of D D1 

The fraction from the first sublimation of C C1 

The white powder obtained in the synthesis of E W 

 

Figure 4-9. X-ray diffractogram of the synthesized compounds in this work 

that corresponds poorly with the reported phase Bi(thd)3 ∙H2O (Armelao1). 

Unknown phase marked with (*). 

 

As can be seen from Figure 4-9, some of the peaks in the recorded 

diffractograms correspond with the phase reported in Armelao1. This may 

be due to small amounts of the Armelao1-phase in the investigated samples, 

or due to one or more possible unknown phases of Bi(thd)3 that may have 

some peaks overlapping with the Armelao1-phase. 

 

The presented diffractograms in both Figure 4-8 and Figure 4-9 indicates 

that the synthesized Bi(thd)3 compounds in this work consisted of more than 

one phase, and that the phase that could be identified contained crystal 

water. None of the synthesized samples contained any of the other reported 
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phases of Bi(thd)3, it is therefore likely that there exist one or more 

additional unknown phases of Bi(thd)3. 

 

4.1.5.4 Removal of crystal water from Bi(thd)3 

In an attempt to remove the crystal water from the synthesized Bi(thd)3, 

tetraglyme (tetraethylene glycol dimethyl ether) was used. It is reported that 

reacting equal amounts of tetraglyme with β-diketonates such as 

La(thd)3(H2O), Eu(thd)3(H2O) and Tb(thd)3(H2O), which are similar in size 

to Bi(thd)3, in hexane has resulted in monomeric complexes of La(thd)3L, 

Eu(thd)3L and Tb(thd)3L ( L = tetraglyme), see Eq. 4-1 [122]. 

 

 La(thd)3 H2O +  L → La(thd)3L +  H2O Eq. 4-1 

 

In Ref. [122] an oily product was obtained, which crystallized into crystals 

after a short time. It is further reported that products were stable towards 

air/moisture. In addition, it was observed that the melting points of the 

investigated β-diketonates decreased with about 60 
o
C on complexation with 

tetraglyme, compared to their respective hydrates. 

 

In this work two different syntheses were carried out based on the work 

reported in Ref. [122], one where tetraglyme was in excess and one where 

stoichiometric amounts of tetraglyme and Bi(thd)3 was reacted, see Table 

4-9. When determining the proper amounts of Bi(thd)3 it was assumed that it 

contained one amount of crystal water per formula unit. The solvent was 

dried prior to use and all the manipulations were carried out in inert 

atmosphere by using a glove box and a Schelnk line. The tetraglyme used 

was manufactured by Fluka and had a given purity > 98%. 

 



4.Results 

 

109 

 

Table 4-9. Amounts used in the two reactions of tetraglyme with Bi(thd)3. 

Synthesis nr. Compound Weight (g) mmol 

1 Bi(thd)3∙1H2O 0.5945 0.763 

 Tetraglyme 1.0213 4.595 

2 Bi(thd)3∙1H2O 0.6730 0.869 

 Tetraglyme 0.1933 0.869 

 

Both synthesis 1 and 2 yielded a yellow oily product. It was not possible to 

obtain crystals or a solid product at room temperature, however, the oil 

seemed to crystallize into a white powder when cooled in ice water. Because 

it is difficult to characterize a liquid by XRD, this investigation was not 

pursued any further. The failure to recrystallize the oil, may indicate that the 

melting point of Bi(thd)3 drops from around 137 
o
C down to around 0 

o
C 

when complexed with tetraglyme. However, more investigation is needed 

before any conclusions can be made. Due to lack of time, the obtained 

products were not investigated further. 

 

4.2 Thin films in the Co-O and Bi-O systems 

This chapter presents the work on deposition and investigation of the thin 

films in the Co-O and Bi-O system. For deposition in the Co-O system, four 

growth systems was investigated and the results will be given in the order: 

Co(thd)2 + O3, Co(thd)3 + O3, Co(thd)3 + H2O, and Co(thd)2 + H2O. For 

depositions in the Bi-O system, two growth systems was investigated and 

the results will be given in the order: BiPh3 + H2O and Bi(thd)3 + H2O. 

 

4.2.1 Thin films based on Co(thd)2 and O3 

The Co(thd)2/O3 system was investigated as basis for comparison with the 

novel Co(thd)3/O3 combination. The Co(thd)2/O3 system is well investigated 
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in the literature [12-14], and the results obtained from the work on this 

system would therefore also serve as a reference to the prior art. 

 

The growth rate per cycle of Co3O4 from Co(thd)2 and O3 has varied slightly 

throughout the duration of this work. This is probably due to changes done 

on the equipment, such as a new ozone generator and possible leaks on the 

reactor. An overview over the recorded growth rate per cycle of Co3O4 from 

Co(thd)2 and O3 during this work is given in Table 4-10. 

. 

The observed growth rates given in Table 4-10  are somewhat lower than 

what  reported in Ref. [13] (average growth rate of 20±1 pm/cycle in the 

temperature range 114 – 307 
o
C).  

 

Table 4-10. Overview of the growth rate per cycle of Co3O4 from Co(thd)2 

and O3 during this work. 

Sample Cycles Temperature Thickness Growth 

rate/cycle 

Date 

 Number 
o
C nm pm/cycle dd.mm.yy 

KBG1007 1000 186 15 15 25.03.08 

KBG1037 1000 186 16 16 30.10.08 

KBG1072 1000 186 17.5 17.5 05.04.09 

KBG1080 1000 167 18 18 20.05.09 

 

4.2.1.1 Crystal structure and orientation on Si(111) 

Co3O4 adopts the normal spinel structure and is described by the space 

group Fd3m. When heated above 900 
o
C Co3O4 converts to CoO, which 

adopts the NaCl-type structure with space group Fm-3m [14, 123]. 

 

A 100 nm thick film (KBG1051) was deposited on Si(111) at 186 
o
C in 

order to verify the results reported in the literature [13]. The diffractogram, 

obtained by θ-2θ measurements, is shown in Figure 4-10  indicates that the 

http://en.wikipedia.org/wiki/Spinel#The_spinel_structure
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film deposited on Si(111) show a tendency towards (100)-oriented growth 

as a relatively strong (004) reflection can be observed. The orientation is not 

perfect since some rather weak peaks can be observed from the (113), (115) 

and (333) reflections. For comparison, Ref. [13] reports a (100)-oriented 

growth for films deposited on Si(100) in the temperature range 138-186 
o
C, 

and (111)-oriented growth in the temperature range 235-283 
o
C. However, 

films deposited at both 186 and 235 
o
C in Ref. [13] seems to be more 

crystalline than the film deposited at 186 
o
C in this work, as more and 

clearer peaks can be observed in the reported θ-2θ diffractograms. 

 

Figure 4-10. Diffractogram, obtained by θ-2θ measurement, of a 100 nm 

thick Co3O4 film deposited from Co(thd)2 and O3  at 186 
o
C on Si(111). 

 

 

The height of the crystallites in the deposited film was estimated from the θ-

2θ measurement using the Scherrer equation, see Table 4-11. 
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Table 4-11. The crystallite height calculated from the θ-2θ measurement. 

FWHM value of Si(111) used as standard. 

Sample Co3O4(004) 

FWHM 

Si (111) 

FWHM 

Height of 

crystallites 

 (
o
) (

o
) (nm) 

KBG1051 0.264 0.118 47.4 

 

4.2.1.2 AFM study of Co3O4 deposited on Si(111) 

The roughness and topography of a 100 nm thick film deposited from 

Co(thd)2 and O3 on Si(111) at 186 
o
C (KBG1051) was investigated by 

AFM. 

 

Figure 4-11. Topography of a 100 nm thick film, as measured by AFM,  

deposited on Si(111) using Co(thd)2 and O3  at 186 °C. 

 

Figure 4-11 shows that the film is rather smooth, and the root mean square 

(RMS) value which was measured to be 0.22 nm confirms this. This value is 

much lower than reported RMS value of 2.1 nm, for a film deposited from 

Co(thd)2 and O3 at 186 
o
C on Si(100) [13]. A possible explanation may be 

that utilizing Si(111) as substrate yields a smoother film than if the film is 

deposited on a Si(100) substrate. However, both Si(111) and Si(100) have 

an native oxide layer, which is likely to be amorphous, and any difference in 
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the crystallinity and/or orientation of the deposited films on the two 

different substrates should therefore not be expected. A more likely 

explanation is that the temperature in the reactor has been slightly higher 

than 186 
o
C during this deposition. As Co3O4 grows with (100)- and (111)-

orientation at 186 and 235 
o
C, respectively, if the deposition temperature 

was somewhere in between these two temperatures, where a shift of the 

orientation occurs, the resulting film is expected to be poorly crystalline and 

hence also have a smooth surface [76]. 

 

4.2.1.3 FT-IR study of Co3O4 deposited on Si(111) 

To check for any carbonate contaminations in the deposited film, a 100 nm 

thick film deposited at 186 
o
C on Si(111) (KBG 1051) was investigated by 

FT-IR. 

 

The FT-IR measurements, given in Figure 4-12, show no evidence of 

carbonate contamination at the temperature used for deposition. The main 

absorption peak of CoCO3 is in the 1424-1452 cm
-1

 range [14], and the 

measured film show no absorption in this area. Absorption peaks at 570 cm
-

1
 and 661 cm

-1
 for Co3O4 is reported in Ref. [123]. Where the first band at 

570 cm
-1

 is associated with the OB3 vibration in the spinel lattice, where B 

denotes Co
3+

 in an octahedral hole, and the second band at 661 cm
-1

 is 

attributed to the ABO3 vibration, where A denotes the Co
2+

 in a tetrahedral 

hole. From the obtained FT-IR data the measured film have its main 

absorption peaks at 560 cm
-1

 and at 660 cm
-1

. When comparing the 

wavenumbers of the main absorption peaks for the thin film and the bulk 

values reported in [123], the absorption peaks for the thin film are shifted 

down. This shift in wavenumber can be due to the restricted size of the 

crystallites [14]. 
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Figure 4-12. FT-IR spectra of Co3O4 deposited from Co(thd)2 and O3 on 

Si(111) at 186 
o
C. 

 

4.2.2 Thin films based on Co(thd)3 and O3 

Here the results both regarding deposition of thin films and investigation of 

said films from the novel precursor combination Co(thd)3 and O3 are 

presented. 

 

4.2.2.1 Pulse stability 

Based on the information on sublimation temperature and thermal stability 

obtained in section 4.1.2, the precursor was tested for ALD growth together 

with O3. The pulse and purge parameters where kept at such high values that 

it was assumed that they were all in their respective ALD windows. 
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To investigate the pulse stability, the growth rate was measured as a 

function of the length of both Co(thd)3- and O3-pulses at 186 
o
C. The 

Co(thd)3 pulses was varied between 1.0-3.0s and O3 pulses was varied 

between 0.5-6.0s. When one of the Co(thd)3- or O3-pulse times was 

investigated the other parameters where kept constant at 1.5s purge, 6.0s O3 

and 2.0s purge, and 3.0s Co(thd)3, 1.5s purge and 2.0s purge, respectively. 

 

Figure 4-13. Growth rate as a function of Co(thd)3 pulse times (blue line) 

and O3 pulse times (red line) at 186 
o
C on Si(111), measured with XRR. 

 

The blue line in Figure 4-13 shows that for the growth rate as a function of 

Co(thd)3 pulse time, self-limiting growth occurs at a pulse length of 2.0s 

Co(thd)3. However, it was found necessary to keep the pulse length at 3.0s 

to obtain complete coverage over the whole substrate. The growth rate as a 

function of the O3 pulse length, red line in Figure 4-13, seems to proceed in 

two separate steps. The growth rate increases rapidly up to 1.0s pulse length 

and remain more or less constant up to 3.0s, before increasing as the pulse 

length is increased to 6.0s. This behaviour is not observed for the similar 
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system Co(thd)2/O3. For Co(thd)2/O3 the thickness as a function of the O3 

pulse length increases rapidly up to a pulse length of 0.75s, where 

subsequently there are only small changes in the growth rate up to the 

investigated pulse length of 6.0s [14]. The reason for this step-like growth 

as a function of the O3 pulse length is unknown, however, it may be due to 

kinetics or surface reconstructions. The growth rate increases with almost a 

factor of two when the pulse length is 6.0s compared to 1.0-3.0s. This could 

indicate that the number of thd-ligands on the adsorbed -Co(thd)x complex 

has an influence on the reaction with O3 in the gas phase. It may be that 

when -Co(thd) comprises the terminating complex, a reduced reactivity 

towards O3 results, viz. the reaction from –Co(thd)2 to -CoOx(thd) is rapid, 

whereas the following reaction from –CoOx(thd) to –CoO is slow.  A more 

in-depth investigation has to be performed before a likely mechanism for 

this step-like behavior can be proposed. 

 

4.2.2.2 ALD temperature window 

The ALD temperature window was determined by measuring the thickness 

of the deposited films at different temperatures. The obtained results are 

also shown below in Figure 4-14. 



4.Results 

 

117 

 

 

Figure 4-14. Growth rate per cycle for the Co(thd)3/O3 precursor 

combination as a function of deposition temperature, measured with XRR. 

 

As Figure 4-14 shows, the temperature window for the Co(thd)3/O3 system 

is between 162 and 259 
o
C. There was no observable film growth at 138 

o
C, 

and the increased growth rate at 283 
o
C is likely due to decomposing of the 

precursor. This could also be observed as large gradients on the films in the 

direction of the precursor flow. Based on the results shown in Figure 4-14 

the ALD temperature window for the Co(thd)3 + O3 process is interpreted to 

be in the temperature range 162 – 259 
o
C, with an average growth rate of 6 

pm/cycle. 

 

4.2.2.3 Crystal structure on Si(111) 

A 74 nm thick film (KBG1047) was deposited on Si(111) at 186 
o
C in order 

to determine the crystal structure of the deposited films from the 

Co(thd)3/O3 precursor combination. The obtained diffractogram from both 

XRD and GIXRD measurements is shown in Figure 4-15. 
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Figure 4-15. Diffractogram, obtained by θ-2θ (red line) and GIXRD (blue 

line), of a 74 nm thick Co3O4 film deposited on Si(111) at 186 
o
C. PDF 00-

042-1467 is represented by the black line. The background has been 

subtracted from the GIXRD diffractogram. 

 

As the GIXRD measurement shows, the film is probably polycrystalline and 

all the observed peaks can be indexed as the Co3O4 phase. The 

diffractogram obtained from θ-2θ-measurement shows only the (111) and 

(113) reflections which indicates that the film show a tendency towards 

(111)-oriented growth. 

 

 

An estimate of the crystallite height was obtained, from the θ-2θ-

measurement, by the Scherrer equation, see Table 4-12. 
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Table 4-12. The calculated height of crystallites from the θ-2θ 

measurement. FWHM value of Si(111) used as standard. 

Sample Co3O4(113) 

FWHM 

Si (111) 

FWHM 

Height of 

crystallites 

Unit (
o
) (

o
) (nm) 

KBG1047 0.41 0.125 25.4 

 

 

4.2.2.4 FT-IR study of Co3O4 from Co(thd)3 deposited on Si(111) 

To investigate for any carbonate contamination in the deposited films FT-IR 

was used. The obtained FT-IR spectra are presented in Figure 4-16. 

 

Figure 4-16. FT-IR spectroscopy data of Co3O4 films deposited from 

Co(thd)3 and O3  on Si(111), in the temperature range 162-283  
o
C. 

 

The FT-IR measurements show no evidence of carbonate contamination at 
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the main absorption peaks for the thin films and the bulk values reported in 

[123], the absorption peaks for the thin films are shifted down, from 570 cm
-

1
 and 661 cm

-1 
to 560 cm

-1
 and 660 cm

-1
, respectively. As mentioned earlier, 

this shift in wavenumber can be due to the restricted size of the crystallites. 

In addition, there seems to be no connection between the deposition 

temperatures and the obtained FT-IR spectra. It should be noted that the 

dissimilarity in the measured absorbance, at the two areas 560 cm
-1

 and 660 

cm
-1

 are probably caused by different thickness of the measured films (ca. 

12 nm for films deposited at 162 and 235 
o
C and ca. 74 nm for films 

deposited at 186 and 283 
o
C). 

 

4.2.2.5 AFM study of Co3O4 deposited on Si(111) 

The roughness of films deposited in the temperature range 162 - 283 
o
C, 

was investigated by AFM. Figure 4-17 on the next page shows the 

topography with the corresponding roughness value, given in RMS, for the 

different temperatures. In Figure 4-18 the measured roughness is presented 

graphically as a function of deposition temperature. 

 

The measured roughness values presented in Figure 4-17 and Figure 4-18 

shows that the RMS value is fairly constant in the measured part of the ALD 

temperature window, 162 – 235 
o
C. There is a slight increase in the 

measured roughness for the film deposited at 235 
o
C, which would be 

expected as the films are likely to be more crystalline with increasing 

deposition temperature. The relatively large increase in roughness observed 

at the deposition temperature of 283 
o
C, is likely due to decomposing of the 

Co(thd)3 precursor. When the topography of the samples deposited at 162 

and 186 
o
C are compared with the sample deposited at 235 

o
C there seems 
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also to be an indication of increasing crystallinity for the sample deposited 

at 235 
o
C, as larger crystallites can be noted on the surface.  

 

 

 

Figure 4-17. Topography, as measured by AFM, and measured roughness 

in RMS of Co3O4 films deposited from Co(thd)3 and O3  in the temperature 

range 162 - 283  
o
C on Si(111), note the differences in the height profile.  
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Figure 4-18. Measured roughness, in RMS, of Co3O4 films deposited from 

Co(thd)3  in the temperature range 162-283  
o
C on Si(111). Same samples as 

in Figure 4-17. 

 

It should be noted that the almost constant roughness in the ALD 

temperature window, as shown in Figure 4-18, was also observed for the 

similar Co(thd)2/O3 precursor combination in Ref. [14]. 

 

4.2.2.6 AFM study of Co3O4 deposited on silica glass and Si(111) 

To investigate for the effect of substrate on the on the surface topography, 

two 74 nm thick films deposited on respectively silica glass and Si(111) was 

measured by AFM, see Figure 4-19a) and b). The film deposited on silica 

glass has a somewhat lower roughness (RMS = 4.7 nm) than the film 

deposited on Si(111) (RMS = 5.6 nm). The measured grains are also smaller 

and more uniformly distributed on the surface for the film deposited on 

silica glass, see Figure 4-20, which may indicate that the Co(thd)3/O3 

growth system has a higher nucleation density on silica glass than Si(111). 
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Figure 4-19. Topography of 74 nm thick films, as measured by atomic force 

microscopy, deposited on silica glass (A) and Si(111) (B) using Co(thd)3 

and O3 at 186 °C. 

 

 

Figure 4-20. Topography of 74 nm thick films, as measured by atomic force 

microscopy, deposited on silica glass (A) and Si(111) (B) using Co(thd)3 

and O3  at 186 °C. 
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4.2.3 Thin films based on Co(thd)3 and H2O 

The novel ALD precursor was also tested for growth together with H2O. At 

the tested temperatures of 186 and 235 
o
C, no deposited film could be 

observed. This precursor combination was therefore not investigated any 

further. 

 

4.2.4 Thin films based on Co(thd)2 and H2O 

To investigate the similarities of the Co(thd)2 and Co(thd)3 system further, 

Co(thd)2 was also tested for deposition together with H2O. The use of a 

strong oxidizing agent, such as ozone, makes it rather futile to try and utilize 

the different oxidation states on the metal atoms in the precursors to deposit 

different phases. 

 

β-diketonates are generally considered to not be reactive towards water, 

however, preliminary tests showed that film was indeed deposition form the  

Co(thd)2/H2O combination at 235 
o
C. This indicated that this new precursor 

combination could be used in the ALD process and it was decided to 

investigate this system further.  

 

4.2.4.1 Growth rate and temperature window 

To investigate the ALD temperature window for the Co(thd)2 and H2O 

process, films were deposited using 5000 cycles in the temperature range 

162 – 283 
o
C whereupon the thickness was measured by XRR. In Figure 

4-21 the measured growth rate is shown as a function of the deposition 

temperature. 
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Figure 4-21. The effect of temperature on the growth rate per cycles for the 

precursor combination Co(thd)2 and H2O. Deposited from 5000 cycles at 

the given temperatures. Stippled line indicates increased growth rate at 

lower temperatures. 

 

The film deposited at 162 
o
C showed large gradients and the film was too 

thick and/or a too high roughness for the thickness to be measured by XRR. 

The olive green color of the deposited film indicated that the film consisted 

of CoO, which was confirmed by GIXRD. A natural explanation for this 

increase in growth rate at lower temperatures would be that the temperature 

is so too low for potential physisorbed precursor molecules to be removed 

from the surface, however, this is not the case for the similar process 

Co(thd)2/O3. Suggesting that the mechanism for the observed increase in 

growth rate is not likely due to the condensation of the Co(thd)2 precursor 

on the surface. There might be some properties with the CoO surface that 

causes this behavior, and that is why a similar observation is not made for 

the Co(thd)2/O3 process at the same temperature. Nevertheless, in order to 
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propose a likely mechanism for this observed increase in growth rate, 

thorough investigations are necessary. The decrease in growth rate observed 

at 283 
o
C is likely due to decomposition of the precursor, because a black 

deposit was observed formed on the inside of the precursor tube at the hot 

end. This indicates that the Co(thd)2 precursor began to decompose before it 

entered the reaction chamber, which could explain the observed decrease in 

the growth rate per cycle at 283 
o
C. Nevertheless, Figure 4-21 shows a 

rather uncharacteristic shape for an ALD temperature window. The 

temperature window seems to have two plateaus at 186 – 210 
o
C and at 235 

– 259 
o
C, which could suggest that two different phases are deposited with 

their respective growth rate in each of the observed plateaus. The difference 

may also be due to surface reconstructions, increased kinetics or different 

growth orientations. However, the uncharacteristic ALD temperature 

window indicates that the growth mechanics may be rather complex, and 

that a more detailed investigation is needed before a suggestion for this step-

like growth can be made. 

 

4.2.4.2 Crystal structure 

GIXRD analysis was applied on selected samples in order to investigate the 

uncharacteristic growth rate observed in the proposed ALD temperature 

window for the Co(thd)2/H2O process, the effect of the deposition 

temperature on the crystallinity and obtained phase. GIXRD was utilized 

because θ-2θ measurements revealed no peaks. The selected samples were 

the same as those investigated in Figure 4-21, except for the sample 

deposited at 235 
o
C which was exchanged with a thicker sample, deposited 

using 9055 cycles. 
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Figure 4-22. Diffractogram, obtained by GIXRD, showing the effect of 

different depositions temperature on the crystal structure of films deposited 

from Co(thd)2 and H2O.  

 

Figure 4-22  indicates that the CoO phase is deposited at 186 
o
C. Co3O4 is 

deposited in the temperature range 210 to 235 
o
C, whereupon a mixture of 

the CoO and Co3O4 phase is deposited at 259 
o
C. There may also be some 

traces of CoO for the deposition at 235 
o
C as a possible weak reflection 

from CoO can be observed around 42.5
o
. This is nevertheless an interesting 

result, as the observed deposition of CoO at 186 
o
C is the lowest 

temperature reported for deposition of CoO with ALD. As mentioned in 

section 1.2.2.1 the only prior report on depostion of CoO with ALD is Ref. 

[42], where CoO was deposited from Co(
i
PrAMD)2 and H2O at 250 

o
C. 
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4.2.5 Thin films based on BiPh3 + H2O/O3 

In this work, around 20 depositions were carried out, in order to 

investigation depositions of BiOx from BiPh3. BiPh3 was tested together 

with both H2O and O3 with different pulse/purge times at different 

temperatures, in the temperature range 162 – 186 
o
C. None of the attempts 

resulted in a successful deposition of a BiOx film, which would be expected 

based on the prior art given in section 1.2.2.2. To investigate the growth of 

BiPh3 with H2O closer, an in-situ QCM measurement was performed at 186 

o
C where 50 cycles of BiPh3 was deposited on Co3O4, which was deposited 

from 50 cycles of Co(thd)2 + O3. The goal was to investigate if BiPh3 could 

be used together with cobalt for depositions in the Bi-Co-O system and also 

try to obtain a better understanding for why BiPh3 does not yield BiOx films 

when deposited alone. 

 
Figure 4-23. 50 cycles of BiPh3 and H2O deposited on Co3O4 at 186 

o
C.  

The graph is an average of three consecutive measurements. A baseline is 

subtracted from the shown graph. The marked square area on the graph is 

magnified in the small window.  
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The QCM measurement, shown in Figure 4-23, indicates that during the 

first three cycles of BiPh3 there seems to be a relatively large mass increase, 

whereupon it decreases and almost no growth occurs, as the Hz becomes 

as low as 0.15 Hz, until it flattens out and cease to grow. For comparison 1 

cycle of TMA and H2O gave a Hz of ca. 7.5 Hz. The QCM measurement 

suggests that BiPh3 does not react with its own surface, as the growth 

decreases until it seemingly stops as more and more BiOx are deposited on 

the surface. This could also explain why depositions of BiOx are 

problematic using BiPh3. However, some growth seems to occur when 

BiPh3 is deposited on a Co3O4 surface, which may indicate that this 

precursor can be used for deposition in the Bi-Co-O system. The increased 

reactivity towards the Co3O4 surface may be due to a catalytic effect, which 

is also an suggested mechanism for the observed growth of BiPh3 when 

deposited in the Bi-Ti-O system [8]. On the other hand, maybe the Co3O4 

surface presents favorable reactive sites for the BiPh3 molecule, which the 

BiOx surface lacks. 

 

4.2.6 Thin films based on Bi(thd)3 + H2O 

The results from the second round of investigation of the Bi(thd)3 precursor 

are presented in this section. The first round of investigation of Bi(thd)3 was 

carried out on the Bi-Co-O system, these results are presented later in 

section 4.3.2.1 on page 142. 

 

4.2.6.1 Growth conditions 

A sublimation temperature of 137 
o
C was used for the deposition from 

Bi(thd)3 as this is the sublimation temperature used in the synthesis. In the 
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preliminary depositions the pulse and purge times used are given in Table 

4-13. 

 

Table 4-13. Pulse and purge parameters for the  Bi(thd)3 / H2O ALD 

process,  deposited at 206 
o
C. 

Sample Bi(thd)3 

pulse 

Bi(thd)3 

purge 

H2O 

pulse 

H2O 

purge 

Comments 

 (s) (s) (s) (s)  

EØ1070 2 1 1.5 1 Film only deposited on the 

left side 

EØ1071 2.5 1 1.5 1 Film only deposited on the 

left side 

EØ1072 5 1 1.5 1 Film deposited uniformly 

 

The results from the preliminary depositions in Table 4-13 shows that a 

uniformly covered substrate was obtained with the use of 5s Bi(thd)3 pulse 

length. Therefore the same parameters as EØ1072 was used for the 

following depositions from Bi(thd)3. 

 

4.2.6.2 ALD temperature window 

In order to determine the ALD temperature window, depositions were 

carried out at different temperatures and the thickness of the deposited film 

was then measured with XRR. The measured thickness as a function of the 

deposition temperature is presented in Figure 4-24. 
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Figure 4-24. Growth rate as a function of the deposition temperature, 

measured with XRR. All measured films was deposited using 2000 cycles of 

Bi(thd)3 + H2O. 

 

Figure 4-24 shows that the growth rate per cycles shows only small 

variations in the temperature range 206 – 283 
o
C, except at 259 

o
C where a 

relatively large decrease in the growth rate can be observed. However, after 

the deposition at 259 
o
C the precursor had melted and decomposed, which 

indicates that this is not a reproducible result. The observed lower growth 

rate at 186 
o
C may indicate that the temperature is too low for possible 

surface reconstructions or slow kinetics. Decomposition of the precursor to 

metallic bismuth was observed for depositions carried out at 332 
o
C.  Based 

on the results presented in Figure 4-24, an ALD window for the Bi(thd)3 

and H2O process was determined to be in the temperature range 206 - 283 

o
C with an average growth rate of 16 pm/cycle. 
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4.2.6.3 In-situ QCM analysis of the growth mechanism 

As investigation of the synthesized Bi(thd)3 precursor revealed that it 

contained a phase with crystal water, it was suggested that the precursor 

might react with its own crystal water during deposition. In order to 

investigate the growth mechanism of Bi(thd)3 in more detail, an in-situ 

QCM measurement was carried out at 235 
o
C. In the measurement, Al2O3 

was first deposited using 30 cycles of TMA and H2O whereupon, after a 

120s long purge, a 20s long Bi(thd)3 pulse was applied, followed by 10s 

purge, 4s H2O pulse and a 120s purge. The result is given in Figure 4-25. 

 

Figure 4-25. In-situ QCM measurement of Bi(thd)3 with H2O , carried out 

at 235 
o
C. 

 

Figure 4-25 shows that growth occurs as long as Bi(thd)3 are pulsed into the 

reaction chamber. This indicates that the precursor is reacting with its own 

crystal water and/or decomposing. As the obtained films are uniform in 

thickness and consists of Bi2O3, the former is more likely. The M-O bond is 

the weakest bond in the precursor molecule [124], a decomposition reaction 
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is therefore likely to yield metallic bismuth as is observed for depositions at 

332 
o
C.  The reaction between the precursor and the crystal water seems to 

be surface controlled which could explain why uniform films are obtained. 

However, no deposited film is observed in the precursor supply tube which 

indicates that the growth is dependent on an external supply of water, or a 

given time is needed at high enough temperatures for the reaction with its 

own crystal water. Meaning when the precursor is pulsed, no reaction takes 

place during the short time window were the precursor molecules are 

transported to the reaction chamber. This could also be an explanation for 

why the thickest film was observed deposited on the substrate side closest to 

the exhaust, when only Bi(thd)3 was pulsed. Nevertheless, this is not an 

ideal ALD growth where the thickness is only dependent on the number of 

cycles, as it is also dependent on the pulse length of Bi(thd)3. However, as 

mentioned in section 2.1.1.4.1 this kind of process is allowed in depositions 

by ALD as long as the decomposition/reaction are surface controlled which 

results in uniform thickness. 

 

4.2.6.4 θ-2θ investigation of thin films of α-Bi2O3 

The effect of the deposition temperature on the crystallinity of the deposited 

films was investigated by θ-2θ measurements on three samples deposited 

using 2000 cycles at 206, 235 and 283 
o
C. The obtained diffractograms are 

given in Figure 4-26. 
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Figure 4-26. Diffractograms of α-Bi2O3 films deposited at various 

temperatures. α-Bi2O3 peaks from PDF 00-041-1449. 

 

In Figure 4-26 the observed peaks corresponds to the (012) and (024) 

reflexes of the monoclinic α-Bi2O3 phase, with the space group P21/c. By 

reference to the phase diagram in Figure 1-3 in section 1.2.1 on page 6 α-

Bi2O3 is the stable phase up to 730 
o
C. Based on the obtained θ-2θ results in 

Figure 4-26 films deposited above 206 
o
C are crystalline, and the deposited 

films grows with a (012) orientation. As the deposition temperature is 

increased, the measured intensity from the α-Bi2O3 (012) and (024) 

reflections increase as compared to the Si(111) reflection from the substrate. 

This indicates an increase in the crystallinity with increasing deposition 

temperature. 

 

The height of the crystallites in the crystalline films were estimated by using 

the Scherrer equation, the results are given in Table 4-14. 
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Table 4-14. The crystallite heights calculated from the θ-2θ measurement. 

FWHM value of Si(111) used as standard. 

Temperature 

(
o
C) 

α-Bi2O3(012) 

FWHM (
o
) 

Si(111) 

FWHM (
o
) 

Height of 

crystallites (nm) 

235 0.426 0.133 22.2 

283  0.309 0.114 31.3 

 

The calculated crystallite heights, given in Table 4-14, also indicate that the 

degree of crystallinity improves with increasing deposition temperature. In 

addition, the crystallite height calculated at 283 
o
C is in the same range as 

the thickness of the deposited film, suggesting a columnar growth of the 

crystallites through the entire film. 

 

4.2.6.5 FT-IR study on Bi2O3 

FT-IR spectroscopy was applied to investigate for any possible carbonate 

contamination in the deposited Bi2O3 films. The obtained FT-IR spectrums 

are given in Figure 4-27. 

 

The absorption peaks observed below 600 cm
-1

, in Figure 4-27, is mainly 

due to the displacement of oxygen in the Bi-O bond [125]. In addition the 

FT-IR spectrums in Figure 4-27 shows a broad band in area round 940 cm
-1

, 

a strong absorption around 1140 cm
-1

, a broad band around 1400 cm
-1

, small 

absorptions in the area 1350-1850 cm
-1

, a broad band around 2330 cm
-1

, and 

a broad band with two peaks around 3000 cm
-1

. The broad absorption peak 

at 1400 cm
-1

 corresponds well with the strongest absorption peak of 

(BiO)2CO3 reported in Ref. [126]. There seems also to be no connection 

between the deposition temperature and the obtained FT-IR spectrums. 
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Figure 4-27. FT-IR spectrums of Bi2O3 films deposited from Bi(thd)3 and 

H2O at different temperatures. 

 

 

4.3 Thin films in the Bi-Co-O system 

In this section, the results obtained from the deposition in the Bi-Co-O 

system are presented. First results regarding the deposition of BiPh3 with 

H2O together with the different cobalt precursor combinations are given. 

Then the results obtained from the depositions of Bi(thd)3 with H2O together 

with Co(thd)2 and O3 are presented. 

 

4.3.1 Thin films based on BiPh3 

As the results from the QCM analysis presented in section 4.2.5 on page 128  

indicated that BiPh3 could be used for deposition in the Bi-Co-O system, 

BiPh3 was tested together with Co(thd)2/O3.  
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4.3.1.1 Thin films based on BiPh3 / H2O and Co(thd)2 / O3 

To investigate if BiPh3 could be used together with Co(thd)2 and O3 two 

series of films with varying composition was made at 162 and 186 
o
C, and 

analyzed by XRF, Figure 4-28. The XRF data presented in Figure 4-28 

show similar trends for both temperatures investigated, where the highest 

bismuth content in the deposited films are reached at 50/50 pulse ratio 

between bismuth and cobalt. However, for the investigated temperatures it 

is evident that this precursor combination does not yield high enough 

bismuth content in the deposited films to be applicable for the deposition of 

the desired BiCoO3 phase.  

 

Figure 4-28. The atomic percentage of bismuth in the as deposited films at 

162 
o
C (red line and circles) and 186 

o
C (black line and boxes) as a function 

of the percentage of pulsed bismuth precursor. 

 

In an attempt to increase the bismuth content in the films deposited from 

BiPh3, preliminary deposition was done with BiPh3 and the two novel 

precursor combinations found in this work, Co(thd)3/O3 and Co(thd)2/H2O. 
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The obtained growth rate for these two systems given in section 4.2.2.2 on 

page 116 and section 4.2.4.1 on page 124, respectively, shows that both 

these systems have a much lower growth rate than the Co(thd)2/O3 precursor 

combination. Therefore, it was suggested that by the use of these precursor 

combinations the bismuth content could be increased in the deposited films, 

by effectively decreasing the amount of cobalt deposited each cycle. 

 

4.3.1.1.1 Thin films based on BiPh3 /H2O and Co(thd)3 /O3 

A preliminary deposition was made with the Co(thd)3 + O3 precursor 

combination together with BiPh3 + H2O at 186 
o
C to test the concept of 

increased bismuth content by using a cobalt precursor that with lower 

growth rate than the Co(thd)3/O3 combination. The obtained XRF data is 

presented in Table 4-15. 

 

Table 4-15. The obtained data from the XRF measurement from films 

deposited at 186 
o
C from BiPh3 + H2O and Co(thd)3 + O3. 

Sample 

Temperature 

(
o
C) 

Pulse ratio 

Bi% / Co% 

Wt.% 

Bi2O3 

Wt.% 

Co3O4 

At.% 

Bi 

At.% 

Co 

KBG1115 186 50 / 50 13.65 86.35 5.15 94.85 

 

The obtained XRF data showed rather a decrease in Bi-composition by 

exchanging the Co(thd)2/O3 precursor combination with the Co(thd)3/O3 

combination. 

 

It should be noted, however, that the film thickness of the KBG1115 sample 

was measured to be 14.0 nm by XRR, which would be an expected 

thickness if the film had only been deposited from 2000 cycles of Co(thd)3 + 

O3. This indicates that the additional pulses of BiPh3 resulted in an even 

lower growth rate for the system. Thus, from the preliminary deposition it 
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can be assumed that the combination of the BiPh3 + H2O system with a 

cobalt precursor with a lower growth rate than the Co(thd)2 + O3 system, 

such as Co(thd)3 + O3, is not a solution for obtaining higher bismuth content 

in the deposited films. 

 

4.3.1.1.2 Thin films based on BiPh3 /H2O and Co(thd)2 /H2O 

Even though the Co(thd)3 + O3 precursor combination did not result in a 

higher bismuth content when deposited together with BiPh3 + H2O, it was 

decided to do a preliminary test with Co(thd)2 + H2O as well. The Co(thd)2 

+ H2O precursor combination was tested together with BiPh3 + H2O at 186 

o
C using a total of 8000 cycles. The obtained XRF data is given in Table 

4-16. 

 

Table 4-16. The obtained data from the XRF measurement from films 

deposited at 186 
o
C from BiPh3 + H2O and Co(thd)3 + O3. 

Sample 

Temperature 

(
o
C) 

Pulse ratio 

Bi / Co 

Wt.% 

Bi2O3 

Wt.% 

Co3O4 

At.% 

Bi 

At.% 

Co 

KBG1117 186 50% / 50% 1.89 98.11 0.66 99.34 

 

As can be seen from the XRF data the use of precursor combination 

Co(thd)2/H2O together with BiPh3/H2O resulted in a significantly decrease 

in the bismuth content in the deposited film. However, the film had large 

gradients, where the film was yellow/orange in the middle and blue/green 

on the sides of large silica-glass substrate. The film was too thick to be 

measured by XRR, and the calculated thickness from the XRF data was 175 

nm.  

The enormous increase in thickness can only have two explanations. 

Either the alternating cycles of BiPh3 + H2O increases the growth rate of the 

Co(thd)2 + H2O system or the reactor was malfunctioning during this 
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deposition leading to CVD growth of the cobalt precursor. The former is 

most likely, as there were no problems with the reactor before and after the 

deposition. The film was investigated with XRD and GIXRD and the 

crystalline phase was identified as CoO (Appendix 9.2). The result is 

additionally surprising since three single-crystal substrates, MgO(100), 

SrTiO3(100) and Al2O3(1102), was introduced into the deposition chamber 

together with the Si(111) substrate in the KBG1117 experiments. All these 

additional substrates showed only reflections from Bi2O3 and none from 

cobalt oxide when investigated by GIXRD (Appendix 9.2). Although this is 

surprising, a critical and thorough investigation has to be carried out before 

any conclusions can be made. 

 

4.3.1.2 FT-IR analysis of films based on BiPh3/H2O + Co(thd)2/O3 

FT-IR was used to investigate for carbonate contaminations of the mixed 

oxide films deposited using a 1:1 pulsing ratio of BiPh3/H2O and 

Co(thd)2/O3 at 162 and 186 
o
C. In addition it was interesting to analyze for 

presence of incorporated phenyl groups in order to shed light on the 

difficulties of depositing BiOx from BiPh3. One scenario was that the 

adsorbed BiPh3 precursor would be unreactive towards the water pulse. The 

surface would then be phenyl terminated when Co(thd)2 was pulsed into the 

reaction chamber. A reaction could then be imagined between these 

precursors which again made the surface reactive towards further 

depositions from BiPh3. If so, would such a mechanism incorporate the 

phenyls or release them into the gas phase? 
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Figure 4-29. The FT-IR spectrums for two films deposited from BiPh3/H2O 

and Co(thd)2/O3 at 162 and 186 
o
C on Si(111). Both films were deposited 

from a 1:1 pulsing ratio between BiPh3/H2O and Co(thd)2/O3. 

 

In Ref. [127] it is reported that phenyl groups has absorption in the area 

650-700 cm
-1

 with strong absorption peaks around 675 cm
-1

 and 725 cm
-1

. 

The spectra given in Figure 4-29 shows a broad band and small absorptions 

in the area 625-669 cm
-1

 and 625-708 cm
-1

 for the sample deposited at 186 

and 162 
o
C, respectively. The sample deposited at 162 

o
C shows a small 

absorption peak at 666 cm
-1

. Incorporated phenyl groups might cause this 

absorption peak, however, as none of the samples shows any absorption in 

the area around 725 cm
-1

, this is unlikely. In addition, Co3O4 has an 

absorption peak at 661 cm
-1

 which could also be responsible for the 

observed peak at 666 cm
-1

. There seems to be no indication of any carbonate 

contamination as neither film has absorption peaks in the 1400 cm
-1

 area. 
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4.3.2 Thin films based on Bi(thd)3 / H2O and Co(thd)2 /O3 

As mentioned earlier the investigation of the Bi(thd)3 precursor was 

performed in two rounds. The results obtained from the investigation of the 

Bi-Co-O system from these two rounds are given below. 

 

4.3.2.1 From the first round of investigation 

The Bi(thd)3 precursor used in the first round of investigation was 

synthesized, as described in the patent by Baum et al. in Ref. [105], by Dr. 

Mohammed A. K. Ahmed. 

Some preliminary depositions were done in order to obtain an 

indication whether depositions in the Bi-Co-O system from the two 

precursors Bi(thd)3 and Co(thd)2 would be facile. Two films were deposited 

at 162 and 186 
o
C from a 1:1 pulse ration between Co(thd)2 and Bi(thd)3. 

The resulting atomic composition, obtained by XRF, and the measured 

thickness and density, obtained by XRR, are presented below in Table 4-17. 

The preliminary results was promising as both samples showed high 

bismuth content, and an almost perfect 50/50 atomic composition was 

obtained in KBG1005. The deposited films were also uniform with a good 

coverage of the substrates. Based on the preliminary results it was decided 

to deposit a 100 nm thick film, using the same parameters as used for 

KBG1005, to be studied in a transmission electron microscope (TEM). A 

complete XRF-series at both 162 and 186 
o
C was also made. However, the 

resulting XRF-series, shown in Figure 4-30, and the thick film studied with 

TEM (Appendix 9.3) contained almost no bismuth. 
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Table 4-17. Growth parameters for KBG1004 and KBG1005, together with 

measured thickness and roughness by XRR, and measured composition by 

XRF. 

Sample KBG1004 KBG1005 

Temperature (
o
C) 186 162 

Pulse ratio Bi/Co 50/50 50/50 

Metal cycles 4000 4000 

Thickness (nm) 35.3 31.1 

Density (g/cm
3
) 6.5 5.9 

Weight % Bi2O3 78.59 74.55 

Weight % Co3O4 21.41 25.45 

Atomic % Bi 55.77 50.15 

Atomic % Co 44.23 49.85 

 

Figure 4-30. XRF series from Bi(thd)3 /H2O and Co(thd)2 /O3 deposited at 

162 
o
C(black line, squares) and at 186 

o
C (blue line, triangles).  Measured 

atomic percentage of bismuth in KBG1004 (dark cyan mark, triangle) and 

KBG1005 (red mark, circle) displayed for comparison. 

 

From the suddenly decrease in bismuth content it was suggested that the 

Bi(thd)3 precursor was sensitive for exposure to air/moisture, which resulted 

in reduced thermal properties. This assumption was further strengthen by 

Baum et al. in Ref. [105], where they describe that the monomeric Bi(thd)3 
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precursor transforms completely into a dimeric compound after 96 hours of 

exposure to air/moisture. Based on these findings it was decided that for 

further investigation of the Bi(thd)3 precursor, a new and fresh precursor 

had to be synthesized. 

 

4.3.2.1.1 XRD study on Bi-Co-O thin film system 

As KBG1004 and 1005 both showed a high and almost ideal composition 

for the BiCoO3 phase, the crystal structure of these samples was studied 

with XRD. As θ-2θ measurements showed no reflections, GIXRD was used, 

the obtained diffractograms are presented in Figure 4-31. 

 

Figure 4-31. The obtained diffractogtrams, by GIXRD, of films containing 

almost 1:1 atomic composition of bismuth and cobalt (KBG1004 and 

KBG1005). The simulated diffractogram for the multiferroic phase BiCoO3 

is given (red lines), green lines are the diffractogram for the cubic phase of 

Bi2O3 (PDF 00-045-1344). 
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In Figure 4-31  the observed peak at 53.521
o
 in both diffractograms does 

not correspond with reflections from neither the Co3O4 phase nor the α-

Bi2O3 phase. Nor does it correspond with any of the reported Bi-Co-O 

phases. Although it was highly unlikely that the BiCoO3 phase was formed 

in these depositions, a diffractogram for BiCoO3 was simulated based on the 

information given in Ref. [27], and checked against the observed peak. As 

can be seen from Figure 4-31 the observed peak could not be indexed as the 

BiCoO3 phase either. However, the peaks could be identified as a cubic 

phase of Bi2O3, space group I23. This may indicate that both the deposited 

samples contained the cubic Bi2O3 phase, nevertheless, no conclusion can 

be drawn as the obtained diffractograms presents only one peak. This is an 

interesting result however, as in Ref. [128] it is reported that the 

transformation from the monoclinic α-Bi2O3 phase to the cubic Bi2O3 phase, 

which takes place at 650 
o
C for powder samples under vacuum, is essential 

for the formation of the mulitferroic compound BiFeO3. The possible 

obtained cubic Bi2O3 phase in KBG1004 and KBG1005 could therefore be 

assumed to also be important for the formation of the multiferroic 

compound BiCoO3. 

 

4.3.2.1.2 Heat treatment of the Bi-Co-O thin film 

In an attempt to obtain more crystalline samples for further study with XRD, 

KBG1004 and KBG1005, were both heat treated at 400 
o
C under O2 

atmosphere for two hours. Although it was highly unlikely that the BiCoO3 

phase was present in any of the samples, it was chosen to use a relatively 

low temperature and instead increase the heat treatment time. BiCoO3 

decomposes to a sillenite-like phase and Co3O4 at temperatures higher than 

467 
o
C [27]. The resulting diffractograms obtained by GIXRD are presented 

in Figure 4-32. 
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Figure 4-32.The obtained diffractograms, by GIXRD, of two thin films 

containing almost 1:1 at% Bi:Co, heat-treated at 400 
o
C for two hours 

under O2 atmosphere. Bi3.43Co0.57O5.90 given by PDF 00-050-0369. 

 

Figure 4-32 shows that the obtained diffractograms are similar for the two 

heat-treated samples. The diffractograms indicates that both films contain 

some sillenite-like phase, where the phase Bi3.43Co0.57O5.90 was found to 

correspond well with most of the observed large peaks. Sillenite phases of 

other compositions has lesser match, however, most of them did match the 

peak at 25
o
. Suggesting that a phase of another composition than what is 

suggested in Figure 4-32 might be present, either together or instead of the 

displayed phase. If the latter is true then this phase is likely to be unreported 

in the literature. 

The possible peak at 29
o
 labeled as Bi2O4 could not be fitted to other 

Bi-O, Co-O nor Bi-Co-O phases, except some oxygen poor Bi-O phases 

which is unlikely given the heat treatment was carried out in an oxygen 

atmosphere. However, it is also unlikely that the Bi2O4 phase has been 

formed during the heat treatment. In the only reported investigation carried 
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out on this phase, it is reported that it transformed to Bi2O3 at temperatures 

higher than 300 
o
C [129]. However, in this transformation, as Bi

5+
 is 

reduced to Bi
3+

, oxygen is released, thus the oxygen atmosphere during heat 

treatment may have influenced this transformation.  

 

4.3.2.1.3 AFM study on Bi-Co-O films 

AFM was used in order to study the roughness and topography of the as 

deposited films KBG1004 and KBG1005. The measured roughness in RMS 

is given below in Table 4-18. 

 

 

Table 4-18. The deposition parameters for the mixed oxide films, and the 

measured roughness, in RMS, obtained by AFM. 

Sample Roughness 

 nm 

KBG1004 0.91 

KBG1005 1.09 

 

 

The measured topography of KBG1004 and KBG1005 are given below in 

Figure 4-33 and Figure 4-34, respectively. 

 

The measured roughness of the sample deposited at 162 
o
C is slightly higher 

than the sample deposited at 186 
o
C, and as can be seen from the measured 

topography in Figure 4-33 and Figure 4-34 the sample deposited at 162 
o
C 

also has thinner and sharper grains. An explanation for the observed 

difference might be due to less surface reconstructions during the deposition 

at 162 
o
C, due to lower thermal energy. 
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Figure 4-33. Topography of KBG1004, obtained by AFM. Deposited from 

4000 cycles on Si(111) at 186 
o
C. 

 

Figure 4-34. Topography of KBG1005, obtained by AFM. Deposited from 

4000 cycles on Si(111) at 162 
o
C. 

 

4.3.2.2 From the second round of investigation 

In the second round of investigation the Bi(thd)3 precursor named W, see 

Table 4-8 on page 107, was used to deposit an XRF series together with 

Co(thd)2. All the deposited films showed large gradients in the flow 

direction, and the resulting XRF data, see Table 4-19, showed that the 

deposited films contained almost no cobalt. 
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Table 4-19. The atomic composition of films deposited from Bi(thd)3 /H2O 

and Co(thd)2 /O3. 

Sample 

 

Temperature 

(
o
C) 

Bi/Co pulse ratio 

( %) 

At. % 

Bi 

At.% 

Co 

KBG1111 235 80/20 100 0 

KBG1109 235 60/40 99,78 0,216 

KBG1107 235 50/50 100 0 

KBG1108 235 40/60 97,17 2,83 

KBG1110 235 20/80 100 0 

 

 

4.3.2.2.1 In-situ QCM analysis of Bi(thd)3 on Co3O4 surfaces 

An in-situ QCM measurement was carried out at 235 
o
C in order to try to 

obtain a better understanding for why almost no cobalt could be detected in 

the deposited Bi-Co-O films. It was suggested that the Bi(thd)3 precursor 

likely etched the Co3O4 surface, based on the observed large gradients in the 

films together with the obtained XRF data. To check for any possible 

dissimilarity on different surfaces in the QCM measurement, a 20s Bi(thd)3 

pulse was applied to both a Al2O3 and a Co3O4 surface, deposited using 30 

cycles of TMA and H2O and 50 cycles of Co(thd)2 and O3 respectively. The 

obtained results are given in Figure 4-35. 
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Figure 4-35. In-situ QCM measurement performed at 235 
o
C, showing the 

change in frequency when a 20s Bi(thd)3 pulse is applied to a Co3O4 surface 

(red line) and a Al2O3 surface (blue line). 

 

The QCM result in Figure 4-35 indicates that for a pulse time of 2 seconds 

of Bi(thd)3, the change in frequency is the same for both surfaces studied. 

However, after the first two seconds, one can see that the difference quotient 

changes for the two surfaces. The registered increase in mass is much larger 

for the Al2O3 surface, than the Co3O4 surface. This may indicate that an 

etching process of the Co3O4 surface takes place simultaneously as Bi2O3 is 

deposited. 

 

However, one could argue that maybe the density of surface reactive sites is 

higher on the Al2O3 surface than the Co3O4 surface, and thus more mass is 

deposited on Al2O3. In addition as the quartz crystal may slightly change its 

response during the measurement, the values of the difference in frequency 

changes, given in Figure 4-35, when Bi(thd)3 are deposited on the Co3O4 

surface and the Al2O3 surface, are not absolute, as the two measurements are 
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separated in time. However, the change in frequency for one TMA/H2O 

cycle was roughly 13 Hz during the whole measurement, indicating that the 

values given in Figure 4-35 are comparable. Nevertheless, when the 

obtained in-situ QCM measurements are coupled with the obtained XRF 

results and the observed gradients of the deposited films, it is likely that 

some sort of etching process of the Co3O4 surface takes place by the 

Bi(thd)3 precursor. 
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5 Discussion 

In this chapter the work conducted will be discussed in a larger picture. A 

comparison will be given of the three investigated cobalt precursor 

combinations. The different bismuth precursors investigated will be 

evaluated for the use in the ALD process, where the main focus is on the 

applicability for deposition of BiCoO3. In the evaluation of depositions in 

the Bi-Co-O system possible combinations with the cobalt precursors will 

also be discussed. In addition, some interesting results will be looked at in 

more detail. 

 

5.1 Cobalt precursors 

The two similar growth systems Co(thd)3/O3 and Co(thd)2/O3 do show some 

clear differences when compared, Table 5-1. Because the investigated films 

based on Co(thd)2/O3 show large deviations in certain areas from what is 

reported in the literature, the literature values are also taken into 

consideration in the comparison.  

 

Cobalt is the only reported transition metal were stable thd-complexes can 

be obtained as both Co(thd)2 and Co(thd)3 [106], therefore a comparison of 

these two  similar growth systems are interesting. 
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Table 5-1. A comparison of the Co(thd)2/O3 and Co(thd)3/O3 growth 

systems. Roughness values and the crystallites height is compared for ca. 

100 nm thick films. 

Precursor combination  Co(thd)2/O3 Co(thd)3/O3 

 Unit This 

work 

Ref.[13, 

14] 

This 

work 

ALD temperature window 
o
C - 114-307 162 - 259 

 

Growth rate/cycle 

pm 

/cycle 

 

15-18 

 

20±1 

 

6 

Decomposing temperature of 

precursor 

 
o
C 

 

300 

 

310 

 

430 

Reactive towards H2O  yes - no 

 

Orientation on Si at 186 
o
C 

 

- 

(100) 

weak 

(111) 

 

(100)  

 

 

(111) 

Carbonate contamination - No No No 

Roughness on Si  

deposited at 186 
o
C 

 

nm 

 

0.22 

 

2.1 

 

5.57 

Roughness on silica glass 

deposited at 186 
o
C 

 

nm 

 

- 

 

2.8 

 

4.73 

Height of crystallites 

at 200 
o
C 

 

nm 

 

47.4 

 

- 

 

25.4 

 

One of most noteworthy differences between the two systems is the growth 

rate, which is 70% lower for the Co(thd)3/O3 precursor combination when 

compared to the Co(thd)2/O3 system. When compared further, the ALD 

temperature window is also 49% smaller in range for the for the Co(thd)3/O3 

system. The ALD temperature window and growth rate is discussed more in 

detail later in this section. 

 Another interesting observation is that the film deposited from 

Co(thd)3/O3 has a much higher surface roughness, when compared to the 

films deposited from Co(thd)2/O3, both in this work and in Ref. [14]. This 

could suggest that films with a higher crystallinity are deposited from the 

Co(thd)3/O3 combination than the Co(thd)2/O3 combination. However, the 

calculated crystallite heights, from the measured FWHM values, indicates 

that the film deposited from Co(thd)2/O3 consists of taller crystallites. As 
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these two observations are somewhat contradictory, there might be another 

explanation for this difference in roughness. By comparing the measured 

topography of a 74 nm thick film deposited from Co(thd)3, given in Figure 

4-19 on page 123, with a 60 nm thick film deposited from Co(thd)2/O3 in 

Ref.[14] large differences are observed. The crystallites on the film 

deposited from Co(thd)2/O3 are more uniformly distributed on the surface, 

indicating that the Co(thd)2/O3 precursor combination has higher nucleation 

density on silicon than the Co(thd)3/O3 combination. In addition, the 

observed growth orientation for these two systems are different, where 

Co(thd)3/O3 shows (111)-oriented growth at 186 
o
C while Co(thd)2/O3 

shows (100)-oriented growth. 

The observed decomposition temperature for the Co(thd)3/O3 process 

at 283 
o
C is suprisingly low when compared to fact that the precursor was 

measured to be stable up to 430 
o
C. No decomposition could be observed in 

the percursor supply tube, even for depositions carried out at 332 
o
C. Which 

may indicate that the Co3O4 surface might lower the decomposition 

temperature of the Co(thd)3 precursor through a catalytic effect. Catalytic 

effects of a ZrO2 surface has also been suggested for the observed 

decomposition of Zr[OC(CH3)3]4 at 250 
o
C, even though the precursor 

molecule should be stable at this temperature [130]. An alternative 

explanation may be that the chemisorbed precursor molecule on the surface 

has a lower thermal stability than the precursor molecule in the gas phase. 

This mechanism where the chemisorbed precursor molecule on the surface 

exhibit different thermal stability than the gas phase molecule, is also a 

suggested explanation in Ref.[73] for the observed increase in the 

decomposition temperature of Mn(thd)3 when used on surfaces that also 

contained Ca or La atoms. 
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For further discussion and comparision the Co(thd)2/H2O system will be 

included as well. 

 

Before these three systems are discussed, it should be noted that the 

observed reactivity of the Co(thd)2 precursor towards water is rather 

peculiar, as the synthesis of this compound is carried out in aquanous etanol. 

However, it is obvious that the reactivity is highly temperature dependant. 

Nevertheless, the comparision of Co-O films deposited from Co(thd)2/O3 

and Co(thd)2/H2O precursor combinations presents a rather unique 

opportunity, as there are only a few other thd-complexes reported deposited 

from both O3 and H2O. Related ALD processes reported in the litterature are 

Ni(thd)2/H2O for deposition of NiO [131, 132] and Ni(thd)2/O3 for 

deposition of LaNiO3 [133]. Ca(thd)2/H2O has been proven by in-situ QCM 

measurements to grow films of CaO [134] and Ca(thd)3/O3 has been used 

for deposition of in the La-Ca-Mn-O system [135]. 

However, none of the two precursors mentioned above has been used 

to deposit the same system from both O3 and H2O, consequently comparing 

thin films of the same material system deposited from the same percursor 

with both O3 and H2O, as given here, is the first of its kind for thd-

complexes. However, it should be noted that large differences should be 

expected for the two systems Co(thd)2/O3 and Co(thd)2/H2O, as one uses a 

highly oxidizing agent while the other is not. 

 

For a simple comparison of the Co(thd)2/O3, Co(thd)2/H2O and Co(thd)3/O3 

growth systems, the growth rate as a function of the temperature of these 

three systems is presented in Figure 5-1. 
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Figure 5-1. The growth rate of Co(thd)2/O3 from [14](black line, squares), 

Co(thd)2/H2O (blue line, traiangles) and Co(thd)3/O3  (red line, dots) as a 

function of deposition temperature. The blue stippled line indicates 

increased growth rate at lower temperatures. 

 

Both novel precursor combinations reported in this work has a relatively 

small ALD window compared to the already know Co(thd)2/O3 precursor 

combination. However, there is no reason why the Co(thd)2/H2O process 

should show a lower decomposition temperature than the Co(thd)2/O3 

process. The Co(thd)2 precursor used in this work was observed to 

decomposed before it entered the reaction chamber when deposited at 

283 
o
C during investigation of the Co(thd)2/H2O ALD temperature window. 

The conditions in the precursor tube of Co(thd)2 should be the same as for 

deposition of the Co(thd)2/O3 system. Based on that Co(thd)2 is reported to 

be stable up to 307 
o
C [13, 14], it is likely that the precursor used in this 

work might have been contaminated or hydrated, resulting in sligthly lower 

decomposition temperature. As a consequence, if the Co(thd)2 precursor 
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used in this work would have been stable up to the reported value of 307 
o
C 

the upper limit of the ALD window may also have been extended likewise. 

Nevertheless, the limited range in ALD temperature window for the two 

new cobalt precursors combinations, makes them less flexible for use 

together with other pecursors. Although they both have an ALD temperature 

window that are in an area where most other systems also show ALD 

growth. One can see that both new precursor systems have roughly a 70% 

lower growth rate than the Co(thd)2/O3 system. For the Co(thd)3/O3 system 

a decrease in growth rate would be expected, as the Co(thd)3 molecule is 

more bulky than the Co(thd)2 molecule. The bulkyness of the Co(thd)3 

molecule may also be the reason for why this precursor does not react with 

H2O, as the crowded environment around the metal atom denies a 

nucleophilic attack from the H2O molecule. However, the formation of 

Co3O4 from Co(thd)3 and O3 is surprising due to the need of a reduction. 

The formation of Co3O4 from Co(thd)3 can be visualized as given in Eq. 5-1. 

 

 6Co thd 3 g + 3O3(g) → 3Co2O3(s)

→ 2Co3O4(s) + O2(g) 

Eq. 5-1 

 

It should be noted though, that the given reaction in Eq. 5-1 is highly 

unlikely as there exist little evidence for the Co2O3 phase in the litterature. 

However, it does display the consept of that in order to obtain the Co3O4 

phase oxygen has to be removed by some mechanism. 

On the other hand, the low growth rate of Co(thd)2 and H2O may be 

due to limited reactivity. As mentioned earlier β-dikenato complexes are 

generally regarded as stable towards H2O. 

However, the rather uncharacteristic ALD temperature window 

observed for the Co(thd)2/H2O growth system deserves a closer examination 

using thermodynamics, see Figure 5-2. 
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Figure 5-2. Predominance diagram noting the stable phase as a function of 

temperature and oxygen pressure,  calculated by HSC Chemistry for 

Windows 4.1 [136]. 

 

For the ALD depositions carried out in this work it would be appropiate to 

assume that the log pO2 pressure was in the area between -5 and -10 in 

Figure 5-2.  

By reference to Figure 5-1, the growth rate at the lower end of the 

ALD temperature window for the Co(thd)2/H2O process, is lower than the 

growth rate at higher temperature. Based on this observation one could 

assume that CoO is deposited at the lower end, because a lower growth rate 

can be suggested. The volume per cobalt atom roughly is 19 Å
3
 and 66 Å

3
 in 

the CoO and Co3O4 structure, respectively. Hence if the same amount of 

mateial was deposited over the whole temperature range, a sudden increase 

in growth rate could be expected for the temperatures where the Co3O4 

phase is deposited. Secondly, by reference to Figure 5-2, however, the CoO 
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phase is not stable until relatively high temperatures are reached, even under 

a very low vapor pressure of O2. As CoO is the only phase detected at 

186 
o
C, this suggests that a kinetic barrier is present to prevent formation of 

Co3O4.  

When the deposition temperature is raised to 210 
o
C the Co3O4 phase 

is the only phase detected, suggesting that this limited increase in 

temperature is sufficient for decomposition of CoO. In addition, as the 

observed growth rate is only slightly higher than at 186 
o
C, this may suggest 

that the CoO phase is the as-deposited phase, with its given growth rate, 

whereupon CoO transforms to Co3O4. Regarding possible oxygen sources 

for the excess oxygen in Co3O4, the only known sources are H2O and the 

thd-ligand. Raising the question, which one of them is more likely to be 

reduced? As the reduction of H2O by CoO, given in Eq. 5-2, has a 

ΔG = 95.77 kJ/mol at 200 
o
C, this reaction is not likely occurring. 

 

 3CoO(s) + H2O(g) → Co3O4(s) + H2(g) Eq. 5-2 

 

In order to suggest if the thd-ligand can act as an oxygen source, we can 

look at the literature. It has been reported previously that when films of 

La2S3 is deposited from La(thd)3 and H2S, the phase La2O2S is formed 

during annealing [137]. The observed oxygen was suggested to be residual 

in the deposited films and stem from the thd-ligands, suggesting that the 

thd-ligand can act as an oxygen source at some given conditions. 

Hence, when the two oxygen sources present, H2O and thd, are 

compared, it is more likely that the thd-ligand is reduced and donates 

oxygen to the CoO phase in order for it to form the stable Co3O4 phase. 

As the temperature is raised to 235 
o
C the kinetics may be high 

enough for the Co
2+

 ion to reduce the thd-ligand as it is deposited, and thus 

Co3O4 may be deposited directely with its respective growth rate. Note that 
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the growth rate at this temperature is almost the same as the one for the 

deposition of Co3O4 from Co(thd)3/O3. 

By further increasing the temperature, both obtained phases are 

apparently stable as a mixture of the CoO and Co3O4 phase, which results in 

a slight decrease in the observed growth rate. By reference to Figure 5-2 

this would mean that the depostion would have to be carried out in the area 

around -20 log pO2, which is not likely. However, the calculated diagram 

given in Figure 5-2 does only serve as a guideline, suggesting that the 

proposed mechanisms discussed above could be an explanation for this step 

like-growth. Nevertheless, it is rather amazing that all this can be observed 

in the relatively limited temperature window examinated and alternative 

explanations should also be sought. 

 

5.2 Bismuth precursors 

As can be seen from the investigations carried out in the prior art and in this 

work, identifying a suitable bismuth precursor for the ALD process seems to 

be a challenging task indeed. However, some promising results was 

obtained by the use of Bi(thd)3 as precursor, this compound will therefore be 

discussed in more detail in this section. The different behavior and phases 

obtained of Bi(thd)3 in this work indicates that this system is complex and 

not completely understood in the literature. It is clear that the synthesized 

Bi(thd)3 precursor in this work can be used for deposition of bismuth oxide, 

however, it cannot be used for deposition of the wanted phase BiCoO3, most 

likely due to some sort of etching process of the Co3O4 surface. This etching 

process will be the topic for discussion later in this section. 

 

However, before the Bi(thd)3 precursor is discussed, the BiPh3 and H2O 

precursor will be discussed as a potential bismuth precursor for ALD. 
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BiPh3 is not suited for depositions of BiOx as it does not yield films when 

deposited together with either H2O or O3. As shown in this work it does not 

grow on its own surface. It can however be used for deposition in the Bi-Co-

O system, although the obtained bismuth content is relatively low. A 

possible explanation for this is that the cobalt surface either presents surface 

reactive sites that the BiOx surface lacks, and/or that the Co3O4 surface has a 

catalytic effect on the process. 

By reference to Figure 4-23 on page 128, the decrease in the 

deposited mass after 3 BiPh3/H2O cycles may indicate that most of the 

reactive sites on the cobalt surface is covered, as it is not likely that one 

monolayer of Bi2O3 is deposited with only a measured decrease in 

frequency of 2.85 Hz. One TMA/H2O cycle for comparison gave a decrease 

in frequency of 7.5 Hz and if one TMA/H2O cycle is assumed to have a 

growth rate of 0.15 nm, an approximation for the deposited thickness of the 

Bi2O3 layer can be made. The density of Al2O3 and Bi2O3 is 3950 kg/m
3
 and 

8900 kg/m
3
, respectively, which would result in a thickness of 0.25 Å of 

Bi2O3, if deposited uniformly on the surface. As 0.25 Å is less than the 

thickness of one monolayer of Bi-O, this suggests that the growth stops 

while there are still some exposed Co3O4 surface. This means that the Co3O4 

surface is likely to have some favorable reaction sites, which may or may 

not act catalytically towards the deposition of BiPh3. 

However, when BiPh3 is deposited on an Al2O3 surface at 200 
o
C 

there is a decrease in frequency of 3 Hz after 9 cycles of BiPh3/H2O [1], for 

comparison in the same measurement 1 cycle of TMA/H2O resulted in a 

decrease in mass of 17 Hz, which means that there are close to no deposition 

of Bi2O3 on an Al2O3 surface. This observation may suggest that a 

catalytically active surface is needed. As mentioned in the prior art, BiPh3 

could also be used for deposition in the Bi-Ti-O system [8]. In Ref. [8] 
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bismuth content as high as 61 at.% bismuth was achieved in the Bi-Ti-O 

system. However, it should be noted that the deposition temperature used 

for this achievement was 300 
o
C, which is higher than the decomposition 

temperature found for BiPh3 in this work. That a decomposition reaction is 

the reason for the high bismuth content obtained in Ref. [8] is further 

backed up by the observed drop to only 7 at.% Bi in the deposited films, for 

a 80% pulsing of BiPh3, when the deposition temperature was below 

240 
o
C. The obtained 7 at.% Bi from a 80/20 pulsing ratio between Bi/Ti is 

roughly in the same range as what was obtained from a 80/20 pulsing ratio 

between Bi/Co in this work. However, both TiO2 and Co3O4 may be active 

catalytic materials while Al2O3 apparently is not. This also suggests that it is 

more likely that a catalytic process is needed for the deposition of BiPh3 

with ALD. From a practical point, BiPh3 is easy to handle and yields 

uniform films that do not contain notable carbonate nor phenyl groups when 

deposited together with Co(thd)2/O3. Nevertheless, this precursor seems like 

it is not suitable for deposition of BiCoO3 with neither of the cobalt 

precursors investigated in this work. 

 

For the successful use of Bi(thd)3 in the ALD process there are some 

challenges that need to be solved. Firstly, more knowledge is necessary 

regarding the different phases and chemistry of Bi(thd)3. Secondly, the 

effect of the synthesis parameters on the obtained phases should be 

investigated, in order to control better the synthesis. 

The high bismuth content obtained in the deposited films during the 

first round of investigation of Bi(thd)3 in this work, indicates that at least 

one phase of Bi(thd)3 exists and can be used in the Bi-Co-O system. In order 

to gain more knowledge about the Bi(thd)3 system an attempt to identify the 

unknown phase obtained in the performed syntheses will be given below. 
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If all the obtained diffractograms of the synthesized Bi(thd)3 compounds in 

this work are compared a likely suggestion for an unknown phase of 

Bi(thd)3 can be made. The diffractogram obtained from the finger during the 

purification of D showed almost no resemblance to the reported phase 

Armelao1, given in Table 4-6 page 105. When the diffracotgrams of the 

reported phase Armelao1 and the obtained compound D_finger was 

compared with the products obtained from the syntheses in this work, given 

in Table 4-3 on page 98, it became clear that all the other synthesized 

compounds could be identified as various mixtures of these two phases. An 

example of this is given in Figure 5-3. 

  

Figure 5-3. Diffractograms obtained by XRD, showing that the red 

diffractogram from D2 can be identified as a mixture of the reported phase 

Armelao1 (marked 1), and a unknown Bi(thd)3  phase (marked 2). 

 

With this new knowledge the syntheses performed in this work can be 

identified as having small or large amounts of this new Bi(thd)3 phase. In 

addition the syntheses conditions can be backtracked, thus obtaining an 
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indication on which parameters during the syntheses yielded large amounts 

of one of these two phases. 

 

By reference to Table 4-4, Figure 4-8 and Figure 4-9 some suggestions for 

the effect of the syntheses parameters on the obtained phase composition 

can be given: 

 

- Exposure to air yields large amounts of Armelao1. 

 

- Dried solvents yields large amounts of the new Bi(thd)3 phase. 

 

- If the synthesized compound is sublimed two times the first sublimation 

yields more of the new phase, the second more of Armelao1. 

 

- By comparing D and E the use of a commercially bough powder of 

NaOMe instead of home-made NaOMe seems to yield larger amounts 

of the new phase. As the use of home-made NaOMe is more likely to 

give more water contamination than the exchange of BiCl3 with BiI3. 

 

Based on these observations, and that the samples where the new phase was 

present in large amounts was more sticky and also melted during X-ray 

measurements, this may indicate that the new phase contains less crystal 

water than the reported phase Aremelao1. As crystal water stabilizes the 

structure, the compound would be expected to display a lower melting point 

when crystal water is removed. This assumption is also strengthened by the 

obtained liquid from the complexation with tetraglyme in this work, and the 

lowering of the melting points of hydrated thd-complexes by complexation 

with tetraglyme reported in Ref [138]. 
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It should also be noted that both Armelao [121] and Fukin [103] synthesized 

Bi(thd)3 by reacting BiPh3 with H(thd), where Armelao obtained two 

monomeric compound with various amounts of crystal water and Fukin 

obtained a dimeric compound with crystal water. The patented synthesis 

route by Baum et al. [105], where Na(thd) is reacted with BiCl3 in an aprotic 

solvent, which the syntheses in this work is based on, is claimed to yield 

monomeric anhydrous Bi(thd)3. From this, two observations can be made. 

Firstly, commercially Bi(thd)3 are most likely synthesized by reacting BiPh3 

with H(thd), as this route is not patented. This may explain why there is no 

previously reported deposition of Bi2O3 from Bi(thd)3 by ALD. As the 

dimeric compound obtained by Fukin does have poorer thermal properties 

than the monomeric compound, as described by Baum et al. In addition, it 

may also be likely that the phases obtained by Armelao shows poor 

behavior in the ALD process, otherwise one would assume that ALD 

deposition from Bi(thd)3 was already reported in the literature. Secondly, 

this also suggests that the new phase obtained phase from the syntheses 

carried out in this work may be the monomeric anhydrous compound. 

However, Baum et al. claims that the monomeric anhydrous compound had 

a melting temperature of 139 
o
C, which is higher than the melting 

temperature for the dimeric compound with crystal water synthesized by 

Fukin [103]. This does not seem to fit the assumption that less incorporated 

crystal water destabilizes the structure and thus results in a lower melting 

point. 

However, as the deposited α-Bi2O3 films showed evidence of 

carbonate contamination by FT-IR measurements it might suggest that 

maybe some decomposition of the precursor also occurs in addition to the 

suggested reaction with the crystal water. One would assume that if the 

growth only occurred through the ligand exchange reaction between H2O 

and the Bi(thd)3 precursor that little to none carbonate contaminations 
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should be incorporated into the film. However, the observed carbonate 

contamination can also be due to the decomposition of the Armelao1-phase 

which was present in all the samples synthesized. Or it might be that the 

carbonate was formed during storage in air. 

 

5.3 Etching of Co3O4 by Bi(thd)3 

There is no reported etching of cobalt surfaces by thd-complexes in the 

literature.  As mentioned in the prior art, cobalt has been deposited together 

with other thd-complexes such as Fe(thd)3 and La(thd)3 in the Fe-Co-O 

system [15] and La-Co-O system [32], respectively. Hence, it is unlikely 

that the cobalt surface is particularly unstable towards other thd-complexes. 

Indicating that the suggested etching is probably due to some properties of 

the Bi(thd)3 precursors synthesized in this work. However, in both Ref. [15, 

32] O3 was used for deposition for both metal precursors, which may 

suggest that reacting thd-complexes with H2O, as done in this work, may 

result in corrosive by-products, as H(thd). Etching of SrO surfaces by 

H(thd) has previously been observed in the Sr(thd)2/H2O system [139]. 

Other β-dikenonates ligands such as H(hfac) has been shown to etch 

surfaces of CuO, PbO, ZnO, ZnS, V2O5 [140]. It is therefore likely that the 

reaction between Bi(thd)3 with H2O, either from the incorporated crystal 

water in the precursor or the applied water pulse, has resulted in the 

formation of H(thd) vapor which in turn has etched the Co3O4 surface as 

observed in this work, and the Fe2O3 surface as observed in Ref. [1]. The 

etching process of Fe2O3 is discussed in detail in Ref. [1] and the most likely 

mechanism suggested was that the Bi(thd)3 precursor reacted with its own 

crystal water, resulting in H(thd) which thus caused etching.  

Based on this it is likely to assume that the Bi(thd)3 precursor that 

yielded films containing almost 50/50 at.% bismuth and cobalt, form 
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Bi(thd)3/H2O and Co(thd)2/O3 process, did not contain any crystal water. As 

the surface is saturated by Bi(thd)x complexes before water is pulsed in, the 

resulting H(thd) ligands should be less likely to etch away the underlying 

Co3O4 surface, as a Bi(OH)2 terminated surface is most likely formed in the 

same step. An alternative explanation may be that the precursor contained 

some crystal water, but at the deposition temperature used, 162 and 186 
o
C, 

the Co3O4 surface was stable towards the H(thd) vapour.  

It should be noted that the suggested etching process observed by in-

situ QCM in Ref. [1] for the Fe(thd)3 + Bi(thd)3 system seems to take place 

in another manner than the suggested etching process observed for the 

Co3O4 surface in this work. In Ref. [1] when a 20s Bi(thd)3 pulse was 

applied to the Fe2O3 surface, an increase in mass up to a pulse length of 2.5 

seconds was observed, before a large decrease in mass occurred, whereupon 

the growth continued as on the Al2O3 surface. This suggests that Al2O3 

surfaces are not prone to etching, which is also likely given the results in 

this work. The reason for this observed difference in the etching 

mechanisms can be due to different stability of the Co3O4 and Fe2O3 

surfaces. Or it can be due to the use of a precursor with small or large 

amounts of crystal water. As the precursor used in Ref. [1] that resulted in 

the etching of Fe2O3 surfaces was the precursor labeled B in this work. As 

Figure 4-8 on page 106 shows, this precursor contains large amounts of the 

Armelao1 phase. However, the precursor W used in this work which showed 

etching of the Co3O4 surface contained very little of the armelao1 phase 

(Figure 4-9), this could explain the differences observed between the two 

surfaces. 

 

However, as the Co(thd)2/H2O precursor combination is found to yield 

uniform films in this work, and the likely mechanism for growth is a ligand 

exchange reactions between the Co(thd)2 and H2O, yielding a Co(OH) 
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surface complex and H(thd). This might point to that H(thd) ligands are not 

responsible for the etching of the Co3O4 surfaces observed in this work. 

However, as mentioned earlier the Al2O3 surface is likely to be stable 

towards etching, a question arises as to what property does the Al2O3 

surface have, which the Fe2O3 and Co3O4 surfaces lacks? One likely 

suggestion may be that both the Fe2O3 and Co3O4 surfaces were deposited 

from O3, yielding an oxygen terminated surface, while Al2O3 was deposited 

from H2O, yielding an OH terminated surface. As there are not many other 

likely reasons for why an Al2O3 surface is stable towards etching while a 

Co3O4 and Fe2O3 surface is not, the key for avoiding etching might be an 

OH terminated surface. If H(thd) ligands are the cause for the etching, this 

will also explain why no etching is observed in the Co(thd)2/H2O process by 

the formed H(thd) ligands. But it is observed in the Bi-Co-O process where 

Co(thd)2 was used with O3, which results in an oxygen terminated surface. 

As a consequence it would be interesting to deposit Co3O4 from 

Co(thd)2/H2O and then investigate if etching occurs when a Bi(thd)3 pulse is 

applied. On the other hand etching may take place, however, as Co(thd)2 

reacts with H2O there might be a redeposition of Co3O4. This might also be 

the reason why the etching process appears different for a Co3O4 surface 

and a Fe2O3 surface. However, as almost no cobalt is detected in the 

deposited films by XRF, this is probably not likely. If not on the other hand 

the etching process is much faster than the redeposition process. 

However, if the formation of the H(thd) vapor which is suggested to 

cause etching is not a result from the reaction between the precursor and its 

crystal water, but instead is a result of the reaction with the applied H2O 

pulses. Another solution to the etching problem could be to exchange H2O 

with O3 for the deposition with Bi(thd)3. On the other hand if O3 is used 

instead of H2O it is more likely that carbonate contaminations may be 
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formed in the deposited films. This might be a small price to pay however, 

if this turns out to be the only way to avoid etching. 

 

5.4 The Bi-Co-O films 

Based on that the peak observed around 53.5
o
 in the as deposited films, as 

shown in Figure 4-31 disappeared when the samples were subject to mild 

heat treatment at 400 
o
C, indication of a meta-stable cubic Bi2O3 in the as 

deposited films from Bi(thd)3 and Co(thd)2 is strengthened. If this phase was 

present in the as-deposited films, it most likely formed the sillenite phase 

during heat treatment. The deposition of this meta stable cubic phase is also 

observed in the as deposited films of Bi2O3 by MOCVD from BiPh3/O2 at 

450 
o
C [127]. Confirming that this phase can be obtained at temperatures 

lower than 650 
o
C, which is the temperature where this cubic phase is 

formed from α-Bi2O3 powder under vacuum conditions. 

In addition as both films contained almost a 1:1 ratio between 

bismuth and cobalt, by reference to the phase diagram given in Figure 1-3 

in section 1.2.1 on page 6 and that the suggested formed sillenite phase 

Bi3.43Co0.57O5.90 has a surplus of bismuth compared to cobalt, it is likely that 

the peaks labeled as both Co3O4 and α-Bi2O3 in Figure 4-32 are caused by 

Co3O4. 
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6 Conclusion 

The main goal of this work was to deposit the multiferroic material BiCoO3. 

In order to achieve this goal a number of precursor pairs for both cobalt and 

bismuth were investigated for ALD growth. The motivation has been to find 

a mutual compatible precursor pair for deposition of both cobalt and 

bismuth. The precursor pairs under investigation have been Co(thd)2/O3, 

Co(thd)2/H2O, Co(thd)3/O3, Co(thd)3/H2O, Bi(t-OBu)3/H2O, BiPh3/O3 

BiPh3/H2O and Bi(thd)3/H2O. 

 

An ALD temperature window was found for depositions in the range 162 –

259 
o
C, with an average growth rate of 6 pm/cycle for the novel Co(thd)3/O3 

precursor combination. The deposited films consisted of Co3O4, where a 

(111)-orientation was found on Si(111) at 186 
o
C. No deposited film could 

be detected from the Co(thd)3/H2O precursor combination at the 

investigated temperatures 186 and 235 
o
C. 

 

For the Co(thd)2/H2O precursor combination, an ALD temperature window 

was found in the range 186 – 259 
o
C, which showed a step-like growth rate 

of 3.2 pm/cycle at 186 – 210 °C, while a growth rate of 5.4 pm/cycle was 

obtained in the range 235 – 250 °C. For the lower temperature range single 

phase films of CoO was obtained, while a mixture of Co3O4 and CoO was 

deposited in the higher temperature range. 

 

Bi(t-OBu)3 proved not to be suitable as a bismuth precursor in an ALD 

process, as it was found to decompose already at 65 
o
C. 

 

BiPh3/O3 and BiPh3/H2O does not yield films of bismuth oxide, however, 

BiPh3/H2O may be used for deposition in a limited range of the Bi-Co-O 
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system with ALD. It was not possible to obtain high enough concentrations 

of bismuth to deposit the desired phase BiCoO3. The highest obtained Bi 

content was 22.8 at.%, with respect to metal content, at 175 
o
C. 

 

A new phase of the Bi(thd)3 precursor which proves suitable for ALD 

depositions has been identified in this work. An ALD temperature window 

was found in the temperature range 206 – 283 
o
C for the Bi(thd)3/H2O 

process. Uniform films were deposited with an average growth rate of 

16 pm/cycle in the whole range. Crystalline films of α-Bi2O3 has for the first 

time been deposited with ALD. The films showed a (012)-preferred 

orientation on Si(111) for depositions in the range 235 – 283 
o
C. 

 

The application of Bi(thd)3 for deposition in the Bi-Co-O system yielded 

varying results. Indications for that the Bi(thd)3 precursor etches the Co3O4 

surface was found and a likely mechanism for the etching process has been 

suggested. 

 

Heat treatment of thin films with a composition near 50:50 at.% Bi:Co 

resulted in multiple phases where none was BiCoO3. 
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7 Further work 

There is still a lot of interesting and exciting work to be carried out on the 

different systems investigated in this work. 

 

The step-like growth, observed for the Co(thd)3/O3 system, as a function of 

the O3 pulse length needs a closer examination. An indication whether the 

proposed mechanism is likely or not can be obtained relatively easy by 

investigating pulse lengths of i.e. 4-5 and 7 seconds. In addition, analysis of 

the exhaust gas of the process by mass spectrometry (MS) might shed some 

new light on the mechanism involved. This system should also be 

investigated further with respect to deposited crystal phases and compared 

to the similar Co(thd)2/O3 system. 

 

The new Co(thd)2/H2O precursor combination should be investigated further 

with respect to crystallinity and orientation of the deposited films. The 

enormous increase in growth rate observed at 162 
o
C should be reproduced 

and verified as ALD growth. In addition, further investigations of the 

uncharacteristic ALD temperature window should be carried out to verify 

the mechanism behind the observed stepped growth. To verify the suggested 

mechanism in this work an in-situ QCM measurement should be carried out 

at 210 
o
C. An increase in mass should be expected observed after each 

cycle, as more oxygen is needed when CoO transform into Co3O4. 

 

In order to obtain better knowledge of the Bi(thd)3 chemistry, the structure 

of the newly identified phase of Bi(thd)3 should be solved. The easiest way 

would probably be to obtain single crystals for XRD analysis by 

recrystalliation from dry hexane or by sublimation. The crystals would have 

to be encapsulated in i.e. epoxy in order to be protected from air, and 
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cooling should be applied during the measurement in order to avoid melting. 

If the obtained phase is shown to be anhydrous, in situ QCM-measurements 

should be carried out in order to measure if this precursor show self-limiting 

growth or not. 

 

Further studies should also be carried out on reacting different Bi(thd)3 

phases containing crystal water with tetraglyme. By performing capillary 

XRD analysis of the oily sample cooled by i.e. liquid nitrogen, it might be 

possible to solve the crystal structure. In addition the sublimation 

temperature and thermal stability of the oily product should also be carried 

out. If these results are promising, the compound should be tested for use in 

the ALD process. Given the ALD behavior is satisfactory, a new and less 

tiresome synthesis of Bi(thd)3 might be developed. The unpatented and 

simple reaction between BiPh3 and H(thd) in hexane, which is shown to be 

able to yield monomeric phases with crystal water[121], could then be used 

and the resulting crystal water removed with tetraglyme. 

 

The suggested etching reaction observed from Bi(thd)3 can be studied 

further by simultaneously carry out an in-situ QCM analysis while the 

products released through the exhaust is investigated by MS. In addition it 

would also be interesting to verify if a Co3O4 surface, deposited from 

Co(thd)2 and H2O, is stable towards Bi(thd)3. In addition, the Bi(thd)3/O3 

process should be investigated for ALD growth. If ALD growth is obtained 

it would be interesting to examine whether this precursor combination also 

causes etching of Co3O4 surfaces when deposited in the Bi-Co-O system. 

 

There exists yet another bismuth precursor which could also be interesting 

for depositions by ALD, namely Bi(Me2(dmp)). In this work, it was chosen 

not to proceed with the synthesis and characterization of this precursor due 
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to the limited timeframe. As mentioned before, this precursor is reported to 

be stable towards water, liquid at room temperature with a high vapor 

pressure and that it decomposes at 230 
o
C [96, 100]. The decomposing 

temperature is a bit low, however, it is not extremely low and in the same 

temperature range as BiPh3. XPS measurements of the deposited films by 

MOCVD also showed no evidence of nitrogen contamination in the 

deposited films [96, 100]. 

 

The observed huge increase in growth rate of the Co(thd)2/H2O precursor 

combination, and why only Bi2O3 was detected on the single crystal 

substrates when the BiPh3/H2O process was added, should be reproduced 

and investigated further. A simultaneous in-situ QCM and MS measurement 

should shed some light on a possible mechanism. 

 

Finally, if control is obtained over the Bi-Co-O system by ALD, the phases 

deposited at various compositions at different temperatures should be 

investigated closer. In addition, the ultimate goal would be to obtain the 

mulitferroic phase BiCoO3 by utilizing strain engineering on a suitable 

single crystal substrate. As it is shown previously in the literature, that 

utilizing epitaxial thin film growth can give access to high pressure and 

temperature phases, that are not easily accessible by traditional bulk 

synthesis techniques [61]. 

 

If a high purity sample of BiCoO3 is obtained, the magnetic and ferroelectric 

properties should be investigated. This would hopefully give an answer to 

whether this material exhibits the proposed exiting and novel coupling 

between the magnetic and the ferroelectric properties. 
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Another aspect which could also prove to be extremely interesting would be 

to investigate whether any of the physical properties of this material can be 

altered or improved by varying the thickness of the deposited films. 
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9 Appendix 

 

9.1 Bi(thd)3 synthesis sample names 

 

 

Abbrevations used for Bi(thd)3 compounds synthesized in this work 

Labeld in this thesis Name used during this work 

A EØ_Bithd_290908 

B KBG_Bithd_200109 

C KBG_Bithd_120209 

D EØ_Bithd_240209 

E KBG_Bithd_250809 
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9.2 KBG1117 
 

GIXRD on Si(111): 
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MgO(100): 
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SrTiO3(100): 
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Al2O3(1102): 
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9.3 TEM of KBG1008 

 

Obtained data from TEM: 

3 at.% Bi / 97 at.% Co, main phase Co3O4 

 

Obtained pictures from TEM: 
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