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ABSTRACT  
 
 

In this study, 6-chloropurines with varied substituent in the 2 and 9 or 7 position were 

functionalized in the 8-position. This was done via lithiation and subsequent bromination to 

form 8-brominated purines. 

 

It was observed that lithiation/bromination of N-9 benzylated purines bearing electron 

donating substituents on the phenyl ring gave good conversions and excellent yields of the 

expected 8-bromo purines. On the other hand, those bearing electron withdrawing groups on 

the phenyl ring gave poor conversions and yields of the expected 8-bromo purines. Aside the 

expected 8-bromo purines, dimers and aldehydes were observed as by-products of this 

reaction. 
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ABBREVIATIONS  
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Compd.       Compound 

DEPT          Distortionless enhancement by polarization transfer 

DMF           Dimethylformamide  

DNA           Deoxyribonucleic acid 

E.g.             Example  

EtOAc.       Ethyl acetate  

Et al.           Et alia (and others) 

Fig.             Figure 

Hex.            Hexane 

HMBC       Heteronuclear multiple bond correlation experiment  

HMQC       Heteronuclear multiple-quantum coherance experiment 

HSQC        Heteronuclear single quantum coherence 

LDA           Lithium diisopropylamide  

MIC           Minimum inhibitory concentration 

M. p           Melting point        

MS             Mass spectroscopy  

NAD          Nicotinamide adenine dinucleotide  

NMR          Nuclear magnetic resonance spectroscopy 

Ph               Phenyl 

RSM           Recovered starting material 

RNA           Ribonucleic acid  

THF           Tetrahydrofuran  

THP           Tetrahydropyran 
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1.0 INTRODUCTION 

Purines are one of the most common heterocycles in nature (Fig. 1). The ribonucleic acid 

(RNA) and the deoxyribonucleic acid (DNA) consist of two types of bases; the pyrimidine 

and the purine bases. These occur in the ratio of 1:1 making the percentage of purine bases 

(guanine and adenine) in RNA and DNA 50% of the total bases.  The quantity of naturally 

occurring purines on earth is therefore enormous as RNA and DNA are very ubiquitous pair 

of substances associated with the living world.1 
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Figure 1. The purine ring and the accepted numbering system 

                                                          

                  2 (Adenine)                           3 (Guanine)                                    4 (Kinetin)                                                

 

Figure 2.  Structures of Adenine, Guanine and Kinetin  

 

Purine derivatives are found in plants as growth hormones, examples are cytokinins. 

Cytokinins promote cell divisions in plants and an example is kinetin1 (Fig. 2). Various other 

purine derivatives are involved in cellular machinery such as adenosine 5'–triphosphate 

(ATP, Fig. 3), used for the transport of chemical energy in the cell; adenosine 3',5'-cyclic 

monophosphate (cAMP, Fig. 3), which acts as a secondary messenger controlling the 

activation of protein kinase, the potassium level of the cell, as well as transcription and other 

metabolic process.1 Purines are also constituents of flavin adenine dinucleotide (FAD) and 

nicotinamide adenine dinucleotide (NAD) which are involve in cellular reduction-oxidation 

processes.1 They transfer electrons into the electron transport chain for ATP synthesis. Their 

presence in the above and other very important cellular molecules makes them very important 

structural components in many bioactive natural products as well as synthetic drugs 

(especially anti-cancer and antiviral drugs).  
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Figure 3. Structures of ATP and cAMP. 

 

Strides in the exploration of purine-based compounds have shown them as chemical-

biological tools with potentials as therapeutic agents to treat an impressively broad spectrum 

of diseases. They are found to be interferon inducers, microtubule assembly inhibitors, 

antimycobacterials and phosphodiesterase inhibitors.2 Among the potential antiviral and 

anticancer agents are 8-substituted purines bearing substituents in the 6- and 9-positions (6-, 

8- and 9-substituted purines). Examples are 8-chloroadenosine (Fig. 4)7,8 8-

mercaptoguanosine, 10 8-amino-adenosine (Fig. 4) 11 7,8-dihydro-8-oxoadenosine12 and 8-

amino-9-benzylguanine.13 8–substituted purine derivatives also have antimalarial potentials, 

examples are 8-amino-5'-deoxy-5'-chloroguanosine 3 and 8-amino-9-benzylguanine.3 These 

potentials of 8-substituted purines as therapeutic agents make the exploration of purine 

chemistry in the 8-position very interesting. 

                                  

 7 (8-amino-adenosine)                                  8 (8-chloro-adenosine) 

 

Figure 4. Structure of 8-amino adenosine and 8-chloro-adenosine potential anticancer 

substances 

 

The purine ring can be functionalized at its various positions by introduction of a reactive  
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species into these positions via an appropriate route.9 One of such reactive species is the 

halogens. The reactivity of halogens in the 2-, 6-, or 8-positions towards nucleophiles has 

made them one of the most indispensible intermediates for the synthesis and interconversion 

of purines.1 8-Halopurines are very good intermediates for the synthesis of 8-substituted 

purine derivatives, 14 therefore reactions that allow the direct introduction of halogens into the 

8-position are essential since tedious starting materials syntheses are avoided.4 

 

It has been shown that an efficient route to purine nucleosides modified at C-8 is lithiation 

followed by trapping with electrophilic species 1, 4, 5, 6 for example halogen donors for the 

synthesis of 8-halopurines. The halogen substituent can later be replaced by a nucleophile. 6-

(2-Furyl)-8-methoxy-9-(methoxyphenyl)-9H-purine (Fig. 5) a potentially bioactive purine, 

active against Mycobacterium tuberculosis (showing 95% inhibition at 6.25µg/mL 

concentration)  was reported  synthesized by lithiation followed by a lithium-halogen 

exchange forming a halopurine. The halogen was later substituted by a methoxy group.15 

 

 

9 

Figure 5.  The structure of 6-(2-Furyl)-8-methoxy-9-(methoxyphenyl)-9H-purine, an 

inhibitor of Mycobacterium tuberculosis. 
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Figure 6. Structure of 8-phenylhydroxymethyl-6-chloro-9-(2,3-O-isopropylidene-β-D-

ribofuranosyl). 
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Another purine synthesized via lithiation and subsequent reaction with an electrophile is 8-

phenylhydroxymethyl-6-chloro-9-(2, 3-O-isopropylidene-β-D-ribofuranosyl) purine (Fig.3).16  

 

However this method appeared not to be general. Substituents on the purine ring apparently 

affect the lithiation process since lithiation–halogenation of 6-chloro-9-benzylpurine failed.17 

Therefore the hypothesis for this study was that the stability of the intermediate “purinyl 

anion” is dependent on the identity of the N-9 or N-7 substituent.  

 

1.1 Objective of the project. 

 

The objective of this project was to undertake systematic study of the reaction sequence in 

Scheme 2, in order to explore the true scope and limitation of this methodology for the 

functionalization of the purine 8-position. This was to involve the variation of the substituents 

in the 2- and 9-positions Y and R respectively via the route in Scheme 1, followed by 

attempts to lithiate at 8-position thereby determining whether lithiation is/not possible for 

each substituent. 

 

 

 

Scheme 1 
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Scheme 2 
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2.0 LITERATURE REVIEW 

 

2.1 Reactivity at the purine ring atoms  

 

The purine is composed of the pyrimidine and the imidazole ring systems. The pyrimidine is 

a member of a class of molecules called the diazines.  The unsubstituted diazines have six π-

electrons distributed over a sigma framework of six atoms including two nitrogens. The two 

nitrogen heteroatoms in pyrimidines and the other diazines withdraw electron density from 

the ring carbons. The pyrimidine ring is therefore electron deficient. The imidazole ring on 

the other hand has six π-electrons spread over five atoms making it electron rich. Since the 

purine consist both of these ring systems, it is capable of undergoing both nucleophilic and 

electrophilic reaction at the ring atoms, but the products often depend on the state of 

polarization of the molecule.14 The anionic forms of purines is readily attacked by 

electrophiles such as alkylating or glycosylating agents to produce N-substituted derivatives.  

In the neutral form the products may vary in some cases as in the case of vinylation, 

producing a mixture of N-9 and N-7 substituted products.14 The reactivity of the N-9 or N-7 

towards electrophiles therefore makes it imperative to always protect these positions in 

electrophilic reactions directed towards other ring atoms (e.g. C-8 position) so as to prevent 

undesirable products.  

 

In addition to the ring nitrogen the adjacent carbon atoms also show degrees of electrophilic 

or nucleophilic character, the extent of which depends on the state of ionization of the 

molecule and the degree and type of substitution.14 The purine-pyrimidine and -imidazole 

rings interact with electrons moving into the pyrimidine ring from the imidazole ring system. 

It can therefore undergo both nucleophilic and electrophilic attack on the carbons in the five 

member imidazole system but only nucleophilic reaction at the carbon in the six member 

pyrimidine system.18  The  large movement of negativity in purines from the π-electron 

excessive imidazole ring to the π-electron deficient pyrimidine ring results in the C-8 atom 

becoming the most electron deficient (electrophilic) in the unionized purine molecule1, 14 thus 

the hydrogen attached at that position the most acidic after the N-9 hydrogen. This makes the 

C-8 position the first position of attack by a lithiating agent in 9-substituted purines. Also, the 

C-8 atom in purines may achieve sufficient electronegativity to permit attack by 
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electrophiles. This negativity is normally achieved with the presence of one or more electron-

donating groups in the ring system.14 

 

 

2.2 N-Alkylation of purines 

 

The unsubstituted purine can exist as four possible tautomers (Scheme 3); but the ratio of 

these tautomers depends on the state of the purine. It exists as a 7H-tautomer in the 

crystalline state and 7H- and 9H-tautomers in approximately equal amounts in solution; while 

1H- and 3H-tautomers are insignificant.18  

 

 

Scheme 3
18

 

 

The purine nitrogen can react with electrophilic alkylating agents but this can be enhanced by 

using a base. The purine N-hydrogen is acidic and can be removed by a base forming a more 

reactive species. The anionic form can exist in any of the four resonance forms (Scheme 4). 

 

 

Scheme 4 
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In principle therefore alkylation reaction can take place on any of the ring atoms. However 

the position of alkylation is affected by the substituent on the ring atom and the nature of the 

alkylating agent. Adenine for example gives mainly 3-alkylated products under neutral 

conditions but 7/9-substitution occur under basic conditions while adenosine derivatives 

usually give the 1-alkylated products presumably due to hindrance to the N-3 position.18 

These examples indicate that with an electron donating group in the six member ring, 

reactivity towards electrophiles is made possible and even enhanced in this ring. On the other 

hand with an electron withdrawing group in the six member ring for example the 6-

chloropurines, reactivity is directed into the five member ring forming the N-7 and N-9 

products the ratio of which depends on the alkylating agents. The major product in most cases 

is the N-9 substituted product. Benzyl halide alkylating agents give mainly the N-9 product as 

the major product for 6-chloropurine18 presumably due to steric hindrance from the 6-chloro 

group in the formation of N-7 alkylated isomer. This to say the ratio of N-9 to the N-7 

alkylated is greatly influenced by the size of the substituent in the 6-position.18 

 

Regiospecific alkylation on the 7-position can be achieved via quaternisation of a 9-riboside 

followed by hydrolytic removal of the ribose residue as illustrated in Scheme 5.18  

 

Scheme 5 18 

 

In difficult situations where N-7/N-9 selectivity is poor, alkylation can be directed to the N-9 

by using a bulky protecting group in the C-6 position (Scheme 6).18 The protecting group can 

later be removed. 

 

Scheme 6
18
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As mentioned earlier in this section, the N-H hydrogen of unsubstituted purines is acidic. 

This makes it important to protect this position in deprotonation reaction directed towards 

acidic carbon hydrogens. Alkylation agents such are benzyl groups and pyranyl group are 

therefore used as protection agents to protect this position from attack by basic reagents. 

 

 

2.3 Synthetic significance of halopurines  

 

Nucleophilic attack at the carbons in the purine ring is enhanced by replacing the hydrogen 

with a better leaving group example the halogens. The reaction of the 2-, 6- and 8-

halopurines are very important in purine synthesis since they allow the introduction of other 

substituents (nucleophiles) into this position being good leaving groups. They are for 

example used in cross coupling reactions to introduce other substituents into the ring 

system.17 By using halopurines relatively easy nucleophilic attack takes place at all the three 

positions with a wide range of nucleophiles (an example is shown in Scheme 719) such as 

alkoxide, sulphides, amines, azide, cyanide, and melonate and related carbanions18 also with 

hydrazine and compounds with active methyl groups.14 This makes them very important 

reactive species in purine synthesis.  

 

 

Scheme 7
19 

 

 

2.4 8-halopurines 

 

Halopurines can be synthesized by direct halogenation. Direct halogenations at an 

unoccupied 8-position to synthesize 8-halopurines are widely used, particularly when the 

purine contains one or more electron–releasing groups.1 Few reports of direct fluorination of 

the 8-position have been made while chlorination is difficult giving low yields.1 Purines can 

be brominated at 8-position using bromine (which may occur via N-halopurinium salts and 
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later nucleophilic addition of bromide anion to the 8-position followed by elimination of 

hydrogen halide18) or N-bromoamides, but the outcome of the reactions are strongly 

dependent on the conditions employed as well as the lability of the starting material.1, 4 For 

purine nucleoside starting materials, there could be cleavage of acid labile glycosidic bonds.1 

This form of bromination has been employed in the direct bromination of adenosine- and 

guanosine monophosphates.24 Halopurines can also be prepared from oxy, amino, and 

thiopurine1, 18 and 8-halopurines from purin-8-thiols.1 Also 8-bromopurines can be 

synthesized by immobilizing purines on solid supports followed by bromination using a 

charge-transfer complex of the bromine with lutidine.25 

  

However, there is always a need for an easier alternative and lithiation has been found to be 

an easy and efficient way of synthesizing 8-halopurines (an example is shown in Scheme 8) 

and other 8-substituted purines.14, 4, 1, 5, 6 

 

               R=Cl, OH, NH2     
               R'=2, 3, 5-tris-O-TBDMS-β-D-ribofuranosyl                              
                              

Scheme 8
14 

 

The presence of a halogen at the 8-position, as stated earlier, afford the possibility of 

introducing other groups into this position. This possibility was applied for 8-bromo purines 

by Havelková et al. in which various aryl groups were introduced into this position via 

Suzuki-Miyaura cross coupling method26 and also by Čapek et al.27 in the synthesis of 

purinyl-8-yl phenylalanines.27 Similarly this functionality has been applied in the synthesis of 

an orally active purine-based inhibitor of the heat shock protein 90 (Hsp 90) via nucleophilic 

displacement of the bromo group.28, 9 Hsp 90 is a molecular chaperone that maintains the 

proper conformation of its “client” proteins.29, 30, 31, 32, 33 Chaperone Hsp 90 has been a target 

of interest in for the synthesis of drugs directed towards cancer because of its central 

regulatory role.27 A prominent advantage that targeting of Hsp 90 offer is that it affords 

simultaneous depletion of multiple oncogenic proteins hence attacking several pathways 

necessary for cancer development and reducing the likelihood of the tumor acquiring 
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resistance to the Hsp 90 inhibitor.34, 35 Another important advantage of Hsp 90 is that it occurs 

in an activated form in cancer cells and in a latent form in normal cells.36, 37
 8-iodo purines 

have also been used to introduce various substituents into the 8-position.38 

 

 

2.5 Lithiation-based electrophilic substitution at the purine 8-position 

 

The purine 8-position (8-C-H) is not very reactive towards electrophiles but this reactivity 

can be improved by functionalization which involves an introduction of a more reactive 

species into this position. Functionalization can be done via lithiation. Lithiation results in the 

formation of “purinyl anion” which can react with electrophiles such as halogen donors 

(illustrated in Scheme 9). Lithiation-halogenation leads to the formation of another very 

reactive species, the 8-halopurines,14, 1, 5, 6 which can further react with nucleophiles leading 

to the introduction of other groups in the 8-position. Also the lithiated products can react 

directly with an alkyl halides e.g. iodomethane to form an alkylated products.1 The lithiation 

is mostly done using organonitrogen-lithium compounds. 

 

 

 

Scheme 9 

 

Organonitrogen-lithium compounds particularly lithium amides (R2NLi)n, are commonly 

used as strong bases in organic synthesis. The power of these species as reagents, especially 

where the organic groups (R) are bulky, relies mainly on their low nucleophilicity compared 

with C-Li bonded complexes (e.g. MeLi). These properties cause proton abstraction to be 

favoured over nucleophilic addition to an organic substance. Such deprotonation reaction can 

also be regio and/or enantiospecific.39 One of such commonly used lithiation agents is lithium 

diisopropylamide (LDA). LDA has been indicated by Kato et al.40 and Tanaka et al.
41

 as a 

better lithiating agent compared with butyllithium for regioselective lithiation at position-8 
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(illustrated in Scheme 10). It can cause lithiation in position-8 even in the presence of a 

halogen (e.g. chlorine) in the 6-position. When butyllithium was used for the same reaction 

there was a nucleophilic addition of butyl to form 8-butylated purine and a lithium-halogen 

exchange forming a butyl chloride and a 6-lithiated purine.16 

N
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Scheme 10
16

 

                                   

 

The exact mechanism of the metallation (lithiation) is not known, but it is thought to involve 

a four centre transition state (Scheme 11).18 In the lithiation process although a “free anion” is 

never formed, the ease of lithiation correlates well with the C-hydrogen acidity and of course 

this, with the stability of the corresponding conjugate base (carbanion).18 

 

 

Scheme 11
18
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Due to the acidity of the N-9 and N-7 hydrogens, these positions need to be protected/blocked 

in lithiation reaction. When the 7/9 position are protected, lithiation (using strong base such 

as LDA) then takes place at C-8.18 However this does not seem to be general since all 

attempts made by Nolsøe et al. to lithiate 6-chloro-9-benzylpurine failed.17 Therefore it is 

speculated in this study that attached substituents in the imidazole ring depending on their 

nature can affect the C-hydrogen acidity in the ring either by inductive or mesomeric effect. 

A strong electron withdrawing group will better stabilize the carbanion formed thus making 

the corresponding C-hydrogen more acidic and therefore easy to lithiate. On the other hand a 

weak electron withdrawing group (or electron donating group) will stabilize weakly and thus 

making the corresponding C-hydrogen less acidic and therefore relatively difficult to lithiate. 

In the case of a strong electron withdrawing group though the lithiation process may be 

relatively easy the stabilization of the anionic species formed may make the species relatively 

unreactive compared to the species in the case of a weak electron withdrawing group.  

However it is important to have a substituent with electron releasing properties if after 

lithiation further electrophilic substitution is intended since that makes the carbon electron 

rich for attack by an electrophile. Substituents can also affect the ease lithiation through steric 

hindrance blocking the lithiating agent. Therefore the ease of lithiation of an acidic carbon 

with substituent in the ring depends on the size and the electronic properties of the 

substituents. 

 

It has also been indicated that temperature and reaction time affects the regioselectivity of 

lithiation process. 6-iodo-9-(tetrahydropyran-2-yl)purine was found to undergo reaction with 

n-butyllithium in tetrahydrofuran (THF) to produce depending upon the time and temperature 

of the reaction, either 6-lithio or 8-lithio-9-(tetrahydropyran-2-yl)purine in predominance. It 

was indicated that shorter reaction time and lower temperature were necessary for the 

utilization of the 6-lithio derivatives, while longer reaction time and higher operating 

temperature favoured the equilibration to the 8-lithio isomer.41 

 

 

2.6 Other methods for synthesizing 8-substituted purines 

 

8-Substituted purines can be synthesized through other methods. 8-alkylated purines can be 

synthesized via the reaction of the purines with free radicals or using Grignard reagents or 

through a complete ring synthesis using suitable starting materials.1, 18 In the free radical 
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reaction, the purine is alkylated using alkyl hydro peroxides and the reaction is catalyzed by 

iron (II) ions. The reaction has been applied to guanine, hypoxanthine, and adenine as well as 

their nucleosides. A typical example is the 8-methylation of guanines (Scheme 12)1.   

 

 

Scheme 12
1
 

 

They can be formed through purin-2-ones. Purin-2-ones are highly polarized compounds that 

can form adducts with nucleophiles therefore making them susceptible for the introduction of 

carbon substituents into their ring system at position 6 and 8 by the addition of 

organometallic (Grignard) reagents  followed by rearromatization of the adduct. In this 

method even secondary alkyl can be easily introduced.1 8-Substituted purines can be 

synthesized by the reaction of 4,5-diaminopyrimidines with a suitable carboxylic acids or 

derivatives, the carboxyl carbon corresponding to carbon-8.18, 14   Variety of 8-benzylpurines 
42, 43 and trisubstituted purines44, 45, 46, 47  have been synthesized using this method. The 

difficulty of this method is, the closure of the imidazole ring requires prolonged heating in 

acidic solution.14  

 

8-substituted purines can also be prepared by using suitably substituted imidazole precursors 

e.g. 4(5)-aminoimidazole-5(4)-carboxylates.1 This method has similar difficulty as the 

pyrimidine moiety.  

 

 

2.7 Significance of functionality in the 2 and 6-position of the purines used in the study 

 

 In this project purines bearing chloro groups in the 6-position only or in both the 2- and 6- 

were first alkylated before bromination. The chloro group in the pymidine ring does not only 

enhance the alkylation in the imidazole ring but also provide extra functionality in the overall 

expected brominated product.14 This functionality in the 6-chloro position has been exploited 

in the synthesis of potent inhibitors of 15-lipoxyenase(15-LO) via palladium coupling 
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reactions.20, 21 The presence of chloro functionality in the 2- and 6-position has also been 

exploited in the synthesis of much more complex structures such as UK-371,104 which is an 

A2a agonist.22 The 6-chloro group also afford the possibility of performing ring closing 

metathesis, by having the right substituents in the N-7 position in the synthesis, for example 

the synthesis of asmarines from the N-7 alkylated purines.23 

 

 

2.8 Purine dimerization. 

 

Purine dimerization was unprecedented in literature on synthesis until reports by Cerna et 

al.
48

 of 8,8'-bispurines which they reported as by-products. However, there were reports of 

purine dimerization involving nucleosides, C-C 8,8'-dimers, which were reported as products 

of oxidative DNA damage.49 Later there were reports of  synthesis of C-C 6,8 dimers, 6, 8', 6', 

8''-purine trimers and 6,8', 6', 8'', 6'', 8''-purine tetramers and Pd complex of corresponding 

cyclic tetramer synthesized via Negishi cross-coupling.50 To the best of one’s knowledge no 

practical preparative method nor biological evaluation of simple purine dimers connected 

directly by a C-C bond between the ring carbon atoms have been reported until work done by 

Tobrman et al.
50 which reported various purine dimers in good yields. So far purine 

dimerization has only been reported under coupling conditions. Purine dimers may be 

important molecules to investigate as purine bases are known to coordinate transition metals51 

hence the purine dimer may act as an interesting donor for metal ions.50 
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3.0 RESULTS AND DISCUSSION 

 

The essence of this project was to introduce an extra functionality into the 8-position of N-

alkylated 6-chloro-, 2,6-dichloro-, and 6-chloro-2-nitropurines. This was to be done via 

lithiation/bromination reactions. Attempts by Nolsøe et al.17 to synthesize 9-benzyl-6-chloro-

8-halopurines by lithiation/halogenation was not successful even though the method was 

successful for other compounds.4 This gave an indication that the method may not be general. 

Hence it was speculated that the nature of the substituent in the N-9 or N-7 position can affect 

the lithiation-bromination process either by inductive and/or mesomeric effect or by sterical 

factors.  

 

Attempts were therefore made to establish the scope and limitation of this process in 

functionalization of the purine 8-position. In order to achieve this, substituents in the N-9 or 

N-7 were varied. Substituents such as pyranyl; benzyl groups having electron donating 

groups such as methoxy, ethoxy and methyl groups; benzyl groups bearing electron 

withdrawing groups such as fluoro, chloro, methylfluro groups; alkyl groups such as ethyl 

and methylthiomethyl groups were used. In addition the substituents in the 2-position were 

varied. Substituents such as chloro and nitro groups were used in place of hydrogen. To 

investigate steric influences on the process, the position(s) of the substituent(s) on the phenyl 

ring in the case of the benzylated purines was(were) varied.  In addition reactivity of isomers 

of the same compound were compared.  This was done in the case of N-7 and N-9 benzylated 

purines to investigate if there is any special preference in the reaction of them. 

 

The overall synthesis was in two steps as shown in Scheme 13 which is later illustrated 

clearly in Schemes 14-17 and 20-22. The first step involved the introduction of the N-

substituent of interest and the second step was to introduce the bromo functionality into the 8-

position. 

 

Scheme 13 
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3.1 N-Alkylation of purines 

 

Compound 12a was synthesized by reaction of the 2,6-dichloropurine with carbocation 

generated insitu52 from 2,3-dihydropyrane (Scheme 14).17, 52 In this reaction only the N-9 

alkylated isomer was observed as product which was expected based on literature.17, 53 

 

 

Scheme 14 

 

The regioselectivity of this reaction has been extensively investigated by UV-VIS 

spectroscopy in previous reports.52, 53, 54 Similar studies demonstrated that the reaction of 6-

chloropurine and 2,6-dichloropurine with carbocations are selective for the N-9 isomer.52, 53, 

44.  

Compounds 12b-h and 13b-h (Table 1) were synthesized by N-alkylation of the 6-

chloropurines or the 2,6-dichloropurine under basic conditions using alkyl halides. These led 

to the N-9 alkylated purines as the major products and the N-7 alkylated purines as the minor 

products (Scheme 15 and Table 1).  

 

 

Scheme 15 
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Table 1: Yield of N-9 and N-7 alkylated purines 

 

Entry Compd. 

11 

X R Reaction 

time (h)a 

N-9  

Isomer 

Yield(%)b 

12 

N-7 

Isomer 

Yield(%)b 

13 

1 11b Cl OCH3

OCH3

OCH3  

20 56, 12b 23, 13b 

2 11a Cl 

 

20 59, 12c 21, 13c 

3 11b Cl 

 

20 63, 12d 21, 13d 

4 11a Cl 

 

20 54, 12e 22, 13e 

5 11b Br 

 

21 50, 12f 16, 13f 

6 11b Cl 

 

21 56, 12g 27, 13g 

7 11b Cl 
S

 

24 40, 12h 16, 13h 

areaction time after addition benzyl halide or 2,3 dihydropyran. byield of isolated product. 

 

The synthesis process involved, as describe clearly in the experimental section, first heating 

of the purine with the base, K2CO3, in the solvent for 30 minutes. In this step, the base acts on 

the purine deprotonating the acidic proton on the N-7 or N-9 position leading to the N-7 and 

N-9 purine anion. The anion then attacks the highly electrophilic carbon, the benzylic carbon, 

on the benzyl halide kicking out the halogen leaving group then giving rise to the expected 

products. 
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6-Chloro-9-(methylthiomethyl)-9H-purine (12h) was synthesized by the general N-alkylation 

procedure and work up used for the  synthesis of the other N-9 alkylated purines. Like the 

benzylation yielding 12c-g this reaction also gave the two products N-9 and N-7 isomer 12h 

and 13h respectively. This method was much easier and better than the lengthy and more 

tedious procedure reported by Kelly et al.55 giving the product in higher yield (40%) than the 

reported yield (10%).55 Kelly et al.
55

 described the procedure they used as follows: a mixture 

of 6-chloropurine (45 mmol), dimethylsulfoxide (100 mL), anhydrous potassium carbonate 

(58 mmol) and chloromethyl methyl sulphide (40.4 mmol) was stirred at ambient temperature 

for 6 days. The reaction mixture was poured into ice water (400 mL) and extracted with 

dichloromethane (4 x 100mL). The combined extracts were washed with water (6 x 50 mL), 

filtered through glass wool, and spin evapourated in vacuo. The residue was dissolved in 

dichloromethane and added to silica gel 60. The mixture was spin evaporated in vacuo and 

the residual solid was then purified by flash chromatography. 
 

 

3.2 Lithiation/bromination of purines
 

 

The main objective of this project was to introduce extra functionality into the 8-position of 

selected purine substrates and investigate how the various substituents affect the lithiation-

bromination process. To make this discussion clearer, this section has been grouped into five 

categories:  

• Lithiation/bromination of 9-tetrahydropyranyl (THP)-purines. 

• Lithiation/bromination of 9-benzylated purines 6-chloro- and 2,6-dichloropurines 

• Lithiation/bromination of 9-benzylated 6-chloro-2-nitropurine. 

• Lithiation/bromination of 7-benzylated purines 6-chloro- and 2,6-dichloropurines.  

• Lithiation/bromination of 9-alkylated purines. 

 

3.2.1 Lithiation/bromination of 9-THP-purines 

 

Compounds 12a and 12i were lithiated at the position 8 via proton abstraction by lithium 

diisopropylamine (LDA is a non-nucleophilic base) forming “8-purinyl anion”, then 

brominated using 1,2-dibromotetrachloroethane (Scheme 16).  
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Scheme 16 

 

This reaction yielded only the expected product. The difference in these compounds was the 

H-2 in the 12i was substituted by a chloro group in 12a. From the observations there was no 

major change in reactivity when the chloro group was substituted for the hydrogen. The only 

observed change is the reaction in the case of 12i appeared to occur faster. However this 

cannot be said conclusively since this is based on TLC observation.  

 

 

3.2.2 Lithiation/bromination of 9-benzylated 6-chloro- and 2,6-dichloropurines (12b-h, j-v) 

 

N-9 benzylated purines, compounds 12b-h, j-v, bearing various substituents in varied 

positions on the phenyl rings were lithiated at their 8-positions via proton abstraction by the 

lithium diisopropylamine (a non-nucleophilic base) forming “8-purinyl anion”, then 

brominated using 1,2-dibromotetrachloroethane (Scheme 17) forming the 8-bromo 

compounds 15b-h, j-v, Table 3. There was more than 80% conversion of starting material as 

judged by crude 1H NMR spectra except in the cases of 12f, 12j, and 12o-v.  The expected 

products were observed in all cases. In addition to the expected products some by-products 

were isolated mainly dimers, 45d, e, f, j, n, o, p, r, s, v, (Table 3).   

 

In addition to isolated dimers, it has been observed that aldehydes such as isolated aldehyde 

46b in the case of 12b were also formed for 12d, e, k, g, p, q, t, u, v (Table 3), though not 

isolated for these substrates they were observed in their crude 1H NMR spectra as indicated 

by the CHO hydrogen chemical shifts (Table 2). 
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Scheme 17 

 

Table 2: The chemical shift (ppm) of CHO hydrogen of aldehydes, 46, from their crude 

1
H NMR spectra. 

 

Starting 

material, 12 

Chemical shift (ppm) of 

CHO  hydrogens of 

aldehydes, 46, in CDCl3 

Literature chemical shifts (ppm)  of 

CHO hydrogens of observed 

aldehydes, 46, 

12b 9.86, 46b 9.87 46b, in CDCl3
56 

12d 9.92, 46d 10.00, 46d, in CDCl3
57

 

12e 9.97, 46d 10.00, 46d, in CDCl3
57 

12g 9.89, 46g 9.88, 46g, in CDCl3
58 

12k 9.97, 46k 9.99, 46k, CDCl3
59 

12p 10.33, 46p 10.30, 46p, in DMSO60 

12q 9.90, 46q 9.99, 46q, in CDCl3
 60 

12t 10.44, 46t 10.70, 46t, in CDCl3
61 

12u 10.15, 46u 10.36, 46u, in CDCl3 
62 

12v 10.15, 46v 10.30, 46v, in CDCl3-Acetone-d6
63 

12x 9.81, 46x 9.89, 46x in CDCl3
64 

13c 9.84, 46x 9.89, 46x, in CDCl3 
64 

13o 9.99, 46o 10.20, 46o, in CDCl3
61 
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Table 3: Reaction time and yield of expected products and by-products 

 

Entry Compd. 12 Y R2 R3 R4 R5 R6 Reaction 

time (h)
a
 

Yield 

(%)
b 

15 

Yield 

(%)
b
 

45 

Yield 

(%)
b
 

46 

Yield 

(%), 12 RSM 

8 12b H H OCH3 OCH3 OCH3 H 2.00 78, 15b - 8, 46b - 

9 12c Cl H H OCH3 H H 2.5 80, 15c - - - 

10 12d H H OCH3 H H H 2.75 25, 15d 26, 45d 1*, 46d - 

11 12e Cl H OCH3 H H H 2.30 51, 15e 8, 45e 2*, 46d - 

12 12f H H H CF3 H H 3.00 8§, 15f 7§, 45f - 73, 12f 

13 12g H H H OCH2C6H5 H H 1.50 84, 15g - 1*, 46g - 

14 12j H H H OCH2CH3 H H 4.00 5§, 15j 2, 45j - 30, 12j 

15 12k H H H OCF3 H H 1.50 36, 15k - - - 

16 2l Cl OCH3 H H H H 1.75 80, 15l - - - 

17 2m H H H CH3 H H 1.25 76, 15m - - - 

areaction time after addition of BrCCl2CCl2Br. byield of isolated product. Expt.:expected, pdts.:products, compd.:compound. § yield calculated 

from impure isolated product. *Calculated yield from crude 1H NMR. RSM: recovered starting material 
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Table 3 continued 

Entry Compd. 

12 

Y R2 R3 R4 R5 R6 Reaction 

time (h)
a 

 

Yield 

(%)
b 

15 

Yield  

(%)
b
 

45 

Yield 

(%)
b
 

46 

Yield 

(%), 12 

RSM 

18 12n Cl H H CH3 H H 2.00 75, 15n 2§, 45n - - 

19 12o H H H H H H 2.25 2§, 15o 11, 45o - 52, 12o 

20 12p H F H H H H 2.50 17§, 15p 3, 45p 6*, 46p 42, 12p 

21 12q Cl H H Cl H H 2.00 34, 15q - 11*, 46q 26, 12q 

22 12r H H H F H H 2.25 19, 15r 5, 45r - 16, 12r 

23 12s H H Cl H H H 2.50 15§, 15s 6, 45s - 19, 12s 

24 12t H Cl H H H H 2.00 9§, 15t - 3*, 46t 21, 12t 

25 12u H Cl H Cl H H 2.50 4§, 15u - 0.1*, 46u 71, 12u 

26 12v H F H H H F 2.50 7§, 15v 3§, 45v 8*, 46v 50, 12v 

27 12w H H Cl Cl H H 2.00 19, 15w - - 10, 12w 

areaction time after addition of halogen donor BrCCl2CCl2Br. byield of isolated product. Expt.:expected, pdts.:products, compd.:compound. 

*Calculated yield from crude 1H NMR. § yield calculated from impure isolated product. RSM: recovered starting material 
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In general, it has been observed that, with the electron withdrawing groups (F, CF3, and Cl) 

on the phenyl ring of the N-9 benzylated purines 12f, p-w there were poor conversions and 

poor yields of the products. The N-9 benzylated purines 12b-e, g, k-i, m-n with electron 

donating groups (alkoxy or methyl groups) showed much better conversions and yields of 

products.  The reaction of 12j however gave an unexpected (based on the trend stated above) 

poor conversion. This reaction was done only once so it could not be said conclusively that 

this observation annuls the stated trend.  

 

Halogens are known to be electron withdrawing by inductive effect and electron donating by 

resonance effect however they are overall electron withdrawing. The alkoxy groups are 

known to be electron donating by resonance effect and withdrawing by inductive effect but 

they are overall electron donating while alkyl groups are electron donating by inductive 

effect.65 

 

It has also been observed that the N-9 benzylated purines with the chloro group in the ortho 

position on the phenyl ring 12t gave a much more complex mixture of products compared to 

the other halo-benzylated purines as judged by the 1H NMR spectrum of the crude product. 

The product in this case as in the other cases was not obtained pure. Based on calculation 

using the 1H NMR spectrum of the isolated product, there was a much lower yield of the 

expected product compared to the others.  The ratio of product to starting material as judged 

by the crude 1H NMR spectrum was 1.0:1.6 in the case of 12t.  While 12u (which has the 

chloro group in the ortho and para positions) gave a much worse conversion with the ratio of 

product to starting material, as judged by the crude 1H NMR spectrum, been 1.0:9.4.  It could 

be conveniently speculated that the size of the chloro group is influencing the reaction in 

these cases. The chloro group could be “blocking” the 8-position of the purine because 

similarly with fluoro group (which is a much smaller group than) in the ortho position on the 

phenyl ring (compound 12p) the expected product was observed in a much higher amount 

(the ratio of product to starting material as judge by the crude 1H NMR spectrum was 

1.8:1.0).  

 

There was a much lower conversion when both ortho positions were occupied with the fluoro 

group (compound 12v). The ratio of product to starting material, as judged by the crude 1H 

NMR spectrum, was 1.0:4.0.  This could be explained by the possibility that in the case of 

12p the free rotation around the CH2 bond offers the molecule the ability to orient the fluoro 
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group away from the target site for a longer time span. The site is only “blocked” after 360o 

rotation. On the other hand, 12v has both of the ortho positions occupied hence after every 

180o rotation the 8-position is “blocked”. When the fluoro group was in the para position 12r 

there was a slightly much better conversion compared to the ortho position. In this case the 

ratio of product to starting material, as judged by the crude 1H NMR spectrum, was 2.0:1.0. 

 

Aside steric factors which may have influence the reactivity in case of compound 12t, other 

factors may have affected the reactivity in this case because compared to when the chloro 

group was in the meta position 12s a much cleaner reaction was observed though there was 

poorer conversion (the ratio of product to starting material as judged by crude 1H NMR was 

1.0:5.5) in this case. The expected product was isolated in a higher yield. Comparing the case 

of 12p (when the fluoro group was in the ortho position) and 12r (when fluoro group was in 

the para position), there was a slightly much better conversion in the case of 12r.  

 

3.2.2.1 Formation of dimer by-products; 45d, e, f, j, n, o, p, r, s, v, y 

 

In the case of 12d, e, f, j, n, o, p, r, s, v, y dimer by-products 45d, e, f, j, n, o, p, r, s, v, y 

were observed, as the reaction led to two different isolated products. The 1H NMR spectrum 

of the crude product in the case of 12d indicated the two products were formed in the ratio 

1.0:1.0 corresponding to 12d:45d while in the case of 12e the ratio was 5.0:1.0 corresponding 

to 12e:45e. The corresponding ratio of the dimers to expected products for the rest is given in 

Table 4. 

 

It has been observed that generally the dimer by-products have the proton signal for the 

NCH2 at a higher field compared to the 8-bromo compound 15 and the starting material 12 

(Table 6). They generally have low solubility in CDCl3 and precipitate off in test tube when 

out of the column. Formation of purine dimers under strongly basic conditions was also 

observed by Černa et al.48 The formation of the purine dimers were thought to be formed via 

two possible pathways as illustrated in Scheme 18. The pathway 2 ways thought to be more 

likely hence it was investigated for the substrate 12e (Table 5). Instead of addition of the 

electrophilic reagent in 10 minutes as the general procedure, the electrophilic reagent was 

added in 1 minute and 20 minutes. The expectation was if the reaction is by this pathway 

there would be more dimerization when the electrophile is added over a longer period and 

less if added over a shorter period. 
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Table 4: The ratio of the 8-bromo compounds (expected products), 15, to dimer by-

products, 45, as judged by the 
1
H NMR spectra for various starting materials, 12. 

 

Compound, 12 Ratio of expected product 

to dimer, (15 : 45) 

12d 1.0 : 1.0 

12e 5.0 : 1.0 

12f 1.0 : 1.0 

12j 1.0 : 1.3 

12n 56 : 1.0 

12o 1.0 : 2.8 

12p 5.0 : 1.0 

12r 4.0 : 1.0 

12s 1.0 : 2.0 

12v 1.0 : 1.2 

12y 1.1: 1.0 

 

 

A positive expected result was obtained when the electrophile was added over the 1 minute 

period. That is, only the 8-bromo compound 15e was observed in an appreciable yield of 

67%. While an addition over 20 minutes gave a much appreciable yield of the dimer product 

compared to the 10 minutes addition (Table 5), also a positive result. 

 

Table 5: The effect of the time over which the electrophile was added on the reactivity of 

12e. 

 

Time over which the electrophile 

was added 

Ratio of dimer to 8-

bromo product 

Comments  

1 minutes Only product observed  

10 minutes 5.0:1.0  

20 minutes 1.0:4.0. Associated with 

decomposition 
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Hence there is indication that the time over which the electrophile was added affected the 

yield of the expected product and a strong indication that the dimerization may be occurring 

by pathway 2. 

 

Other methods of investigating the dimerization pathways are possible but these were not 

carried out due to time constraint. One of such possible methods is; the reaction could be 

quenched before addition of the electrophile. In this case if dimerization occurs that would 

mean it is occurring by pathway 1.  

 

Table 6: Comparison of the NCH2 proton chemical shift of starting materials for the 

bromination reaction, 12, 8-bromo compounds (expected products), 15, and dimer by-

products, 45. 

 

Chemical shift (ppm) 

of NCH2 of starting 

material, 12 

Chemical shift(ppm) 

of NCH2 of 8-bromo 

compound, 15 

Chemical shift (ppm) 

of NCH2 of Dimer, 45 

5.39, 12d 5.47, 15d 6.21, 45d 

5.31, 12e 5.40, 15e 6.14, 45e 

5.39, 12n 5.42,  15n 6.10, 45n 

5.36, 12j 5.40, 15j 6.14, 45j 

5.50, 12f 5.52, 15f 6.29, 45f 

5.36, 12o 5.48, 15o 6.24, 45o 

5.47, 12p 5.55, 15p 6.27, 45p 

5.42, 12r 5.43, 15r 6.20, 45r 

5.51 , 12s 5.43, 15s 6.19, 45s 

5.52, 12v 5.56, 15v 6.34, 45v 

4.33, 12y 4.36, 15y 5.09, 45y 
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Possible mechanisms of purine dimerization 

 

Pathway 1 

The purine 12 is deprotonated at the carbon-8 position forming the lithiated species 14. This 

species reacts with the starting material 12 forming compound 47. The ionic species formed 

then oxidizes upon work up forming the dimer 45. 

 

Pathway 2 

The purine 12 is deprotonated at the carbon-8 position forming the lithiated species 14. This 

species reacts with the electrophile (1,2-dibromotetrachloroethane) forming compound 15, 

the expected 8-bromo purine. Unreacted lithiated species then reacts with already formed 8-

bromo species which now have a better leaving group in the 8-position, bromo group, 

forming the dimer 45. 

 

Possible mechanisms of purine dimerization 

 

 

Scheme 18
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3.2.2.2 Formation of aldehyde by-products 

 

The aldehyde by-product 46b might have resulted from de-benzylation of the starting 

material 12b via the proposed mechanism in Scheme 19. De-benzylation of heterocycles 

under strong basic condition is not unprecedented since this has been reported for indoles.66 It 

is proposed that starting material might have been de-benzylated following similar 

mechanism as reported for indoles66 (Scheme 19). The two aromatic rings which bond to the 

NCH2, pull the electron cloud to their ring systems rendering this position electron deficient 

and therefore make the protons acidic. In the presence of a strong base this carbon can be 

deprotonated forming a carbanion (compound 48). The NCH carbanion formed can attack the 

electrophilic reagent giving 49. The compound 49 having a good leaving group, bromo 

group, can be attacked by a nucleophile since this position is already activated for 

nucleophilic attack because of the two aromatic groups attached. The nucleophile in this case 

can be water during work up forming the unstable hemiaminal 50. Another possibility is the 

carbanion 48 could react with oxygen also forming 50. The hemiaminal 50 being unstable 

can oxidize to the more stable ketone 51 or de-benzylate forming the unbenzylated purine 11 

and the aldehyde 46 which is the product observed in our case.  

 

These aldehyde by-products were also observed for other substrates 12 d, e, k, g, p, q, t, u, v, 

x, and 13c, o judged by their crude 1H NMR but these were not isolated. Most of the 

substrates with halogen group(s) seem to form the aldehyde by-products. This is consistent to 

the fact the debenzylation is related to the acidity of the NCH2 protons. With the halogen(s) 

which is/are electron withdrawing groups on the phenyl, the whole phenyl substituent is made 

more electron withdrawing and hence the NCH2 protons more acidic. It has been observed 

that some of theses aldehydes have low boiling points for instance 2,6-difluorobenzaldehyde, 

46v, has a boiling point of 76-80 oC62 and 4-(trifloromethoxy)benzaldehyde, 46k,  has a 

boiling point of 73-75 oC. In addition, 2,4-Dichlorobenzaldehyde, 46u,  is reported to rapidly 

decompose  on standing in CDCl3 at 0 oC.61 Hence it is possible that the aldehydes may have 

been produced in the case of more other substrates than recorded in this report. The inability 

to isolate 46 d, e, k, g, p, q, t, u, v, x, and 13c, o may be due the possibility of them been lost 

by evaporation on the rotar vapour, or decomposition and the fact that some may as well have 

been produced in relatively lower amounts compared to 46b. The same reasons may account 

for the inability to observe the aldehyde formation for other substrates used in this study 

though they might have been formed. 
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Possible mechanism of 46b formation (a mechanism for de-benzylation of N-9 substituted purines under basic conditions) 
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3.2.3 Lithiation/bromination of 6-chloro-9-(4-methoxybenzyl)-2-nitro-9H-purine 

 

The lithiation/bromination of this substrate seems not a good reaction. There was poor 

conversion of starting material to product giving a recovered yield of starting material 33% 

(Scheme 20). The reactivity of this substrate was comparable to that of the halobenzylated 

purines in which case there was poor conversion of starting material to product. This general 

observation points out that with strong electron withdrawing groups on the purine ring system 

the lithiation/bromination reaction is difficult. Unlike the normal 8,8' dimerization observed 

in the other cases described earlier, 12x indicated an unusual by-product 52x in which there 

was an 8 to 2' bonding between two molecules of the starting material.  The by-product 

observed in this case indicated there was a reaction on the C-2 of the starting material in 

which the NO2 group was displaced by a nucleophile (8-purinyl anion). Nitro groups acting as 

leaving groups in the 2-position of purines is not unprecedented. The 2-NO2 of various 

purines have been displaced by various nucleophiles.67, 15, 68 They have been shown to be 

displaced by nucleophiles such as amines and alcohols.67, 15   Comparing reactivity of 12x and 

12c; it is worth noting that aromatic nitro groups are much more labile (better leaving groups) 

than chloro groups.69, 70 The nitro group is activated towards displacement by inductive effect 

from the 6-chloro group in its meta position.69, 70 In addition to the 52x the aldehyde by-

product 46x (the 1H chemical shift value for the CHO hydrogen was 9.81 ppm, Table 2) was 

also observed in the crude 1H NMR  of 12x in a much higher yield, compared to the other 

observed case describe earlier, which is consistent with the influence of the nitro group on the 

acidity of the NCH2 hydrogen. 

 

The structure of 52x has not been fully confirmed hence is a suggested structure. It has not 

been fully confirmed due to poor data. The poor data is because of the low amount of 

substance. Some of the expected coupling to fully confirm this structure have been missing 

on HMBC hence the structure was elucidated mainly based the proton spectrum, 13Carbon 

spectrum and HMQC; and based on possible products from the reaction in correspondence 

with the MS data. The data from HMBC was relatively poor hence not much contribution 

was from here but it was partly used in the elucidation. 
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Scheme 20 

 

 

3.2.4 Lithiation/bromination of N-9 alkylated-6-chloropurines 

 

The lithiation/bromination of the two substrates 12h and 12y (Scheme 21) demonstrated 

moderate conversion to the expected product in the case of 12y as judged by crude 1H NMR 

spectrum while an excellent conversion was observed for 12h. Comparing 12h and 12y, 12h 

had almost 100% conversion of starting material as judge by crude 1H NMR spectrum while 

12y had approximately 25% of starting material present in the crude product. The ratio of 

product to dimer from crude 1H NMR spectrum for 12y was 1.1:1.0. The major difference 

between these two substrates is, the alkyl chain in 12h is longer than 12y by having a sulphur 

atom in the chain. Also in 12h the sulphur atom intercepts the CH2 and the CH3 group. Both 

sulphur and carbon have approximately the same electronegativity however sulphur is larger 

than carbon hence a longer carbon-sulphur bond compared to a carbon-carbon bond. These 

differences between the two substrates could not account for the difference in reactivity 

between the two substrates in which 12y yielded two products while 12h gave only one 

product. 

 

Similar reaction on 6-chloro-9-methylpurine reported only one single product, which was 8-

bromo-6-chloro-9-methyl purine in good yield (66%)71, as in the case of 12h. The difference 

between the method used for 6-chloro-9-methylpurine and our case is; the LDA generation in 

the case of 6-chloro-9-methylpurine was over 1 hour while in the case of both 12h and 12y 

the generation was in 30 minutes. The generation of LDA in 30 minutes may only result in 
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residuals of unconverted BuLi. There is however no observed effect of this on the reactivity 

in the case of neither 12y nor 12h. 

 

 

Scheme 21 

 

 

3.2.5 Lithiation/bromination of N-7 benzylated 6-chloro- and 2,6-chloropurines 

 

The lithiation-bromination of N-7 alkylated purines (Scheme 22) seem not to be a “clean 

reaction”  based on the  crude 1H NMR spectrum the two compounds 13c and 13o. The 

expected products 53c and 53o were only isolated in moderate yields, Table 6. Studying the 
1H NMR, there was indication of the aldehyde by-product formations, (46o has 1H chemical 

shift for the CHO hydrogen at 9.99 ppm, while 46c at 9.84 ppm; Table 2), as observed in the 

case of N-9 benzylated purines. There was however no indication of dimer formation. 

Comparing compounds 12o and 13o, the dimer by-product was observed in the case of 12o 

(12o is the N-9 isomer of 13o) but not in the case of 13o. The inability of 13o to dimerize 

may be due to sterical reasons. Unlike 12o, a dimer from 13o may be sterically crowded in 

one side of the molecule. The chloro group in the 6-position may forces the N-7 benzyl group 

to orient towards the 8-position hence hindering any bulky group from been attached in the 8-

position as would have been in the case of the dimer. In the case of the N-9 benzylated 

purines there is no such sterical hindrance hence the dimerization observed in this case. 

 

Comparatively 13o yielded more expected product (8-bromo purine) than the 12o its N-9 

isomer. On the other hand 13c gave a lower yield of the expected product compared to 12c its 

N-9 isomer.  Hence no trend in the ease of lithiation/bromination could be observed in 
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comparison of reactions of the N-7 and N-9 isomers. However it is worth saying that, 

contrary to observation by Nolsøe et al.
17 9-benzyl-6-chloro-9H-purine (12o) gave the 

expected 9-benzyl-8-bromo-6-chloro-9H-purine (15o) however in extremely poor yield.  

1) LDA (ca 1,4 eq; 1 hr)

2) BrCCl2CCl2Br (2 eq),N

NN

N

Cl

N

NN

N

Cl

Br

Y Y

13c Y=Cl, R=OCH3, RT=2.25
13o Y=H, R=H, RT=2.30

53c Y=Cl, R=OCH3, 41%
53o Y=H, R=H, 23%

THF, -78 oC

R R

RT= reaction time af ter addition of BrCCl2CCl2Br
*calculated yield by Crude 1H NMR

R

O

46x Y=Cl, R=OCH3, 5*%
46o Y=H, R=H, 3*%

 

 

Scheme 22 
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4.0 CONCLUSION 

 

6-Chloropurines bearing varied substituent in the 2 and N-9 or N-7 position were lithiated 

and brominated in the 8-position. All the substrates investigated indicated the formation of 

the expected 8-bromo purine. For the N-9 benzylated purines, it was realized that with an 

electron donating group on the phenyl ring, the reactions gave good conversions and yields of 

the expected products. On the other hand, with electron withdrawing groups there were 

poorer conversions and yields of expected products. There were indications that in the case of 

the N-9 halo-benzylated purines the size and position(s) of the halogen group(s) on the 

phenyl ring affected the reactivity of the substrate and the overall yield of the expected 

product. 

 

Also, in addition to the expected products, by-products such as dimers and aldehydes were 

observed. 
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5.0 SYNTHETIC SIGNIFICANCE OF WORK DONE IN THIS 

PROJECT. 

 

In this project an extra functionality was introduced in the purine 8-position of 6-chloro and 

2,6-dichloropurines. In order to do this various benzyl groups and tetrahydropyranyl groups 

(THP) were use to protect the amine functionality at the N-7 and N-9 positions. These groups 

can be removed and other groups substituted in these positions. Besides the use of tert-

butoxycarbonyl, benzyloxycarbonyl, and triethoxycarbonyl groups; benzyl groups have also 

been used to protect amines.72 Various methods are used in the removal of this benzyl groups 

which yield the expected amine. Methods such as: (1) catalytic transfer hydrogenolysis: in 

this method the tertiary amine is refluxed with an excess of the hydrogen donor ( ammonium 

formate and hydrazine found to be  more efficient donors than sodium formate and 

hydrazine) in alcoholic solvents for a few hours using catalytic amounts of 10% palladium on 

carbon.73 The result is the secondary amine. (2) They can also be removed under oxidative 

conditions such as using BuOK and O2 in DMSO or treatment with aqueous ceric ammonium 

nitrate (CAN).72, 74 This procedure involves the deprotonation at the benzylic position and 

then oxidation of the formed hemiaminalate ion which being unstable goes to form the 

benzylaldehyde.72 The pyranyl protecting group can removed using the more efficient method 

(more efficient than using 2.5 M HCl then water/trifluoroacetic acid in ratio of 1:1) which 

involves refluxing the substrate with 10 mol % of copper (II) chloride in ethanol/ water.62 

 

The introductions of extra functionality onto the purine ring resulted in products with 

functionality in 2-, 6- and 8-positions (trihalopurines) and 6- and 8-positions (dihalopurines).  

This functionality offers us an ability to do more interesting chemistry in these positions. 

Halogen atoms in purines are known to be replaceable selectively using nitrogen and oxygen 

nucleophiles. In the case of N-7/N-9 alkylated purines the ease of displacement of the 

halogens is generally 8≈6>2.75, 76, 77 Studies done have shown that the difference  in reactivity 

of the 6-chloro-9-methylpurines and 8-chloro-9-methyl purines towards nucleophile is not 

very profound. Similar observations were made for the 6,8 dichloropurines. However there is 

profound difference in the reactivity of the 6-chloropurine and the 2-chloropurines.78 Works   

done so far has been in situation where there is chlorine in these positions. Though 

calculations have shown that there is equal possibility for nucleophilic attack at either 

position 6 or 8 of the purine ring real experiment has not been conducted in situations with 
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varied halogens in this positions.76 Selectivity between the 8- and 6-position can be enhance 

with varied reaction conditions and nature of nucleophile.78 More interesting chemistry can be 

done with fine tuned reaction condition by selectively introducing nucleophiles into the 6- 

and/or 8- and/or 2-position of the purines synthesized. Using the benzylated purines 

synthesized steric factors could play a role in the selectivity between the 6- and 8-position. 

The 8-position more sterically hindered in the most of the purines synthesized and hence 

selectivity in this case would be dependent on the size of the nucleophile.77, 79 It is to be noted 

that for 6,8 dichloropurines selectivity in nucleophilic reaction with small nucleophiles has 

been in favour of the 8-chloropurines.77, 79 

 

Another chemistry that can be done with the synthesized 8-bromo purines is C-C coupling 

chemistry. In this case the selectivity has been demonstrated to be governed by the nature of 

the halogen. For 2,6 dichloro purines selectivity is for the 6-position exclusively and this was 

reversed by placing a better leaving group (Br or I) in the 2-position.75 Similarly for 6,8 

dichloropurines selectivity is favour of 6-position which is reversed by introduction of a 

better leaving group in the 8-position.17 In view of this, reactions of di and trihalopurines, 

examples of which were synthesized in this project, are regioselective. This can be applied to 

the synthesis of di and trisubstituted purines bearing different substituents.80 In this project a 

bromine group which is a better leaving group has been introduced in the 8-position hence 

defining the order of selectivity in the purines synthesized as 8>6>2. Hence for palladium 

catalyzed reaction on the purines synthesized, the order of reactivity would be 8>6>2. 
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6.0 EXPERIMENTAL 

 

The 1H NMR spectra were recorded a at 500 MHz with Bruker DRX 500, 300MHz with a 

Bruker DPX 300 MHz or at 200 MHz with Bruker DPX 200 instrument.  The 13C NMR 

spectra were recorded at 125, 75 or 50 MHz with a Bruker Avance DRX 500, DPX 300, and 

DPX 200 instrument respectively.  Mass spectra were recorded, by electron ionization, at 70 

eV ionizing voltage and are presented as m/z (% relative intensity). The chemical shifts (δ) 

are given in ppm. THF was obtained distilled from sodium / benzophenone or from solvent 

purifying system (Günter) and diisopropylamine from CaH2. Compound 12i was obtained 

synthesized by the method described by Robins et al.25
 while 12j-y were obtained 

synthesized as previously described.81 12a-h were synthesized as given below in general 

procedure. All other reagents were commercially available and used as received. 

 

 

6.1 General procedure 

This section is grouped into two the N-alkylation of the purines, section 6.1.1, and the 

Lithiation/bromination of purines, section 6.1.2. 

 

6.1.1 N-Alkylation of 6-chloro- and 2,6-dichloropurines 

 This section is divided into two as the procedure for introduction of the pyranyl group was 

different from that of the benzyl group and alkyl chain. 

 

6.1.1.1 Synthesis of 2,6-dichloro-9-(tetrahydro-2H-pyran-2-yl)-9H-purine (12a)  

 

2,6-Dichloropurine 11a (955 mg, 5.05 mmol) was dissolved in dry EtOAc (50 mL). 

Pyridinium tosylate (299 mg, 1.2 mmol) was added and the mixture stirred at ambient 

temperature under nitrogen for 30 minutes. 2,3-Dihydropyrane (1.13 mL, 12 mmol) was 

added, and the mixture stirred for 5 minutes at ambient temperature followed by 5 hours at 40 
oC. The mixture was cooled to ambient temperature, diluted with ethyl acetate (150 mL), 

washed with brine (2 x 70 mL), dried using MgSO4 and evaporated. The residue was 

recrystallized from Hexane. 
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2,6-Dichloro-9-(tetrahydro-2H-pyran-2-yl)-9H-purine (12a) 

 

 

                  12a 

 

 Purified by recrystalisation from hexane; Yield 1044mg (76%), colourless solid.  

 

1H NMR (CDCl3, 300 MHz): δ 1.67-2.17 (m, 6H, 3CH2), 3.75-3.80 (m, 1H), 4.14-4.19 (m, 

1H), 5.72-5.76 (dd, 1H, J1 10.4 Hz, J2 2.4 Hz, H-2'), 8.30(s, 1H, H-8).  

 

 13 
C NMR (CDCl3, 75MHz) δ: 22.4 (C-5'), 24.6 (C-4'), 31.9 (C-6'), 68.9 (C-3'), 82.4 (C-1'), 

130.7(C-5), 143.7 (C-8), 151.6 (C-4), 152.1(C-6), 152.9(C-2). 

 

MS (EI). m/z (rel. %): 274/272 (3/4), 190/188 (6/9), 153 (7), 92 (3), 91 (1), 86 (7), 85 (100), 

84 (8), 67 (13), 65 (2). 

 

HR-MS. found 272.0227 calculated for C10H10Cl2N4O 272.0232. 
 

M. p. 117.5-118 oC (lit.119-120 oC). 82 
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Spectrum 1. 
1H NMR of 2,6-Dichloro-9-(tetrahydro-2H-pyran-2-yl)-9H-purine (12a). 

 

Spectrum 2. 
13C NMR of 2,6-Dichloro-9-(tetrahydro-2H-pyran-2-yl)-9H-purine (12a). 
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6.1.1.2 Synthesis of N-alkylated purines 12b-h, 13b-h 

 

The synthesis was on a 5 mmol scale unless otherwise started. A mixture of 6-chloropurine 

11b or 2,6-dichloropurine 11a (5.0 mmol) and potassium carbonate (2.07g, 15 mmol) in 

DMF (20 mL) was stirred at ambient temperature under nitrogen atmosphere for 30 minutes, 

after which the benzyl halide (10mmol) was added.  After stirring for 20-24 hours the 

reaction mixture was filtered and evaporated in vacuo. The products were then isolated by 

flash chromatography on silica gel.81 The 9-alkylated isomers, the expected products, 12b-h 

were eluted first. The 7-alkylated isomers the by-products 13b-h were eluted second. 

 

 

6-Chloro-9-(3,4,5-trimethoxybenzyl)-9H-purine (12b). 

 

 

                        12b 

 

 EtOAc-hexane (2:1), (3:1) then pure EtOAc. were used for flash chromatography; Yield 

952mg (56%), colourless solid.  

 

1H NMR (CDCl3, 300 MHz): δ 3.75 (s, 9H, 3xOCH3), 5.30 (s, 2H, CH2), 6.50 (s, 2H, Ar), 

8.09 (s, 1H, H-8), 8.71(s, 1H, H-2).  

 

13 
C NMR (CDCl3, 75MHz) δ: 48,1 (CH2), 56.1 (3'-OCH3 and 5'-OCH3), 60.7 (4'-OCH3), 

105.2 (C-2 and C-6 Ar), 129.8  (C-1 Ar), 131.3 (C-5), 138.2 (C-4), 144.9 (C-8), 150.9 (C-6), 

151.7(C-6), 151.9(C-2), 153.6 (C-3 and C-5 Ar).  
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MS (EI). m/z (rel. %): 336/334 (34/99, M+), 233 (7), 182(11), 181 (100), 151 (8), 136 (7), 79 

(6), 78 (4), 65 (3). 

 

HR-MS. found 334.0843 calculated for C15H15ClN4O3 334.0833. 
 

M. p. 115-116 oC (lit.115-116 oC).81 

 

Spectrum 3. 
1H NMR of 6-Chloro-9-(3,4,5-trimethoxybenzyl)-9H-purine (12b). 
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Spectrum 4. 
13C NMR of 6-Chloro-9-(3,4,5-trimethoxybenzyl)-9H-purine (12b). 

 

 

6-Chloro-7-(3,4,5-trimethoxybenzyl)-7H-purine (13b).  

 

N

N N

N

Cl

OCH3

OCH3

OCH3

 

                         13b 

 

EtOAc-hexane (2:1), (3:1) then pure EtOAc. were used for flash chromatography; Yield 

386mg (23%), colourless solid.  

 

1H NMR (CDCl3, 300 MHz): δ 3.76 (s, 6H, 2xOCH3), 3.80 (s, 3H, OCH3), 5.57 (s, 2H, 

CH2), 6.39 (s, 2H, Ar), 8.19 (s, 1H, H-8), 8.85 (s, 1H, H-2).  
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13 
C NMR (CDCl3, 75MHz) δ: 51.0 (CH2), 56.2 (3'-OCH3 and 5'-OCH3), 60.8 (4'-OCH3), 

104.6 (C-2 and C-6 Ar), 122.5 (C-5), 129.7 (C-1), 138.5 (C-4 Ar), 143.1 (C-4), 148.9 (C-8), 

152.5 (C-2),  153.9 (C-3 and C-5 Ar), 162.0 (C-6). 

 

MS (EI). m/z (rel. %): 336/334 (35/73, M+), 319 (6), 182 (20), 181 (100), 148 (8), 136 (7), 

79 (3), 77 (4), 65 (2). 

 

HR-MS. found 334.0830 calculated for C15H15ClN4O3 334.0833 
 

M. p. 122 oC (lit. 121-122 oC) .81
 

 

Spectrum 5. 
1H NMR of 6-Chloro-7-(3,4,5-trimethoxybenzyl)-7H-purine (13b).  
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Spectrum 6. 
13C NMR of 6-Chloro-7-(3,4,5-trimethoxybenzyl)-7H-purine (13b). 

 

 

2,6-Dichloro-9-(4-methoxybenzyl)-9H-purine (12c).  

  

 

                          12c 

 

EtOAc-Hexane 2:3 then pure EtOAc. were used for flash chromatography; Yield 910mg 

(59%) colourless solid. 

 

1H NMR (CDCl3, 300 MHz):  δ 3.79 (s, 3H, OCH3), 5.32 (s, 2H, CH2), 6.89 (d, J 8.7 Hz, 

2H, Ar), 7.26(d, J 8.7 Hz, 2H, Ar), 7.99 (s, 1H, H-8).   
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13C NMR (CDCl3, 75 MHz): δ 47.6 (CH2), 55.3 (OCH3), 114.6 (C-3 and C-5 Ar), 125.8 (C-

1 Ar), 129.7 (C-2 and C-6 Ar), 130.7 (C-5), 145.5 (C-8), 151.7 (C-6), 152.9 (C-4), 153.0 (C-

2), 160.0 (C-4 Ar). 

 

MS (EI). m/z (rel. %): 312/310/308 (4/22/31, M+), 196 (2), 122 (19), 121 (100), 92 (1), 91 

(6), 90 (2), 89 (3), 78 (12), 77 (9), 63 (2). 

 

HR-MS. found 308.0234 calculated for C13H10Cl2N4O 308.0232. 

 

M. p. 127-128 oC (lit. 128-130 oC).81 

 

Spectrum 7. 
1H NMR of 2,6-Dichloro-9-(4-methoxybenzyl)-9H-purine (12c). 
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Spectrum 8. 
13C NMR of 2,6-Dichloro-9-(4-methoxybenzyl)-9H-purine (12c) 

 

 

2,6-Dichloro-7-(4-methoxybenzyl)-7H-purine (13c).  

 

N

N N

N

Cl
OCH3

Cl

 

                         13c 

 

EtOAc-Hexane 2:3 then pure EtOAc were used for flash chromatography; Yield 316mg 

(21%) colourless solid.  

 

1H NMR (CDCl3, 300 MHz):  δ 3.78 (s, 3H, OCH3), 5.56 (s, 2H, CH2), 6.88 (d, J1 8.7 Hz, 

2H, Ar), 7.12 (d, J1 8.7 Hz, 2H, Ar), 8.17 (s, 1H, H-8).  
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13C NMR (CDCl3, 75 MHz): δ 50.6 (CH2), 55.4 (OCH3), 114.8 (C-3 and C-5 Ar), 121.7 (C-

5 Ar), 125.7 (C-1 Ar), 128.9 (C-2 and C-6 Ar), 143.9 (C-4), 150.2 (C-8), 153.2 (C-2), 160.1 

(C-4 Ar), 163.7 (C-6). 

 

MS (EI). m/z (rel. %): 312/310/308 (2/13/19), 122 (16), 121 (100), 91 (5), 78 (9), 77 (8). 

 

HR-MS. found 308.0233 calculated for C13H10Cl2N4O 308.0232 

 

M. p. 138-139 oC (lit. 146-148 oC).81 

 

Spectrum 9. 
1H NMR of 2,6-Dichloro-7-(4-methoxybenzyl)-7H-purine (13c). 
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Spectrum 10. 
13C NMR of 2,6-Dichloro-7-(4-methoxybenzyl)-7H-purine (13c). 

 

 

6-Chloro-9-(3-methoxybenzyl)-9H-purine (12d). 

 

 

                          12d 

 

 EtOAc-Hexane 1:1 then pure EtOAc were used for flash chromatography; Yield 870mg 

(63%) colourless solid. 

 

 1H NMR (CDCl3, 300 MHz): δ 3.75 (s, 3H, OCH3), 5.39 (s, 2H, CH2), 6.81-6.87 (m, 3H, 

Ar), 7.23-7.29 (m, 1H, Ar), 8.08 (s, 1H, H-8) 8.76 (s, 1H, H-2).  
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 13C NMR (CDCl3, 75 MHz): δ 47.7 (CH2), 55.2 (OCH3), 113.7 (C-4 Ar), 113.8 (C-2 Ar), 

119.9 (C-6 Ar), 130.3 (C-5 Ar), 131.3m (C-5), 135.9 (C-1 Ar), 144.9 (C-8), 150.9 (C-6), 

151.7 (C-4), 152.0 (C-2), 160.0 (C-3 Ar). 

 

MS (EI). m/z (rel. %): 276/274 (21/66, M+), 259 (10), 239 (6), 212 (8), 167 (11), 122 (9), 

121 (100), 92 (6), 91 (40), 78 (42), 77 (25). 

 

HR-MS. found 274.0619 calculated for C13H11ClN4O 274.0621 

 

M. p. 105-106 oC (lit. 104-105 oC).81 

 

Spectrum 11. 
1H NMR of 6-Chloro-9-(3-methoxybenzyl)-9H-purine (12d). 
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Spectrum 12. 
13C NMR of 6-Chloro-9-(3-methoxybenzyl)-9H-purine (12d). 

 

 

6-Chloro-7-(3-methoxybenzyl)-7H-purine (13d).  

 

 

                        13d 

 

EtOAc-Hexane 1:1 then pure EtOAc were used for flash chromatography; Yield 293mg 

(21%) colourless solid.  

 

1H NMR (CDCl3, 300 MHz): δ 3.74 (s, 3H, OCH3), 5.62 (s, 2H, CH2), 6.67-6.72 (m, 2H, 

Ar), 6.84-6.87 (m, 1H, Ar),   7.24-7.29 (m, 1H, Ar), 8.20 (s, 1H, H-8), 8.85 (s, 1H, H-2). 
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 13C NMR (CDCl3, 75 MHz): δ 50.6 (CH2), 55.3 (OCH3), 113.2 (C-4 Ar), 113.8 (C-2 Ar), 

119.2 (C-6 Ar), 122.6 (C-5 ), 130.5 (C-5 Ar ), 136.1 (C-1 Ar), 143.2 (C-4), 149.1 (C-8), 

152.6 (C-2), 160.2 (C-6), 162.0 (C-3 Ar). 

 

MS (EI). m/z (rel. %): 276/274 (31/67, M+), 239 (22), 122 (16), 121 (100), 92 (3), 91 (28), 

78 (17), 77 (11), 65 (9). 

 

HR-MS. found 274.0619 calculated for C13H11ClN4O 274.0621 

 

M. p. 150-152 oC (lit. 160-162 oC).81 

 

Spectrum 13. 
1H NMR of 6-Chloro-7-(3-methoxybenzyl)-7H-purine (13d). 

 



53 
 

 

Spectrum 14. 
13C NMR of 6-Chloro-7-(3-methoxybenzyl)-7H-purine (13d) 

 

 

2,6-Dichloro-9-(3-methoxybenzyl)-9H-purine (12e). 

 

 

                          12e 

 

 EtOAc- hexane (1:2) then pure EtOAc were used for flash chromatography Yield 837mg 

(54%) colourless solid.  

 

1H NMR (CDCl3, 300 MHz): δ 3.77(s, 3H, OCH3), 5.35(s, 2H, CH2), 6.82-6.88(m, 3H, Ar), 

7.25-7.28(m, 1H, Ar) 8.03 (s, 1H, H-8).  
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13C NMR (CDCl3, 75MHz): δ 48.0 (CH2), 55.4 (OCH3), 114.0 (C-2 Ar), 114.3 (C-4 Ar), 

120.2 (C-6 Ar), 130.5 (C-5 Ar), 130.7 (C-5), 135.4 (C-1 Ar), 145.6 (C-8), 151.9 (C-4/C-6), 

153.2 (C-2), 160.3 (C-3 Ar). 

 

MS (EI). m/z (rel. %): 312/310/308 (6/36/57, M+), 275/273 (3/9), 122 (9), 121 (100), 91 (21), 

78 (12), 65 (6). 

 

HR-MS.  found 308.0227 calculated for C13H10Cl2N4O 308.0232. 

 

M. p. 118-119 oC (lit. 119-121 oC).81 

 

Spectrum 15. 
1H NMR of 2,6-Dichloro-9-(3-methoxybenzyl)-9H-purine (12e). 
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Spectrum 16. 
13C NMR of 2,6-Dichloro-9-(3-methoxybenzyl)-9H-purine (12e). 

 

 

2,6-Dichloro-7-(3-methoxybenzyl)-7H-purine (13e). 

   

 

                        13e 

 

EtOAc- hexane (1:2) then pure EtOAc were used for flash chromatography Yield 341mg 

(22%) off white solid.  

 

1H NMR (CDCl3, 300 MHz): δ 3.69 (s, 3H, OCH3), 5.60 (s, 2H, CH2), 6.62-6.66(m, 2H, 

Ar), 6.77-6.81(dd, J1=8.1 Hz, J2 =2.2 Hz, 1H, Ar), 7.20(t, J1=7.9Hz, 1H, Ar), 8.29(s, 1H, H-8)  
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13C NMR (CDCl3, 75MHz): δ 50.6 (CH2), 55.2 (OCH3), 113.0 (C-4 Ar), 113.6 (C-2 Ar), 

119.0 (C-6 Ar), 130.3 (C-5 Ar),  135.7 (C-1 Ar), 143.8 (C-5), 150.6 (C-8 Ar), 152.8 (C-6/C-

4), 160.0 (C-3 Ar), 163.4 (C-6). 

 

MS (EI). m/z (rel. %): 312/310/308 (5/30/44, M+), 275/273 (3/11), 122 (13), 121 (100), 91 

(20), 78 (11), 65(6). 

 

HR-MS. found 308.0227 calculated for C13H10Cl2N4O 308.0232. 

 

M. p. 110-112 oC (litt. 106-108 oC).81 

 

Spectrum 17. 
1H NMR of 2,6-Dichloro-7-(3-methoxybenzyl)-7H-purine (13e). 
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Spectrum 18. 
13C NMR of 2,6-Dichloro-7-(3-methoxybenzyl)-7H-purine (13e). 

 

 

6-Chloro-9-(4-trifluoromethylbenzyl)-9H-purine (12f) 
 
 

 
                      12f 

 

EtOAc-Hexane 3:4 then pure EtOAc were used for flash chromatography; Yield 780mg 

 (50%) white solid.  

 

1H NMR (CDCl3, 300 MHz): δ 5.50 (s, 2H, CH2), 7.40 (d, J=8.1 Hz, 2H, Ar), 7.59(d, J= 

8.1Hz, 1H, Ar), 8.12 (s, 1H, H-8) 8.74 (s, 1H, H-2)   

 



58 
 

13C NMR (CDCl3, 75 MHz): δ; 47.3 (CH2), 123.5 (q, J=271.6 Hz, CF3), 126.3 (C-3 and C-

5),  128.1 (C-2 and C-6 Ar), 131.3 (C-4 Ar), 131.4 (C-5), 138.4 (C-1 Ar), 144.7 (C-8), 151.2 

(C-6), 151.7 (C-4), 152.2 (C-2). 

 

MS (EI). m/z (rel. %):314/312 (36/89, M+), 311 (100), 250 (27), 167 (10), 159 (87), 119 

(10), 109 (29), 77 (2), 65 (1). 

 

HR-MS. found 312.0384 calculated for C13H8ClF3N4 312.0390 

 

M. p. 128-129 oC (lit. 130-132 oC).81
 

 

Spectrum 19. 
1H NMR of 6-Chloro-9-(4-trifluoromethylbenzyl)-9H-purine (12f). 



59 
 

 
Spectrum 20. 

13C NMR of 6-Chloro-9-(4-trifluoromethylbenzyl)-9H-purine (12f). 
 

 

 
6-Chloro-7-(4-trifluoromethylbenzyl)-7H-purine (13f). 

 

 

                        13f 

 

 EtOAc-Hexane 3:4 then pure EtOAc were used for flash chromatography; Yield 257mg 

(16%) white solid.  

 

1H NMR (CDCl3, 300 MHz): δ  5.80 (s, 2H, CH2), 7.28 (d, J= 8.1 Hz, 2H, Ar), 7.65(d, J 

=8.1Hz, 1H, Ar), 8.40 (s, 1H, H-8) 8.90 (s, 1H, H-2)  
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13C NMR (CDCl3, 75 MHz): δ 49.9 (CH2), 121.7 (q, J=270.7 Hz, CF3), 126.2 (C-3 and C-5 

Ar), 127.0 (C-2 and C-6 Ar),  130.6 (C-5), 131.1 (C-4 Ar), 131.5 (C-4), 138.9 (C-1 Ar), 143.3 

(C-8),149.3 (C-4),152.6 (C-2), 161.9 (C-6). 

 

MS (EI). m/z (rel. %): 314/312 (40/78, M+), 311 (33), 250 (5), 160 (19), 159 (100), 119 (10), 

109 (33), 89 (5). 

 

HR-MS. found 312.0386 calculated for C13H8ClF3N4 312.0390 

 

M. p. 129-130 oC (lit. 135-136 oC).81
 

 

Spectrum 21. 
1H NMR of 6-Chloro-7-(4-trifluoromethylbenzyl)-7H-purine (13f). 
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Spectrum 22. 

13C NMR of 6-Chloro-7-(4-trifluoromethylbenzyl)-7H-purine (13f). 
 

 

6-Chloro-9-(4-benzyloxybenzyl)-9H-purine (12g).  

 

 

                                  12g 

 

EtOAc-Hexane 2:1 was used for flash chromatography; Yield 489mg (56%) colourless solid. 

 

 1H NMR (CDCl3, 300 MHz): δ  5.07 (s, 2H, CH2), 5.40 (s, 2H, CH2), 6.97-7.44 (m, 9H, 

Ar), 8.09(s, 1H, H-8), 8.80 (s, 1H, H-2).   
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13C NMR (CDCl3, 75 MHz): δ 47.5 (N-CH2), 70.1 (O-CH2), 115.6 (C-3' and C-5' Ar), 126.8 

(C-2'' and C-6'' Ar), 127.4 (C-4'' Ar), 128.1 (C-3'' and C-5'' Ar), 128.7 (C-2' and C-6' Ar), 

129.6 (C-1' Ar), 131.6 (C-5), 136.5 (C-1'' Ar), 144.9 (C-8), 151.1 (C-6), 151.8 (C-4), 152.2 

(C-2), 159.2 (C-4' Ar). 

 

MS (EI). m/z (rel. %): 352/350 (16/42, M+), 107 (2), 105 (2), 92 (13), 91 (100), 78 (5), 77 

(3), 65 (9). 

 
HR-MS. found 350.0939 calculated for C19H15ClN4O 350.0934 
 

M. p. 129-130 oC (lit. 127-128 oC).81
  

 

Spectrum 23. 
1H NMR of 6-Chloro-9-(4-benzyloxybenzyl)-9H-purine (12g). 
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Spectrum 24. 
13C NMR of 6-Chloro-9-(4-benzyloxybenzyl)-9H-purine (12g). 

 

 

6-Chloro-7-(4-benzyloxybenzyl)-7H-purine (13g).  

 

 

                              13g 

 

EtOAc-Hexane 2:1 was used for flash chromatography; Yield 260mg (27%) colourless solid.  

 

1H NMR (CDCl3, 300 MHz): δ 5.03 (s, 2H, CH2), 5.59 (s, 2H, CH2), 6.95 (d, J=8.7 Hz,  2H, 

Ar), 7.13 (d, J=8.7 Hz, 2H, Ar), 7.35-7.37(m, 5H, Ar) 8.16(s, 1H, H-8)  8.87(s, 1H, H-2) 
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13C NMR (CDCl3, 75 MHz): δ 50.4 (N-CH2), 70.1 (O-CH2), 115.7 (C-3' and C-5' Ar), 

122.5 (C-5), 126.5 (C-2'' and C-6'' Ar), 127.4 (C-4'' Ar), 128.1 (C-3'' and C-5'' Ar), 128.6 (C-

2' and C-6' Ar), 128.9 (C-1' Ar), 136.4 (C-1'' Ar), 143.2 (C-4), 148.7 (C-8), 152.7 (C-2), 

159.2 (C-4' Ar), 161.9 (C-6).  

 

MS (EI). m/z (rel. %): 352/350 (10/30, M+), 244 (6), 243 (7), 107 (1), 106 (1), 92 (8), 91 

(100), 77 (2), 65 (8). 

 

HR-MS. found 350.0942 calculated for C19H15ClN4O 350.0934. 

 

M. p. 140-142 oC (lit. 142-143 oC).81 

 

 

Spectrum 25. 
1H NMR of 6-Chloro-7-(4-benzyloxybenzyl)-7H-purine (13g). 
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Spectrum 26. 
13 C NMR of 6-Chloro-7-(4-benzyloxybenzyl)-7H-purine (13g). 

 

 

6-Chloro-9-(methylthiomethyl)-9H-purine (12h) 

 

 

                   12h 

 

EtOAc: Hex 1:1 and EtOAc. were used for flash chromatography; Yield 469 mg (43%) 

colourless solid.  

 

1H NMR (CDCl3, 300 MHz): δ 2.08 (s, 3H, CH3), 5.26 (s, 2H, CH2), 8.27 (s, 1H, H-8), 8.67 

(s, 1H, H-2). 
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13C NMR (CDCl3, 75 MHz): δ 15.2 (CH3), 46.8(CH2), 131.3 (C-5), 144.7 (C-8), 151.0 (C-

6), 151.7 (C-4), 152.0 (C-2). 

 

MS (EI). m/z (rel. %): 216/214 (7/20, M+), 179 (3), 170/168 (33/100), 169/167 (25/52), 140 

(6), 113 (5), 104 (15), 87 (4), 84 (6), 79 (13), 77 (20), 65 (39, 61 (85). 

 

HR-MS. found 214.0074 calculated for C7H7ClN4S 214.0080 

 

M. p. 84-85oC (literature value not found). 

 

 

Spectrum 27. 
1H NMR of 6-Chloro-9-(methylthiomethyl)-9H-purine (12h). 
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Spectrum 28. 
13C NMR of 6-Chloro-9-(methylthiomethyl)-9H-purine (12h). 

 

 

6-Chloro-7-(methylthiomethyl)-7H-purine (13h) 

 

 

             13h 

 

EtOAc: Hex 1:1 and EtOAc. were used for flash chromatography; Yield 174 mg (16%) pale 

yellow solid.  

 

1H NMR (CDCl3, 300 MHz): δ 2.15 (s, 3H, CH3), 5.52 (s, 2H, CH2), 8.45 (s, 1H, H-8), 8.88 

(s, 1H, H-2). 



68 
 

 

13C NMR (CDCl3, 75 MHz): δ 14.5 (CH3), 50.5(CH2), 122.0 (C-5), 143.4 (C-4), 148.5 (C-

8), 152.7 C-2), 162.2 (C-6). 

 

MS (EI). m/z (rel. %): 216/214 (21/55, M+), 179 (2), 170/168 (6/19), 169/167 (34/100), 142 

(8), 140 (24), 119 (6), 113 (9), 105(1), 104 (5), 87 (2), 86 (11), 79 (4), 77 (8), 65 (2), 61 (80). 

 

HR-MS. found 214.0075 calculated for C7H7ClN4S 214.0080. 

 

M. p. 120-121  oC (literature value not found). 

 

Spectrum 29. 
1H NMR of 6-Chloro-7-(methylthiomethyl)-7H-purine (13h). 
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Spectrum 30. 
13C NMR of 6-Chloro-7-(methylthiomethyl)-7H-purine (13h). 

 

 

6.1.2 Synthesis of 8-bromo purines (15, 53) via lithiation/bromination 

 

Generally the synthesis was on a 0.5 mmol scale unless otherwise started. A solution of 

purine, 12 or 13 (0.5 mmol) in THF (2.0 mL) was added dropwise over 10 minutes to a 

stirred solution of LDA (ca 0.5M in THF, amount of LDA 1.4 mL). After stirring for 1 hour, 

a solution of BrCCl2CCl2Br (326 mg, 1 mmol) in THF (1.0 mL) was added dropwise over 10 

minutes.  The resulting mixture was stirred at -78 oC under N2 for the time given in the Table 

2 before quenching using saturated aqueous NH4Cl (15 mL). The mixture was warmed to 

ambient temperature and extracted using ethyl acetate (3x25 mL). The extract was washed 

with NaCl (20 mL) then dried further with MgSO4. The extract was evaporated in vacuo and 

the crude product was purified by flash chromatography on silica gel.  

 

The LDA  was prepared in situ from butyllithium (0.7 mmol) and diisopropylamine (0.75 

mmol),) by addition of the butyllithium dropwise over 5 minutes to a stirred solution of 
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diisopropylamine under N2 at -78 oC and mixture left to stir for a period of 30 minutes (and 

1hour in the case of 12x). 

 

 

 

8-Bromo-2,6-dichloro-9-(tetrahydro-2H-pyran-2-yl)-9H-purine (15a).  
 

 

 
                       15a 

 

Hexane followed by EtOAc- hexane (1:6) and (1:3) were used for flash chromatography. 

Yield 141mg (80%), pale yellow. 

 

1H NMR (CDCl3, 300 MHz): δ 1.59-1.90 (m, 5H, 3CH2), 2.92-2.96 (m, 1H), 3.69-3.73 (m, 

1H), 4.14-4.19 (m, 1H), 5.68-5.72 (dd, 1H, J1 11.3 Hz, J2 2.4 Hz, H-2).  

 
13 

C NMR (CDCl3, 75MHz): δ 23.1 (C-5 pyranyl), 24.5 (C-4 pyranyl), 28.6 (C-6 pyranyl ), 

69.3 (C-3 pyranyl), 85.3 (C-1 pyranyl), 130.9 (C-8), 133.8 (C-5), 150.3 (C-6), 152.9 (C-4), 

153.6 (C-2).  

 

MS (EI). m/z (rel. %): 354/352/350 (0.2/0.5/0.3, M+), 270/268/266 (10/23/14), 233 (8), 

231(6), 85(100), 67(11), 57(18), 53(6), 43(13),39 (9), 29(25) 

 

HR-MS: found 349.9329, calculated for C10H9BrCl2N4O 349.9337. 

 

M.p.: 130 oC. 
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Spectrum 31. 
1H NMR of 8-Bromo-2, 6-dichloro-9-(tetrahydro-2H-pyran-2-yl)-9H-purine 

                (15a).  

 

Spectrum 32. 
13C NMR of 8-Bromo-2, 6-dichloro-9-(tetrahydro-2H-pyran-2-yl)-9H-purine 

                    (15a).  
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Spectrum 33. HMQC of 8-Bromo-2, 6-dichloro-9-(tetrahydro-2H-pyran-2-yl)-9H-purine 

                (15a).  
 

 

Spectrum 34. HMBC of 8-Bromo-2, 6-dichloro-9-(tetrahydro-2H-pyran-2-yl)-9H-purine 

                (15a).  
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8-Bromo-6-chloro-9-(3,4,5-trimethoxybenzyl)-9H-purine (15b).  
 

N

NN

N

OCH3

OCH3

OCH3

Cl

Br

 

                       15b 

 

Hexane followed by EtOAc- hexane (1:3) and (1:1) were used for flash chromatography; 

Yield 160 mg (78%) off white solid.   

 

1H NMR (CDCl3, 300 MHz): δ  3.77(s, 9H, 3x OCH3), 5.37(s,2H, CH2), 6.62(s, 2H, Ar), 

8.72(s, 1H, H-2) 

 

 13C NMR (CDCl3, 75 MHz): δ 48.6 (CH2), 56.1 (3'- OCH3 and 5'- OCH3), 60.8 (4'- OCH3), 

105.5 (C-2 and C-6 Ar), 129.5 (C-1 Ar), 131.8 (C-8 ), 134.1 (C-5), 138.3 (C-4 Ar), 149.6 (C-

4), 152.1 (C-2), 152.8 (C-6), 153.5 (C-3 and C-5 Ar).  

 

MS (EI). m/z (rel. %): 416/ 414/ 412(10/40/30, M+), 399(6), 335/333 (8/23), 182(11), 181 

(100), 148(6), 136(7), 77(6), 31(0.3).  

 

HR-MS:  found 411.9918, calculated for C15H14BrClN4O3 411.9938. 

  

M.p.: 145-148 oC.  
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Spectrum 35. 
1H NMR of 8-Bromo-6-chloro-9-(3,4,5-trimethoxybenzyl)-9H-purine (15b). 

 

 

Spectrum 36. 
13C NMR of 8-Bromo-6-chloro-9-(3,4,5-trimethoxybenzyl)-9H-purine (15b). 
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Spectrum 37. 
 HMQC of 8-Bromo-6-chloro-9-(3,4,5-trimethoxybenzyl)-9H-purine (15b). 

 

 

Spectrum 38. 
 HMBC of 8-Bromo-6-chloro-9-(3,4,5-trimethoxybenzyl)-9H-purine (15b). 
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3,4,5-Trimethoxybenzaldehyde (46b). 

 

 

                      46b 

 

 Hexane followed by EtOAc- hexane (1:3) and (1:1) were used for flash chromatography; 

Yield 8mg (8%) brown solid.  

 

1H NMR (CDCl3, 500 MHz): δ 3.92(s, 9H, 3x OCH3), 7.1(s, 2H, Ar), 9.9(s, 1H, CHO) 

 

 13C NMR (CDCl3, 125 MHz): δ 56.3(3,5-OCH3) 61.0(4- OCH3),  106.7(C-6, C-2), 

131.7(C-1), 143.6(C-4), 153.6(C-3, C-5), 191.1(CHO). 

  

MS (EI). m/z (rel. %): 196(100, M+) 181(45), 153(6), 131(5), 125(21), 110(13), 125(21), 

110(13), 95(9), 93(8), 77(5), 69(20).  

 

HR-MS:  found 196.0743, calculated for C10H12O4 196.0736. 
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Spectrum 39. 
1H NMR of 3,4,5-Trimethoxybenzaldehyde (46b). 

 

Spectrum 40. 
13C NMR of 3,4,5-Trimethoxybenzaldehyde (46b). 
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Spectrum 41. DEPT 135 of 3,4,5-Trimethoxybenzaldehyde (46b). 

 

 

8-Bromo-2,6-dichloro-9-(4-methoxybenzyl)-9H-purine (15c).  

 

N

NN

N

OCH3

Cl

Cl
Br

 

                               15c 

 

Hexane followed by EtOAc- hexane (1:6) and (1:2) were used for flash chromatography 

Yield 154mg (80%) light yellow solid.  

 

1H NMR (CDCl3, 300 MHz): δ 3.75(s, 3H, OCH3), 5.35(s, 2H, CH2), 6.82 (d, J1 8.8 Hz, 2H, 

Ar), 7.30 (d, J1 8.8Hz, 2H, Ar).   
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13C NMR (CDCl3, 75 MHz): δ 48.1 (CH2), 55.3 (OCH3), 114.4 (C-3 and C-5 Ar), 125.7 (C-

1 Ar) , 129.7 (C-2 and C6 Ar), 130.8 (C-8), 134.6 (C-5), 150.1 (C-6), 153.1 (C-4), 153.9 (C-

2), 159.9 (C-4 Ar). 

 

MS (EI). m/z (rel. %): 390/388/386 (3/7/4), 309(1), 305(0.1), 193(0.4), 122(11), 121(100), 

78(8), 77(7), 65(2).  

 

HR-MS:  found 385.9334, calculated for C13H9BrCl2N4O 385.9337. 

 

M.p.: 143-145 oC. 

 

Spectrum 42 . 
1H NMR of 8-Bromo-2,6-dichloro-9-(4-methoxybenzyl)-9H-purine (15c). 
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Spectrum 43. 
13C NMR of 8-Bromo-2,6-dichloro-9-(4-methoxybenzyl)-9H-purine (15c). 

 

 

Spectrum 44. HMQC of 8-Bromo-2,6-dichloro-9-(4-methoxybenzyl)-9H-purine (15c). 
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Spectrum 45. HMBC of 8-Bromo-2,6-dichloro-9-(4-methoxybenzyl)-9H-purine (15c). 

 

 

8-Bromo-6-chloro-9-(3-methoxybenzyl)-9H-purine (15d).  

 

N

NN

N

OCH3

Cl

Br

 

                   15d 

 

Hexane followed by EtOAc- hexane (1:6) and (1:3) were used for flash chromatography 

Yield 44mg (25%) pale yellow solid.  
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1H NMR (CDCl3, 300 MHz): δ 3.78(s, 3H), 5.47(s, 2H), 6.91-6.84 (m, 2H), 6.93(s, 1H), 

7.29-7.27(m, 1H), 8.76(s, 1H). 

 

 13C NMR (CDCl3, 75MHz): δ 48.2 (CH2), 55.2 (OCH3), 113.6 (C-4 Ar), 113.9 (C-2 Ar), 

120.0 (C-6 Ar), 130.1 (C-5 Ar), 131.8 (C-5), 134.2 (C-8), 135.5 (C-1 Ar), 149.5 (C-4), 152.1 

(C-2), 152.9 (C-6), 159.9 (C-3 Ar). 

 

 MS (EI). m/z (rel. %): 356/354/352 (8/30/24, M+), 275(34), 274 (17), 273(100), 122(6) 

121(68), 91(16), 78(9), 65(5). 

 

 HR-MS:  found 351.9718 calculated for C13H10BrClN4O 351.9727. 

 

M.p.: 103-106 oC. 

 

 

Spectrum 46 
1H NMR of 8-Bromo-6-chloro-9-(3-methoxybenzyl)-9H-purine (15d). 
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Spectrum 47. 
13C NMR of 8-Bromo-6-chloro-9-(3-methoxybenzyl)-9H-purine (15d). 

 

Spectrum 48. HMQC of 8-Bromo-6-chloro-9-(3-methoxybenzyl)-9H-purine (15d). 
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Spectrum 49.  HMBC of 8-Bromo-6-chloro-9-(3-methoxybenzyl)-9H-purine (15d). 

 

 

8,8'-bis[6-Chloro-9-(3-methoxybenzyl)-9H-purine] (45d)  

 

 

                               45d 

 

Hexane followed by EtOAc- hexane (1:6) and (1:2) were used for flash chromatography. 

Yield 35.3mg (26%) white. 
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1
H NMR (CDCl3, 300 MHz): δ 3.65(s, 6H, 2x OCH3), 6.21(s, 4H, 2xCH2 ), 6.68-6.72( dd, 

2H,  J1 8.1Hz, J2 2.1Hz, Ar), 6.84.(d, J1=7.6, 2H, Ar), 7.05(t, 2H, J1=7.9 Hz, Ar), 8.9(s, 2H, 

2xH-2).  

 

13C NMR (CDCl3, 75MHz) δ 48.4 (CH2), 55.1 (OCH3), 113.6 (C-6 Ar), 114.0 (C-2 Ar), 

120.4 (C-4 Ar), 129.6 (C-5 Ar), 130.8 (C-5), 137.2 (C-1 Ar), 143.3 (C-8), 152.2 (C-6), 153.1 

(C-4), 153.4 (C-4), 159.6 (C-3 Ar) . 

 

MS (EI). m/z (rel. %): 550/548/546 (5/36/53), M+), 429/427/425(11/66/100), 426(22), 

240(31), 121(93), 122(9), 92(3), 91(34), 78(16), 77(12), 65(8), 51(1). 

 

HR-MS:  found 546.1080 calculated for C26H20Cl2N8O2 546.1086. 

 

M.p.: 218-220oC. 

 

 

Spectrum 50. 
1H NMR of 8,8'-bis[6-Chloro-9-(3-methoxybenzyl)-9H-purine] (45d). 
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Spectrum 51. 
13C NMR of 8,8'-bis[6-Chloro-9-(3-methoxybenzyl)-9H-purine] (45d). 

 

Spectrum 52. HMQC of 8,8'-bis[6-Chloro-9-(3-methoxybenzyl)-9H-purine] (45d). 
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Spectrum 53. HMQC of 8,8'-bis[6-Chloro-9-(3-methoxybenzyl)-9H-purine] (45d) 

 

 

8-Bromo-2,6-dichloro-9-(3-methoxybenzyl)-9H-purine (15e)  

 

 

                        15e 

 

Hexane followed by EtOAc- hexane (1:6) and (1:2) were used for flash chromatography. 

Yield 108mg (56%) pale yellow solid. 
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1H NMR (CDCl3, 300 MHz): δ 3.76(s, 3H, OCH3), 5.40(s, 2H, CH2), 6.81-6.87(m,3H, Ar),  

7.27(t,1H, J1 8.0 Hz, Ar).  

 

13C NMR (CDCl3, 75MHz): δ 48.4 (CH2), 55.3 (OCH3), 113.9 (C-2 Ar), 114.0 (C-4 Ar), 

120.0 (C-6 Ar), 130.2 (C-5 Ar), 130.7 (C-8), 134.7 (C-5), 135.0 (C-1 Ar), 150.2 (C-6), 153.2 

(C-4), 154.0 (C-2), 160.0 (C-3 Ar).  

 

MS (EI). m/z (rel. %): 390/388/386 (11/23/14, M+), 307(67), 122(9), 121(100), 91(19), 

78(11), 65(6), 65(6). 

 

HR-MS: found   385.9338 calculated for C13H9BrCl2N4O. 385.9337 

 

M.p.: 144-147 oC.  

 

 

Spectrum 54. 
1H NMR of 8-Bromo-2,6-dichloro-9-(3-methoxybenzyl)-9H-purine (15e). 
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Spectrum 55. 
13C NMR of 8-Bromo-2,6-dichloro-9-(3-methoxybenzyl)-9H-purine (15e). 

 

 

Spectrum 56. 
 HMQC of 8-Bromo-2,6-dichloro-9-(3-methoxybenzyl)-9H-purine (15e). 
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Spectrum 57. 
 HMBC of 8-Bromo-2,6-dichloro-9-(3-methoxybenzyl)-9H-purine (15e). 

 

 

8,8'-bis[2,6-dichloro-9-(3-methoxybenzyl)-9Hpurine] (45e).  

 

 

                                     45e 

 

Hexane followed by EtOAc-hexane (1:6) and (1:2) were used for flash chromatography Yield 

12.5mg (8%) colourless solid. 

 
1
H NMR (CDCl3, 300 MHz): δ 3.68 (s, 6H, 2x OCH3) , 6.14 (s, 4H, CH2 ), 6.72 ( dd, 4H,  J1 

8.2Hz, J2 2.0Hz, Ar), 6.82 (s, 2H, Ar), 7.07(t, 2H, J1 8.0 Hz, Ar).  
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13C NMR (CDCl3, 75MHz) δ 48.8 (CH2), 55.2 (OCH3), 113.8 (C-6 Ar), 114.1 (C-2 Ar), 

120.4 (C-4), 129.8 (C-4 Ar), 130.0 (C-5), 136.7 (C-1 Ar), 143.6 (C-8), 153.1 (C-6), 154.3 (C-

6), 154.8 (C-4), 159.7 (C-3 Ar).  

 

MS (EI). m/z(rel. %): 618/616/614 (7/13/10, M+), 497/495/493(15/34/26), 388(6), 

309/307(16/26) 240(36), 121(100), 91(22), 78(12), 65(6), 39(3). 

 

HR-MS:  found 614.0323 calculated for C26H18Cl4N8O2 614.0307. 

 

M.p.: 251-254oC. 

 

Spectrum 58. 
1 H NMR of 8,8'-bis[2,6-dichloro-9-(3-methoxybenzyl)-9Hpurine] (45e) 



92 
 

 

Spectrum 59. 
 13C NMR of 8,8'-bis[2,6-dichloro-9-(3-methoxybenzyl)-9Hpurine] (45e) 

 

 

Spectrum 60. 
 HMQC of 8,8'-bis[2,6-dichloro-9-(3-methoxybenzyl)-9Hpurine] (45e) 
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Spectrum 61. 
 HMBC of 8,8’-bis[2,6-dichloro-9-(3-methoxybenzyl)-9Hpurine] (45e) 

 

 

8-Bromo-6-chloro-9-(4-(trifluoromethylbenzyl)-9H-purine (15f) 

 

 

     15f 

 

Hexane followed by EtOAc-hexane (1:2) and (1:1) were used for flash chromatography;  

Yield 16mg (ca 8%),  

 

1H NMR (CDCl3, 300 MHz) 5.52 (s, 2H, CH2), 7.45(d, J=8.1Hz, 2H, Ar) 7.60 (d, J=8.1Hz, 

2H, Ar), 8.74 (s, 1H, H-2) 
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MS (EI). m/z (rel. %):  392/390 (31/24), 389 (8), 313/311 (25/73), 160 (9), 159 (100), 119 

(7), 109 (24). 

 

HR-MS: found 389.9484 calculated for C13H7BrClF3N4 389.9495. 

 

M. p. 173-175oC.  

 

Spectrum 62. 
1H of 8-Bromo-6-chloro-9-(4-(trifluoromethylbenzyl)-9H-purine (15f). 
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8,8'-bis[6-chloro-9-(4-(trifluoromethylbenzyl)-9H-purine] (45f) 

 

N

N N

N

Cl

N

NN

N

Cl

CF3F3C

 

                       45f 

 

 

Hexane followed by EtOAc-hexane (1:2) and (1:1) were used for flash chromatography; 

Yield 7mg (ca 4%),  

 

1H NMR (CDCl3, 300 MHz): 6.29 (s, 4H, 2xCH2), 7.46(d, J=8.3Hz, 4H, Ar) 7.54(d, 
J=8.3Hz, 4H, Ar), 8.91 (s, 2H, 2xH-2) 
 
 

MS (EI). m/z (rel. %): 624/622 (36/54), 465/463 (65/100), 159(26), 121 (5), 109 (9). 

 

 HR-MS: found 622.0609 calculated for C26H14Cl2F6N8 622.0623. 
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Spectrum 63. 
1H of 8,8'-bis[6-chloro-9-(4-(trifluoromethylbenzyl)-9H-purine] (45f) 

 

 

8-Bromo-6-chloro-9-(4-benzyloxybenzyl)-9H-purine (15g).  

 

 

                          15g 

 

Hexane followed by EtOAc- hexane (1:6) and (1:2) were used for flash chromatography; 

Yield 182mg (84%) pale yellow solid. 

 

1H NMR (CDCl3, 300 MHz): δ 5.01 (s, 2H, CH2), 5.40 (s, 2H, CH2), 6.89-7.39 (m, 9H, Ar), 

8.73 (s, 1H, H-2).   
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13C NMR (CDCl3, 75 MHz): δ 47.9 (N-CH2), 70.0 (O-CH2), 115.3 (C-3' and C-5' Ar), 126.5 

(C-8), 127.4 (C-2''  and C-6''  Ar ), 128.1 (C-4'' Ar), 128.6 (C-3'' and C-5'' Ar ), 129.7 (C-2'  

and C-6' Ar), 131.9 (C-1' Ar), 134.2 (C-5), 136.6 (C-1'' Ar ), 149.5 (C-4), 152.1 (C-2), 152.9 

(C-6), 159.0 (C-4' Ar).  

 

 MS (EI). m/z (rel. %): 432/430/428 (2/8/6), 386/384 (2/4), 339 (1), 229(1), 120(1), 105(1), 

106(1), 92(11), 91(100), 90(2), 89(2), 52(2), 51(2). 

 

HR-MS: found 428.0030 calculated for C19H14BrClN4O 428.0040. 

 

M. p.: 103-105oC. 

 

Spectrum 64. 
1H NMR of 8-Bromo-6-chloro-9-(4-benzyloxybenzyl)-9H-purine (15g). 
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Spectrum 65. 
13C NMR of 8-Bromo-6-chloro-9-(4-benzyloxybenzyl)-9H-purine (15g). 

 

 

Spectrum 66. HMQC of 8-Bromo-6-chloro-9-(4-benzyloxybenzyl)-9H-purine (15g). 
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Spectrum 67. HMBC of 8-Bromo-6-chloro-9-(4-benzyloxybenzyl)-9H-purine (15g). 

 

 

8-Bromo-6-chloro-9-(methylthiomethyl)-9H-purine (15h) 

 

 

                 15h 

 

Hexane followed by EtOAc- hexane (1:2) were used for flash chromatography Yield 126mg 

(86%) off white solid.  

 

1H NMR (CDCl3, 300 MHz): δ 2.20 (s, 3H, CH3), 5.32 (s, 2H, CH2), 8.70 (s, 1H, H-2). 
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13C NMR (CDCl3, 75 MHz): δ 15.7 (CH3), 47.9 (CH2), 131.7 (C-5), 133.8 (C-8), 149 (C-6), 

152.2 (C-2), 152.9 (C-4). 

 

MS (EI). m/z (rel. %): 296/294 (2/6), 250/248 (10/39), 249/247 (6/13), 213 (11), 169/167 

(6/17), 86 (6), 85(6) 77(16), 61 (100). 

 

HR-MS:  found 291. 9187 calculated C7H6BrClN4S 291.9185 

 

M.p.: 108-110 oC. 

 

Spectrum 68. 
1H NMR of 8-Bromo-6-chloro-9-(methylthiomethyl)-9H-purine (15h). 
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Spectrum 69. 
13C NMR of 8-Bromo-6-chloro-9-(methylthiomethyl)-9H-purine (15h). 

 

 

Spectrum 70. 
 HMQC of 8-Bromo-6-chloro-9-(methylthiomethyl)-9H-purine (15h). 
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Spectrum 71. 
 HMBC of 8-Bromo-6-chloro-9-(methylthiomethyl)-9H-purine (15h). 

 

 

8-Bromo-6-chloro-9-(tetrahydro-2H-pyran-2-yl)-9H-purine (15i).  

 

 

                       15i 

 

Hexane followed by hexane-EtOAc (6:1) and (3:1) were used for flash chromatography. 

Yield 139 mg (91%) off white solid. 

 

1H NMR (CDCl3, 300 MHz): δ 1.60-1.76 (m, 4H), 1.80-1.90(m, 1H), 3.01-3.01(m, 1H), 

3.66-3.74(m, 1H), 4.15-4.20(m, 1H), 5.71(dd, 1H, J1 11.3 Hz, J2 2.4Hz), 8.70(s, 1H). 
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13 

C NMR (CDCl3, 75MHz): δ 23.2 (C-5 pyranyl), 24.6 (C-4 pyranyl), 28.7 (C-6 pyranyl), 

69.3 (C-3 pyranyl), 85.6 (C-1 pyranyl), 132.0 (C-8), 133.5 (C-5), 149.7 (C-4), 151.8 (C-2), 

152.6 (C-6).  

 

 MS (EI). m/z (rel. %):  318/316 (2/2, M+), 278 /276/274 (18/9/1), 236/234/232 

(11/42/33),190/188 (16/24), 155 (16), 153 (47), 118 (8), 91 (11), 85(100), 67 (13), 65 (12). 

 

HR-MS. found   315.9736 calculated for C10H10BrClN4O 315.9727 
 

M. p.: 103-105oC. (lit.101-103 oC).17
 

 

Spectrum 72.
1H NMR of 8-Bromo-6-dichloro-9-(tetrahydro-2H-pyran-2-yl)-9H-purine 

(15i). 
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Spectrum 73. 
13C NMR of 8-Bromo-6-dichloro-9-(tetrahydro-2H-pyran-2-yl)-9H-purine 

                  (15i). 
 

 

Spectrum 74. HMQC of 8-Bromo-6-dichloro-9-(tetrahydro-2H-pyran-2-yl)-9H-purine 

                   (15i).  
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Spectrum 75. HMBC of 8-Bromo-6-dichloro-9-(tetrahydro-2H-pyran-2-yl)-9H-purine 

                  (15i).  
 

 

8-Bromo-6-chloro-9-(4-ethoxybenzyl)-9H-purine (15j) 

 

 

                            15j 

 

 

Hexane followed by   EtOAc-Hex 1:4, EtOAc-Hex 1:2, EtOAc were used for flash 
chromatography. Yield 7mg (2%). 
 

N

N N

N

Cl

Br

OCH2CH3
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1H NMR (CDCl3, 300 MHz): δ 1.37 (t, J=7 Hz, 3H, CH3), 3.97 (q, J=7 Hz, 2H, O-CH2), 

5.40 (2H, N-CH2), 6.82 (d, J=8.7 Hz, 2H, Ar), 7.30 (d, J=8.7Hz, 2H, Ar), 8.73 (s, H-2) 

 

13C NMR (CDCl3, 75MHz): δ 14.7 (CH3), 48.0 (CH2), 63.5 (OCH2), 114.9 (C-3 and C-5 

Ar), 129.1 (C-1 Ar), 129.6 (C-2 and C-6 Ar), 129.7(C-5), 134.2 (C-8), 149.5(C-4), 152.1(C-

2), 152.9 (C-6) ,159.2 (C-4 Ar ). 

 

MS (EI). m/z (rel. %): 370/368/366 (4/17/13), 288/287 (3/13), 136(10), 135 (100), 107 (63), 

77 (10). 

 

HR-MS: found 365.9895 calculated for C14H12BrClN4O 365.9883  

 

Spectrum 76. 
1H NMR of 8-Bromo-6-chloro-9-(4-ethoxybenzyl)-9H-purine (15j) 
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Spectrum 77. 
13C NMR of 8-Bromo-6-chloro-9-(4-ethoxybenzyl)-9H-purine (15j) 

 

 

8, 8'-(6-chloro-9-(4-ethoxybenzyl)-9H-bispurine (45j) 

 

 

                                    45j 

 

Hexane followed by   EtOAc-Hex 1:4, EtOAc-Hex 1:2, EtOAc were used for flash 
chromatography. Yield 7mg (5%), colourless solid. 
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1H NMR (CDCl3, 300 MHz): δ 1.31 (t, J=7.0, 6H, 2xCH3), 3.88(q, J=7.0, 4H, 2xO-CH2), 

6.14(s, 4H, 2xN-CH2), 6.63 (d, J= 8.7Hz 4H, Ar), 7.26(d, J= 8.7 Hz, 4H, Ar). 8.88 (s, 2H, 

2xH-2). 

 

13C NMR (CDCl3, 75MHz): δ 14.7 (CH3), 47.9 (N-CH2), 63.3 (O-CH2), 114.4 (C-3 and C-5 

Ar), 127.7 (C-1 Ar), 129.9 (C-2 and C-6 Ar), 130.9 (C-5), 143.5 (C-8), 152.2 (C-4), 153.1 (C-

6), 153.4 (C-2), 158.8 (C-4 Ar ). 

 

MS (EI). m/z (rel. %): 578/576/574 (0.4/4/6), 441/439 (28/41), 413/411 (6/9), 269/268 

(13/68), 135 (100), 108 (7), 107 (91), 77 (11). 

 

HR-MS: found 574.1384 calculated for C28H24Cl2N8O2 574.1399. 

 

 

Spectrum 78. 
1H NMR of 8,8'-bis[6-chloro-9-(4-ethoxybenzyl)-9H-purine] (45j). 
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Spectrum 79. 
13C NMR of 8,8'-bis[6-chloro-9-(4-ethoxybenzyl)-9H-purine] (45j). 

 

  

Spectrum 80. HMQC of 8,8'-bis[6-chloro-9-(4-ethoxybenzyl)-9H-purine] (45j). 
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Spectrum 81. HMBC of 8,8'-bis[6-chloro-9-(4-ethoxybenzyl)-9H-purine] (45j). 

 

 

8-Bromo-6-chloro-9-(4-trifluoromethyoxybenzyl)-9H-purine (15k).  

 

N

NN

N

O

Cl

Br

CF3

 

                         15k 

 

Hexane followed by EtOAc-hexane (1:8) and (1:2) were used for flash chromatography; scale 

0.25mmol, Yield 36mg (36%) brown solid. 

 

1H NMR (CDCl3, 300 MHz):  δ 5.47 (s, 2H, CH2), 7.16 -7.43(m, 2H, Ar), 8.74 (s, 1H, H-2)  
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13C NMR (CDCl3, 50MHz): δ 47.6 (CH2), 121.5 (C-3 and C-5 Ar), 129.7 (C-2, C-6 Ar, and 

CF3), 131.9 (C-8), 132.7 (C-1 Ar), 133.9 (C-5), 149.4 (C-6), 149.8 (C-4 Ar), 152.3 C-2 Ar), 

152.9 (C-4). 

 

 MS (EI). m/z rel. %): 410/408/406 (4/17/13), 329/327 (8/24), 176 (9), 175 (100), 109 (8), 78 

(6), 69 (9). 

 

 HR-MS: found 405.9436 calculated for C13H7BrClF3N4O 405.9444. 

 

M. p.: 117-119oC. 

 

Spectrum 82. 
1H NMR of 8-Bromo-6-chloro-9-(4-trifluoromethyoxybenzyl)-9H-purine 

(15k). 
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Spectrum 83. 
13C NMR of 8-Bromo-6-chloro-9-(4-trifluoromethyoxybenzyl)-9H-purine 

(15k). 

 

Spectrum 84. HMQC of 8-Bromo-6-chloro-9-(4-trifluoromethyoxybenzyl)-9H-purine (15k). 
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Spectrum 85. HMBC of 8-Bromo-6-chloro-9-(4-trifluoromethyoxybenzyl)-9H-purine (15k). 

 

 

8-Bromo-2, 6-dichloro-9-(2-methoxybenzyl)-9H-purine (15l). 

 

 

                      15l 

 

 Hexane followed by EtOAc- hexane (1:2) were used for flash chromatography Yield 154mg 

(80%) pale yellow solid. 

 

1H NMR (CDCl3, 200 MHz): δ 3.80(s, 3H, OCH3), 5.45(s, 2H, CH2), 6.83-6.95(m, 3H, Ar), 

7.25-7.32 (m, 1H, Ar). 



114 
 

 

13C NMR (CDCl3, 50MHz): δ 44.5 (CH2), 55.2 (OCH3), 110.5 (C-3 Ar), 120.5 (C-5 Ar), 

121.5 (C-1 Ar), 128.7 (C-6 Ar), 129.9 (C-4 Ar), 130.8 (C-8), 135.5 (C-5), 149.9 (C-6), 152.9 

(C-4), 154.3 (C-2), 156.9 (C-2 Ar). 

 

MS (EI). m/z(rel. %): 390/388/386 (5/ 11/ 6, M+), 309/307 (23/35), 122(9), 121(100), 

91(48), 65(6), 51(3), 39(2). 

 

HR-MS: found 385.9335 calculated for C13H9BrCl2N4O. 385.9337. 

 

M.p.: 190-192oC. 

 

Spectrum 86. 
1H NMR of 8-Bromo-2,6-dichloro-9-(2-methoxybenzyl)-9H-purine (15l). 
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Spectrum 87. 
13C NMR of 8-Bromo-2,6-dichloro-9-(2-methoxybenzyl)-9H-purine (15l). 

 

Spectrum 88. HMQC of 8-Bromo-2,6-dichloro-9-(2-methoxybenzyl)-9H-purine (15l). 
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Spectrum 89. HMBC of 8-Bromo-2,6-dichloro-9-(2-methoxybenzyl)-9H-purine (15l). 

 

 

8-Bromo-6-chloro-9-(4-methylbenzyl)-9H-purine (15m). 

 

 

                           15m 

 

 Hexane followed by EtOAc- hexane (1:8) and (1:4) were used for flash chromatography; 

Yield 127mg (76%), pale brown solid. 

 

1H NMR (CDCl3, 300 MHz): δ 2.29 (s, 3H, CH3), 5.42 (s, 2H, CH2), 7.11 (d, J=7.9Hz, 2H, 

Ar), 7.22(d, J=7.9Hz,   2H, Ar), 8.72(s, 1H).  
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13C NMR (CDCl3, 75MHz): δ 21.1 (CH3), 48.1 (CH2), 127.9 (C-2 and C-6 Ar), 129.6 (C-3 

and C-5 Ar), 131.1 (C-8), 131.8 (C-5), 134.2 (C-4 Ar), 138.6 (C-1 Ar), 149.4 (C-4), 152.1 (C-

2), 152.9 (C-6). 

 

MS (EI). m/z (rel. %): 340/338/336(3/11/8), 259/257(5/16), 106(9), 105(100), 104(5), 

77(18), 65(5), 51(5), 53(6), 39(5), 27(4). 

 

HR-MS: found 335.9775 calculated for C13H10BrClN4 335.9777. 

 

M. p.: 131-132oC. 

 

Spectrum 90. 
1H NMR of 8-Bromo-6-chloro-9-(4-methylbenzyl)-9H-purine (15m). 
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Spectrum 91. 
13C NMR of 8-Bromo-6-chloro-9-(4-methylbenzyl)-9H-purine (15m). 

 

 

 

Spectrum 92. 
 HMQC of 8-Bromo-6-chloro-9-(4-methylbenzyl)-9H-purine (15m). 
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Spectrum 93. 
 HMBC of 8-Bromo-6-chloro-9-(4-methylbenzyl)-9H-purine (15m). 

 

 

8-Bromo-2,6-dichloro-9-(4-methylbenzyl)-9H-purine (15n).  

 

 

                           15n 

 

Hexane followed by EtOAc- hexane (1:6) and (1:3) were used for flash chromatography; 

Yield 129mg (75%) yellow solid. 
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1H NMR (CDCl3, 300 MHz): δ 2.34 (s, 3H, CH3), 5.42 (s, 2H, CH2), 7.16(d, J= 8.0Hz 2H, 

Ar), 7.25(d, J= 8.0 Hz, 2H, Ar). 

 

13C NMR (CDCl3, 75MHz): δ 21.1 (CH3), 48.3 (CH2), 128.0 (C-2 and C-4 Ar), 129.7(C-3 

and C-5 Ar), 130.6 (C-8), 130.8 (C-5), 134.7 (C-1 Ar), 138.8 (C-4 Ar), 150.1 (C-6), 153.2 (C-

4), 153.9 (C-2). 

 

MS (EI). m/z (rel. %): 374/372/370 (M+, 5/11/7), 293/291(3/5),185(2), 184(1), 105(100), 

106(10), 103(6), 79(7), 77(10). 

 

HR-MS: found 369.9393 calculated for C13H9BrCl2N4 369.9388 

 

M. p.: 178-179 oC.  

 

Spectrum 94. 
1 H NMR of 8-Bromo-2,6-dichloro-9-(4-methylbenzyl)-9H-purine (15n). 
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Spectrum 95. 
13 C NMR of 8-Bromo-2,6-dichloro-9-(4-methylbenzyl)-9H-purine (15n). 

 

Spectrum 96. HMQC of 8-Bromo-2,6-dichloro-9-(4-methylbenzyl)-9H-purine (15n). 
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Spectrum 97. HMBC of 8-Bromo-2,6-dichloro-9-(4-methylbenzyl)-9H-purine (15n). 

 

 

9-Benzyl-8-bromo-6-chloro-9H-purine (15o) 

 

 

                     15o 

 

Hexane followed by EtOAc-hexane (1:5) and (1:2) were used for flash chromatography. 

Yield  4mg (ca 2%), impure compound.  

 

1H NMR (CDCl3, 300 MHz):  5.47 (s, 2H, CH2), 7.29-7.36 (m, 5H, Ar), 8.74 (s, 1H, H-2) 
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MS (EI). m/z (rel. %): 324/322 (9/7), 287 (6), 280 (5), 278 (8), 245 (6), 243 (18), 216(5), 92 

(9), 91 (100), 90 (2), 65 (17). 

 

HR-MS: found 321.9621 calculated for C12H8BrClN4 321.9616. 

 

Spectrum 98. 
1H NMR of 9-Benzyl-8-bromo-6-chloro-9H-purine (15o) 

 

 

8,8'-bis[9-benzyl-6-chloro)-9H-purine] (45o)  

 

N

N N

N

Cl

N

NN

N

Cl

 

                          45o 
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Hexane followed by EtOAc: Hex, EtOAc: Hex were used for flash chromatography. Yield 

14mg (11%), off white solid. 

1H NMR (CDCl3, 500 MHz): δ 6.24 (s, 4H, 2xCH2), 7.13-7.17 (m, 6H, Ar), 7.28-7.30 (m, 

4H, Ar), 8.88 (s, 2H, 2xH-2) 

 

13C NMR (CDCl3, 125MHz): δ 48.4 (CH2), 128.1 (C-4 Ar), 128.3(C-2 and C-6 Ar), 128.6 

(C-3 and C-5 Ar), 135.7 (C-1 Ar), 143.4 (C-8), 153.1 (C-2) 

*C-6 and C-4 and C-5 not observe. 

 

MS (EI). m/z (rel. %): 488/486 (30/44), 397/395 (66/100), 396 (22), 180 (19), 153 (6), 128 

(6), 104 (3), 92 (7), 91 (93), 65 (18). 

 

HR-MS: found 486.0880 calculated for C24H16Cl2N8 486.0875 

 

M. p.: 228-230oC.   

 

Spectrum 99. 
1 H NMR of 8,8'-bis[9-benzyl-6-chloro)-9H-purine] (45o). 
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Spectrum 100. 
13C NMR of 8,8'-bis[9-benzyl-6-chloro)-9H-purine] (45o). 

 

Spectrum 101. HSQC of 8,8'-bis[9-benzyl-6-chloro)-9H-purine] (45o). 
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Spectrum 102.  HMBC of 8,8'-bis[9-benzyl-6-chloro)-9H-purine] (45o). 

 

 

8-Bromo-6-chloro-9-(2-fluorobenzyl)-9H-purine (15p) 

 

 

                      15p 

 

Hexane followed by EtOAc-hexane (1:2) and EtOAc. were used for flash chromatography;  

Yield 32mg (ca 17%), pale yellow. 
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1H NMR (CDCl3, 300 MHz): δ  5.55 (s, 2H, CH2), 7.04-7.08 (m, 3H, Ar), 7.27-7.31 (m, 1H, 

Ar), 8.72 (s, 1H, H-2). 

 

MS (EI). m/z (rel. %): 342/340 (22/17), 263/261 (10/29), 110 (9), 109(100), 83 (15) 

 

HR-MS: found 339.9537 calculated C12H7BrClFN4 339.9527. 

 

M. p. 133-134oC. 

 

 

Spectrum 103. 
1H NMR of 8-Bromo-6-chloro-9-(2-fluorobenzyl)-9H-purine (15p). 
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8-Bromo-2,6-dichloro-9-(4-chlorobenzyl)-9H-purine (15q) 

 

 

                             15q 

 

Hexane followed by EtOAc-hexane (1:8), EtOAc-hexane (1:2) and EtOAc. were used for 

flash chromatography;  Yield 64mg (34%),  brown solid. 

 

1H NMR (DMSO, 300 MHz): δ 5.46 (s, 2H, CH2), 7.29 (d, J=8.5Hz, 2H, Ar), 7.42 (d, 

J=8.5Hz, 2H, Ar). 

 

13C NMR (DMSO, 50MHz):  47.0 (CH2), 128.7 (C-3 and C-5, Ar), 129.1 (C-2 and C-6, Ar), 

130.8 (C-4 Ar), 132.7 (C-8), 133.6 (C-1, Ar), 136.3 (C-5), 148.2 (C-6), 151.4 (C-2), 154.4 

(C-4). 

 MS (EI). m/z (rel. %): 394/392/390 (11/17/9), 313/311 (10/11), 127 (42), 125 (100), 99 (5), 

89 (14).  

 HR-MS: found 389.8832 calculated for C12H6BrCl3N4 389.8841. 

 

M. p. 203-205 oC. 
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Spectrum 104. 
1H NMR of 8-Bromo-2,6-dichloro-9-(4-chlorobenzyl)-9H-purine (15q). 

 

 

Spectrum 105. 
13C NMR of 8-Bromo-2,6-dichloro-9-(4-chlorobenzyl)-9H-purine (15q). 
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Spectrum 106. HMQC of 8-Bromo-2,6-dichloro-9-(4-chlorobenzyl)-9H-purine (15q). 

 

 

Spectrum 107. HMBC of 8-Bromo-2,6-dichloro-9-(4-chlorobenzyl)-9H-purine (15q). 
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8-Bromo-6-chloro-9-(4-fluorobenzyl)-9H-purine (15r) 

 

 

                        15r 

 

Hexane followed by EtOAc-hexane (2:3) and EtOAc were used for flash chromatography; 

Yield ca 21mg (19%), pale yellow solid. 

 

1H NMR (CDCl3, 200 MHz):  5.43 (s, 2H, CH2), 6.96-7.40 (4H, Ar), 8.73 (s, 1H, H-2) 

 

MS (EI). m/z (rel. %): 342/340 (17/13), 263/261 (9/28), 110(10), 109 (100), 107 (4), 83 (13). 

  

HR-MS: found 339.9528 calculated for C12H7BrClFN4 339.9527. 

 

M. p. 143-144oC. 
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Spectrum 108. 
1H  NMR of 8-Bromo-6-chloro-9-(2-fluorobenzyl)-9H-purine (15r). 

 

 

8,8'-bis[6-chloro-9-(4-fluorobenzyl)-9H-purine] (45r) 

 

 

                             45r 

 

Hexane followed by EtOAc: Hex 2:3 and EtOAc were used for flash chromatography; Yield 
6mg (5%). Colourless solid. 
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1H NMR (CDCl3, 500 MHz): δ 6.20 (s, 4H, 2xCH2), 6.84-6.88 (dd, J1=5.2 Hz and J2=3.2 

Hz, 6H, Ar), 7.41-7.44 (dd, J1=5.2 Hz and J2=3.2 Hz, 4H, Ar), 8.90 (s, 2H, 2x H-2) 

 

MS (EI). m/z (rel. %): 524/522 (20/29), 417/415/413 (9/50/75), 216 (7), 110 (8), 109 (100), 

107 (5), 83 (13). 

 

HR-MS: found 522.0700 calculated C24H14Cl2F2N8 522.0687. 

 

Spectrum 109. 
1H NMR of 8,8'-bis[6-chloro-9-(4-fluorobenzyl)-9H-purine] (45r). 
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8-Bromo-6-chloro-9-(3-chlorobenzyl)-9H-purine (15s) 

 

N

N N

N

Cl

Br

Cl

 

                  15s 

 

Hexane followed by EtOAc-hexane (1:2) and EtAOc were used for flash chromatography; 

Yield ca 26mg (15%). 

 

1H NMR (CDCl3, 300 MHz): δ  5.44 (CH2), 7.23-7.34 (m, 4H, Ar), 8.74 (s, 1H, H-2) 

 

MS (EI). m/z (rel. %): 360/358/356 (9/20/12), 281 (6), 279/277 (34/52), 161 (5), 127 (35), 

125 (100), 99 (9), 89 (22), 63 (8). 

 

HR-MS: found 355.9227 calculated C12H7BrCl2N4 355.9231. 
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Spectrum 110. 
1H NMR of 8-Bromo-6-chloro-9-(3-chlorobenzyl)-9H-purine (15s). 

 

 

8,8'-bis[6-chloro-9-(3-chlorobenzyl)-9H-purine] (45s) 

 

 

                               45s 

 

 

Hexane followed by EtOAc-hexane (1:2) and EtAOc were used for flash chromatography;  

Yield ca 8mg (6%), colourless solid. 
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1H NMR (CDCl3, 500 MHz):  δ 6.19 (s, 2H, CH2), 7.12-7.19 (m, 2H, Ar), 7.18 (d, J=8.4Hz, 

1H, Ar), 7.56 (s, 1H, Ar), 8.91 (s, 1H, H-2). 

 

13C NMR (CDCl3, 125MHz):  δ 48.1 (CH2), 126.7 (C-6, Ar), 128.5 (C-4, Ar), 129.0 (C-2, 

Ar), 129.9 (C-5 Ar), 130.9 (C-5), 134.4 (C-4, Ar), 137.5 (C-1, Ar), 143 (C-8), 152.6 (C-4), 

153.1 (C-6), 153.7 (C-2). 

  

MS (EI). m/z (rel. %): 558/556/554 (20/40/30), 475 (5), 433 (32), 432 (20), 431 (97), 430 

(21), 429 (100), 187 (6), 180 (9), 127 (28), 125 (79), 99 (9), 89 (27). 

 

HR-MS: found 554.0084 calculated C24H14Cl4N8 554.0096. 

 

M. p. 245-246oC. 

 

Spectrum 111. 
1H NMR of 8,8'-bis[6-chloro-9-(3-chlorobenzyl)-9H-purine] (45s). 
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Spectrum 112. 
13C NMR of 8,8'-bis[6-chloro-9-(3-chlorobenzyl)-9H-purine] (45s). 

 

Spectrum 113. HMBC of 8,8'-bis[6-chloro-9-(3-chlorobenzyl)-9H-purine] (45s). 
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Spectrum 114. HMBC of 8,8'-bis[6-chloro-9-(3-chlorobenzyl)-9H-purine] (45s). 

 

 

8-Bromo-6-chloro-9-(3, 4-dichlorobenzyl)-9H-purine (15w) 

 

N

N N

N

Cl

Cl

Cl
Br

 

                           15w 

 

Hexane followed by EtOAc: Hex 1:8, EtOAc: Hex 1:4 were used for flash chromatography; 

Yield 37mg (19%) brown solid. 

 

1H NMR (CDCl3, 300 MHz): δ 5.41 (s, 2H, CH2), 7.18 (dd, J1=2.1 Hz and J2=8.3 Hz, 1H, 

Ar), 7.40 (d, J= 8.3 Hz, 1H, Ar), 7.45 (d, J=2.1 Hz, 1H, Ar), 8.73 (s, 1H, H-2). 



139 
 

 

13C NMR (CDCl3, 75MHz): δ 47.1 (CH2), 127.3 (C-6 Ar), 130.0 (C-5 Ar), 131.1 (C-2 Ar), 

131.8 (C-4 Ar), 133.2 (C-5) 133.3 (C-8), 133.7 (C-3 Ar), 134.0 (C-1 Ar), 149.8 (C-4), 152.3 

(C-2), 152.8 (C-6). 

 

MS (EI). m/z (rel. %): 394/392/390 (18/27/14), 315/313/311 (15/45/47), 163/161/159 

(11/65/100), 124 (8), 123 (16), 89 (15), 63 (7). 

 

 HR-MS: found 389.8834 calculated for C12H6BrCl3N4 389.8841.  

 

M. p.:  138-140oC 

 

Spectrum 115. 
1H NMR of 8-bromo-6-chloro-9-(3, 4-dichlorobenzyl)-9H-purine (15w). 
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Spectrum 116. 
13C NMR of 8-bromo-6-chloro-9-(3, 4-dichlorobenzyl)-9H-purine (15w). 

 

  

Spectrum 117. HMQC of 8-bromo-6-chloro-9-(3, 4-dichlorobenzyl)-9H-purine (15w). 
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Spectrum 118. HMBC of 8-bromo-6-chloro-9-(3, 4-dichlorobenzyl)-9H-purine (15w). 

 

 

8-Bromo-6-chloro-9-(4-methoxybenzyl)-2-nitro-9H-purine (15x) 

 

 

                             15x 

 

Hexane followed by EtOAc-hexane (1:1) and EtOAc were used for flash chromatography; 

Yield ca 12mg (6%), yellow solid. 
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1H NMR (CDCl3, 300 MHz):  δ 3.76 (s, 3H, OCH3), 5.49 (s, 2H, CH2), 6.85 (d, J=8.7Hz, 

2H, Ar), 7.39 (d, J=8.7Hz, 2H, Ar). 

 

MS (EI). m/z (rel. %): 399/397 (11/9), 122 (12), 121 (100), 91 (5), 90 (2), 78 (8), 77 (8), 65 

(2). 

  

HR-MS: found 396.9575 calculated for C13H9BrClN5O3 396.9577. 

 

Spectrum 119. 
1
 H of 8-Bromo-6-chloro-9-(4-methoxybenzyl)-2-nitro-9H-purine (15x). 
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6-Chloro-8-(6'-chloro-9'-(4'-methoxybenzyl)-9'H-puri-2'-nyl)-9H-(4-methoxybenzyl)-2-

nitro-9H-purine (52x) 

 

 

                                         52x 

 

Hexane followed by EtOAc-hexane (1:1) and EtOAc were used for flash chromatography; 

Yield 6mg (4%), yellow solid. 

 

1H NMR (CDCl3, 500MHz):  δ 3.68 (s, 3H, OCH3'),  3.77(s, 3H, OCH3),  5.45 (s, 2H, CH2'), 

6.20 (s, 2H, CH2), 6.69 (d, J=8.8Hz, 2H, Ar), 6.87 (d, J=8.8 Hz,  2H, Ar), 7.15(d, J=8.8Hz,  

2H, Ar), 7.22(d, J=8.8Hz,  2H, Ar), 8.17(s, 1H, H-8'). 

 

13C NMR (CDCl3, 125MHz): δ 48.1 (CH2'), 48.9 (CH2), 55.2 ( OCH3'), 55.3 (OCH3), 114.2 

(C-3' and C-5' Ar), 114.8 (C-3 and C-5,  Ar), 125.5 (C-1' , Ar), 127.1 (C-1, Ar), 129.3 (C-2' 

and C-6', Ar), 129.7 (C-2 and C-6, Ar), 132.2 (C-5',  Ar), 132.7 (C-5, Ar), 147.4 (C-8'), 149 

(C-6'), 151.3 (C-6'), 152.1(C-2'), 153.1 (C-8 and/ or C-2), 153.7 (C-4), 153.8 (C-6), 159.5 (C-

4' Ar), 160.2 (C-4 Ar). 

 

MS (EI). m/z (rel. %): 593/591 (5/9), 121 (9), 121 (100), 77 (9). 

 

HR-MS: found 591.0955 calculated for C26H19Cl2N9O4 591.0937. 
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Spectrum 120. 
1H NMR of 6-Chloro-8-(6'-chloro-9'-(4'-methoxybenzyl)-9'H-puri-2'-nyl)-

9H-(4-methoxybenzyl)-2-nitro-9H-purine (52x) 

 

 

Spectrum 121. 
13C NMR of 6-Chloro-8-(6'-chloro-9'-(4'-methoxybenzyl)-9'H-puri-2'-nyl)-

9H-(4-methoxybenzyl)-2-nitro-9H-purine (52x). 
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Spectrum 122.
  HSQC of 6-Chloro-8-(6'-chloro-9'-(4'-methoxybenzyl)-9'H-puri-2'-nyl)-9H-

(4-methoxybenzyl)-2-nitro-9H-purine (52x). 

 

 

Spectrum 123.
  HMBC 6-Chloro-8-(6'-chloro-9'-(4'-methoxybenzyl)-9'H-puri-2'-nyl)-9H-(4-

methoxybenzyl)-2-nitro-9H-purine (52x). 
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8-Bromo-6-chloro-9-ethyl-9H-purine (15y) 

 

 

                    15y 

 

Hexane followed by EtOAc-hexane (1:8), EtOAc-hexane (1:1) and EtOAc were used for 

flash chromatography; Yield ca 25mg (19%) impure (contaminated by the dimer by-product).  

 

1H NMR (CDCl3, 200 MHz):  δ 1.46 (t, J=7.2Hz, 3H, CH3), 4.36 (q, J=7.2Hz, 2H, CH2), 

8.69 (s, 1H, H-2). 

 

MS (EI). m/z (rel. %): 262/260 (39/30), 236(24) 234/232 (100/78), 190 (12), 188 (18), 181 

(14), 153 (9), 127 (10), 118 (7), 91 (7), 77 (10), 64 (6). 

 

HR-MS: found 259.9463 calculated C7H6BrClN4 259.9464. 
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Spectrum 124 .
1H NMR of 8-Bromo-6-chloro-9-ethyl-9H-purine (15y) with impurity of 8,8'-

Bis[(6-chloro-9-ethyl)-9H-purine] (45y) 

 

 

8,8'-Bis[(6-chloro-9-ethyl)-9H-purine] (45y) 

 

N

N N

N

Cl

N

NN

N

Cl

 

                        45y    

 

Hexane followed by EtOAc-hexane (1:8), EtOAc-hexane (1:1) and EtOAc were used for 

flash chromatography; Yield 17mg (18%).Pale yellow solid. 
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1H NMR (CDCl3, 300 MHz):  δ 1.58 (t, J=7.0Hz, 6H, 2xCH3), 5.09 (q, J=7.0Hz, 4H, 

2xCH2), 8.84 (s, 2H, 2xH-2). 

 

13C NMR (CDCl3, 300 MHz): δ 15.3 (CH3), 41.2 (CH2), 131.3 (C-5), 143.4 (C-8), 152.2 (C-

6), 152.7 (C-4), 153.1 (C-2) 

 

MS (EI). m/z ( rel. %): 364/362 (60/39), 347 (7), 335/333 (68/100), 309 (8), 308 (11), 307 

(13), 273 (6), 271 816), 235 (6), 180 (11),167 (5), 154 (9), 144 (12), 119 (5), 100 (2), 92 (4) 

91 (2),  85(2). 

 

HR-MS: found 362.0554 calculated C14H12Cl2N8 362.0562. 

 

M. p. 256-257oC. 

 

Spectrum 125. 
1H NMR of 8,8'-Bis[(6-chloro-9-ethyl)-9H-purine] (45y). 
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Spectrum 126. 
13C NMR of 8,8'-Bis[(6-chloro-9-ethyl)-9H-purine] (45y). 

 

 

Spectrum 127. HMQC of 8,8'-Bis[(6-chloro-9-ethyl)-9H-purine] (45y). 
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Spectrum 128. HMBC of 8,8'-Bis[(6-chloro-9-ethyl)-9H-purine] (45y) 

 

 

8-Bromo-2,6-dichloro-7-(4-methoxybenzyl)-7H-purine (53c).  

 

 

                           53c 

 

Hexane followed by EtOAc- hexane (1:4) and (1:1) were used for flash chromatography; 

Yield 80mg (41%) orange solid. 
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1H NMR (CDCl3, 300 MHz): δ 3.77 (s, 3H, OCH3), 5.65 (s, 2H, CH2), 6.85(d, J= 8.6Hz, 2H, 

Ar), 7.03(d, J= 8.6Hz, 2H, Ar)  

 

13C NMR (CDCl3, 75 MHz): δ 50.2 (CH2), 55.3 (OCH3), 114.5 (C-3 and C-5, Ar), 123.5 

(C-5), 126.0 (C-1, Ar), 127.9 (C-2 and C-6, Ar), 141.4 (C-8), 142.6 (C-4), 153.6 (C-6), 159.7 

(C-4, Ar), 162.3 (C-2 Ar). 

 

MS (EI). m/z (rel. %): 390/388/386 (3/6/3), 344/342 (5/6), 270/268/266 (3/6/4), 122 (17), 

121(100), 91(5), 78 (11), 77(8), 65 (3). 

 

 HR-MS: found 385.9340 calculated C13H9BrCl2N4O 385.9337 

 

M. p.:  142-144oC. 

 

Spectrum 129.
1 H NMR of 8-Bromo-2,6-dichloro-7-(4-methoxybenzyl)-7H-purine (53c). 
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Spectrum 130. 
13C NMR of 8-Bromo-2,6-dichloro-7-(4-methoxybenzyl)-7H-purine (53c). 

 

 

Spectrum 131. HMQC of 8-Bromo-2,6-dichloro-7-(4-methoxybenzyl)-7H-purine (53c). 



153 
 

 

Spectrum 132. HMQC of 8-Bromo-2,6-dichloro-7-(4-methoxybenzyl)-7H-purine (53c). 

 

 

8-Bromo-6-chloro-7-(benzyl)-7H-purine (53o). 

 

 

                   53o 

Hexane followed by EtOAc- hexane (1:3) and (1:1) were used for flash chromatography; 

scale 2mmol.Yield 148mg (23%), brown solid. 

 

1H NMR (CDCl3, 200 MHz): δ 5.75 (s, 2H, CH2), 7.05-7.34 (m, 5H, Ar), 8.84 (s, 1H, H-2)  
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13C NMR (CDCl3, 50MHz): δ 50.5 (CH2), 126.2 (C-8), 126.3 (C-2 and C-6 Ar), 128.5 (C-4 

Ar), 129.2 (C-3 and C-5 Ar), 134.4 (C-1 Ar), 140.1 (C-5), 142.0 (C-4), 152.9 (C-2), 161.0 (C-

6). 

 

MS (EI). m/z (rel. %): 326/324/322 (3/14/11), 280/278(8/12), 245(3), 243 (9), 216(2), 

153(1), 104(1), 91(100), 90(1), 89(3), 77(2) 51(3)39(4), 38(1). 

 

 HR-MS: found 321.9618 calculated C12H8BrClN4 321.9621 

 

 M. p.: 108-110oC. 

 

 

 

Spectrum 133. 
1H NMR of 8-Bromo-6-chloro-7-(benzyl)-7H-purine (53o). 
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Spectrum 134. 
13C NMR of 8-Bromo-6-chloro-7-(benzyl)-7H-purine (53o). 

 

Spectrum 135. HMQC of 8-Bromo-6-chloro-7-(benzyl)-7H-purine (53o). 
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Spectrum 136. HMBC of 8-Bromo-6-chloro-7-(benzyl)-7H-purine (53o). 
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