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Abstract

In this study a physically-based, distributed snow model (SnowModel) was used to estimate sea-

sonal maximum snow water equivalent (SWE) based on dates of snow cover disappearance. The

dates of snow cover disappearance were derived from automatically recorded snow measurements

at a local scale and from sequences of remotely sensed snow covered area (SCA) at a catchment

scale. The study area comprises the catchment of Nea-Nidelv in Sør- and Nord-Trønderlag. The

objective was to assess the accuracy of a backtracking routine using SnowModel, both at point

and catchment scale. In addition it was tested whether the reconstructed snow distribution could

be used to correct the modeled precipitation distribution, forcing the model results through the

maximum SWE value. At point scale, three snow pillows and snow depth sensors were used to

determine the date of snow cover disappearance, and validate the back-calculated value. Where

snow pillow data registered reasonable values, the discrepancy of the backtracked SWE was be-

tween 3 and 19 mm SWE. It is evident that SnowModel does not reproduce mild periods too well,

therefore overestimating most snow accumulation in late autumn/early winter, thus giving non-

representative correction factors. However, it is still possible to force the model results through

observed SWE max which resulted in high correlations with the observations for snow maximum

and melting season.

At catchment scale 13 SCA maps could be used for the melting season of 2008, due to cloud cover

and non-optimal recording geometry. Using SCA map pairs with a maximum 3 day temporal gap

between consecutive recordings, the approximate date of snow cover disappearance was determined

by evaluating situations where the SCA for a grid cell dropped from above to below a global SCA

threshold value.

The catchment scale results were assessed by comparing runoff from SnowModel with observed

runoff for the Kjelstadfoss catchment. Even though observed runoff was unsatisfactorily repro-

duced using the interpolated precipitation correction fields, application of a linear correction to

DEM height resulted in improved performance.

As a concept, the backtracking routine seems promising, but for validating the resulting precip-

itation correction using runoff, more hydrologic processes should be considered when simulating

SnowModel runoff, i.e. evapotranspiration and soil- and groundwater processes, before more solid

conclusions can be drawn. Better temporal recording consistency and spatial resolution of the

remotely sensed data is believed to give more accurate maximum SWE estimates and accordingly

more reliable precipitation correction factors.
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1. Introduction

Snow and its distribution plays an important role in many fields of science, e.g. its high albedo

influences the radiation balance, thermal conductivity may effect the distribution and depth of

permafrost and the storing of water as snow and the release of the melt water is of great interest for

hydrologist in areas with seasonal snow cover. In some regions the magnitude of the snow reservoir

and melt water is of great importance for agricultural purposes and/or hydroelectric production,

and can account for as much as 50% of the annual runoff. The most basic processes regarding

snow is accumulation and melt, which can more or less co-occur (e.g. ephemeral snow covers) or

one might have accumulation dominated conditions (e.g. Antarctic ice sheet) (Liston and Elder,

2006a). In addition one might add redistribution as an important factor, such as wind transport

and avalanches. The accumulation and ablation of snow varies both spatially and temporally as

a product of spatially and temporally varying factors, that is atmospheric conditions and their

interaction with surface properties (Liston and Elder, 2006a).

1.1. Distributed snow models

In many situations one is interested in the spatial distribution of the amount of snow, usually in

form of snow water equivalent (SWE) and/or snow depth. These data are hard to measure for

larger areas, such as whole catchments, as most automatic snow measurement instruments are only

representative at a point scale and no remote sensing techniques give accurate enough estimates

for SWE. Manual measurements are often time consuming, which leads to large time gaps between

each observation. A solution is therefore to use snow models to simulated the snow variables in

order to get the desired spatial and temporal coverage. Typically these models take measured

meteorological data, e.g. temperature and precipitation, as input and try to “mimic” the natural

processes physically or empirically. These models may then, if it is of interest, be incorporated as

a module of hydrological model that simulates runoff. The model complexities range from lumped

and very simplified (empirical or conceptual) to distributed and physically based. An example of

a lumped and (simple) conceptual snow model is the snow routine of the HBV model, Bergstrom

(1995) and others, a widely used hydrological model and is the standard model for the Nordic

countries. It uses a threshold temperature to determine if precipitation falls as rain or snow and

degree-day methods for snow melt and refreezing. For some purposes a lumped, conceptual model

might not be desirable since the model does not take into account the spatial distribution of the

snow and more complex processes/principles, e.g. energy balance and snow pack evolution. There

are some more or less physically based, distributed snow models, such as described by Tarboton

et al. (1995) and Winstral and Marks (2002). In this study SnowModel (Liston and Elder, 2006a)

is used to simulate the snow. The model consists of four sub models, namely MicroMet, EnBal,

SnowPack and SnowTran-3D. They handle meteorological data, energy balance equations, snow

pack evolution and redistribution of snow by wind, respectively.

12



1.2. Snow measurements

Error in input data or simplifications in the model may result in simulations that do not fully

match the actual snow situation (Liston and Hiemstra, 2008). This can be accounted for and to

some extent corrected by using assimilation or updating routines with observed snow data. There

are many methods of obtaining snow data, and the current state of snow data collection methods

in the Nordic countries were recently reviewed by Lundberg et al. (2010). The methods range from

manual snow pit measurements via ground penetrating radar (GPR) to remotely sensed satellite

data.

1.3. Backtracking SWE using physically based snow models

Several studies, e.g. Cline et al. (1998) and Liston (1999), have shown that there is a strong

relationship between snow depletion patterns, end of season SWE and snow melt rate. Martinec

and Rango (1981) presented a back calculation scheme for SWE using snow melt estimates and

snow cover area fraction (SCA) data, and the accuracy of this methodology have been assessed by

Cline et al. (1998) and Liston (1999), showing promising results. These methods utilize a SWE-

SCA interrelationship in estimating the SWE using the melt rates generated by physically based

energy balance model. As only snow melt is modeled and used in the back calculation of SWE,

any snowfall during the melting season gives way for errors in the estimate. Liston (1999) shows

that this methodology can give, assuming Arctic conditions with clear accumulation and ablation

periods, good estimates of sub-grid SWE distribution if SCA observations can be acquired on a

daily or more frequent basis.

2. SnowModel description

The snow model used in this study, SnowModel, is described in Liston and Elder (2006a) but

with certain updates (not specified here) by Glen Liston over the last years. This section is a

short description of the sub-models which make SnowModel; MicroMet, EnBal, SnowPack and

SnowTran-3D.

2.1. MicroMet

MicroMet is a meteorological distribution model presented in (Liston and Elder, 2006b), which

provides the rest of SnowModel with gridded meteorological variables. The model includes a data

pre-processor, which detects missing data, does quality assurance /quality control of the data and

fills missing parts of time series, and an algorithm that distributes the meteorological variables if

necessary.

The MicroMet model requires air temperature, relative humidity, wind speed, wind direction

and precipitation values from at least one point within or adjacent to the simulation domain at all

times. These data are then spatially interpolated using an interpolation method that the MicroMet

authors have based on Barnes (1964); Koch et al. (1983), called Barnes objective analysis scheme

13



(BOAS), and physical sub models are used to enhance the parameters. The outputs are distributed

surfaces for the variables air temperature, relative humidity, wind speed, wind direction, incoming

solar radiation, surface pressure, and precipitation.

Measured air temperatures at each station is first brought down to sea level using a monthly

temperature lapse rate (◦C/km−1). The temperatures are then interpolated using BOAS, creating

a gridded dataset. The values for each cell is then brought up to their topographic height according

to a DEM with that same lapse rate. Relative humidity measured at the stations are converted

to dew point temperature by

Td =
c ∗ ln(e/a)

b− ln(e/a)
, (1)

where a is 611.15 Pa, b is 22.452, c is 240.97 ◦C, from Buck (1981), and e is given by

e =
RH ∗ es

100
, (2)

where RH is measured relative humidity in percentage and es is the saturation vapor pressure

calculated by

es = a exp(
b ∗ T
c+ T

), (3)

where T is measured air temperature, before they are brought down to sea level using a dew point

temperature lapse rate (◦C/km−1). Liston and Elder (2006b) explains that this conversion is done

as dew point temperature behaves more linearly with elevation than relative humidity. The values

are interpolated and brought up to topographic height, similarly as for air temperature. Lastly

the dew point temperatures are converted back to relative humidity.

Precipitation is gridded with BOAS, and so is the measurement station height. The precipitation

is then adjusted for the topography using a monthly precipitation adjustment factor (km−1) and

the difference between the interpolated station height and DEM.

Wind speed and direction are first converted to zonal and meridional, which are independently

interpolated using BOAS. The values are then modified by a simple wind model, adjusting speed

and direction according to topographic slope, aspect and curvature, and is described in detail in

Liston and Sturm (1998) and Liston and Elder (2006b).

MicroMet simulates the cloud fraction and incoming solar radiation using the topography and

potential incoming solar radiation, reducing it by e.g. a simulated cloud fraction. Long-wave

radiation is modeled following Iziomon et al. (2003), considering cloud cover and elevation. For

time steps above three hours, the incoming solar radiation is calculated for every three hours

and assimilated to the model resolution. Surface pressure is modeled by a time independent

distribution, dependent only on elevation above sea level. Observed short-wave and long-wave

radiation and surface pressure may be assimilated into the sub models. Detailed descriptions of

the interpolation routine, physical sub models and assimilation schemes of MicroMet are given in

Liston and Elder (2006b).
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2.2. EnBal

The EnBal model uses the meteorological forcings from MicroMet and calculates a surface energy

balance for the snow pack;

(1 − αs)Qsi +Qli +Qle +Qh +Qe +Qc = Qm (4)

where αs is surface albedo, Qsi is solar radiation reaching the surface, Qli is long-wave radiation,

Qle is emitted long-wave radiation, Qh is turbulent exchange of sensible heat, Qe is turbulent heat

exchange, Qc is conductive energy transport and Qm is the energy available (Liston and Elder,

2006a). The equation is solved for the snow surface temperature (T0), with melt energy equal

to 0 ◦C, using Newton-Raphson method. A resulting T0 above 0 ◦C for snow covered areas is

indicating energy available for snow melt, and the energy balance is then solved for melt energy

with T0 = 0. Details for each term in Equation 4 and its solution can be found in Liston (1995),

Liston and Hall (1995) and Liston et al. (1999).

2.3. SnowPack

This sub model, SnowPack, handles the evolution of the snow pack as a response to precipitation

and melt from MicroMet. SnowPack follows Liston and Hall (1995), which in turn closely follows

Anderson (1976). The model handles all inputs and outputs from the snow pack, in addition to

compaction of the snow due to melting and settling. New snow is added to the snow pack with

a given ”new snow” density, following Anderson (1976). When melting energy is available from

EnBal, SnowPack converts the energy available to a ”melting water equivalent” (MWE), by the

equation

MWE = δt ∗Qm/(ρwater ∗ Lf ), (5)

where δt is seconds per time step, Qm the available melt energy from EnBal and Lf is the latent

heat of fusion.

SnowPack then reduces the snow depth accordingly, using the modeled snow density. The melt

water is redistributed and a new snow density is calculated. If the new density is above a maximum

density threshold (default value 550.0kg/m3) any excess water is released from the snow pack so

that the density settles at the maximum value. If rain falls onto the snow pack, the SWE of the

snow pack is raised accordingly, and the density recalculated. Similarly to the melt situation, any

excess water is released if the new density is above the threshold. The model also handles canopy

interception and the release of this snow from this storage, but this is not too relevant for this

study as only areas above the tree line is considered. Over time the snow pack is compacted due

to settling, which is modeled by the equation

∆ρsnow = dt ∗ C1 ∗ 0.5 ∗ dsnow ∗ ρsnow ∗ exp(−0.08(Tf − Ts)) ∗ exp(−C2 ∗ ρsnow), (6)

where ∆ρsnow is the change in snow density, dt seconds in the model time step, dsnow is the snow

depth, ρsnow the snow density before reduction, Tf is 273.16 ◦K, C1 is the fractional density in-
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crease per time unit, which is set to 0.0013 in the code, C2 an empirically estimated constant set to

0.021 and Ts the snow pack temperature estimated, assuming ground-snow interface temperature

of -1 ◦C, by

Tf = 0.5 ∗ ((Tf − 1) − Tsfc), (7)

where Tsfc is the modeled snow surface temperature.

SnowPack also considers sublimation from the snow pack, but the modeled sublimation is of

such a small magnitude for the study areas that is makes no major impact. It is, however, still

considered as a process to remove snow from the snow pack. A notable process that is missing in

this version of SnowPack is modeling of re-freezing of liquid water in the snow. Details regarding

this models may be found in Liston and Hall (1995).

2.4. SnowTran-3D

Redistribution by wind of the snow is governed by the three dimensional sub model SnowTran-3D

as described by Liston and Sturm (1998) and further in Liston et al. (2007). This model has

previously been tested on several sites, including a Norwegian alpine catchment (Bruland et al.,

2004). The change in snow depth ( δζsδt ) is modeled by the equation

δζs
δt

=
1

ρs
[ρwP − (

δQs
δx

+
δQt
δx

+
δQs
δy

+
δQt
δy

) +Qv], (8)

where ρs and ρw is snow and water density, Qs transport by saltation, Qt transport by turbulent

suspension, Qv sublimation from transported snow and P is precipitation. Depending on the

surface layer input to the model, each cell will have a snow retention capacity where only a snow

depth above this threshold will be available to transport by wind. The model is described in detail

by Liston and Sturm (1998), and several improvements to the model are presented by Liston et al.

(2007). The improvements include a new wind model, two-layer parametrization of threshold

friction velocity for the snow pack and an implementation of the Tabler (1975) model for snow

drift profiles.

2.5. SnowAssim

The snow assimilation subroutine may be used with SnowModel if there are snow observation

data available, and is described in Liston and Hiemstra (2008). A simple assimilation scheme was

chosen in order to not increase the processing time of SnowModel simulation too much (Liston and

Hiemstra, 2008). The scheme assumes that the differences between the model simulated values

and the “true” observed values are mainly caused by errors in either precipitation forcings or the

modeled snow melt. For each observation point the difference in simulated and observed SWE

is calculated. In order to determine which of the two processes (precipitation or melt) that is

governing in the evaluated period, the relative contribution (R) of precipitation (P) and snow

melt (M) is calculated by

Rprec =

∑
P∑

P +
∑
M

(9)
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Figure 1: Conceptual figure of the assimilation routine with observations at SWE peak and end
of season. From Liston and Hiemstra (2008)

Rmelt = 1 −Rprec (10)

for the time period in question. The process with the greatest relative contribution is then scaled

using a correction factor. The precipitation correction factor is calculated by

Pfact = 1 +
(SWEtobs − SWEtsim) − (SWEt−1

obs − SWEt−1
sim)∑

P
, (11)

where subscripts obs and sim represent observed and simulated values respectively. The model

is then re-run from the beginning of the season, or last observation point, to the observation

registration time with the corrected precipitation data. A similar procedure is done for snow melt

if Rmelt is greater than Rprec. Figure 1 illustrates the concept of SnowAssim.

3. Remote sensing of snow by satellite

Remote sensing is often used to acquire information on surface properties over vast areas. There

are two main categories of remote sensing techniques based on the part of the electromagnetic

wave spectrum they utilize; optical, which records visible, near-infrared etc. frequencies, and

radar sensors, e.g. synthetic aperture radar (SAR). Both classes have both passive and active

systems. Passive optical sensors systems have often been used to map snow cover distribution,

but with the significant drawback that no measurements can be made through cloud covers. On

the other hand, radar waves can penetrate cloud cover, but is only able to map wet snow and is

very sensitive to vegetation and snow free spots, which are wrongly classified as snow free (Storvold

et al., 2005). As the snow cover to snow free state transition is of uttermost importance for this

study, radar based products were not used. There are several operational snow mapping products

derived from satellite imagery, and also several operational SWE mapping services, but these data

are of rather coarse spatial resolution, and therefore not well suited for regional modeling.

In this study, a snow cover area (SCA) product from the Norwegian Computing Centre (Norsk
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Figure 2: Illustration of the NLR algorithm. A pixel with DN along the X-axis is assigned a
fractional snow cover, Y-axis, from the linear transformation between the two training
clusters. From Andersen (1982)

Regnesentral, NR) is used as remotely sensed observation of the snow cover. The optical obser-

vations are processed using NRs optical snow algorithm, presented in Solberg et al. (2006). It is

based on the Norwegian Linear Reflectance-to-snow-cover (NLR) algorithm presented by Ander-

sen (1982) and Solberg and Andersen (1994), which was originally developed for NOAA AVHRR

data, but modified for MODIS data by NR. For the fractional snow cover algorithm, several train-

ing areas are selected for calibration of the linear model. 100% SCA is determined by a linear

transformation of the mean of the high-level spectral reflectance training areas (SRTA), and 0%

by the mean of the low-level STRA (2). The high-level SRTA are set at glaciers and low-level

in boreal forests with little or no anthropogenic surfaces. For each pixel that is not excluded by

the cloud detection algorithm, i.e. cloud and sea pixels, SCA is calculated according to the linear

transformation of the training areas (Figure 2).

NRs algorithm includes a cloud detection routine based on K-nearest neighbor classification

(KNN), using the MODIS bands 1, 4, 6, 19, 20, 26 and 31, which includes wavelengths from

0.545 to 11.280 µm, and sun angle at the observation time. Band 6 is most important regarding

separation of snow and cloud cover, since clouds have high reflectance and snow has low (Solberg

et al., 2006). KNN is a simple, supervised, image classification algorithm, which looks at the

K nearest trained neighbors in the multidimensional parameter space and assigns the pixel in

question to the class that is in a majority. The classes used in the classification are cloud, land,

ocean and snow cover.

Solberg et al. (2006) points out several weaknesses of the traditional NLR algorithm; that is does

not take into account how topography affects reflectance of solar radiation, does not consider the

decay of reflectance of the snow throughout the season due to snow age and pollutants, and that

it does not handle the variation bare ground surface reflectance. NR has improved on the NLR

algorithm by introducing a bidirectional reflectance distribution function (BRDF) model grid.
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The change in reflectance is modeled with a BRDF model described in Solberg et al. (2006), with

further details in Solberg (2004) and Solberg (2005). The model features two BRDF grids, one for

snow covered areas and one for snow-free areas, based on observations from many snow seasons.

The BRDF grids accounts for changing illumination angles and different acquisition angles. The

fractional snow cover algorithm works iteratively, doing a spectral unmixing based on the BRDF

grids, modeling snow metamorphosis and impurities until the change between two iterations are

insignificant or until a maximum number of iterations are reached.

Further details on the above mentioned remote sensing algorithms and discussions regarding

these can be found in Solberg et al. (2006), Storvold et al. (2006) and Solberg et al. (2006).

4. Study area and input data

The study area is centered in the catchment of the river Nea in Mid-Norway, which runs out to

the sea at the city of Trondheim (Figure 3). In SnowModel the area is represented by a digital

elevation model (DEM) with original spatial resolution of 50 m and an vegetation map based

on CORINE (Coordination of Information on the Environment) Land Cover data with 100 m

resolution. CORINE Land Cover is an European project, now under the European Environment

Agency (EEA), for gathering environmental information, and provides land cover information

based on satellite data. The Trondheim fjord is located in the north-west of the area, and the

elevation increases east- and southwards. According to the CORINE data, the north-western part

is dominated by agriculture and coniferous forest, and the valleys in the inland have deciduous

forest. As elevation increases, bog-lands and marshes are dominant and the vegetation is lower and

more spare the higher the elevation. The vegetation map used in SnowModel is shown in Figure

4, the classes are based on the description of the CORINE data. Although the data have many

specific classes, the most important is to be able to distinguish between forested and non-forested

areas as this will determine whether canopy interception, solar radiation reduction etc. will be

considered in the code.
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The meteorological data to drive the model were acquired from stations owned by Statkraft

AS and the Norwegian Meteorological Institute located in the region (Figure 3). Hourly data

for 2007-2010 were downloaded for each of the stations listed in Table 1, which also shows which

variables that are were uploaded from each station. In addition to meteorological variables, three

of Statkraft AS’ stations have functioning snow pillows combined with snow depth ultrasonic

sensor.

Hourly runoff values were retrieved for Kjelstadfoss station (Figure 5), which is a measuring

station in the river Kjelstafossen, which flows into Selbusjøen from the north-east. In order to

asses the model quality, the catchment for this station was delineated using a 250 m DEM, and

direct runoff from SnowModel summed up for all grid cells within the catchment, i.e. assuming

direct response. The position of the measuring station and the catchment is shown in Figure 5.

The delineated catchment has an area of 150 km2, and has a few small lakes and some wetlands

or marshes.
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0 15,000 30,0007,500 Meters

Legend

SCA, 24.04.2008

High : 200

Low : 100

Figure 6: Example of SCA from NR, transformed and clipped to study area. Value 100 equals 0%
snow cover, 200 equals 100%. Map from 24. 04. 2008

Raw images from MODIS-Terra from March to July 2008 were visually inspected in order to find

suitable images in terms of coverage, cloud cover and recording geometry. The selected MODIS

images were downloaded and processed at NR. The SCA-products arrived as a map of the whole

of Norway in UTM33 WGS84 projection, so the maps were reprojected to UTM32, WGS84 and

clipped to fit the study area (Figure 6). Although the SCA algorithm takes recording geometry

into consideration, an inspection of the data showed that two recordings close in time, e.g. one

repeat cycle apart, with different viewing geometry gives some percentage of difference in the

SCA, sometimes increasing the values in the melt season. Since this increase the possibility of

false detections of zero SWE dates, observations with high viewing angles were excluded from the

data set. The weather along the coast of Norway is often cloudy, giving rather sparse amount of

data over time. The recording dates that were found suitable for the analysis is listed in Table 2.

As the study is heavily based on MODIS images with a 250 m spatial resolution, all spatial data

were aggregated to this resolution using averaging for the DEM and nearest neighbor method

for the vegetation data, as these are discrete values. All vegetation classes were reclassified to

SnowModel-compatible variables based on the CORINE description of each class. SnowModel

was ran both 24- and 3-hour time resolution, and thus all measured meteorological variables were

aggregated up to these values. The two different time resolutions were chosen in order to compare

simulations where diurnal variations are modeled and where they are not in order to assess the

importance of time resolution in the study. Hourly simulations require much longer processing

time, and was therefore not tested in this study.

The SnowModel code used in the study was uploaded by Glen Liston 19. January 2011, and
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Table 2: MODIS image recoding times

Date Time
24. 04. 2008 10:51
26. 04. 2008 10:40
05. 05. 2008 10:35
08. 05. 2008 11:05
10. 05. 2008 10:51
28. 05. 2008 10:40
29. 05. 2008 11:22
29. 05. 2008 11:25
02. 06. 2008 11:00
04. 06. 2008 10:45
07. 06. 2008 11:16
02. 07. 2008 11:10
04. 07. 2008 11:00

was at that time the latest version of the code.

5. Methodology

As the MODIS products have a spatial resolution of 250 m, the same resolution was used for the

SnowModel simulations. SnowModel is mainly designed to work at spatial scales less than 200

m (Liston and Elder, 2006a), but may be used at lower resolution at the cost of high resolution

information loss (Liston, 2004). When running at this scale, the snow transport model is thought

to no longer be relevant or representative, and in fact an initial test of running the model with and

without the SnowTran-3D sub model shows little to no difference, at least when comparing at the

snow pillow locations. The absence of snow transport by wind is also favorable in regard to the fact

that the assimilation scheme adjusts the precipitation locally for each grid cell, so it is assumed

there is no inter-pixel flux. Additionally, runs using the model default and no precipitation lapse

rate showed very little difference in the snow accumulation, and the difference in accumulation

compared to the snow pillows are of no significance. Therefore all simulations use a lapse rate of

0.0 in the code for all months, so that the correction field calculated from the snow melt values

will give an indication of how the (snow) precipitation factors should be spatially distributed.

Other than turning SnowTran-3D off and setting precipitation adjustment factors to zero, the

other parameters were kept at default values for all simulations, except those associated with

input data and simulation time. The complete list of SnowModel user set parameters are given

in appendix C. All simulations showed that for both snow pillow and runoff data comparison,

classifying the CORINE class for clear cut forest as the corresponding class in SnowModel, i.e.

SnowModel calculated canopy interception and solar radiation reduction etc. for these areas,

gave worse simulations compared to simulations where this class was set to some other non-forest

SnowModel class. Therefore all simulations presented in this paper are similar to the map shown

in Figure 4, except that the clear cut forest class is reclassified to a similar class that is not handled

as forest in the code.
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5.1. Backtracking seasonal maximum SWE using SnowModel

It is proposed that, knowing the date when an area is totally snow free, one can trace back the

snow melt simulated in SnowModel which will result in a maximum SWE value for this area, and

previous studies have shown that it is possible (e.g. Liston (1999)). Most of these studies have

only relied on simulated snow melt from physically based energy balance models to backtrack the

SWE-values, making late season snow precipitation a source of error in areas where this occurs

to some degree. By including sub-models which will give input as snow precipitation during

the melt, evolution of the snow pack depth/density throughout the season etc. it is expected

to be possible to not only give a better estimate of the maximum SWE value, but also find a

precipitation adjustment factor field that can improve the SnowModel simulation to, similar to

the methodology in SnowAssim (Section 2.5). In contrast to the previous studies using remotely

sensed SCA evolution at each grid cell, this study simplifies the methodology and focuses only

on the point in time where the SCA reaches a zero SWE situation and assuming this to be

representative for the SWE modeled for grid cells, i.e. not actually considering the sub grid snow

distribution at all and assuming a uniform snow cover over the whole grid cell in the simulated

values.

All SnowModel modules are associated with the melting dynamics; MicroMet grids and models

all meteorological variables used in the energy balance solving, precipitation in rain or snow form,

etc, EnBal solves the energy balance and calculates energy available to melt snow and sublimation,

and finally SnowPack melts or accumulates snow, as described previously. In late autumn/early

winter one might have both accumulation and melting of snow, giving a fluctuating snow cover,

and even situations where the previously accumulated snow is completely melted. This may

influence the snow melt value in cases where the snowfall is over-estimated, because the model

will allow a lot more melt if more snow is available. Therefore, only data from after 1. January is

considered in the backtracking calculations, i.e. considering the main accumulation season. In the

ripening phase of the snow pack, SnowPack melts out the MWE (Equation 5) and redistributes

this water evenly in the snow pack. This reduces the snow depth and thus the snow density is

increased. When the snow pack is ripe, this melt will result in runoff from the snow pack. Since

the model does not handle liquid water content in the snow pack, and does not handle refreezing,

this algorithm will in a lumped sense refreeze all melted snow pre-output phase, in that the MWE

is not removed from the snow pack until the density threshold is reached. Because of this, in

order to backtrack the maximum SWE one must look at the simulated runoff/output from the

snow pack during the melt season rather than the MWE. During the melt season it may also

fall precipitation as snow, adding additional melt able snow to the snow pack which is not to be

included in the maximum SWE value. The back-calculation is very similar to the methodology

used by Liston (1999), but with a slight modification in that it accounts for snowfall during the

melting season and uses runoff rather than melt energy;

SWEmax =

t0∑
tmax

(Qrunoff (t) − Psnow(t)), (12)

where tmax is the point in time where the simulated SWE is at maximum value, t0 the observed

time where SWE = 0, Qrunoff the runoff produced from the snow pack due to melting, and
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Psnow precipitation as snow added to the snow pack during the output phase, all values in water

equivalent depth. This method differs from those of previous studies mentioned in Section 1.3

in that it does not only take into consideration the energy in the melting season, but extracts

data from a simulated snow pack. This procedure does not take into account any rain retained in

the snow pack during output phase as any new additional snow is assumed to have low retention

capacity and a ripe snow pack will in this algorithm not retain any rainwater. Equation 12 will

work in situations where the model overestimates the precipitation, but will not work in cases

where it is underestimated. The reason for this is that SnowModel stops calculating melt energy

as soon as the snow cover is gone. For this reason, parallel simulations from 1. January until 1.

Sept were ran with an initial snow cover of 5 meters depth at 1. January. This will allow the

melting calculations to continue further in time than the original run, and the maximum SWE is

then given by

SWEmax =

tsim=0∑
tmax

(Qrunoff,1(t) − Psnow(t)) +

t0∑
tsim=0

Qrunoff,2(t), (13)

where tsim=0 the point in time where this simulation is snow free, Qrunoff,1 is runoff due to snow

melt from the original simulation, and Qrunoff,2 runoff due to melt from the exaggerated snow

cover simulation. For situations where the simulated zero SWE situation is later than what is

observed, Equation 12 is used, and Equation 13 for when snow free condition is reached too early.

The precipitation correction scheme is based on SnowAssim in that it calculates a correction

factor that is used to force the model to better fit the observations. In this study, all uncertainties

associated with the snow cover is assumed to come from uncertainties in the measurement and

gridding of snow precipitation. As snow precipitation is the only means in the model that will

add SWE to the snow pack in each grid cell and the above mentioned runoff due to snow melt

is output, the water balance of the snow storage is Psnow = Qrunoff . The snow precipitation

correction factor is therefore estimated by the formula

Pcorr =

∑tzero
t=tj+1Qrunoff (t)

SWE(t = tj) +
∑tzero
t=tj+1 Psnow(t)

, (14)

where tj is 1. January, tzero is the time where a zero SWE situation is observed and Qrunoff is

the runoff due to snow melt, with added values from the parallel run if zero SWE occurs too early,

SWE(t) the SWE storage in the snow pack and Psnow the precipitation as snow.

5.2. Multi-temporal SCA maps as zero snow indicators

As mentioned, optical remotely sensed data from satellites have a major disadvantage in that

information below cloud cover is irretrievable. This makes it highly improbable that one will get

observations at all points in the study area at a daily basis, and it is therefore unlikely to get a

continuous grid of zero SWE situation observations. Non-optimal viewing geometry may also add

to the length of the time gaps between each SCA observation. However, if two observations are

close enough in time, one may use the difference in SCA values to estimate the point in time that

the grid cell is virtually snow free. It is proposed that below a certain threshold of SCA the SWE
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remaining snow is so sparse and thin that its SWE is insignificant. The zero SWE observations

are therefore found by simply extracting pixels where the SCA value drops below a certain, global

threshold value between two consecutive observation dates. The recording time of the last of the

SCA map pairs will then be used as the date of snow cover disappearance observations.

The maximum amount of days between observations to determine zero SWE situations was

set to three days. This rather coarse lower temporal resolution may give a lot of uncertainty, as

much melting may have occurred over three days, resulting in inexact melt out observation. In

the SnowModel 3 h simulations, large melt out events are typically in the range of 30 to 40 mm

on daily basis. However, since the melt-out of pixels follows the topography to some extent, one

may filter out the pixels that are most likely a true zero SWE observation at the last observation

date from those that became snow free at some earlier point in time between the two observations.

This was done by running a 3x3 window over each of the zero SWE observations resulting from an

observation pair. The window checks if the pixel has any neighbors with a SCA value higher than

the threshold in the original SCA map, excluding all observations that does not pass this test.

This will result in a narrow band of zero SWE observations on what is assumed to be the snow line

at the last of the two observation dates. As the snow cover melts, the roughness of the area within

each pixel and influence of wind transport will give different melt patterns. A completely flat area

with no wind and equal distribution of all variables will in theory go from 100% to 0% snow cover

almost immediately, and represents how SnowModel in a sense simulates the snow melt in these

runs. However, as this is very rarely the case for natural surfaces, the observed SCA from MODIS

will gradually go from completely snow covered towards a snow free state. Although previous

studies, e.g Liston (1999), utilize a relationship between SCA and SWE can be established, it is

likely that this relationship will vary from grid cell to grid cell especially at such coarse spatial

resolution as the one used in this study. As there is no data to base this relationship on in this

study area, only a melt out threshold is used. It is obvious that, depending on the topography

at sub-grid scale, at some SCA threshold above 0% an 250 by 250 m grid cell may be considered

practically snow free. For example a grid cell with 10% SCA and assuming that the remaining

snow has a depth of 50 mm SWE, in terms of a SnowModel simulation, this is equivalent to model

a state of 5 mm snow cover for this pixel. This snow cover is so thin that the model is most likely

not able to catch it at this temporal and spatial resolution. It is therefore thought that, although

very simplified, there is some threshold of SCA where the remaining observed snow cover is so

small that it is negligible. Obviously the SCA threshold at where one considers a pixel snow free

is a critical parameter in this analysis.

An analysis using a SCA threshold value close to 0 will be sensitive to noise and varying viewing

geometry, as well as small errors in the estimation of SCA, and may not be representative of a zero

SWE state in the model, as discussed previously. In addition, low SCA values represents a very

patchy snow cover, and in terms of SWE this might already be as good as a ”no snow” situation.

Because of the uncertainties associated with this threshold value, different threshold values were

tested and the model results compared to relevant observed values in order to test its sensitivity

and best-fit value. Observations in forested areas were ignored, as there is a lot of uncertainties

associated with remote sensing of SCA in forested areas.

Two SCA observations relatively close in time will give a belt of zero SWE observations along
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the snow-line. Since one pair will only give observations more or less following the topography,

a correction calculated for these grid cells will not represent the region as a whole. If one is

able to acquire such image pairs somewhat regularly throughout the melting season, one will get

better coverage and better representation of the study area. An image pair give one zero SWE

observation map, and all observations done through a season is gathered in one single map, where

the pixel value corresponds to the date at which the zero SWE situation was observed.

Based on this snow free date map, one can calculate correction factors for each grid cell by

extracting simulated values from SnowModel based on the corresponding date, and using the

equations in Section 5.1. The resulting map is, however, not continuous as the correction factors

can only be calculated for cells where the melt out time is known. In order to make a correction

map that can be used to correct SnowModel, the values were interpolated over the whole study

region using Inverse distance weighing (IDW) to a 1 km grid, and then scaled down to 250 m in

order to smooth the correction field and reduce the influence of outliers and noise. A few other

methods to represent the whole area are also tested in this study.

5.3. SnowModel setup and changes to the source code

SnowModel has many parameters that may be set/changed by the user in order to fit the model

to different simulation conditions.

The original MicroMet code uses, as mentioned, monthly values for the temperature lapse rates,

vapor pressure coefficient and precipitation adjustment factor (values in Liston and Elder (2006b)).

Since the precipitation is the parameter which will be corrected in this study, the precipitation

correction factor was set to 0 so that a resulting correction map will not be influenced by potentially

erroneous precipitation correction factors.

Investigating the air temperature and dew point temperature lapse rates using the meteorolog-

ical station height and observations, it was evident that the default monthly lapse rates used in

SnowModel does not fit well with the climate at this study area, e.g. the temperature gradient is

much steeper in the spring months, most likely due to bare ground in the lower parts and snow

cover in the upper parts. Both the temperature lapse rate and vapor pressure coefficient will most

likely vary at a time scale much finer than monthly time steps. Because of this, new values were

calculated for each time step in the meteorological input files. For the temperature lapse rates,

this was simply done by fitting a linear curve to the temperature and station elevation, using the

least square method. In the original code, the vapor pressure coefficient is never directly used,

but is converted to a dew point temperature lapse rate. As the dew point temperature lapse rates

are assumed to behave linearly in MicroMet, the dew point temperatures were calculated for each

time step using equations 1 to 3. The lapse rate was estimated using a linear fit and added to the

MicroMet input files along with the calculated temperature lapse rates. Small modifications were

made to the MicroMet source code in order to handle these new lapse rates.

In addition, some changes were made to the code in order to extract the variables of interest

for both snow pillow and catchment areas.
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Figure 7: Interpolation of precipitation without lapse rate, annual sum (Hydrologic year 2007-
2008).

6. Results

6.1. SnowModel meteorological variables

For this study, no precipitation adjustment by height is done. The consequence of this is that

the interpolation of precipitation results in a very smooth precipitation field (Figure 7). The

precipitation field shows a decrease in precipitation from north-west to south-east, probably a

result of increasing distance from the ocean. If a precipitation lapse rate is used in MicroMet,

the precipitation in each grid cell is scaled according to the difference between topography and

interpolated station height (Figure 8). This difference field, showed in Figure 9, gives an indication

of how a lapse rate would increase or decrease the precipitation in Figure 7. Figure 10 shows the

average temperature field of the study area for 1. Sept 2007 to 31. August 2008. Since this variable

used a lapse rate calculated at each time step, the distribution closely follows the topography.
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Figure 8: Interpolated station elevation, used in cases where precipitation adjustment rate is given.
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Figure 9: Difference [DEM] - [interpolated station elevation], gives indications of how precipitation
would be scaled if a precipitation lapse rate is given. Negative values would decrease
and positive increase precipitation.
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Figure 10: Interpolation of temperature, annual average temperature (Hydrologic year 2007-2008).

6.2. Test of concept: backtracking SWE using SnowModel

6.2.1. Initial runs

In order to test the concept of backtracking the seasonal maximum SWE, values were extracted

from the simulation results at points where working SWE and snow depth measurements are

located (Hersjøen, Nessjøen and Sørungen (Figure 3 and Table 1). These values were compared

to the observed values in order to assess the viability of the concept. The meteorological variables

used by the model at these points are influenced by the interpolations done in SnowModel, which

most notably influences the precipitation distribution, as it was not adjusted to the topography

and thus only a smooth field (Figure 7).

Initial runs showed that the density SnowModel uses as maximum snow density before output

occurs is too high compared to the density at which the measured data starts melt-water output.

Averaging the values for all three stations when output occurs gives a maximum snow density

value of 488 kg/m3, and this value was substituted into the source code. Stations and seasons

where the SWE has unrealistic values when compared to the measured snow depth were ignored in

this calculation. From the snow-pillow and snow depth data, the point in time where the measured

snow cover reaches zero was found and used in the backtracking routine, using equations 12 and

13, as a test of concept. For cases where there are a mismatches in the zero date between observed

SWE and snow depth, the latter observation series was used.

The snow pillow and snow depth data for 2009-2010 show that in the beginning phases of the

melting season the SWE and snow depth relationship give snow densities much lower than what
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Figure 11: Comparison of initial simulations of SWE and snow depth evolution at 3 h and 24 h
temporal resolution for 2007-2008, showing how the output phase starts later in the 24
h run

is expected of a ripe snow pack, e.g. the density is at about 300kg/m3 at Nessjøen, where the

maximum density in the SnowPack code is 488kg/m3 (2.3). Such erroneous SWE evolutions are

common for snow pillows, and the maximum observed snow values are most likely inaccurate for

some of the seasons. The best set of observations considering both SWE and snow depth is for

2007-2008, and the majority of the analysis is done for this season.

The test was done on the hydrological years (1. Sept. to 31. Aug.) from 2007 to 2010. Table

3 shows the backtracked and observed SWE maximum values at the snow pillows at 24 and 3

hour increment runs for 2007-2008. The daily resolution runs seem to greatly underestimate the

maximum SWE, while the 3 hour resolution runs are much closer to the observed values, meaning

that EnBal and SnowPack as of this version produces too little melt at daily temporal resolution.

This is also evident in Figure 11, as both 3 h and 24 h runs reaches the melting season with similar

snow depth and SWE values, but the 24 h simulation uses far more time to melt away the snow,

and the output phase starts later for the 24 h simulation. Based on these results, the rest of the

simulations were done on a 3 hour time resolution, as the daily simulations does not seem to be

able to reconstruct the maximum SWE value by using this particular backtracking scheme.

Results from the two parallel simulations, i.e. normal run and run with exaggerated snow cover,

were extracted at each snow pillow point and the correction factor calculated using Equation 14,

results are shown in Table 3. Based on the station elevation it might seem that the correction

factor increases with elevation.

The accumulation starts very late at Hersjøen and Sørungen during the last year. At Nessjøen,

which is located higher, it was registered an ephemeral snow layer rather early that completely

melts out and there is a long period of little to no snow before the accumulation starts again in

2010. In the initial run for all three stations the accumulation starts way too early, and the snow

pack is thus greatly overestimated the whole season. Since the effect of the early accumulated

snow that is actually melted out, the correction of precipitation will be too low as it considers

the simulated SWE at 1. January and all snow that falls after that. This would therefore mean
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Table 3: Backtracking of maximum SWE, initial runs. Only 2007-2008 was ran on both temporal
resolutions

Station Backtr. SWE (24 h) Backtr. SWE (3 h) Observed SWE Corr. factor (3 )

(mm) (mm) (mm)
2007-2008

Hersjøen 296.5 430.1 460.1 0.6756
Nessjøen 543.2 891.5 822.8 1.7094
Sørungen 344.2 446.7 453.0 0.6509
2008-2009

Hersjøen - 411.9 396.4 0.7370
Nessjøen - 535.0 504.0 1.0951
Sørungen - 658.4 618.7 1.1869
2009-2010

Hersjøen - 339.0 251.1 0.6857
Nessjøen - 405.7 201.5 0.8671
Sørungen - 194.5 192.6 0.4166

that all the falsely accumulated simulated snow per 1. January is considered to contribute to the

seasonal maximum snow cover. Thus SWE and snow depth during the snow accumulation period

in the first correction run is highly overestimated up until the maximum period. By the end of

the accumulation the two values get closer to what is observed.

6.2.2. Iterative correction runs

For the stations where the model overestimated the SWE amount the backtracked SWE was too

low, and visa versa. This might be a consequence of the fact that increased/lowered snow pack

needs more/less energy to reach the output phase. For example a backtracking of snow-melt runoff

from an underestimated snow cover will require less energy to reach the output phase than the

actual, deeper snow cover. Thus more energy should have been used to further ripen the snow pack

rather than produce runoff, and the backtracked SWE value will be too high. This is particularly

important in cases where modeled and observed SWE values have large differences. Additionally,

the simulated snow maximum point in time is also shifted. Because of this, three iterations of

snow precipitation correction runs were run, and the maximum SWE backtracking and correction

factors were assessed after each iteration. The idea is that the SWE values after one correction

run will be closer to the observed values, but not optimal because of the above mentioned factors.

Additionally, doing it iteratively will give some insight to how the correction would behave if a

precipitation adjustment rate initially was better estimated, i.e. considering first correction run

as initial run, and looking at whether the second correction run improves the backtracking.

The iterative backtracking results are listed in Table 4 and SWE and snow depth evolutions

for all stations for all simulations years are plotted in Appendix A. After each run, a new set

of correction factors were calculated and the model re-started using the original data and the

product of the current and previous correction factor values, e.g. for Hersjøen, the second snow

precipitation correction run used a correction factor of 0.6756 ∗ 1.0195 = 0.6888 (Table 4). The

best fit with observed data is achieved in the 3rd correction runs. Figure 12a and 12b shows the

observed and simulated SWE and snow depth (SD) values from the iterative runs at Hersjøen
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Figure 12: Observed and simulated SWE (a) and snow depth (b) for iterative runs at Hersjøen
2007-2008

station for 2007-2008. This station at this year had the best fit of all backtrackings, with an error

of 3.2 mm SWE in the 3rd correction run, and it is evident from the figure that both the simulated

SWE and SD closely follows the observed values from late accumulation season until the melt

out at this station. When only considering observation and simulations that coincide with the

onset of output from the snow pack, i.e. Hersjøen 2007-2008, Nessjøen 2007-2008 and 2008-2009,

and Sørungen 2007-2008, the average error is 15.85 mm. The other backtrackings could not be

assessed, as observed SWE values were most likely wrongly measured.

Figure 13 show the root mean square error (RMSE) for SWE and snow depth, respectively,

for the three stations in the season 2007-2008, and it is evident that the first correction run

improves the simulations a lot, while the following iterations continues to reduce the errors, but

the improvements are much smaller. The RMSE for the seasons 2008-2009 and 2009-2010 (Figure

14 and 15) has no clearly present trend. For 2007-2008 the snow depth RMSE values are much

lower, so that the variation looks larger than for 2007-2008, and since the initial error is low

the correction does not improve, or increase during the iterations. The first correction run of

Sørungen this year has a much higher RMSE than the initial run, but is brought down in the

last two iterations. In the 2009-2010 simulations the SWE and snow depth simulations vary much

at Sørungen, and the magnitude and the RMSE are high for the SWE values, probably due to

erroneous SWE observations at SWE maximum.

When plotting the simulated values one can see that for most stations the main snow accumu-

lation season starts too early compared to the measured SWE and snow depth. In some cases

SnowModel, in contrast to the observed data, simulates a short accumulation and ablation period

prior the main accumulation. At Hersjøen 2007-2008 (Figure 16a) the early accumulation/ablation

events are never removed, thus influencing the total snow precipitation correction for this period

as more snowfall events contribute to the maximum snow value. Figure 16a also illustrates how

the iteration runs seem to converge toward a stable simulation after several correction runs. Ad-

ditionally, when comparing these SWE values to the snow depth values (Figure 16b) it is evident

that the errors in SWE are closely related to errors in simulated snow depth. In 2008-2009 the
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Figure 13: RMSE for SWE (a) and snow depth (b) for iterative correction runs 2007-2008. Run
no. 1 is the initial run.
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Figure 14: RMSE for SWE (a) and snow depth (b) for iterative correction runs 2008-2009. Run
no. 1 is the initial run.
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Figure 15: RMSE for SWE (a) and snow depth (b) for iterative correction runs 2009-2010. Run
no. 1 is the initial run.
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Table 4: Backtracking of maximum SWE, iterative snow precipitations correction factor runs

Season Station Back.tr. SWE Observed values New corr. fac.

Run no. (mm) (mm)
2007-2008

2 Hersjøen 449.9 460.1 1.0195
2 Nessjøen 747.0 822.8 0.8131
2 Sørungen 471.2 453.0 1.0036

2008-2009
2 Hersjøen 387.2 396.4 0.9099
2 Nessjøen 454.7 504.0 0.8506
2 Sørungen 560.2 618.7 0.8448

2009-2010
2 Hersjøen 391.4 251.1 1.0687
2 Nessjøen 379.4 201.5 0.9147
2 Sørungen 351.1 192.6 1.7642

2007-2008
3 Hersjøen 456.9 460.1 1.0173
3 Nessjøen 796.0 822.8 1.0661
3 Sørungen 472.7 453.0 1.0633

2008-2009
3 Hersjøen 401.8 396.4 1.0290
3 Nessjøen 490.3 504.0 1.0636
3 Sørungen 582.5 618.7 1.0347

2009-2010
3 Hersjøen 363.3 251.1 1.0687
3 Nessjøen 400.7 201.5 0.9147
3 Sørungen 219.2 192.6 1.7642

modeled accumulation starts too early at all three stations, and in the last season (2009-2010)

the start of the accumulation period is far too early compared to the observations. The fact that

the model starts the main accumulation too early makes the snow precipitation correction factors

wrong, as more precipitation is considered to fall as snow and contribute to the SWE, rather than

as rain. This will in turn make the snow accumulations wrong as all snow precipitation events

will be scaled down or up, so although the model forces the data through the assumed maximum

SWE values from the backtracking, the snow evolution pre-melting season may not fit the observed

data. All in all, the correction runs does not seem to improve the accumulation period too much in

most cases, but the maximum snow amount and melting season is always improved. Also notable

is the simulation for Sørungen 2009-2010, where the correction factors are never able to fit the

simulations (Figure 17a and 17a) to the observed values, even after several correction iterations.
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Figure 16: Observed and simulated SWE (a) and snow depth (b) for iterative runs at Nessjøen
2007-2008
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Figure 17: Observed and simulated SWE (a) and snow depth (b) for iterative runs at Sørungen
2009-2010
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6.2.3. Melt energy and ripening of the snow pack

Figures 18 and 19 shows simulated SWE, snow depth and accumulated melt at Hersjøen for the

snow season of 2007-2008, both for the initial and 3rd assimilation run. This is the station which

gave the best fit after the assimilation for SWE and snow depth especially from the beginning of

the melting season and to the melt out, meaning that the model as a whole works very well at this

point at this time after correction. It is clear from the figures that some amount of the melting

thats occurring in the beginning of the melting season (ripening phase) goes to reduce the snow

depth and increase the snow density, rather than leaving the snow as runoff. As the snow depth

and SWE values are very similar to the observed values (Figure 12a and 12b), one can assume

that the interrelationship between melt, snow depth and SWE is accurately simulated. In Figure

18 and 19 the point in time where simulated SWE is at maximum (right vertical line) and the

point in time where steady melting is starting, i.e. energy available to melt snow, (left vertical

line), i.e. the ripening phase, is marked. In this period 159.6 and 129.6 mm MWE (Equation

5) is simulated for the initial and 3rd run respectively, and the total amount of MWE from the

steady melt start to melt out is 890.1 and 616.5 mm MWE for the two simulation runs, thus the

relative proportion of total MWE used to ripen the snow pack are 18% and 21% (only melt from

the steady melting period is considered).
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Figure 18: Initial simulation of SWE, snow depth (SD), and accumulated MWE (Acc. melt) for
snow season at Hersjøen, 2007-2008
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Figure 19: 3rd simulation of SWE, snow depth (SD), and accumulated MWE (Acc. melt) for snow
season at Hersjøen, 2007-2008
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6.3. Using SCA maps as zero SWE situation indicators

6.3.1. Spatial distribution of observations

Processing the SCA images gave snow free time observations and thus basis for calculation of

maximum seasonal SWE and correction factors over a large portion of the study area for the

2008 melt season at different elevations. Figure 20 shows the distribution of observations over

the study area. The most optimal situation would be to have one observation at each grid cell,

giving a continuous correction field for the whole area. As this is very unlikely to achieve in the

cloudy, coastal climate of Norway, some areas have a large temporal spread in observations. The

lowest laying areas have few to no observations as the data used are from some time into the snow

melting season, and all forested grid cells are filtered out. The exact location of the zero SWE

observations will differ as a function of the SCA threshold used; in general the observations move

higher up in the topography with increasing threshold. Histograms of the DEM height of the

zero SWE observations found using a SCA threshold of 25% (Figure 21) show how the zero SWE

observations move higher up through the season and that for all observation dates, the histograms

have a tail towards right, i.e. right skewed distributions. These tails can very well be the result

of areas that are wind swept and have a thinner layer of snow relative to the surrounding grid

cells, and thus give more bare ground earlier in the melting season compared to the surrounding

cells. Figure 22 shows details from the north eastern corner of the study area with zero SWE

observations from 08. May, 07. June, and 04. July 2008. The observations closely follows the

topography and reflects the snow line at each point in time. However, at more steeper, higher

laying parts of the study area, as shown in Figure 23, there are many observations from the earlier

date close to observations from later dates, giving correction factors as different as 0.1 and 0.9 in

neighboring grid cells when processed. The histograms in Figure 21 also show this effect in that

all observation dates have a tail towards higher elevations. It is hard to tell whether these early

observations at this height are results of wrong classification due to complex recording geometry,

or very wind swept areas with thin snow layers that are early melted. At any rate, although these

observations may be ”true” in terms of SCA value, the general correction factor at this area will

be influenced by these outliers. If there are little to no other observations near these observations,

they will give a non-representative correction factor for that whole area. As IDW interpolations

are sensitive to outliers, these outliers will also increase the probability of ”duck eggs”-effect in

the resulting grid.

From the interpolated correction factor fields it is evident that the correction factors have

a correlation with the topography, giving increasing values with increased height. This is not

surprising as the flat precipitation interpolation does not take into account any precipitation

correction by difference in height.
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Figure 20: The spatial distribution of zero SWE observations extracted from MODIS SCA maps
using a SCA threshold of 25% for the melting season of 2008
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Figure 21: Histograms of zero SWE observations at elevations from SCA maps using 25% SCA
threshold at different dates.
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Figure 22: Zero SWE observations at three dates in 2008, in north eastern corner of study area,
showing how the observations seem to follow the topography
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Figure 23: Zero SWE observations at three dates in 2008, in steep terrain showing how some high
laying areas get zero SWE observations much earlier that neighboring grid cells
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6.3.2. Gridding of correction factors

As shown in Section 6.2, in most cases the correction runs does not give a good fit for SWE and

snow depth in the accumulation period, but the snow maximum and ablation season the fit is

improved. A calculation and gridding of correlation factors will therefore force the model through

the snow maximum value based on runoff and zero snow situation time, and thus possibly improve

the simulated runoff values. Correction factors were calculated for all zero SWE observations found

at the different MODIS image pairs and interpolated to cover the whole study area at different SCA

threshold values. The number of observations were around 23,000 depending slightly on the SCA

threshold used, which is a rather large amount of data to process. Several interpolation methods

were tested for these datasets; the BOAS algorithm included in SnowModel gave some interference-

like distortions in the field, and when doing a krieging analysis, the semi-variogram scatter did not

seem to flatten out to a sill, even with trend removal, thus indicating that the dataset is not suited

for these interpolation methods. Spline interpolation gave areas with negative correction factors,

and were therefore not usable. IDW seemed to give local spikes and pits (so called ”duck-eggs”),

but it was possible to reduce these effects by interpolating to a grid of 1000 by 1000 m, doing a

3x3 window low pass (mean) filtering, and then re-sampling down to 250 by 250 grid using bilinear

interpolation. The prediction errors of krieging and IDW were very similar. When considering

processing time and accuracy, the IDW method seemed to be best suited for interpolation of the

correction factors. Figure 24 shows the result of the interpolation of the correction factors derived

from the observations in Figure 20 using the above mentioned IDW method and smoothing.

The interpolated correction factors were extracted for the grid cells that include the snow pillows

and compared to the correction factors found in the test of concept study. The correction factors

for Hersjøen, Nessjøen and Sørungen are shown in Table 5. It seems that for the grid cell covering

Hersjøen the correction factor is varying randomly around 0.6, without any trend with threshold

value, and the same goes for Sørunger, although the values varies more here. However, at Nessjøen

the correction factor has a clear negative trend with the SCA threshold, decreasing as the threshold

value increases. A threshold value of 0% seems to give much too high correction factors, and might

be a result of noise in the SCA maps. When comparing these correction values to those found by

using the zero time extracted from snow depth observations, the 10% threshold is closest. In this

comparison there is a significant mismatch in scale, as the correction factors based on the snow

pillow and/or depth radar is representative for an area of a few meters or less, the SCA data have

spatial resolution of 250 by 250 m, so a zero SWE situation at the snow pillow is not necessarily

true for the whole 250 by 250 m grid cell. Figure 25 is a cumulative plot of the correction factors

at different SCA threshold values, showing the area fraction for the correction factors. As the

threshold rises, the correction factors are lower. This is not surprising considering that a higher

threshold would mean early melt out and therefore lower accumulated melt energy compared to

the accumulated snow, giving lower correction factors.

The correction fields from the 0% and 5% thresholds gave some false observations in the lower

laying areas late in the melting season, resulting in very large correction factors giving out-layers

that creates erroneous correction fields, e.g. very high correction factors at sea level. These errors

might come from uncertainties in the classification algorithm and/or noise in the MODIS images.

As the precipitation correction factor is set to zero for all the simulations and correction calcula-
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Figure 24: Map of interpolated correction factors from Figure 20 using IDW and smoothing, melt-
ing season 2008.
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Figure 25: Area fraction of interpolated correction factors for study area at different SCA threshold
values
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Table 5: Correction factors at snow stations using SCA maps to determine zero SWE situation.
Stn. row is values calculated using station observations to determine zero SWE in the
initial run for the season 2007-2008

SCA threshold Hersjøen Nessjøen Sørungen

(% snow cover)
Stn. 0.6756 1.7094 0.6509

0 0.9876 2.0344 0.8717
5 0.6116 1.8937 0.4358
10 0.6222 1.7114 0.3701
15 0.5784 1.6220 0.3001
20 0.6006 1.4459 0.3703
25 0.6047 1.2820 0.3599

tions, it is expected that the distribution of correction factors should have a linear relationship with

the difference between interpolated precipitation station elevation and the DEM, assuming that

all other factors are correctly distributed and modeled. Figure 26a and 26b shows scatter-plots

of the correction factors and the height differences for pre-interpolation and interpolated values,

respectively. The scatter clouds are very similar for all threshold values, except for the spread in

magnitude in the correction factors, which is higher for lower SCA thresholds and lower for higher

thresholds (also evident in Figure 25). The clouds show that the highest correction factors are

found at around 150-200 m difference. Neither the observation points nor the interpolated data

show any linearity with the difference in height (DEM - interpolated station height). Figure 27

and 28 shows the same correction factor data plotted against the DEM topography only. In this

case both the data sets show a positive relationship with the topography, and the interpolated

data seem to show some correlation with the topography. In addition it was investigated if a

multiple regression using x (Easting coordinate), y (Northing coordinate), and z (DEM height)

could represent the field in a general way. However, since the NW corner of the study area have

practically no coverage, it is doubtful that the resulting field is representative for the whole area.

The multiple regression shows some correlation with x and y coordinates, but these may as well

be results of the observation distribution and correlation between x, y, and z. When comparing

the different correction grids fields for high areas in eastern and middle part of the study area

(e.g. the highest portion of the Kjelstadfoss catchment), the correction factors are reduced quite

significantly, due to a rather strong relationship with x-coordinates. It is therefore thought that,

at least when trying to get the best representation of this particular catchment, either the inter-

polated correction factor field or the linear fit with DEM height will give the best results when

comparing runoff values.
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Figure 26: Scatter plot of calculated correction factors against difference between DEM and inter-
polated station heights (a) and DEM heights (b) for season 1. Sept. 2007 to 31. Aug.
2008, using a SCA threshold of 25%
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Figure 27: Scatter plot of interpolated correction factors against DEM values and interpolated
station heights for season 1. Sept. 2007 to 31. Aug. 2008, using a SCA threshold of
25%
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Figure 28: Scatter plot of interpolated correction factors, interpolated for the whole study area,
against DEM values and interpolated station heights for season 1. Sept. 2007 to 31.
Aug. 2008, using a SCA threshold of 25%

6.3.3. Validation using runoff

Figure 29 shows the observed runoff at Kjelstadfoss for the period 1. September 2007 to 31.

August 2008 and the simulated runoff from SnowPack for an initial run for the same catchment

(delineated from 250 by 250 m DEM) 3 hour resolution aggregated to daily values. It is evident that

the runoff produced outside the snow season (due to rain) does not fit well with the observed values.

Additionally, the observed runoff during the snow accumulation period shows several episodes of

high runoff values that does not correlate with the runoff from SnowModel. This is most likely

errors in measurements due to ice in the measurement station, since these high runoff events occur

during the coldest period of the year with little to no rainfall or snow melt. Considering the snow

melt season, the model seem to catch most of the melt episodes, but the magnitude of the melt is

in general too large. It was decided to focus on the runoff season, as this is the time where snow

melt has the most influence on runoff. The runoff produced for simulations using correction fields

calculated from some of the threshold values in Figure 25 are plotted in Figure 30, and shows that

for all runs with thresholds below 30% the simulated runoff is larger than the observed values the

whole snow melt season, but somewhat reduced as the threshold is increased. For SCA thresholds

of 30% and higher some of the melting episodes are underestimated. Assuming the melting energy

to be accurately modeled over the whole catchment and that all snow melt goes directly to runoff

in the stream, this means that the simulated amount of snow is too large in the catchment for

all correction factors lower than 30%. As shown in Section 6.2, the correction factors based on

the initial runs might not be accurate due to large initial errors in amount of snow, and iterative

correction runs are sometimes needed. Tests show that doing a second correction run with the

interpolated correction fields would reduce the runoff values, similar to when the SCA threshold

values were raised.

Figure 28 showed that it seems to be some relationship between the topographic height and

correction factor. It is possible that the fitted line may give some insight to what the precipitation
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Figure 29: Runoff 1. September 2007 to 31. August 2008, observed values and simulated values
using default settings and no precipitation correction
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Figure 30: Runoff from simulations using correction fields found from different SCA threshold
values
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Figure 31: Runoff from simulations using default precipitation correction, no precipitation correc-
tion, and using the linear fit from interpolated SCA based corrections (Figure 28)

adjustment factor should be close to for snow/winter precipitation. Since the simulation using

the correction factors derived from the 25% SCA threshold observations seem to give the best

correction without underestimating any of the runs (Figure 30), this threshold was used in order

to determine a linear precipitation lapse rate. The linear fit from Figure 28 gives a function for

precipitation correction, Pcorr,

Pcorr = 0.00085 ∗DEM + 0.022, (15)

where DEM is the topographic height at a grid cell. Figure 31 shows the runoff for the melt-

ing season at Kjelstadfoss for simulation with the default precipitation adjustment factors (2.1)

and methodology used in SnowModel, with no precipitation correction, and a simulation using

Equation 15. It is evident that while the two first simulations overestimates the runoff quite

significantly, the last run fits the observed runoff much better at most melting events. The new

adjustments does however give more runoff in the beginning of the melt seasons. At any rate, the

snow distribution is much closer to what the runoff observations indicate.

Using the results from the new lapse rate simulation, a new correction field was calculated.

The resulting correction run show that the two first peaks in the runoff have a better fit, but

the melt events in late May and early June is more overestimated (Figure 32), meaning that the

the correction run estimates too much snow in the higher area of the catchment. All in all, the

correction run does not seem to improve the simulated runoff.
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Figure 32: Observed and simulated runoff as in Figure 28 with runoff from correction run (25%
SCA threshold)

7. Discussion

7.1. Test of concept

As a test of concept, SnowModel simulation results for grid cells that include automatic SWE and

snow depth observations were extracted and compared with the observed data. The initial SWE

backtracking assessment showed a large difference between the two different temporal resolutions

(24 and 3 hours) tested. For daily time steps (24 h) the backtracked SWE missed with as much as

several hundred millimeters of water equivalent, while the three hour resolution runs gave values

much closer to those from the snow pillows. This indicates that SnowModel, as of this version,

is not able to correctly mimic the physical processes governing snow melt at such a coarse time

resolution. It is probably that the model fails to replicate the snow melt due to the fact that a daily

resolution will not catch the diurnal cycles of meteorologic variables, e.g. high day temperatures

gets smoothened by low night temperatures giving a steady, but too low, snow melt over the

twenty-four hours time step, while at a finer temporal resolution a more intense melt is simulated

during the day. Taking into consideration how much better fit backtracking the 3 hour simulations

gave than the daily simulation, it is imperative to catch the diurnal cycles in order to realistically

simulate the melting of the snow pack when using the current versions of EnBal and SnowPack.

7.1.1. Backtracking seasonal maximum SWE with point observations

Backtracking the maximum SWE value using the 3 hour simulation, seemed to give a good maxi-

mum SWE value compared to the observed values; the backtracked values are much closer to the
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observed maximum values that the initial runs both with and without the default precipitation

correction. Basing the backtracking on the initial runs seemed to over- and under-estimate the

SWE value according to whether the initial simulation under- or over-estimated the snow cover,

and iterative correction runs reduced the RMSE in general, although the largest improvement was

achieved in the first correction run.

For the hydrologic years 2007-2010 several correction run iterations were done in order to try to

minimize the error caused by different amounts of energy needed to ripen the snow pack. Table 4

shows that the backtracked SWE values and snow precipitation correction factors seem to stabilize

quickly for both Hersjøen and Sørungen in 2007-2009; both stations have correction factors close

to 1.0 already after the second run. Simulations at Nessjøen station needed a few runs to get

the correction factor close to 1.0, and even after the third run it still indicates need for more

correction. Since zero SWE situation is reached almost simultaneously for the last correction run

and the observed data, it seems that the sum of melt runoff from the simulation is too small to

replicate the SWE/snow depth. The melting season at this station also comes to a halt after

an intense period of melt, with precipitation adding snow to the snow pack before the melting

continues. The errors might therefore be a consequence of the fact that the model does not handle

periods where there is some uncertainty in whether the precipitation is solid or liquid (i.e. around

0◦C), and is discussed later in this section. Figure 37 and 38 show that a very good fit was achieved

for Herjsøen, when considering only the late part of the accumulation and melting period, both

for SWE and snow depth and is the simulation that fits best with the observed data.

The results of the iterative runs shows that for all runs the snow depth is overestimated until the

melting begins, while the simulated SWE is eventually overestimated compared to the observations.

In the melting phase, the snow depth of the simulations fit well with the observations, raising doubt

to the accuracy of the SWE observations. As there seem to be a close relationship between snow

depth and SWE error (e.g. Figure 16a and 16b), it might be possible to assimilate the snow depth

observations, as these data are often very accurate, to correct for the errors in SWE during the

melting season, assuming constant snow density.

7.1.2. Erroneous snow accumulation and correction factors

For all three stations the SWE and snow depth evolution during the very beginning of winter and

the majority of the accumulation period the simulations seem to over-estimate the values. For the

errors in the beginning of the seasons, it might be that some parameters needs to be changed in

order to fully capture the snowfall-melt cycles. For all runs the SWE values were too high in this

period, and at Nessjøen 2007-2008 the early-accumulated snow is never entirely melted away as the

observations suggests, which influences the rest of the simulation period. This will in turn affect

the precipitation correction factors that are based on SWE from 1. January and snow precipitation

from after that date. This problem is also very prominent in the simulations for 2009-2010, where

the snow accumulation starts much later, and maximum snow depth is much thinner than the

previous years. In this season, the model starts the accumulation much too early compared to the

observations, resulting in correction factors that are not suited to correct the snowfall events that

actually contribute to the maximum SWE value. For Sørungen in the 2009-2010 season (Figure

17a and 17b) the correction factor is never able to fit the model to the observations even for the
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Figure 33: Accumulated snow fall (a) and accumulated runoff (b) with simulated and observed
SWE at Sørungen, 2009-2010, clearly showing how the correction run greatly scales
down all snowfall events and increase the melt. Vertical markers on correction run
maximum snow and observed melt out.

melting season. After close investigation of the simulated values, it is evident that because the

simulated snow accumulation starts much earlier than what is observed, the total amount of snow

is much larger and thus the correction factor very low. As the correction factor is applied to all

snowfall events, the total amount of snow is scaled down, but each event is much more reduced

than what is realistic. This will, for the correction run, have a great impact in that snowfall events

during the melting season are much more reduced. This will add less new snow to the snow pack,

and thus it is faster ripened and more energy is used to melt away the existing snow. In addition,

since less snow is added to the snow pack during melt out, the snow pack melts out faster. In

the initial run, the simulated snow fall after the onset of the melting season is about 100 mm, but

after the correction run it is reduced to about 40 mm for the same period, and the difference is

very evident when plotted (Figure 33a). Figure 33b shows the runoff and simulated and observed

SWE at Sørungen, 2009-2010, and it is evident that the runoff is much higher for the same time

window in the correction run. This explains why the corrections does not converge towards the

right values. The error is mainly due to the early simulated accumulation start, and seems to

be a re-occurring problem for all simulation years, but is especially evident at Sørungen, where

there are many snowfall events after the maximum snow peak. The other stations have poor SWE

observations at the snow maximum for this season, and could not be assessed. It should also be

mentioned that the correction runs use a flat correction factor through the whole snow season,

and that the simulations do not use any precipitation adjustment, so that temporal changes in

precipitation lapse rate are also not considered.

Many of the simulations and results previously discussed indicate that some important param-

eters in the late autumn and early winter season are not accurately parametrized, making the

model not able to simulate the processes correctly. Figure 34 shows a snow pack accumulation

and ablation early in the season at Nessjøen in 2009-2010. It is evident that, although the accu-

mulation of snow in terms of SWE and snow depth fits somewhat with the observed values in the

beginning, the model does not catch the melt out of this snow pack. The increasing error in the
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Figure 34: Detail from Nessjøen simulation 2008-2010 showing an early snow cover that is com-
pletely melted away in reality, but the model just continues to accumulate more snow
rather than melt.

accumulation is mostly due to error in the precipitation adjustment factor. After the observed

SWE peak is reached the simulation continues to accumulate the snow further, and the melt out

in the end of the season is not caught at all. Judging from the simulated SWE there is a lot of

precipitation at the same time as the observed snow melts out (Figure 34). It is therefore likely

that the threshold temperature determining whether precipitation falls as rain or snow (2◦C) is

too high, adding precipitation that is actually falling as rain to the snow pack as snow instead.

In addition, the little melt that occurs during this period is too small to remove the snow pack,

in fact there is no runoff produced. In cases where precipitation is added as snow instead of rain,

it might be possible to correct the precipitation state using snow depth measurements. One can

for example look at the change in snow depth in the same period as there is precipitation at

temperatures between 0 and 2 ◦C.

It is certain that the corrections will be better if one is able to determine the point in time that

the main accumulation period starts, forcing the model to simulate a zero SWE situation here

and do the correction factor calculations based on this period rather than just looking at the time

from 1. January to melt out. It might be possible to extract these accumulation start observations

from the MODIS based SCA or other remotely sensed images if one is able to get images with

relatively short time between the recording times, e.g. a few of days, and do a similar analysis as

the one done in this study using situations when the observed SCA goes from a SCA = 0 to a

stable SCA > 0 state instead.
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7.1.3. On energy used on ripening the snow pack

As shown in the example at Hersjøen 2007-2008 (Section 6.2.3), the amount of melt used to ripen

the snow pack increase with the amount of SWE, the error in not considering this factor will be

small for thin snow packs or for snow packs where the snow pack is already much compacted

before the onset of the main melting season, but for the example of Hersjøen, including all melt

in both the ripening and output period would give a backtracked SWE of 1.3 times that found

by only considering the output phase. This shows the importance of including a sub model that

handles the snow depth/snow density.

The energy required to ripen a snow pack before the output phase begins increases with snow

pack thickness and this amount of melt will lead to an overestimation of maximum SWE value

that increases with snow pack depth. It is not trivial to estimate the amount of pre-output

melt needed as it depends on snow pack depth, which evolves during the snow season due to

gravitational compaction and, in some climates, short melting episodes during the accumulation

period.

7.1.4. On the observed snow data

The most prominent features in the snow depth evolution, which is the most reliable of the two

observations, seem to be caught by the model and the values eventually fit, most notably when

the ripening and output phase starts. In the accumulation period it seems to be a common error

that the model does not catch many drops in the snow depth. This might also be an error caused

by error in precipitation and the correction factor used. As most of the uncertainties in these

simulations seem to lay in the accumulation period of the snow model, further studies must be

done to better understand which factors and parameterizations that influence this phase of the

snow pack in SnowModel. Additionally, transport by wind is most likely of importance and should

be included in future studies involving snow pack accumulation simulations, especially for high

spatial resolution runs.

The simulated SWE evolution during the accumulation period does not fit too well with the

observed data, in some years not even at the SWE maximum and melting season. This might

very well be due to melting episodes or other events that may create ice lenses or strong layers

that can take the weight off area above the snow pillow, or increase the pressure by relieving the

weight of surrounding snow. This is a common problem when using snow pillows, as mentioned

by e.g. Lundberg et al. (2010). These layers might break, thus giving unrealistic increase in SWE,

or increasing the SWE if supporting surrounding snow. There are several periods that seem to fit

with this explanations, i.e. the observed increase of SWE and snow depth over a period of time

give a density higher than water for the ”new fallen” snow, and the model simulated much less

snowfall and no melt or rain. Other suspicious cases are found where measured SWE and snow

depth giving unrealistically low snow densities prior to the output phase. It is therefore hard to

assess the model performance regarding backtracking of SWE for some periods and sometimes

during the snow melt, but having snow depth measurements to compare to makes it possible

to point out the most unrealistic events in the observed SWE evolution. For backtracking and

validation purposes, the snow depth sensors seem to give much better and reliable data than the
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snow pillows, but has a major drawback in that one is not able to provide maximum SWE for

validation.

As a concept, backtracking seasonal maximum SWE using SnowModel and zero SWE date

observations, seems promising as the backtracked values were close to the observed values. Most

parameterizations in the melting part of the model seem to be rather good as the backtracked

values are close to the observed, and the melting curves of the model seem to fit as well with the

snow pillow observations after doing a correction run. A close investigation of the melting phase

of the snow pack shows that the model, when run on a 3 hour temporal resolution simulates the

variations of both SWE and snow pack on a high temporal resolution very well. The different

dependencies in the snow evolution algorithm makes it hard to correctly backtrack to a good

value using only an initial run when the model over- or under-estimates with a large amount of

SWE during the accumulation period, seeing that the energy used to ripen the snow pack will be

different for different thicknesses of the snow pack. A larger initial miss will give way to a larger

error in the backtracking, but it seems to be possible to reduce this particular error by iteratively

run the model with updated snow precipitation correction factors. In some cases the RMSE

possibly showed that the values will converge towards an improved value using several iteration

of correction runs as the SWE evolution seems to improve after a second correction run, but this

approach will be a more time consuming process, as the simulation time will increase with n times,

where n is the number of iterations to reach a stable SWE value. A simple estimate of how much

more/less ripening energy that will be required for a thicker/thinner snow pack might give an even

better first estimate of the maximum snow cover. Another weakness of this methodology is that

precipitation as rain during the different phases are not considered and might therefore be a source

of errors, since rainwater may speed up the ripening of the snow pack, and any retained rain is

also added to the SWE. The methodology does not consider sublimation either, but analysis of

the initial simulation showed that both of these parameters are of a smaller magnitude compared

to those included in the algorithm, so the errors due to these simplifications are probably not too

great.

Some processes are not accounted for by this version of SnowPack. Firstly, it does not handle

any negative net energy fluxes, e.g. energy available to refreeze liquid snow in the snow pack.

It does not keep account for free water content in the snow pack either, which makes it difficult

to make calculations based on the total energy- and water-balance of the snow pack at all times.

Some improvements to the SnowPack module might give better backtracking and correction maps

for the area.

7.2. Correction using SCA maps

7.2.1. Temporal and spatial coverage using MODIS-Terra

The weather at the coast of Norway prevents satellite-borne optical remote sensing from providing

daily images regularly due to frequent cloudy weather. Using a maximum time gap of three days

between observations, only seven observation dates were usable through the whole snow melt

season of 2008 to determine zero SWE situations. While the use of radar-based sensors might also

give a SCA estimate, studies show that this method is sensitive to bare spots (Storvold et al., 2006)
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and is therefore possibly not very usable for this kind of analysis, although it gives the opportunity

to collect SCA during cloudy conditions. When filtering the registered zero SWE observation by

requiring that they have at least one neighbor with SCA larger than the threshold value, one got

observations that seemed to mark the snow line at that particular time, thus reducing the risk

of registering zero SWE situation that occurs earlier than the last recording date when the time

gap is larger than one day. It is possible that this moving window method will give zero SWE

observation estimations when used on only one image only if all pixels with value lower than the

threshold is processed using the above mentioned method, although this was not tested in this

study.

Even thought the remotely sensed data could not give a continuous set of zero SWE observations,

the spatial coverage was rather good, at least above the tree line. Values for lower laying areas

were excluded, mainly due to uncertainties in SCA spectral unmixing for forested areas, resulting

in poor data density for interpolation in the lowest regions and in the valley bottoms. Correction

fields were created using the remotely sensed data and different SCA thresholds. It was shown

that for higher threshold, the correction value spread was decreased and average value lowered,

and is as expected because a higher threshold will give earlier zero SWE situation in time, and

thus less accumulated melt energy and less precipitation is needed to force the model through

the backtracked maximum SWE value. For thresholds lower than 10% many false observations

occurred for the lower portions of the study area, giving unrealistically high correction factors.

As shown in Section 6.3, some zero SWE observations were generated at high altitudes even early

in the snow melting season. It is impossible to conclude whether these are real observations or

misclassifications due to noise and/or complex recording geometry in the original MODIS image

with the data available in this study. If they are real observations it would mean that these areas

have significantly less snow accumulation relative to their neighboring grid cells, and might be

a consequence of wind erosion or other means of snow transport. If the satellite images gave a

continuous grid of zero SWE observations and assuming the early observations to be true, they

could possibly give an estimate of whether the wind transport parameters in SnowModel are

sensible for a simulation, if the SnowTran-3D sub-model was to be used. However, because the

precipitation distribution is not well known and SnowModels default values does not work well

for this area, calculating a precipitation factor at these grids will give values much lower than

the surrounding observations, and in observations sparse regions they may greatly influence the

interpolation results. A possible solution to this problem in terms of estimating the correction

factor may be to restrict the zero SWE observations at each date according to the height of each

observation grid cell, e.g. only grid cells with height within two standard deviations from the

mean height of the observation grids at particular date.

Scatter plots of correction factors at observation points and topography or the topographic

difference between DEM and interpolated station height showed that there is little linearity for

the difference height (Figure 26a and 26b). This may be due to the distribution of meteorological

stations; the stations that provide precipitation are more or less positioned along a north-west

to south-east axis, giving interpolated precipitation and station fields with gradients along this

axis (Figure 7 and 9). This gives poor representation of the north-eastern and south-western

portions of the study area, and the interpolated values may not be too good at these parts. The
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interpolated correction factor scatter showed some linearity with the DEM heights, though with

a large spread from the linear fit (Figure 28).

7.2.2. Validation using runoff data

As there were no observation data to directly assess the quality of the backtracked SWE or the

precipitation correction factors, the runoff produced from the SnowPack sub-model was compared

to measured runoff at Kjelstadfoss station. A large uncertainty in this comparison is obviously

that the simulated runoff is from the bottom of the snow pack, while the measured runoff is af-

fected by many other processes than just snow melt, i.e. evapotranspiration and recharge of soil-

and groundwater. It is thought, however, that the two data sets might give some information

on whether SnowModel simulates correct runoff during the melting season. The initial runs both

with and without the precipitation correction factors gave runoff values much higher than the ob-

servations. When the correction fields derived from the SCA data were applied to the simulations,

the runoff decreased for most melting events, and a threshold between 25% and 30% the model

went from over- to underestimate the runoff at some instances. All the thresholds also gave a

much earlier output start compared to the initial simulations and observed data, which might be

correct as this water will probably go to recharge of soil- and groundwater. For the catchment

of Kjelstadfoss, it seems that the best threshold of to separate snow and insignificant/no snow is

between 25% and 30%. The high threshold may be due to uncertainties in the spectral unmixing,

and some processes concerning the snow reflection properties might still be unaccounted for, or

some parameterizations might not be representative for this area. The threshold is used globally,

i.e. same threshold for all grid cells, but it is reason to believe that this threshold will vary across

the study area as a function to topographic roughness at a sub-grid level and wind erosion and

deposition. In order to better assess the relationship between SCA and SWE, more information

at a finer scale is thought to be needed in addition to snow data that represents whole grid cells

at the remote sensing product. One might possibly run SnowModel on a higher spatial resolution

and compare the snow distribution with wind transport in the melting with the SCA observations

from the MODIS images.

As discussed previously, the interpolated correction fields seem to be quite affected by outliers

and has sparse observation density in the lowermost areas. Figure 35 shows the observation point

around the Kjelstadfoss catchment, and it is evident that the data is not very representative for the

lower regions of the catchment. None of the correction fields gave a very good fit with the observed

data, either over- or underestimating melting events. The investigation of the scatter plots of the

correction factors and topography showed that there might be some relationship between the two

variables. Using the linear fit for the correction factors calculated from a 25% SCA threshold

gave a runoff value that were much closer to the observed values for the whole period compared to

simulations where the interpolated correction fields were used, although still slightly overestimated.

Taking these results into consideration, it might seem that the interpolated correction fields are

very sensitive to noise, melt out events that occurs earlier or later than the surrounding area, or

in general outliers and gaps in the data. Using a more general correction based on the trend in

the correction field, i.e. the linear lapse rate with topographic height, gave rather good correction.

The improvement in runoff simulations when using the new lapse rate is most likely due to the fact
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Figure 35: Zero SWE observations around catchment. Note the low density of observations in the
lower most area of the catchment

that the initial/default precipitation correction factor is not representative for this climate/region,

and thus gives a snow distributions that does not give the right amount of runoff when melting

begins.

In all correction runs, the snow melt output seems to start too early compared to the observa-

tions. There are several reasons that may cause this; one is that the early runoff should be used to

recharge soil moisture and/or ground water in a sub-model, rather than directly going to the river

runoff. Another factor might be that due to the sparse observations at lower levels which will give

large uncertainties in the interpolation, and the lower most grids are also those that are subjected

to melting first. The fact that the runoff is mostly overestimated during the melt season may also

be due to the fact that water is not removed by any means of evapotranspiration processes.

Another factor that may give high runoff values is the lack of redistribution of snow on sub-grid

level. As the SCA-maps show, the snow covered area fraction is gradually reduced, and with a

lower portion of the area covered in snow means lower surface that can produce melt water. In

the case of SnowModel simulations, however, the whole area is considered snow covered, giving

runoff according to the melting energy for the whole grid cell.

It should also be noted that the simulated runoff seem to be more off from the observed values

the more the runoff is dominated by the precipitation than the snow melt, as shown in Figure

36. Here it is evident that as the snow melt goes towards zero as the snow disappears, the more

mismatch there is between simulated and observed runoff.

Further assessment of the methodology may be done if one is able to use finer scale SCA or
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snow/no snow binary maps that are more or less continuous in time. The temporal gaps in the

study gave rise to spatial gaps in the zero SWE observations, and therefore high sensitivity to

erroneous observations, outliers, uncertainties in interpolation, and possibly wind blown grid cells.

If one does try this methodology at a fine spatial scale, it is most likely that wind transport and

deposition will be much more important, and the sub-model SnowTran-3D must be used in addition

to the modules used in this study. This will, however, probably introduce more uncertainties in

the form of more parameters that must be considered to give a correct distribution of the snow.

If spatially representative SWE data at snow maximum is available this could also be used to

verify the backtracking methodology more correctly, but because of the coarse resolution of the

simulations in this study it is very hard to gather such data. It could, however, be done on smaller

scale simulations.

8. Conclusions

The concept of backtracking a maximum seasonal SWE and using a precipitation correction factor

to force the model through these values were tested on both point and catchment scale observation

of the point in time of a snow free condition. When calculating the backtracked SWE from

point observation based zero snow situation the values got close to those from the snow pillows,

although the snow pillow data were often subject to possible measuring errors when comparing

to the observed snow depth evolution. Iterative correction runs seemed in some cases to improve

both the snow parameter evolution for the whole melting season, but sometimes the best results

were achieved after only one correction. The best maximum SWE result had an error of 3.2

mm compared to the snow pillow and the worst estimate, when ignoring erroneous snow pillow

measurements, of a couple of centimeters of SWE. For most simulations the iteration runs were
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able to closely simulate the snow depth, which is measured by a more reliable devise than snow

pillows, indicating that the SWE is in fact close to what one might expect at times where the

snow pillows fail to measure realistic values. It is though that it might be possible to assimilate

the observed snow depth values during the melting season to correct for errors in SWE in the

simulation, assuming a constant snow density.

From the simulations it is evident that SnowModel as of this implementation does not handle

periods with temperatures around zero too well. It is thought that there is at least one major

oversimplification that may cause these erroneousness snow pack evolutions, which is the constant

2◦C threshold to determine solid or liquid precipitation. More work is needed to give a better

estimate on this. The correction factors are therefore seldom representative, as the snow that is

accumulated to reach the maximum SWE includes early snow events that are actually melted out

before the main accumulation period. It might be very possible that the errors associated with

these mild periods also influence the backtracking of maximum SWE to some degree, as snow

precipitation is subtracted from the runoff in the melt out period.

Because of the weather systems at the study site, the optical remote sensing data were spread

quite a lot in time, and thus the zero snow observations were spread in space. Since the forested

areas were filtered out when detecting zero snow situations, the spatial coverage is very poor in

the lower laying areas, and the corrections are mostly only representative above the tree line.

Although the majority of observations based on the satellite images follow the topography, there

is some noise in the form of early observation in the high mountains. This may be an effect of

misclassification of SCA values or wind swept areas that are earlier melted bare. Simulations

including wind transport (SnowTran-3D) and sub-grid distribution or finer spatial resolution is

needed in order further investigate this effect.

Comparing the runoff from SnowModel for different SCA thresholds to observed runoff at Kjel-

stadfoss showed that the best threshold is between 25% and 30% (over- and underestimates runoff,

respectively), which is higher than expected. This might be a consequence of uncertainties in the

spectral unmixing when calculating the SCA from MODIS-Terra images. When investigating the

relationship between topography and correction factor, it seemed to be no clear relationship with

the topographic difference between DEM and interpolated station height, which is the variable

SnowModel uses to adjust precipitation to topography. However, some relationship between cor-

rection factor and DEM height was found. Based on this relationship a simulation with a linear

lapse rate was ran. From runoff comparisons it seemed that the correction fields were able to im-

prove the runoff to some degree, but the best fit was achieved when only using the general trend.

It is possible that the interpolation method (IDW) was not optimal and that noise and gaps in

the observations gave sub-optimal correction fields. Since the point observation data simulations

showed a good fit, it is thought that remotely sensed data with better spatial resolution combined

with finer resolution simulation of SnowModel may give better correction fields. Additionally,

more frequent remotely sensed observations are needed to better represent the area, where the

optimal case is a zero snow observation at each grid cell in the model with no need for interpola-

tion. A realistic solution for this is stationary digital cameras, which will give high temporal and

spatial resolution, but at the cost of less spatial coverage.

In order to validate the SCA-based correction, the runoff from the snow pack was compared
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to observed runoff in the Kjelstadfoss catchment. It is obvious that this comparison is crude

as the liquid water output from SnowModel is not ran through any evapotranspiration or soil-

and groundwater models. Therefore it is impossible to draw any final conclusions regarding the

SCA threshold using MODIS-Terra based SCA maps to correct SnowModel retroactively before

SnowModel is coupled with other hydrological modules, if one wants to validate against runoff

data. At finer spatial scale resolution simulations, manual and automatic SWE observations may

be used as verification.

As SnowModel is a physically based model, no calibration was needed to fit the model to the

results, except the maximum snow density, and only the zero snow time was used to correct the

model. As snow cover can be observed by most optical remote sensing techniques, from stationary

cameras to satellite imagery, it has the potential for rather accurately estimate snow coverage

in remote areas, as long as the meteorological gridding is accurate. Although the model does

not preform well for precipitation in mild periods, it is thought that this method can be used

to investigate maximum SWE distributions in retrospect for a snow season and also used to test

response in snow cover parameters for different climate scenarios, as pointed out by Cline et al.

(1998). It is important emphasize out that the accumulation periods were seldom close to the

observed values, and the methodology is, as of now, only applicable for the snow maximum and

ablation period.
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A. Observed and iteratively corrected simulated SWE and snow

depth for all three station, all three years
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Figure 37: SWE of iterative correction runs compared with observed SWE values, 2007-2008
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Figure 38: SD of iterative correction runs compared with observed values, 2007-2008
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Figure 39: SWE of iterative correction runs compared with observed SWE values, 2008-2009
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Figure 40: SD of iterative correction runs compared with observed values, 2008-2009
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Figure 41: SWE of iterative correction runs compared with observed SWE values, 2009-2010
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Figure 42: SD of iterative correction runs compared with observed values, 2009-2010
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B. SnowModel vegetation classes

! The vege ta t i on types are assumed to range from 1 through 30 . The
! l a s t 7 types are a v a i l a b l e to be user−de f ined vege ta t i on types
! and vege ta t i on snow−hold ing depths . The f i r s t 23 vege ta t i on
! types , and the a s s o c i a t ed vege ta t i on snow−hold ing depths
! ( meters ) , are hard−coded to be :
!
! code d e s c r i p t i o n veg shd example c l a s s
!
! 1 c on i f e r ou s f o r e s t 15 .00 spruce− f i r / t a i ga / l odgepo l e f o r e s t
! 2 deciduous f o r e s t 12 .00 aspen f o r e s t f o r e s t
! 3 mixed f o r e s t 14 .00 aspen/ spruce− f i r / low ta i ga f o r e s t
! 4 s c a t t e r ed short−c o n i f e r 8 .00 pinyon−j un ip e r f o r e s t
! 5 c l e a r c u t c o n i f e r 4 .00 stumps and r egene ra t i ng f o r e s t
!
! 6 mesic upland shrub 0 .50 deeper s o i l s , l e s s rocky shrub
! 7 x e r i c upland shrub 0 .25 rocky , windblown s o i l s shrub
! 8 playa shrubland 1 .00 greasewood , sa l tbush shrub
! 9 shrub wetland/ r i p a r i a n 1 .75 wi l low along streams shrub
! 10 e r e c t shrub tundra 0 .65 a r c t i c shrubland shrub
! 11 low shrub tundra 0 .30 low to medium a r c t i c shrubs shrub
!
! 12 g ra s s l and rangeland 0 .15 graminoids and f o rb s g ra s s
! 13 suba lp ine meadow 0.25 meadows below t r e e l i n e g ra s s
! 14 tundra (non−tussock ) 0 .15 a lp ine , high a r c t i c g ra s s
! 15 tundra ( tussock ) 0 .20 graminoid and dwarf shrubs g ra s s
! 16 p r o s t r a t e shrub tundra 0 .10 graminoid dominated g ra s s
! 17 a r c t i c gram . wetland 0 .20 gras sy wetlands , wet tundra g ra s s
!
! 18 bare 0 .01 bare
!
! 19 water / po s s i b l y f r o z en 0 .01 water
! 20 permanent snow/ g l a c i e r 0 .01 water
!
! 21 r e s i d e n t i a l /urban 0 .01 human
! 22 t a l l c rops 0 .40 e . g . , corn s tubb le human
! 23 shor t crops 0 .25 e . g . , wheat s tubb le human

C. SnowModel parameters

! snowmodel . par f i l e .
!
! Def ine any requ i r ed constant s s p e c i f i c to t h i s model run .
!
! The f o l l ow ing must be true :
!
! A l l comment l i n e s s t a r t with a ! in the f i r s t p o s i t i o n .
!
! Blank l i n e s are permitted .
!
! A l l parameter statements s t a r t with the parameter name , f o l l owed
! by a space , f o l l owed by an =, f o l l owed by a space , f o l l owed by
! the ac tua l value , with nothing a f t e r that . These statements can
! have l ead ing blanks , and must f i t with in 80 columns .
!
! Also note that a l l o f the input numbers f o l l ow standard
! f o r t r an 77 convent ion where anything s t a r t i n g with the l e t t e r s
! ” i ” through ”n” are i n t eg e r s , and a l l o the r s are r e a l numbers .

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
! ! ! ! ! GENERAL MODEL SETUP
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

! Number o f x and y c e l l s in the computational g r id .
! nx = 240
! ny = 200

nx = 480
ny = 400

! de l tax = gr id increment in x d i r e c t i o n . Meters .
! de l tay = gr id increment in y d i r e c t i o n . Meters .
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! de l tax = 500.0
! de l tay = 500.0

de l tax = 250.0
de l tay = 250.0

! Locat ion ( l i k e UTM, in meters ) va lue o f lower− l e f t g r id po int .
! xmn = value o f x coord inate in cente r o f lower l e f t g r id c e l l .
! Meters .
! ymn = value o f y coord inate in cente r o f lower l e f t g r id c e l l .
! Meters .

xmn = 560000.
ymn = 6960000.

! Model time step , dt . Should be the same increment as in the input
! data f i l e . In seconds .
! One day .
! dt = 86400.0
! Six hours .
! dt = 21600.0
! Three hours .

dt = 10800.0
! One hour .
! dt = 3600.0

! S tar t year o f input data f i l e . Four d i g i t year . I n t eg e r .
i y e a r i n i t = 2007

! Star t month o f input data f i l e . One or two d i g i t month . In t eg e r .
imonth in i t = 9

! Star t day o f input data f i l e . One or two d i g i t day . In t eg e r .
i d a y i n i t = 1

! Star t hour o f input data f i l e . Local time , l i k e in s o l a r time .
! Decimal hour . Each day the c l o ck runs from 0.00 through 23 . 9 9 .
! Real .

xhou r i n i t = 0 .0

! Number o f model i t e r a t i o n s d e f i n e s how many times to proce s s .
max iter = 2912

! MicroMet r e qu i r e s a met input f i l e that has data in a s p e c i f i c
! format ( see the MicroMet documentation ) . For the case o f
! inputs from more than a s i n g l e s ta t i on , the input met f i l e
! r e qu i r e s an i n i t i a l number i nd i c a t i n g the number o f va l i d
! s t a t i o n s at a given time step . For the case o f a s i n g l e
! s ta t i on , t h i s number can be dropped ( i t doesn ’ t have to be
! though ) . I d e n t i f y whether to proce s s as a s i n g l e s t a t i o n
! without the va l i d s t a t i o n count ( i s i n g l e s t n f l a g = 1) , or
! or to proce s s with the count inc luded ( f o r mult i s t a t i o n s
! and s i n g l e s t a t i o n s with the number o f s t a t i o n s inc luded ;
! i s i n g l e s t n f l a g = 0 ) .

i s i n g l e s t n f l a g = 0

! For the case o f i s i n g l e s t n f l a g = 1 , the input f i l e can be a GrADS
! binary f i l e . I d e n t i f y whether that i s the case (=1 , e l s e =0).

i g r a d s me t f i l e = 0

! Def ine the met eo ro l og i a l input f i l e name . Note that t h i s input
! f i l e has very s p e c i f i c input format requi rements ( s ee the
! MicroMet p r ep roc e s s o r ) . The r equ i r ed met v a r i a b l e s are :
! Tair ( deg C or K) , rh (%) , wind speed (m/ s ) , wind d i r e c t i o n
! (0−360 True N) , and p r e c i p i t a t i o n (mm/ t ime s tep ) .

met input fname = me t f i l e

! The number used as an undef ined value f o r both inputs and outputs .
undef = −9999.0

! Def ine whether the topography and vege ta t i on input f i l e s w i l l
! be ARC/INFO a s c i i t ex t ( g r id ) f i l e s , or a GrADS binary f i l e
! ( a s c i i = 1 . 0 , GrADS = 0 . 0 ) .

a s c i i t o p ov e g = 1 .0

! Def ine the GrADS topography and vege ta t i on input f i l e name
! ( record 1 = topo , record 2 = veg ) . Note that i f you are us ing
! a s c i i f i l e s , you s t i l l cannot comment t h i s l i n e out ( i t i s okay
! f o r i t to po int to something that doesn ’ t e x i s t ) or you w i l l
! an e r r o r message .
! topoveg fname = xxxxxx
! topoveg fname = topo veg / topovega s c i i 250 /nea . topoveg .500m. gdat
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topoveg fname = topo veg / r e g r i d /nea . topoveg .100m. gdat

! For the case o f us ing a s c i i t ex t topography and vege ta t i on f i l e s ,
! prov ide the f i l e names . Note that i f you are us ing a grads
! f i l e , you s t i l l cannot comment these two l i n e s out ( i t i s okay
! f o r i t to po int to something that doesn ’ t e x i s t ) or you w i l l
! an e r r o r message .

t opo a s c i i f n ame = topo veg / topoveg a s c i i 2 50 /nea dem 250m . txt
v eg a s c i i f n ame = topo veg / topoveg a s c i i 2 50 / r e c l v e g250 . txt

! Def ine whether the vege ta t i on w i l l be constant or de f ined by the
! topography/ vege ta t i on input f i l e name (0 . 0 means use the f i l e ,
! 1 . 0 or g r e a t e r means use a constant vege ta t i on type equal to
! the number that i s used ) . This w i l l d e f i n e the a s s o c i a t ed
! veg shd that w i l l be used . The reason you might use a constant
! vege ta t i on type i s to avoid genera t ing a veg−d i s t r i b u t i o n f i l e .
! c o n s t v e g f l a g = 12 .0

c o n s t v e g f l a g = 0 .0

! For the case where you have vege ta t i on he ight data , and want to
! use that in s t ead o f the t ab l e s above , you must a l s o prov ide a
! f i l e that d e f i n e s the vege ta t i on he ight (cm) o f each g r id c e l l .
! i v e g h t f l a g = 0 means the f i l e i s not provided and the r equ i r ed
! array w i l l be generated by f i l l i n g i t with the va lues l i s t e d in
! the above vege ta t i on summary . i v e g h t f l a g = −1 means the data
! f i l e i s a grads binary f i l e with the name veg ht . gdat .
! i v e g h t f l a g = 1 means the data f i l e i s an a s c i i t ext f i l e with
! the same format that a s c i i topo and veg f i l e s would have and with
! a name o f veg ht . asc . Note that the . gdat and . asc f i l e s are
! y−r eve r s ed ( see a s c i i topo/veg notes ) . I t i s assumed that the
! f i l e , i f provided , i s l o ca t ed in an ’ topo veg / ’ d i r e c t o r y o f f
! o f the main model d i r e c t o r y . Note that t h i s he ight in fo rmat ion
! i s p r imar i l y used as the vege ta t i on snow−hold ing depth , thus the
! model i s expect ing average vege ta t i on he i ght s f o r each g r id c e l l ,
! not maximum he ight s .

i v e g h t f l a g = 0

! The l a t i t u d e o f domain cente r ( decimal degree s ) . This only needs
! to be approximate , s i n c e i t i s used to de f i n e some o f the s o l a r
! r ad i a t i on c a l c u l a t i o n s .

x l a t = 63 .0

! For the case where your domain spans enough l a t i t u d e that there
! i s s i g n i f i c a n t va r i a t i on in s o l a r r ad i a t i on from the top to
! the bottom of the domain , you must a l s o prov ide a f i l e that
! d e f i n e s the l a t i t u d e ( in decimal degree s ) o f the cente r o f
! each g r id c e l l . l a t s o l a r f l a g = 0 means the f i l e i s not
! provided and the r equ i r ed array w i l l be generated by f i l l i n g
! i t with the constant x l a t value l i s t e d above . l a t s o l a r f l a g
! = −1 means the data f i l e i s a grads binary f i l e with the name
! g r i d l a t . gdat . l a t s o l a r f l a g = 1 means the data f i l e i s an
! a s c i i t ext f i l e with the same format that a s c i i topo and veg
! f i l e s would have and with a name o f g r i d l a t . asc . Note that
! the . gdat and . asc f i l e s are y−r eve r s ed ( see a s c i i topo/veg
! notes ) . I t i s assumed that the f i l e , i f provided , i s l o ca t ed
! in an ’ extra met / ’ d i r e c t o r y o f f o f the main model d i r e c t o r y .

l a t s o l a r f l a g = 0

! For the case where your domain spans enough l on i tude that there
! i s s i g n i f i c a n t va r i a t i on in s o l a r r ad i a t i on from the s i d e to
! the s i d e o f the domain , you must a l s o prov ide a f i l e that
! d e f i n e s the l on i tude ( in decimal degree s ) o f the cente r o f
! each g r id c e l l . In t h i s case i t a l s o no longe r makes sense
! to be running the model in l o c a l time , and UTC ( or GMT) time
! i s r equ i r ed . UTC flag = 0 .0 means the the model w i l l be run
! in l o c a l time . UTC flag = −1.0 means the l ong i tude data f i l e
! i s a grads binary f i l e with the name g r i d l o n . gdat . UTC flag
! = 1 means the l ong i tude data f i l e i s an a s c i i t ex t f i l e with
! the same format that a s c i i topo and veg f i l e s would have and
! with a name o f g r i d l o n . asc . Note that the . gdat and . asc
! f i l e s are y−r eve r s ed from each other ( see a s c i i topo/veg
! notes ) . I t i s assumed that the f i l e , i f provided , i s l o ca t ed
! in an ’ extra met / ’ d i r e c t o r y o f f o f the main model d i r e c t o r y .
! Note that i f UTC flag i s non−zero , l a t s o l a r f l a g should
! probably a l s o be non−zero .

UTC flag = 0 .0

! Def ine which models that are going to run . A value o f 1 .0 means
! that you want to run the model ( 0 . 0 means don ’ t run i t ) .
! Current ly the model i s only con f i gu red to run the f o l l ow i ng
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! combinations (micromet ) , (micromet , enbal ) , (micromet , enbal ,
! snowpack ) , (micromet , snowtran ) , or (micromet , enbal , snowpack ,
! snowtran ) .

run micromet = 1 .0
run enbal = 1 .0
run snowpack = 1 .0
run snowtran = 0 .0

! Def ine whether you are doing a standard model s imulat ion , or a
! p r e c i p i t a t i o n and/or melt c o r r e c t i o n s imu la t i on to f o r c e the
! model towards observed swe d i s t r i b u t i o n s . For a standard
! s imulat ion , use i r u n c o r r f a c t o r = 0 , f o r a p r e c i p i t a t i o n /melt
! f a c t o r c o r r e c t i o n run , use i r u n c o r r f a c t o r = 1 . Note that
! i r u n c o r r f a c t o r = 1 r e qu i r e s swe data and some extra input
! f i l e s . See the dataas s im user . f subrout ine f o r d e t a i l s . I f
! you are us ing t h i s f ea ture , you w i l l a l s o need to ed i t the
! output s use r . f f i l e .

i r u n c o r r f a c t o r = 1
! i r u n c o r r f a c t o r = 1

! Def ine whether want to implement the h i s t o r y r e s t a r t opt ion .
! This c r e a t e s p e r i o d i c output f i l e s that a l low you to r e s t a r t
! the s imu la t i on from somewhere other than the beg inning . Al l
! o f the r equ i r ed data ar rays are saved to a grads f i l e that i s
! read back in when the s imu la t i on i s r e s t a r t e d . The new
! s imu la t i on s t a r t s at the h i s t o r y r e s t a r t i t e r a t i o n , with the
! i n i t i a l c ond i t i on s de f ined by the saved data ar rays . The
! new s imu la t i on s t a r t s in the micromet f i l e where the o r i g i n a l
! s imu la t i on ended . This i s a l s o t rue o f the output f i l e s ,
! i f the run has been s e t up to wr i t e cont inuous ly to a given
! output f i l e . This opt ion a l s o assumes that you have not made
! any changes to the model setup ; i t does no e r r o r checking .
! i h r e s t a r t f l a g = −2 turns t h i s opt ion o f f , i h r e s t a r t f l a g = −1
! does the r e s t a r t saves , and i h r e s t a r t f l a g >= 0 runs a h i s t o r y
! r e s t a r t where the number d e f i n e s the r e s t a r t i t e r a t i o n ( e . g . ,
! i h r e s t a r t = 720 w i l l s e t i t e r a t i o n 720 as the i n t i t i a l
! c ond i t i on f o r the s t a r t o f the new s imula t i on . For the case
! where i h r e s t a r t f l a g = 0 , and i da t aa s s im l oop <= −1, the
! run w i l l s t a r t at the beg in ing o f the second data a s s im i l a t i o n
! loop .

i h r e s t a r t f l a g = −2
! i h r e s t a r t f l a g = −1
! i h r e s t a r t f l a g = 3444
! i h r e s t a r t f l a g = 0

! For the case where you are running a h i s t o r y r e s t a r t , d e f i n e
! whether you want to r e s t a r t the run during a standard run or
! the f i r s t loop o f a data a s s im i l a t i o n model run
! ( i da t aa s s im l oop = 1) or during the second loop o f a data
! a s s im i l a t i o n run ( i da t aa s s im l oop < 0 ) . The value o f t h i s
! negat ive number i s used to de f i n e how many obervat ion dates
! you have in your data a s s im i l a t i o n run ( e . g . , −3 would mean
! you have 3 obse rvat i on dates and nobs dates = 3 in
! dataas s im user . f ) . Also note that to c o r r e c t l y run the h i s t o r y
! r e s t a r t func t i on f o r the case o f a data a s s im i l a t i o n run , you
! need to f i r s t s e t i c o r r f a c t o r = 0 and save a h i s t o r y r e s t a r t
! at the end o f that run be f o r e going on to the second ha l f o f
! the a s s im i l a t i o n run .

i da t aa s s im l oop = −1
! i da t aa s s im l oop = −1

! I f i h r e s t a r t f l a g = −1, then de f i n e how o f t en the r e s t a r t
! f i l e s are generated . This i s in i t e r a t i o n un i t s ( e . g . , every
! 30 days f o r the model running at hour ly time s t ep s would be
! i h r e s t a r t i n c = 720 ) . The h i s t o r y r e s t a r t f i l e s w i l l be
! p laced in an ’ h r e s t a r t / ’ d i r e c t o r y o f f o f the main model
! d i r e c t o r y . In add i t i on to t h i s time increment , i f the
! i h r e s t a r t f l a g = −1, the l a s t model i t e r a t i o n i s always saved
! ( so i f you j u s t want to save the l a s t i t e r a t i o n , j u s t s e t
! i h r e s t a r t i n c to a number b igge r than your maximum i t e r a t i o n ) .
! Note that i f you want to do h i s t o r y r e s t a r t s with data
! a s s im i l a t i o n t h i s increment must be evenly d i v i s i b l e in to
! the maximum in t e r a t i o n ; in other words , the s imu la t i on must
! at l e a s t do a wr i t e at the end o f the f i r s t data a s s im i l a t i o n
! loop .

i h r e s t a r t i n c = 10000

! The code i s s e t up to wr i t e out an i nd i v i dua l data f i l e f o r each
! sub−model ( s ee the sub−model s e c t i o n s below ) . In addit ion , you
! can use a user−de f ined subrout ine to output data in the format
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! o f your cho i c e . Def ine whether you want the data wr i t t en out
! to t h i s f i l e ( p r i n t u s e r = 1 . 0 , e l s e 0 . 0 ) . The name and
! l o c a t i o n o f the user−de f ined output f i l e ( s ) w i l l be de f ined
! with in the subrout ine . I f you are us ing t h i s f ea ture , you
! w i l l need to ed i t the output s use r . f f i l e .

p r i n t u s e r = 1 .0

! For p r i n t i ng to the standard output f i l e s , d e f i n e the i t e r a t i o n
! increment f o r each wr i t e to the f i l e s ( e . g . , i p r i n t i n c = 1
! g i v e s every time step , i p r i n t i n c = 24 g i v e s a wr i t e at the end
! o f each day when us ing hour ly time steps , e t c . ) .
! i p r i n t i n c = 24

i p r i n t i n c = 1

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
! ! ! ! ! MICROMET MODEL SETUP
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

! Def ine which f i e l d s you want to proce s s / d i s t r i b u t e . 1 = do i t ,
! 0 = don ’ t do i t . As an example , i f you are running SnowTran−3D
! with no melting , you don ’ t need s o l a r r ad i a t i on .

i t a i r f l a g = 1
i r h f l a g = 1
i w i n d f l a g = 1
i s o l a r f l a g = 1
i l o ngwav e f l a g = 1
i p r e c f l a g = 1

! Force the model to determine a value f o r every g r id c e l l (=1) , or
! j u s t d e f i n e va lues f o r some s p e c i f i e d ” rad iu s o f i n f l u e n c e ” (=0).

i f i l l = 1

! Let the model determine an appropr ia te ” rad ius o f i n f l u e n c e ” (=0) ,
! or d e f i n e the ” rad ius o f i n f l u e n c e ” you want the model to use (=1).
! 1=use obs i n t e r v a l below , 0=use model generated i n t e r v a l .

i o b s i n t = 0

! The ” rad iu s o f i n f l u e n c e ” or ” obse rvat ion i n t e r v a l ” you want the
! model to use f o r the i n t e r p o l a t i o n . In un i t s o f de ltax , de l tay .

dn = 1 .0

! The barnes s t a t i o n i n t e r p o l a t i o n can be done two d i f f e r e n t ways :
! F i r s t , ba rne s o i does the i n t e r p o l a t i o n by proc e s s i ng a l l o f
! the a v a i l a b l e s t a t i o n data f o r each model g r id c e l l .
! Second , b a r n e s o i i j does the i n t e r p o l a t i o n by proc e s s i ng only
! the ” n s tn s u s ed ” number o f s t a t i o n s f o r each model g r id c e l l .
! For smal l domains , with r e l a t i v e l y few met s t a t i o n s (100 ’ s ) ,
! the f i r s t way i s best . For l a r g e domains ( l i k e the
! United States , Globe , Pan−Arct ic , North America , Greenland )
! and many met s t a t i o n s ( l i k e 1000 ’ s ) , the second approach i s the
! most e f f i c i e n t . But , the second approach c a r r i e s the f o l l ow ing
! r e s t r i c t i o n s : 1) the re can be no miss ing data f o r the f i e l d s o f
! i n t e r e s t ; 2) the re can be no miss ing s t a t i o n s ( a l l s t a t i o n s
! must e x i s t throughout the s imu la t i on per iod ) ; and 3) the
! s t a t i o n met f i l e must l i s t the s t a t i o n s in the same order f o r
! a l l time s t ep s . This second method works we l l f o r r e g r i dd ing
! atmospher ic ana ly s e s /model da ta s e t s . Also , the MicroMet
! p r ep ro c e s s o r can be used to f i l l in miss ing data segments .
! Use barnes lg domain = 0 .0 f o r the f i r s t method , and
! barnes lg domain = 1 .0 f o r the second method .

barnes lg domain = 0 .0

! For the case where barnes lg domain = 1 .0 , d e f i n e the number
! o f nea r e s t s t a t i o n s to be used in the i n t e r p o l a t i o n (5 or
! l e s s ) . I f barnes lg domain = 0 .0 , n s tn s u s ed i s not used , but
! n s tn s u s ed s t i l l needs to have some value .

n s tn s u s ed = 5

! The curvature i s used as part o f the wind model . Def ine a l ength
! s c a l e that the curvature c a l c u l a t i o n w i l l be performed on . This
! has un i t s o f meters , and should be approximately one−ha l f the
! wavelength o f the topographic f e a t u r e s with in the domain .

c u r v e l e n s c a l e = 600 .0

! The curvature and wind s lope va lues range between −0.5 and +0.5.
! Val id s lopewt and curvewt va lues are between 0 and 1 , with
! va lues o f 0 .5 g iv ing approximately equal weight to s l ope and
! curvature . I sugges t that s lopewt and curvewt be s e t such
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! that s lopewt + curvewt = 1 . 0 . This w i l l l im i t the t o t a l
! wind weight to between 0 .5 and 1 .5 ( but t h i s i s not r equ i r ed ) .

s lopewt = 0.58
curvewt = 0.42

! s lopewt = 0.25
! curvewt = 0.75

! Avoid problems o f zero ( low ) winds ( f o r example , turbu lence
! theory , l og wind p r o f i l e , e t c . , says that we must have some
! wind . Thus , some equat ions blow up when the wind speed ge t s
! very smal l ) . This number d e f i n e s the value that any wind speed
! below th i s ge t s s e t to .

windspd min = 1.0

! Def ine whether the model i s to use the d e f au l t monthly l ap s e
! r a t e s (= 0) or user supp l i ed monthly l ap s e r a t e s (= 1 ) . To use
! user supp l i ed l ap s e rates , you have to ed i t the user l ap s e ra t e
! data array in micromet code . f ( subrout ine g e t l a p s e r a t e s ) .
! Note that t h i s implementation cu r r en t l y only d e f i n e s
! average−monthly l ap s e r a t e s .

l a p s e r a t e u s e r f l a g = 1

! Def ine whether the p r e c i p i t a t i o n adjustment fac to r , with un i t s o f
! kmˆ−1 ( kind o f a p r e c i p i t a t i o n l ap s e rate , used to ad jus t the
! p r e c i p i t a t i o n f o r l o c a t i o n s above and below the p r e c i p i t a t i o n
! observ ing s t a t i o n ( s ) ) , i s to use the d e f au l t monthly l ap s e
! r a t e s (= 0) or user supp l i ed monthly l ap s e r a t e s (= 1 ) . To use
! user supp l i ed l ap s e rates , you have to ed i t the user l ap s e ra t e
! data array in micromet code . f ( subrout ine g e t l a p s e r a t e s ) .

i p r e c i p l a p s e r a t e u s e r f l a g = 1

! Def ine whether you want the model to ca l cu l a t e , use , and output
! sub−f o r e s t−canopy windspeed , incoming s o l a r and longwave
! r ad i a t i on (= 1 . 0 ) , or above canopy va lues (= 0 . 0 ) .

ca lc subcanopy met = 1 .0

! Def ine the canopy gap f r a c t i o n (0−1). This parameter accounts
! f o r s o l a r r ad i a t i on reach ing the snow su r f a c e below the canopy ,
! beyond that de f ined by the canopy t r an sm i s s i v i t y c a l c u l a t i o n .
! In e f f e c t , i t a l l ows add i t i ona l s o l a r r ad i a t i on to penet rate
! the canopy ( e . g . , through gaps in the f o r e s t ) , thus i n c e a s i ng
! melt rate s , e t c . A gap f r a c = 0 .0 produces the sub−canopy
! s o l a r r ad i a t i on us ing the d e f au l t t r a n sm i s s i v i t y c a l cu l a t i on ,
! a gap f r a c = 1 .0 ( a l l gaps ) produces sub canopy rad i a t i on equal
! to the top−of−canopy rad i a t i on . I f you want the snow in the
! f o r e s t to melt f a s t e r , i n c r e a s i n g t h i s value w i l l do i t .

gap f r a c = 0.20

! To handle the case , f o r example , o f a met s t a t i o n l o ca t ed in
! an i nv e r s i on l ay e r r e co rd ing high r e l a t i v e humidity , and the
! model producing anomolously high cloud−cover f r a c t i o n s , the
! c l o u d f r a c f a c t o r can be used to dec rea se the s imulated cloud
! f r a c t i o n . This number i s mu l t i p l i ed by the c a l cu l a t ed cloud
! f r a c t i o n . For example , a c l o u d f r a c f a c t o r = 1 .0 produces the
! s imulated cloud f r a c t i on , a c l o u d f r a c f a c t o r = 0 .5 produces
! the ha l f the s imulated cloud f r a c t i on , and a c l o u d f r a c f a c t o r
! = 0 .0 f o r c e s the s imulated cloud f r a c t i o n to be zero .

c l o u d f r a c f a c t o r = 1 .0

! Def ine whether the s imu la t i on w i l l a s s im i l a t e shortwave r ad i a t i on
! ob s e rva t i on s ( no = 0 .0 , yes = 1 . 0 ) . I f yes , the model assumes
! the re i s a shortwave radat ion s t a t i o n data f i l e , c a l l e d
! shortwave . dat , in an ’ extra met / ’ d i r e c t o r y o f f o f the main
! model d i r e c t o r y . See the micromet code f o r f i l e format d e t a i l s .

use shortwave obs = 0 .0

! Def ine whether the s imu la t i on w i l l a s s im i l a t e longwave r ad i a t i on
! ob s e rva t i on s ( no = 0 .0 , yes = 1 . 0 ) . I f yes , the model assumes
! the re i s a longwave radat ion s t a t i o n data f i l e , c a l l e d
! longwave . dat , in an ’ extra met / ’ d i r e c t o r y o f f o f the main model
! d i r e c t o r y . See the micromet code f o r f i l e format d e t a i l s .

use longwave obs = 0 .0

! Def ine whether the s imu la t i on w i l l a s s im i l a t e su r f a c e p r e s su r e
! ob s e rva t i on s ( no = 0 .0 , yes = 1 . 0 ) . I f yes , the model assumes
! the re i s a su r f a c e p r e s su r e s t a t i o n data f i l e , c a l l e d
! s f c p r e s s u r e . dat , in an ’ extra met / ’ d i r e c t o r y o f f o f the main
! model d i r e c t o r y . See the micromet code f o r f i l e format d e t a i l s .

u s e s f c p r e s s u r e o b s = 0 .0
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! The code i s s e t up to wr i t e out an i nd i v i dua l data f i l e f o r each
! sub−model . Def ine whether you want the data wr i t t en out
! ( pr int micromet = 1 . 0 , e l s e 0 . 0 ) , and the name o f that output
! f i l e .

pr int micromet = 0 .0
micromet output fname = outputs /micromet . gdat

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
! ! ! ! ! SNOWTRAN−3D MODEL SETUP
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

! SnowTran−3D not used , parameters excluded

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
! ! ! ! ! ENBAL−2D MODEL SETUP
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

! I d e n t i f y whether the 2−D su r f a c e energy balance c a l c u l a t i o n f o r
! t h i s s imu la t i on w i l l i n c lude a non−zero conduct ion term
! ( i c o nd f l a g = 0 = no conduction , 1 = conduct ion ) . Note that
! the i c o nd f l a g = 1 has not been f u l l y implemented yet .

i c o nd f l a g = 0

! Def ine the albedo f o r a melt ing snowcover under the f o r e s t
! canopy . This a l l ows the user to contro l , to some degree , the
! melt r a t e s in the f o r e s t s . Note that ad ju s t ing the gap−f r a c
! parameter i s a l s o an e f f e c t i v e way to do t h i s . The non−melt ing
! snow albedo i s s e t to 0 .8 in the code .

a l b edo snow fo r e s t = 0.45

! Def ine the albedo f o r a melt ing snowcover in non−f o r e s t e d areas .
! This a l l ows the user to contro l , to some degree , the melt
! r a t e s in non−f o r e s t e d areas . The non−melt ing snow albedo i s
! s e t to 0 .8 in the code .

a lb edo snow c l ea r i ng = 0.60

! Def ine the albedo f o r a g l a c i e r s u r f a c e ( dry and melt ing ) .
a l b e d o g l a c i e r = 0.40

! The code i s s e t up to wr i t e out an i nd i v i dua l data f i l e f o r each
! sub−model . Def ine whether you want the data wr i t t en out
! ( p r i n t enba l = 1 . 0 , e l s e 0 . 0 ) , and the name o f that output
! f i l e .

p r i n t enba l = 0 .0
enbal output fname = outputs / enbal . gdat

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
! ! ! ! ! SNOWPACK MODEL SETUP
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

! Def ine whether s t a t i c−s u r f a c e (non−blowing snow ) sub l imat ion w i l l
! be inc luded in the model c a l c u l a t i o n s ( s f c s u b l im f l a g = 1 . 0 ) .
! To turn t h i s o f f , s e t s f c s u b l im f l a g = 0 . 0 . I am wait ing f o r
! the f lux−tower data Matthew and I are c o l l e c t i n g in Alaska , to
! v a l i d a t e t h i s part o f the model s imu la t i on s . I f the
! s f c s u b l im f l a g i s turned on , the l a t en t heat f l ux (Qe)
! c a l c u l a t ed in ENBAL i s used to add/remove snow from the
! snowpack .

s f c s u b l im f l a g = 1 .0

! The code i s s e t up to wr i t e out an i nd i v i dua l data f i l e f o r each
! sub−model . Def ine whether you want the data wr i t t en out
! ( pr int snowpack = 1 .0 , e l s e 0 . 0 ) , and the name o f that output
! f i l e .

pr int snowpack = 0 .0
snowpack output fname = outputs /snowpack . gdat
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