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ABSTRACT 

This study investigates the diagenesis and reservoir quality of Upper Jurassic Sandstones from 

the Central Graben. Petrophysical and petrographical studies have been done on cored interval 

from well 2/1-6.  

Precipitation of quartz cement is the main porosity destroying process in deeply buried quartz 

rich sandstone reservoirs of the North Sea. Quartz cement precipitate in the form of syntaxial 

overgrowth over detrital grain of quartz. Grain coatings like micro-quartz and illite are the main 

reasons of preservation of porosity in the area. Grain coats preserve porosity by covering the 

grain and inhibiting the quartz overgrowth. 

Petrographical and petrophysical data in this study clearly indicates that grain coatings are 

present in the Central Graben. Micro-quartz grain coating is the most common grain coat in the 

Upper Jurassic Sandstones of Ula Formation. Micro-quartz grain coat are generated from the 

transformation of siliceous sponge spicules known as Rhaxella Perforata. Though micro-quartz is 

present in all low and high porosity zones but it could not preserve porosity in low porosity 

zones. Clay grain coats like illite and chlorite grain coats are also present but in variable 

amounts. 

Relation between Intergranular volume (IGV) vs matrix and quartz cementation vs porosity have 

been also been studied. IGV is strongly affected by mechanical compaction, grain size, grain 

shape, quartz cementation, and carbonate cement. Sandstones with high amount of matrix and 

fine grained grains have high IGV as compared to coarse grained sandstones because coarse 

grained sandstones are compacted more when they are subjected to mechanical compaction. 

Grain shape has also a pronounced affect on the porosity in the area. Angular grains loose 

porosity as they are subjected to stress. In angular grains contact forces are more concentrated 

because of small contact areas. This is the reason we have low porosity zones which have 

angular grains and were not influenced by micro-quartz grain coatings. 
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CHAPTER 1: INTRODUCTION 
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1.1. INTRODUCTION 

This thesis is a collaboration between Det Norske oljeselskap ASA and the Department of 

Geosciences at University of Oslo. The aim of this thesis is to increase the understanding of the 

distribution and quality of deeply buried Jurassic Sandstone Reservoirs located in the Central 

Graben. 

Cementation is the main cause of the drop in reservoir properties of Jurassic sandstones from the 

North Sea which are buried deeper than about 3000m (70 to 100° C). Cementation is a process 

that is strongly controlled by temperature and kinetics. In deeply buried reservoirs 

(>4000m/140°C) a good understanding of the factors controlling the cementation exists since 

normal quartz cementation would normally lead to limited reservoir properties at similar depths. 

Reservoir quality in the deeply buried sandstone prospects therefore depend on factors 

preventing or delaying the quartz cementation. These factors include the grain coatings like 

chlorite and micro-quartz (Bjørlykke, 2010).  

1.2. PURPOSE AND METHODS 

The main objective of this thesis is to characterize the cored reservoir interval of well 2/1-6 of 

Gyda Field.  Main objective also includes providing valuable and essential information on 

reservoir quality as a function of quartz cementation and porosity preserving mechanisms in 

Upper Jurassic Sandstones in the Central graben which are buried to depths > 4Km. This will be 

done by integration of methods on two levels of investigation:  

i. Well correlation and petrophysical evaluation  

ii. Petrographic analysis of thin sections (Optical Microscopy and SEM)  

1.3. STUDY AREA 

The study area is located in the Central Graben within the North Sea in block 7/12, 2/1, and 1/3 

belonging to Ula, Gyda and Tambar fields respectively (Figure 1).  These blocks are located in 

Cod Terrace which are affected by Triassic salt tectonics (Gowers et al, 1993). These blocks are 

located in southern part of the North Sea (Figure 1.1).  
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Figure 1.1: Structural element map of the study area. Black dots indicate the well location (Map 

modified from NPD 2011). 
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CHAPTER 2: GEOLOGIC FRAMEWORK OF THE 

CENTRAL GRABEN 
_____________________________________________________________________________________________________________________ 
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2.1. INTRODUCTION 

The Central Graben is located in the middle and southern part of the North Sea (Figure 2.1). The 

term The Norwegian Central Trough was first introduced by Ronnevik et al. (1975). In Norway, 

the Central Trough is the official nomenclature although “Central Graben” is more accepted 

(Gowers et al. 1993).  

Structural configuration of North Sea is predominantly controlled by Late Jurassic to Early 

Cretaceous rifting events (Figure 2.1). The North Sea rift systems has a prolonged extensional 

history that began in Permo-Triassic and further continued during Jurassic and Early Cretaceous, 

followed subsequently by respective thermal cooling and subsidence stages (Zanella & Coward, 

2003; Ravnas et al., 2000). 

A large amount of literature has been published on the geology and tectonic evolution of the 

North Sea (e.g. Brooks and Glennie, 1987; Deegan and Scull, 1977; Gabrielsen, 1986; Glennie, 

1998; Nøttvedt et al., 1995; Vollset and Dorê, 1984). This chapter will focus mainly on the 

Central Graben area. For further reading the Millennium Atlas (Evans et al., 2003) and 

references given gives a complete description of the petroleum geology of the North Sea. 

2.2. STRUCTURAL SETTINGS 

The Central Graben is the southern arm of the triple junction between Viking Graben, the Central 

Graben and the Moray Firth basins (Figure 2.1). The Central Graben is more symmetrical in 

character as compared to the Viking Graben and the Moray Firth basin which are asymmetrical 

in character (Zanella and Coward, 2003). 

The Central Graben is characterized by several narrow discontinuous structural highs and lows 

(Skjerven et al., 1983). As mentioned above Central Graben is symmetrical in character but it has 

a very complicated tectonic history. Its tectonic history involves oblique/strike slip movements 

and structural inversion (Sears et al. 1993). Different researchers have proposed different models 

to explain the tectonic framework of the Central Graben (Beach (1986), Gibbs (1989), Roberts 

and Yielding (1991) and Roberts et al. (1990)). This thesis will follow the structural framework 

proposed by Gowers et al. (1993). 
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According to Gowers et al. (1993) development of Central Graben can be divided in to three 

different stages. Stages of evolution of Central Graben are shown in Figure 2.2. These stages are: 

1) Late Triassic to middle Jurassic flexural uplift 

2) Late Jurassic to early Cretaceous fragmentation 

3) Late Cretaceous to Tertiary flexural subsidence 

First stage is highly influenced by Halokinetics. Salt Tectonics has been recognized in Central 

Graben in early phases of exploration in the area due to the fact that various diapirs penetrate 

into late Tertiary sediments. Major movements of salt occurred in end of Triassic time by 

Zechstein salt deposits. These halokinetic movements resulted in series of highs and ridges with 

the intervening blocks of Triassic sediments resting on thin salt or on Permian pre-salt deposits. 

Flexural uplift caused by movement of salt is evident by thinning of Triassic and early Jurassic 

sediments towards the Central Graben and thinning of middle Jurassic sediments (Gowers et al. 

1993). Salt movement in Central Graben had a great influence on the distribution of Reservoirs 

(Smith et al. 1993). 

Second stage involves the fragmentation of Central Graben which started in Oxfordian with 

intense faulting and continued to middle Cretaceous. In this stage, tectonic movements were 

totally confined to Central Graben with very little influence of movements outside the graben. In 

Volgian, a major change in tectonic deformation occurred. In this time, faulting became 

dominant and this faulting rotated the individual fault blocks. This caused erosion on footwalls 

and deposition in hanging walls. This is evident by the dips away from the axis of graben. These 

rotational movements are more intense and best seen in Hidra High (Gowers et al. 1993). 

The rotational movement in Central Graben rapidly ceased in late Volgian with initiation of 

regional subsidence causing the high areas to drown below the wave base. Distribution of these 

lower Cretaceous sediments is still not well understood, but there are many evidences which lead 

to renewed basin subsidence in early Cretaceous. It is unclear that this subsidence is of syn-

depositional age is of the lower Cretaceous. Sediments were deposited in the basins created in 
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late Jurassic. Basins formed due to early Cretaceous subsidence are fault bounded, flexure 

bounded, and have undisturbed internal geometry (Gowers et al. 1993).  

Flexural subsidence is third stage of tectonic events which resulted in formation of Central 

Graben and these events are related to Thermal Subsidence (McKenzie, 1978). This type of 

subsidence in Central Graben is caused by thermal cooling of crust in late Cretaceous time. 

Thermal subsidence is best seen in Breiflabb Basin but can not be seen in Søgne Basin or Tail 

End graben (Gowers et al. 1993).  

2.3. STRUCTURAL ELEMENTS 

The Central Graben is trending in NW-SE direction and consists of two troughs towards east and 

west of intrabasinal Forties-Montrose and Josphine highs. These highs make up the spine 

between two sub-basins as shown in Figure 2.1 (Zanella and Coward, 2003). Central Graben can 

be considered as a series of north-south sub-basins, which offsets along Tornquist basement 

lineaments to west-north-west direction (Erratt et al., 1999). Complex pattern of the Central 

Graben becomes complicated by presence of the thick Zechstein evaporites (Zanella and 

Coward, 2003). 
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Figure 2.1: Regional structural map of North Sea modified after Zanella and Coward, 2003.  
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Figure 2.2: Schematic illustration describing the evolution of the Central Graben (modified after 

Gowers et al. 1993). 
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2.4. STRATIGRAPHIC SETTING 

Late Jurassic is rightly considered as the most important period in evolution of the North Sea 

petroleum system because Kimmeridge Clay Formation and its equivalent were deposited which 

are the major oil source rocks in the North Sea (Cornford, 2009). The complex tectonic history of 

Central Graben created vast majority of hydrocarbon traps, which were to be filled with 

hydrocarbons upon maturation of Kimmeridge Clay and its equivalents later. Therefore, Late 

Jurassic becomes the single most significant period in the overall development of petroliferous 

North Sea basin (Fraser et al., 2002). 

Upper Jurassic hydrocarbon play’s nature was controlled mainly by progressive evolution and 

decay of Late Jurassic to Early Cretaceous rifting. Depositional and structural processes related 

to rifting had a main bearing on distribution of source rocks, seal and reservoirs in the basin and 

on the development of hydrocarbon trapping configurations (Fraser et al., 2002). According to 

Fraser et al (2002), the petroleum play of Central Graben is characterized by two types of 

reservoirs: Coastal Shelf Sandstones and Deep Sea Submarine-Fan Sandstones in the form of 

basin floor fans. Erratt et al (1999) postulated that these good quality reservoirs are distributed in 

Central Graben, Viking Graben and Moray Firth Graben systems which display a good interplay 

between depositional and structural processes. 

This chapter will focus on the sandstones deposited in Shallow marine/Coastal Shelf 

Depositional System. As Ula Formation on which this study is based was deposited in this 

system (Fraser et al., 2002). Stratigraphic overview of the Norwegian Central Graben is shown in 

Figure 2.3. 
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Figure 2.3: Showing stratigraphic overview of the Norwegian Central Graben (Modified after 

Fraser et al. 2002) 

2.5. UPPER JURASSIC DEPOSITIONAL SYSTEM AS SHALLOW MARINE/COASTAL SHELF 

DEPOSITIONAL SYSTEMS 

Following rifting, sea level rose rapidly during Jurassic time which caused development of an 

extensive coastal shelf depositional system.  This type of depositional system resulted in high 

reservoir quality shallow marine sands at the basin margins. These sands include Emerald, 

Fulmar, Heno, Hugin, Piper, Sognefjord and Ula Formations. In Oxfordian and Kimmeridigian 

times (Late Jurassic), the depositional pattern was progressive retrogradation of coastal shelf 
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depositional system (Figure 2.4) (Fraser et al., 2002). These shallow marine sandstones are 

though different in ages but their physical characteristics are similar. They have been extensively 

bioturbated so internally they are structureless. They have wide range of ichnofacies which helps 

a lot in reconstructing their depositional environments and palaeobathymetry (Pemberton et al., 

1992; Taylor and Gawthorpe, 1993; Martin and Pollard, 1996). 

Primarily, reservoir quality is controlled by its parent depositional processes until reservoir is 

buried deep. Such processes control sorting, packing of grains, cementation and primary 

sedimentary features that eventually determine the type of porosity and to a certain extent the 

permeability within the reservoir (Cannon and Gownland, 1996). In Central Graben, good 

quality sandstones are lying in upper parts of upward-coarsening progradational cycles which 

were deposited in high energy environment, influenced by storm waves. In deeper parts porosity 

is preserved by high overpressures along with some secondary porosity (Fraser et al., 2002). 
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Figure 2.4: Schematic models for the development of Fulmar Formation Sandstones in the 

Central Graben. Modified after Fraser et.al, 2002. 
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CHAPTER 3: THEORETICAL BACKGROUND 
_____________________________________________________________________________________________________________________  
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3.1. INTRODUCTION 

Properties of sandstone depend on its composition at shallow depth, and on temperature and on 

stress history during burial. Start of diagenetic process depends on the initial composition of 

sandstone. Initial composition in turn depends on the provenance, transport and depositional 

environments. The most important factor in predicting reservoir quality at depth is the initial or 

primary clastic composition and the depositional environment (Figure 3.1) (Bjørlykke, 2010, 

p115).  

According to Bjørlykke, 2010, main diagenetic processes are: 

(1) Near surface diagenesis.  

(2) Mechanical compaction 

(3) Chemical compaction 

(4) Cementation 

3.2. NEAR SURFACE DIAGENESIS 

When sediments are deposited, composition of sediments starts to be modified by diagenetic 

reactions. At burial depth of about <1 to 10 m, sediments are most susceptible to react with water 

or air or both by process of fluid flow and diffusion. Near surface, diagenesis is caused by 

meteoric water inflow which is actually fresh and is unsaturated with respect to minerals. When 

fresh water seeps down in soil, it starts to react and dissolve carbonates and other unstable 

minerals in nature like feldspar and mica. (Figure 3.2) (Bjørlykke, 2010, p118). Two chemical 

processes at this stage are of significant importance which are carbonate cementation and K-

feldspar leaching. 

At shallow depth carbonate cement is mainly derived from biogenic carbonates within the rock. 

This biogenic carbonate becomes unstable below the redox boundary. Due to high reaction rates 

of carbonate minerals, carbonates dissolve and re-precipitate as cement at shallow burial depth 

(Saigal and Bjørlykke, 1987). Carbonate minerals available in rocks depend on biological 
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productivity. Biological productivity in turn depends on clastic sedimentation rate. Carbonates 

are very common in sandstones of Upper Jurassic and younger in age. 

Reservoir properties are known to be significantly affected by leaching of K-feldspar, mica and 

precipitation of kaolinite (Bjørlykke et al., 1992). In the presence of K-feldspar, kaolinite is 

thermodynamically unstable. Later, during deep burial (120-140˚C) kaolinite will be transformed 

into illite. The transformation of kaolinite into illite affects the permeability of rock while 

leaching of K-feldspar causes an increase in secondary porosity (Bjørlykke, 2010). 

 

Figure 3.1: Schematic illustration of a sedimentary basin on a continental margin (Bjørlykke, 

2010, p115). 
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Figure 3.2: Showing diagenetic processes in shallow marine environment (Bjørlykke, 2010, 

p118). 

 These reactions of water with feldspar and micas can be written as follows (Bjørlykke, 2010): 

2K(Na)AlSi3O8 + 2H
+
 + 9H2O               Al2Si205(OH)4 + 4H4SiO4 + 2K + (2Na

+
) 

Feldspar                                                     Kaolinite       dissolved silica   dissolved cations 

2KAl3Si3O10 (OH)2 + 2H
+
 + 3H2O            3Al2Si205(OH)4 + 2K

+
 

   Muscovite                                                Kaolinite 

3.3. MECHANICAL COMPACTION 

Grain size, sorting, shape and matrix content determine the initial space among the sand grains, 

measured as the intergranular volume (IGV) of the sediment (Paxton et.al, 2002). As sediments 

are buried, IGV decreases, which is function of mechanical compaction. Mechanical compaction 

causes grains to pack closely together (Ajdukiewicz and Lander, 2010). Experimental 

compaction shows that initial porosity (40-42%) of sandstone may reduce to 35-25% at 20-30 

MPa (2-3 Km depth). This depends on grain strength and grain size (Chuhan et al, 2003). 

3.4. SANDSTONE RESERVOIRS BURIED TO INTERMEDIATE DEPTH (2.0–3.5 KM, 50–120◦C) 

Quartz cementation starts at intermediate depth (2.0-2.5 Km), which thus increases the strength 

of the rock and stops mechanical compaction. From this depth onwards, chemical compaction 

will be the main process acting on the reservoir. 2-4% quartz cement will stop mechanical 
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compaction and strengthen the rock. This means chemical compaction will be the main process 

acting on the reservoir. Albitization is also an important process that may alter composition of 

reservoirs buried at this depth (Bjørlykke, 2010, p122). 

Generally in basins the geothermal gradient is 30-35° C/Km. In sandstones where temperature 

reaches 60 to 80 °C, quartz cementation starts to precipitate and starts to modify porosity. Quartz 

cementation depends on time, temperature (as shown in Figure 3.3) and surface area available 

(Ajdukiewicz and Lander, 2010 and Walderhaug, 1996). In both mechanical compaction and 

chemical compaction porosity is decreased. Quartz cementation is limited by diagenetic clay 

coats over grains.  Quartz cementation is main porosity destroying process in sandstones buried 

at intermediate depth (2.0-3.5 Km) (Bjørlykke et al., 1989). Quartz cementation will be discussed 

in detail later within this chapter. 

At intermediate burial depth, K-feldspar may be albitized and this is an important diagenetic 

process which may result in significant change in composition of sandstone reservoirs. K-

feldspar reacts with Na
+
 which results in Albite and release of K

+
 (Bjørlykke, 2010). This 

reaction is shown below: 

KAlSi3O8 + Na
+  

               NaAlSi3O8 + K
+
                                                                                       

K-feldspar                            Albite                         After Saigal et al. (1988)  

According to Saigal et al (1988) albitization starts at about 65˚ C to 105˚ C which clearly 

corresponds to 2-3 Km burial depth. 30-50% of original K-feldspar can be albitized (Aagaard et 

al., 1990). 

3.5. DEEPLY BURIED SANDSTONES (>3.5–4 KM, >120◦C) 

As quartz cementation starts, it doesn’t stop till all porosity is filled by quartz cement until 

temperature falls below 70 to 80°C due to uplift or other reasons (Walderhaug, 1996). During 

continuous burial, quartz cementation continues till available porosity is lost and when 

temperature reaches 200-300°C sandstone converts into hard quartzite. This process may take 

millions of years (Bjørlykke, 2010, p126).  
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Illitization is a process which takes place at burial depths of about 3.7 to 4 Km (120-140°C). This 

process only starts if Kaolinite and K-feldspar are present together in reservoir (Chuhan et al., 

2000). As mentioned earlier Kaolinite and K-feldspar are thermodynamically unstable when they 

are present together in the reservoir. But for illitization, high activation energies are required 

which are available at deep burial. Along, with quartz cementation, illitization is probably the 

most important reasons for reduction of reservoir properties (Bjørlykke et al., 1992). The 

illitization of Kaolinite can be written as following equation: 

2K(Na)AlSi3O8 + Al2Si2O5(OH)4             KAl3Si3O10(OH)2 + SiO2 + 2H2O 

  K-feldspar            Kaolinite                       Illite                 Quartz 

 

Figure 3.3: Diagenetic processes, mainly quartz cementation, as a function of temperature and 

time. Note that quartz cementation will continue also during uplift as long as the temperature 

exceeds 70–80◦C (Bjørlykke, 2010, p126). 

3.6. QUARTZ CEMENTATION 

According to Worden and Morad (2000) reservoir quality depends on three factors:  

1) Porosity and Permeability 

 2) Degree of mechanical and chemical compaction  
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3) Amount and type of pore filling cement.  

Sandstone reservoirs buried to 2-3 Km depths looses their porosity from 35-45% (depositional 

porosity) to 15-20%. The main reason of porosity reduction at this depth is quartz cementation 

which kicks off at 70-80°C (Bjørlykke et al., 1989). 

3.6.1. ORIGIN OF QUARTZ CEMENT IN SANDSTONES 

The main sources of silica have been unclear till late 90’s with variety of different suggestions 

and explanations (e.g McBride, 1989). These ideas mainly included external sources and 

dissolution process. External source is mainly considered a large flux of water in sandstone. But 

later it was proved that external sources have no role in quartz cementation. Bjørlykke (1994) 

calculated that 10
8
 cm

3 
water passing through each cm

2 
of sandstone body will result in quartz 

cementation. This is naturally impossible to occur. Most of the authors believe source of silica is 

mainly by the illite-mica induced dissolution which was introduced by Oelkers et al. (2000). It is 

also abbreviated as I-MID. 

 “Dissolution at grain contacts requires stress, and the process is often called Pressure Solution, 

but the degree of stress needed is relatively moderate” (Bjørlykke, 2010, p125). Rutter and 

Elliott (1976) introduced that pressure has the key control on the silica solubility. However, 

Bjørkum (1996) emphasized on the critical role of the temperature and negligible role of pressure 

for silica dissolution in diagenetic rocks. Contacts between illite clay or mica and quartz grain 

are the preferred sites of dissolution (Fisher et al., 2000). These contacts are called stylolites. 

Silica dissolved at the stylolites is transported by the process of diffusion to grain surfaces where 

it forms quartz overgrowth. Precipitation will take place away from the stylolites where the silica 

will be oversaturated with respect to quartz (Bjørlykke, 2010, p125).  

Sandstones of ages from Upper Jurassic have considerable amounts of siliceous and opaline 

fossils. Rhaxella perforata is most common siliceous fossil. These fossils are dissolved to 

produce high supersaturation of silica (Bjørlykke, 2010). Quartz cement which results from the 

dissolution of the biogenic sources results in microcrystalline grain coats and mesocrystalline 

quartz overgrowth (Vagle et al., 1994; Hendry and Trewin, 1995). 
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3.6.2. FACTORS INFLUENCING QUARTZ CEMENTATION 

Temperature effects quartz cementation in two ways. First it can affect the diagenetic processes 

which result in release of silica. Secondly it can affect quartz dissolution, diffusion and 

precipitation. Thus “Temperature affects both the thermo-dynamics and the kinetics of 

geochemical process that cause quartz cementation”. Rate of quartz cementation is increased 

exponentially by a factor of 1.7 for every 10°C as a function of temperature (Walderhaug 1996).  

To start quartz cementation, reservoir must attain temperature of about 60°C. Before this 

temperature (1.5-2Km depth) quartz cementation doesn’t start (Bjørlykke, 2010). Precipitation of 

quartz cementation and quartz overgrowth increases during deep burial diagenesis (>2.5 km) 

with temperatures 90-130°C (Giles et al., 1992; Gulyas et al., 1993). Precipitation of quartz 

cement is also a function of surface area available as quartz cementation reduces porosity. So to 

precipitate more quartz cement, porosity will be required. Basins which are subsiding slowly, 

may witness quartz cementation for tens of millions of years at low temperatures (<100°C). 

Inversely at high temperatures cementation may take place for shorter time span (Morad et al., 

1994). 

3.7. PRESERVATION OF POROSITY  

In sandstones, early formation of grain coats on quartz grains inhibits the quartz cementation and 

prevents porosity loss. Grain coats mostly observed in sandstone are clay coats and 

microcrystalline quartz (Taylor et al., 2010). 

3.7.1. CLAY COATS 

Clay minerals are considered important and are recognized in sandstones for preserving porosity 

in many studies (Heald and Larese, 1974; Thomson, 1979; Pittman et al., 1992; Ehrenberg, 1993; 

Bloch et al., 2002; Anjos et al., 2009; Taylor et al., 2004). These all studies have shown that 

sandstones where poor clay coats are developed have very low porosity because of quartz 

cementation and sandstones with a lot of clay coats contains less amount of quartz cementation 

and high porosity. Clay coatings include Illite, Smectite, and Chlorite. Authigenic chlorite is 

most important grain coating which is effective in controlling quartz cementation. This is due to 

the tendency of chlorite to form continuous layers between the quartz grain and the pore space 
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(Taylor et al., 2010). Bloch et al. (2002) proposed that other types of clay coatings around quartz 

grains don’t stop quartz cementation as much as a coating of chlorite does. Numerical models of 

quartz cementation given by Bloch et al. (2002) and Lander et al (2008) proves that reservoirs 

which are deeply buried and are at higher temperatures require full grain coats to preserve 

porosity. 

3.7.2. MICROCRYSTALLINE QUARTZ COATS 

Microcrystalline quartz coats over quartz grains prove to be an effective way to preserve porosity 

in sandstones (Aase et al., 1996). As microcrystalline quartz is very small in size so it cannot be 

easily detected in thin section using standard optical microscopes but can be very easily detected 

in Scanning Electron Microscope (SEM). Micro-quartz is usually the result of rapid 

crystallization of silica from a silica-supersaturated solution. Dissolution of siliceous sponge 

spicules help in maintaining the dissolved silica supersaturation even at very low temperatures 

(Taylor et al., 2010). Numerous examples of microcrystalline quartz over grains of deeply buried 

sands are available from Jurassic and Cretaceous intervals of the North Sea (Aase et al., 1996; 

Ramm et al., 1997; Jahren and Ramm., 2000; Aase and Walderhaug, 2005). These studies show 

that small amount of microcrystalline quartz has preserved porosity and inhibited quartz 

overgrowth and quartz cementation. 

Presence of micro-quartz grain coatings is always pointing to the presence of amorphous silica 

precursor Rhaxella Perforata (Maliva and Siever, 1988). In 1890, Hinde reported spicules and 

specimens of Rhaxella Perforata belonging to the Lower Cretaceous Grit Formation (Lower 

Oxfordian) from Yorkshire, England. Sponge spicules and Rhaxella Perforata are commonly 

reported in onshore England and sandstones of Upper Jurassic to Lower Cretaceous of the North 

Sea (Table 3.1). In the North Sea, Rhaxella spicules are abundant in shallow marine deposits e.g 

Alness Spiculite Member and the Fulmar Formation. They are also reported from deep marine 

turbiditic reservoirs e.g Scapa, Ten foot turbidites. Ula Formation is also reported to have 

Rhaxella Perforata which was deposited in Shoreface, offshore bar environment (Ramm and 

Forsberg, 1991, Vollset and Dorê, 1984). 
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Sedimentary reworking of sponge spicules is very important as a distributing mechanism of 

Rhaxella Spicules in shallow marine sandstones. Wilson (1968) reported spicules from shallow 

marine environment sandstones of Oxfordian age from onshore southern England. 

3.7.3. HYDROCARBON INCLUSION 

Many years ago, Johnson (1920), proposed an idea that hydrocarbons as pore fluid in sandstone 

can influence porosity. Until recently it has been thought that in reservoir with hydrocarbons, 

porosity was preserved (Emery et al., 1993; Gulyas et al., 1993). However recently it has been 

known that effect of hydrocarbon emplacement in sandstones has been over stated (Aase and 

Walderhaug, 2005; Barclay and Worden 2000b; Giles et al., 1992; Ramm and Bjørlykke, 1994; 

Walderhaug, 1994a). 

Fractional amount of water in sandstone is called Water Saturation (Sw). The Sw of a rock is 

equal to the height above the oil-water transition zone and the rock fabric. Wettability of the 

reservoir also affects the values of Sw. Wettability is defined as the ability of rock to allow oil to 

come into contact with the grain surface. Sandstones contain a variety of minerals so it has 

mixed Wettability. Quartz, feldspar and illite are susceptible to water-wet behavior (Fassi-Fihri 

et al., 1991). While kaolinite and chlorite are susceptible to being oil wet (Sincock and Black, 

1988; Fassi-Fihri et al., 1991; Barclay and Worden, 2000b). Sandstone reservoirs which are 

water-wet, the presence of oil in the sandstones will have no affect on the precipitation of quartz 

cement because the surface of quartz grain will be coated by water. In comparison, oil-wet 

systems, the surface of quartz grain will be coated with oil, the pore water will have no ability to 

precipitate quartz cement and overgrow the quartz grain (Worden and Morad, 2000). 
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Location Formation / Member Age Depositional environment Reference 

southern England Corallian beds Oxfordian Sediment starved lagoon 
(Talbot, 1973; Wilson, 

1968) 

Moray Firth Alness Spiculite Member Mid Oxfordian Large subtidal shoal (Andrews and Brown, 1987) 

Scapa Field (Moray 

Firth) 
Scapa Member 

Valanginian – late 

Hauterivian 
Turbidites (Hendry and Trewin, 1995) 

Brora (Inner Moray 

Firth ) 

Brora Arenaceous, Brora 

Argillaceous 

Oxfordian – 

callovian 

Coastal sand bar: Tidal sand 

waves 
(Vagle et al.,1994) 

Moray Firth 

(Claymore Field) 

Cimmeridge Clay 

Formation Formation 

(Ten Foot turbidites) 

Kimmeridgian – 

early Tithonian 
Turbidites (Spark and Trewin, 1986) 

Central Viking 

Graben (Fulmar 

Field) 

Fulmar Formation 
Kimmeridgian – 

Oxfordian 

Highly bioturbated, shelf - 

lower shoreface 

(Gowland, 1996; van der 

Helm et al., 1990) 

Central Viking 

Graben (Ula Field) 
Ula Formation Early Tithonian 

Shoreface, offshore bar, tidal 

sand waves 

(Ramm and Forsberg, 1991; 

Vollset and Dorê, 1984) 

 

Table 3.1: Showing known common locations of Rhaxella Spicules (Tom Erik Mast, Thesis, 2008)
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CHAPTER 4: METHODOLOGY 
_____________________________________________________________________________________________________________________ 
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4.1. METHODOLOGY 

This study has been divided in to two parts. 

1) Well Correlation and Petrophysical evaluation 

2) Petrographic Analysis using Optical Microscope and Scanning Electron Microscope (SEM) 

Well information was gathered from Norwegian Directorate Fact Pages (NPD, 2011) and 

Petrobank. Three wells 2-1/6, 3-1/9-s, and 7-12/2 were investigated. Well 2-1/6 was the key well 

in the study and samples from cores of this well were studied only. Well 3-1/9-s and 7-12/2 were 

used only for correlation with 2-1/6. 

4.2. WELL CORRELATION 

The main objective of correlation was to correlate Ula Formation through Gyda, Tambar and Ula 

Fields. Ula Formation is divided into subparts on the basis of sequence stratigraphy and porosity 

(Ramm et al,. 1997). Correlation was done following this study and implementing it on the well 

3-1/9-s. For correlation Gamma Ray log, Density log, and Neutron Porosity log were used. But 

other log types like Sonic log, Spontaneous Potential log were also used in combination. 

Well correlation is totally based on sequence stratigraphic units recognized by Ramm et al., 

(1997). These sequence stratigraphic units were recognized on the basis of high and low porosity 

zones within the Ula Formation as they are stratigraphically correlatable throughout the Gyda, 

Tambar and Ula Fields. 

Well correlation was done in Petrel. Petrel is a software introduced by Schlumberger. It can 

perform various operations like interpretation of seismic data, well correlation, and modeling of 

reservoirs. In this study only well correlation was performed. And for this purpose Petrel Version 

2009 was used. 

4.3. PETROPHYSICAL EVALUATION 

Well correlation helped in recognizing low and high porosity zones. After correlation of the three 

wells, well log data of three wells was exported to Hampson and Russell. The Hampson-Russell 
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software suite encompasses all aspects of seismic exploration and reservoir characterization, 

from AVO analysis and inversion to 4D and multi component interpretation. For this study only 

E-log (component of software) was used to create cross plots. This made it possible to make 

different cross plots. e.g sonic- porosity vs density  porosity color coded with gamma ray. This 

helped to match the recognized low and high porosity zones on the cross plots. 

4.4. PETROGRAPHIC ANALYSIS 

Petrographic analysis was done using Optical Microscope and Scanning Electron Microscope 

(SEM) on the samples taken from core material of well 2-1/6.  

SEM analysis has been done on samples using JEO2 JSM-6460LV Scanning Electron 

Microscope (SEM) with a LINK INCA Energy 300 Energy Dispersive X-Ray (EDX) system. 

Two types of samples were studied under SEM. This includes thin sections coated with carbon 

and freshly fractured samples from core material which are mounted over stubs and coated with 

gold. 20 samples mounted over stubs were studied. And 10 samples were chosen for carbon 

coating in a way that it covered the high and low porosity zones.  

Point Counting was also done using optical microscope on 20 thin sections from well 2-1/6. 300 

points were counted on each thin section. It was done on Nikon Optiphot-Pol petrographic 

microscope in PPL (plain polarized light) and XPL (cross polarized light). Following parameters 

were determined. 

1) Quartz  2) Feldspar 3) Rock Fragments 4) Matrix 5) Mica 6) Carbonate cement 7) Quartz 

cement 8) Primary Porosity 9) Authigenic Kaolinite 10) Illite 11) Secondary Porosity. 

Point counting was carried out to get an overall idea of composition of samples and their 

porosity. Grain size distribution and sorting was also observed. Degree of sorting was estimated 

by following Longiaru (1987) (Figure 4.1). According to Longiaru (1987) sorting can be divided 

into Well, Moderate and Poorly sorted. An overview of which samples were observed from 

which depth is shown in the Table 4.1.  
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Data collected from Point Counting was used to calculate IGV (Inter granular volume). IGV is 

used to measure compaction in sandstones. IGV is equal to sum of intergranular space, 

intergranular cement, and depositional matrix (Paxton et al. 2002). IGV in sandstones is on 

average ranging from 40-45 volume percent (IGV at the time of deposition). IGV usually varies 

with sorting and particle grain size. 

Well Name Sample Name Depth 

2/1-6 

2-12 4205.8 

2-14 4212.55 

2-15 4218.5 

2-16 4222.6 

2-17 4227.35 

2-18 4231.8 

2-19 4233.7 

2-21 4240.6 

3 4252.5 

4 4254.6 

5 4303.65 

6 4309.6 

7 4318.67 

9 4321.7 

10 4324.9 

11 4327.6 

12 4333.1 

13 4336.95 

14 4344.3 

16 4353 

Table 4.1:  Thin sections of the study area with their depths. Depths are measured in mRKB 
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Figure 4.1: Degree of sorting presented by Choh et al, (2003) and modified after Longiaru, 

1987.. 
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CHAPTER 5: WELL CORRELATION AND 

PETROPHYSICAL DATA 
_____________________________________________________________________________________________________________________ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

31 
 

5.1. INTRODUCTION 

This chapter will focus on the investigation of petrophysical properties of the cored intervals in 

the study area. Data from well 1/3-9 S and 7/12-2 will not be petrophysically interpreted as this 

study focuses on the well 2/1-6 but these wells will be used for well correlation. The main 

purpose of well correlation and petrophysical study is to have knowledge of the lithology in the 

area and also mark the porous and non-porous zones in the cored intervals.  

5.2. WELL CORRELATION 

Well Correlation helps us in providing the lithostratigraphic framework for the cores and 

samples under study. Large amount of data can be derived from wire line logs but here these logs 

will be used to correlate the low and high porosity zones varying through the study area. Well 

correlation pattern was followed presented by Ramm et al, 1997 (Appendix A). 

Figure 5.1 shows the well correlation followed by the interpretation of Ramm et al, 1997 and it is 

implemented on well 1/3-9 S as Ramm et al (1997) did not include this well in their correlation. 

Names of low and high porosity zones have been changed on purpose. Table 5.1 shows the name 

of these zones and the names used in this study. 

Ramm et al. 1997 Current Study Porosity 

Unit A Ula E Low 

Unit B Ula D High 

Unit C 1 1 Ula C Low 

Unit C 1 2 Ula B High 

Unit C 1 4 Ula A Low 

Table 5.1: Names and porosities of units of Ula formation recognized by Ramm et al. 1997 and 

in this study. 

It should be noted that Ula B and C zones weren’t recognized in well 7/12-2. 
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Figure 5.1: Well correlation of the 3 well from Tambar, Gyda, and Ula fields. 
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According to the table 5.1 there are only two zones Ula B and D which are high porosity zones. 

Ula A, C, and E are low porosity zones. Note that in Figure 5.1 in well 2/1-6 from depth 4200 

mRKB to 4330 mRKB within a same sandstone unit we have three different types of porosity 

zones. Two are of very low porosity and one is of high porosity. Ula A and Ula C are of low 

porosity while Ula B is of high porosity as seen through the logs. 

5.3. CROSS PLOTS  

Various cross plots were made using Hampsson and Russel software by importing wire line log 

data. These crossplots are shown in Appendix E. Among all other crossplot P-wave against 

Density was the most useful because it indicates lithologies and porosities. 

Figure 5.2 shows the cross plot between P-wave and Desnity color coded with Gamma Ray. 

Note that the High Porosity Sandstones have sonic wave velocities from 3700 to 4400 m/s with 

densities from 2.300 to 2.460. Low porosity sandstone have sonic wave velocities from 4500 to 

5250 m/s with densities of 2.475 to 2.600. Also note that shales have very low densities and very 

low response to sonic wave velocity.  

Figure 5.3 shows the same cross plot as Figure 5.2 color coded with depth. This cross plots 

shows all the low and high porosity zones of the data which was imported in Hamspon and 

Russell. From the color of the depth it should be noted that Ula B and Ula D fall in the category 

of High Porsoity Sandstones. Ula B ranges from 4250 m to 4325 m depth. While Ula D is at 

depth from 4345 m to 4421 m. Though high porosity zone of Ula D lies in the upper part which 

is only from 4345 m to depth of 4370 m. These depth ranges fall into the category of High 

Porosity Sandstones as shown in Figure 5.3. Ula A, Ula C and Ula E are sandstones with low 

porosity. Ula A is at depth of 4200 m to 4249 m. Ula C is at 4325 m to 4340 m depth. While Ula 

E ranges from 4420 m to 4565m depth. These depths fall in the category of Low Porosity Zones 

in the cross plot color coded with Vertical depth (Figure 5.3). 
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Figure 5.2: Cross plot of P-wave vs Density color coded with Gamma Ray.  
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Figure 5.3: Cross Plot of P-wave vs Density color coded with Vertical Depth 
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CHAPTER 6: PETROGRAPHY 
_____________________________________________________________________________________________________________________ 
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6.1. POINT COUNTING 

Modal Analysis (300 points per sample) was performed on twenty different thin sections from 

well 2/1-6. The sampled sandstone from the well was predominantly sourced from the pre-rift 

sedimentary rocks that were uplifted in Late Jurassic time in the Central Graben. Therefore it 

was expected that sandstones would be mature (high quartz content). Point counting of the 

samples indicate that majority of the samples are Quartz Arenites and thereby confirms the 

compositional maturity that was expected. Five of the samples fall into the category of 

Subfeldspathic Arenites because of higher feldspar content (Figure 6.1). Results of the point 

counting are shown in Appendix C and in Table 6.1. 

 

Figure 6.1: Classification of the samples following Pettijohn et al (1987). Box shows zoomed in 

data of plotted samples. Composition is also given in Table 6.1. 
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Table 6.1: Results of petrographic analysis. 

Sample 
Depth 

(mRKB) 

Avg Grain 

Size 

Framework Composition 

Quartz        Feldspar   Rock Fragments 
Matrix Porosity 

Quartz 

Cementation 

Calcite 

Cementation 

2-12 4205.8 0.25 88.04 11.96 0.00 15.6 16.3 1.3 4 

2-14 4212.55 0.0175 90.85 9.15 0.00 7.6 15 6.3 3.3 

2-15 4218.5 0.0175 84.98 15.02 0.00 10.6 15 4.3 3 

2-16 4222.6 0.015 87.85 12.15 0.00 15.3 15.6 3 4.3 

2-17 4227.35 0.015 89.06 10.94 0.00 18 15.6 2 2.6 

2-18 4231.8 0.0175 94.28 5.72 0.00 7 14.3 5 4 

2-19 4233.7 0.01 91.72 8.28 0.00 8 14.3 1.6 3 

2-21 4240.6 0.02 93.94 6.06 0.00 6 13.3 1 1.3 

3 4252.5 0.02 88.04 11.54 0.42 6.3 9.6 4.6 5.3 

4 4254.6 0.025 94.31 4.94 0.74 2.3 5 3.3 3 

5 4303.65 0.255 91.11 8.89 0.00 9.6 8.6 5 1.6 

6 4309.6 0.2525 94.18 5.82 0.00 9.6 5.3 4 4.6 

7 4318.67 0.0175 95.36 4.64 0.00 8 4.3 2.6 3.3 

9 4321.7 0.25 94.79 5.21 0.00 19 15 2.6 0.6 

10 4324.9 0.0175 91.44 8.56 0.00 11.3 9.3 4.3 1.6 

11 4327.6 0.02 95.41 4.06 0.53 22.3 12.3 4 2.6 

12 4333.1 0.015 96.45 3.55 0.00 17.3 11.3 4 6 

13 4336.95 0.0125 85.53 14.47 0.00 18.3 17.6 2 2.6 

14 4344.3 0.0125 97.15 2.85 0.00 14 14.3 1.3 6.3 

16 4353 0.0125 92.74 6.65 0.60 29.3 7.3 2.3 5.3 
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Figure 6.2: Cross plot of Porosity vs Quartz cementation. 

Figure 6.2 shows the cross plot showing a relationship between Porosity and Quartz 

Cementation. From this cross plots it should be noted that porosity decreases with increasing 

cementation. And it’s clearly indicated by this cross plot that there is a linear relationship 

between porosity and quartz cementation. If porosity is high, quartz cementation is low and if 

quartz cementation is high porosity is low.  

Thin sections from well 2/1-6 were grouped semi-qualitatively visually in the microscope 

according to the degree of sorting as poor, moderate or well sorted as shown in Appendix B. 

Most of the samples are well sorted. It should be noted that samples with low porosity at log are 

sub-angular to angular and are moderately to well sorted. While high log porosity samples are 

sub-rounded and are mostly moderately sorted indicating that both compositionally and 

texturally they are mature. Though there are a few poorly sorted samples with high log porosity. 
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6.2. IGV 

Inter Granular Volume (IGV) was calculated and is presented in the Figure 6.3. The average IGV 

of the well 2/1-6 is 31.5% and range between 14% to 44%. We get the minimum of IGV in 

sample 4 at depth of 4254.6 m depth. Reason for low IGV in this sample is this that it is 

compacted and has very low matrix content. The highest IGV is 44% at depth of 4353 m. Reason 

for high IGV is large amount of matrix as observed in thin section. Most of the samples have 

IGV above 30%. The reason for high IGV in most of the samples is high matrix content. 

Cross plot of IGV vs Matrix was also created (Figure 6.4). This cross plots clearly shows that we 

have a very nice correlation between IGV and the Matrix. Where we have high matrix we have 

higher percentage of IGV. Similarly, where we have low amount of matrix we have low 

percentage of IGV. 

 

Figure 6.3: Inter Granular Volume from well 2/1-6. IGV is on X-axis and depth is on Y-axis. It 

shows variation in IGV with depth. 
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Figure 6.4: Cross plot of IGV against Matrix. 

6.3. SEM 

Twenty samples, from well 2/1-6 of both well cemented and poorly cemented sandstones, have 

been examined under SEM. Purpose of study of samples under SEM was to identify grain 

coatings, mineral associations and quartz overgrowth. Grain coatings which were recognized 

were micro-quartz, illite, chlorite grain coats. Smectite was not recognized in the samples. All 

minerals identified in study were identified by Energy Dispersive Spectrometer (EDS). A wide 

range of minerals have been identified which include: quartz, feldspar, illite, chlorite, apatite, 

mica, calcite, dolomite, ankerite. Backscatter Image and Cathode Ray Iluminesence were used 

together to identify the quartz overgrowth. 

6.3.1. RESULTS 

Almost all of the samples studied under SEM had some degree of grain coats. Two figures will 

be presented to give an introduction to the petrographic results by SEM. Figure 6.5 gives typical 

examples of micro-quartz and clay coats present in the study area. Figure 6.6 illustrates that how 

grain coats have prevented quartz grains to grow and have preserved the reservoir qualities. 
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Figure 6.5: Showing typical examples of grain coats like micro-quartz (mQz) and illite (Il) present in study area. Quartz overgrowth 

(Qzo) can be seen in a. Quartz cementation over quartz grain can be seen in b. Picture (a) was taken from sample 11 and (b) was taken 

from sample 3. 
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Figure 6.6: Showing preservation of porosity in sandstones by the grain coats. Micro-quartz (mQz) and Illite (Il) are covering whole 

quartz grain in (a). Fibrous pore filling Illite (Il) in(b). Picture (a) was taken from sample 11 and picture (b) was taken from sample 12. 



 

44 
 

6.3.2. GRAIN COATS 

Micro-quartz is the main grain coat observed in almost all of the samples (Figure 6.7). Micro-

quartz grain size in studied samples is usually 0.5 to 2 μm in size (Figure 6.8). Various amounts 

and developments of macrocryastlline quartz overgrowths with the detrital quartz were also 

recorded (Figure 6.7, 6.8). Micro-quartz grain coating is usually extensive covering all the 

surface of grains. But where it is not covering the whole grain, could not stop quartz overgrowth 

and destroying the reservoir qualities. Sponge spicules e.g Rhaxella, were also observed in 

samples 2-15, 2-18, 4, and 5 (Figure 6.9, 6.10).  

Clay coats were also observed in these samples. Illite was the most common clay frequently 

observed clay coat. Chlorite clay coat was rarely found in the samples (Figure 6.12 and 6.13). 

Chlorite clay also shows honeycomb morphology as observed in Figures 6.12 and 6.13. Clay 

coats were mostly found in combination with micro-quartz grain coating (Figure 6.14 and 6.15) 

but also were observed where no micro-quartz was present (Figure 6.16). Though clay grain 

coats were present in the observed samples but micro-quartz was the most common observed 

grain coat which resulted in preservation of good reservoir qualities. 
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Figure 6.7: Showing extensive micro-quartz (mQz) coating over quartz grain with quartz 

overgrowth over it. Picture was taken from Sample 2-17. 

 

Figure 6.8: Showing micro-quartz grain coating (mQz) and size variation of micro-quartz grains. 

Overgrowth (Qz) of euhedral quartz grain within the micro-quartz grain coating probably 

because grain coat didn’t cover all of the grain. Picture taken from sample 2-18. 
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Figure 6.9: Showing sponge spicule (Sp) lying over a quartz grain coated with micro-quartz 

(mQz) grain coating. . Uncoated surface (uQz) of quartz grain is also visible. EDX spectrum 

showing peaks of Silica and Oxygen at sponge spicule. Picture taken from sample 2-15. 

 

 

 

Figure 6.10: Showing sponge spicule (Sp) and micro-quartz (mQz) on one side. Picture is taken 

from sample 5. 
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Figure 6.11: Pore filling Illite (Il) layer over quartz grain with quartz overgrowth (Qz). This 

picture is taken from sample 2-21. 

 

Figure 6.12: Showing chlorite clay (Ch). This picture is taken from sample 3. 
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Figure 6.13: Pore filling Chlorite clay (Ch) showing its characteristic honey comb morphology. 

Micro-quartz (mQz) is also covering another quartz grain. This picture is taken from sample 11. 

 

Figure 6.14: Illite clay (Il) extensively covering the whole grain and micro-quartz (mqz) covering 

part of other grain. Quartz overgrowth (Qz) where no grain coating is present. This picture was 

taken from sample 9. 
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Figure 6.15: Pore filling fibrous Illite clay (Il) and micro-quartz (mQz) covering the whole grain 

extensively. This picture was taken from sample 11. 

 

Figure 6.16: Showing Illite (Il) grain coating over K-feldspar (Fs) grain. No micro-quartz is seen 

around the grain. This picture was taken from sample 2-21. 
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6.3.3. QUARTZ OVERGROWTH 

Quartz grain overgrows where grain coats like micro-quartz and clay coats are absent. Quartz 

overgrows through spiral-growth. In Figure 6.17 it is clearly visible that all of the porosity is lost 

by quartz overgrowth in the pore space. In the middle there is mica with sheet of illite in between 

its flakes. Quartz overgrowth can also be seen using Back Scatter Image and Cathode Ray 

Iluminesence together. In Figure 6.18 note that comparison of two pictures show that quartz 

grain was deposited in a sub angular shape (a-2) while later it was connected with other quartz 

grain by quartz cementation (a-1). Similarly in Figure 6.18 b-1 and b-2, it is clearly visible that 

quartz cementation and overgrowth have reduced the porosity and in turn destroying the 

reservoir quality. 

Overgrowth was also observed in the form of a number of prismatic crystals (Figure 6.19) which 

grow on detrital quartz covered with micro-quartz. As grain coats like micro-quartz covers the 

grain, the overgrowth of detrital quartz grain stops. But as silica saturations rises to higher level, 

micro-quartz grain start to overgrow. This is shown in Figure 6.19. Note that small crystals of 

micro-quartz have overgrown in to a bigger size of quartz crystals. In this figure also note that 

quartz over growth has occurred where micro-quartz has not covered the grain. 
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Figure 6.17: Typical spiral quartz overgrowth pattern in absence of grain coats. Il= Mica, Il= 

Illite clay. Spectrum 1= Illite, Spectrum 2= Mica, Spectrum 3= mica. (picture taken from sample 

3).
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Figure 6.18: Showing quartz cementation over a quartz grains destroying reservoir quality. Grain crushing in a-1) is also visible. a-1) 

and b-1) are backscatter images. (a-2) and (b-2) are Cathode Ray Illuminesence images. White arrows on (b-1) marks the stylolites 

(picture was taken from samples 2-16 and sample 2-19). 
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Figure 6.19: Showing overgrowth of micro-quartz grains due to high saturation of silica. mQz= Micro-quartz, Qz= Quartz overgrowth 

(picture was taken from sample 2-12) 
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7. DISCUSSION 
_____________________________________________________________________________________________________________________ 
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7.1. INTRODUCTION 

From the last two chapters it has been shown that grain coatings like micro-quartz and clay coats 

are present in the area and are of primary importance in preserving porosities at depths of greater 

than 4 km. From the results it has also been suspected that grain size and shape has also played 

an important role in preserving porosities.  

As Ula Formation is divided in zones based on high and low porosities. Five zones were 

recognized including Ula A, B, C, D and E. Only samples from Ula A, B, C and D were studied. 

Ula B and upper part of Ula D are the zone with high porosity while other zones are of very low 

porosity. As micro-quartz grain coating is present in all samples, so the reasons should be 

discussed that why porosities in Ula A, C and lower part of D were not preserve. 

7.2. EFFECT OF MICRO-QUARTZ GRAIN COATS ON RESERVOIR QUALITY 

SEM results (Chapter 5) show that grain coating micro-quartz is present in all of the twenty 

samples in study. North Sea is well known for presence of micro-quartz grain coating in the 

Jurassic sandstone reservoirs. As discussed in chapter 3, micro-quartz grain coats are the major 

reason of preservation of high porosities at depth greater than 4 km in the upper Jurassic 

sandstones of the North Sea. But from the results (Chapter 5) it is found that Ula Formation has 

zones with high and low porosities despite the fact that all of the samples have micro-quartz 

grain coating in them. Ula B and upper part of Ula D are the zones with high porosity while Ula 

A and Ula C are low porosity zones (Figure 5.1, Appendix C). From all these zones micro-quartz 

coating was recorded. Reason for high porosity in Ula B is obvious that micro-quartz preserved 

the porosity. But here question arises that what caused the Ula A and C to have low porosities? 

Reason for low porosity could be related to the grain size and grain shape. Samples from Ula B 

are mainly of medium grain size and sub-rounded while samples from Ula A and C are fine 

grained and angular sandstones (Appendix B). Fawad et al. (2011) reported that when angular 

grains are subjected to medium and high stress conditions they show increased porosity 

reduction. As in angular sand grains contact forces are more concentrated because there are very 

small contact areas as compared to rounded grains. This caused the grain crushing and increase 

in porosity loss in Ula A and Ula C. Reason for preservation of porosity besides micro-quartz 
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grain coating in Ula B can be the sub-rounded shape of sand grains. As the area of contacts in 

sub-rounded grains is higher and it causes the sands to sustain more compaction at greater depth 

(Chuhan et al. 2003).  

The presence of micro-quartz grain coatings indicates that an amorphous silica precursor was 

present earlier in the sedimentary/diagenetic history of the sandstone (Maliva & Siever, 1988). 

These silica precursors are most likely sponge spicules as shown in Figure 6.9, 6.10. Micro-

quartz coat is caused by transformation of siliceous sponge spicules known as Rhaxella Perforata 

(Ramm & Forsberg, 1991, Aase et al, 1996, Hendry and Trewin, 1995). Thus, micro-quartz 

occurrence totally depends on the sedimentary environment and sediment age.  

Few sponge spicules or remnants of it were observed in the studied samples. This is in 

accordance with Vagle et al. (1994) who observed that sponge spicules were subjected to rapid 

decomposition. So, before deposition spicules were reworked because of decomposition. But 

Rhaxella spicules and micro-quartz together are reported from a wide variety of depositional 

environments which indicates that spicules were transported in those settings by sedimentary 

reworking (wave processes, tidal processes, gravity transport). So, it is difficult to interpret the 

specific settings in which Rhaxella Perforata is to be found but it seems that there presence is 

always linked shallow marine environment (Table 3.1). 

7.3. EFFECT OF CLAY COATS ON RESERVOIR QUALITY  

Results show that the most common and frequent clay mineral (grain coat) found in twenty 

samples is Illite. Illite was also observed with chlorite clay grain coating. According to Bjørlykke 

and Aagaard (1992) the most common clay mineral observed in the study area is Illite. Two 

diagenetic processes can lead in the formation of illite in the reservoir, either by illitization of 

kaolinite or from a smectite precursor (Bjørlykke and Aagaard, 1992). Morphology of illite 

supports the second diagenetic process as the main cause of Illite grain coating in the study area. 

Smectite was not observed in the samples as smectite is only stable till 70°C. And all twenty 

samples are at depth greater than 4 km with temperatures of about 140 to 150°C. After 70°C, 

smectite converts into illite or chlorite. Chlorite clay coatings were minor but wherever they are 
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present they show honeycomb morphology (Figure 6.12, 6.13) which indicates that the coatings 

have a possible smectitic precursor.  

Micro-quartz is the most abundant and usually present grain coat in the studied samples and that 

is the reason that affect of illite coats on porosity has been hard to be estimated. These clay coats 

are usually thin and therefore may not compete with micro-quartz in preserving reservoir 

porosity even if clay coats were abundant. That is the reason that in study area, illite and chlorite 

are considered as the secondary contributor in the preservation of porosity by inhibiting quartz 

cementation. Moreover, illite coats could be of more importance locally. 

7.4. QUARTZ CEMENTATION 

Quartz cement in samples of well 2/6-1 ranges between 1 to 6.3% (Figure 6.2, Appendix C). 

Majority of the samples have less than 4% quartz cementation. Samples which have ≥ 4% quartz 

cementation are generally fine grained (Appendix C) which implies that large surface area 

promotes quartz cementation. Scanning Electron Images (Figure 6.17) show that quartz 

cementation grown in to the pore space and destroys the porosity until or unless grain is covered 

by some grain coating like micro-quartz or clay coats. Quartz overgrowth was recognized easily 

by comparing backscatter images and CL images. CL images easily differentiate between detrital 

quartz grain and quartz overgrowth caused by cementation around it (Figure 6.18) (e.g Götze et 

al. (2001)). Quartz overgrows through spiral growth. But this type of overgrowth was not 

observed in the studied samples. Though, normal quartz overgrowth was observed as shown in 

Figure 6.17. This type of quartz overgrowth is caused by low (<5%) silica saturations (Jahren 

and Ramm, 2000). Source of quartz cement in Ula formation can be a pressure-solution along 

stylolites. Contacts between illite clay or mica and quartz grain are the preferred sites of 

dissolution. These contacts are called stylolites (Fisher et al., 2000).  

7.5. RESERVOIR QUALITY: A REGIONAL SCALE PERSPECTIVE 

Three different wells from Ula, Gyda, and Tambar fields were correlated on the basis of porosity 

variation trends in the area (Figure 5.1). Well correlation was done by following studies done by 

Ramm et al (1997) (Appendix A). High porosity zones recognized in the study are Ula B and 

upper part of Ula D. While low porosity zones are Ula A, Ula C and Ula E. Figure 5.1 shows that 
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the most important and high porosity sandstone Ula B is easily correlateable in Gyda and 

Tambar Fields but it is not present in Ula Field. In well 7/12-2 (Ula Field) we have only one high 

porous zone which is the upper part of Ula D. Ula A and Ula E are low porosity zones. Ula C is 

also absent in well 7/12-2. From the correlation (Figure 5.1), we can say that porosity 

preservation mechanisms in the Tambar and Ula Fields are the same as in Gyda Field (well 2/1-

6) which are presence of micro-quartz and clay coatings. And the reason for low porosity zones 

in Tambar and Ula Fields is possibly the same as in Gyda Field which is that angular grains loose 

porosity when they are subjected to stress as compared to rounded grain sandstones. To confirm 

these findings author would suggest looking in to the samples from Tambar and Ula Fields. 

7.6. IGV 

IGV (Inter granular volume) is the sum of intergranular porosity, cement, and the matrix (Paxton 

et al. 2002). Average IGV in the study is 31.5% and ranges from 14% to 44% (Figure 6.4). 

Reason for high IGV in the study is high matrix content. Several factors can affect the IGV of 

the sandstone which will be discussed separately here.  

7.6.1. CARBONATE CEMENT 

In most of the samples studied, carbonate cement was observed (Table 6.1, Appendix E). This 

carbonate cement (mostly dolomite) occurs by filling the pore space which might have cemented 

the sandstone at early stages of mechanical compaction later resulting in high IGV.  

7.6.2. MECHANICAL COMPACTION 

Grains of sandstones have been deformed in different styles and were observed in thin section 

study (Figure 6.18 a-1). This deformation involves the fracturing of grains, grain crushing, and 

compaction of grains. Grain crushing and deformed grains were observed in the study of thin 

sections under optical microscope. Grain deformation is done by sliding and reorientation of the 

grains. This observation is in agreement with Bjørlykke (1998, 1999, 2003) who proposed that 

the mechanical compaction involves rearrangement of grains, ductile bending of grains and 

breakage of grains. Though ductile deformation was not observed in the study. All of these 

processes are most likely to reduce the porosity and in turn IGV of the sandstones.  
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Figure 6.4 show that we have a very nice correlation between IGV and matrix. With increasing 

matrix, IGV also increases. We have high percentage of IGV in samples from Ula A and Ula C 

as these zones have high amount of matrix content (Appendix B). Here matrix is defined as 

depositional clay and silt size particles which fill the space between framework grains. As 

sandstones are subjected to mechanical compaction grain frame is locked. Porosity starts to 

decrease because of grain crushing, reorientation and deformation. Sandstones which have 

clay/matrix in between them show little subsequent grain reorientation. This is probably due to 

soft grain contacts due to matrix in between grains. Chuhan et al (2002, 2003) proved that coarse 

grained sandstones are compacted more as compared to fine grained sandstones. This study is in 

analogy with Chuhan et al (2002, 2003) as Ula A and C which are fine grained sandstones 

(Appendix B) have high IGV as compared to Ula B which is coarse grained sandstone.  

All the samples of the sandstones of Ula Formation from well 2/1-6 are medium to fine grained 

and are both poorly and well sorted. Seven samples from Ula B, which is the most important 

high porosity zone of the well 2/1-6, are medium to fine grained and are mostly moderately 

sorted. Samples from Ula A and Ula C are well sorted and fine grained (Appendix B). Though 

coarse grained samples were not observed so medium and fine grained sandstones were 

compared. Experimental compaction done by Chuhan et al (2002, 2003) proved that well sorted 

coarse grain sandstones compact more and loose porosity as compared to the fine grained and 

poorly sorted  sandstones. This is the reason that samples from Ula B (medium grain size) show 

less porosity on thin sections. While samples from Ula A and C (fine grain size) show high 

porosity (Appendix C). So this study is in consistent with findings of Chuhan et al (2002, 2003). 

 7.6.3. GRAIN SIZE 

Average grain size in the studied samples ranges from medium to fine grain. Samples from Ula 

B are medium grain size and samples from Ula A and C are fine grained. As no coarse grain 

sandstone was observed in study, so medium and fine grained samples were compared. Average 

IGV of medium grained samples is 26% while fine grained samples have 34% IGV (Appendix 

B) which implies that medium grained sandstones have less IGV as compared to fine grained 

sandstones. Coarse/medium grained sandstones are more crushed and compacted as compared to 
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fine grained sandstones which imply that coarse grained sandstones would have less IGV as 

compared to fine grained sandstones.  

7.6.4. GRAIN SORTING 

Samples from Ula A and C are mostly well sorted. Samples from Ula B are poorly and 

moderately sorted. Studies like done by Rogers and Head (1961), Beard and Weyl (1973) have 

proved that well sorted sandstones have higher IGV as compared to moderately and poorly 

sorted. These findings are in agreement with the study (Appendix B). Samples from Ula A and C 

have high IGV while samples from Ula B have low IGV.  

7.6.5. GRAIN SHAPE 

Most common shape of grain in the study was the angular grains (11 samples). Sub-rounded 

grains were present as second majority (7 samples) but there were only two samples of with sub-

angular grains. Average IGV of angular grains calculated through point counting is 34%. 

Average IGV of sub-rounded grins is 28%. While sub-angular samples have average IGV of 

30%. This clearly indicates that samples with angular grains have high IGV while sub-rounded 

grains have less IGV as compared to sub-angular and angular grains.     
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8. CONCLUSION 
_____________________________________________________________________________________________________________________ 
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CONCLUSION 

 Micro-quartz grain coating is very common in the study area. Clay grain coatings are also 

present and Illite is the most common clay grain coating as compared to chlorite grain 

coating. Micro-quartz grain coating seems to be the main cause of preserving porosity at 

depths of > 4000m in the Ula B zone.  

 Micro-quartz is present in all samples in both high and low porosity zones. It is most 

likely that it is present in all zones because of sedimentary reworking of the sponge 

spicule Rhaxella Perforata. 

 Grain shape has pronounced effect on porosity of the sandstones in the area. Angular 

grains loose porosity with mechanical compaction as they have small contact areas and 

this promotes deformation resulting in porosity loss. Perhaps this is the reason that Ula A 

and Ula C have low porosities. 

 Inter Granular Volume is very high in the study area (up to 44%). Reason for high IGV in 

most of the samples is high amount of matrix. IGV depends on many factors including 

mechanical compaction, grain sorting, grain size, and grain shape. 

 IGV is higher in fine grained sandstones as compared to medium grained sandstones. 
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APPENDIX A: WELL CORRELATION FROM RAMM ET AL, 

1997 
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APPENDIX B: IGV AND GRAIN TEXTURAL DATA 

Sample 
Average Grain 

Size mm 

IGV 

% 
Sorting Grain size 

Grain 

Shape 

2-12 0.25 37.2 Well sorted 
Medium 

grained 
Angular 

2-14 0.0175 32.2 Moderately sorted Fine grained Angular 

2-15 0.0175 33.9 Well sorted Fine grained Sub-angular 

2-16 0.015 39.2 Well sorted Fine grained Angular  

2-17 0.015 38.2 Well sorted Fine grained Angular 

2-18 0.0175 30.3 Well sorted Fine grained Angular 

2-19 0.01 26.9 Moderately sorted Fine grained Angular  

2-21 0.02 21.6 Poorly sorted Fine grained Angular  

3 0.02 25.8 Moderately sorted Fine grained Sub-angular  

4 0.25 13.6 Moderately sorted 
Medium 

grained 
Sub-rounded 

5 0.255 25.8 Moderately sorted 
Fine to medium 

grained 
Sub-rounded 

6 0.2525 23.5 Well sorted 
Fine to medium 

grained 
Sub-rounded 

7 0.0175 18.2 Well sorted 
Medium 

grained 
Sub-rounded 

9 0.25 37.2 Poorly sorted 
Medium 

grained 
Sub-rounded 

10 0.0175 26.5 Poorly sorted Fine grained Angular 

11 0.02 41.2 Well sorted Fine grained Sub-rounded 

12 0.015 38.6 Well sorted Fine grained Angular 

13 0.0125 40.5 Well sorted Fine grained Angular 

14 0.0125 36.9 Well sorted Fine grained Sub-rounded 

16 0.0125 44.2 Well sorted Fine grained Angular  



 

71 
 

APPENDIX C: POINT COUNTING DATA 
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APPENDIX D: CROSS PLOTS 

D.1. P-wave vs Density Porosity color coded with Gamma Ray 
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D.2. P-wave vs Density Porosity color coded with Vertical Depth  

 

 



 

74 
 

 

D.3. NEUTRON POROSITY VS DENSITY POROSITY COLOR CODED WITH VERTICAL DEPTH 
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D.4. NEUTRON POROSITY VS DENSITY POROSITY COLOR CODED WITH GAMMA RAY
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D.5. NEUTRON POROSITY VS DENSITY COLOR CODED WITH VERTICAL DEPTH
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D.6. NEUTRON POROSITY VS DENSITY COLOR CODED WITH GAMMA RAY 
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APPENDIX E: CARBONATE CEMENT IN SAMPLES 
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