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I 

 

Abstract 

The Sælabonn Formation belongs to the Bærum Group, and is recognized in the western part 

of the Oslo Region, from Mjøsa in the north to Skien in the south. The Sælabonn Formation is 

the lowermost unit in the Silurian succession in the Western Districts of the Oslo Region 

bound to an erosional surface, the Ordovician-Silurian boundary. In the Central Oslo Region 

the Solvik Formation is the eastern equivalent, displaying deeper marine conditions. 

Overlying the Sælabonn and Solvik formations is the carbonate dominated Rytteråker 

Formation. The Sælabonn Formation represents a shallow shelf environment dominated by 

storm processes. The relationship between the epicontinental sea and the advancement of the 

Caledonian orogeny, during the time of deposition, has previously been vaguely defined.   

Outcrops in the Ringerike District and the Modum District have been logged during the 

summer and autumn of 2011. Samples of both siliciclastic and carbonate material have been 

collected, and various laboratory and microscope techniques, including point counting 

analyses have been performed.    

The sedimentary logs display three units of the Sælabonn Formation. The laterally equivalent 

lower units, Store Svartøya Member and Sylling Member, are dominated by mudstone 

occasionally interbedded by sandstone and biosparitic limestone beds. The middle unit 

(Djupvarp Member) is the sandiest, and represents isolated sand shoals in the Ringerike 

District, and tempestites in the Modum District. The upper unit (Limovnstangen Member) has 

a decreasing content of siliciclastic material with mudstones interbedded with tempestites 

containing sand and bioclastic material, occasionally occurring in couplets. The sedimentary 

structures and lithology indicate a sedimentary environment dominated by storm processes 

where siliciclastic material is brought out into the basin and deposited together with 

winnowed bioclastic material. Results from tidal processes have not been recorded. The 

members belonging to the Sælabonn Formation are all positioned in the offshore-transitional 

environment on the shelf. Palaeocurrent measurements from the Djupvarp and 

Limovnstangen members suggest a stable palaeoshoreline, with a SW to NE strike.  

Grain size of the tempestites range from silt to very fine sand. Mineralogical composition 

suggests a quartz rich source, “Telemark land” or possibly Valdres Thrust Sheet. The 

development of the Sælabonn Formation represents an overall transgressive setting, where the 

Djupvarp Member represents a progradation. In the developing Caledonian foreland basin, the 

Sælabonn Formation is suggested to have been formed in the back-bulge depozone. 
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 Introduction 1
The Sælabonn Formation is a lithostratigraphic unit dominated by siliciclastic material 

composed of mudstone and fine sand. It is the lowermost formation in the Silurian succession 

in the western districts of the Oslo Region (Fig. 2.1) belonging to the Bærum Group. The 

purpose of this study is to get a more complete understanding of the transition from an 

epicontinental sea to a foreland basin and the sedimentological development of the Sælabonn 

Formation. Questions surrounding this formation are the position of deposition in relation to 

the advancing Caledonian orogeny in the north-west, the epicontinental shelf to the south-east, 

and the source of the siliciclastic input.    

The Sælabonn Formation is the western equivalent to the Solvik Formation, which has its 

distribution in the Oslo and Asker districts. The Solvik Formation displays a more distal 

position than the Sælabonn Formation. The stable epicontinental shelf was dominated by 

deposits of mudstone during the Cambrian and Ordovician, with increased carbonate content 

during the Ordovician. Through the Silurian several rapid shifts in deposition occurred. Fine 

siliciclastic sediments were introduced which then shifted to a dominance of carbonate 

sediments and then back again to siliciclastic sediments. The Silurian succession ends with 

the fluvial sediments of the Ringerike Group, and is a clear indicator of a palaeoenvironment 

situated in the foreland basin. 

There has been done some previous work on other clastic input in the Oslo Region such as the 

Bruflat Formation (Worsley et al., 2011), the Vik Formation (Baarli, 1990a) and the 

Ringerike Group (e.g. Halvorsen, 2003, Davies et al., 2005a), in which the palaeogeographic 

position of the basin sands and a regional development have been proposed in relation to the 

Caledonian foreland basin. 

Data for this work has been collected from the Ringerike District and the Modum District, and 

has been processed at the Natural History Museum (Geology) in Oslo.        
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 Previous work at Ringerike  2

 The Oslo Region – an historical introduction 2.1

Theodor Kjerulf (1825-1888) is, for most geologists, known as the founder of modern 

geology in Norway, as he was the first to publish relevant work about the Oslo Region 

(Larsen and Olaussen, 2005). In “Das Christiania Silurbecken” he wrote about the Lower 

Palaeozoic sediments and also the igneous Permian rocks. His work on the stratigraphy in the 

Oslo Region eventually enabled him to make a system consisting of ten stages (“Etagen”). 

Kjerulf was a teacher to both Waldemar C. Brøgger (1851-1940) and Johan Kiær (1869-1931), 

who became important contributors to the understanding of the Oslo Region after Kjerulf 

(Larsen and Olaussen, 2005). Brøgger had three main scientific areas he contributed to during 

his work: 1) Paleontology, stratigraphy and tectonics of the “Cambro-Silurian” sediments, 2) 

Mineralogy of the rare minerals of the Oslo Igneous province, and 3) Petrography and 

geology of the igneous rocks of the Oslo 

Region (Larsen and Olaussen, 2005, Larsen 

et al., 2008). Kiær devoted most of his work 

to the uppermost Ordovician and the Silurian, 

where one of his key areas was the Ringerike 

District (Larsen and Olaussen, 2005, Larsen 

et al., 2008). Kiær (1908) did a thorough 

description of the stages 6 to 9 in the Oslo 

Region from 1908 to 1922. He did a further 

subdivision of the stages based on both litho- 

and biostratigraphy (e.g. 6bβ). Because of 

his thorough work, the Silurian succession 

was left alone until the 1970s when Worsley 

et al. (1982) started a major revision of 

Kiær’s earlier work. 

As more data were collected and analysed it 

became possible to make a reasonable 

correlation between units in the Oslo Region. 

Figure 2.1: Districts in the Oslo Region, where the Silurian 

outcrops are marked in black. Figure from Worsley et al. 

(1983). 
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Worsley et al. (1983) stated that the numerical system by Kiær (1908) had to be modernised, 

since it is diachronous in the Oslo Region. They suggested further to use lithostratigraphical 

units with designated stratotypes for each unit. The new system was presented for the Silurian 

succession in the paper by Worsley et al. (1983). It is the most widely used system in the Oslo 

Region today. Worsley et al. (1983) also divided the Oslo Region into districts (Fig. 2.1), 

based on the division Størmer et al. (1953) published regarding the Ordovician stratigraphy. 

Owen et al. (1990) presented an equal division for the Ordovician system.   

 The Oslo region 2.2

In the 1980’s and in the 1990’s articles were published regarding basin evolution, fauna 

distribution and depositional environment. Möller (1987, 1989) studied the Rytteråker 

Formation. Thomsen (1982), Thomsen and Baarli (1982) and Thomsen et al. (2006) did work 

on the Sælabonn Formation. Baarli (1988) also published a paper regarding the Sælabonn 

Formation, but she also focused on the eastern equivalent, the Solvik Formation (Baarli, 

1985). Postulation regarding the palaeogeographic setting was also presented by Baarli 

(1990b) and Baarli (1990a). Brenchley and Newall presented a major work regarding the 

understanding of the Langøyene Formation and its development (e.g. Brenchley and Newall, 

1975, Brenchley et al., 1979, Brenchley and Newall, 1980). Braithwaite et al. (1995) 

presented a work that dealt with the Hadeland District, where they focused on the Ordovician-

Silurian boundary and the underlying and overlying units. Skjeseth (1963) did work in the 

Toten, Hamar and Ringsaker districts, regarding the tectonic and stratigraphy of the area. A 

guide book, published by Whitaker (1977), addresses important geological localities around 

the Steinsfjord lake, in the Ringerike District (Fig. 2.1).       

Whitaker (1973) and Broadhurst (1968) did work on sedimentary structures in the Silurian 

succession of the Oslo Region (e.g. gutter casts by Whitaker and large scale ripples by 

Broadhurst).  

In the last decade three University theses have been devoted to the Ringerike District. 

Halvorsen (2003) wrote about the Ringerike Group, and the dynamics of the sediment infill of 

the foreland basin. Hjelseth (2010) and Kleven (2010) studied Caledonian structures in 

Ringerike area, respectively.    
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 Dynamics in a foreland basin 3
In the paper by DeCelles and Giles (1996, p. 107) three criteria are emphasized in how a 

foreland basin should be defined: 

“(I) Foreland basin systems are elongated regions of potential sediment 

accommodation that form on continental crust between contractional orogenic belts 

and cratons in response to geodynamic processes related to orogenic belt and its 

associated subduction system. (II) Foreland basin systems may be divided into four 

depozones, which we refer to as wedge-top, foredeep, forebulge and back-bulge 

depozones. Which of these depozones a sediment particle occupies depends on its 

location at the time of deposition. Boundaries between depozones may shift laterally 

through time. In some foreland basin systems, the forebulge and back-bulge depozones 

may be poorly developed or absent. (III) The longitudinal dimension of the foreland 

basin system is roughly equal to the length of the adjacent fold-thrust belt.” 

 Foreland basin evolution 3.1

Dickinson (1974) was the first to 

distinguish between two different 

types of foreland basins, retroarc- 

and peripheral basins. A retroarc 

basin is formed in proximity to the 

creation of a magmatic arc along a 

continental margin, caused by 

subduction of oceanic lithosphere 

under continental lithosphere (Fig. 

3.1). Sediments are accumulated 

behind the magmatic arc, where the 

source area could be the magmatic 

arc but are most commonly 

sediments from the fold-and-thrust 

belt. A peripheral foreland basin is 

formed when two continental plates 

collide (Fig. 3.1). The mountain belt causes tectonic loading on the subducting continental 

Figure 3.1: a) Peripheral foreland basin. b) Retroarc foreland basin. 

Figure from Allen and Allen (2005). 
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plate adjacent to the advancing thrust front (Dickinson, 1974). The crustal thickening causes 

flexuring of the cratonic crust with the result that the peripheral depression stretches further 

on to the craton than the advancing thrusts (Kearey et al., 2009).  The fold-and-thrust belt is 

the main source of siliciclastic input to the foreland basin. If the depression is large and deep 

enough, deep-marine deposits (e.g. turbidites) termed flysch can be formed in a stage when 

the basin is underfilled. Cratonward of the peripheral foreland basin an uplifted flexural 

peripheral bulge can be formed, separating the deep foreland basin sensu stricto from a 

shallow marine or continental back-bulge basin further onto the craton (Fig. 3.2). Deposits of 

the foreland bulge are usually shallow-marine siliciclastic and/or carbonate facies. In turn, 

these sediments can be succeeded by coarser grained, usually fluvial or alluvial sandstones 

and conglomerates derived from the erosion and break-down of the thrust wedge. This occurs 

in the overfilled stage of the foreland basin system. Such late to post-orogenic deposits have 

been termed molasse (Dickinson, 1974, DeCelles and Giles, 1996). 

According to Jordan and Watts (2005) the geometry of a foreland basin is controlled by the 

type of lithosphere. A wide basin will develop if the lithosphere is old, cool and strong. If the 

lithosphere is young, hot and weak a deep narrow basin will develop.     

Since the Caledonian foreland basin is a peripheral foreland basin, only this subject will be 

treated here.           

 Sedimentation control 3.2

 Depozones in a peripheral foreland basin 3.2.1

In Figure 3.2 a schematic view of the foreland basin system is presented, where it is divided 

into four different regions of deposition; wedge-top, foredeep, forebulge and back-bulge 

(DeCelles and Giles, 1996). 

The wedge-top depozone is a part of the orogenic wedge (Fig. 3.2), and is the place where 

sediments of the frontal part of the orogenic belt are deposited. This area extends parallel to 

the orogeny, for tens of kilometres (DeCelles and Giles, 1996). In this area structures like 

blind thrusts tipping out in fault propagation anticlines develop (Yeats and Lillie, 1991), and 

passive roof duplexes in the subsurface (Skuce et al., 1992). Closer to the hinterland, 

development of trailing fault-bend and fault-propagation folds develop above major structural 

ramps and duplexes. This structural development of the fold-and-thrust belt can also hinder 

sediments entering the foredeep by acting as a barrier and directing sediments other places 
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(DeCelles and Giles, 1996). A wedge-top depozone can be recognized by local and regional 

unconformities, immaturity of sediments, and by the strong structural influence (DeCelles and 

Giles, 1996). In areas where there is subaerial exposer fluvial and alluvial deposits 

accumulates, creating the area with the coarsest sediments in the foreland basin. Several 

authors have according to DeCelles and Giles (1996) recognized a dominance of mass-flows 

in subaqueous settings; this includes fine grained shelf sediments.  

The foredeep depozone (Fig. 3.2) is the area between the orogenic wedge and the forebulge 

depozone. It can extend 100-300 km across the basin and can accommodate sediment 

successions 2-8 km thick (DeCelles and Giles, 1996). DeCelles and Giles (1996) stated that 

subaerial foredeep depozones can receive sediments from alluvial and fluvial systems both 

longitudinally and transversely. In subaqueous areas, deltaic, shallow shelf and turbidity fan 

environments dominate. The main source of the sediments in the foredeep is the fold-and-

thrust belt, but sediments from the forebulge and craton also contribute; however, to a lesser 

degree (DeCelles and Hertel, 1989). Since the main source in the depozone is the fold-and-

thrust belt, the rate of accumulation is highest closest to the orogenic wedge (Sinclair et al., 

1991). The sedimentary environments in the forebulge show a transition from early deep-

marine sedimentation (“flysch”) to shallow-marine and non-marine sedimentation (“molasse”) 

(Sinclair and Allen, 1992).                 

The forebulge depozone (Fig. 3.2) is created by a flexural uplift of the craton along the 

orogenic belt, caused by the load of the converging plate on the subducting plate (DeCelles 

and Giles, 1996). The size of the forebulge has the potential to be up to 60-470 km wide and a 

few tens to a few hundred meters high (DeCelles and Giles, 1996). The movement of the 

forebulge may also be stationary over longer periods of time before it “jumps” toward or 

away from the orogenic belt. The foreland bulge is an elevated feature, and tends to be 

characterized by non-deposition or erosion. This can be used to track the movement over time 

in the foreland basin (Jacobi, 1981). According to Crampton and Allen (1995) the 

unconformity produces features as the forebulge moves. These are progressive onlap in a 

cratonward direction by deposition from the foredeep on to the unconformity, an increased 

stratigraphic gap in the foredeep towards the craton, and an angular difference (<<1°) between 

the pre-existing and newly deposited layers.  The forebulge may also be buried, due to 

sediment load prograding from the thrust-and-fold belt (Patton and O'Connor, 1988). In cases 

where the foreland basin is submarine and the foredeep is not filled up to the crest of the 

forebulge development of forebulge carbonate platforms may occur. According to Giles and 
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Dickinson (1995) carbonate platforms can grow and extend over large regions from the 

foredeep to the craton. If the foreland basin is subaerially exposed, and the foredeep is not 

filled up to the crest of the forebulge, a zone of erosion will develop on the forebulge with a 

drainage system towards and away from the orogenic belt (Crampton and Allen, 1995).  

The back-bulge depozone (Fig. 3.2) is the area furthest away from the orogenic wedge. The 

sources for this area are, according to DeCelles and Giles (1996), sediments from the orogenic 

wedge as well as sediments from the craton and development of carbonate platforms in deep 

marine systems. Subsidence has been recorded in the back-bulge area towards the craton, but 

Figure 3.2: A.) A schematic map view of a “typical” foreland basin, bounded longitudinally by a pair of marginal ocean 

basin. The scale is not specific but would be in the order of 102-103 km. Vertical line at right indicates the orientation of 

a cross-section what would resemble what is shown in part B. B.) The generally accepted notion of foreland-basin 

geometry in transverse cross-section. Note the unrealistic geometry of the boundary between the basin and the thrust belt. 

Vertical exaggeration is of the order of 10 times. C.) Schematic cross-section depicting a revised concept of a foreland 

basin system, with the wedge-top, foredeep, forebulge and back-bulge depozones shown at approximately true scale. D: 

Duplex structures situated in the hinterland. TF: Topographic front of the thrust belt. TZ: Frontal triangle zone. Figure 

and text from DeCelles and Giles (1996). 
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it is too low to create large accommodation spaces (DeCelles and Giles, 1996). Therefore the 

stratigraphic units at this depozone are thin, but can extend several hundred kilometres 

perpendicular to the orogenic belt. According to Holt and Stern (1994), the depositional 

system is less than 200m deep, which represent a shallow marine or non-marine environment. 

However, the large distance from the orogenic belt causes only fine grained sediments to be 

deposited in the back-bulge depozone. 

 Accommodation space 3.2.2

The main control of accommodation space in a peripheral foreland basin is the subsidence 

caused by the subduction load and topographic load. According to Royden (1993) the largest 

subsidence takes place when ocean crust is subducted under a continental plate and causes a 

subduction drag. When continents collide the degree of subduction is less because of partial 

subduction of transitional or continental lithosphere. Topographic load becomes the main 

contributor to subsidence in the basin (Royden, 1993).  

Other factors controlling the accommodation space are the variation in sea-level or base-level 

and structural damming.  

Each of the depozones has different controls influencing the accommodation space. In the 

wedge-top depozone there is a competition between the subsidence and uplift of the orogenic 

wedge which is caused by crustal thickening and isostatic rebound (DeCelles and Giles, 1996). 

Structural damming by uplift of anticlinal ridges can cause local accommodation of sediments. 

In the front of the depozone eustatic changes in sea-level can cause destruction or creation of 

accommodation spaces (DeCelles and Giles, 1996). In periods of shortening a 

syndeposistional, thrust-related deformation and development of unconformities can be 

observed in the wedge-top depozone (DeCelles and Giles, 1996).  During periods of non-

shortening the wedge-top depozone has a continued development of unconformities followed 

by regional onlap of sediments that is not syndepositionally deformed (DeCelles, 1994). In 

the foredeep depozone the relative sea-level can cause an increase or decrease in the 

accommodation space (DeCelles and Giles, 1996). Other factors controlling the 

accommodation space are the regional isostatic uplift caused by erosion of the orogenic load, 

advances of orogenic thrust wedge, and retrograde migration of the forebulge (Sinclair et al., 

1991, Bertog, 2010). The forebulge depozone can be an area of subaerial erosion (Crampton 

and Allen, 1995) or buried by synorogenic sediments (DeCelles and Giles, 1996). 

Accumulation of sediments can either happen by drainage systems prograding out to the 
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forebulge or by deposition during high sea-level. In a back-bulge depozone it is thought that 

the main controls of the accommodation space are the elevation of the forebulge, relative sea-

level, and availability of sediments (DeCelles and Giles, 1996).     

Underfilled to overfilled basin 
An underfilled situation of the basin occurs during rapid advances in the thrust belt, where the 

creation of accommodation space is larger than the infilling of sediments (Allen and Allen, 

2005). In an overfilled situation the advances of the thrust belt have a decreased rate, and the 

infilling of sediments manage to keep up with the creation of accommodation space (Allen 

and Allen, 2005). The degree of filling in the basin can be interpreted by the long-term trends 

in facies found there. Deep-marine facies are associated with underfilling, shallow marine-

distal continental facies are associated with a filled basin and fully continental facies are 

associated with an overfilled basin (Sinclair and Allen, 1992). According to Sinclair (1997) 

modelling done by different authors  suggested three factors encouraging a transition from an 

underfilled to overfilled basin: 1) slowing thrust wedge advance 2) increasing exhumation and 

sediment production from the thrust wedge 3) increasing flexural rigidity of the underlying 

cratonic plate. 
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 Epicontinental shelf 3.3

On an epicontinental shelf depositional 

features can generally be distinguished 

based on a prograding or a transgressive 

setting and an increasing tide or wave 

power influence on the shelf (Fig. 3.3) 

(Boyd et al., 1992). Progradation takes 

place when the rate of sediment supply 

exceeds the rate of relative sea-level rise, or 

when sea-level falls and accumulation of 

sediments occur. During such an event; 

development of tidal flat, delta or strand 

plains occur (Fig. 3.3) (Boyd et al., 1992). 

During a transgression the opposite happen and sea-level exceeds the sediment supply. As the 

sea level rises, formation of tidal flats, estuaries, lagoons or strand plains takes place (Fig. 3.3) 

(Boyd et al., 1992).  

The shelf can be divided into zones based on types of energy that affect the different depths 

(Fig. 3.4). The foreshore is mostly subjected to tidal processes where the backshore is the 

supratidal area, affected by high tides and storms (Reading and Collinson, 1996). The 

shoreface is subjected to the daily fairweather, where the oscillatory and shoaling wave 

processes operate in the lower part. The breaker zone of the waves operates in the upper 

Figure 3.3: Coastal depositional features, in relationship to 

prograding or transgressive coast, and tide or wave dominated 

coast. Figure from Boyd et al. (1992).  

Figure 3.4: Generalized shoreline profile showing subenvironments. Figure and text from Reading and Collinson (1996). 
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shoreface. The littoral energy fence is situated in the shoreface area, trapping sediments from 

reaching further out on the shelf during normal conditions (Reading and Collinson, 1996). 

The Offshore–transition zone is characterized by both high and low energy conditions and is 

situated between the mean fairweather wave base and mean storm wave base (Fig. 3.4). The 

zone is characterized by fine sediments settling from suspension during fairweather. During 

storms it becomes an extension of the shoreface as oscillatory and shoaling waves also affect 

the sea-bottom in this deeper area (Reading and Collinson, 1996). During storms different 

processes affect the deposition at different stages. The main processes are geostrophic flow, 

wave oscillation and density-induced flow (Myrow and Southard, 1996). 
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 Regional setting 4

 A shift from an Epicontinental sea to a Foreland 4.1
basin 

The Lower Palaeozoic succession of the Oslo Region has been divided into four events by 

Larsen and Olaussen (2005). The first event, which is situated on the eroded Archean crustal 

rocks (”Sub-Cambrian peneplain”), range from Early Cambrian to Middle Cambrian in age 

and is characterized by a shallow southward transgressing sea. The second event range from 

Late Cambrian to Middle Ordovician in age and is characterized by a basin with low 

sedimentation rate of typical epicontinental sea. The third event range in age from Late 

Ordovician into the early part of Late Silurian in age and is characterized by the onset of 

foreland basin silt- and sandstone and shallow marine warm water carbonates. The fourth 

event is of Late Silurian age and is characterized by the foreland alluvial and fluvial basin fill 

(The Ringerike Group).  

From the Middle Cambrian to Early Ordovician the succession is characterized by the 

deposition of black shales (“Alum shale”) (Bjørlykke, 1974, Bockelie and Nystuen, 1985). In 

the Lower to Middle Ordovician carbonate and mud dominated, with a low siliciclastic input 

of coarser material (Bjørlykke, 1974, Owen et al., 1990). In the Upper Ordovician coarser 

siliciclastic material was introduced, however, shales and limestone were still dominant 

(Bjørlykke, 1974).  

The oblique collision between the Baltica and the Laurentia plate eventually led to the 

convergence of the two continents. The margin of Baltica was subducted under the Laurentia 

plate (Roberts, 2003). This lasted from the Silurian to Early Devonian. The earliest collision 

within the Baltoscandian segment of the Caledonian orogen occurred in the Tremadocian 

Stage (c. 485 Ma) with initial closing of the Iapetus Ocean in the Ludlow Epoch (c. 420 Ma) 

(Fig. 4.1) (Pedersen et al., 1988, Pedersen et al., 1992). The on-going collision was also 

observed by the increased clastic input in the Oslo Region from late Ordovician and onwards. 

Erosion was indicated from the growing Caledonian orogeny in the west and north-west 

(Bruton et al., 2010). To get a proper understanding of the tectonic evolution and timing of 

the Oslo Region, observations of the interaction between faulting and folding, and 

sedimentary processes must be documented. These observations are sparse in the Oslo Region 

as even the youngest sediments (Ringerike Group) were deposited before the main episode of 
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folding and faulting (Bruton et al., 2010). However, Halvorsen (2003) indicated an interaction 

between sedimentation and tectonics, suggesting that the Ringerike Group was formed 

contemporaneously with thrust movements within a major synclinal piggy-back basin. The 

depositional basin in the north has shown to be very narrow in the early Silurian (Llandovery) 

with sediment sources in the west and east (Worsley et al., 2011). The shortening of the 

Lower Palaeozoic rocks in the Oslo Region has been greatest in the northernmost districts 

(Worsley et al., 2011). Morley (1986a) suggested a shortening of at least 130 km in the Mjøsa 

area, while the shortening at Langesund has been close to zero. The shortening also depends 

on the change in deformation style and lithology, where the shortening decreases upwards in 

the sequence (Morley, 1986a, 1986b). The Lower Palaeozoic in the Oslo Region is part of a 

décollement unit, which is considered to be a southward continuation of the Osen-Røa Nappe 

complex (Nystuen, 1981). The Osen-Røa detachment lies within the late Cambrian Alum 

Shale, which underlies the entire Oslo Region (Bruton et al., 2010). The thrust sheet is 

suggested to be 280 km long and to have a undeformed thickness of about 2 to 4 km (Morley, 

1986a).       

 

Figure 4.1: The paleogeographic movement of the continents from Early Ordovician to Late Silurian, where Avalonia, 

Laurentia, Baltica and Siberia are outlined. a) Early Ordovician. b) Middle to Late Ordovician boundary. c) Early Silurian. d) 

Late Silurian. Figure from Roberts (2003). 
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Several bentonite beds have been found in the Ordovician and Silurian, in the Oslo Region, 

and have been linked to volcanic activity within the Caledonian orogenic belt (Bockelie and 

Nystuen, 1985). The bentonite beds of Ordovician age have a decreasing thickness eastwards; 

they are thickest in the Oslo Region and thinnest in western Russia (Bruton et al., 2010). The 

source for these extensive bentonite beds is thought to be in the Iapetus Ocean (Fig. 4.1), 

between the Laurentia and the Baltica plates (Huff et al., 2010). 

 Ordovician-Silurian boundary 4.1.1

Spjeldnæs (1957) stated that the base of the Silurian is younger towards the north, and the 

most complete succession is found in the south-east in the Oslo Region.  He also suggested 

that the Ordovician-Silurian boundary marks a stop in sedimentation. In the north of the Oslo 

Region a significant age gap is present, documented by Skjeseth (1963), Worsley et al. (1983) 

and Owen et al. (1990). Within the Upper Ordovician, the Ashgillian portion is absent where 

the Mjøsa and Helgøya formations are separated by a karst surface. The Helgøya Formation 

has also been defined as a member of the Sælabonn Formation inWorsley et al. (1983). 

Skjeseth (1963) referred the Helgøya Formation to sub-stage 6c, which correspond to the 

Limovnstangen Member in the Sælabonn Formation.  

The upper Ordovician in Ringerike and Hadeland is characterized with the development of a 

karst surface caused by a drop in sea-level and subaerial exposure (Braithwaite et al., 1995). 

Braithwaite et al. (1995) also observed an infilling of the karst structures, caused by a small 

transgression, within an overall regression. In the Oslo District the drop in sea-level is 

observed by the change of fauna and the development of incised tidal channels (Brenchley 

and Newall, 1980). The major transgression following the regression is marked with the 

deposition of the siliciclastic Sælabonn Formation. Thomsen (1982) reported the Sælabonn 

Formation to be laying conformly on top of the Langøyene Formation. Størmer (1967) 

observed a siliciclastic input in the upper Ordovician and suggested an epeirogenetic response 

in southern Scandinavia before the initial build-up of the Caledonian orogenic belt. Brenchley 

and Newall (1980) suggested that the sea-level variations could also be caused by the 

development of the ice-cap on the Gondwana continent. Shales, overlying the Ordovician 

succession, contain graptolites and benthic fauna reflecting distal, quiet water and suggest a 

rapid transgression in the early Rhuddanian stage caused by the melting of the ice-cap on the 

Gondwana continent (Brenchley and Newall, 1980). 
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 Global sea-level 4.1.2

The eustatic curve by Johnson et al. (1998) depict eight events (i.e., those beginning with a 

lowstand and culminating with a highstand) which occurred in the Silurian (Fig. 4.2). In this 

study Johnson et al. (1998) estimated sea-level lowering and rise by the use of 

palaeotopographic elements, such as rocky shorelines and coastal valleys. The relative 

bathymetry of the sea-level curve is indicated by the use of graptolite and conodont zones. 

The Rhuddanian transgressive event is associated with the Gondwana ice cap (Johnson et al., 

1998), which had a glacial maximum in the Hirnantian (Finnegan et al., 2011).  

 

Figure 4.2: Silurian eustatic curve with the burial history of particular palaeovalleys and rocky shorelines marked by black 

vertical bars under the zero column that indicates land. Relative bathymetry of sea-level curve is indicated by numbers 1 

(shallow) to 6 (deep), which represent benthic assemblage zones. Figure and text from Johnson et al. (1998).  
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Figure 4.3: Geological map displaying the distribution of the Middle and Upper Ordovician, and Silurian rocks at 

Ringerike. Section of geological map Hønefoss 1815 III, M 1:50 000. Modified map from Zwaan and Larsen 

(2003). 
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 The Latest Ordovician and Silurian succession 4.2

In Figure 4.3 a geological map of the Ringerike area is presented, with the occurring 

formations. An overview of the underlying and overlying formations of the Sælabonn and 

Solvik formations in the Ringerike, Asker and Oslo districts is presented in Figure 4.4. An 

overview of the whole Lower Palaeozoic succession in the Oslo Region can be viewed in 

Figure 4.5, with an estimated age and thickness.  

 Langøyene Formation 4.2.1

At the time of deposition of the Langøyene Formation (stage 5a and 5b) there was a south-

eastward slightly inclined palaeoslope in the Oslo Region (Brenchley et al., 1979). In Larsen 

and Olaussen (2005), part of Langøyene Formation is interpreted as a possible first clastic 

wedge from the Caledonian orogeny.    

The lower part of the Langøyene Formation has an increasing diversity and density in the 

fauna together with the appearance of nodular limestone, suggesting a moderate regression of 

this lower unit (Brenchley and Newall, 1980). According to Brenchley et al. (1979) this was a 

quiet shelf environment where shales and nodular limestone were formed. In between these 

layers storm beds of silt and fine sand were deposited and transported in from a westerly 

source. Currents transported the material obliquely across the palaeoslope in a north-

westwards direction. In the west (e.g. Langesund, northwest Asker, Ringerike and Hadeland) 

there was a calcareous facies belt indicating a shallower environment.  

Figure 4.4: Stratigraphic illustration of the Langøyene, Sælabonn and Rytteråker formations, based on information from 

Worsley et al. (1983) and (Owen et al., 1990). The Ordovician-Silurian age gap has not been taken into account. Age 

from Gradstein et al. (2012). 
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The upper part of the Langøyene Formation is also interpreted as a regressive succession, 

where the main regressive event occurred in the uppermost part of the succession (Brenchley 

and Newall, 1980). There were no major changes in the bathymetry before the later part as the 

faunal composition had very few variations. Brenchley and Newall (1980) observed the lower 

part as mud dominated, as the coarse clastic material did not reach the Asker District. The 

major shallowing in the upper part was interpreted by Brenchley and Newall (1980), based on 

occurrences of Holorhynchus beds and development of channels. They did, however, not 

report evidence for an emergence of the upper part during the major regression in the Oslo-

Asker District. 

Brenchley and Newall (1980) suggested that the clastic input in the Langøyene Formation 

was from a western source (“Telemark land”), which was caused by shallowing or, more 

likely, tectonic uplift of the source area. The rhythmicity recognized from the Oslo-Asker 

District in Middle and Upper Ordovician is caused by local control, while the regression of 

the Langøyene Formation can be seen through the whole of the Oslo Region (Brenchley and 

Newall, 1980).  This indicates that there was a regional regression, most likely caused by the 

Late Ordovician glaciation (see Chapter 4.1.1).                      

 Sælabonn Formation 4.2.2

The Sælabonn Formation (stages 6a, 6b and 6c) has been studied by Thomsen (e.g. Thomsen, 

1982, Thomsen and Baarli, 1982, Thomsen et al., 2006). The Formation is of Rhuddanian and 

Aeronian age, and is the lowermost formation in the Silurian succession at Ringerike 

(Thomsen, 1982). The formation has been divided into three members; Store Svartøya 

Member, Djupvarp Member and Limovnstangen Member (Thomsen, 1982). 

The lowermost member, Store Svartøya Member (stage 6a), has been interpreted by Thomsen 

(1982) as an open marine shelf. The member is characterized by mud, thin sandstone beds and 

biosparitic “megaripples”. The sandstone beds and “megaripples” were, according to 

Thomsen (1982), deposited during storms. The fauna was dominantly transported, and were 

observed in the limestone. The sea-level in this member has been interpreted as shallow 

marine, with an increasing frequency of storm beds upwards in the member (Thomsen, 1982). 

The middle member, Djupvarp Member (stage 6b), has been interpreted as an inter-bar and 

bar complex. The member is composed of shales, biosparitic limestone and calcareous 

sandstones. It is characterised by thick cross stratified sandstone beds (Thomsen, 1982). 
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Measurements of the palaeocurrent in the large cross stratified beds and of ripples in thinner 

sandstone beds show a NE to SW direction (Thomsen, 1982). Storm beds also occur here 

(Thomsen, 1982). Thomsen (1982) suggested that the Djupvarp Member was affected by a 

microtidal environment. The sea-level in this member represents a shallow marine 

environment and was, according to Thomsen (1982), almost dry land. She observed 

asymmetrical wave ripples with flat crest and wrinkle marks.  

The upper member, the Limovnstangen Member (stage 6c), has been interpreted by Thomsen 

(1982) as an open marine shelf. The member is composed of alternating beds of calcareous 

siltstone, shales and limestone. The biosparitic limestone increases upwards in the member 

and is interpreted by Thomsen (1982) as storm beds. The palaeocurrent direction shows a 

general NW to SE trend (Thomsen, 1982). As in the lower members, Thomsen (1982) 

observed transported fauna in the limestone beds. The sea-level in this member reflects a 

regression, where hummocky cross stratification has been observed in the lower part of the 

member and gravitational cement has been observed in the upper part (Thomsen, 1982). 

Thomsen (1982) suggested that a transgression must have taken place between the Djupvarp 

Member and Limovnstangen Member, as the facies are markedly different.   

 Rytteråker Formation 4.2.3

The Rytteråker Formation (stages 7a and 7b) overlies the Sælabonn/Solvik Formation in all of 

the nine districts where it is found (Fig. 4.5) (Möller, 1989). According to Möller (1986) the 

transition between the underlying formation and Rytteråker Formation is gradual in the 

central and southern districts. However, in the northern districts of Hamar and Ringsaker the 

border is described as sharp and possible erosional.  

The formation was formed in a neritic carbonate environment, with north-south trending 

arcuate depositional belts migrating eastwards (Möller, 1989). The eastward migration of the 

belts was cause by continuous transgression lasting to the beginning of the Telychian Stage. 

This does not correlate with the global regressive-transgressive pattern postulated by Johnson 

et al. (1985). Möller (1989) suggested that an active orogenic belt was the cause for that. 

According to Möller (1989) there were two depositional basins, a larger and deeper basin to 

the west and a smaller, shallower basin to the east which, in periods, were restricted. In the 

transition between these two basins the depositional belts developed. At Ringerike the 

lowermost unit is an open platform with a belt of bioclastic shoals and patch reefs which 

formed landwards (Möller, 1987). This is followed by foreshore deposits of a shoal or barrier. 
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After the passing of the shoal belt, deposits of biostromes and small bioherms formed seaward. 

The uppermost part has been interpreted by Möller (1987) as an open marine, sublittoral 

environment consisting of bioturbated packstone and wackstone with a sharp border to the 

underlying unit.      

The palaeocurrent analysis of the Rytteråker Formation indicates a SSE to NNW direction 

(Möller, 1987, 1989). However, according to Möller (1989) the data is not sufficient to 

reconstruct a complete picture throughout the formation. The underlying formation, the 

Sælabonn/Solvik Formation, appears to be synchronous to the lower Rytteråker Formation 

according to Möller (1989) and indicates a transport from SSW to NNE (Whitaker, 1973, 

Thomsen, 1982).                      

 Vik Formation and Ek Formation 4.2.4

The Vik Formation (stage 7c) is thought to represent a deeper depositional environment than 

the Rytteråker Formation based on fossil fauna (Worsley et al., 1983). The formation also 

represents an increased influx of clastic sediments. However, the middle member, Garntangen, 

has a higher content of carbonate which is thought to be caused by a development of shallow 

marine marl banks. Baarli (1990a) recognized a deepening on the onset of the Vik Formation 

in the central Oslo District. This was followed by a shallowing with an iterative deepening. 

The sediments were deposited in water depths close to the preceding Rytteråker Formation 

but with an increased clastic influx (Baarli, 1990a). The Ek Formation is found in the northern 

part of the Oslo Region (Fig. 4.5), where shales were formed in deeper water environments 

than the southern equivalent, Vik Formation (Worsley et al., 1983).              

 Bruflat Formation 4.2.5

The Bruflat Formation (stages 8a and 8b) was deposited in marine settings, in the late 

Telychian, and is an environment interpreted to consist of mud and sand-rich submarine fans 

(Worsley et al., 2011). Several fans were entering the basin as the palaeocurrent 

measurements of the turbidites show different directions in the districts (e.g. Toten, Ringerike 

and Modum), with the sources in the west and north (Worsley et al., 2011). In the Ringerike 

and Modum District the Bruflat Formation is inferred to reflect outer-fan deposits (Worsley et 

al., 2011). In the same area the upper part of the Bruflat Formation is missing, which was 

most likely caused by a drop in sea-level during the Ireviken extinction event (Worsley et al., 

2011). The event, with the associated sea-level drop, extended for 0.2 Ma around the 

Llandovery/Wenlock transition (Worsley et al., 2011).     
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 Braksøya Formation 4.2.6

The Braksøya Formation (stages 8c and 8d) has been interpreted as a marginal marine 

carbonate depositional environment, with erosion close to the base of the Wenlock stage.   

(Worsley et al., 1983). The environment was restricted as the flora and fauna and the 

occurrence of evaporites in marl succession indicates hypersaline conditions (Worsley et al., 

1983). The area seems to be deepening south-eastwards from the Ringerike District to the 

Modum and Skien districts. The upper part of the formation represents an intra/supratidal 

depositional environment only observed in the Ringerike District (Worsley et al., 1983). 

 Steinsfjorden Formation 4.2.7

The Steinsfjorden Formation (stage 9) is represented by supratidal, intratidal and subtidal 

environment where mixed carbonate and mud were deposited. According to Worsley et al. 

(1983) the unit has been affected by small-scale transgressive and regressive events, which is 

reflected in the rhythmic changes in lithology. In all districts where this formation is observed, 

the upper and lower part reflects a peritidal environment. However the middle parts in all 

other districts except Ringerike show open subtidal conditions. This formation was likely 

deposited under arid conditions, since early diagenetic dolomite and celestite occur (Olaussen, 

1981). In all districts where this formation is found the upper part is observed to be affected 

by a large scale transgressiv event, interpreted by the occurrence of favositid bioherms and 

biostromes (Worsley et al., 1983). During this event there was a short period of normal 

marine conditions before the Ringerike Group was formed (Worsley et al., 1983). 

 Ringerike Group 4.2.8

As seen in the previous subchapters the depositional environment changed rapidly, and 

shifted between siliciclastic wedges (e.g. Sælabonn Formation and Bruflat Formation) and 

carbonate ramps (e.g. Rytteråker Formation). In the Late Silurian a broad muddy coastal plain 

environment developed followed by a braided fluvial system (Davies et al., 2005b). These 

two systems have been named the Sundvollen Formation and the Stubdal Formation, and are 

comprised in the Ringerike Group (stage 10) at Ringerike (Davies et al., 2005b). The 

sediments of the Ringerike Group were deposited in the Oslo Region and covered the 

carbonate background sedimentation (Larsen and Olaussen, 2005). The Ringerike group is a 

1250 m thick foreland–basin fill and is divided into two formations (Fig. 4.5), the Sundvollen 

Formation (490m) and the Stubdal Formation (550m) (Davies et al., 2005b). Halvorsen (2003) 
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suggested that the Sundvollen Formation developed in a piggy-back basin, where the Stubdal 

thrust sheet was emplaced on top of the Sundvollen piggy-back basin.               
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Figure 4.5: The lower Palaeozoic stratigraphy of the Oslo Region. Figure and text from Larsen and Olaussen (2005). Updated 

ages from Gradstein et al. (2012). 
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 The Oslo Rift  4.3

The development of the 

Oslo Rift has made it 

possible to study the 

Lower Palaeozoic 

succession in the Oslo 

Region, which 

otherwise would have 

been eroded. 

The Oslo Rift includes 

the Oslo Region and 

Skagerrak, where the 

Oslo Region stretches 

from Langesund in the 

south to the northern 

part of Mjøsa in the 

north (Larsen et al., 

2007). The total length of the Oslo Rift is 500 km and with a width of 60 km in the Oslo 

Graben, which is part of the Oslo Rift situated on land (Sundvoll and Larsen, 1994, Larsen et 

al., 2007). The rift axis has a NNE-SSW trend (Sundvoll and Larsen, 1994).       

Between the Lower and Upper Palaeozoic sediments there is a hiatus suggesting an area 

exposed to erosion, which indicate that the area was a part of a landmass (Sundvoll and 

Larsen, 1994). There are two main causes for the development of the Oslo Rift. One of the 

causes was the abnormal high temperature weakening the crust (Larsen et al., 2007). The 

other was the Sorgenfri-Tornquist zone, where a large transvers fault with a northwest-

southeast direction stretched the lithosphere causing a rift and graben to develop (Fig. 4.6) 

(Larsen et al., 2007). The Oslo Rift was initiated with the development of graben structures in 

the Late Carboniferous, with the onset of rifting and volcanism 20-30 Ma years later (Larsen 

et al., 2008). The final termination of the intrusions marks the end of the activity in the Oslo 

Rift in Early Triassic, 65 Ma after the tectonic and magmatic onset (Larsen et al., 2008).  

  

Figure 4.6: Simplified tectonic overview of Western Europe with the Variscan front in the 

south, the Tornquist Fault Zone and the Oslo Rift. Also shown are the pre-rift 

configurations with the Caledonian structures and the boundary of the Baltica Craton. 

Figure and text from Larsen et al. (2008). 
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 Methods 5

 Field work 5.1

The fieldwork for the different localities was executed in 2011, in a period of four weeks in 

July and August and two weeks in October and November. 

 

Figure 5.1: Map of the localities in the Ringerike and Modum District. 1: Limovnstangen, 2: Borgen, 3: Åsaveien, 4: 

Grunntjern, 5: Toverud. Coordinates and description of the localities are found in Appendix B. Map from S.K. (2012).  
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Five different localities were logged in 2011 by the author (Fig. 5.1), during the summer and 

part of the autumn. The Borgen and Limovnstangen were the main localities for the study. 

Several outcrops were logged to get a better understanding of the lateral distribution of the 

beds. The logging was supervised by Professor emeritus Johan Petter Nystuen (UiO) the first 

day. The author was followed-up by Professor emeritus Johan Petter Nystuen (UiO), 

Professor Hans Arne Nakrem (UiO) and Bjørn Tore Larsen (Det norske) during the summer. 

The outcrops were logged on standard log paper (Appendix I). The outcrops at 

Limovnstangen, Borgen, Grunntjern and Åsaveien were logged in 1:20 scale. The locality at 

Toverud was logged in 1:50 scale. The localities in the Ringerike District were of priority. 

The locality in the Modum District was logged and sampled to get an overview of the lateral 

variations. All the outcrops at the localities were photographed, to help in the study back at 

the office. An overview and description of the localities are presented in Appendix B. 

Thomsen (1982) and Thomsen et al. (2006) have given different names of the upper member 

of the Sælabonn Formation. As seen in Table 5.1 the names correlate back to Kiær’s old stage 

numbers. The author will in this thesis use the names from the article by Thomsen (1982) for 

the localities situated in the Ringerike District. The reason for this is that the names from 

1982 are well known in the academic community, and changing them at this stage would 

cause confusion for the readers. The area where the Toverud locality is situated  has been 

regarded as part of the Oslo-Asker District by Størmer et al. (1953), however, in the paper by 

Baarli (1988) the Toverud locality (named Sylling locality in that paper) has been included 

into the Modum District (Fig. 2.1). The use of Modum District for this locality has been 

continued in this work. The member names used for the Sælabonn Formation within the 

Modum District follow the terminology from Baarli (1988). A detailed review of the 

terminology of the Sælabonn Formation and the associated members is presented in Appendix 

H.      

Table 5.1: Member-names from different references used for the Sælabonn Formation in the Ringerike District and Modum 

District. 

 

 
Kiær 

(1908) 

Thomsen 

(1982) 

Thomsen 

(2006) 
Baarli (1988) 

Upper member 6c Limovnstangen Steinsåsen Limovnstangen 

Middle member 6b Djupvarp Djupvarp Djupvarp 

Lower member 6a Store Svartøya Store Svartøya Sylling 
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 Sampling 5.2

During the fieldwork 117 samples were collected, however not all of them were studied. The 

large collection of samples was due to the lack of permission by Buskerud county 

municipality to collect samples from one of the main localities, Limovnstangen (Appendix B). 

Permission was given during the autumn 2011, and samples were then collected. 59 of the 

samples were used, 25 for thin sections and 34 for acetate-peels. The goal during the sampling 

was to collect representative samples from all localities, of both carbonates and siliciclastic 

rocks. All the samples were marked with an arrow to show the way up. Samples from 

Limovnstangen also show north-south/east-west direction.    

 Facies description and facies association 5.3

The Folk (1962) classification of carbonate rocks have been used to describe and classify the 

carbonate rocks at the different localities. A description of Folks classification is seen in 

Figure 5.2 below, and focuses on the texture of the rock. The carbonate rocks are classified to 

differentiate between the siliciclastic and carbonate components. The connection between the 

grain size and the terminology of the siliciclastic component is determined according to the 

Wentworth (1922) scheme of classification (Table 5.2).  

                      

 

Figure 5.2: Folks (1962) classification of carbonate rocks. The terminology is used in this thesis to differentiate 

between the components. 
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The lithofacies are defined by the structures, texture and lithology. The different facies are 

determined by observations in the field and by studying pictures from field. The facies 

represent a depositional event, and can contain more than one sedimentary structure which is 

associated to the event. Facies associations are collection of different facies, which represent a 

depositional environment.  

Table 5.2: Wentworth's classification of grain size and terminology. Table modified from Wentworth (1922). 

Size (mm) Grade terms 

∞ - 256 Boulder gravel 

256 – 64 Cobble gravel 

64 – 4 Pebble gravel 

4 – 2 Granule gravel 

2 – 1 Very coarse sand 

1 –0,5 Coarse sand 

0,5 – 0,25 Medium sand 

0,25 - 0,125 Fine sand 

0,125 – 0,0625 Very fine sand 

0,0625 – 0,0039 Silt 

0,0039 - ∞ Clay 

 

 Digitalization of the logs 5.4

Adobe Illustrator CS4 was used in digitalizing the logs.  

The digitalized logs from fieldwork are found in Appendix A, palaeocurrent measurements 

are presented in Appendix C. In Figure 5.3 an example log is illustrated. The legend for the 

logs is found in Appendix A. The main feature is thick sandstone with trough cross-

stratification, symmetrical wave ripples and fragments of fossils. Samples are illustrated in the 

left column where they have been given a PMO-number (number in the Natural History 

Museum’s paleontological collection in Oslo). They are also marked in the log, depending on 

the kind of sample (red = thin section, blue = acetate peel). Arrows illustrating palaeocurrent 

measurements are also included, where the real north on the log is directed towards the top. 

Facies and facies association are presented in the columns to the right.  
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 Thin sections 5.5

25 samples were selected from the five different localities (Fig. 5.1). The samples represent 

layers of specific interest, but were also picked to get a representative overview of the 

localities. The samples were cut at the Natural History Museum (Geology) at Tøyen, Oslo. 24 

of the samples were sent to the University of Cracow in Poland where they were polished and 

prepared as standard uncovered petrographic thin sections. The last one was stained in blue 

epoxy and prepared by Salahalldin Akhavan at the Department of Geoscience, UiO. 

Figure 5.3: Example log 

from Borgen-locality 

where the lowermost five 

meters are illustrated of 

the Borgen01-11 log. In 

the right column the 

different facies are 

illustrated. Coordinates 

for the logged outcrop can 

be viewed in the top right 

corner. Legend can be 

viewed in Appendix A. 
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The thin sections were cut to a thickness of 30 µm. An overview of the different thin sections 

is presented in Appendix D, where they have been given a PMO-number and a depth 

corresponding to the depths in the logs.    

 Point counting 5.5.1

Qualitative analysis was done before the point counting, to get an overview of the content in 

the thin sections. The main components are 1) quartz, 2) calcite cement, 3) mica, 4) K-

feldspar, 5) plagioclase, 6) fossil fragments, 7) pyrite, 8) limonite and 9) opaque minerals. In 

each thin section 400 points were counted. The author split the quartz in two separate groups, 

one for single crystalline quartz and one for polycrystalline/undulating quartz. As the thin 

sections were not coloured and the grains have a small size, difficulty separating feldspar 

from quartz is a source of error. The abundance of feldspar is most likely much higher than 

the results show. A complete overview of the content in the thin sections is presented in 

Appendix D. The Quartz/Feldspar ratio can be viewed in Appendix E.       

 Description  5.5.2

The grain description of the quartz was done in 20 of the samples. In each sample ten grains 

were randomly picked. The grain size was then classified using the Wentworth (1922) scale 

for grain size. The roundness and sphericity of the grains were classified according to the 

Pettijohn (1975) scale. The results are presented in Figure 6.18.    

 Acetate peels 5.6

34 acetate peels were made by the author at the Natural History Museum (Geology) in Oslo. 

The samples were first cut, and polished with Silicon Carbide paper down to 1000 grit. The 

carbonate rocks were then put in an acid bath, with an HCl concentration of 5% for 4 seconds, 

before they were cleaned in hot water. The rocks were left to cool before immersing the 

polished surface with acetone and applying an acetate sheet. After a few minutes the acetate 

sheet was taken off, and put in a slide-frame for study under the microscope.   

The acetate peels can only be used to identify the carbonate component in the samples, so the 

other components not consisting of carbonate are classified as “unidentified grains” during 

description and point counting. Most of the “unidentified grains” are most likely composed of 

quartz.  
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An overview of the acetate-peels is presented in Appendix F, where they have been given a 

PMO-number and a depth, which is linked to the logs in Appendix A.  

 Description 5.6.1

Each of the samples was described and notes were taken regarding texture, sorting and state 

of the fossil fragments. Part of the idea by using acetate peels was to get a larger view of the 

content, sorting and grading in the carbonate rock. Several of the samples had to be split in 

two, to fit under the microscope.    

 Point counting 5.6.2

Qualitative analysis was done before the counting, to get an overview of the content of the 

acetate-peels. The main components in the samples are 1) “unidentified grains”, 2) calcite 

matrix 3) brachiopods, 4) bryozoans, 5) trilobites, 6) crinoids, 7) undetermined bioclasts, 8) 

intraclasts, 9) micrite, 10) gastropods and 11) corals.  

Because of the varying size of the fragments in the carbonate samples double counting may 

occur. This is especially applicable for brachiopod and bryozoan fragments. In each acetate 

peel 300 points were counted. A complete overview of the content in the acetate peels are 

presented in Appendix F.  
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 Results 6

 Facies and facies association  6.1

 Facies description 6.1.1

In this chapter facies have been defined based on the criteria for facies in Chapter 5.3. An 

overview of the facies is presented in Table 6.1. Each locality is identified in the map (Fig. 

5.1). The facies description is solely based on observations in the field and pictures, and not 

on the laboratory data (e.g. detailed description of the fossil content).  

Table 6.1: An overview of the facies observed at the studied sections. 

Facies 

nr. 

Description Physical structures Figure 

I Mudstone 

Ia Structureless mudstone No laminae 6.9B 

Ib Parallel-laminated mudstone Developed with weak laminae 6.1 

II Sandstone 

IIa Laminated and structureless sandstone 

Parallel lamination, hummocky cross-

stratification, and structureless beds. 

Ripples on top of bed and development 

of soft sediment deformation 

6.1, 6.2, 

6.9B 

IIb Trough cross-bedded sandstone 

Sets with trough cross-bedded sandstone, 

fossil fragments at the base on the stoss 

and lee side of sets 

6.5 

IIc Folded laminated sandstone 

Folded laminated sandstone with a 

higher content of fossil fragments at the 

base of the unit 

6.6 

IId Granule-rich sandstone 
Poorly sorted granule sandstone in very 

fine sandstone 
6.7 

III Limestone 

IIIa Nodular limestone Beds of nodular limestone 6.8 

IIIb Biosparitic limestone 
Parallel-laminated and structureless beds 

of biosparite 
6.9, 6.5B 

IIIc Cross-bedded biosparitic limestone 
Cross-bedded biosparite beds with fossil 

fragments in a carbonate matrix 
6.10 

Facies I: Mudstone 

Ia Structureless mudstone 

Description: This facies has clay to silt grain size, with a varying amount of the different 

fractions. It is characterized by no internal structures (Fig. 6.9B). Horizontal bioturbation is 

observed at some levels. Fossils which have been abraded are present at certain levels in the 

facies. The thickness varies from c. 1 cm to c. 1.4 m. Facies Ia is present at the 

Limovnstangen, Borgen, Åsaveien, Grunntjern and Toverud localities. 
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Figure 6.1: Facies Ib; parallel-laminated mudstone and Facies IIa; 

parallel-laminated sandstone (Borgen). 

Interpretation: During fair weather 

conditions mud is deposited as it 

falls out of suspension (Collinson et 

al., 2006). The massive mudstone is 

formed by continuous deposition of 

clay and silt and/or later destruction 

of sedimentary laminae by biogenic 

activity. 

Ib Parallel-laminated 

mudstone 

Description: This facies is dominated by sediments of clay to silt grain size, with a varying 

amount of the different fractions. It is observed with weak parallel lamination (Fig. 6.1). The 

thickness varies from c. 4 cm to c. 13 cm. The facies is present at the Limovnstangen and 

Borgen localities.  

 

Interpretation: During fair weather 

conditions mudstone is deposited as 

it falls out of suspension (Collinson 

et al., 2006). The weak laminated 

mudstone is caused by a decrease in 

biogenic activity.  

Facies II: Sandstone 

 Laminated and IIa

structureless sandstone 

Description: The facies consists of 

very fine to fine sand which is 

generally homogenous, and is partly 

calcite cemented. Bioclastic material 

is present in the bed, with the highest 

concentration of fossil fragments at 

the base. Facies IIa is observed with 

parallel lamination (Fig. 6.1), Figure 6.2: A) Facies IIb; massive sandstone, B) Facies IIb; hummocky 

cross-stratified sandstone (Limovnstangen). 
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hummocky cross-stratification (Fig. 6.2B) and as structureless sandstone (Fig. 6.2A). The 

base is observed as both erosive and non-erosive with gutter casts. This facies can contain 

parallel lamination, hummocky cross-stratification and structureless sandstone together in the 

same bed, but also separated in single beds. Soft sediment deformation is seen at the base and 

at the top of beds (e.g. loaded ripples, load casts and ball-and-pillow structures). Ripples with 

rounded crests are seen at the top. Asymmetric ripples are observed. Water escape structures 

are also recorded in some beds of this facies. Vertical bioturbation is present and also 

horizontal bioturbation is seen at the top and at the base of the beds. Beds of Facies IIa are 

laterally continuous for several meters where they have wavy tops. Isolated lenticular beds 

also occur (Fig. 6.9B). The facies range in thickness from c. 1 cm to c. 40 cm. Facies IIa is 

present at the Limovnstangen, Borgen, Åsaveien, Grunntjern and Toverud localities.  

 

Figure 6.3: Diagram of the formation of bedforms, the relationship between the mean flow velocity and sediment size. Figure 

modified from Southard and Boguchwal (1990). 

 

Interpretation: The sharp contact to the underlying beds is caused by either erosion of 

geostrophic currents or wave oscillatory flow (Myrow and Southard, 1996). Parallel 

lamination represents deposition during powerful wave oscillations that are followed by 

weaker ones (Myrow and Southard, 1996). Hummocky cross-stratification is created by 

unidirectional flows, most likely from geostrophic currents and wave oscillations (Myrow and 

Southard, 1996, Dumas and Arnott, 2006). Hummocky cross-stratification falls within the 

domain of ripples in the flow-regime diagram (Fig. 6.3). Gutter cast is an erosional structure 
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created by a stage of erosion followed by a stage 

of deposition as the energy decreases during 

storms (Myrow, 1992b). The symmetrical ripples 

have been created in the waning stages of the 

storm by the wave generated oscillatory flow. 

Post-depositional loading structures are formed 

due to porosity differences between the mudstone 

and the sandstone, likely indicating a rapid 

deposition of the sandstone beds (Collinson et al., 

2006). The beds which appear structureless were 

either deposited too rapidly for any structures to 

form, or the structures have been destroyed during 

reworking by organisms (cf. Collinson et al., 2006). The former is more likely as intense 

bioturbation is lacking. The silt to fine sand composition of the sandstone beds (Fig. 6.18) is 

in accordance with the occurrence of hummocky cross-stratification (Dott and Bourgeois, 

1982, Li and King, 2007). Together these sedimentary structures are characteristic for storm 

deposits (Dott and Bourgeois, 1982, Myrow, 1992a, 1992b, Dumas and Arnott, 2006). Storm 

deposits show a change in deposition (e.g. sedimentary structures and grain size) upward in 

the bed and can be split into several levels, and are termed tempestites (Myrow and Southard, 

1996). An idealized storm sequence has been named Dott-Bourgeois sequence (Dott and 

Bourgeois, 1982) (Fig. 6.4). 

 Trough cross-bedded sandstone IIb

Description: The facies consists of fine-grained sandstone in bed sets. The sandstone is 

homogeneous and partly calcite cemented. Facies IIb is made up of bed sets characterized by 

trough cross-bedding (Fig. 6.5A). At the lee side of each set fragments of corals, bryozoans 

and brachiopods occur, sometimes draped in a silt carbonate matrix forming a lag layer 

(Facies IIIb) (Fig. 6.5B). This is also observed on the stoss side; however, in a lesser degree. 

The beds of this facies have erosive bases. The fragments are in the size order of c. 0.5 cm to 

c. 10 cm, where the majority is smaller than 2cm. At some of the outcrops symmetrical 

sinuous ripples are observed superimposed on the stoss side. Strata of this facies extend 

laterally for several meters and show little variation in thickness. Beds of the facies range in 

thickness from c. 10 cm to c. 1.75 m. The majority of the beds are thicker than 1m. Facies IIb 

is present at the Borgen and Åsaveien localities. 

Figure 6.4: Idealized storm sequence; Dott-Bourgeois 

sequence. Figure from Stow (2005). 
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Interpretation: The trough cross-bedded sandstone develops by migration of unidirectional 

three-dimensional dunes (Ashley, 1990) which are deposited in the upper part of the lower 

flow regime (Fig. 6.3). The lag deposit is formed by erosion of the beds and the reactivation 

surface between the sets. The process of sorting has been mentioned in Kreisa (1981), where 

the eroded beds have been winnowed; sorting the material. The palaeocurrent orientation of 

the foreset varies because of the sinuous pattern of the crestlines in the trough cross-bedded 

sets. 

  

Figure 6.5: A) Facies IIb; Trough cross-bedded sandstone (Borgen). B) Facies IIb; Trough cross-

bedding (Borgen). 
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 Folded laminated sandstone IIc

Description: Facies IIc consists of very fine-grained sandstone with fossil fragments, with an 

upward decrease in fossil fragments in the depositional units. The lower part of the laminated 

sandstone unit has horizons with higher bioclastic concentration. The upper part, which is 

mainly dominated by siliciclastic material, has an internal folded lamination (Fig. 6.6B). The 

base of the layer is observed as abrupt and slightly erosive (Fig. 6.6A). The bioclastic content 

consists of fossil fragments; corals, brachiopods, gastropods and bryozoans. This facies 

occurs in a c. 83 cm thick unit. The lateral extent is difficult to determine. The facies is only 

present at the Åsaveien locality. 

Interpretation: This bed is a slump-folded unit which is recognized by the undisturbed 

underlying and overlying units, as generally described by Collinson et al. (2006). Slumping 

units usually occur in interbedded units, with a high proportion of fine-grained sediments. 

Unconsolidated 

sediments resting on a 

slope might become 

unstable due to high 

pore-fluid pressure in 

a particular layer 

(Collinson et al., 

2006). The layers 

resting on top will 

then become unstable 

and move down slope 

due to gravity. 

  

Figure 6.6: A) Facies IId; 

folded laminated sandstone 

(Åsaveien). B) Facies IId; 

close up of the folded 

laminated sandstone 

(Åsaveien). 
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 Granule-rich sandstone IId

Description: The facies comprises beds characterized by abundant poorly sorted grains of 

quartz granules. The beds contain about 50% granule grains that are rounded and embedded 

in a matrix dominated by very fine sand (Fig. 6.7). The base of Facies IId beds is erosive 

where the sandstone fills runnels in the underlying Ordovician strata beneath the Sælabonn 

Formation. Presence of pyrite is observed where the granule-rich sandstone is bounded to the 

underlying massive limestone. The thickness of the Facies IId beds is c. 5 cm. Facies IId is 

only present at the Toverud locality.  

Interpretation: The granule quartz grains are deposited during erosion of the underlying 

sediments and have later been in-filled by very fine sandstone. The quartz grains are rounded 

which suggest a high degree of reworking.  

  

Figure 6.7: Facies IId; granule-rich sandstone (Toverud). 
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Facies III: Limestone  

 Nodular limestone IIIa 

Description: This facies is characterized by carbonate nodules which form layers (Fig. 6.8A). 

The nodules are sub-rounded (Fig. 6.8B). Depositional units of this facies range in thickness 

from c.10 cm to c. 20 cm. The facies is only present at the Toverud locality. 

Interpretation: According to Möller and Kvingan (1988) the formation of nodular limestone 

in shales is connected to the palaeogeographic setting. Clays containing carbonate sediments 

are deposited below the fairweather wave base. Formation of nodular limestone will occur 

during diagenesis of the sediments.  

  

Figure 6.8: A) Facies IIIa; nodular limestone (Toverud). B) Facies IIIa; close up picture of 

nodular limestone facies rotated 90° (Toverud). 
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 Biosparitic limestone IIIb 

Description: The grain size has a homogenous distribution in beds of this facies. The matrix 

has silt to very fine grain size. The beds are composed of a calcareous matrix which has 

fragments and whole fossils in it. A varying degree (small amounts) of siliciclastic material is 

present. Clasts composed of siliciclastic material also occur (Fig. 6.9A). Parallel-laminated 

and structureless beds are abundant in the facies. The parallel lamination is observed with thin 

laminae (<=1 mm) of siliciclastic material marking the lamination. Beds of Facies IIIb are 

present with either non-erosive or erosive bases. Bed thickness of this facies ranges from c. 1 

cm to c. 20 cm. Thin beds or laminae of this facies also occur as lag deposit on trough cross-

bedded sets at Borgen and Åsaveien (Fig. 6.5B). Depositional units of the facies are laterally 

extensive through the outcrop forming isolated bodies of lenticular geometry (Fig. 6.9B). This 

facies is observed at the Limovnstangen, Borgen, Åsaveien, Grunntjern and Toverud localities. 

Interpretation: The beds 

are termed as bioclastic or 

coquina beds and are 

defined as biosparitic beds 

by Folk (1962). As the 

sandstone beds (Facies IIa), 

the biosparitic limestone 

beds also display parallel 

lamination and formation of 

gutter casts at the base. This 

suggests that the same type 

of process has been 

responsible for the 

deposition of these beds. 

However, the lack of 

structures such as 

hummocky cross-

stratification is explained by 

the coarse grain size of the 

material present. The shell 

fragments make it harder to Figure 6.9: A) Facies IIIb; Massive biosparite bed with siliciclastic intraclasts. B) 

Facies IIIb; Isolated lenticular biosparite bed. 
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form structures. The clasts observed are intraformational as storms have eroded and 

winnowed adjacent and underlying beds. 

 Cross-bedded biosparitic limestone IIIc 

Description: Grain size has a homogenous distribution in the facies, where the matrix has a 

silt grain size. The beds are composed of a calcite matrix and have fragments as well as whole 

fossils in them. The facies is characterized by cross-bedding. A varying amount of siliciclastic 

material is present in the facies, where it marks the cross-bedding (Fig. 6.10A). The base of 

the facies is sharp and is both erosive and non-erosive. The geometry of the beds is laterally 

extensive, with wavy tops forming small dunes (Fig. 6.10B). The crestlines of the dunes seem 

to be straight but are difficult to observe. The bed thickness of this facies ranges from c. 6 cm 

to c. 18 cm. Facies IIIc is recorded at the Limovnstangen and Borgen localities. 

Interpretation: The cross-bedded biosparitic limestone are two-dimensional dunes that are 

deposited in the lower 

flow regime (Fig. 6.3) 

(Southard and Boguchwal, 

1990). They have 

previously been referred 

to as mega ripples by 

Thomsen (1982). These 

dunes migrate and erode 

new material from lower 

beds.  

  

Figure 6.10: A) Facies IIIc; Cross-

bedded biosparitic limestone 

(Limovnstangen). B) Facies IIIc; 

Cross-bedded biosparitic 

limestone (Borgen). 
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 Facies associations 6.1.2

Based on the defined facies in Table 6.1, five facies associations and sub-facies associations 

are defined. The two logs from the Borgen locality and the three logs from the Limovnstangen 

locality have been merged to make one log for each locality, which illustrate the general 

development at the locality.  

Table 6.2: An overview of the facies association at the studied sections, based on facies presented in table 6.1. Detailed logs 

of the outcrops are presented in Appendix A.  

Facies 

association 

Sub-facies 

associations 
Facies nr. Logs Figure 

FA1 

FA1a Ia, Ib, IIa, IIIb 

Lim01-11, Lim02-11, 

Lim03-11, 

Tov-11, Grunn-11 

6.11 

FA1b Ia, IIa, IIIb 

Lim01-11, Lim02-11, 

Lim03-11, 

Tov-11 

6.11 

FA1c 
Ia, IIa, IIIb, 

IIIc 

Lim01-11, Lim02-11, 

Lim03-11, 

Tov-11 

6.11 

FA2 
Ia, Ib, IIa, IIb, 

IIc, IIIc 

Bor01-11, Bor02-11, 

Åsa-11 

6.12, 

6.13 

FA3 IId Tov-11 6.7 

  

FA1 

Description 

This facies association has been divided into three sub-facies associations based on the 

dominating lithology in the sections. These sub-facies associations are present at the 

Limovnstangen, Toverud and Grunntjern localities (Appendix B). It should be noted that the 

division of the sub-facies associations are more detailed at Limovnstangen than at Toverud, 

due to scale. Facies IIIb are observed following Facies IIa, as couplet beds. This occurs for 

the most parts in sub-facies association FA1c.  

FA1a 

This sub-facies association is characterized by the dominance of mudstone (Facies Ia and 

Facies Ib), which is interbedded by beds of sandstone (Facies IIa) and biosparitic limestone 

(Facies IIIb) (Fig. 6.11). The sandstone and biosparitic limestone beds are further spaced from 

each other with mudstone in between in this sub-facies association. The thickness of the beds 

varies between the thinnest and thickest occurrences of the respective facies (Chapter 6.1.1). 

Several levels of this facies association are observed at the different outcrops, except 



43 

 

Grunntjern (log Grunn-11) where only one level is recognized. The thickest unit is observed 

at Toverud where it ranges from 23.5 m to 52.3 m.  Sub-facies association FA1a is both 

underlying and overlying the sub-facies association FA1b or FA1c. The sub-facies association 

is recognized at the Limovnstangen, Toverud and Grunntjern localities.  

 

Figure 6.11: Example of the succession in facies association FA1 at the Limovnstangen locality (log Lim01-11). 

FA1b 

This sub-facies association is characterized by the dominance of sandstone of Facies IIa, 

which is interbedded in mudstone of Facies Ia, together with biosparitic limestone of Facies 

IIIb (Fig. 6.11). The dominance of the sandstone beds in this sub-facies association is both 

related to spacing and thickness of the beds. Several levels of this facies association are 

observed. It has a decreasing occurrence towards the top of the Sælabonn Formation. The 

thickest unit is seen at Toverud (log Tov-11) where it ranges from 52.3 m to 64.5 m. Facies 

association FA1b is succeeding and succeeded by either FA1a or FA1c at all localities. The 

sub-facies association is recognized at the Limovnstangen and Toverud localities.      

FA1c 

This sub-facies association is characterised by the dominance of biosparitic limestone of 

Facies IIIb and cross-bedded biosparitic limestone of Facies IIIc (Fig. 6.11). The limestone is, 

together with the sandstone (Facies IIa), interbedded in mudstone (Facies Ia). The dominance 
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of the limestone beds in this sub-facies association is both related to spacing and thickness of 

the beds. The thickest unit is recognized at Toverud (log Tov-11) where it ranges from 5.9 m 

to 7.5 m. Sub-facies association FA1c is succeeding and is succeeded by either FA1a or FA1b 

at all localities. The sub-facies association is recognized at the Limovnstangen and Toverud 

localities. 

Interpretation 

The sub-facies associations display the same type of depositional environment, but the energy 

and material available varies between these sub-facies associations. Dattilo et al. (2008) 

discussed two possible causes for the formation of couplet beds; (i) storm-winnowing 

proximality and (ii) episodic starvation. The former model is favoured for the Sælabonn 

Formation. This occurrence is explained by currents from storms which acted on the sea-

bottom concentrating shells from the underlying substrata, and deposited them as layers (cf. 

Kreisa, 1981, Drummond and Sheets, 2001). The bioclastic layers were later covered by the 

siliciclastic sediments as they were transported out to the area of deposition, forming an 

upward fining storm sequence. The Markov chain analysis (Table 6.3) showed that this 

occurred in 30% of the cases, suggesting that there are fluctuations in the energy present. 

These bioclastic deposits are autochthonous while the siliciclastic sediments are 

allochthonous, transported in from a siliciclastic source, interpreted in accordance with the 

principles by Kreisa (1981).   

Units of the sub-facies association FA1a have been deposited into areas where the energy has 

been lower, with less frequency or availability of material. According to Thorne et al. (1991) 

tempestites get thinner and more uniform with increasing water depth, as the length of the 

waves are connected to the depth of the orbitals.       

Units of the sub-facies association FA1b have been deposited in areas where the energy has 

been high as siliciclastic material has been transported out and deposited on to the shelf.  

Units of the sub-facies association FA1c have been deposited in areas where the energy has 

been high enough to sort out the bioclastic material from the adjacent areas. Beds where only 

a bioclastic layer is present, not as couplets, suggests more proximal conditions as the 

siliciclastic component has been transported further basinward (Dattilo et al., 2008). 

According to Pérez-López and Pérez-Valera (2012) low energy and short distance for 

sediments transport or high energy with no lateral transport would cause the wave winnowing 

bioclastic deposits.        
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In summary, the FA1a represents periods with lowest energy, and FA1b represents periods 

with higher energy. FA1c represents periods of a more proximal position where bioclastic 

layers were deposited and siliciclastic sediments were transported further basinward. These 

sediments are deposited in the offshore-transition area on the shelf (Fig. 3.4).    

FA2 

Description 

This facies association is recognized at the Borgen and Åsaveien localities (Appendix B), and 

is characterized by trough cross-bedded sandstone (Facies IIb), where the sets are draped with 

biosparitic limestone (Facies IIIb).  

 

Figure 6.12: The two levels where Facies IIIc is succeeding Facies Ia and is followed by Facies IIa at Borgen (log Bor01-11). 

The thickness of the facies association at Borgen is 9.2 m. Thick cosets of trough cross-

bedded sandstone (Facies IIb) are succeeded by mudstone of Facies Ia and Facies Ib, or cross-

bedded biosparitic limestone of Facies IIIc. The mudstone is interbedded with sandstone beds 

of Facies IIa. Facies IIIc beds are often succeeding beds of Facies IIb, except in two levels 

(3.30 m and 4.25 m) where it is succeeding Facies Ia and succeeded by Facies IIa (Fig. 6.12). 

A repeating pattern of trough cross-bedded sandstone (Facies IIb) followed by mudstone 

(Facies Ia) or cross-bedded biosparitic limestone (Facies IIIc) is recorded (Fig 6.13). The 

thickness of the depositional unit of this facies association at Åsaveien is 9.3 m. The cross-

bedded biosparitic limestone (Facies IIIc) is not observed, and the siliciclastic component is 
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more dominant. The trough cross-bedded sandstone is succeeded by mudstone of Facies Ia or 

sandstone of Facies IIa. This is recognized as a repeating pattern. A unit (0.58m – 1.40m) of 

folded laminated sandstone (Facies IId) is observed succeeding mudstone (Facies Ia) which is 

interbedded by sandstone (Facies IIa). 

 

Figure 6.13: A repeating pattern of Facies IIb beds succeeded by Facies IIIc at Borgen (log Bor02-11). 

Interpretation 

This facies association represents siliciclastic shoals with the presence of migrating three-

dimensional dunes. They are probably not sand ridges, as they do not show the same 

composition as the sand ridges in the paper by Gaynor and Swift (1988). However, this need 

further study. The cyclicity observed is due to the allocyclic conditions where an increase in 

sea-level traps the siliciclastic sediments further shoreward. The abrupt change in both 

lithology and energy (sandy 3D-dunes to biosparitic 2D-dunes) suggests an increase in water-

level as the bioclastic component starts to dominate forming storm modified dunes. The 
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continued increase in sea-level is indicated by deposition of fair-weather deposits such as 

mudstone (Facies Ia or Ib) interbedded by tempestites of sand (Facies IIa). The biosparitic lag 

deposit in the 3D-dunes suggests a continuous presence of bioclastic material which starts to 

dominate as the siliciclastic component is shut off. The low abundance of bioclastic material 

at the Åsaveien locality could be caused by the intra-shoal position, as the bioclastic 2D-

dunes did not migrate that far. Penland et al. (1989) observed that the offshore sand shoals 

could extend for several kilometres in both length and width. Factors controlling the cyclicity 

could be eustatic sea-level rise, which could be related to Milankovitch cycles, or regional 

sea-level rise caused by tectonic movement. The overall trend in the Djupvarp Member, at 

Borgen and Åsaveien, suggests a transgression, as the shoal migrates. The channel observed 

at Borgen was caused by alongshore and onshore winds which set up down welling that 

created rip currents which cut through the dunes. This is an interpretation which is in 

accordance with the principles by Kreisa (1981). The slumping at Åsaveien is caused by a 

disturbance of sediments on the dunes, causing a collapse of adjacent sediments. 

In summary this facies association represents storm dominated shoals where three-

dimensional dunes were present, which occasionally were drowned by increased sea-level as 

the sediment supply was not able to keep-up with the rising sea-level.   

FA3: 

Description 

The facies association FA3 is characterized by a c. 5 cm thick layer of granule quartz grains in 

very fine sandstone (Facies IId) which is present at the base Sælabonn Formation/top 

Langøyene Formation. This facies association is a special case only containing one facies, but 

it might be present as a thicker unit elsewhere composed of several facies. Facies association 

FA3 is only recognized at Toverud. 

Interpretation 

The granule quartz grains have been eroded from the underlying Ordovician strata, where the 

flow of water, which has created the karst surface, has not been strong enough to transport the 

quartz grains any further. The very fine sandstone has later been in-filled by a transgression 

causing the formation of this lag layer. The erosional boundary depicts a ravinement surface 

created during a transgression (Yang, 2007).    
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 Petrographic and sedimentological descriptions 6.2
of the studied localities 

 Limovnstangen 6.2.1

Sedimentological description 

 

Figure 6.14: Limovnstangen locality. 

At the Limovnstangen locality (Fig. 6.14) 32 meters were logged, and the Limovnstangen 

Member is recognized. This locality was logged at three outcrops (logs Lim01-11, Lim02-11 

and Lim03-11) to get a better coverage of the locality. The outcrops belong to facies 

association FA1, which has an internal variation in the occurrence of the sub-facies 

associations FA1a, FA1b and FA1c (Fig. 6.11 and Fig. 6.15). The base of the Limovnstangen 

Member is not observed at this locality. The top is observed at 31 meters where the Rytteråker 

Formation is the overlying unit (Fig. 6.15). The member has an upward decrease in limestone 

beds with a minimum at 19 meters, with an upward increase from 20 meters. The sandstone 

beds generally decrease in frequency upward, with maximum and minimum peaks one to two 

meters apart (Fig. 6.15). Sub-facies association FA1a is the dominant component, whereas 

sub-facies association FA1b and FA1c are recognized as pulses. Units of these sub-facies 

associations are on the average thinner than FA1a units. 

Table 6.3: Results of Markov chain analysis of the facies occurring at the Limovnstangen locality. The relationships between 

the facies are presented in % and (#). 

 

 

 

 

Overlying facies 

IIa Ia IIIb Ib IIIc 
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IIa 0,4587 (2) 92,89 (405) 6,422 (28) 0,2294 (1) 0 (0) 

Ia 77,41 (394) 0,1965 (1) 21,41 (109) 0 (0) 0,9823 (5) 

IIIb 29,93 (0) 70,07 (0) 0 (0) 0 (0) 0 (0) 

Ib 0 (0) 0 (0) 100 (1) 0 (0) 0 (0) 

IIIc 0 (0) 100 (4) 0 (0) 0 (0) 0 (0) 
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A Markov chain analysis was tested out to see if there was a 

statistically significant pattern between the occurrences of the 

different facies at the locality (Table 6.3). The results show that 

there is a 30% and a 70% chance of Facies IIIb being succeeded 

by Facies IIa or Facies Ia, respectively. There is a 93% and a 6% 

chance of Facies IIa being succeeded by either Facies Ia or 

Facies IIIb, respectively, and Facies Ia has a 77% chance of 

being succeeded by Facies IIa and a 21% chance of being 

succeeded by Facies IIIb, respectively. As there are too few 

occurrences of the other facies, their percentages are 

insignificant to the statistic.  

Mineral content and texture 

Seven thin sections were prepared from Limovnstangen, all from 

the Limovnstangen Member. The main components in the 

samples are quartz and calcite, where quartz ranges from 15.0% - 

55.0% and calcite from 32.0% – 80.5%. Undulating and 

polycrystalline quartz account for 1.3% - 8.0% of the total quartz 

content in the samples. The feldspars account for 2.8% – 10.8% 

of the content in the samples. Mica (0.3% – 1.8%), fossil 

fragments (0.3% – 1.8%) and opaque minerals (0.3% – 1.0%) are 

present in four of the samples and are close to insignificant. Small amounts of pyrite and 

limonite are also observed in the samples, where the former can be seen in one sample (0.5%) 

Figure 6.15: Lithological log of the Limovnstangen section, with the occurring sub-

facies associations in the section. 

Figure 6.16: A: 1) Calcite cement. B: 1) Mica. 2) Patchy calcite cement. 
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and the latter in two samples (0.3% and 0.8%). A full overview of the content in the samples 

is presented in Appendix D.  

The rocks are calcite cemented, where the pore space is filled with calcite enclosing the 

detrital grains in the samples (e.g. fossil fragments, quartz, K-feldspar, mica, plagioclase). 

The calcite cement in the samples occurs as patchy between grains of various types (Fig. 

6.16). The samples (Fig. 6.17) have an upward increase in the calcite content from sample 

221.416 to 221.418, and an upward decrease from sample 221.419 to 221.421 with a 

following upward increase to sample 221.422. The variation in the calcite content is related to 

the decrease and increase in the quartz content (Fig. 6.17). The quartz/feldspar ratio varies 

from 4 to 5, except for the lowermost sample (221.416) which shows a value of 9. In some of 

the samples the quartz and feldspar grains show corrosion. 

The grain size in the measured samples at Limovnstangen shows silt as the average grain size 

at this locality (Fig. 6.18). All samples (221.416, 221.417, 221.419, 221.421 and 221.422) 

were collected from Facies IIa, which represent the coarsest material at the locality. The 

grains show an average roundness from very angular to sub-angular. It should be noted that 

the grain size in the logs is exaggerated by one fraction from the measured grain size in the 

samples. 

Figure 6.17: A) Mineral content from point counting of thin sections. B) Feldspar/Quartz ratio. C) Simplified log. 
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Palaeocurrent 

A detailed overview of the palaeocurrent measurements are presented in Appendix C, with the 

depth and the measured orientation corresponding to each of the logs. The rose diagrams in 

figure 6.19 to 6.22 are based on all measurements from the locality.   

 

    

Figure 6.19: Palaeocurrent measurements of 

gutter casts. Mean orientation: 62-242. # = 

measurements.  

Figure 6.20: Palaeocurrent measurements of 

symmetric ripples. Mean orientation: 130-

310. # = measurements. 

Figure 6.18: Grain size/roundness graph illustrate the relationship between the grain-size and the roundness of the grains in 

the different samples. Each sample shows an average of the different grains in the sample. 

 



52 

 

 

 

 

 

 

 

 

                               

 Borgen 6.2.2

Sedimentological description 

 

Figure 6.23: Borgen locality. Photo by H. A. Nakrem. 

At the Borgen locality (Fig. 6.23), previously referred to as Djupvarp in Worsley et al. (1982), 

a 9.2 meters thick section of the Sælabonn Formation, the Djupvarp Member, is studied (Fig. 

6.24). The locality was logged at two outcrops (logs Bor01-11 and Bor02-11) to observe the 

lateral variation. The outcrops belong to facies association FA2 where eight upward fining 

units are identified (0 m – 1 m, 1 m – 1.18 m, 1.18 m – 1.82 m, 1.82 m – 2.8 m, 2.8 m – 4.4 m, 

4.4 m – 5.6 m, 5.6 m – 6.7 m and 6.7 m – 8.18 m). 

  

Figure 6.21: Palaeocurrent measurements of 

asymmetric ripples. Mean orientation: 310. # = 

measurements. 

Figure 6.22: Palaeocurrent measurements of 

cross-bedded biosparitic limestone. # = 

measurements. 
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The trough cross-bedded sandstone (Facies IIb) has an erosive base lying on top of mudstone 

(Facies Ia or Ib), sandstone (Facies IIa) or trough cross-bedded sandstone (Facies IIb). The 

overlying unit is either mudstone (Facies Ia or Ib) or biosparitic limestone (Facies IIIb). At 

one level (5.5 m) the sandstone of Facies IIa is succeeding the trough cross-bedded sandstone 

(Facies IIb). The fifth upward fining unit (2.8 m – 4.4 m) has an increased frequency of Facies 

IIa, where it is succeeded by Facies Ia at all levels (Fig. 6.24). The increased frequency seems 

to be local, as laterally the beds get thinner before they disappear.  

  

Figure 6.24: General log of the Borgen section. The blue markers are acetate peels, the red markers are thin sections. 

Legend is presented in Appendix A. 
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Mineral content and texture 

Five thin sections were prepared from Borgen, all from the Djupvarp Member (Fig. 6.25). 

Two samples were collected from Facies IIa (221.425 and 221.427) and three samples from 

Facies IIb (221.423, 221.424 and 221.426). The main component in the samples are quartz, 

where the quartz content ranges from 54.4% – 71.8%. The calcite content ranges from 18.0% 

– 32.2%. Undulating and polycrystalline quartz accounts for 2.5% – 6.8% of the total quartz 

content in the samples. The feldspars account for 6.0% – 10.8% of the content in the samples. 

Mica (0.5%), pyrite (0.3%), opaque minerals (1.2% – 2.5%) and limonite (0.5% – 4.0%) can 

also be observed in some of the samples, but are close to insignificant. The largest 

concentrations of fossil fragments occur in sample 221.423 with 5.1%, whereas in the other 

samples the fossil content is 0% or close to 0%. A full overview of the content in the samples 

is presented in Appendix D.  

 

Figure 6.25: A) Mineral content from point counting of thin sections. B) Feldspar/Quartz ratio. C) Simplified log. 

All of the samples are grain supported, where the calcite cement occur in patches (Fig. 6.26). 

An indication of compaction is observed as there is a presence of fractured mica, and 

corroded quartz and feldspar grains (Fig. 6.27). The quartz/feldspar ratio has two upward 

increasing intervals. The values of the first interval (221.423 to 221.425) go from 7 to 10. In 

the second interval (221.427 to 221.426) the values go from 6 to 10 (Fig. 6.25). 
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The grain size in the measured samples at Borgen show very fine sand as the average grain 

size (221.423, 221.424, 221.425, 221.426 and 221.427) (Fig. 6.18). The grains show an 

average roundness from angular to sub-angular. It should be noted that the grain size in the 

logs is exaggerated by one fraction from the measured grain size in the samples.  

Palaeocurrent 

A detailed overview of the palaeocurrent measurements are presented in Appendix C, with the 

depth and the measured orientation corresponding to each of the logs. The rose diagrams in 

figure 6.28 to 6.30 are based on all measurements from the locality. 

Figure 6.26: 1) Patches of calcite 

cement. 2) Limonite. 3) Microcline. 

Figure 6.27: 1) Fractured mica. 2) 

Corroded quartz. 



56 

 

 Åsaveien 6.2.3

Sedimentological description 

 

Figure 6.31: Åsaveien locality. 

At the Åsaveien locality (Fig. 6.31), previously been referred to as Veltikøll by Whitaker 

(1977), an interval of 9.3 meters of the Sælabonn Formation, the Djupvarp Member (log Åsa-

11), is studied (Fig. 6.32). The outcrop belongs to facies association FA2, where one unit is 

upward coarsening (0 m – 1.4 m) and four upward fining units are seen (1.4 m – 2.08 m, 2.08 

m – 3.98 m, 3.98 m – 4.43 m and 4.43 m – 7.6 m).  

The upward coarsening unit is composed of mudstone (Facies Ia) interbedded by sandstone 

(Facies IIa) and is succeeded by a bed of folded laminated sandstone (Facies IIc). The upward 

fining units are composed of trough cross-bedded sandstone which is succeeded by mudstone 

(Facies Ia), beds of sandstone (Facies IIa) or trough cross-bedded sandstone (Facies IIb). The 

 

 

 

Figure 6.30: Palaeocurrent 

measurements of symmetric ripples. 

Mean orientation: 137-317. # = 

measurements. 

Figure 6.29: Palaeocurrent 

measurements of gutter cast. 

Orientation: 112-292. # = 

measurements. 

Figure 6.28: Palaeocurrent 

measurements of trough cross-bedding 

and cephalopods. Mean orientation: 

118. # = measurements. 
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trough cross-bedded sandstone (Facies IIb) is either overlying itself, mudstone (Facies Ia) or 

the sandstone beds (Facies IIa), with an erosive base. The upward fining units are recognized 

as a repeating pattern in this section. The sandstone beds (Facies IIa) are seen to occur with 

higher frequency than at Borgen, with thin layers of mudstone (Facies Ia) separating them.  

 

Figure 6.32: General log of the Åsaveien section. The blue markers are acetate peels, the red markers are thin sections. 

Legend is presented Appendix A. 

Mineral content and texture 

Four thin sections were prepared from Åsaveien, all from the Djupvarp Member (Fig. 6.33). 

One sample was selected from Facies IIc (221.428), one sample from Facies IIa (221.430) 
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and two samples from Facies IIb (221.429 and 221.431). The main components in the 

samples are quartz and calcite, where the quartz content ranges from 37.3% - 69.8% and the 

calcite content from 2.0% - 49.0%. Undulating and polycrystalline quartz accounts for 2.0% - 

6.5% of the total quartz content in the samples. The feldspars account for 5.3% - 16.5% of the 

content in the samples. Mica (0.3% - 1.3%), fossil fragments (0.3% - 2.8%), pyrite (0.3%) and 

limonite (2.5% – 3.3%) can also be observed in some of the samples. Opaque minerals (2.3% 

- 8.8%) are also present in four of the samples. A full overview of the content in the samples 

is presented in Appendix D.  

The samples from this locality are grain supported, where calcite cement fills the pore spaces 

in patches. The quartz and feldspar grains are corroded. The quartz/feldspar ratio ranges from 

4 to 7, where the section is divided into two upward decreasing units. The decrease in each 

unit is small but noticeable, as the first unit decreases from c. 5 to c. 4 (221.428 to 221.429) 

and the second unit has a value of 7 (221.430 to 221.431).  

 

Figure 6.33: A) Mineral content from point counting of thin sections. B) Feldspar/Quartz ratio. C) Simplified log. 

The grain size in the measured samples at Åsaveien shows very fine sand as the average grain 

size at this locality (221.428, 221.429, 221.430 and 221.431) (Fig. 6.18). The grains show an 

average roundness from angular to sub-angular. It should be noted that the grain size in the 

logs is exaggerated by one fraction from the measured grain size in the samples. 
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Palaeocurrent 

A detailed overview of the palaeocurrent measurements are presented in Appendix C, with the 

depth and the measured orientation corresponding to each of the logs. The rose diagram in 

Figure 6.34 is based on all measurements from the locality.   

 

 

 

 Grunntjern 6.2.4

Sedimentological description 

 

Figure 6.35: Grunntjern locality. Photo by H. A. Nakrem. 

At the Grunntjern locality (Fig. 6.35) 80cm of the Sælabonn Formation, the Store Svartøya 

Member (log Grunn-11), is observed lying on top of the Langøyene Formation, a massive 

limestone (Fig. 6.36). Sub-facies associations FA1a is recognized at this locality. The 

mudstone with the interbedded sandstone is lying on top of a massive limestone, where the 

Figure 6.34: Palaeocurrent measurements 

of cross-stratification. Mean orientation: 

274. # = measurements. 
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limestone has a wavy top. From the section, four levels of sandstone beds of Facies IIa are 

prominent, where the sections are made up by one or more beds.       

 

Figure 6.36: The Grunntjern section. Blue markers are acetate peels, red markers are thin sections. 

Mineral content and texture 

Two thin sections were prepared from Grunntjern, one from the uppermost Langøyene 

Formation (221.439) and the second from the lowermost part of the Store Svartøya Member 

(221.440) (Fig. 6.37). Both of the samples have calcite as the main component. The sample 

from Store Svartøya Member contains 83.5% calcite. It also contains quartz (8.0%), K-

feldspar (0.3%), fossil fragments (5.5%), limonite (1.8%) and opaque minerals (1.0%). The 

sample from the Langøyene Formation is composed of 91.5% calcite, but also contains 2.3% 

quartz and 6.3% fossil fragments. The fossil fragments differ from what is known in the 

Sælabonn Formation (Chapter 6.3), as ooids, algae fragments and oncoids are present 

(Chapter 6.3). The samples are grain supported, but do however contain a large amount of 

calcite cement. 

The grain size in the analysed sample from Grunntjern shows very fine sand as the average 

grain size at this locality (221.440) (Fig. 6.18). The grains show sub-angular roundness. 
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 Toverud 6.2.5

Sedimentological description 

 

Figure 6.38: Toverud locality. Photo by H. A. Nakrem. 

At the Toverud locality (Fig. 6.38) the Sælabonn Formation makes up a section of 100 meters 

(Fig. 6.39). The underlying Langøyene Formation and the overlying Rytteråker Formation are 

also exposed at the locality, a road section. The Sælabonn Formation (log Tov-11) has been 

divided into three members at the Toverud locality by Baarli (1988); Sylling Member, 

Djupvarp Member and Limovnstangen Member. Sub-facies associations FA1a, FA1b and 

Figure 6.37: A) Mineral content from point counting of thin sections. B) Simplified log. 
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FA1c are present at this locality as well as the facies association FA3 at the base of the 

Sælabonn Formation.    

The outcrop is dominated by sub-facies association FA1a but has a higher frequency of sub-

facies association FA1b from 52 meters to 80 meters. 

Sub-facies association FA1c is present at one level 

close to the base (6 m) and at the top (Fig. 6.39).          

Mineral content and texture 

Seven thin sections were prepared from Toverud (Fig. 

6.40). Six samples were selected from Facies IIa 

(221.433, 221.434, 221.435, 221.436, 221.437 and 

221.438) and one sample was selected from Facies IId 

(221.432). The samples from the Sælabonn Formation 

have quartz and calcite as the main components. The 

quartz content ranges from 5.8% – 70.1% while the 

calcite content ranges from 6.5% – 84.5% in the 

samples. Undulating and polycrystalline quartz 

accounts for 0.3% – 4.5% of the total quartz content. 

The samples also contain feldspar (1.3% - 10.1), mica 

(0.3% - 0.5%), fossil fragments (0.2% – 4.0%), pyrite 

(0.3% – 1.0%), limonite (0.5% - 8.8%) and opaque 

minerals (0.3% - 5.3%). The sample from the 

lowermost part of the Sælabonn Formation (Facies IId) 

has calcite as the main component (52.5%), but it also 

contains quartz (29.3%) where 5.8% is undulating and 

polycrystalline quartz. Feldspar (3.1%), fossil 

fragments (0.3%), pyrite (14.8%) and opaque minerals 

(0.3%) are also present. 

The rocks show a grain-supported configuration, where 

the pore space is filled patches of calcite cement. The 

samples have an upward increase in the quartz content 

Figure 6.39: Lithological log of the Toverud section, with the occurring 

sub-facies associations and facies associations in the section. 
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from samples 221.432 to 221.436, followed by an upward decrease from sample 221.436 to 

221.438 (Fig. 6.40). As the quartz content decreases or increases the amount of calcite 

increases or decreases, respectively. It should also be noted that the occurrence of fossil 

fragments is highest in the uppermost sample. There is an increase in the amount of the K-

feldspar in sample 221.434, 221.435 and 221.436. The quartz and feldspar grains have also 

here been corroded. The quartz/feldspar ratio shows an upward decrease (10 - 6), followed by 

an increase (7 – 9) and ending with a decrease in the uppermost sample (5) (Fig. 6.40).  

 

Figure 6.40: A) Mineral content from point counting of thin sections. B) Feldspar/Quartz ratio. C) Simplified log. 

The grain size in the measured samples at 

Toverud shows silt to very fine sand as the 

average grain size (221.433, 221.434, 

221.435, 221.436, 221.437) (Fig. 6.18). All 

three members of the Sælabonn Formation 

are present at this locality, where the beds 

with the coarsest sand (very fine sand) occur 

at the top of the Sylling Member (221.434) 

and in the Djupvarp Member (221.435 and 

221.436). The samples from the lower part 

of Sylling Member (221.433) and the upper 

part of the Djupvarp Member (221.437) have a silt grain size. The grains show an average 

Figure 6.41: Facies association FA3. Well-rounded, 

polycrystalline granular quartz grain. 
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roundness from very angular to angular. In the sample collected immediately above the 

Ordovician-Silurian boundary (221.432) well-rounded, granule quartz grains are present 

(Facies IId) (Fig. 6.41).  

Palaeocurrent 

A detailed overview of the palaeocurrent measurements are presented in Appendix C, with the 

depth and the measured orientation corresponding to each of the logs. The rose diagrams in 

Figure 6.42 and 6.43 are based on all measurements from the locality.  

  

  

 

 

Figure 6.42: Palaeocurrent 

measurements of symmetric ripples 

in the Limovnstangen and Djupvarp 

Member. Mean orientation: 129-

309. # = measurements. 

Figure 6.43: Palaeocurrent measurements 

of gutter cast in the Djupvarp Member. 

Orientation: 55-235. # = measurements. 
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 Fossil content 6.3

The biosparitic limestone beds in the Sælabonn Formation are composed of fossil fragments 

embedded in a matrix of siltstone or/and calcite. Samples were collected at the different 

localities, and acetate peels were prepared and point-counted (Chapter 5.6). Several different 

groups of organisms are observed and variations in species content will be in focus. A 

detailed overview of the percentage of the samples is presented in Appendix E.   

 Limovnstangen 6.3.1

Eleven samples were collected from the Limovnstangen locality. The calcite matrix (27.9% - 

75.9%) is the largest component in the samples, with “unidentified grains” (0.6% - 51.4%) as 

the second largest contributor (Fig. 6.44). The samples belong to Facies IIIb (Chapter 6.1.1). 

The majority of the fossil fragments are brachiopods (1.2% - 12.8%), bryozoans (3.5% – 

15.7%), crinoids (0.5% – 6.2%) and trilobites (0.9% – 5.3%). Intraclasts are also observed in 

five of the samples (Fig. 6.45). A detailed overview of the sample content is found in 

Appendix F. At the locality the sampled beds show three levels with an upward increase of 

“unidentified material” (1.15m – 3.6m, 6.4m – 10.2m and 12.5m – 20.4m). The uppermost 

Figure 6.44: A) Overview of content from point counting of acetate peels. B) Simplified lithostratigraphical log from the 

Limovnstangen section. 



66 

 

(221.451) shows a dominance of the calcite matrix, which is the sample closest to the 

Sælabonn Formation - Rytteråker Formation (transitional) boundary. 

The fossil material of 

the samples shows a 

tendency of grading as 

the largest fossil 

fragments are located 

at the bottom of the 

bed. The elongated 

brachiopod shells are 

deposited parallel with 

the bedding of the 

layers. The 

brachiopods do not 

show any preferred 

orientation regarding the concave or convex side up, however, the majority of the largest 

brachiopods are oriented with the convex side up. Reworking and transport of the fossils 

fragments are noticeable as only parts of brachiopod shells and trilobites are present. Sub-

rounded bryozoans with chambers filled by micrite and “unidentified grains” are also an 

indicator for this (Fig. 6.46).              

  

Figure 6.46: Sample 

221.448; 1) Crinoid. 2) 

Bryozoan. 

Figure 6.45: Sample 221.449; 1) Intraclast. 2) Brachiopod shell. 
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 Borgen 6.3.2

 

Figure 6.47: A) Overview of content from point counting of acetate peels. B) Simplified log from the Borgen section (general 

log). 

 

Figure 6.48: A) Overview of the content from point counting of the acetate peels. B) Simplified log from the Borgen section 

(Log Bor02-11). 
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Six samples were collected from the Borgen locality. Four of them were collected from log 

Bor01-11 (Fig. 6.47) and two from log Bor02-11 (Fig. 6.48). Sample 221.453 and sample 

221.456 correspond to the same biosparitic limestone layer, where the lateral distance 

between the samples are 23.6 meters. The results from the point counting of the acetate peels 

show an upward increase of “unidentified grains” (7.9% - 55.7%). The calcite matrix ranges 

from 17.1 to 66.6. Fragments of brachiopods (0.2% – 6.5%), bryozoans (1.7% – 20.9%) and 

crinoids (0.1% – 13.8%) are present in all samples. Some samples also contain micrite (0.4% 

– 24.9%). Sample 221.455 was collected from Facies IIb (Chapter 6.1.1) which has a higher 

sand content. The other samples were collected from Facies IIIc (Chapter 6.1.1). 

The samples from Facies IIIc show that with the increasing “unidentified grains” the 

occurrence of brachiopods also increases, while the amount of carbonate matrix and 

bryozoans decreases. The difference between 221.453 and 221.456, which correspond to the 

same layer, is the amount of fossil fragments, with a higher amount in sample 221.456. In 

both sections the “unidentified grains” and the calcite matrix are the dominant components. 

The samples have a homogenous distribution with the calcite matrix as the largest component 

(Fig. 6.49). In the samples where “unidentified grains” are the largest component the sorting 

is more defined, and there 

is an upward increase in the 

amount and size of the 

fossil fragments (Fig. 

6.50). In all samples the 

elongated fragments (e.g. 

bryozoans and 

brachiopods) are oriented 

close to parallel with the 

bedding (Fig. 6.49).  

Figure 6.49: Sample 221.456; 

acetate peel with dominance of 

calcite matrix with a homogeneous 

distribution of fossil fragments. 
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 Åsaveien 6.3.3

Two samples were collected from the Åsaveien locality (Fig. 6.51), from the beds with the 

highest concentration of carbonate material. Sample 221.458 was collected from Facies IId 

and sample 221.459 was collected from Facies IIc. A detailed overview of the sample content 

is found in Appendix F. 

The main components in the samples are “unidentified grains” (50.3% – 68.7%) and calcite 

matrix (18.7% - 37.8%). In sample 221.459 fragments of brachiopods (4.4%), bryozoans 

(4.4%) and crinoids (1.7%) have the highest abundance, while in sample 221.458 brachiopods 

(3.0%), bryozoans (2.7%) and gastropods (4.0%) have the highest abundance. Sample 

221.458 is well sorted, with the largest fossil fragments concentrated at the base. Sample 

221.459 is poorly sorted, where the fragments are randomly oriented in the bed. The size of 

the fossil fragments is variable where the majority is 1 mm or less. The gastropods (Fig. 6.52), 

bryozoans (Fig. 6.52), brachiopods and corals are the largest fossil fragments in the samples.       

Figure 6.50: Sample 221.454; 

acetate peel with dominance of 

“unidentified grains”. 1) 

Brachiopod, 2) Longitudinal 

section of bryozoan, 3) Cross 

section of bryozoan. 
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Figure 6.51: A) Overview of the content from point counting of the acetate peels. B) Simplified log from the Åsaveien 

section. 

 

 

 

 

 

 

 

 

 

 Grunntjern 6.3.4

One sample was collected at the Grunntjern locality (Fig. 6.53) from the bed with the highest 

content of carbonate material. The sample belongs to Facies IIIb. A detailed overview of the 

sample content is found in Appendix F.     

 

Figure 6.52: Sample 221.458; 1) Gastropod, 2) 

Bryozoan. 
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Figure 6.53: A) Overview of the content from point counting of the acetate peels. B) Simplified log from the Grunntjern 

section. 

The main components of 

this layer are 

“unidentified grains” 

(19.2%), calcite matrix 

(25.1%) and micrite 

(38.7%), but fossil 

fragments of crinoids 

(6.7%), bryozoans (4.6%) 

and brachiopods (4.6%) 

are also observed in the 

acetate peel. The majority 

of the fragments are less 

than 1 mm and the grading 

of the bed shows an 

upward decrease in number of fragments in the bed (Fig. 6.54).  

 Toverud 6.3.5

Thirteen samples were collected from the Toverud locality (Fig. 6.55). All collected samples 

belong to Facies IIIb. Note that not all samples are presented in Figure 6.55, as some of them 

are too closely spaced to have any illustrative purposes. All samples and detailed results from 

point counting are presented in Appendix F.  

Figure 6.54: Sample 221.460, with decreasing concentration of fossil fragments 

towards the top of the bed. 
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Figure 6.55: A) Overview of the content from point counting of the acetate peels. B) Simplified lithostratigraphical log from 

the Toverud section. 

 

The main component in the samples is the calcite matrix (32.6% - 77.2%). The two other 

major components are “unidentified grains” (1.2% - 37.7%) and micrite (1.3% - 33.3%). 

Sorting of fragments do occur in these beds, where the fossil fragments are highest in 

concentration near the base of the bed, with a decreasing size of the fragments upwards in the 

bed (Fig. 6.56). The “unidentified grains” component is mixed with the calcite matrix in many 

of the beds. In beds where there is a low amount of this component the sorting of the fossil 

fragments is less prominent and the calcite matrix is dominant (Fig. 6.57). Fragments of 

corals are only present in the three lowermost samples, while there is a high abundance of 

crinoids in the two uppermost samples, compared to the other samples. Brachiopods are 

present in all the samples. The bryozoans present in the samples indicate reworking as they 

are filled with quartz grains and micrite, and are sub-rounded. The brachiopod and coral 

fragments have been reworked as well, as they are rounded and fragmented. The average size 

is less than 1mm for the fossil fragments in the samples. The largest fragments, brachiopods 

and corals, have a size of more than 2 mm. The majority of the largest brachiopods are 
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oriented with the convex 

side up, while the smaller 

ones do not show any 

preferred orientation.              

 

 

  

Figure 6.57: Sample 221.565; The 

carbonate matrix is dominant in 

the sample where the fossil 

fragments show very little sorting. 

1) Brachiopod. 

Figure 6.56: Sample 221.464; The 

bed has a relatively high amount 

of siliciclastic material, and a 

sorting is prominent. 1) 

Bioturbation. 2) Crinoid. 3) 

Brachiopod. 
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 Ichnology 6.4

Trace fossils are important in the understanding of the depositional environment, but the 

classification and name setting might be difficult as the exposure and quality of the trace 

fossils are not always of satisfactory quality. Therefore, their occurrence and shape will be in 

focus and not their names, as it is difficult to be 100% certain of their names based on the 

observations done in the field. Most of the observations were done in the Limovnstangen 

Member at the Limovnstangen locality (Chapter 6.2.1). Pictures of the trace fossils are 

presented on plates in Appendix G.  

Palaeophycus 

Plate: 1A-C, 2B-D, 3C, 4C-D, 5A-D, 6B-C, 7A, 7D and 8A-B. 

These samples are composed of elongated weakly curved burial tracks (Plate 1A) which are 

located on top and base of the very fine sandstone beds. The burial tubes which are filled with 

sand show a sinuous geometry in the sand bed (e.g. Plate 1A and 2B). However, they do not 

penetrate very deep into the sand, and are observed at the top and base of the beds where the 

tubes also bifurcate (e.g. Plate 1B and 7A). They are 5 mm to 1 cm in diameter and are filled 

with sand from the sandstone beds, which indicates that the organism thrived in the sand. This 

type of trace fossil shows a variable abundance where the smallest specimens have the highest 

abundance. From the BI-index by MacEachern and Bann (2008), the beds range from 1 to 4 in 

value. Based on the appearance and behaviour of the trace fossils in these samples, they are 

classified as Palaeophycus (Benton and Gray, 1981).         

Chondrites 

Plate: 3A, 4B, 6D-E and 7B-C. 

These samples are composed of branching structures where each of the branches bifurcates 

regularly. They have a variable size where the smallest branches are 0.5 mm wide (Plate 6D) 

and the largest are 3 mm wide (Plate 6E) and are observed at the top and at the base of 

sandstone beds. The branches are easily visible as they are filled with mud, which indicates 

that the producing organisms have burrowed through the mudstone before reaching the 

sandstone. The samples occur with one or several individual branches. The largest specimens 

occur alone. From the BI-index (MacEachern and Bann, 2008) these beds range from 1 to 2 in 

value. Based on the behaviour and appearance, these are classified as the Chondrites (Benton 

and Gray, 1981).        
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Escape structure 

Plate: 2A and 6A. 

These samples are composed of vertical shafts where animals have moved through the 

sandstone beds. This is illustrated in Plate 2A and 6A, where there is a disruption of the 

laminae in the bed. The shafts are c. 5 mm across in the cross section of the beds. The whole 

shaft is not visible in the cross-sections, which makes it difficult to determine the exact width 

and geometry of the shafts. The BI-value of these beds is 1, as the laminae are still distinctive 

and only a few traces are visible (MacEachern and Bann, 2008).     

Vertical burrows 

Plate: 4A and 6B. 

Vertical burrows occur in some beds. Shafts are filled with the sediments from the burrowed 

sediments. The shafts are seen at the base and at the top of the bed, and are 5 mm to 9 mm in 

diameter. The bed in Plate 6B has a value of 2 in the BI-index, while the bed in Plate 4A is 

more abundant, and has a value of 3 in the BI-index (MacEachern and Bann, 2008).    

Horizontal burrows 

Plate: 3B and 3D. 

These trace fossils occur as horizontal burrows at the base (Plate 3B) and at the top (Plate 3D) 

of beds. They are observed as straight burrows with an infill of mud. The traces have a 

diameter of 2 mm to 4 mm. The beds have a value of 2 in the BI-index (MacEachern and 

Bann, 2008). 
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 Discussion 7
The discussion is based on field observations, the logged sections (Appendix A), 

palaeocurrent measurements (Appendix C) and visual interpretations of thin sections 

(Appendix D), acetate peels (Appendix F) and trace fossils (Appendix G). The logs cover 

only vertical sections, and therefore present lateral constraints for the depositional strike and 

the lateral extent of the formation in an otherwise 3D-depositional system. To get an 

understanding of the lateral extent of the area, information from published sources needs to be 

taken into account. 

 Structural outline 7.1

 Palaeocurrent and palaeodepth indicators 7.1.1

Palaeocurrent measurements are useful for the understanding of transport of material in the 

system. Both the asymmetric and symmetric ripples can be formed by oscillatory motion 

(Evans, 1941). Palaeocurrent measurements of the symmetrical ripples display a stable trend 

for the Djupvarp Member and Limovnstangen Member at Limovnstangen (Fig. 6.20), Borgen 

(Fig. 6.30) and Toverud (Fig. 6.42). At all localities they have a NW-SE biomodal palaeoflow 

direction. The measurements of the symmetrical ripples from Toverud are few and are 

therefore not statistically valid. They do, however, give an indication of the orientation of the 

palaeocurrent of the wave ripples. The asymmetrical ripples from Limovnstangen show a NW 

unimodal palaeoflow direction (Fig. 6.21). As the palaeoflow of the wave ripples are directed 

close to perpendicular on the shoreline (Duke, 1990), the palaeoshoreline must have had a 

NE-SW orientation during the time of deposition of these two members. The trough cross-

bedded sandstone (Facies IIb) and cephalopods of the Djupvarp Member at Borgen (Fig. 6.28) 

and Åsaveien (Fig. 6.34) indicate an average transport in a W-NW direction, slightly oblique 

on the palaeoshoreline. The bipolar direction of the cross-bedded limestone (Fig. 6.22) 

(Facies IIIc) has been suggested by Broadhurst (1968) to be formed as a result of tidal 

influence. They display a transport direction to the NE and SW, parallel to the shoreline. 

There are, however, no other visible indications for tidal influence in the Limovnstangen 

Member, indicating a different process. A possible cause could be that the two-dimensional 

dunes were strongly sinuous, which would display distorted directions. The measurements 

from both the through cross-bedded sandstone (Facies IIb) and the cross-bedded biosparitic 

limestone (Facies IIIc) are few, and might not be statistically valid. 



77 

 

The gutter casts measured in the Limovnstangen Member at Limovnstangen show a mean 

SW-NE orientation (Fig. 6.19). The gutter cast in the Djupvarp Member at Borgen (Fig. 6.29) 

and Toverud (Fig. 6.43) show W-NW to E-SE and W-SW to E-NE direction. The gutter casts 

at Limovnstangen and Toverud show a shore-parallel orientation which suggests a set-up of 

currents which were created by unidirectional geostrophic flows (cf. Myrow, 1992b, Myrow 

and Southard, 1996). The Djupvarp Member at Borgen illustrates a shore-oblique direction of 

the gutter cast which were formed under unidirectional, shore-oblique geostrophic flow in 

accordance with formation of gutter casts as interpreted by Myrow and Southard (1996). 

Gutter casts oriented perpendicular to the shoreline has been formed by oscillatory flows 

generated by waves during storms (Plint, 1996). This suggests a dominance of geostrophic 

flow during deposition of the upper two members. The dominance of either of these two 

forces might be controlled by storm intensity and duration, wave height and water depth 

(Varban and Plint, 2008). It’s important to note that there are few measurements from the 

Toverud and Borgen locality and that the palaeodepth indicators may not be statistically valid. 

 Palaeogeographic setting 7.1.2

The palaeocurrent direction illustrates a shore line which was directed from SW to NE. The 

gutter casts indicate a more proximal position for the Ringerike District than the Modum 

District, which suggests a palaeoslope inclined towards the present southeast, which is also 

confirmed by the work done by Thomsen (1982) and Baarli (1985). The amount of coarser 

material is decreasing from the northwest to the southeast, which is observed in the Djupvarp 

Member at the Toverud and the Borgen localities. The presence of tempestites in the Solvik 

Formation (Baarli, 1985), suggests that the deepest part of the Oslo Region was not positioned 

under maximum storm wave base. A transect from the Solvik Formation in the central Oslo 

District (Baarli, 1985), Sælabonn Formation at Hadeland (Braithwaite et al., 1995) and 

Helgøya Formation in the Mjøsa districts (Skjeseth, 1963, Worsley et al., 1983) displays the 

same trend. This indicates a source area for the siliciclastic material to the present west or 

northwest, rather than the east. The tectonic transport of the Caledonian orogeny displays a 

general NW to SE transport, where local differences occur in the Oslo Region (Bruton et al., 

2010, Hjelseth, 2010).  This suggests that during the formation of the Sælabonn Formation the 

palaeoshoreline was oriented close to parallel with the evolving Caledonian orogeny.  

The Solvik, Sælabonn and Helgøya formations represent the first siliciclastic units of the 

Silurian succession in the Oslo Region and were formed on a shallow shelf. The second and 
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third units are represented by the Bruflat Formation and the Ringerike Group. In between 

these pulses carbonate rich units are present, represented by the Rytteråker Formation as the 

first unit and the Braksøya and Steinsfjorden formations as the second units at Ringerike. The 

Sælabonn Formation is succeeding the Langøyene Formation where these two formations are 

bound by an erosional surface, which coincides with the Ordovician-Silurian boundary 

(Worsley et al., 1983, Braithwaite et al., 1995). The shifts in facies patterns, high siliciclastic 

input and carbonate dominance, suggest interactions between tectonic events.    

 Petrography 7.2

The fine grain size (Fig. 6.18) indicates a transport through suspension load and not as 

bedload. Work performed by Krumbein (1941) suggests that smaller grains are less rounded 

than larger grains, transported over the same distance. The size and roundness of the grains in 

the Sælabonn Formation suggest the same (Fig. 6.18). It should be noted that the initial 

distance from source to deposition is difficult to calculate for the Sælabonn Formation.  

The mineral content of the thin sections shows a high amount of quartz and calcite. As 

mentioned in Chapter 5.5 the total feldspar content of the samples might be underestimated, 

and the real abundance is likely higher. However, the amount of feldspar has the highest 

abundance in the Djupvarp Member (Borgen, avg. 7.9%; Fig. 6.25, Åsaveien, avg. 10.7%; Fig. 

6.33 and Toverud, avg. 7,9%; Fig. 6.40), but this might also be due to the larger grain size as 

this would make it more easily to differentiate between feldspar and quartz grains. The 

quartz/feldspar relationship (Q/F-ratio) is connected to the amount of the reworking of the 

sediments. Due to abrasion of the sediments mechanically weak or soft grains are shattered 

during transport (Boggs Jr., 2009). In all localities a variation in the relationship is recognized, 

where a higher ratio indicate totally a longer distance of transportation and abrasion of the 

sand population. When comparing the different localities a trend is visible. Higher abundance 

of siliciclastic sediments is represented with a higher Q/F-ratio, suggesting a higher rate of 

reworking of the sediments. The Sylling Member and the Djupvarp Member in the Ringerike 

and Modum districts display a higher Q/F-ratio than the rest of the Sælabonn Formation, 

suggesting a higher rate of reworking of the beds (Table 7.1). Table 7.1 show an upward 

decrease in the ratio, whereas the values for the Djupvarp Member are decreasing from the 

Modum District towards the Ringerike District, suggesting a relative shorter distance of 

transport for the sediments in the Ringerike District. No other clear trends are prominent, 

other than higher abundance of sand correlates with higher Q/F-ratio. Due to the data 
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uncertainty it’s difficult to interpret the data. If the source is feldspar-poor the Q/F-ratio 

would be deceptively high (Pettijohn, 1975), as it might be in this case. 

Table 7.1: Average Q/F-ratio from the members. Few samples may cause uncertainty. 

 Ringerike District Modum District 

Limovnstangen Mbr. 5 5 

Djupvarp Mbr. 7 8 

Store Svartøya/Sylling Mbr.  - 8 

 

The porosity and permeability were most likely better before final burial, as fractured mica 

between grains and corroded quartz and feldspar are recognized (Fig. 6.27). This indicates 

both a chemical and mechanical compaction of the rocks. The samples show both 

interconnection and non-interconnection between the pore spaces, which have been filled by 

calcite cement. The source of the calcite cement is very likely dissolved fossil fragments, and 

the corrosion of quartz and feldspar is associated with the presence of calcite cement in the 

rocks, as also shown by Turner and Whitaker (1976). 

The limonite in the sample is secondary and is a result of weathering or oxidation of the rock 

(Kerr, 1959). The highest abundance occurs at Toverud, Åsaveien and Borgen, which also are 

the localities where the intensity of weathering are the highest.         

 Provenance  7.2.1

An indicator for the source material coming from the advancing nappe would have been 

presence of the antiperthite (“Jotunperthite” from the Jotun Thrust Sheets) found and 

described in the Ringerike Group (Turner and Whitaker, 1976). However, no antiperthites 

were observed during the study of the thin sections. The high abundance of quartz in the 

sandstone indicates that the source area was rich in quartz, where the source material could 

have derived from a land area to the northwest (Telemark Land) or the Valdres Thrust Sheets. 

The Valdres Thrust Sheets contain slices of Precambrian basement, Precambrian and Vendian 

immature sedimentary rocks and Cambro-Ordovician quartzites and slates (Nickelsen et al., 

1985). The land area to the northwest is suggested to be an important source area for 

siliciclastic material (Bruton et al., 2010). The presence of polycrystalline and undulatory 

quartz grains suggest a partly source from metamorphic rocks (Boggs Jr., 2009). The large 

polycrystalline quartz grains (Fig. 6.40) from the lag layer (facies association FA3) on top of 

the Ordovician-Silurian surface suggest the same.    
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Braithwaite et al. (1995) favoured a sediment source from the aulacogen sequence in the 

Hedmark Basin to the north and the crystalline basement for the Hadeland District (Fig. 2.1), 

which were uplifted by the movement of the developing nappe pile in the NW. Baarli (1985) 

suggested that the siliciclastic source for the Oslo and Asker districts was situated in the W to 

SSW. Braithwaite et al. (1995) also suggested the sandstone to be a second generation 

sandstone, at the Hadeland District, as it displayed a mineralogical maturity. The Sælabonn 

Formation at the Ringerike District does not show the same high maturity, as the feldspar 

content of the sandstone is more likely higher than 10 %. Further research should be 

performed to confirm this.  

The lateral extent of the Sælabonn Formation suggests a source area NW to SW of Ringerike, 

as it gets gradually thinner towards the south (Ringerike and Skien) and north (Mjøsa) of 

Hadeland. As the palaeoshoreline was situated to the NW, parallel to the Caledonian Thrust 

Front a siliciclastic source to the NW is favoured. The sediments from the source area could 

have been rerouted to the south or north, where the alongshore currents have been the main 

transport agent for the siliciclastic material on the shelf, once it reached the sea. The primary 

source is however something that need to be looked further in to, as sufficient data is not 

available in the data set of the present work.  

 Fossil fauna 7.3

The sample from the uppermost part of the Langøyene Formation shows a different 

composition in fossil fauna, compared to the samples from Sælabonn Formation. The 

presence of ooids, oncoids and algae fragment, suggests a shallow high energy environment 

(Flügel, 2004) for the uppermost of Langøyene Formation at Grunntjern.   

The fossil fragments from the bioclastic beds in the Sælabonn Formation reflects, as presented 

in Chapter 6.3 (Fig. 6.44, Fig. 6.47, Fig. 6.48, Fig. 6.51, Fig. 6.53, Fig. 6.55), a mixture of 

infaunal and epifaunal elements (e.g. brachiopods, crinoids, bryozoans, trilobites, corals and 

gastropods). This was also observed by Thomsen (1982). All fossils observed in the Sælabonn 

Formation display reworking, which occurred during winnowing of the material during 

storms. Corals, crinoids and bryozoans need a hard substrate to grow and thrive. Their habitat 

might have been carbonate shoals on the shelf. The size of the corals might have been a 

limiting factor on the abundance as high energy is needed to transport them, which only 

occurred during the larger storms. The other groups (e.g. brachiopods and trilobites) tolerate 

the muddy substrate. The size of e.g. bryozoans and crinoids are not big which might have 
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been caused by the environment, as frequent storms would have prevented them from 

growing larger. The micrite observed in the samples from Grunntjern and Toverud occur as 

clasts and bioturbation. The occurrence of clasts is due to erosion of sea-bed during storms 

while as bioturbation is due to burrowing, as they appear as rounded shapes in cross-section 

(Fig. 6.56). Gastropods in general are abundant in all environments (Flügel, 2004), they are 

however here only observed in two samples representing storm layer and slumping.   

The brachiopod shells have a random orientation which is common for event-beds as 

tempestites (Kreisa, 1981). The larger shells, where the majority seem to have a convex-up 

orientation, were affected to a greater extent by the currents, as this is a hydro dynamical 

more stable position. A statistical analysis should be performed on the brachiopod shells to 

see if there is a correlation between the size and orientation.    

 Depositional Environment 7.4

As suggested in Chapter 7.1 the Ringerike District displays a more proximal position to the 

shoreline than the Modum District. The general trend displays an increase in siliciclastic 

content in the Djupvarp Member, with a following decrease. Thomsen (1982) has suggested a 

correlation between the different outcrops for the Sælabonn Formation, in the Ringerike 

District. Two attributes are recognized for correlation purposes between the localities; 

however, an exact correlation is difficult to determine. The first one is the increased presence 

of siliciclastic material in the Djupvarp Member which is recognized at Åsaveien, Borgen and 

Toverud, but represents different facies associations. The second is the underlying and 

overlying formations, which are characteristic in appearance. The abrupt change in lithology 

from the underlying Langøyene Formation and the transitional change from dominance of 

siliciclastic material to dominance of carbonate material in the overlying Rytteråker 

Formation. 

Store Svartøya and Sylling Member 

The Store Svartøya and Sylling members are dominated by facies association FA1a, which 

represents a calmer environment where tempestites occasionally were deposited. The Store 

Svartøya Member is thinner than the Sylling Member which was most likely due to 

differences in the distance to the shoreline (Fig. 7.1). At the lower part of Sylling Member a 

unit (c. 4.5 m – c. 13 m) of sub-facies associations FA1b and FA1c is recognized together 

with FA1a, which indicates an increase in energy. This illustrates a slight shallowing which 

causes an increased input of siliciclastic sediments and deposition of frequent storm layers. 
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This unit is followed by a long section of sub-facies 

association FA1a, which illustrates deeper conditions, as 

only the strongest storms were able to reach the bottom 

of the sea-bed. The forming of nodular limestone is an 

indication of the deeper position of the shelf in this area 

(Möller and Kvingan, 1988). A turn around point, with 

increasing siliciclastic sediments, is observed at c. 30 m 

(Fig. 6.39). Infilling of the accommodation space leads to 

a shallowing event, with a maximum in the Djupvarp 

Member. This implies a shallowing in the upper part of 

Sylling Member into the Djupvarp Member, also 

suggested by Baarli (1988). The Store Svartøya Member 

at Grunntjern is characterized by a higher abundance of 

sand beds closer to the base than the Sylling Member at 

Toverud, where the beds closer to the base are mostly 

calcareous. This indicates that Grunntjern was situated 

more proximal to the siliciclastic source than Toverud. 

This implies that the lower members of the Sælabonn 

Formation display a transgressive setting before a turn-around, with in-filling of the 

accommodation space causing a slight shallowing.  

The presence of the various sub-facies associations suggests a position in the offshore-

transition area (Fig. 7.2A).        

Djupvarp Member 

The Djupvarp Member in the Ringerike District displays a shoal environment where the 

Åsaveien succession displays a more inner position on the shoal, while the Borgen strata 

display a more distal position. In the Modum District the Djupvarp Member is dominated by 

the deposition of tempestites. Possible causes for the rhythmicity in the Ringerike District 

could be (i) eustatic sea-level changes or (ii) regional sea-level changes. The presence of 

Facies IIIc on top of Facies IIb indicates an abrupt lack of the siliciclastic component, which 

suggests a retreat of the shoreline.  

The Sælabonn Formation sediments were deposited on a large shallow shelf, where a slight 

increase in sea-level would push the shore further inland, which would diminish the supply of 

Figure 7.1: Overview of the thicknesses of 

the members in the Sælabonn Formation in 

the Ringerike District and the Modum 

District. The thickness of the members in the 

Ringerike District is from Thomsen (1982), 

as the current work lacks the sufficient data 

to make an estimate. 
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siliciclastic material. Regional sea-level changes are usually influenced by tectonic 

movements. Cyclicity due to tectonic movement is difficult to prove, however, the cyclicity 

has most likely a time span of 100 000’s years and not millions of years. A possible cause for 

this rhythmicity could be the Milankovitch eccentricity cycles, which are of 100.000 and 

400.000 years intervals. However, this is a hypothesis which needs more attention. The 

slightly oblique transport of the sand dunes on the palaeoshoreline suggests transport 

controlled by oscillatory flow. The tempestites at Toverud are in average thicker than the 

tempestites observed in the other members; according to Swift and Parsons (1999) tempestites 

increase in thickness when they are closer to the shore. The access of sand is also greater in 

the Djupvarp Member which also needs to be taken into account. At the Ringerike District 

(Borgen and Åsaveien) facies association FA2 reflects the middle member, while at the 

Modum District (Toverud) sub-facies association FA1b dominates.    

A possible origin of the sand shoals would be an overstepping of barriers, formed during 

transgression by reworking of fluvial sediments deposited on the exposed shelf during 

previous sea-level lowstand. The water column advances over the sand and erodes it from the 

substrate; therefore, the sand does not find its way to the shelf, instead it is already situated 

there (Swift and Parsons, 1999). The barrier sand would eventually evolve and become 

detached from the shoreface, forming isolated sand bodies on the shelf as the transgression 

progressed. Thomsen (1982) suggested that Djupvarp Member reflected submerged bars, 

however the extent of the sand beds suggests otherwise. She also saw indications of tidal 

influence; this is however not observed at Borgen and Åsaveien, which suggests that the 

member was positioned deeper than she postulated. The tidal influence might also have been 

from the remnants of the barrier complex, as she has a more extensive coverage of the 

Djupvarp Member at Ringerike.  

As the transgression progressed the sediments were reworked, due to erosion of the shoreface 

before the finer sediments are transported offshore where they are deposited (Swift and 

Parsons, 1999). A progradation of the coastline is favoured for the Djupvarp Member as the 

tripartite splitting of the formation occurs in several areas from north to south in the Oslo 

Region (Worsley et al., 1983, Braithwaite et al., 1995). This suggests a regional event with 

increase of net sediment supply, rather than an overstepping of a barrier complex during 

transgression.    
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Figure 7.2: Schematic illustration of the depositional environment during deposition of the Sælabonn Formation at 

Ringerike and Modum districts. A) Store Svartøya and Sylling Member; a transgressive setting where deposition of mud is 

dominant, where tempestites are deposited during sudden events. B) Djupvarp Member; progradation of the coastline with 

development of sandy shoals at the Ringerike District and more extensive and thicker tempestites deposited in the Modum 

District. C) Limovnstangen Member; continued transgression with decrease in siliciclastic material where both deposition of 

sandy and bioclastic tempestites in mudstone. All four members indicate an inner shelf position. Palinspastic reconstruction 

suggests that the Grunntjern locality was situated 34 km closer to the palaeoshoreline than the Toverud locality (Chapter 

7.5). 
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Braithwaite et al. (1995) observed that the Sælabonn Formation was only represented by the 

Djupvarp Member in the eastern part of the Hadeland District, suggesting a progradation of 

the coastline from the NW.  

Trace fossils recognized at Toverud, Borgen and Åsaveien have been classified as 

Palaeophycus and Chondrites. Chondrites is a facies breaker where the occurrence is related 

to chemically reducing conditions in the sediments, which makes it indirectly dependent on  

the sea-floor conditions (Bromley and Ekdale, 1984).  Palaeophycus represents dwelling 

burrow and are also facies-crossing, occurring in all environments (Benton and Gray, 1981, 

Buatois and Mángano, 2011).  

 

A progradation of the coastline is suggested for the Djupvarp Member, which explains the 

formation of shoals in the Ringerike District and increased abundance of thicker tempestites 

in the Modum District (Fig. 7.2B). Due to low stratigraphic resolution, geometry and extent of 

the shoal system is difficult to determine, but the Djupvarp Member might represent an 

isolated shallow marine sandbody in the offshore-transition area on the shelf.          

Limovnstangen Member 

The Limovnstangen Member reflects a time interval of reduced supply of siliciclastic material, 

in contrast to depositional time of the Djupvarp Member, as well as a general upward 

decrease of the siliciclastic material in the member (Fig. 6.15). Both at Toverud and 

Limovnstangen the same environment is reflected, with slightly thinner beds at Toverud. The 

decrease of bioclastic material (Chapter 6.2.1) in the Limovnstangen Member is interpreted to 

have been caused by a transgression. The storms have not been strong enough to wash out the 

bioclastic material, suggesting a deeper position. The following increase of bioclastic material 

coincides with the decrease in siliciclastic material, suggesting a lower supply of siliciclastic 

material and possibly a shallowing. Pulses of siliciclastic material (Fig. 6.15) can be caused 

by sea-level variations, as their volume and frequency is directly related to sediment supply 

by nearshore erosion and redeposition (Einsele, 1996). The cause is, however, uncertain, but a 

connection to the Milankovitch periodicity might be an explanation, or the pulses might 

reflect events in tectonic activity in the advancing Caledonian Thrust Front. The formation of 

gutter casts indicate a presence of alongshore currents, which have transported material into 

the area. Baarli (1985) suggested an oblique transport of the siliciclastic sediments on the 

shelf for the Solvik Formation, due to geostrophic counter currents set up by storms.      
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Palaeophycus, Chondrites, escape structure, vertical burrows and horizontal burrows are 

observed in the Limovnstangen Member, where Palaeophycus has the highest abundance. 

The escape structures suggest an episodic deposition of the sandstone beds (Facies IIa). As 

both the Palaeophycus and Chondrites are facies-crossing, environmental signals are difficult 

to interpret based on these observations.  

Whitaker (1977) suggested a depth of 200 meters for the Limovnstangen Member at the 

Ringerike District. This is unlikely as, according to Dumas and Arnott (2006), hummocky 

cross-stratification only forms in the depth ranges of 13 m to 50 m. An offshore-transition 

position on the inner shelf is suggested for the Limovnstangen Member (Fig. 7.2C). 

 Back-Bulge Depozone 7.5

To understand the stratigraphical development of the Sælabonn Formation the distance and 

the direction of the tectonic shortening should be perceived. To clarify this is a difficult 

subject, as little shortening is needed to form folds and the amplitude of the folds differs, 

overthrusting is a problem in itself. Both Fjærtoft (1987) and Morley (1986a) concluded that 

shortening is difficult to calculate, as there is both lateral and vertical differences in strain of 

the Lower Palaeozoic succession in the Oslo Region. Morley (1986a) suggested a shortening 

of 50 % for the Lower Ordovician in the northern part of Ringerike. A 50% shortening of 

Lower Silurian in the Ringerike District might be a reasonable estimate; however this is just 

an assumption and further work need to be done to confirm this estimate (Bjørn Tore Larsen, 

pers. comm., 2012). As previously mentioned the general direction of the shortening was 

most likely from the NW. Palinspastic reconstruction, with a 50% shortening, suggests an 

initial distance of 34 km at the time of deposition, from the present 17 km, where Grunntjern 

would have been situated 34 km closer to the palaeoshore than Toverud (Fig. 7.2).  

The Sælabonn Formation is in contrast to the overlying Rytteråker Formation (Chapter 4.2), 

dominated by siliciclastic sediments. The palaeogeographical position of the Sælabonn 

Formation has been suggested by Thomsen (1982) to be on an epicontinental shelf; however, 

the position of the formation in relation to the developing Caledonian foreland basin has been 

vaguely defined.  

The exposure of the shelf sediments, Langøyene Formation, has been suggested to be tectonic 

and eustatic; where Spjeldnæs (1957) was in favour for folding, while Brenchley and Newall 

(1975) suggested eustatic sea-level fluctuations and local adjustments of the basement blocks. 
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Bjørlykke (1974) suggested that the relative subsidence of the Oslo Region in the Early 

Silurian was not only influenced by a eustatic sea-level rise, but also had a strong tectonic 

component. The missing part of the Upper Ordovician at the Mjøsa districts was, according to 

Bjørlykke (1983), caused by uplift and exposure in this period and was synchronous with the 

subsidence further south in the Oslo Region. Bjørlykke (1983) thought that the most likely 

cause was the adjustment of the craton related to subduction further west. The evidence of an 

angular unconformity, which was suggested by Spjeldnæs (1957), is difficult to prove 

(Bjørlykke, 1983). Spjeldnæs (1957) suggested that the base of Silurian gets younger further 

north which was supported by Thomsen (1982), who observed kart surface inclined towards 

the south. Karst surfaces were also observed at Mjøsa, where also a significant age gap is 

present, where the whole Ashgillian is missing (Skjeseth, 1963, Worsley et al., 1983, Owen et 

al., 1990). Skjeseth (1963) referred to the Helgøya Formation, which is the lowermost 

Silurian deposits in the Mjøsa districts, as sub-Stage 6c, which correspond to the 

Limovnstangen Member in the Ringerike District. The biostratigraphical resolution of 

conodonts is too low to date the gap between the Ordovician and Silurian strata, but the 

occurrence of Oulodus kentuckyensis and Icriodella discreta suggests a Silurian age for the 

Solvik Formation and Sælabonn Formation in the Asker and Ringerike districts (Aldridge and 

Mohamed, 1982). Work done on graptolites suggests the same, but data from the Ringerike 

District is not presented in the paper by Howe (1982).  

Palaeo-water depth analysis of graptolites done by Baarli (1985) suggest an overall upwards 

shallowing for the Asker and Oslo districts. Baarli et al. (2003) performed work on graptolites 

in the Helgøya Formation (named the Sælabonn Formation in that paper), which suggested a 

slight deepening of the Helgøya Formation. A cross section from Toten in the NW to 

Malmøya in the SE suggests a gradual deeper position of the lowermost Silurian towards the 

SE (Baarli et al., 2003). Comparing the global eustatic curve (Fig. 4.3) by Johnson et al. (1998) 

with the relative sea-level curves for the Oslo Region given by Baarli et al. (2003), no 

comparable trend is evident. Differences in the relative sea-level in the districts suggest that 

the eustatic influence in sea-level has been very little. The different palaeo-water depth-trends 

from NW to SE suggest tectonic influences as dominant on the region, rather than the eustatic 

sea-level changes.  

The increasing age gap from SE to NW in the Oslo Region suggests an uplift of the northern 

area. The development of a peripheral bulge would explain the relative decrease and increase 

in sea-level and creation of accommodation space, together with the eustatic fluctuations in 
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the sea-level. A tectonic influence caused by the peripheral bulge does not necessarily need to 

results in an angular unconformity. As the continental crust of Baltica is old and thick 

(Garfunkel and Greiling, 1998) the bulge would have had a large wavelength. This would 

cause the Silurian strata to lie disconformably on top of the Ordovician strata. 

The transgressional development of the Sælabonn Formation, which also was suggested by 

Bruton et al. (2010), might have been influenced both by the retrogradation of the peripheral 

bulge and eustatic sea-level rise. The deepening close to the base of the Solvik Formation was 

suggested by Baarli (1985) to be caused by a eustatic sea-level rise. Hendriks and Redfield 

(2005) argued that the Caledonian foreland basin was not a large basin. If this is the case the 

depression in front of the thrust wedge was not of great proportions, and therefore could 

“easily” be filled causing spill over of sediments to the forebulge/back-bulge area (Fig. 7.3).  

The increase in sea-level and creation of accommodation space at Ringerike may be due to 

retrogradation of a foreland bulge, whereas the progradation in the Djupvarp Member may be 

due to a response of filling of the foredeep. Retrograding of a foreland bulge takes place when 

the thrusting slows down and subsidence is the dominant process in the thrust wedge as 

sediments fill the basin (Sinclair et al., 1991, Bertog, 2010). The start-up of thrusting will cut 

off the siliciclastic source and movement of the peripheral bulge will start to move towards 

the SE. With the decreasing siliciclastic input the bioclastic material starts to dominate, 

leading to the formation of the Rytteråker Formation. The overall upward shallowing of the 

Solvik Formation in the central Oslo Districts suggests that the sediment supply was higher 

than the creation of accommodation space. Therefore a position in the back-bulge depozone 

might be reasonable to assume for the Sælabonn Formation and the Solvik Formation (Fig. 

7.3). 

 

Figure 7.3: Suggested areas of deposition in the Caledonian foreland basin. The horizontal and vertical scale is not 

representative for the actual distance or thickness. Modified from Baarli (1990a). 
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The Ordovician-Silurian boundary 

The lowermost Silurian sediments, facies association FA3, in-fills the karst surface of the 

uppermost Ordovician Langøyene Formation, as has been recognized by others (e.g. Skjeseth, 

1963, Thomsen, 1982, Braithwaite et al., 1995) in the Ringerike, Hadeland and Toten 

districts. In this study two localities were studied, where the boundary is exposed. At 

Grunntjern the massive limestone, uppermost Langøyene Formation, is succeeded by facies 

association FA1a, of the Sælabonn Formation. These two formations are separated by a wavy 

surface, the Ordovician-Silurian boundary. At Toverud the same massive limestone is present 

but with karst structures on top, in-filled by the lag deposit of facies association FA3 (Chapter 

6.1.2) and succeeded by facies association FA1a. Karst structures are produced by fresh water 

running on exposed carbonate rocks (Collinson et al., 2006). Thomsen (1982) and Braithwaite 

et al. (1995) also described these karst structures at Store Svartøya in the Tyrifjord and in 

Hadeland, respectively. At Store Svartøya the structures are much larger with a width of 1-2 

meters and depth of 0.5 meter, where they are inclined towards the south (Thomsen, 1982).  

The wavy surface at Grunntjern might have been caused by topographic differences on the 

exposed shelf as the flowing water eroded. The in-filling of the karst surfaces was, according 

to Braithwaite et al. (1995), caused by a minor transgression during the overall regression. 

Braithwaite et al. (1995) regarded the top Ordovician as a type one sequence boundary. 

Larsen and Olaussen (2005) recognized the top Ordovician as a second-order sequence 

boundary. The granule quartz grains could have been transported into the depositional area 

either through the development of a fluvial environment on the exposed shelf, or as erosional 

remnants from the underlying Langøyene Formation. A development of fluvial environment 

would also suggest a development of channels in the Oslo Region. The Ordovician-Silurian 

boundary is interpreted as a ravinement surface.              

 Sedimentological development of the Oslo 7.6
Region 

To understand the regional development of the stratigraphy of the Oslo Region we must first 

recognize that there have been allocyclic mechanisms influencing the Oslo Region, which 

eventually has led to structural shortening of the Lower Palaeozoic succession of the region. 

This means that the localities were separated further apart during the time of deposition than 

the distance they reflect today. 
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The sedimentary rocks in the Oslo Region are varied, with wide facies belts displaying 

different depositional characters. Størmer (1967) recognized a development of NNE-SSW 

trending facies belts from the Late Ordovician Caradoc, with shallow environments in the 

north and south progressing into more distal muddy environments to the east. Halvorsen 

(2003) proposed a new basin model for the Silurian stratigraphy. He also implied that the 

Sælabonn Formation might have been one of the first clastic derivate from the Caledonian 

fold-and-thrust belt. Illustration of the Upper Ordovician and Silurian stratigraphy of the Oslo 

Region is presented in Figure 7.4         

1. Upper Ordovician 

The channel structures and the infill in the Oslo District have been suggested to be caused 

by a sea-level low-stand and movements in the basement (Brenchley and Newall, 1975, 

1980) as well as an uplift of the western margins of the Oslo District (Spjeldnæs, 1957). 

The following transgression, where base Silurian gets younger further north, suggests a 

tilt of the platform and regional uplift of the western margins of the Oslo Region, where 

at Mjøsa the Upper Ordovician is missing. In Valdres and Gausdal, turbidite deposits of 

Middle Ordovician age are recognized, belonging to the Strondafjord and Gausdal 

formations (Nickelsen et al., 1985). These deposits suggest that a foredeep (Fig. 3.4) 

already existed north of the Oslo Region in the Middle Ordovician.        

 

2. Llandovery, Rhuddanian/Aeronian Stage   

The Sælabonn and Solvik formations are siliciclastic units which show a NW to SE 

deepening, displaying a more distal development to the SE with a possible source to the 

W to NW. Both the Helgøya and Sælabonn formations display an overall transgressive 

development in the western and northern parts, whereas the Solvik Formation displays an 

upward shallowing development in the eastern parts. The creation of accommodation 

space in the western and northern parts of the Oslo region are possibly caused by the 

retrogradation of a peripheral bulge. With decreasing movements of nappes, 

accommodation space will be created at the margins of the orogeny due to subsidence. 

This allows the carbonate material to dominate the environment, which is represented by 

the Rytteråker Formation. 

 

Möller (1989) suggested a migration of a bar system with a reversal in the early 

Telychian for the Rytteråker Formation. This however, was not in agreement with Baarli 
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(1990a), as a shallowing occurred in the Ringerike, Asker and Oslo districts. Baarli 

(1990a) however recognized a reversal of the bottom slope in the Aeronian and Early 

Telychian with a high south of the Ringerike District. This is likely due to the movement 

of the peripheral bulge. This is advocated by the formation of the deep graptolite basin or 

trough in the north postulated by Worsley et al. (1983) and Bjørlykke (1983). The 

deposition of the Sælabonn and Rytteråker Formation is most likely controlled by the 

movement of the peripheral bulge. As postulated by Baarli (1985) the fluctuations of the 

sea-level could also have been caused by eustatic sea-level changes. This is more likely to 

have caused minor variations in sea-level; where Baarli (1985) observed minor 

deepening’s in the Solvik Formation.     

 

3. Llandovery, Telychian Stage 

The upper part of the Vik Formation has been regarded as a distal development (Oslo 

District) of the Bruflat Formation, and the siliciclastic input is recognized as diachronous 

with the late Aeronian deposits in the Ringerike District and earliest Telychian deposits 

in the central Oslo Region (Fig. 7.4) (Baarli, 1990a). The west to east dipping 

palaeoslope previously recorded in the Llandovery was re-established in the mid-

Telychian, between the Ringerike and Oslo districts (Baarli, 1990a). The progressively 

deeper position of the northern Ek Formation compared to the southern Vik Formation 

(Fig. 7.4) (Worsley et al., 1983, Baarli et al., 2003), suggests a position in the foredeep of 

the foreland basin (Fig. 7.3). The palaeodepth proposed by Worsley et al. (1983) was 

revised by Baarli (1990a), with very little difference in depth between the Vik Formation 

and Rytteråker Formation. The Bruflat Formation has been hypothesised to consist of 

either coastal deposits or prograding delta deposits. Worsley et al. (2011) interpreted the 

Bruflat Formation to be submarine fans, and to be the first clastic infill of the Caledonian 

front. However, the turbidite deposits in the Strondafjord and Gausdal formations suggest 

otherwise. The deposits could also represent tempestites, not necessarily turbidite 

deposits, as the foreland basin might have been shallow (Hendriks and Redfield, 2005) 

which is also in agreement with Worsley et al. (2011). Worsley et al. (2011) suggested a 

single source for the immature sediment at Ringerike, where Bjørlykke (1983) suggested 

the Osen-Røa nappe as the source. 
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4. Wenlock Epoch 

In the transition from the Telychian to the Wenlock carbonate sequences of the Braksøya 

and Steinsfjorden formations display a lack of siliciclastic material (Fig. 7.4) (Worsley et 

al., 2011). These formations display a marginal marine to subtidal environment, with 

small regressive and transgressive events in the Steinsfjorden Formation (Worsley et al., 

1983). The Malmøya Formation in the central districts (Fig. 7.4) gets progressively 

shallower with formation of shoals. The shallowing and shoal development might reflect 

the movement of a bulge. The upper part of the Steinsfjorden Formation is marked with a 

large scale transgressive episode, which is recognized in all districts (Worsley et al., 

1983). This was followed by a regional regression which ended with the deposition of the 

Ringerike Group (Worsley et al., 1983).  

 

5. Ludlow and Pridoli epochs 

The Silurian succession terminates with the deposition of the Ringerike Group; 

Sundvollen, Stubdal, Store Arøya and Holmestrand formations. Halvorsen (2003) 

suggested that the Sundvollen Formation developed in a piggy-back basin, where the 

Stubdal thrust sheet was emplaced on top of the Sundvollen piggy-back basin. Both the 

Stubdal and Store Arøya formations were deposited by braided rivers in the Caledonian 

foreland basin (Davies et al., 2005a). Davies et al. (2005a) noticed a north-south 

difference in the source area between the Stubdal and Store Arøya (named Skien 

Formation in that paper) formations (Fig. 7.4). Sediments in the Stubdal Formation 

derived from the Jotunheimen source area whereas sediments from the Store Arøya 

Formation derived from a mixed Jotunheimen/Sparagmite/local Precambrian source area. 

They explain this by overfilling of the northern piggyback basin allowing new transport 

pathways to become available over a topographic high, situated north of the Skien area.         
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Figure 7.4: The stratigraphy of the Upper Ordovician and Silurian at the different areas with their respective formations in the 

Oslo Region. The formations only represented with their thickness and not age, as some of the formations are diachronous. 

Information compiled from Baarli (1985, 1990a), Braithwaite et al. (1995), Davies et al. (2005b), Larsen and Olaussen 

(2005), Möller (1989), Owen et al. (1990), Thomsen (1982), Worsley et al. (1983) and Worsley et al. (2011).  
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 Conclusion 8
At the time of deposition of the Sælabonn Formation the palaeoshoreline had a SW to NE 

strike, which is close to parallel with the advancing Caledonian orogeny from the NW. The 

lowermost Silurian shows a deepening from NW to SE. The mineral content suggests a quartz 

rich source, most likely from the Valdres Thrust Sheet or the “Telemark land”. The bioclastic 

material indicates a presence of carbonate shoals on the shelf. The deposition of the Sælabonn 

Formation was most likely under a tectonic influence, which is recorded by the regional sea-

level differences; where the central Oslo districts show a general shallowing while the 

Ringerike and Toten districts displays a transgressive phase. This was likely caused by 

retrogradation of a peripheral bulge to the NW due to subsidence in the orogenic wedge, as 

the epicontinental slope was inclined towards the SE. The increased input of siliciclastic 

material in the Djupvarp Member is caused by a progradation, due to tectonic response in the 

foreland basin.    

1. The Sylling and Store Svartøya members display an upward increase in siliciclastic 

sediments with a maximum in the Djupvarp Member, and were formed in the 

offshore-transition environment.  

2. Djupvarp Member reflects a sandy shoal complex in the Ringerike District, whereas 

the Modum District displays a more distal deposit with tempestites. The increase in 

sand is due to a progradation of the shoreline, where the Ringerike and Modum 

districts are still situated in the offshore-transitional environment.   

3. The Limovnstangen Member has a decrease in the siliciclastic input, from the 

underlying Djupvarp Member. The formation is dominated by deposition of 

tempestites of bioclastic and siliciclastic material, due to storms. A turn-around point 

is recognized, where there is an increase in carbonate material and a general decrease 

in siliciclastic material. A shallowing is suggested with the development of the 

Rytteråker Formation taking place. 

The Sælabonn Formation was most likely situated in the back-bulge depozone of the 

Caledonian foreland basin. Further study is needed to solve some of the unanswered questions 

like: 

- The extent of the shoal complex in the Djupvarp Member. 

- The source of the siliciclastic material. 
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Log number:    Lim01-11, Lim02-11 and Lim03-11 

Locality:    Limovnstangen 

Geographical position:  Lim01-11; 0569121-6658770 to 0569121-6658770 

    Lim02-11; 0569127-6658756 to 0569195-6658681 

    Lim03-11; 0569048-6658823 to 0569048-6658823   

 

Description of the outcrop: Three outcrops were logged at this locality which is located in 

an anticline fold. Log Lim01-11 (7,8m) was logged from a nearly vertical outcrop by the 

beach, where the log starts at the beach and ends were the vegetation covers the remaining 

outcrop. Log Lim02-11(31,7m) was logged by walking along the beach towards east. From 

0m to 20m the rocks crop out from a cliff, the remaining part of the log was logged on the 

beach hence the holes in the log due to cover by beach rocks. Log Lim03-11 (10,1m) was 

logged on the west part of Limovnstangen, where rocks crop out from a small cliff. 

Sedimentary structures were easily recognizable at Lim01-11 and lower part of Lim02-11. 

The upper part of Lim02-11 is exposed to weathering and is covered by beach rock which 

made it harder to observe any structures. Due to moss sedimentary structures was harder to 

observe at Lim03-11.  

  

Log number:    Bor01-11 and Bor02-11 

Locality:    Borgen 

Geographical position:  Bor01-11; 0569709-6660340 

    Bor02-11; 0569714-6660317  

 

Description of the outcrop: Two outcrops were logged at this locality which is a vertical 

cliff situated by the beach. Both of the logs (Bor01-11; 9,2m and Bor02-11; 6,1m) were 

logged by climbing up the outcrop. Sedimentary structures and lithology was easily 

observable at this locality. 

  

Log number:    Åsa-11 

Locality:    Åsaveien 

Geographical position:  Åsa-11; 0572783-6667092 to 0572768-6667124 

 

Description of the outcrop: The outcrop is situated along a road, where Åsa-11 (9,3m) was 

logged by walking alongside the road. Sedimentary structures were hard to observe due to 

weathering of the rocks. 

 

Log number:    Grunn-11 

Locality:    Grunntjern 

Geographical position:  Grunn-11; 0573695-6668853  

 

Description of the outcrop: The outcrop is located in a forest not far from a dirt road. The 

bedding of the outcrop has a 35-45 degrees dip. Log Grunn-11 (1,5m) was easily logged but 



XXXIII 

 

sedimentary structures were hard to observe due to growth of moss and weathering of the 

outcrop.    

 

Log number:    Tov-11 

Locality:    Toverud 

Geographical position:  Tov-11; 0574669-6643419 to 0574657-6643517  

  

Description of the outcrop: The rocks crop out along a dirt road, were the bedding is almost 

vertically. Log Tov-11 (102,2m) was logged by walking along the road. Several faults were 

observed in the outcrop and displacement of the faults was noted when possible. Sedimentary 

structures were difficult to observe due to growth of moss and algae, and weathering of the 

outcrop. Some of the outcrop was also covered by rocks due to rockslide from the area above.         
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Appendix C: Paleocurrent measurements of symmetric ripples, asymmetric ripples, cross-bedding, trough cross-

bedding, gutter casts and cephalopods. 

Log Lim01 - 11 

Height (m) Type Paleocurrent Wavelength (cm) Amplitude (cm) 

0,2 Symmetrical ripple 110-290 N/A N/A 

2,6 Symmetrical ripple 148-328 N/A N/A 

2,65 Symmetrical ripple 150-330 N/A N/A 

3,95 Gutter cast 34-214 (-) (-) 

4,05 Symmetrical ripple 131-311 N/A N/A 

4,53 Symmetrical ripple 180-0 N/A N/A 

4,55 Symmetrical ripple 185-5 N/A N/A 

5,3 Asymmetric ripple 318 (-) (-) 

6,08 Symmetrical ripple 200-20 N/A N/A 

6,4 Symmetrical ripple 195-15 N/A N/A 

6,45 Symmetrical ripple 210-30 N/A N/A 

 

 
Log Lim02 - 11 

Height (m) Type Paleocurrent Wavelength (cm) Amplitude (cm) 

0,8 Gutter cast 50-230 (-) (-) 

1,05 Cross -bedding 50 (-) (-) 

1,15 Cross –bedding 221 (-) (-) 

1,45 Gutter cast 106-286 (-) (-) 

1,65 Symmetrical ripple 184-4 12 1,5 

1,85 Symmetrical ripple 110-290 13,5 1 

2,05 Gutter cast 268-88 (-) (-) 

2,85 Symmetrical ripple 109-289 42 2,5 

3,9 Symmetrical ripple 111-291 N/A N/A 

3,9 Gutter cast 27-207 (-) (-) 

5,35 Symmetrical ripple 110-290 N/A N/A 

5,6 Symmetrical ripple 97-277 N/A N/A 

5,7 Symmetrical ripple 141-321 N/A N/A 

6,4 Symmetrical ripple 125-305 110 35 

6,58 Symmetrical ripple 131-311 15 0,8 

7,45 Symmetrical ripple 92-272 17 0,8 

7,75 Symmetrical ripple 141-321 20 0,9 

7,9 Symmetrical ripple 103-283 32 1 

8,23 Symmetrical ripple 123-303 N/A N/A 

8,7 Symmetrical ripple 146-326 16 1,4 

8,9 Symmetrical ripple 110-290 14 1 

9,68 Symmetrical ripple 137-317 N/A N/A 

9,8 Gutter cast 81-261 (-) (-) 

10,43 Asymmetrical ripple 303 10 0,9 

10,7 Gutter cast 63-243 (-) (-) 

10,9 Symmetrical ripple 94-274 N/A N/A 

11,2 Symmetrical ripple 137-317 14 1 
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11,65 Gutter cast 81-261 (-) (-) 

11,75 Symmetrical ripple 129-309 14 0,8 

12,05 Symmetrical ripple 161-341 N/A N/A 

12,4 Symmetrical ripple 112-292 77 3,1 

12,6 Symmetrical ripple 112-292 60 2,9 

 

 
Log Lim03 - 11 

Height (m) Type Paleocurrent Wavelength (cm) Amplitude (cm) 

1,9 Symmetrical ripple 152-332 74 4,5 

2,2 Gutter cast 29-209 (-) (-) 

4,65 Symmetrical ripple 111-291 54 3 

4,8 Symmetrical ripple 148-328 12 0,9 

 

 
Log Bor01-11 

Height (m) Type Paleocurrent Wavelength (cm) Amplitude (cm) 

0,9 Symmetrical ripple 161-341 15 0,8 

1 Trough cross-bedding 281 (-) (-) 

1,5 Trough cross-bedding 288 (-) (-) 

1,78 Symmetrical ripple 138-318 16 0,8 

2,2 Trough cross-bedding 310 (-) (-) 

3,18 Symmetrical ripple 187-367 80 14 

3,4 Trough cross-bedding 311 (-) (-) 

3,52 Symmetrical ripple 129-309 19 1,2 

4,05 Symmetrical ripple 148-328 16 1 

4,35 Symmetrical ripple 155-335 15 1 

4,6 Symmetrical ripple 126-306 11 0,8 

4,8 Trough cross-bedding 321 (-) (-) 

6 Trough cross-bedding 272 (-) (-) 

7,1 Trough cross-bedding 313 (-) (-) 

8,15 Symmetrical ripple 125-305 8 0,6 

 

 
Log Bor02-11 

Height (m) Type Paleocurrent Wavelength (cm) Amplitude (cm) 

0,35 Symmetrical ripple 144-324 13 2,5 

1 Symmetrical ripple 123-303 N/A N/A 

1,05 Symmetrical ripple 80-260 N/A N/A 

1,18 Symmetrical ripple 121-301 N/A N/A 

1,6 Trough cross-bedding 309 (-) (-) 

3 Trough cross-bedding 339 (-) (-) 

3,7 Gutter cast 112-292 (-) (-) 

4,9 Cephalopod 270 (-) (-) 

4,91 Cephalopod 287 (-) (-) 

5,4 Trough cross-bedding 288 (-) (-) 
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Log Åsa-11 

Height (m) Type Paleocurrent Wavelength (cm) Amplitude (cm) 

1,7 Trough cross-bedding 260 (-) (-) 

2,2 Trough cross-bedding 345 (-) (-) 

2,4 Trough cross-bedding 186 (-) (-) 

9,2 Trough cross-bedding 290 (-) (-) 

 

 
Log Tov-11 

Height (m) Type Paleocurrent Wavelength (cm) Amplitude (cm) 

64,2 Gutter cast 55 (-) (-) 

66 Symmetrical ripple 307 N/A N/A 

96,9 Symmetrical ripple 311 N/A N/A 
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Appendix D: Results from point counting of thin sections. Lim. Mbr. = Limovnstangen Member, Djup. Mbr. = Djupvarp Member, S.S. Mbr. = Store Svartøya Member, S. 

Mbr. = Sylling Member, Lang. Fm. = Langøyene Formation. The polycrystalline/undulating quartz is enclosed in brackets in the Quartz-column.    

L
o

c.
 PMO-

number 

Level 

(m) Fm./Mbr. Quartz (%) Calcite (%) 
K-feldspar 

(%) 

Mica 

(%) 
Plagioclase (%) 

Fossil 

fragments 

(%) 

Pyrite 

(%) 

Limonite 

(%) 

Opaque 

minerals 

(%) 

L
im

o
v

n
st

a
n

g
en

 

221.416 0,85 
Lim. Mbr. 54,0 (8,0) 37,5 5,8 1,8 0,5 0,0 0,0 0,0 0,5 

221.417 4,95 
Lim. Mbr. 36,0 (6,5) 57,0 6,8 0,0 0,3 0,0 0,0 0,0 0,0 

221.418 7,55 
Lim. Mbr. 15,0 (1,3) 80,5 2,5 0,5 0,3 0,0 0,0 0,8 0,5 

221.419 12,9 
Lim. Mbr. 30,3 (3,0) 60,3 6,3 0,0 0,5 1,8 0,0 0,0 1,0 

221.420 17,8 
Lim. Mbr. 26,8 (3,3) 67,5 5,0 0,3 0,3 0,3 0,0 0,0 0,0 

221.421 19,9 
Lim. Mbr. 55,0 (1,8) 32,0 9,5 1,5 1,3 0,3 0,0 0,3 0,3 

221.422 27,8 
Lim. Mbr. 24,8 (3,3) 68,8 4,8 0,0 0,3 1,0 0,5 0,0 0,0 

B
o

rg
en

 

221.423 0,7 
Djup. Mbr. 54,4 (2,5) 32,2 7,6 0,0 0,3 5,1 0,0 0,5 0,0 

221.424 2,58 
Djup. Mbr. 71,8 (4,3) 18,0 8,3 0,0 0,3 0,0 0,0 0,5 1,3 

221.425 3,98 
Djup. Mbr. 61,9 (2,8) 26,8 6,0 0,5 0,0 0,0 0,0 4,0 0,8 

221.426 8,6 
Djup. Mbr. 62,6 (4,0) 28,7 5,7 0,5 0,5 0,2 0,0 0,5 1,2 

221.427 5,5 
Djup. Mbr. 65,3 (6,8) 18,3 10,3 0,0 0,5 0,0 0,3 3,0 2,5 

Å
sa

v
ei

en
 

221.428 1,35 
Djup. Mbr. 63,3 (4,3) 20,0 11,8 0,3 1,3 0,0 0,0 0,0 3,5 

221.429 2,55 
Djup. Mbr. 69,8 (6,5) 2,0 16,0 0,3 0,5 0,3 0,0 2,5 8,8 

221.430 4,45 
Djup. Mbr. 58,0 (4,0) 30,0 6,8 1,3 1,0 0,0 0,3 0,0 2,8 

221.431 7,2 
Djup. Mbr. 37,3 (2,0) 49,0 4,3 0,3 1,0 2,8 0,0 3,3 2,3 

T
o

v
er

u

d
 

221.432 0 
S. Mbr. 29,3 (5,8) 52,5 2,8 0,0 0,3 0,3 14,8 0,0 0,3 

221.433 15,9 
S. Mbr. 36,3 (2,0) 59,3 3,5 0,5 0,0 0,0 0,3 0,0 0,3 



XLI 

 

221.434 36,5 
S. Mbr. 55 (5,5) 32,8 9,8 0,3 0,3 0,0 0,5 0,0 1,5 

221.435 59,9 
Djup. Mbr. 69,5 (3,0) 6,5 9,5 0,5 0,0 0,0 0,0 8,8 5,3 

221.436 63,4 
Djup. Mbr. 70,1 (4,5) 13,4 8,5 0,0 0,2 0,2 0,0 6,2 1,2 

221.437 79,4 
Lim. Mbr. 50,5 (4,5) 40,0 4,8 0,3 0,8 0,3 0,3 0,5 2,8 

221.438 100,2 
Lim. Mbr. 5,8 (0,3) 84,5 1,0 0,0 0,3 4,0 1,0 4,0 0,0 

G
ru

n
n

-

tj
er

n
 

221.439 -0,25 
Lang. Fm  2,3 (0,0) 91,5 0,0 0,0 0,0 6,3 0,0 0,0 0,0 

221.440 1,48 
S.S. Mbr. 8,0 (0,0) 83,5 0,3 0,0 0,0 5,5 0,0 1,8 1,0 
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Appendix E: Results of the quartz/feldspar ratio of thin sections. Lim. Mbr. = Limovnstangen Member, Djup. 

Mbr. = Djupvarp Member, S. Mbr. = Sylling Member.    

L
o

c.
 

PMO-number Level (m) 
Fm./Mbr. Q/F-ratio 

L
im

o
v

n
st

a
n

g
en

 

221.416 0,85 
Lim. Mbr. 9 

221.417 4,95 
Lim. Mbr. 5 

221.418 7,55 
Lim. Mbr. 5 

221.419 12,9 
Lim. Mbr. 4 

221.420 17,8 
Lim. Mbr. 5 

221.421 19,9 
Lim. Mbr. 5 

221.422 27,8 
Lim. Mbr. 5 

B
o

rg
en

 

221.423 0,7 
Djup. Mbr. 7 

221.424 2,58 
Djup. Mbr. 8 

221.425 3,98 
Djup. Mbr. 10 

221.426 8,6 
Djup. Mbr. 10 

221.427 5,5 
Djup. Mbr. 6 

Å
sa

v
ei

en
 

221.428 1,35 
Djup. Mbr. 5 

221.429 2,55 
Djup. Mbr. 4 

221.430 4,45 
Djup. Mbr. 7 

221.431 7,2 
Djup. Mbr. 7 

T
o

v
er

u
d

 

221.432 0 
S. Mbr. 10 

221.433 15,9 
S. Mbr. 10 

221.434 36,5 
S. Mbr. 6 

221.435 59,9 
Djup. Mbr. 7 

221.436 63,4 
Djup. Mbr. 8 

221.437 79,4 
Lim. Mbr. 9 

221.438 100,2 
Lim. Mbr. 5 

 

  



XLV 

 

 

 

 

 

Appendix F 
  



XLVI 

 

 

Appendix F: Results from point counting of acetate peels. Lim. Mbr. = Limovnstangen Member, Djup. Mbr. = Djupvarp Member, S.S. Mbr. = Store Svartøya Member. 
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L
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o
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n
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a
n

g
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221.441 1,15 
Lim. 

Mbr. 
0,8 69,0 0,5 5,5 11,6 5,3 4,1 3,0 0,0 0,0 0,0 0,2 

221.442 2,7 
Lim. 

Mbr. 
3,4 75,9 0,2 5,6 9,9 1,2 2,0 1,5 0,0 0,0 0,0 0,2 

221.443 3,6 
Lim. 

Mbr. 
58,5 27,9 0,0 6,2 3,5 1,2 2,3 0,5 0,0 0,0 0,0 0,0 

221.444 6,4 
Lim. 

Mbr. 
1,0 75,0 0,0 6,4 8,1 3,1 3,6 1,0 0,0 0,0 0,0 1,7 

221.445 7,6 
Lim. 

Mbr. 
23,2 55,2 0,0 2,5 7,9 3,3 6,2 1,7 0,0 0,0 0,0 0,0 

221.446 10,2 
Lim. 

Mbr. 
38,1 51,2 0,4 1,6 3,5 2,4 2,2 0,4 0,0 0,0 0,0 0,0 

221.447 11,7 
Lim. 

Mbr. 
26,0 55,4 0,2 1,0 15,7 1,0 0,5 0,0 0,0 0,0 0,0 0,0 

221.448 12,5 
Lim. 

Mbr. 
13,7 60,2 0,4 5,1 14,3 2,8 2,4 1,1 0,0 0,0 0,0 0,0 

221.449 16,45 
Lim. 

Mbr. 
23,4 44,6 0,0 11,2 9,5 1,3 0,0 0,5 2,8 0,0 0,0 6,7 

221.450 20,4 
Lim. 

Mbr. 
51,4 31,6 0,1 8,1 4,2 2,5 2,0 0,0 0,0 0,0 0,0 0,0 

221.451 26,9 
Lim. 

Mbr. 
0,6 74,5 0,3 12,5 8,4 0,9 2,3 0,3 0,0 0,0 0,0 0,3 

Åsaveien 

221.458 0,7 
Djup. 

Mbr. 
50,3 37,8 0,0 3,0 2,7 1,2 0,0 0,3 0,0 0,0 4,0 0,6 

221.459 9,15 
Djup. 

Mbr. 
68,7 18,7 0,0 4,4 4,4 0,3 1,7 0,4 0,3 0,0 0,0 1,2 

T
o

v
er

u
d

 221.562 6,5 S.S. Mbr. 14,3 46 0,5 8,2 0,0 0,0 0,5 1,8 1,5 27,1 0,0 0,0 

221.560 6,7 S.S. Mbr. 6,0 67,8 3,1 6,7 3,4 0,0 2,5 1,3 0,9 8,3 0,0 0,0 

221.561 7,1 S.S. Mbr. 25,3 39,8 0,5 5,0 0,3 0,0 0,6 0,1 0,6 27,8 0,0 0,0 



XLVII 

 

221.563 7,2 S.S. Mbr. 17,3 67,3 0,5 2,9 0,0 0,0 0,6 0,0 0,0 10,8 0,0 0,4 

221.564 7,3 S.S. Mbr. 18,7 69,6 0,3 5,3 0,1 0,0 0,0 0,9 0,0 4,2 0,0 1,0 

221.461 39,25 S.S. Mbr. 9,5 43,4 0,0 5,0 6,3 0,0 8,0 2,0 0,0 25,9 0,0 0,0 

221.464 39,5 S.S. Mbr. 21,4 32,6 0,0 3,1 5,5 0,0 1,8 2,2 0,0 33,3 0,0 0,0 

221.462 45,2 S.S. Mbr. 9,7 61,9 0,3 3,3 4,5 0,6 1,8 0,9 0,0 16,9 0,0 0,0 

221.566 79,55 Lim. Mbr 14,2 76,5 0,0 0,9 0,9 0,0 0,0 0,3 0,0 7,1 0,0 0,0 

221.565 82,25 Lim. Mbr 1,2 77,2 0,0 11,3 4,0 3,1 1,5 0,4 0,0 1,3 0,0 0,0 

221.567 94,1 Lim. Mbr 37,7 50,1 0,0 1,9 1,2 0,0 0,0 0,5 0,0 2,9 0,2 5,4 

221.463 95,6 Lim. Mbr 3,7 57,4 0,9 4,3 3,9 0,7 12,6 1,3 0,0 14,8 0,0 0,4 

221.465 97,4 Lim. Mbr 11,6 59,9 1,2 4,1 5,1 0,5 10,1 1,2 0,0 6,3 0,0 0,0 

Grunn-

tjern 
221.460 0,3 S.S. Mbr. 19,2 25,1 0,0 4,6 4,6 0,0 6,7 1,0 0,0 38,7 0,0 0,0 

B
o

rg
en

 

221.452 1,12 
Djup. 

Mbr. 
14,1 56,6 0,0 4,3 15,8 0,3 6,6 0,3 0,0 1,7 0,0 0,3 

221.453 4,3 
Djup. 

Mbr. 
7,9 66,6 0,0 1,3 20,9 0,1 0,1 0,3 0,0 1,9 0,0 0,7 

221.454 8 
Djup. 

Mbr. 
54,5 24,2 0,0 6,7 2,9 0,0 0,1 0,6 8,6 1,6 0,0 0,7 

221.455 8,2 
Djup. 

Mbr. 
55,7 17,1 0,0 0,2 1,7 0,0 0,2 0,0 0,0 24,9 0,0 0,0 

221.456 1,05 
Djup. 

Mbr. 
14,6 45,9 0,0 2,5 20,1 0,0 13,8 0,1 0,0 1,6 0,0 1,3 

221.457 3,55 
Djup. 

Mbr. 
26,7 37,9 0,0 6,5 16,2 0,0 11,4 0,6 0,1 0,4 0,0 0,2 
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Appendix G: Overview of the observed trace fossils from field. 

Locality Log Depth (m) Plate Orientation 
Li

m
o

vn
st

an
ge

n
 

Lim01-11 2,6 1A Top of bed 

Lim01-11 3,05 1B Base of bed 

Lim01-11 3,12 1C Base of bed 

Lim02-11 0,9 2A Cross section of bed 

Lim02-11 3,46 2B Top of bed 

Lim02-11 11,75 2C Base of bed 

Lim02-11 11,75 2D Base of bed 

Lim02-11 18,5 3A Base of bed 

Lim02-11 19,9 3B Base of bed 

Lim02-11 19,9 3C Top of bed 

Lim02-11 20,93 3D Top of bed 

Lim02-11 21,12 4A Top of bed 

Lim02-11 28,55 4B Top of bed 

Lim02-11 0 - 13 4C Top of bed 

Lim02-11 0 - 13 4D Top of bed 

Lim02-11 0 - 13 5A Top of bed 

Lim02-11 0 - 13 5B Top of bed 

Lim02-11 0 - 13 5C Top of bed 

Lim02-11 0 - 13 5D Top of bed 

Lim02-11 0 - 13 6A Cross section of bed 

Lim02-11 0 - 13 6B Top of bed 

Lim02-11 0 - 13 6C Top of bed 

Lim02-11 0 - 13 6D Top of bed 

Lim02-11 0 - 13 6E Top of bed 

Borgen Bor01-11 0,25 7A Base of bed 

Åsaveien Åsa-11 0,08 7B Base of bed 

To
ve

ru
d

 

Tov-11 57,8 7C Base of bed 

Tov-11 57,8 7D Top of bed 

Tov-11 67,5 8A Top of bed 

Tov-11 72,3 8B Top of bed 
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Plate 1 

 

Plate 1A:  

a) Palaeophycus 

b) Palaeophycus  

 

Plate 1B:  

a) Palaeophycus 

b) Palaeophycus  

 

Plate 1C:  

a) Palaeophycus 
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Plate 2 
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Plate 3 
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Plate 4 
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Plate 5 
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Plate 6 
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Plate 7 
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Plate 8 

 

Plate 8A: a) Palaeophycus 

 

Plate 8B: a) Palaeophycus, b) Palaeophycus  
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Terminology of the members in the Sælabonn Formation 

 

Table 1: Overview of the different terminology used for the members in the Sælabonn Formation in Ringerike and Modum 

districts. 

 

Kiær divided stage 6, which was later defined as the Sælabonn Formation, into three sub-

stages (6a, 6b and 6c) (Worsley et al., 1983, Braithwaite et al., 1995). Thomsen (1982) 

revised this by giving lithostratigraphical names to the sub-stages. Thomsen et al. (2006) 

erected a new name for the upper member, Steinsåsen Member, but did not give any 

arguments about why they changed the name from her earlier article (Table 1) 

(Limovnstangen Member in Thomsen, 1982). According to NGU (2012) Rytteråker and 

Limovnstangen formations are synonyms, which is the most likely explanation for the change 

in name of the upper member of the Sælabonn Formation by Thomsen et al. (2006). The 

Rytteråker Formation is a well-recognized name used in the scientific community for this unit. 

The terminology used for the upper and middle members by Baarli (1988) in the Modum 

Districts is the same as used by Thomsen (1982) in the Ringerike District. They have the same 

characteristics; increased input of siliciclastic material in the middle member and thin to 

medium thick beds of sandstone and limestone in the upper member. The Sylling Member is 

however defined as the lower member, as it does not display the same lithological 

characteristics as the Solvik Formation in the Oslo-Asker District, or the Store Svartøya 

Member in the Ringerike District (Baarli, 1988). These three members (Djupvarp, Store 

Svartøya and Sylling) are defined in the database by NGU (2012), but they are, however, not 

included into the description of the Sælabonn Formation. The database refers only to three 

informal members; “possible to divided into three informal members in many areas”. A 

revision of the database regarding the information of the Sælabonn Formation is suggested. 

Regarding the “Limovnstangen Formation”, the name should be demoted to the upper 

member of the Sælabonn Formation. The name “Limovnstangen” will thereby refer to a well 

exposed and protected locality where a representative outcrop of the upper member of the 

Sælabonn Formation is present.  

Reference: Thomsen (1982) Thomsen et al. (2006) Baarli (1988) 

Districts (Fig.2.1)  Ringerike District Modum District 

Upper member Limovnstangen Steinsåsen Limovnstangen 

Middle member Djupvarp Djupvarp Djupvarp 

Lower member Store Svartøya Store Svartøya Sylling 
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