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Abstract 

The Svelvik ridge was approved by local authorities as a CO2 field lab in 2008 and the 

appraisal phase for this project was completed in the summer of 2010. This operation gave a 

valuable insight of the subsurface and provided a good basis for a hydrogeological study of 

the ridge. 

For mapping the vertical extent of the shallow aquifer the electrical resistivity tomography 

method was used. The models created from these surveys indicated an interface from higher 

restivity values to lower values located 13 to 20 meters below the surface. These models were 

compared to flush samples from a drilling operation done in 1981.  

The grain size distribution curves from the flush samples were analyzed witht he Hazen and 

the Gustafson method. The results indicated at the 21 and 24.5 meters the hydraulic 

conductivity values were in the range of 10
-7

 to 10
-9

 and in the upper 5-7 meters the values 

were 10
-4

 ms
-1

. 

Based on the comparison the saturated thickness of the aquifer was estimated at 20 meters. 

Two methods were applied to obtain estimates of transmissivity and storativity; The tidal 

forcing method and a conventional pumping test. For the tidal method pressure transducer 

data loggers were placed in the ocean and in an inland well. The data was analyzed with the 

Fast Fourier transform algorithm and the results indicated two main cosinouids. These were 

used to find the phase lag and the amplitude loss in the inland well. The results were used to 

find the aquifer’s diffusivity, which is the ratio between the transmissvitity and storativity. 

When the aquifer thickness is known, the hydraulic conductivity can be found from the 

diffuvitiy.  

The pumping test were conducted by the Norwegian Geotechnical Institute; the data was 

fitted to with the Theis analytical solution. 

The pumping test gave storage coefficient values from 0.16 to 0.2 depending on the 

anisotropy ratio and the transmissivities in the order of 10
-2

 m
2
s

-1
. The tidal forcing method 

resulted in transmissivites in the 10
-2

 to 10
-3

 m
2
s

-1
 range. 
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Preface 

The Svelvik ridge is an ice contact system formed during the Ski stage of the Holocene ice 

recession. It is located in the Drammensfjord in Southeastern Norway. It functions as a natural 

barrier between the inner and outer fjord basin. The deposit hinders water circulation from the 

south side and makes the inner fjord basin naturally anoxic. 

The site was selected for a field lab for monitoring of subsurface CO2 behavior; the project is 

managed by SINTEF Petroleum Research. The decision to use the Svelvik ridge for this 

project instigated several geophysical measurements as seismic surveys, electrical resistivity 

tomography (ERT) and ground penetrating radar surveys. 

A 300 meter deep well was drilled in the summer 2010 for future gas injection tests. Several 

shallow wells were also installed during this period. This drilling operation provided a good 

opportunity to learn field hydrogeology and gain more knowledge about the groundwater 

behavior at the ridge. This is the main motivation behind this thesis. 

Since the factors that govern groundwater behavior and gas behavior are to a large extent 

similar, the results from this study may be useful in both areas. 

 

 

 

  



V 

 

Contents 
Abstract .................................................................................................................................... III 

Preface ...................................................................................................................................... IV 

List of figures and tables ....................................................................................................... VIII 

List of mathematical symbols .................................................................................................. IX 

1 INTRODUCTION .............................................................................................................. 1 

1.1 Research objectives ..................................................................................................... 1 

2 BACKGROUND ................................................................................................................ 2 

2.1 Geological setting ........................................................................................................ 2 

2.1.1 General geology at the site ................................................................................... 2 

2.1.2 Ice contact classification ...................................................................................... 2 

2.1.3 Post-glacial evolution ........................................................................................... 5 

2.1.4 Sediment distribution and bedrock geology ......................................................... 6 

2.1.5 Hydrogeology at the site ...................................................................................... 7 

2.2 Hydrogeological concepts ........................................................................................... 8 

2.2.1 Aquifer concepts and properties ........................................................................... 8 

2.2.2 Anisotropy ............................................................................................................ 8 

2.2.3 Porosity ................................................................................................................. 9 

2.2.4 Storativity or the coefficient of storage ................................................................ 9 

2.2.5 Hydraulic conductivity and transmissivity ......................................................... 10 

2.2.6 Groundwater flow equations .............................................................................. 11 

2.2.7 Empirical Hydraulic conductivity formulas ....................................................... 12 

2.3 Electrical resistivity method ...................................................................................... 14 

2.3.1 Theory and application of the electrical resistivity method. .............................. 14 

2.3.2 Measuring principles .......................................................................................... 15 

2.3.3 Noise and stacking ............................................................................................. 18 

2.3.4 2D inversion of the data and inversion parameters ............................................ 18 

2.4 Ferris' Tidal forcing method ...................................................................................... 20 

2.4.1 General description of the method ..................................................................... 20 

2.4.2 Tidal efficiency .................................................................................................. 21 

2.4.3 Tidal lag .............................................................................................................. 22 

2.4.4 Deriving formulas for aquifer diffusivity based on lag and efficiency. ............. 22 

2.4.5 Fourier analysis .................................................................................................. 23 



VI 

 

2.5 Aquifer Testing .......................................................................................................... 25 

2.5.1 General theory behind pumping tests ................................................................. 25 

2.5.2 Theory of pumping tests in an unconfined aquifer ............................................ 25 

2.5.3 Theis analytical solution for pumping tests ........................................................ 26 

2.5.4 Theis assumptions .............................................................................................. 28 

2.5.5 Diagnostic plots for determining flow regimes .................................................. 29 

3 MATERIALS AND METHODS ..................................................................................... 31 

3.1 Aquifer observations and maps ................................................................................. 31 

3.2 Electrical methods ..................................................................................................... 35 

3.2.1 Data acquisition .................................................................................................. 35 

3.2.2 Data processing and filtering the report point distribution graphs ..................... 36 

3.3 Tidal Forcing method ................................................................................................ 39 

3.3.1 General description and power amplitude spectrums ........................................ 39 

3.3.2 Identification of tidal constituents ...................................................................... 41 

3.3.3 Lag and Efficiency results from the FFT ........................................................... 41 

3.4 Pumping test .............................................................................................................. 42 

3.4.1 Description of the procedure and details surrounding the test ........................... 42 

4 RESULTS AND DISCUSSION ...................................................................................... 46 

4.1 Lithologic log ............................................................................................................ 46 

4.1.1 Grain size distribution charts and hydraulic conductivity estimates .................. 48 

4.1.2 Conclusion of hydraulic conductivity estimates ................................................ 50 

4.2 Electrical resistivity models ....................................................................................... 51 

4.2.1 A-A' line Model .................................................................................................. 51 

4.2.2 B-B' line Model .................................................................................................. 52 

4.2.3 C-C' line Model .................................................................................................. 53 

4.2.4 D-D' line Model .................................................................................................. 54 

4.2.5 Discussion and comments on the resulting models ............................................ 55 

4.2.6 The Upper layer .................................................................................................. 56 

4.2.7 The interface between the two layers ................................................................. 57 

4.2.8 The lower layer ................................................................................................... 57 

4.2.9 Noise and geoelectrics assumptions ................................................................... 58 

4.2.10 Conclusion of the Electrical surveys .................................................................. 59 

4.2.11 Establishing the aquifer basement ...................................................................... 59 



VII 

 

4.3 Ferris Tidal Forcing method results ........................................................................... 60 

4.3.1 Estimates of the aquifer's diffusivity from the FFT. .......................................... 60 

4.3.2 Comments and conclusion of the tidal estimates ............................................... 60 

4.4 Results and discussion from the pumping tests ......................................................... 62 

4.4.1 Results from the Theis analytical models .......................................................... 62 

4.4.2 Comments on the pumping test results .............................................................. 67 

4.4.3 Assumptions for the Theis method ..................................................................... 67 

4.4.4 Transmissivity results ......................................................................................... 69 

4.4.5 Storativity results ................................................................................................ 69 

4.4.6 Comments on errors on the pumping tests and analytical models ..................... 70 

4.4.7 Comparison between tidal forcing results, pumping test results and hydraulic 

conductivity estimates from the samples ......................................................................... 70 

5 CONCLUSION AND RECCOMENDATIONS .............................................................. 72 

Literature cited ......................................................................................................................... 74 

Acknowledgments .................................................................................................................... 77 

 

  



VIII 

 

List of figures and tables 

Figure 2.1.1 Holocene Ice recession stages (Modified from Sørensen 1981) .......................................................... 2 

Figure 2.1.2 Model of an Ice-contact submarine fan (Lønne 1993) ........................................................................ 3 

Figure 2.1.3 Idealized model for Ice-Contact fans (Lønne 1993) ............................................................................. 4 

Figure 2.1.4 longitudinal north / south profile (Sørensen et. al 1990) .................................................................... 5 

Figure 2.1.5 Quaternary map (Sørensen et al. 1990) .............................................................................................. 6 

Table 2.2.1 Values for hydraulic conductivity for some types of unconsolidated materials ................................. 11 

Figure 2.3.1 Values for geological materials (Palacky 1987) ................................................................................ 15 

Figure 2.3.2 Resistivity survey setup (Bernard 2003) ............................................................................................ 15 

Figure 2.3.3 Dipole-Dipole array (modified from Reynolds 1997) ......................................................................... 17 

Figure 2.3.4 the influence of noise in resistivity measurements (Bernard 2003) .................................................. 18 

Figure 2.4.1 Concepts of the tidal method ............................................................................................................ 21 

Figure 2.5.2Pumping in an unconfined aquifer principle (Krusemann and de Ridder 1992) ................................. 26 

Figure 2.5.3 Diagnostic plots for pumping tests (Renard et al. 2008) ................................................................... 29 

Figure 3.1.1 Location of observation loggers and wells. ....................................................................................... 31 

Figure 3.1.2 Tide observation point and the GR02 barometric observation device .............................................. 32 

Figure 3.1.3 Aquifer observations ......................................................................................................................... 33 

Figure 3.2.3 Electrode in ground ........................................................................................................................... 35 

Figure 3.2.4 The Switch connected to battery ....................................................................................................... 35 

Figure 3.2.5 Location of the resistivity lines .......................................................................................................... 36 

Figure 3.2.6 AA' report point distribution ............................................................................................................. 37 

Figure 3.2.7 BB' Report point distribution ............................................................................................................. 37 

Figure 3.2.8 CC' Report point distribution ............................................................................................................. 38 

Figure 3.2.9 DD' Report point distribution ............................................................................................................ 38 

Figure 3.4.1 Amplitude Spectrum of tide............................................................................................................... 40 

Figure 3.4.2 Amplitude Spectrum of GR02 ............................................................................................................ 40 

Table 3.3.1 Lag and Phase from the FFT ............................................................................................................... 41 

Figure 3.4.1 Drawdown in GR08 during pumping ................................................................................................. 43 

Figure 3.4.2 Linear-log plot GR08 (Red line is derivative plot (Spane 0.7) ............................................................ 43 

Figure 3.4.3 Log-Log plot GR08 (Spane 0.7) .......................................................................................................... 44 

Figure 3.4.4 Linear-Linear plot GR08 (Spane 0.7) .................................................................................................. 44 

Figure 4.1.1 Lithologic log from Svelvik Ridge (Based on unpublished data Sørensen 1981) ............................... 46 

Figure 4.1.2 Grain size distribution from BH2 ....................................................................................................... 48 

Figure 4.1.3 Grain size distribution from BH3 ....................................................................................................... 48 

Table 4.1.2 Hydraulic conductivity estimates BH2 ................................................................................................ 49 

Table 4.1.3 Hydraulic conductivity estimates BH3 ................................................................................................ 49 

Figure 4.2.1 AA' line inversion and resultant model .............................................................................................. 51 

Figure 4.2.2 BB line inversion and resultant model ............................................................................................... 52 

Figure 4.2.3 CC' line inversion and resultant model .............................................................................................. 53 

Figure 4.2.4 DD' line inversion and resultant model ............................................................................................. 54 

Table 4.3.1 Results from Tidal Forcing method ..................................................................................................... 60 

Figure 4.4.1 Analytical results in GR08 15 meters aquifer base anisotropic ratio 0.5........................................... 62 

Figure 4.4.2 Analytical results in GR08 15 meters aquifer base anisotropic ratio of 1 ......................................... 63 

Figure 4.4.3 Analytical model with aquifer base at 7 meters ................................................................................ 64 

Figure 4.4.4 Analytical results in GR08 with 20 meter base .................................................................................. 65 

Figure 4.4.5 Analytical results in GR08 with 30 meter base .................................................................................. 66 

Table 4.4.1 Pumping test results ........................................................................................................................... 70 

Table 4.4.2 Tidal Forcing Efficiency based estimates ............................................................................................ 70 



IX 

 

List of mathematical symbols 

Ar Anisotropy ratio [unitless] 

nT Total porosity [%] 

h head [L] 

S Storativity or Coefficient of Storage [unitless] 

SS Specific storage [m
-1

] 

Sy Specific yield [unitless] 

K Hydraulic conductivity [LT
-1

] 

b Aquifer thickness [L] 

T Transmissivity [L
2
T

-1
] 

T/S Aquifer Diffusivity [L
2
T

-1
] 

   Apparent resistivity [ohmm] 

K Geometric factor [L] (The same symbol is used in ERT and for Hydraulic conductivity 

values. 

VMN Voltage potential between MN electrodes [Volt] 

IAB Current injected AB electrodes [Amperes] 

TE Tidal efficiency [unitless ratio] 

Lagk Tidal lag [radians] 

Pk Period of tidal constituent [T] 

    Nyquist frequency [Hz] 

Φ(k) Fourier coefficient [complex] 

Φ(k)Z magnitude of Fourier coefficient [amplitude] 

Φ(k)θ phase of Fourier coefficient [radians] 

s  Drawdown in well [L] 

Msf Unisolar synodic fortnightly tidal constituent 

M2 semidiurnal lunar tidal constituent 





1 

 

1 INTRODUCTION 

 

1.1 Research objectives 

This thesis aims to characterize the hydrogeology of the unconfined aquifer at the Svelvik 

ridge. The geophysical method electrical resistivity tomography has been used to give an 

indication of the vertical extent of the shallow aquifer as well as give an impression of the 

heterogeneity of the upper layers. The results from these surveys will be compared with 

samples obtained from previously done drilling operations at the site. 

Based on this information of this will give a relative good insight of the subsurface and 

provide a description of the vertical extent of the shallow aquifer. 

For the hydrogeological investigation, three major parameters that govern groundwater 

behavior will be estimated; they are transmisivity (T), storativity(S) and hydraulic 

conductivity (K). Two methods will be applied to estimate these parameters; the tidal forcing 

method as proposed by Ferris (1951) and Todd (1980) and conventional pumping tests aided 

by the use of analytical models for solutions. 

The tidal forcing approach is based on the different characteristics of tide level and the head 

fluctuations caused by the tidal in an inland observation well. Based on the differences 

between the two signals it is possible to give rough estimates of the aquifers diffusivity which 

is the ratio of transmissivity to the storativity. 

A pumping test was performed by the Norwegian Geotechnical Institute (NGI) late summer 

2010 and the data from has been made available for this thesis. The Theis (1935) analytical 

solution will be fitted to the pumping test results. This should give good estimates of the 

transmissivity and the storativity values. 

Hydraulic conductivity values for each flush sample will be estimated with the empirical 

formulas Gustafson (1984) and Hazen (1893).  
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2 BACKGROUND 

2.1 Geological setting 

2.1.1 General geology at the site 

The deposit is located in Hurum municipality and 

forms a sill in the Drammensfjord in the south eastern 

part of Norway. It is a glaciofluvial / marine terminal 

deposited as the glacier halted in a deglaciation as a 

response to a period of warming after the Younger 

Dryas cool period (Sørensen 1981). Figure 2.1.1 

illustrates the different stages in the Holocene 

deglaciation. The different stages represent areas where 

the ice either halted its retreat or readvanced.  

The Svelvik ridge was deposited during the Ski stage 

approximately 10 000 years ago when the glacier 

readvanced and it kept its position for a significant time 

(Sørensen 1981). Smaller scattered moraines in the area 

suggest that the glacier's front oscillated and was not stationary (Sørensen 1981). At one point 

the glacier came in contact with the ocean; and subsequently the deposit can be characterized 

as a glaciomarine ice-contact system. 

2.1.2 Ice contact classification 

Lønne (1993) proposed a system of classifying ice contact glaciomarine systems. The 

depositional settings for these kinds of systems are very complex (Lønne 1993). However, in 

ice contact systems like these the main sedimentary supply comes from two sources; unsorted 

sub glacial diamictic material and outwash material from the meltwater outflow (Lønne 

1993). The sediments of the deposit should then be diamictic in nature as well as showing a 

varied lithologic composition. 

The depositional systems of glaciomarine termini can be classified in three main facies: Ice-

contact submarine fans which are totally subaqueous systems; Ice-contact deltas which may 

 Figure 2.1.1 Holocene Ice recession stages 

(Modified from Sørensen 1981) 
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have a small sub aerial component; and lastly glaciofluvial deltas which often have a well-

developed sub aerial component (Lønne 1993). 

The Svelvik ridge is an ice-contact submarine fan. This is a submarine wedge of coarse 

grained material which has been deposited subaqueous at the glacier's front edge. The wedge 

does not have a top set due to lack of stream activity, but it has bedded fore- and bottomset 

deposits. The sediment was deposited along the major ice front, and effectively shaped the 

front to that of the glacier (Lønne 1993). The front of a tide water glacier tend to be rather 

unstable, and is often attributed to calving or oscillatory movements due to the glacier's 

reaction to climatic changes (Lønne 1993).  

The submarine fan was formed by resedimentation of the diamictic glacial material along 

with ice rafted debris from melting sea ice (Lønne 1993). Figure 2.1.2 illustrates the common 

features of these kinds of deposits. 

 

 

 

Figure 2.1.2 Model of an Ice-contact submarine fan (Lønne 1993) 

By adopting Lønne's idealized model for an Ice-contact submarine fan, these deposits will 

generally consist of four major sedimentary facies, A, B, D and E (fig 2.1.3) 
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Figure 2.1.3 Idealized model for Ice-Contact fans (Lønne 1993) 

Where unit A is the ice-contact facies formed during the glacier's advance. These facies will 

normally comprise of coarse grained clinoformal foreset deposits (A3), these will downlap 

into horizontal bottomset facies consisting with silty mud along with turbiditic sands (A4) 

(Lønne 1993). Along with deposition of A3 and A4 the ice proximal slope will be subjected to 

primarily sub-glacial processes such as deposition of basal till and other sorted debris. 

Deformation is mainly done by the meltwater outflow but if the glacier advances, heavy 

erosion and further deformation can occur. These A-units may consist of boulder rich foreset 

beds, basal till with cohesive debris flows (Lønne 1993). The A2 subunit may be present if the 

glacier advances across the fan top, and can leave a sub horizontal layer (Lønne 1993). 

The B-unit is ice-contact facies formed during a glacier still stand or retreat. These facies may 

be similar to that of the A-units. The sediment will be coarse grained and may have a high 

content of subglacially derived debris and ice rafted debris (Lønne 1993). 

The D-unit is deposited during the retreat of the glacier terminus, mainly deposited from the 

hyperpycnal meltwater plume. These will consist of very fine sand and the finer fractions and 

debris flow deposits. These units tend to drape the front and back slope (Lønne 1993).  

The E unit is facies formed during fan uplift. When the glacier retreats the post glacial 

isostatic uplift may occur. This will have various effects on the deposit by reworking and 

resedimentation of the original sediments, when the deposit hits the storm wave base and 

subsequently the fair weather base. This may result in shoreline facies on the proximal and 

distal sides of the deposit (Lønne 1993). The glacier may also re-advance and repeat the 
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depositional processes above and further complicate the sedimentary structure of the deposit 

(Lønne 1993).  

For the glacier to halt, a topographical feature like a preexisting moraine or a bedrock 

threshold should be present. In the Svelvik case the main bedrock threshold is located farther 

south, as can be observed in figure 2.1.4.  There is evidence of a preexisting moraine under 

the post glacial clay as indicated by the green area under the main deposit in figure 2.1.4 

(Bjerkli and Olsen 1984). This can have served as threshold for the glaciers advancement, and 

it may stem from another glaciation event or from the oscillating glacier's front since there is 

evidence of smaller scattered moraines in the area (Sørensen 1981). 

 

Figure 2.1.4 longitudinal north / south profile (Sørensen et. al 1990) 

2.1.3 Post-glacial evolution 

After the deglaciation, the original deposit was aerially exposed approximately 7 000 years 

ago (Sørensen 1981) due to isostatic rebound. The ridge was then exposed to erosional forces 

as rivers (Sørensen 1981) and in like similar deposits wave and tidal action may have 

reworked some of the sediments as the deposit reached the storm- and fair weather wave 
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bases (Lønne 1993). The highest evidence of wave action has been found up to 197 meters 

above sea level denoting the marine limit in the area (Sørensen 1981).  

The tidal current has later cut the upper parts of the deposit, separating the Western and 

Eastern parts, and is influenced by the semi-diurnal Svelvikstraumen tidal current. 

2.1.4 Sediment distribution and bedrock geology 

The Quaternary map from Sørensen et al. (1990) (figure 2.1.5) illustrates two major 

sedimentary facies; the marine shore deposits (blue areas) in the southern part and the main 

glaciofluvial deposit (yellow areas). 

Marine shore deposits are sorted, washed and reworked by waves and currents in the 

shoreface. These often consist of sand and gravel (Sørensen et. al 1990). The surface area of 

the glaciofluvial deposit is approximately 1.78 km
2
 and the surface area of the marine shore 

deposits is approximately 0.3 km
2
 (Sørensen et al. 1990).  

The coarser grained Drammensgranite dominates the bedrock distribution in the area 

(Sørensen 1981). This variant of the granite usually has between 3-5 mm grains, less than     

3-5 % oligoclase, 30-35 % quartz and between 60-65 % perthitic feldspar (NGU 2011). 

 

Figure 2.1.5 Quaternary map (Sørensen et al. 1990) 
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2.1.5 Hydrogeology at the site 

The Svelvik ridge is thought to consist of two types of aquifers. One of the aquifers is the 

upper one, with the groundwater table marking the upper limit. The lower limit of this aquifer 

will be found in this thesis and below this confining layer there may be a confined aquifer. 

This thesis will focus on the shallow or unconfined aquifer at the Svelvik ridge. In order to do 

so, the reader will have to be acquainted with the basic hydrogeological concepts, which is 

introduced and discussed in the next section. 
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2.2 Hydrogeological concepts 

2.2.1 Aquifer concepts and properties 

An Aquifer has been described by Driscoll (1986) as a formation, a group of formations, or a 

part of a formation that contains sufficient saturated permeable material to yield economic 

quantities of water to wells. There are several types of aquifer types found in nature. The units 

that separate the aquifers from other geological formations are called confining beds. These 

are units of low permeability which limits or hinders the flow of water. They may be referred 

to as aquiclude or aquitard depending on the nature of how permeable they are. The aquifuge 

is not permeable at all, and the aquitard is to a degree permeable, but not in a large extent 

(Schwartz and Zhang 2003). 

Unconfined aquifers are defined by the water table forms the upper boundary. Any wells in 

this type of aquifer will approximately indicate the position of the water table. Confined or 

artesian aquifers are confined with low permeable layers around them. Wells which penetrates 

the aquifer will reveal that the water table lies above the upper boundary (Schwartz and Zhang 

2003). There is also a leaky aquifer type, which is an aquifer bonded by aquitards. This will 

produce a slight artesian pressure in the aquifer resulting in that the water table can be found 

slightly above the upper confining layer (Krusemann and de Ridder 1992). 

These descriptions are end members, and in nature it occurs often a mixture of all three in one 

formation. An aquifer system can be very complex so simplifications have to be made by 

assumptions. 

2.2.2 Anisotropy 

For many groundwater investigations it is assumed that the aquifer has the same properties in 

all directions. This is homogeneity (Driscoll 1986), and can in many cases be far from the true 

nature of the aquifer. The concept of isotropy is also often used in groundwater investigations; 

this implies that the properties of the medium are the same in all directions (Driscoll 1986). 

This might also not be the case as the individual particles tend to settle on their flat sides, if 

they are not completely rounded. This will influence the direction which has the higher 

permeability and often the horizontal direction will dominate (Krusemann and de Ridder 

1992).  
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The anisotropy ratio (Ar) is introduced to give an estimate of the layering of the aquifer. It can 

be described as: 

   
  

  
  (2.2.1) 

In equation 2.2.1 the Kh is the horizontal hydraulic conductivity [LT
-1

] and the Kv is the 

vertical hydraulic conductivity [LT
-1

]. The ratio between these is the anisotropy ratio and is 

unitless. 

2.2.3 Porosity 

The total porosity (nT) of a medium can be described as the ratio of the void volume to that of 

the total volume of the rock (Schwartz and Zhang 2003). Mathematically it can be described 

as in equation 2.2.2: 

   
  

  
 

     

  
  (2.2.2) 

However, not all pores in a medium may be connected to each other, thus lowering the flow 

between them. The parameter effective porosity (ne) is introduced to account for this. 

However, the porosity indicates how much water an aquifer can hold, but not how much it 

will yield (Driscoll 1986).  

How much water a representative volume from an aquifer will release by the force of gravity 

is called the specific yield (Sy). How much is retained is denoted as the specific retention. The 

sum of these two factors equals the porosity. The ratio between these depends largely on the 

grain size, and smaller grain sizes have higher retention resulting from higher surface tension 

than coarser sediments and usually range between 0.01 and 0.3 (Driscoll 1986).  

2.2.4 Storativity or the coefficient of storage 

One of the criteria for a geological formation to be an aquifer is that is has to have the ability 

to store water. The way the aquifer stores water depends on whether the aquifer is confined or 

unconfined. For the unconfined aquifer the main source of water is the decline in the water 

table as a response to pumping (Schwartz and Zhang 2003). The storativity can then be 

defined as the volume of water an aquifer releases or takes into storage per unit surface area 

of the aquifer per unit change in head (Schwartz and Zhang 2003). It can be described as: 
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 (2.2.3) 

Equation 2.2.3 illustrates that S, the storativity is a dimensionless number. For a related term 

to the storativity, the specific storage (Ss) can be described as (Schwartz and Zhang 2003): 

   
                    

                                   
   (2.2.4) 

In equation 2.2.4, b is the aquifer thickness. The specific storage has a dimension of [m
-1

]. For 

storage in unconfined aquifers the relation is expressed as equation 2.2.5 (Schwartz and 

Zhang 2003): 

S = Ssb  + Sy (2.2.5) 

Krusemann and de Ridder (1992) estimated for sand and gravel the value for Ss are in the 

order of 10
-3

 m
-1

. This makes the first term close to negligible, resulting in for unconfined 

aquifer the storativity is dominated by the specific yield (Schwartz and Zhang 2003).  

2.2.5 Hydraulic conductivity and transmissivity 

Darcy's law can be used to explain the concept of hydraulic conductivity.  For laminar flow 

conditions it can be stated as (Schwartz and Zhang 2003): 

 

 
   

  

  
  (2.2.6) 

Equation 2.2.6 is known as the Darcy’s equation, where K [LT
-1

] is the hydraulic 

conductivity, 
  

  
 is the hydraulic gradient [unitless], Q [m

3
] is the discharge and A [m

2
] is the 

cross sectional area of a tube which water flows through. The hydraulic head is the energy 

available for groundwater flow. However, under normal circumstances the head is calculated 

as a column of water over a certain datum (Driscoll 1986). For this survey, the head is 

calculated as the water level above the NN1954 datum. 

Table 2.2.1 gives representative values of hydraulic conductivity for various types of 

unconsolidated sediments. 
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Table 2.2.1 Values for hydraulic conductivity for some types of unconsolidated materials 

Material Hydraulic Conductivity (m/s) 

Gravel 3x10
-4

 to 3x10
-2

 

Coarse sand 9 x 10
-7

 to 6 x 10
-3

 

Medium sand 9 x 10
-7

 to 5 x 10
-5

 

Fine sand 2 x 10
-7

 to 2 x 10
-4

 

Silt 1 x 10
-9

 to 2 x 10
-5

 

Clay 1 x 10
-11

 to 4.7 x 10
-9

 

Unweathered marine clay 8 x 10
-13

 to 2 x 10
-9

 

(Source: Domenico and Schwartz 1998) 

 

Transmissivity is closely related to the hydraulic conductivity. It can be described as the ease 

of flow of water through an aquifer (Driscoll 1986). It is the product of the hydraulic 

conductivity (K) and the thickness of the aquifer (b). Mathematically it is stated in equation 

2.2.7: 

T = Kb  (2.2.7) 

It has the units of [L
2
T

-1
]. 

2.2.6 Groundwater flow equations 

In an unconfined aquifer the principal equation that governs groundwater flow in an 

unconfined aquifer is expressed as (For a complete derivation of this equation see Schwarz 

and Zhang 2003): 

 

  
   

  

  
  

 

  
   

  

  
  

 

  
   

  

  
    

  

  
  (2.2.8) 

In equation 2.2.8 the x, y and z denotes the flow directions. K is the hydraulic conductivity, h 

is the head and t is time.  

Often in hydrogeological investigations an isotropic aquifer is assumed. Isotropy can be 

expressed mathematically as (Kx = Ky = Kz). The hydraulic conductivity is the same in all 

directions. Aquifers are also often assumed to be homogeneous, this can be expressed as     

Kx,y,z = constant.  



12 

 

Equation 2.2.8 can be expressed in many ways depending on the flow conditions. Assuming 

one dimensional flow in the x direction, and isotropic and homogeneous aquifer; and by 

multiplying with the aquifer thickness (b) and dividing with the transmissivity (T) on both 

sides the equation in 2.2.8 simplifies to: 

   

    
   

   
  (2.2.9) 

Where in equation 2.2.9, h is the head, S is the storativity, T is the transmissivity of the 

aquifer and t is the time. The ratio between the transmissivity and storativity is denoted as the 

aquifer's diffusivity. 

The tidal forcing method presented in section 3.3.3 estimates the aquifer diffusivity based on 

equation 2.2.9, and by using known values for the storage coefficient it is possible to find 

transmissivity values, and subsequently hydraulic conductivity values for the aquifer. 

2.2.7 Empirical Hydraulic conductivity formulas 

There have been many attempts to link the distribution of the different grain sizes to that of 

the hydraulic conductivity. Two empirical formulas will be described here to give estimates of 

the vertical distribution of this parameter. 

Hazen (1893) proposed a method of estimating the hydraulic conductivity through grain size 

analysis. An empirical formula for the relation between the effective diameter (d10) and the 

hydraulic conductivity is expressed mathematically in equation 2.2.10 (Gustafson et al. 1984): 

             
  2.2.10 

A prerequisite for successful use of this formula is that the ratio of               , this is 

also known as the uniformity coefficient (Gustafson et a.l 1984). 
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Gustafson et al. (1984) proposed another method of estimating the hydraulic conductivity 

based on the d10 and d60 distributions. This function is presented in equation 2.2.11. 

 

           
  (2.2.11) 

Where 

  
   

      (I) 

               

   

 

     
 (II) 

      
 

        
 

 

    
  (III) 

      
   

       

    

       (IV) 

 

With the aid of these formulas the hydraulic conductivities will be estimated in section 4.1.1 
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2.3 Electrical resistivity method 

2.3.1 Theory and application of the electrical resistivity method. 

The 2D resistivity method is a geophysical method which gives insight in the subsurface 

lithology without any serious invasion of the subsurface. This method aims to establish the 

electrical properties of the subsurface by making measurements on the surface. Based on the 

electrical properties it is possible to evaluate the subsurface conditions geologically. 

Most geological materials conduct electricity; however some have higher resistivity values 

than others. For unconsolidated sediments the subsurface resistivity depends largely on five 

main parameters (Bernard 2003).  

 In the water saturated zone the current are carried by ions. This is called electrolytic 

conductibility (Bernard 2003). This makes the presence of water, which often 

coincides with porosity in the water saturated zone, a major parameter determining the 

electrical conductivity of the subsurface.  

 Another important parameter is how well the pore fluid carries the current. This is 

governed by the amount of dissolved solids in the pore fluid.  This is an important 

factor to when measuring the electric resistivity of the subsurface.  

 Owing to a good ion exchange properties, most clays conduct electricity well (Bernard 

2003).  

 Any presence of metallic minerals as well as graphite or pyrite will decrease the 

resistivity of rocks. This is electronic conductibility, where the current is carried by 

displacement of electrons (Reynolds 1997).   

 Lastly, any change in temperature will also have an implication for the electrical 

conductivity (Reynolds 1997). 

It is important to emphasize that the results are equivocal, since the electrical resistivity 

values for different materials overlap, as shown in figure 2.3.1. The results should not be 

interpreted categorically, but be used as a guide, keeping the depositional environment and 

other geological conditions in mind when interpreting resistivity data. 
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Figure 2.3.1 Values for geological materials (Palacky 1987) 

 

2.3.2 Measuring principles 

The surveys are carried out by injecting a direct electrical current (I) [A], in the ground using 

two current electrodes (A and B). The potential voltage difference (∆V) [V], and is then 

measured by two additional electrodes (M and N). Figure 2.3.2 shows this setup.  

 

Figure 2.3.2 Resistivity survey setup (Bernard 2003) 
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The transmission circuit,     
   

   
 where I [A], V [V], and R is the resistance between the 

ground electrodes [ohm]. 

The apparent resistivity (    is then calculated from measurement in the receiver circuit. The 

ΔV is the voltage potential between the MN electrodes. This relation can be expressed as 

(Reynolds 1997): 

   
  

 
  (2.3.1) 

Where in equation 2.3.1, K is the geometric factor [L]; the value is dependent on the electrode 

configuration. 

For a homogeneous medium the apparent resistivity [ohmm],   will be the same as the true or 

specific resistivity. However, encountering homogeneous media in nature are rarely the case. 

For a heterogeneous subsurface the distribution of ground resistivity must be modeled with 

appropriate computer software. 

The depth of the investigation is to a large extent dependent on the total length between the 

two current electrodes and on the separation between the potential electrodes (Bernard 2003). 

The total investigatory depth (d) for a dipole-dipole survey can be estimated by using d = 

0.17L (Barker 1989), where L is the distance between the two current electrodes. 

A more practical limitation is the measurability of the VMN (Bernard 2003), which can be 

expressed as in equation 2.3.2: 

     
     

 
   (2.3.2) 

This shows that the measured voltage potential is dependent on the ground resistivity. A 

higher ground value, e.g. gneiss which is in the range of 10
3 

ohmm (Reynolds 1997) will 

produce a stronger signal than e.g. unconsolidated sand which often lies in the 100s ohmm 

(Reynolds 1997). The geometric factor, K, is also very important factor, especially for large 

investigation depths, which again will result in the VMN to become very small and 

consequently immeasurable, or largely dependent on the instruments ability to record very 

low voltages. 

For measurements in glaciofluvium, the top unsaturated layer often has a low conductivity, 

thus the current (IAB) in the transmission circuit can become low. In most cases the ground 
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conductivity is a non-changeable parameter, but in unconsolidated soils it might be changed 

by adding an electrolyte fluid around the electrodes to ensure lower resistivity. 

There are many different electrode configurations, as Wenner and Schlumberger. The 

Schlumberger array is often applied to find vertical changes of the electrical properties, and is 

often called Vertical electrical sounding (VES) (Reynolds 1997). The Wenner array is used to 

map lateral variations of the electrical properties, and is called Constant separation traversing 

(CST) (Reynolds 1997). 

However a method which uses both of these classical methods to measure both lateral and 

vertical electrical properties is the Dipole-Dipole array. The array configuration can be 

illustrated as in figure 2.3.3: 

 

The MN dipole is moved and measured a fixed times away from the AB dipole. The recorded 

data is stored as a report point. As the n increases the depth also increases. The AB is shifted 

one spacing, and the measurements are then repeated (Reynolds 1997). The resulting data is 

then composed into an x–z pseudosection consisting of the report points. This method is 

sometimes referred to as electrical resistivity tomography. 

The geometric factor for the DD array is:                  (Reynolds 1997). This 

will often result in higher values than the Wenner array which has a geometric factor of 2πR 

(Reynolds 1997). This makes the DD array disposed to noisy data sets and will often require 

more current or longer pulses injected in the subsurface to improve the signal to noise ratio. 

 

 

Figure 2.3.3 Dipole-Dipole array (modified from Reynolds 1997) 
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2.3.3 Noise and stacking 

Noise is a very important factor to take into consideration when performing resistivity 

measurements. Since the measure voltage potential is in the order of mV, the recording 

instrument has to be very delicate. This makes it vulnerable to background noise, which may 

stem from telluric currents; self-potential and industrial noise (Reynolds 1997). Figure 2.3.4 

illustrates the effect that this noise has on the VMN. To improve the signal to noise ratio, the 

concept of stacking is introduced. 

 

Figure 2.3.4 the influence of noise in resistivity measurements (Bernard 2003) 

The stacking procedure is controlled by the Q [%] which is the quality factor. Two 

measurements from the same report point are compared. If they fall outside the range given 

by quality factor, the measurements are run until the measurements is within the range or to a 

maximum number of readings. 

2.3.4 2D inversion of the data and inversion parameters 

The aim of this step is to create a x-z model grid model with specific resistivity values. This is 

done by applying an appropriate inversion algorithm to the the recorded peseudosections 

(Solberg et al. 2011). It is recommended that any bad measurements or very noisy data is 

removed before reading the file into the inversion program (Hauck and Kneisel 2008). These 

bad values are often easy to recognize and will be significant dissimilar from the adjacent 

values in the pseudosection (Hauck and Kneisel 2008). 
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The depth of an aquifer is often defined by a relative sharp boundary between a less 

conductive and higher conductive layer (Bernard 2003). When these geological conditions are 

anticipated the “robust inversion” is often used (Kneisel and Hauck 2008).  To further 

accentuate horizontal structures the horizontal / vertical ratio should be set to 0.5 (Solberg et 

al. 2011). 

The inversion can be described as (Kneisel and Hauck 2008):  

1. A homogeneous earth is used as a starting model is created by calculation of the 

logarithm of the apparent resistivity values  

2. This model is then used to calculate the a set of the apparent resistivities as it would be 

if this model represented the real values obtained in the field.  

3. The difference between these two models are then reduced by an iterative process. The 

resultant model is then improved on by assigning each measurement to a blocks in the 

model. This block model is the resistivity model.  

4. Lastly, the error between the resistivity (calculated) model and the apparent values 

(measured), is given by the root mean square error. It should be noted that a low RMS 

values does not neccecarlily indicate that the model reflect the natrual surroundings 

better.  
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2.4 Ferris' Tidal forcing method 

2.4.1 General description of the method 

Ferris (1951) proposed a method to estimate the hydraulic diffusivity of an aquifer based on 

the well response from tidal activity. This method has later been elaborated on by several, for 

this thesis the formulas and theory proposed by Smith and Hick (2001) will be used as a point 

of departure. 

There are several criteria for the use of this method; the first and most obvious is that the 

aquifer has to adjoin a tidal body (Ferris 1951). Another prerequisite for the method is that the 

tidal signal must be allowed to transmit through the subcrop, in other words there should be 

no confining or disturbing structures between the shoreline of the aquifer and the observation 

location. 

The method draws on many similarities to conventional pumping tests, where the 

groundwater level is measured in observation wells as a response to an external factor.  The 

tidal signal can be viewed as a series of cosines with varying amplitude and wavelength. 

These cosines are the result of an astronomical body or they may stem from interference from 

bathymetric or topographical features. Each signal which can be attributed to an astronomical 

body is called a tidal constituent, and there has been identified more over 400 worldwide. 

However, the most prominent are the diurnal and semi-diurnal Moon and Sun constituents 

denoted as M and S, respectively (Defant 1961). Any subscript indicates the periodicity of the 

constituent.  

The main constituents can be obtained through a harmonic analysis and their frequencies 

should then compared to known constants (Defant 1961), which there are over 400 identified. 

The signals from each constituent are attenuated differently as it propagates through the 

aquifer depending on their amplitude and wavelength (Ferris 1951). Two main factors 

describe the attenuation of the tidal trace; the tidal efficiency (TE) and lag (Ferris 1951).  



21 

 

 

Figure 2.4.1 Concepts of the tidal method 

Figure 2.4.1 gives a crude visual representation of the tidal method. The tidal level behaves as 

a sinusoid. This sinusoidal signal is then transmitted through the permeable subcrop and will 

be attenuated by two main factors (Ferris 1951); amplitude loss and phase lag. The 

attenuation of the amplitude is given by the ratio of A and B. The lag is the "+ lag"[rad] in the 

inland observation well. 

2.4.2 Tidal efficiency 

The tidal efficiency is the ratio of the amplitude of head fluctuations in a well to the amplitude 

of the tidal fluctuations. It is described mathematically in equation 2.4.1 (Erskine 1991): 

    
     

     
  (2.4.1) 

Where, σ is the standard deviation of the observations. It is a robust method, however another 

measure is available. This method discriminates between the different tidal constituents. It can 

be expressed mathematically as (Smith and Hick 2001): 

     
      

      
  (2.4.2) 

In equation 2.4.2 the k denotes the tidal constituent and (a) is the amplitude. 
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2.4.3 Tidal lag 

The lag is dependent on the tidal constituent and can be described as (Smith and Hick 2001): 

                   (2.4.3) 

In equation 2.4.3 (θ) denotes the phase of the constituent (k). This means a slower 

propagation of the signal will return a longer time lag. 

2.4.4 Deriving formulas for aquifer diffusivity based on lag and efficiency. 

By using formula 2.2.9 and boundary condition x = 0, (Smith and Hick 2001): 

                       (2.4.4) 

Where h is the head, (Ha) is the amplitude of the tidal signal and (Hθ) is the phase [rad]. 

Formula 2.2.9 and 2.4.4 are linear so they can be broken down into a steady state flow and 

harmonic flow problem of one or more frequencies. See Smith and Hick (2001) for a more 

detailed derivation of these formulas. 

The harmonic solution can then be rearranged to give expressions for efficiency (equation 

2.4.5) and lag (equation 2.4.6) (Smith and Hick 2001): 

 

 
 

   

       
   

  (2.4.5) 

 

 
 

    

        
   (2.4.6) 

Where (x) is the distance from the tidal boundary, S is the storativity. T is the transmissivity, 

it should be noted that this assumes isotropy, e.g. the transmissivity is uniform throughout the 

aquifer. The Pk is the period of the tidal constituent. The efficiency based formula (2.4.5) has 

a logarithmic relationship with the aquifer's diffusivity, whereas the lag based formula (2.4.6) 

has a linear relationship.  

 

 

 



23 

 

2.4.5 Fourier analysis 

To find the dominant frequencies from the aquifer observations a harmonic analysis was 

done. This was done with Matlab's intrinsic FFT function. This is the discrete Fourier 

transform algorithm, which produces a discrete frequency domain representation of a sampled 

signal. The inverse FFT algorithm transforms the frequency domain back to the time domain. 

The discrete Fourier transform for a data series of N length is defined mathematically in 

equation 2.4.7 (Weisstein 2002): 

             
           

    (2.4.7) 

Where  denotes the Fourier coefficient and k is is the frequency and  N is         . 

The FFT fits N/2 frequencies to N data points.  To ensure that all Fourier components of the 

signal are found, it is necessary to use a sampling rate at least twice the highest frequency. 

This can be found with the Nyquist condition. 

The Nyquist frequency describes the range of the frequency domain. Expressed 

mathematically it is (equation 2.4.8) (Weisstein 2002): 

     
 

   
  (2.4.8) 

Where in equation 2.4.8,   t is the sampling intervals [s].  

The Fourier coefficients are complex so they can be expressed as in equation 2.4.9 (Weisstein 

2002): 

                (2.4.9) 

Where (     is the magnitude and   is the phase of the Fourier coefficient. 

The magnitude is given by equation 2.4.10 (Weisstein 2002). 

            (2.4.10) 

These results can be used to find which tidal constituents are dominant using an amplitude 

spectrum. The amplitude spectrum will result in peaks at the frequencies with high energy. 

This can be used to isolate the tidal constituents and find the amplitude loss between the two 
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measuring points. Further by plotting the phases it is possible to find the shift in phase 

between the two points. The results from this will be presented in section 4.3. 
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2.5 Aquifer Testing 

2.5.1 General theory behind pumping tests 

The basic principle behind test pumping is to extract water from a well at a known rate. As 

the well is pumped, the effect on the water table is measured in the surrounding wells with 

either manual or automatic logging equipment. The data is then presented graphically and 

depending on the characteristics of the aquifer an analytical model is fitted to the data. Based 

on these models the characteristics of the aquifer can be estimated (Krusemann and de Ridder 

1992). 

2.5.2 Theory of pumping tests in an unconfined aquifer 

When pumping an unconfined aquifer results in a different behavior of the water table and 

thus a different drawdown curve than a confined aquifer. When the cone of depression forms, 

the saturated aquifer thickness as well as the transmissivity will decrease as illustrated in 

figure 2.5.2. In addition, the method of releasing water is time dependent (Schwartz and 

Zhang 2003). There are three main time dependent features of an idealized unconfined aquifer 

pumping test curve. 

At early time the water is released from storage owing to compression of the matrix and 

expansion of the water. For the drawdown curve this gives the same response as in a confined 

aquifer, and subsequently the Theis-curve will be similar, and also the storativity values will 

be similar (Schwartz and Zhang 2003).  

At intermediate time the similarities end, owing to the gravity drainage from the matrix as the 

cone of depression lowers the water table. The drawdown pattern is dependent on the 

anisotropy concerning the hydraulic conductivity and the saturated thickness of the aquifer 

(Schwartz and Zhang 2003). The intermediate drawdown is often less than expected, 

resembling that of in a leaky aquifer (Schwartz and Zhang 2003). 
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Figure 2.5.2Pumping in an unconfined aquifer principle (Krusemann and de Ridder 1992) 

At late time drawdown the effect of delayed gravity drainage subsides and the drawdown 

curve will again fall on a Theis-curve. The flow is then mainly radial, and the storativity 

values are now the same as the specific yield (Schwartz and Zhang 2003). These three phases 

during pumping will result in a sigmoid shaped drawdown curve, as illustrated in figure 

2.5.3b. 

2.5.3 Theis analytical solution for pumping tests 

Numerous models are available for this purpose. Theis (1935) proposed a solution for 

confined aquifers to estimate the transmissivity and storativity values. 

The Theis analytical solution applies to confined aquifers under transient conditions. The flow 

equation which describes the hydraulic head under these conditions can be expressed 

mathematically as (Schwartz and Zhang 2003): 

   

   
 

   

   
 

   

   
 (2.5.1) 

In equation 2.5.1, h is the hydraulic head, r is the radial distance from the pumped well to the 

monitoring well. (t) is the time since the pumping started, and S is storativity and T is 

transmissivity of the aquifer.  



27 

 

The initial (I) and two boundary conditions apply (II & III), and they are (Schwartz and 

Zhang 2003): 

           (I) 

           (II) 

       
  

  
  

 

   
  (III) 

Where the first condition is for t = 0 and at any distance (r) from the well the head is equal to 

the initial head (h0). 

The second condition states that at for an infinite radius for infinite time the head is fixed at 

h0. This can be seen as one boundary. 

The last condition assumes a fixed pumping rate (Q), and is another boundary condition. 

The solution to this is attributed to Theis (1935) and can be expressed mathematically as 

(Schwartz and Zhang 2003): 

       
 

   
     (2.5.2) 

Where in equation 2.5.2 the Q is the discharge rate from the pumped well and T is the 

transmissivity of the aquifer. The s is the observed drawdown [L]. The well function W (u) 

can be expressed mathematically as (Schwartz and Zhang 2003): 

      
   

 
                     

  

   
 

  

   
 

  

   

 

 
   (2.5.3) 

And for the dimensionless variable u is presented in equation 2.5.4: 

  
   

   
 (2.5.4) 

The function in 2.5.3 is rather complicated, and it is often evaluated by using well function 

tables or computer specialty computer applications. 

This model was created for the use of confined aquifers, and is generally not transferable for 

unconfined aquifer analysis.  
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However, an updated version of the Theis model is available and will take into account the 

delayed gravity drainage by correcting the drawdown value with (Krusemann and de Ridder 

1992): 

                 (2.5.5) 

Where in equation 2.5.5, s is the drawdown of the unconfined aquifer, s' is the drawdown for 

the assumed confined aquifer, as b is the saturated thickness. This correction only applies to 

the late time drawdown data which theoretically will fall on the Theis curve (Krusemann and 

de Ridder 1992). Schwartz and Zhang (2003) claims that for larger distances the Theis model 

for confined aquifers can be fitted to unconfined aquifers without too much error. 

2.5.4 Theis assumptions 

There are several assumptions for the unconfined Theis solution. They are (Krusemann 

and de Ridder 1992): 

1. Aquifer has infinite areal extent 

2. Aquifer is homogeneous, isotropic and of uniform thickness 

3. Pumping well is fully or partially penetrating 

4. Flow to pumping well is horizontal when pumping well is fully penetrated 

5. Aquifer is unconfined 

6. Flow is unsteady 

7. Water is released instantaneously from storage with decline of hydraulic head 

8. Diameter of pumping well is very small so storage in well can be neglected 

9. No delayed gravity response in aquifer 

10. Flow velocity is proportional to the tangent of the hydraulic gradient instead of the 

sine. 

11. Flow is horizontal and uniform in a vertical section through the axis of the well 

12. Displacement is small relative to saturated thickness of aquifer 
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The data requirements are: 

 Pumping and observation wells locations. 

 Pumping rates 

 Observation well measurements (time and displacement) 

 Partial penetration depths 

 The saturated thickness of the aquifer 

 Hydraulic conductivity anisotropy ratio 

2.5.5 Diagnostic plots for determining flow regimes 

In well test analysis the diagnostic plots consists of drawdown and its logarithmic derivative 

versus time. It is most often plotted on log-log scale. These plots play an important role when 

choosing the analytical model to fit the drawdown data. 

 

 

Figure 2.5.3 Diagnostic plots for pumping tests (Renard et al. 2008) 
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The plots presented in figure 2.5.3 are the most frequently encountered in hydrogeology 

(Renard et al. 2008) and serve as useful guides when choosing the analytical solution and are 

good indicator for the different flow regimes surrounding the pumped well. They consist of 

the drawdown data which is denoted as s (t). It also consists of the derivative plot, which is 

ds/d ln (t). The derivative plot is often used for finding boundaries when pumping, e.g. 

constant head boundary in an unconfined aquifer (Renard et al. 2008).   
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3 MATERIALS AND METHODS  

3.1 Aquifer observations and maps 

The aquifer water level was observed with submerged data loggers in observation wells from 

24.10.2010 to 10.11.2010. Precipitation was measured with a pluviograph installed near the 

observation wells. 

The GR02 well was observed and data logging devices was submerged in the water to 

measure the fluctuations in hydraulic head as a response to environmental factors as the 

barometric pressure and the tidal activity. This well is located approximately 120 meters 

inland from the southern coast. The data recording device is a data logger which records 

change in centimeters of water above the sensor. This includes the weight of the column of air 

above the well. To correct for the barometric effect, a barometric logger was installed in the 

same well, above the water table. This records the column of air above the logger (in cm 

water), so to find the correct water level in the well, the weight of the barometric pressure has 

to be subtracted. 

 

Figure 3.1.1 Location of observation loggers and wells. 
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The map presented in figure 3.1.1. shows the locations of the in situ data loggers, and the 

wells used for the pumping tests. 

For tidal fluctuations near the aquifer, a data logger was placed in the contact with the sea at 

the south pier (the SVR01 location). To prevent fine grained material to enter the pressure 

transducer; and to ensure minimal horizontal and vertical movement of the logger, the device 

was placed in a perforated PVC tube which was then installed vertically in the ocean. This is 

shown in figure 3.1.2 along with the GR02 data logger. 

 

 

 

 

 

 

 

Figure 3.1.2 Tide observation point and the GR02 barometric observation device 

 

The submerged data logger also recorded the electrical conductivity of the water in the well. 

This is presented as micro Siemens per centimeter. All water levels have been corrected to the 

same reference datum, the NN1954. The accuracy of the divers were reported to be within +- 

0.5 cm. The results from this observation are presented in figure 3.1.3. 
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Figure 3.1.3 Aquifer observations 

 

The results of the aquifer observations indicate a good correlation between the hydraulic head 

in the well and the tidal level measured in the fjord. The oscillation of the water level in the 

well is indicative of transient groundwater flow conditions. These observations will be used 

for the estimation of hydraulic diffusivity based on the Ferris method. 

The air pressure has a distinct impact on the water level, as it is expected in unconfined 

aquifers (Driscoll 1986). This can be seen from the similarities in the uncorrected GR02 well 

level and on the air pressure graphs. The air pressure has a higher impact on the water level in 

the well than the tidal oscillations. The uncorrected water level fluctuates with approximately 

40 centimeters from troughs to peaks in the graph, whereas the corrected level only fluctuates 

2-3 centimeters diurnally and approximately 20 centimeters weekly. 
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Connected with changes in air pressure is the precipitation. As expected any precipitation 

infiltrates rather quickly and contributes to the ground water level, as can be seen from the 

rapidly rising water levels after precipitation. 
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3.2 Electrical methods 

3.2.1 Data acquisition 

Four lines with 72 electrodes with 3 and 5 meters spacing were deployed on several days in 

mid-September 2010. The electrodes were deployed successfully and except for the first line, 

C-C’, the resistance between each electrode was lowered to less than 13 kohm. This was done 

with “watering down” the electrodes with an electrolyte solution.  

The weather was clear and sunny for all days of measurement, with no or little precipitation 

for the previous week. This might have dried out the unsaturated zone significantly and 

subsequently lowered the conductivity for the top layer.  

Abandoned and buried pipes and tubes along with blasting cable were seen buried around. 

This might influence the results as buried metal objects can distort data, especially if the 

conductive body lies in such a way that the electric current will prefer to pass through it 

instead of the adjacent soil.  

Figure 3.2.3 shows a steel electrode inserted in the ground, connected to the multi-electrode 

cable. The electrode was hammered down approximately 20 cm in the ground. There were 

some challenges due to topographical features to keep the electrodes in a straight line.  

 

 

 

 

 

 

 

 

 

Figure 3.2.4 shows the programmable switch hooked up to the ground electrodes and external 

power source. The external power source was a 12V car battery. 

 

Figure 3.2.3 Electrode in ground 

 

 

 

Figure 3.2.4 The Switch connected to battery 
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Figure 3.2.5 Location of the resistivity lines 

The locations of the lines were selected in the field from topographical limitations and the 

possibilities for 360 meter long surveys along a relative straight line. There were no major 

problems during acquisition. 

3.2.2 Data processing and filtering the report point distribution graphs 

The creation of the models follow a three step procedure. It can be summarized as follows: 

 Creation of report point distribution based on the data obtained. This was then filtered 

witht he Prosys application to eliminate most of the bad data points, and to inspect the 

quality  of the data set. Topography was implemented in the models at this point. This 

eleveation data was based on maps and a quick visual survey along the lines. 

 The pseudosections was then imported in the RES2DINV application. Then it was 

filtered further by eliminating the few bad data points which were missed during the 

filtering. 

 Lastly the the inversion was perfromed which created the models based on the filtered 

pseudosections. The paramters used was robust inversion and a horizontal / vertical 

filter of 0.5. 

The most used filter was to eliminate any negative apparent resistivity values and zero values. 

The two others were to elimatate any report point which were obviously wrong, either too 

high or too low values. The sliding avaerage filter to lower the extreme values for noisy data 

sets, this was done not to remove too many report points. Some of the pseudosections were 

reduced vertically as the deepest values were very noisy. 
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The following report point distribution gives an insight of how the apparant resistivity values 

are distributed. The values should be used for interpretation. It does however, give an insight 

of the data quality and amount of noise present. This is an intermediate result and is therefore 

presented in this section. 

 

Figure 3.2.6 AA' report point distribution 

Figure 3.2.6 shows an increasing variation towards deeper measurements. This may be 

attributed to several factors including noise, heterogeneity of the depth or faulty electrodes. 

 

Figure 3.2.7 BB' Report point distribution 

The B-B’ line presented in figure 3.2.7 has a smaller electrode spacing (3 meters) so the 

resolution is higher, but the depth penetration is lower. This data set had less noise and was 

subsequently not filtered much. However, there were large resistance variations in the top 

layer; this is easily seen from the top distribution. This was expected since the lines crossed 

small piles with coarse gravel. 
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Figure 3.2.8 CC' Report point distribution 

The C-C’ line in figure 3.2.8 was by far the noisiest data set as can be seen from the report 

point distribution graph. This was along the main road, and blasting wires and pipes were 

observed near the lines. This was also the first measurement done, and the electrodes were not 

watered down with sea water, so ground electrode resistances were very high. The data set 

had also several negative apparent resistivity reference points, which is omitted in the report 

point distribution.  

 

Figure 3.2.9 DD' Report point distribution 

The D-D’ set presented in figure 3.2.9 was the least nosy data set of all. This is in the newly 

exposed area and thus it has not been subjected to much anthropogenic activity. The mid-

section of the upper layer is highly resistive; this was can be attributed to a hill top with 

coarse sand and gravel. The lower parts show a more wide spread distribution. This line was 

measured in a newer exposed area and more in the middle of the deposit (figure 3.2.5) 

These data sets were filtered and inserted into the inversion application RES2DINV and the 

resulting models are presented in section 4.2. 
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3.3 Tidal Forcing method 

Based on the fluctuations on presented in figure 3.1.3 the Ferris’ tidal forcing method 

described in section 2.4 has been applied. 

3.3.1 General description and power amplitude spectrums 

As can be seen in the graph from the aquifer observation there is a good correlation between 

the tidal level and the head measured in the GR02 well. The phase shift between the two 

signals can clearly be seen from the graph. There are several ways to obtain the characteristics 

of each cosine, for this test the Fast Fourier Transform will be used. 

For this data series the total number of readings was 4848 sampled at 300 seconds intervals. 

The FFT fits N/2 frequencies to N data points, for this series this means 2424 frequencies in 

the frequency domain.  

For this study, the sampling interval is 300 seconds, so the Nyquist frequency is 1.7 mHz, and 

subsequently the Fourier transform will contain information from 0 Hz to this frequency. The 

lunar semi-diurnal constituent M2 has a period of approximately 12.41 hours (Defant 1961) so 

5 minute sampling interval should be adequate  to resolve the desired tidal frequencies. 

The mean value of the data set was removed with the Matlab's detrend function to eliminate a 

peak at 0 Hz on the amplitude spectrum. The amplitude spectrums were produced by plot the 

amplitude for one side of the amplitude spectrum on the y axis and the x axis denotes the 

frequency range from 0 to the Nyquist frequency in Hz. The spikes indicate more energy at 

the given frequency, and the known periodicity of the tidal constituents can be compared to 

this graph. The amplitude spectrums are presented in figures 3.4.1 for the tidal observation 

and 3.4.2 for the inland well GR02 observation. 
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Figure 3.4.1 Amplitude Spectrum of tide 

 

 
Figure 3.4.2 Amplitude Spectrum of GR02 
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3.3.2 Identification of tidal constituents 

There are several spikes which are both discernible in both the tide and well observations. 

However the two frequencies with the largest amplitude in the tide are the Msf constituent and 

the M2 constituent. The Msf constituent has a period of 14.75 days, the measured one here has 

a period of 14.24 days (Jarosz 1997). There might be complicating factors such as the sea bed 

topography and the nature of the deposit, which function as a barrier between the inner and 

outer basin. However, for this test this is identified as the Msf. 

The M2 constituent which has a period 12.42 hours adheres quite well to the expected period 

of 12.41 hours (Defant 1961). 

The other spiked frequencies does not seem to fit any of the known tidal constituents, and 

may be attributed to complicating factors as weather systems, bathymetrical conditions or the 

tidal current Svelvikstrømmen’s influence. 

3.3.3 Lag and Efficiency results from the FFT 

Table 3.3.1 shows the calculated lags and amplitude losses for the different constituents based 

from the Fourier analysis. The M4 and 2MS6 constituents, the response in the well were so low 

that it may be regarded as noise and subsequently these constituents will be omitted from the 

rest of the experiment. 

 

Table 3.3.1 Lag and Phase from the FFT 

Frequency(Hz) Period (s) Constituent Phase lag (rad) Efficiency 

8.14E-07 1.23E+06 MSf -0.26 0.43 

2.24E-05 4.47E+04 M2 -1.18 0.06 

4.35E-08 2.30E+07 M4 0.49 0.08 

6.80E-05 1.47E+04 2MS6 -0.79 0.08 

 

The amplitude is much lower in the observation well for the M2 constituent, and the ratio is 

0.06 which is very low compared to the ratio for the Msf which is 0.43.  
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3.4 Pumping test 

3.4.1 Description of the procedure and details surrounding the test 

The pumping test was performed by NGI during August 16th and 17th 2010. The BR03 (see 

well map) well was pumped with 3" submersible pump (Grundfos SQ/SQE 2-70) 

(Kristjansson 2010). The abstracted water was dumped 170 meters away from the well to 

prevent re-infiltration. 

When performing a pumping test it is commonplace to perform a step-drawdown test. This is 

done to ascertain the well characteristics. This has not been analyzed for the use in this thesis. 

For a complete description and results of the step drawdown test performed before this 

pumping test see Kristjansson (2010). 

For this pumping test the distance between the pumping well and the observation well GR08 

is 4 meters. The pumping rate is assumed to be at a constant 0.7 throughout the whole 

pumping period. For the observation well measurements the pressure transducers were 

installed in all well surrounding the BR03 (pumping well) during the test, so they all 

registered the drawdown in each one of them. For this test, however, the GR08 well be used 

as the observation well.  

The penetration depth for the BR03 well has been measured to be 6.6 meters depth, and the 

GR08 is 6 meters deep. The aquifer base, as established from the geophysical measurements 

is between 7-30 meters, and different bases will be tried when applying the analytical models. 

For an exhaustive description of the wells see Kristjansson (2010).  

This pumping test was influenced by precipitation after 15 000 seconds, and the recovery was 

also influenced by precipitation. This pumping test will be based on the first 15 000 seconds. 

The observed drawdown in the GR08 well is portrayed graphically in 3.4.1. For the other 

figures 3.4.2 - 3.4.4 is presented with different values on the axes and also contain a 

derivative plot (the red crosses).  
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Figure 3.4.1 Drawdown in GR08 during pumping 

 

Figure 3.4.2 Linear-log plot GR08 (Red line is derivative plot (Spane 0.7) 

1. 10. 100. 1000. 1.0E+4 1.0E+5
0.

0.006

0.012

0.018

0.024

0.03

Time (sec)

C
o
rr

e
c
te

d
 D

is
p
la

c
e
m

e
n
t 
(m

)

Obs. Wells

GR08



44 

 

 

Figure 3.4.3 Log-Log plot GR08 (Spane 0.7) 

 

Figure 3.4.4 Linear-Linear plot GR08 (Spane 0.7) 

 

The diagnostic plots are presented in figure 2.5.3. These are important tool for determining 

the different flow regimens and thus which analytical model is applicable (Krusemann and de 
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Ridder 1992). For this test the radial plot was used to determine any delayed gravity response, 

which is often observed in unconfined aquifers. This can be observed as a curve at 

intermediate time (comparable to figure 2.5.3b). Further it is possible to see if the aquifer has 

infinite-acting characteristics by observing a straight line at late time (figure 2.5.3c) which is 

one of the Theis assumptions (Krusemann and de Ridder 1992).  

The pumping test drawdown curves in figure 3.4.2, 3.4.3 and 3.4.4 compared to the various 

diagnostic plots in figure 2.5.3 and suggests that the flow regime are mainly influenced by: 

 Unconfined aquifer (B) 

 Infinite linear no-flow boundary (C) 

 Well bore and skin effect (F) 

The unconfined aquifer is diagnostic is not very well pronounced, as can be seen from the 

derivative graphs. The easily recognizable drop in this graph (figure 2.5.3b) is not easily seen 

in the pumping test graphs.  It may however, be overshadowed by the well bore storage and 

skin effects, as indicated in figure 2.5.3f. The infinite no-flow boundary compares (figure 

2.5.3c) well to the pumping test data showing a straight line at the late data. 

The wellbore skin effect is used to account the difference between the measured and predicted 

drawdown. The skin which is a result from altered permeability around the wellbore can be 

positive or negative (Krusemann and de Ridder 1992). For the positive effect the interface 

between the aquifer and the well is damaged. This lowering of the permeability around the 

bore can be the result of mud infiltration during drilling; clogging the screen by coarse 

particles; some sorts of mineral precipitation or improper screen size. The negative skin effect 

is less encountered and may take place where the permeability around the well is enhanced, 

this may stem from acid precipitation or hydraulic fracturing (Krusemann and de Ridder 

1992). 

The shallow well was drilled with bentonite mud, and subsequently the mud may have 

entered the formation and altered the formation's characteristics around it.  
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4 RESULTS AND DISCUSSION 

4.1 Lithologic log  

The lithologic log presented in figure 4.1.1 is based on flush samples from a drilling operation 

in 1981 (Sørensen 1981). 

 

Figure 4.1.1 Lithologic log from Svelvik Ridge (Based on unpublished data Sørensen 1981) 
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A general trend of fining sediments as depth increases is observed, the shallow BH5 is exempt 

from this trend. At around - 30 meters in BH2 a silt or clay layer was encountered, enough to 

clog the bore crown. This suggests a clay layer at around that depth, however this was not 

confirmed when drilling the 300 meter deep well in the summer of 2010.  The presence of 

clay can serve as a possible confining or retarding layer. However, the other boreholes 

suggest finer sediments from around -20 meters, and the first silt / very fine sand is 

encountered shallower in BH1 at around -10 meters. Lenses with different sediments are 

expected in glaciofluvial deposits, and was frequently encountered in the Storsand deposit 

(Lønne 1993).  In BH3 from -6 to -9 meters may be an example of a gravel lens. 

Since no real elevation data was given in the data descriptions, it is assumed that the 

topography has not changed significantly during these 30 years. A map which came along 

with the unpublished drilling data supports this. However, a land survey should be done 

where the boreholes are to establish the height relative to the NN1954 datum. This was not 

done here and the depths should then be considered as tentative. 

The lithologic log should only be used as an indicator of the changes in lithology, and the 

depth to the confining layers should be complemented with other geophysical methods. 

The grain size distribution charts are presented here in the results section as they are a part of 

the resulting lithologic log presented.  
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4.1.1 Grain size distribution charts and hydraulic conductivity estimates 

Based on these grain size samples the hydraulic conductivity values has been estimated based 

on the Hazen (1893) and Gustafson (1984) method presented in section 2.2.7. 

 

Figure 4.1.2 Grain size distribution from BH2 

 

Figure 4.1.3 Grain size distribution from BH3 
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Two methods described in section 2 were used to estimate the hydraulic conductivity in BH2 

(Table 4.1.2) and BH3 (figure 4.1.3). The Hazen and Gustafson method was used as described 

in section 2.2.7. These gave slightly different results, the Gustafson method yielded lower 

values in general than the Hazen method. 

Table 4.1.2 Hydraulic conductivity estimates BH2 

BH2  

Depth 
(m) Hazen(m/s) Gust(d50) (m/s) 

7 1.81E-04 1.53E-04 

14 4.49E-05 3.56E-05 

18 4.49E-05 3.56E-05 

21 2.89E-07 6.57E-08 
 

Table 4.1.3 Hydraulic conductivity estimates BH3 

BH3(m/s) 

Depth 
(m) Hazen(m/s) Gust(d50) (m/s) 

5 4.63E-04 6.28E-04 

10 2.89E-03 2.79E-03 

17 4.59E-05 5.58E-05 

24.5 6.12E-08 7.73E-09 
 

The hydraulic conductivity estimates from the empirical formulas (section 2.2.6) for BH2 

between 18 and 20 meters is lowered by the presence of the silt/clay fraction. This reduces the 

hydraulic conductivity estimate to 0.01 md
-1

. This is classified as impervious by Bear (1979) 

and flow velocity falls in the clay / silt range. For the BH3 at 24 meters depth the hydraulic 

conductivity is even lower, and falls also in the clay / silt range. Based on these two 

observations there is a trend with finer sediments with increasing depths. 

The mid and upper sections of the aquifer have hydraulic conductivity estimates from 3 to 

241 md
-1

. The wide range of this may be attributed to anisotropy or the method used when 

obtaining the samples. Bear (1979) classifies these values as good to poor aquifer 

characteristics with sand and gravel for the higher values and VF, silt and loess for the lower 

values. 
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The grain size distributions are based on flush samples, and should be treated accordingly. 

The samples should be used with caution and the drilling method and sources of error should 

be made aware of. Details from the drilling operations are not available, except what is 

presented on the log (fig 4.1.1).  

Perers (Gustafson et al. 1984) conducted a study of flush samples and the grain size 

distributions in glaciofluvial material in Southern Sweden. He found that flush samples and 

samples obtained from rotational drilling differed from an actual sample from core sample. 

This was attributed to the quality of the samples and systematic errors. In general the 

conclusion was that samples obtained with apertures at the end gave a more realistic sediment 

distribution than the samples obtained with side apertures. For the side holes method the 

coarse grains was overrepresented. Samples obtained from drilling should be considered 

carefully, and only be used as guides since they do not represent the actual sediment 

composition (Gustafson et.al 1984). 

Other factors include the aperture of the screen and the flush pressure (Gustafson et.al 1984). 

However, none of this information were available and the values obtained from the samples 

should be treated only as what they are estimates. This is promoted further by the use of 

empirical formulas, which also contribute to a higher degree of uncertainty. 

4.1.2 Conclusion on hydraulic conductivity estimates 

The values show that with depth the hydraulic conductivity decreases. The for the BH2 

between 18 and 21 meters the value are very low and is described by Bear (1979) as 

impervious. The same is for BH3 between 17 to 24.5 meters. Further work to establish the 

basement of the aquifer has been done by the electrical resistivity tomography method 

presented in the next section.  
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4.2 Electrical resistivity models 

The data from the inversion routines generated the following resistivity models. Three models 

are oriented from West to East and one, the BB' model, is slightly oblique to the North-South 

direction. The AA' line intersects the BB' line at the indicated point.  

All figures follow the same setup, beginning with the measured pseudosection at the top. This 

is the result after filtering the raw data sets shown in the report point distribution figures. The 

middle figure is the calculated pseudosection. The lowest figure is the inverted resistivity 

model which can be interpreted geologically. 

4.2.1 A-A' line Model 

 

Figure 4.2.1 AA' line inversion and resultant model 

An obvious feature of the AA’ model in figure 4.2.1 is the two layers characteristic. The 

model is separated at circa 14 meters (the red dotted line) with a relatively homogeneous 

lower layer with resistivity values varying from 2-30 ohmmeters. Higher values can be seen at 

the lower parts of the model. 

For the heterogeneous upper layer the values range from 100 to several thousand ohmmeters. 

In the top layer there are angular lenses with higher and lower values than the surroundings. 

The most prevalent value is 200 to 400 ohmmeters, however some areas in the model shows 

ranges upwards to 2000 ohmmeters. Higher values can be observed closer to the surface. 

BB' Intersection 
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4.2.2 B-B' line Model 

 

Figure 4.2.2 BB line inversion and resultant model 

The BB' line in figure 4.2.2 has a higher vertical resolution as a result of a smaller electrode 

distance.  

The intersection point between the two readings similar values and depths to the interface 

between the layers are present. 

The two layer characteristics of the subsurface can be observed in this line as well. This line 

has a more North South orientation, and the model reveals a dipping feature of the two layers. 

The same resistivity values of the lower layer can be seen, and the heterogenic upper layer 

spanning from the thousands to the lower 5-10s ohmmeters is present. 

A notable feature of the upper layer is that there seems to be a lower resistivity band from ca. 

3 to 5 meters depth. This is followed by a higher resistivity area in the 300-500 ohmmeters 

range. 

 

 

 

 

AA' Intersection 
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4.2.3 C-C' line Model 

 

Figure 4.2.3 CC' line inversion and resultant model 

The CC’ model in figure 4.2.3 was heavily filtered, this can be seen in the pseudosection with 

the blanked out areas. A sliding average filter was applied and this evened out any large 

variations in the upper part. The removal of bad data points was mainly done in the sides, and 

in the deeper parts, so this model has a reduced reach down to about 30 meters. However, the 

two layer structure is still recognizable divided at the approximately the same depths as the 

other models.  

The top layer has less heterogeneity than the other models, and the lower layer indicates the 

same values as the other models. The eastern side shows an anomalous area reaching down to 

20 meters. At the lower end of the second layer there are areas with higher resistivity values. 
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4.2.4 D-D' line Model 

 

 

Figure 4.2.4 DD' line inversion and resultant model 

This area was the only with any significant topographical features. This resulted in a second 

model with topography presented in figure 4.2.4. The topography had an impact on the 

resultant model, and some of the specific resistivity values changed significantly. However, 

still a two layered subsurface can be seen but at a different depth than the other models. The 

interface occurs at ca. 21 meters. 

In the middle of the model, from 100 to 200 meters a hill with high resistivity values up to 

2000+ ohmm can be seen.  The heterogeneous top layer is found here as well, however, it is 

deeper than the other models. 

The more homogenous lower layer has resistivity values ranging in 5-20 ohmmeters. 
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4.2.5 Discussion and comments on the resulting models 

All models illustrate the easily recognizable subsurface layers with different electrical 

properties. However the depth to this interface should be interpreted critically and there are 

several sources of error when measuring and when modeling the results. It is further easy to 

make mistakes in the interpretation of these models owing to the principles described in 

section 2.3. 

The dipole-dipole method used here is not particularly sensitive to vertical changes in ground 

resistivity (Reynolds 1997), but should be adequate to resolve any subsurface layering 

(Solberg et al. 2011). A more insightful method could be the gradient array or a 

Wenner/Schlumberger configuration, which is more sensitive to vertical changes in electrical 

properties (Solberg et.al 2011). However, for this thesis the dipole-dipole was chosen mainly 

due to great penetration depth of the method and partly its excellent lateral sensitivity 

(Reynolds 1997).  

The geometric factor becomes relatively large in dipole-dipole surveys. Especially with 

deeper investigation depths, and following from equation 2.3.2, the voltage potential between 

the MN electrodes can become very low, and thus lowering the signal to noise ratio or be 

difficult to measure (Bernard 2003). This is further complicated high ground electrode 

resistance, resulting in intensity of the current becomes weaker. 

High ground electrode resistance was certainly a major problem for the CC' line, which 

subsequently resulted in a very noisy data set (figure 3.2.8). For this reason this model should 

be omitted, however it was included as an example of what large resistivity values between 

the electrodes does to a dipole-dipole survey. The CC' line resulted in about 1/8 of the report 

points in the pseudosection to have negative values. These are interesting phenomena, but 

regarded as measurement error and thus filtered out.  

The DD' line required very little filtering, and is an example on a more successful 

measurement than the CC' line. The DD' report point distribution (figure 3.2.9) indicates a 

more uniform apparent resistivity distribution or much less noise. The wide distributions of 

values in the top layer are the effect from a dryer hill in the middle of the survey line. 

The BB' line had a slightly different setup, with 3 meter spacing between each electrode. This 

configuration does not penetrate as far down as the other, but it does have a greater resolution 

than the others (Bernard 2003). There are no other significant differences in this model from 
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the others. This was the only one oblique to West South direction, and it may indicate a 

dipping up layer southwards. The resistivity values are in the same range as for the other 

models. 

4.2.6 The Upper layer 

All models show a heterogeneous top layer. Large blocks with high resistivity values are 

intermixed with layers with lower resistivity values. The blocks with high (800-1000 ohmm) 

values may have numerous explanations. They might be ice rafted debris or drop stones 

which certainly will have higher resistivity values than the surrounding material. According to 

Lønne (1993) Ice rafted debris can be expected in deposits like these. Numerous of large 

boulders up to 5-6 meters in diameter can be seen scattered throughout the deposit, and as 

Sørensen (1981) further mentioned these boulders seems to be more frequently at the ice 

proximal side. These large boulders will have higher resistivity values than the surrounding 

areas, but it should be emphasized that in resistivity models there will never be an abrupt 

change in values (Hauck and Kneisel 2008), instead a mild transition from high to low will be 

observed. This is to some extent attenuated by the robust inversion done here, but 

nevertheless the physical size of these pockets should be treated as relative and not absolute. 

The static water table is 0.5 to 1 meter under the surface. The models do not depict this very 

well, except the DD’ line which has a dry hill with high resistivity values attributed to it. 

They can also be attributed to gravel lenses, as these encountered during installation of the 

observation wells by NGI in the summer of 2010 (Kristjansson 2010). This might give a more 

plausible explanation than the drop stones since the values are not in the bedrock range 

(Palacky 1987; Solberg et al. 2011), however any secondary porosity in the drop stones will 

lower the electrical conductivity (Reynolds 1997). 

The lower resistivity values in the upper part of the model can be attributed to clay lenses, or 

presence of a lower resistivity material such as graphite or silt. These clay lenses might be the 

result of cohesive debris flow, which Lønne (1993) claims can be found in several of the A 

and D units in the conceptual model (figure 2.1.3). One good example of this might be the 

lower resistivity band in the 4.2.2 model, which seems to extend throughout the whole 

section. There is evidence of this band in the other models as well, but they are not as 



57 

 

pronounced as the one in the 4.2.2 model. This can be explained by the better resolution of 

this model. 

Another explanation of the heterogeneity might be measurement errors or inversion errors. A 

measurement error might be the influence of a faulty electrode. This will create a clearly 

visible higher or lower resistivity values following this electrode downwards will be easy to 

recognize (Bernard 2003). The only measurement which had a major influence of faulty 

electrodes was the CC' line, this effect was filtered down.  

4.2.7 The interface between the two layers 

The interface of the two distinct lithologic layers is for the southwards models at around 13-

14 meters. There is however, on the northernmost model (4.2.4) a different depth to the 

interface, at about - 21 meters. Since the topography was estimated from maps, and not more 

accurate instruments; and from the models that the insertion of topography had such an effect, 

this should also be viewed as an estimate. This difference in depth may also be attributed to 

the difference in terrain height between the different measurement lines. 

The model in 4.2.2, the only oblique to west south measurement direction, indicates the 

interface is slightly dipping upwards when moving north to south. This combined with the 

deeper depth in the northernmost measurement indicates that the interface is dipping up, 

however this is only an observation of one line and should be investigated further. 

For the west east distribution the interface between the two layers seems to be horizontal. 

4.2.8 The lower layer 

This deposit is surrounded by salt water on three sides. In settings like these the salt water can 

be expected to lie under a lens of freshwater, as a described by the Ghyben-Hertzberg 

relationship (Bear 1979). Salt water values are indicated a range from 0.1 to 1 ohmm (Palacky 

1987, Solberg et al. 2011). The values from around 2-5 ohmmeter correspond well to salinity 

values measured by Magnusson and Molvær (1997) and may serve as a good explanation for 

the change in electrical conductivity if this saline water penetrates the lower parts of the 

deposit. Salt water intrusion is not uncommon in coastal aquifers since the less dense 

freshwater tend to overlie the denser saltwater (Schwartz and Zhang 2003). There should be a 

zone of diffusion between these though; this zone is not very pronounced on the models. This 



58 

 

zone should have a slight increase in electrical conductivity downwards. This might be 

diminished by the robust inversion performed on the models, and cannot be discarded as a 

possible explanation for the two layered model based on resistivity measurements alone. 

The resistivity values in the lower layers reaches from approximately 2 to 50 ohmmeters, 

apart from the CC' (figure 4.2.3) model which should not be lent any credibility. 

These values correspond well to non-leached marine clay values (Palacky 1987, Solberg et al. 

2011), but may have another explanation as well. Cuttings from drilling in the summer of 

2010 did not show any evidence of a pure clay layer in that depth. 

A possible interpretation of the surveys may be that the lithology changes from being grain 

supported to having a more clay / silt supported matrix structure. Owing to higher electrical 

conductivity values than the surrounding rocks, this presence of clay and silt will lower the 

resistivity readings from that depth (Reynolds 1997).  

This hypothesis corresponds rather well to the lithologic log (fig. 4.1.1) and grain size 

distribution charts (figs 4.1.2 and 4.1.3). The models indicate that the interface is located 

higher up; however this may be a result of the inversion routine or the subsurface lithology 

(Hauck and Kneisel 2008). 

4.2.9 Noise and geoelectrics assumptions 

As indicated in figure 2.4.3 noise can affect the electrical readings, Telluric currents can 

distort the readings. Perhaps the largest influence, at least for some of these readings is the 

industrial noise at this site. Overhead power masts are in the vicinity, as well as buried cables 

driving electrical shakers and other mining equipment. 

One of the major assumptions in geoelectrics is that the changes in subsurface lithology are 

fairly horizontal, any deviation from this will result in anomalous features in the inversion 

routine (Reynolds 1997). However, the horizontal layering seems to be fulfilled here, at least 

in the West East direction. 
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4.2.10 Conclusion of the Electrical surveys 

All produced models represent a two layered resistivity structure of the subsurface. This was 

complemented with depth data from the samples collected in the 1980s indicates an interface 

to a higher conductive saline water or clay / silt rich layer at between 10-30 meters. This layer 

will be treated as a confining layer, based on these surveys and the work by Sørensen (1981), 

and establish the basement of the unconfined aquifer for the further models.  

The degree of confining layer is questionable; this might be a leaky aquifer. This cannot be 

concluded on the base of these resistivity surveys. The shallow aquifer will be treated as an 

non-leaky unconfined aquifer for modeling purposes. This is an assumption for the further 

work, even though in nature absolute unconfined or confined aquifers are rare (Schwartz and 

Zhang 2003). 

To tie this conclusion to the idealized allostratigraphic model of an ice-contact fan by Lønne 

(1993) (figure 2.1.3), one possible explanation for the two layer model can be that a subunit 3 

is directly underlain by a subunit 4, e.g. B3 is deposited on top of A4. It should be again noted 

that in the areas of measurement there has been heavy excavation so the location is deep 

inside the original deposit. The theory that the lower conductive layer dips up southwards is 

not easily explained by this model. However, there is evidence that the glacier's front 

oscillated (Sørensen 1981, Lønne 1993), and this might complicate the stratigraphy of the 

deposit, especially the deposition of the B-units. 

4.2.11 Establishing the aquifer basement 

Based on the grain sizes and the ERT surveys it is unclear at which depth to establish the 

aquifer basement. The ERT indicates a uniform basement whereas the depth differs from the 

confining layer found in the grain sizes. However the ERT are models and the grain size is 

perhaps a better representative for the actual lithology, at least when it comes to the depth 

estimates. 

For this thesis the aquifer will be assumed to be 20 meter based on the grain size samples and 

the distribution of this layer is confirmed by the ERT models. However, for the pumping test 

different depths to aquifer basement will be modeled.  



60 

 

4.3 The tidal method results 

4.3.1 Estimates of the aquifer's diffusivity from the FFT. 

The results from the water level and tidal observations and the FFT gave the aquifer 

diffusivity estimates presented in table 4.3.1 

Table 4.3.1 Results from Tidal Forcing method 

Tidal constituent 

Efficiency 
diffusivity 
[m2/day] 

Lag based 
diffusivity 
[m2/day] 

MSf 4466.00 248986.19 

M2 11051.47 425.61 
 

There is a large difference between the lag and the efficiency based calculations.  

The two lag based estimates produced very unrealistic results, and this is in accordance with 

other studies done with this method (Jha et al. 2008) and Merrit (2004). The lag results will 

be discarded as possible values for this aquifer. 

However, the efficiency based results does not deviate so strongly from each other and will be 

investigated further. According to table 2.1.1 these values fall in the Fine Sand / Coarse Sand 

range. 

4.3.2 Comments and conclusion of the tidal estimates 

The analysis based on these observations depends largely of identifying the tidal constituents 

and their amplitude and their phase. This was done with comparing the amplitude spectra 

created from tide and well observations. 

The results may not be very reliable since the assumption of a confined aquifer is not fulfilled 

from Ferris (1951). However, the two efficiency based results are not highly unlikely and will 

be compared to those from the pumping test, although they represent two different areas of 

the aquifer; the tide method measures to a large extent the marine shore deposits as 

categorized by Sørensen et al. (1990) (figure 2.1.5) whereas the pumping test is done in 

glaciofluvium. 
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Numerous errors may influence this data set; however these are dependent on the accuracy of 

the measurement of the head in the wells, and successfully subtracted from the atmospheric 

level. It was assumed that the fluctuations of the air pressure and the well level had a ratio of 

1:1; this might not be the case, since the air pressure also has an effect on the tidal level which 

again is in contact with the aquifer. 

Jha et al. (2008) concluded that the speed of tide propagation is faster than the model-

prediction by Ferris (1951). This will result in erroneous estimates of the aquifer parameters 

with the lag method. Further the conclusion was that the use of time lag method for estimating 

hydraulic diffusivity should be avoided, it can however; give a crude estimate of the hydraulic 

parameters. 

Further assumptions of the method apart from the confined aquifer, is that the aquifer should 

be homogeneous, isotropic, semi-infinite (Ferris 1951), none which holds true for this setting. 

The geographical setting of the aquifer, it is surrounded by a tidal body on three sides may 

further complicate the tidal signal as well, this formula is based on a one dimensional 

transient propagation of a sinusoid signal (Ferris 1951; Todd 1980). 

Furthermore, the observation wells placed inland are not perfect. They do show changes in 

hydraulic  head which is in accordance with the tidal fluctuations measured at SVR01, but the 

well losses may decrease the amplitude generated by tidal fluctuations.  

This experiment will then follow the same conclusion as Jha et al. (2008); Merritt (2004) that 

the tidal method for estimating the aquifer's hydraulic diffusivity should be used with caution, 

and be applied only as a crude indication. 

A quicker way to find the aquifer diffusivity from short observation series is to use equation 

2.4.1 and use the efficiency based formula in equation 2.4.5. 
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4.4 Results and discussion from the pumping tests   

The application Aqtesolv (Hydrosolve Inc.) was used to fit the analytical solutions to the 

observed data series. The Theis analytical model is represented with a blue line in the 

following graphs. This was fitted to the drawdown curve. The aquifer’s saturated thickness is 

not known with certainty, so different depths and anisotropy ratios were applied.  

4.4.1 Results from the Theis analytical models 

All following figures portray the observed drawdown in the GR08 well as squares and the 

Theis analytical solution as the blue line.  

 

Figure 4.4.1 Analytical results in GR08 15 meters aquifer base anisotropic ratio 0.5 
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For an anisotropy ratio of 1, the model gave: 

 

Figure 4.4.2 Analytical results in GR08 15 meters aquifer base anisotropic ratio of 1 

The solution in figure 4.4.2 gave with an anisotropic ratio of 0.5; transmissivity is 1,455 x 10
-2
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Figure 4.4.3 Analytical model with aquifer base at 7 meters 

There were miniscule differences in T/S with the different anisotropic ratios. 

This solution in 4.4.3 with an anisotropic ratio of 0.5, gave transmissivity is 1,465 x 10
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and storativity 0.02505.  
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Figure 4.4.4 Analytical results in GR08 with 20 meter base 

A 20 meter thick aquifer gave the solution presented in figure 4.4.4 and with an anisotropic 

ratio of 1 gave transmissivity is 1,592 x 10
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 and storativity 0.1662.  

This gives diffusivity (T/S) of 0.095 m
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Figure 4.4.5 Analytical results in GR08 with 30 meter base 

A 30 meter basement solution in figure 4.4.5 with anisotropy ratio of 0.5, resulted in 

transmissivity is 2.535 x 10
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-1
 and storativity 0.3796.  

This gives diffusivity (T/S) of 0.067 m
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, or converted to 5769.9 m
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4.4.2 Comments on the pumping test results 

The goodness of fit is dependent on where in the data set the Theis curve is fitted. As 

described in section 3.4 the curve for an unconfined aquifer at early time will fall on a Theis 

curve. At intermediate time, the delayed gravity drainage will be influential, and thus lower 

the curve, deviating from the Theis curve. At late time the model should adhere again to the 

Theis curve, and the storativity will be the same as the specific yield (Kresic 2007). By fitting 

the Theis curve at early time, the storativity values will be similar to that of a confined 

aquifer, and will be much lower than they really are in an unconfined aquifer. So, the models 

are fitted to the late time data. 

This problem has been examined by several, and Nwankwor et al. (1992) claims that it is 

usual to fit the Theis curve to early time data, but it should for all practical reasons be fitted to 

the late time data, after delayed gravity drainage. This is further supported by at early time the 

water yielded comes mainly from elastic drainage in the soil matrix (Driscoll 1986). Then 

storativity values will be too low for an unconfined aquifer (Schwartz and Zhang 2003).  

Fitting the model to late time data implies that the duration of the pumping test to be rather 

long, which for this test does not hold true. However the flat trend in the derivative plot 

(figure 3.4.4) indicates that the gravity response is more or less completed at late time, and 

subsequently the specific yield can be estimated with more reliable results than at early time. 

The estimated aquifer saturated thickness of 20 meters found from the ERT and flush samples 

correlates well with the 20 meter model in figure 4.4.4. The other models show poorer fits, 

especially for the 30 meters model. However, the models omitting the 30 meter model show 

relative good fits at late time data.  

4.4.3 Assumptions for the Theis method 

A numbered list of the assumptions was listed in section 2.5.4 

 The infinite-acting (first) assumption is met. Observations in well BR01 during the 

test indicated no influence by the drawdown in BR03. There are no visible boundaries 

adjacent to the pumping test site, e.g. mountains or other impervious boundaries. 

 The second assumption that the aquifer is homogeneous is far from being met, judging 

from the resistivity models and also from the lithologic log presented (figure 4.1.1). 
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The isotropy assumption is not met either. These assumptions are rarely seen in nature 

and it would be very difficult to model the true nature of the aquifer. 

 The aquifer does not have a uniform thickness as indicated by the electrical resistivity 

models, but for the area influenced by the pumping test it can be assumed that the 

aquifer is close to having uniform thickness. This is not true when the water table is 

lowered around the pumping well. However in this test the cone of depression is small 

and will subsequently have a miniscule effect on the saturated thickness. 

 The pumping well partially penetrates the aquifer, and thus assumption number 4 can 

be discarded. The fifth assumption is met, being that the aquifer is unconfined. Flow is 

transient, this can be seen from the observation graphs that the water table fluctuates 

as a result to tidal forcing; thus assumption number 6 is met. 

 The seventh assumption, that water is released instantaneously from storage with a 

decline of hydraulic head is not met either. This assumption stems from that this 

solution is made for the use of confined aquifers. For unconfined ones it takes some 

time before the water is drained as a response to a change in head (Driscoll 1986). 

Further testing needs to be performed to ascertain this time and thus the delayed 

gravity response is not taken into account. Another analytical solution, such as 

Moench (1997) can take this into account when fitting the curve.  

 The eighth assumption is not met either, the diameter of the PVC casing is 10 cm, 

however the outer casing is larger so it takes time before the existing water is 

abstracted from the well. This can be seen that it takes almost a minute before any 

observable drawdown in the GR08 well after pumping has commenced. This is further 

complicated by the well was drilled with mud. This contributes to a positive skin 

effect. 

 The ninth assumption is not common to be met for unconfined aquifers, and this is not 

the case for this aquifer either. However, the drawdown plots does not indicate a 

substantial delayed gravity yield (compare figure 2.5.3b to 3.4.3), but it cannot be said 

that this assumption is met. 

 The 10
th

 condition stems from the Dupuit assumption for unconfined aquifer flow and 

further relates to the unconfined aquifer correction (formula 2.5.5) for drawdown in 

unconfined aquifers. This is difficult to give an estimate of, and cannot be answered if 

this is satisfied or not. The same can be said for assumption 11, not possible to 
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ascertain if the flow is horizontal and uniform. However, there are no indications that 

this is not the case. 

 For the last assumption (12) the depression was relatively small. Maximum drawdown 

in GR08 was 0.25 meters (figure 3.4.1) 

4.4.4 Transmissivity results 

The Transmissivity results from the Theis analytical models are all in the area of 10
-2

 m
2
s

-1
. 

For an aquifer with saturated thickness of 20 meters this gives an average hydraulic 

conductivity for 10
-3

ms
-1

. According to Bear (1979) this is between good to poor aquifer 

permeability and is subsequently classified as sand or sand/gravel to VF sand to silt. This 

corresponds well with the lithology described in the lithologic log (figure 4.1.1). 

In general higher transmissivity values results in a lower drawdown effect at a pumped well 

(Kresic 2007), and subsequently the amount of water abstracted from the well will have to be 

higher for successful measurement of drawdown in nearby observation wells. 

4.4.5 Storativity results 

The specific yield values for unconfined aquifers varies generally between 0.05 and 0.3, but 

higher and lower values may be seen in finer grained or less uniform material (Kresic 2007). 

However, a more reliable way to find out more about this parameter is to do laboratory testing 

on a sample which contains the main characteristics of the aquifer (Schwartz and Zhang 

2003). For this aquifer this has not been done, but still according to Nwankwor et al. (1992), a 

pumping test estimate should give a good approximation. The value is dependent on the 

aquifer properties such as the anisotropy ratio and the aquifer thickness. This was the case 

here as well and the results from the analytical models ranged from 0.37 with 30 meter 

saturated thickness to 0.02 for the 7 meter saturated thickness. The 0.37 is a very large value 

for this type of aquifer and 0.02 is very low. According to Kresic (2007) the values for 

medium sand and gravel (lithology according BH1, figure 4.1.1) ranges from 0.1 to 0.2 so it is 

plausible that the storativity values fall in this range, this is in accordance with the 20 meter 

depth analytical model (figure 4.4.4). 
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4.4.6 Comments on errors on the pumping tests and analytical models 

First and foremost many of the assumptions for this analytical solution listed in section 2.5.4 

were not met. However, the drawdown resembles curves for confined aquifers (figure 2.5.3a); 

this can justify the use of the Theis analytical model (Krusemann and de Ridder 1992). 

According to the diagnostic plots, the biggest influence from the diagnostic plots is the skin 

effect. Theis (1935) does not take into account this, and another analytical solution should be 

used to see if there is any major change in the parameters. 

Another limiting factor of this test is that it only measures between the pumping well and the 

observation well. For this case this was 4 meters, and the results cannot be said to be 

representative for the whole deposit. This is also true for the vertical distribution, and from 

the lithologic log, the lithology changes with depth and accordingly would the parameters that 

govern groundwater flow. 

4.4.7 Comparison between tidal forcing results, pumping test results and hydraulic 

conductivity estimates from the samples 

For this comparison the 20 meter saturated thickness was used based on the resistivity models 

and the lithologic log. The results are presented in figure 4.4.1. K denotes the hydraulic 

conductivity. 

Table 4.4.1 Pumping test results 

Saturated 
thickness(m) Anisotropy ratio 

Transmissivity 
(m2/s) Storativity Estimated K (m/s) 

20 1 1.59E-02 0.166 7.96E-04 

20 0.5 1.80E-02 0.2 9.00E-04 
 

The results from the tidal forcing method with a saturated thickness of 20 meters gave the 

results presented in table 4.4.2. 

Table 4.4.2 Tidal Forcing Efficiency based estimates 

Saturated 
thickness(m) 

Efficiency based 
diffusivity (m2/d) 

Transmissivity 
(m2/s) 

Estimated 
Storativity  Estimated K (m/s) 

20 4466 8.27E-03 0.16 4.14E-04 

20 4466 1.03E-02 0.2 5.17E-04 

20 11051 2.05E-02 0.16 1.02E-03 

20 11051 2.56E-02 0.2 1.28E-03 
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Based on the 20 meter saturated aquifer thickness the tidal forcing method with a storage 

coefficient values from the pumping tests this gave hydraulic conductivity estimates in the 

range of 10
-3

 to 10
-4

 ms
-1

. The end result is dependent on which tidal constituent which is 

used. The longer period of the Msf gave lower hydraulic conductivities than the shorter period 

of the M2 constituent; this relationship can be seen in equation 2.4.5. This correlates to gravel 

to fine sand lithology in table 2.2.1. 

The pumping test analyzed for the GR08 well by Kristjansson (2010) gave a transmissivity 

value of 1.3 x 10
-2

 ms
-1

. BRGM (2010) estimated a transmissivity value of 1.64 x 10
-2

 ms
-1. 

The hydraulic conductivity estimates from the grain size distribution charts presented in 

section 4.1 resulted in the upper 7 meters (samples # 1 and 5) hydraulic conductivity values in 

the lower end of 10
-4

 ms
-1

. 

The values from the pumping tests resulted in hydraulic conductivity values in the upper 10
-4

 

ms
-1

. These values correspond to the gravel to fine sand range according to table 2.2.1. This 

corresponds well to Lønne (1993) with the diamictic material deposited by a glacier. 
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5 CONCLUSION AND RECCOMENDATIONS 

This study aimed to categorize the hydrogeology of the unconfined aquifer at the Svelvik 

ridge in southeastern Norway. For this categorization several factors are needed; these are the 

saturated thickness, transmissivity and storativity. For this thesis the saturated thickness was 

found by comparing two methods.  

The first method was based on flush samples from a drilling operation. The results indicated a 

retarding layer at circa 20 meters. This depth was compared to resistivity models from dipole-

dipole surveys. The presence of an interface was confirmed with the resistivity models; 

however the depth to this interface was not confirmed. 

The hydraulic conductivity estimates from the two methods applied resulted in values in the 

range of 10
-3

 to 10
-4

 ms
-1

. These correlates to a gravelly to sand lithology which is in 

accordance with models of ice contact submarine fans and the samples collected from drilling 

operations. 

The lag based estimates from the tidal forcing method gave unreliable results, however the 

efficiency based estimated gave results similar to that of the pumping tests. 

For more information about the characteristics of the retarding layer an Induced Polarization 

survey should be done. If this confirms the presence of a clay / silt layer, an RCPTU survey 

should be done to accurately pinpoint the depth to the interface. This can be substituted by a 

well logging operation with resistivity equipment. This can be further investigated with 

ground penetrating radar and seismic surveys. A more detailed vertical description of the 

aquifer will return a more accurate estimation of the hydrogeological parameters. 

For a more detailed tidal test the duration of observation should be longer. This would 

identify more tidal constituents and give more estimates of the diffusivity. Further, additional 

wells could be installed closer to the shore than 120 meters, to observe the rates of attenuation 

of the signals. It would be interesting to see how the deposit is influenced by the tides on the 

northern side and at the western side. 

The pumping test should be of a longer duration and use a more powerful pump to lower the 

drawdown in the formation. The pumping well should be stimulated with pulsing technology 

to diminish skin effects. 
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A laboratory analysis on representative samples from the aquifer should be done to ascertain 

the storage coefficient and the anisotropy ratio in greater detail. More accurate values for 

these parameters will give better estimates for the transmissivity and hydraulic conductivity. 
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