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Abstract 

Extreme floods are natural disasters often associated with losses of life, and severe impact to 

agricultural production and infrastructures. However, efficient estimations of the magnitude 

of such extreme events with their non-exceedance probabilities, either for design or risk 

management planning purposes, are often limited by the data availability (i.e., both in quality 

and quantity).  In this study, regional frequency analyses of annual maximum series (AMS) of 

flood events from unregulated rivers of southern Africa were conducted. This includes 

preliminary data analysis (data screening and outlier analysis), sensitivity analysis, 

identification of homogenous regions and suitable regional distribution models for the 

regions, development of regional growth curves and regression models to estimate the 

quantile floods for unguaged catchments. The study area comprises five countries (459 

stations): Namibia, Malawi, Zambia, Zimbabwe and South Africa. The AMS derived for each 

station were examined for validity, dependency, and the existence of outliers. After thorough 

examinations of the AM flood events, 122 gauging sites were selected for further analysis. 

The study area was divided into nine possible homogenous regions based on the geographical 

grouping method together with the heterogeneity tests. The AMS from Namibia, Zimbabwe, 

Zambia and Malawi were grouped as regions R1, R2, R3 and R4, respectively, while the South 

African catchments were further classified into five possibly homogonous regions. The choice 

of an appropriate regional flood distribution model was performed based on L-moment 

approaches together with the index flood procedures and goodness-of-fit (GOF) tests. The 

Generalized Pareto (GPA), Pearson type III (PE3), Three-parameter lognormal (LN3) and the 

Generalized Extreme Value (GEV) distributions were found to be suitable models for AMS of 

floods in southern Africa catchments. Regional flood frequency curves were constructed 

based on the best regional distribution for the nine regions and design floods estimated for the 

return periods of 2-500 years. Based on assessments the accuracy of the derived quantile-

quantile plots, it was concluded that the performance of this regional approaches was 

satisfactory and also confirmed when validated against sites not included in the regional 

analysis. 

Keywords Outliers; index flood; regional flood frequency analysis; L-moment; Southern 

Africa 
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1. INTRODUCTION 

1.1 General background  

Extreme events, such as floods are among the catastrophic natural events that cause severe 

consequences for human society. In many countries of the world, floods are causing damages 

to properties and agricultural lands that result in huge economic and life losses for the affected 

areas. For example, in Southern Africa (the study area), it is often reported in WebPages such 

as UN news center
1
 that every country of the region are on alert for potentially disastrous 

flooding. The UN Office for the Coordination of Humanitarian Affairs (OCHA) in January 

27, 2011 warned that floods in Southern Africa could be severe and lead to food shortages. 

Five countries (Botswana, Mozambique, Namibia, Zambia and Zimbabwe) have also recently 

forecasted serious flooding phenomenon that could affect tens of thousands of people, and 

damage infrastructure, crops and homes (UNNC, 2011). 

How frequently a flood event of a given magnitude may be expected to occur is of great 

important, because almost every activities on a particular flooded areas might be controlled by 

it (Hosking and Wallis, 1997). The frequency of floods with various risks of exceedance, are 

therefore needed for a wide range of engineering problems, planning for weather-related 

emergencies, reservoir management, pollution control, and insurance risk calculations 

(Gottschalk and Krasovskaia, 2001; Kjeldsen et al., 2002; Saf, 2008). Estimation must be 

fairly accurate not only aimed at the preventing of catastrophes, but also at avoiding excessive 

costs in case of overestimating the flood magnitude, or excessive damage while 

underestimating the flood potential.  

Flood frequency analysis is a hydrologic field dealing with estimation of a flood magnitude 

corresponding to any required return period of occurrence. Based on experience, people have 

some idea as to how often floods of a given size occur at given places. Hydrologists have 

been attempting to formalize these ideas by establishing networks of gauging stations and 

analyze the recorded information (Hipei, 1994). In hydrological events, there are numerous 

and unpredictable sources of uncertainties about the physical processes (Hosking and Wallis, 

1997). Thus, stochastic models (such as flood frequency analysis) are very important and 

desirable to estimate how often a specified event will occur on average in a particular area. 

                                                 
1
 http://www.un.org/apps/news/story.asp?NewsID=37347&Cr=flood&Cr1 

 

http://ochaonline.un.org/
http://www.un.org/apps/news/story.asp?NewsID=37347&Cr=flood&Cr1
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This is due to the fact that statistical methods are acknowledging the existence of uncertainties 

and enable its effects to be quantified by confidence intervals.  

 

The frequency analysis of extreme events from a single site is well established and might be 

easier than at the regional level. However, it is most often case that many related samples 

having the same statistical behavior may available at different measuring sites. A more 

appropriate estimation could then be to analyze all the data samples together than using only 

individual series. This approach is known as regional frequency analysis (RFA) (Hosking and 

Wallis, 1997). Regional flood frequency analysis (henceforth RFFA) may be practiced in a 

joint use of at-site and regional data. The method assumes that the extreme events at several 

sites in a region may have similar statistical characteristics (Cunnane, 1989). The author also 

suggested that, though the assumption of homogeneity of the regions is a gross simplification, 

the method is convenient and effective. The advantages of regional approaches are also 

frequently illustrated in the literature (Farquharson et al., 1992; Gottschalk and Krasovskaia, 

2001; Hosking and Wallis, 1997; Kachroo et al., 2000; Kjeldsen et al., 2002; Mkhandi and 

Kachroo, 1997; Mkhandi et al., 2000; Rosbjerg, 2007; Saf, 2008; Saf et al., 2008; Shu and 

Ouarda, 2008; Wiltshire, 1986). These studies suggested that RFFA is more reliable 

estimation of design floods for two fundamental reasons: (1) due to short and uneven record 

lengths, the regional data of homogenous regions have smaller standard error than those 

estimated at individual station data only; and (2) it has the ability to estimate design floods for 

the homogenous regions and allow estimation from gauged sites to ungauged sites.  

Nowadays, hydrologists have been using the advanced method of regional flood frequency 

analysis which compromises the use of L-moments together with the index-flood method 

(Hosking and Wallis, 1997; Saf, 2008) . For example, the methodology has been successfully 

applied in Southern Africa flood studies such as RFFA studies for South Africa and Botswana 

(Farquharson et al., 1992); Southern Africa (Mkhandi and Kachroo, 1997); and South Africa 

(Kjeldsen et al., 2002).  

A RFFA is based on the recorded observations from sites in homogenous region and then a 

single form distribution is fitted to the pooled data (NERC, 1975). For flood modeling, a  

range frequency distributions have been suggested, but none has been accepted as universal 

distribution (Mkhandi and Kachroo, 1997). For example, the survey by Cunnane (1989) 

suggested that the RFFA studies conducted in a number of countries aimed at selecting a 

“best” national distribution for annual maximum series (AMS) recommended different 
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distributions such as Log Pearson Type Three (LP3) distribution for USA (USWRC, 1981), 

Generalized Extreme Value (GEV) for UK flood studies (NERC, 1975), LP3 for Australia 

(Institution of Engineers, 1977), Two Component Extreme Value (TCEV) for Italy (Rossi et 

al., 1984) and Two Parameter Log-Normal (LN2) distribution for Canada flood studies 

(Spence, 1973). 

In addition to the studies above, very few studies on RFFA for southern Africa are 

documented in the literature. The most notable works are the technical document of RFFA for 

Southern Africa (Mkhandi and Kachroo, 1997) and flood frequency analysis for Southern 

Africa catchments (Mkhandi et al., 2000). The authors found that the L-moment diagram to be 

an appropriate analytical tool for the identification of a suitable frequency distribution 

together with goodness-of-fit tests. For the delineated Southern Africa homogenous regions 

(Kachroo et al., 2000), the Pearson Type III (PE3) with Probability Weighted Moments 

(PWM) and/or LP3 with maximum likelihood (ML) methods of parameter estimators were 

recommended as the appropriate flood model. However, these studies may not being 

sufficient when scaling down to the country levels. For example, the later study by Kjeldsen 

et al. (2002) concluded that the appropriate regional flood frequency distribution for South 

Africa particularly in the KwaZulu-Natal province could be the GPA distributions.   

                                                                                                                                                                                                          

Having the above extreme value theory and pervious outcomes as a motivation, this study is 

aimed at extracting information as much as possible from the available runoff data series and 

previous studies. Thus, the outcomes of this work can be provided additional inputs for the 

improvement of the flood hydrology in Southern Africa. The study had attempted to improve 

some inputs used for the analysis such as the record lengths of runoff data; and choices on the 

procedures of data analysis. The work has been accomplished by implementing different 

methods/inputs of RFFA that can be useful in designing flood problems corresponding to 

specified exceedance probability or simply risk. As a result, the flood models and flood 

magnitudes corresponding to required recurrence intervals were furnished for the catchments 

of the Southern Africa. The spatial and temporal variability of flood events with respect to 

regional climatic variables and catchment structure were also identified. 
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1.2  Objective of the study 

 

The main objective of this study was to analyze flood frequency distribution for homogeneous 

regions in Southern Africa which may serve as a basic input to improve the design and 

economic appraisal of civil engineering structures, and to have optimum land use planning 

and /or decreasing risk due to flood damages. 

 

The specific tasks that helped to achieve the overall objective of the study were: 

 Exploratory data analysis ( Data screening and  Outlier analysis) 

 Grouping gauging sites into hydrologically homogeneous regions 

 Identify an appropriate  theoretical distribution of flood flows in Southern Africa 

 Develop regional frequency curves for the delineated regions and  

 Regional  estimation for ungauged catchments 

 

1.3  Target Group 

 

This master thesis contributes to the NUFU - Water Sciences project; Water resources and 

hydrological extremes theme. The overall goal of the project is to improve human welfare by 

efficient utilizations of the inadequate resources of the community  through improved access 

and availability of healthy and safe water (NUFU, 2010) i.e.,  

 Based on an inventory of existing data and earlier work, identify emerging tasks 

within flood and drought research addressing the need of the regions  

 Identify the variability of hydrological extremes, flood and drought, with respect to the 

available information such as regional climatic variables and catchment characteristics  

 Develop maps that show the spatial behavior of extreme hydrological events using a 

combination of data sources with high resolution satellite data.  

The project has been implementing by conducting basic and operational research to address 

and relate health to water quality, availability, climate change and poverty through 

postgraduate research and training at Master and PhD levels. Currently, this project has been 

implementing in Malawi. It is expected that the communities in the selected study sites in 

Malawi will attain improved health and welfare and the innovations replicated to other parts 

of Southern Africa including Botswana, Malawi and South Africa (NUFU, 2010). 
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1.4  Limitation of the study 

 

The main constraint of the study was collecting sufficient runoff data information both in 

quality and quantity. The region of Southern Africa has 12 countries including Madagascar 

(see for details in section 2.1). However, for half of the region which includes 6 countries 

(Lesotho, Swaziland, Tanzania, Mozambique, Botswana and Madagascar), the author 

couldn’t find sufficient runoff data for RFFA. The runoff stations in these countries have 

insignificant discharge (zeros and nearly zero values) and very short length of records (from 3 

to 6 years length). Besides this, the data series available from the stations (even the stations 

used for analysis) have also a lot of information gaps (in some stations it is more than 10 

years). The reason might be due to the following three sources: (1) frequent and sustainable 

dry seasons, i.e., most of the seasons are dry that the record indicates a lot of zeros and nearly 

zero values (especially in Botswana), (2) suitability of the sites for measuring and (3) political 

and economical problem

Since the study area is located in the arid and semi-arid zones, many of the problems were 

associated with estimating floods such as the difficulties of measuring flood flows and the 

variability of flood events (Farquharson et al., 1992).  The Authors also illustrated that the 

difficulty of establishing a reasonable rating curve-particularly at high flow levels is the worst 

problems in this area. This may arise due to the access for gauging near the peak of a short 

flood,   the long periods without flow, and the instability of the channel control and cross-

section area owing to the scouring effect of floods. Hence, the uncertainty of the data should 

be considered during that analysis. 

 

1.5  Structure of the Thesis 

 

The thesis has six sections and the outline of each section is presented as follows: 

Section 1: Introduction- introduces the general backgrounds and relevant previous findings, 

presents the objective and motivates the thesis; introduce the contribution of this work done 

and the aims of the projects; and the outline of the subsequent sections. Some term 

definitions, importance and applications of flood frequency analysis are also introduced in this 

section. 
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Section 2: Study area and data- presents the study area and the detailed activities 

accomplished during data collection and preparation for analysis. 

Section 3: theory and methodology of the study-describes the procedures and the methods 

of the study and gives the theoretical background of each method used. It starts with the 

procedures of data screening and examinations, reviews the necessity and application of the 

methods used for RFFA and statistical test which were used during the analysis. It reviews the 

types of models, the procedures and their approaches.  

Section 4: Result and analysis- presents the details of the main outputs of the research. It 

presents the analysis of the data behavior, outlier detection and treatments, groups of 

homogenous regions, choice of best fitted regional distribution, development of regional flood 

frequency curves and the quantile flood of the rivers and other result for example, evaluation 

the performance of distribution functions, the regional parameter values and regional L- 

moments and L-moment diagrams, the sensitivity analysis were presented and analyzed under 

this section.  

Section 5: Discussion-discussed the methods, results and the choice with respect to their 

theoretical backgrounds.  

Section 6: Conclusion and recommendations - the conclusions reached in the research are 

presented in this section. In addition, the recommendations for the future researchers that 

should be focused on are given in this section. 

Finally, the references and appendices are presented in the last pages of the thesis. 
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2. STUDY AREA AND DATA  

2.1  Study area description  

Southern Africa is a region located in the southernmost of the African continent which covers 

total Area of 6,938,014 km
2
. The region comprises the countries: Angola, Botswana, Lesotho, 

Malawi, Mozambique, Namibia, South Africa, Swaziland, Zambia, Tanzania and Zimbabwe. 

The entire land of Southern Africa is varied, ranging from forests and grasslands to deserts. 

The region has both low-lying coastal areas, and mountains. The natural resources of the 

region is the world's largest source of elements such as platinum and the platinum group 

elements like chromium, and cobalt, as well as uranium, gold, titanium, iron and diamonds 

(Wikipedia, 2011).  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Geographic locations of the southern African countries. Taken from Southern 

Africa FRIEND
2
 

  

                                                 
2
 http://www.ru.ac.za/static/institutes/iwr//friend/?request=institutes/iwr/friend  

http://www.ru.ac.za/static/institutes/iwr/friend/?request=institutes/iwr/friend
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2.1.1 Geography of Southern Africa 

Southern Africa is located in the southern part of the African continent and is bordering to: 

east-coastal plains of Mozambique and Tanzania with Indian Ocean; south-coastal areas 

South Africa with Southern ocean; west-Angola and Namibia with Atlantic Ocean; and north- 

the inlands of Democratic Congo and Kenya countries. The Geography of southern Africa 

consists of a series of undulating plateaus that cover most of South Africa, Namibia, and 

Botswana and extend into central Angola. Contiguous with this are uplands in Zambia and 

Zimbabwe. The Coastal Mountains and escarpments which flank the high ground are also 

found in northern Mozambique, South Africa, Namibia, Angola, and along the Mozambique-

Zimbabwe border. Southern Zimbabwe and much of South Africa are within a region of 

scrublands and grasslands known as the Veld
3
. To the southeast of the Veld is the 

Drakensberg range-the main mountain range of Southern Africa. The Drakensberg rises to 

more than 3,475 meters and extends roughly northeast to southwest for 1,125 km parallel to 

the southeastern coast of South Africa. This includes the region’s highest mountain-Lesotho’s 

mount Ntlenyana with an elevation 3,482 m.a.s.l (meters above mean sea level) 

(SouthernAfrica, 2011).  

 

Figure 2.2 Typical regions in the Okavango Delta, with free canals and lakes, swamps and 

islands: Taken from Wikipedia, the free encyclopedia
4
.  

                                                 
3
 (Afrikaans: “field”) -it is a name given to various types of open country in Southern Africa that is used for 

pasturage and farmland. 
4
 http://upload.wikimedia.org/wikipedia/commons/6/61/Okavango11.jpg  

http://www.britannica.com/EBchecked/topic/556618/Southern-Africa
http://upload.wikimedia.org/wikipedia/commons/6/61/Okavango11.jpg
http://upload.wikimedia.org/wikipedia/commons/6/61/Okavango11.jpg
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The region contains a lot of unique geographical and geomorphologic features such as the 

Okavango Delta (or Okavango Swamp), in Botswana which is the largest inland delta; the 

third largest desert called Kalahari;  and the largest salt pans of the Makgadikgadi Pan in 

Botswana and Etosha Pan in Namibia. The pan is all that remains of the formerly huge lake  

Makgadikgadi, which once covered an area larger than Switzerland, but dried up several 

thousand years ago (Wikipedia, 2011).  

The Kalahari Desert is the largest desert of the region which extends 900,000 km
2 

from the 

arid to semi-arid sandy area in Southern Africa, covering much of Botswana  and parts of 

Namibia and South Africa (see Fig. 2.3) (Wikipedia, 2011).  Fig. 2.3 shows the extent of the 

desert with the orange color indicates the surrounding Kalahari Basin which covers over 

2,500,000 km
2
. As it can be seen from the figure the drainage of the desert is extending 

farther into Botswana, Namibia and South Africa, and encroaching into parts of Angola, 

Zambia and Zimbabwe. It forms the central depression of the Southern African plateaus. Its 

elevation rises to the great escarpment, which flanks the plateau almost unbroken line from 

the Zambezi River to Angola.  

 

Figure 2.3 The Kalahari Desert (shown in maroon) & Kalahari Basin (orange): Taken From 

Wikipedia, the free encyclopedia
5
  

The second largest desert in the region is the Namib Desert which extending 1,900 km from 

Namibia, Angola, along the entire coast of Namibia to the Olifants River in South Africa. It is 

almost rainless area, 80 –130 km wide over most of its length. It is mainly a smooth platform 

                                                 
5
 http://upload.wikimedia.org/wikipedia/commons/b/bc/LocationKalahari.PNG   

http://upload.wikimedia.org/wikipedia/commons/b/bc/LocationKalahari.PNG
http://upload.wikimedia.org/wikipedia/commons/b/bc/LocationKalahari.PNG
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of bedrock of various types and ages. In the southern half, the platform is covered with sand. 

The eastern part, the inner Namib, supports large numbers of ruminant mammals like 

antelope. The shore area is densely populated by marine birds, including Flamingos, Pelicans, 

and Penguins (SouthernAfrica, 2011). 

2.1.2 Climate and Vegetation  

The driving elements of the hydrologic cycle are the temporal and spatial distribution of 

water, the intensity of precipitation, temperatures and many other physical and chemical 

processes that shape the landscape. Climate is perhaps the most important driver with respect 

to determining the amount, distribution and the availability of water in the environment. It is 

known that climate can be commonly defined as the weather averaged over a period of around 

30 years of a particular region and mainly affected by the latitude, topography, altitude, ice or 

snow cover, as well as nearby water bodies and their currents. 

The Southern African climates are seasonal, ranging from arid to semi-arid and from 

temperate to tropical. According to Peel et al. (2007), the climate of the region can be broadly 

divided into two Köppen climate Groups:  

I) Class B - Dry climates including the southwestern countries bordering the 

Kalahari Desert including the Angola, Botswana, Zimbabwe, Namibia and South 

Africa countries with climates ranging from semi-arid and sub-humid in the east to 

hyper-arid in the west parts. 

II) Class C - Moist mid-latitude climates with mild winters which include the eastern 

countries: Tanzania, Malawi, Mozambique, Swaziland, Lesotho and the Indian 

Ocean island countries, with climatic conditions ranging from Dry to Moist 

Subtropical Mid-Latitude conditions. 

The region is located between the Atlantic and Indian Oceans on the west and east, 

respectively. These are high pressure zones and played impotent role in the region’s climate. 

Angola and Namibia on the west coast are influenced by the cold Benguela current from the 

Atlantic Ocean, which produces a drier climate. By contrast, the east coast is influenced by 

the southward-flowing Mozambique current, which brings warm water and humid air from 

the Equator and creates a humid, warm climate (KRAK, 2011).  
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Figure 2.4 Köppen-Geiger climate classification map of Southern Africa. Adapted from Peel 

et al. (2007) 

The region has two distinct seasons – a wet season roughly from November to April and a dry 

season from May to October. It is prone to frequent droughts and uneven rainfall distribution. 

There is a strong rainfall gradient from east to west parts interior of southern Africa. In 

Swaziland and Lesotho to the east, both altitude and exposure to moist air coming off the 

Indian Ocean produce the heaviest and most reliable rainfall. The total rainfall of the region 

gradually decreases westward, so that much of the central and western regions are semi-desert 

with low and variable rainfall over the whole of this interior region, rainfall mainly occurs in 

the summer season in the form of thunderstorms. There are also large daily and seasonal 

temperature ranges as a result of the effects of altitude and “continental” position (the lack of 

ocean influences). Winters are usually dry and sunny while summers are wet and hot (KRAK, 

2011). 

The seasonality of the climate is therefore the main control of the hydrological regime on 

plant growth of the region. On the favor of this seasonal climate, there are mainly four types 

of vegetation: savanna woodlands (known as miombo forest) in the north, a series of dry 

woodlands to the south of arid and semi-arid grassland, scrubland, and bush land in the Namib 

and Kalahari deserts and their environs, and Mediterranean vegetations along the southern 

coast (SouthernAfrica, 2011). 
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2.1.3 Hydro climatology   

The hydro climatology of southern Africa described for this work includes the precipitation, 

evapotranspiration, surface water distribution and the drainage of the rivers. 

A. Precipitation and Evapotranspiration 

The region has variable precipitation levels ranging from low (< 250 mm/yr) over large parts, 

to relatively high (> 1200 mm/yr), which tends to be concentrated in the north of the Southern 

African Development Community (SADC) with some smaller areas along the south-east coast 

(KRAK, 2011). Most rain falls in the summer months which are most commonly from 

December to March with the exception of the Western Cape of South Africa, which has a 

temperate climate. Rainfall of the region is highly variable in intensity and distribution, 

particularly high degree in the drier regions (Pallett et al., 1997). When rain falls, it is often 

periodic, arriving in short intense rainstorm during warm weather. 

 

Figure 2.5  Regional distribution of precipitation: Taken from webpage of The Kunene River 

Awareness Kit
6
. 

                                                 
6
 http://www.kunenerak.org/en/river/hydrology/hydrology+of+southern+africa.aspx 

http://www.kunenerak.org/en/river/hydrology/hydrology+of+southern+africa.aspx
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Rain falling in intense downpours often runs off into river channels as it falls faster than can 

be absorbed into the soil. Table 2.1 summarizes the rainfall, evapotranspiration and surface 

runoff statistics for the region. 

Table 2.1 Annual rainfall, evapotranspiration and surface runoff for Southern Africa 

countries:  from Pallet et al. (1997) 

Country Rainfall range Average Rainfall Potential evapotranspiration 

range 

Total surface runoff  

mm Mm 103 m³ mm Mm 103 m³ 

Angola 25-1600 800 997 1300-2600 104 130.0 

Botswana 250-650 400 233 2600-3700 0.6 0.35 

Lesotho 500-2000 700 21 1800-2100 136 4.13 

Malawi 700-2800 1000 119 1800-2000 60 7.06 

Mozambique 350-2000 1100 879 1100-2000 275 220.0 

Namibia 10-700 250 206 2600-3700 1.5 1.24 

South Africa 50-3000 500 612 1100-3000 39 47.45 

Swaziland 500-1500 800 14 2000-2200 111 1.94 

Tanzania 300-1600 750 709 1100-2000 78 74.0 

Zambia 700-1200 800 602 2000-2500 133 100.0 

Zimbabwe 350-1000 700 273 2000-2600 34 13.1 

Total   4665   599.27 

The Southern Africa has extremely high water losses from evaporation and 

evapotranspiration, with only a small percentage of rainfall reaching aquifers through 

groundwater recharge or surface water through run-off (Pallett et al., 1997). For example, it 

can be seen from Table 2.1 that in all countries of Southern Africa, the annual potential 

evapotranspiration is higher than the annual precipitation. 

B. Surface water and Drainages 

The surface resources are unevenly distributed across the region with Namibia and in 

particular Botswana has very sparse surface water resources. As shown in Fig 2.6, many of 

the water channels across the region, especially those in areas of low rainfall, high 

temperatures and high rates of evaporation are not permanent rivers, only flow after the 

intense rainfall events that characterize precipitation in the region. However, the courtiers of 

South Africa, Zambia, Mozambique and Angola contain relatively good surface runoffs. 
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Figure 2.6  Distribution of regional surface water drainages. Taken from the website of The 

Kunene River Awareness Kit
7
  

The region is generally drained eastward towards the Indian Ocean, a pattern exemplified by 

the largest rivers, the Zambezi and Limpopo. The Zambezi is the longest river in the region, 

and its catchment includes much of Angola, Zambia, and Zimbabwe. The only major river 

flowing into the Atlantic Ocean and passing through both desert areas and connecting three 

countries is the Orange River. This river rises in the Lesotho Highlands as the Sinqu River, 

flows west as the Orange across South Africa, and finally to Atlantic Ocean. It passes the 

southern edge of Kalahari Desert and winds through the Nimbi Desert before draining into the 

Atlantic Ocean in South Africa, which serves as a border between South Africa and Namibia. 

It is about 2,100 km long  and drains parts of South Africa, Lesotho, and Namibia 

(SouthernAfrica, 2011). There is also one river called Okavango Rives, which permanently 

flows to the northwest of Okavango Delta. This river forms important marshes that are rich in 

wildlife (Wikipedia, 2011). 

  

                                                 
7
 http://www.kunenerak.org/en/river/hydrology/hydrology+of+southern+africa.aspx  

http://www.kunenerak.org/en/river/hydrology/hydrology+of+southern+africa.aspx
http://www.kunenerak.org/en/_internal/showImage.aspx?i=50763
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2.2  Data collection 

 

The regional flood frequency study aimed to include data from all Southern Africa countries 

such as Angola, Botswana, Lesotho, Malawi, Mozambique, Namibia, South Africa, 

Swaziland, Tanzania, Zambia and Zimbabwe (Fig. 2.1). However, due to the difficulties 

involved in obtaining data, the data provided for this study were only from five countries: 

Malawi, Namibia, South Africa, Zambia and Zimbabwe. From these countries, daily average 

runoff data from 459 gauging stations with average record length of 35-40 years were 

collected. The size of the gauged catchments ranges from 72.8 to 850,530 km
2
. A country-

wise breakdown of the data is presented in Table 2.2. 

 

Table 2.2 Summary of the daily average runoff data available from five countries of Southern Africa 

S.N Country Area (km
2
)  No. 

stations 

Catchment area 

(km
2
) 

 Data source  

1 South Africa  1,221,037   342  119-850530 Webpage Of DWA 

2 Zambia  752,618 55 110-284538 GRDC 

3 Malawi 118,484   23 72.8-149500 Glad (2010) 

4 Namibia  825,418   30 3810-334000 GRDC 

5 Zimbabwe 390,757  9 277-5307 SADC- project 

Total    459   

 

 

2.2.1 Data source 

 

The critical issue during the data collection was to find sufficient data of good quality. An 

attempt, i.e., both officially and personally was made to find the required streamflow 

information from different data sources. However, in most of the data sources it was 

impossible to find the sufficient information even for the countries which are listed in Table 

2.2. Hence, after considerable efforts, data from a total of 459 stations which contain mean 

daily runoff data were collected from four different sources. The sources are: (1) for  

Zimbabwe catchments, nine stations were available from the SADC- project; (2) for Namibia 

and Zambia, 85 stations were obtained from GRDC (The Global Runoff Data Centre, 56068 

http://en.wikipedia.org/wiki/1_E12_m%C2%B2
http://en.wikipedia.org/wiki/1_E11_m%C2%B2
http://en.wikipedia.org/wiki/1_E11_m%C2%B2
http://en.wikipedia.org/wiki/1_E11_m%C2%B2
http://en.wikipedia.org/wiki/1_E11_m%C2%B2
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Koblenz, Germany), (3) for South Africa, 342 stations were downloaded from the webpage
8
 of 

Department of Water Affairs , South Africa; and (4) for Malawi, 23 stations were collected 

from Glad (2010). Glad (2010) discussed that the daily average runoff data for Malawi 

catchments are provided by The Ministry of Irrigation and Water Development in Malawi, 

and The FRIEND program (Flow Regimes from Experimental and Network Data). 

 

2.2.2 Selection of flood data: Annual Maximum Series (AMS)  

 

The point of departure in design stochastic models (such as RFFA) is having one (or several) 

observation series. In RFFA, our concern is to analyze the flood characteristics based on the 

extreme events of the pooled daily time series. The extreme value theory can therefore 

provide a theoretical basis for selecting the required extreme series. The popular methods 

used for extreme event selection are the Peak Over Threshold (POT) method - all values 

higher than a predefined threshold level is chosen (Lang et al., 1999) and Annual Maximum 

Series (AMS) – is a typical example of block maxima method of extreme value theorem 

(Engeland, 2005). The block maxima method selects maximum extreme events for each 

block.  In most RFFA, a block is considering as  a year, thus the highest daily flow data 

within a year is chosen (i.e., AMS) (Rootzen and Tajvidi, 2006)..  

 

The choice of the methods depends on the behavior of the data available and use of flood 

models. For this work, however, the AMS was adapted in agreement with the discussion of 

Cunnane (1989), that the choice of the AM series was not based on any objective manner 

rather based on the following advantages; the method is widely accepted, convenient to apply, 

consistent, and less sensitive to outliers and subjectivity. 

 

For all the stations listed in Table 2.2, the AMS data were selected and later subjected for 

exploratory data analysis in order to choose representative stations for the study area (the 

details of the methods will be discussed in section 3.2.1). Finally, the total number of stations 

was reduced from 459 to 122 (112 for RFFA and 10 for model validation) and the national 

break down of the stations is presented in Table 2.3. 

  

                                                 
8
 http://www.dwaf.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/Station  

http://www.dwaf.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/Station
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Table 2.3 Summary of the AMS data selected from five countries of Southern Africa 

S.N Country  N. stations
9
  Record period   No. of years  

1 South Africa  83 (8) 1969- 2008 40 

2 Zambia  17 (2) 1970-2004 35 

3 Malawi 8 1957-1990 37 

4 Namibia  8 1969-2004 36 

5 Zimbabwe 7 1954-1990 37 

Total  122   

 

However, during the whole process of choosing stations and selecting extreme observations 

from the daily time series, there was no any control to assess/quantify the uncertainties that 

may arise from the data available. Some of the stations that were collected from different 

sources had some redundancy though the data for the some station did not match. Hence, the 

data from different sources were used as inputs for the confirmation of the simple observation 

on reliability of the data. This phenomenon was due case for some stations of South Africa 

and then, finally, the stations were selected by cross checking with the official data from the 

webpage of the water affairs of South Africa. 

 

2.2.3 Site characteristics 

 

The site characteristics of the selected stations for this study are presented in the Appendices 

A (Tables: 1-5). These Tables include the code of the stations, name of river and their gauging 

sites, the locations (both latitude and longitude in degree), the catchment area coverage (km
2
) 

for each selected stations for this analysis. Fig. 2.7 shows the locations of the stations that 

were used in the detailed analysis. The GIS tool so called ArcGIS - ArcMap software was 

used to plot the location of the stations for each country. Even though the stations in Malawi, 

Namibia and Zimbabwe are limited in number and insufficient to represent the flood 

situations in each of the countries, the overall distribution of the stations within the region is 

satisfactory. 

                                                 
9
 The stations in the brackets were used for validation 
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                     Figure 2.7 The spatial distributions of Stations used for this analysis   
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3. THEORY AND METHODOLOGY  

 

3.1 Background  

 

Regional flood frequency analysis (RFFA) is an approach to estimate the quantile floods,    

(i.e., the flood magnitude of   corresponding to a given recurrence interval  ) for any site in a 

region. The magnitude of    is expected to be expressed in terms of flood data recorded at all 

gauging sites in the region. However, RFFA has also the ability to include sites which did not 

have sufficient data available or unguaged catchments in the region. Some RFFA methods, 

mainly index flood method (section 3.2.4), assumes that a region is a set of catchments in 

which its flood frequency and parameter behavior is homogeneous in some quantifiable 

manner. RFFA take advantage of this homogeneity to produce quantile estimates which, in 

most cases, are more trustworthy than those obtainable from at-site data alone (Cunnane, 

1989; Hosking and Wallis, 1997; Mkhandi et al., 2000). Because observed event are short and 

most likely uneven, this assumption can play substantial roles in reducing errors during 

quantile estimation and extrapolate the estimations beyond the recorded return periods. A 

preference that can be made from this discussion is that, estimated quantiles from regional 

data analysis could be more trustworthy than those estimated from individual series (Cunnane, 

1988). 

 

3.1.1  Methods of RFFA 

 

Since the early 1960, around 12 methods have been developed and the details are briefly 

summarized in the literature by Cunnane (1988 and 1989). The author also illustrated that the 

development of these models were based on the definitions and notations briefed in the 

following paragraphs. Most of the methods were based on use of annual maximum (AM) 

series while a few are based on peaks over a threshold (POT).  

 

Let                                be annual maxima at M gauging sites with total AM 

observations of      in site   and a total of        
 
    station years of record in a region. For 

any site  , the usual assumption is that (   , j = 1, 2…ni) is a random sample from the same 

parent population. Most RFFA used the normalized series of the data. The scale factor which 
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is known by index flood (µi) of station i is the median or the mean of the series. This 

parameter is used for normalized the series in to dimensionless variate and/or up scaling the 

regional estimation to at-site quantile flood estimation (see section 3.2.4 for details). 

 

The dimensionless of the data is in the form               which is referred to the Index 

Flood Method. When µ=  , the corresponding variate is                 with the properties 

E(X) = 1,  X =Cv   , and the third order moment,  gX = gQ. The variate X is a ratio of two 

random variables rather than a single scaled random variable though the assumptions of such 

distinctions are usually ignored in practice (Cunnane, 1988). The fundamental assumption of 

regional homogeneity or RFFA is that the quantile ‘X’ is assumed to have a common form of 

distribution with identical parameter values at all sites in the region.  

 

Using the above definitions and notations, Cunnane (1988) suggested that all  RFFA methods 

can be used in  two form of quantile flood estimations as presented below: 

 

a) At-site/regional RFFA quantile estimation  

Among the popular methods of RFFA, the Dalrymple method (Dalrymple, 1960) is a common 

method of At-site/Regional quantile estimation and was also adapted for this thesis. This has 

been applying in different RFFA studies across the world (Cunnane, 1989). It is a regional 

averaging index flood method based on equal records length, n, from unregulated rivers which 

have been tested for homogeneity (Cunnane, 1988). The results obtained from this method are 

in a form of standardized variant X where its X-T relation is assumed to hold at all sites i in 

the region, with            (where    is the index flood of at-site annual maximum 

floods).  

 

b) Regional only flood quantile estimation - ungauged catchment  

In case of ungauged catchment, there is no sample available from which the at-site index 

value can be estimated. Nevertheless, one of the merits of regional analysis is to solve such 

problems reasonably. That is, once the regional frequency analysis is done, the normalized 

quantile flood with the index flood approaches may be used to estimate the quantiles for 

ungauged catchments. The index values (µ) of the ungauged catchments, however, can be 

estimated using a relation between µ and catchment characteristics, obtained using multiple 
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regression from the available neighboring data sets (Cunnane, 1988; Ellouze and Abida, 2008; 

Noto and La Loggia, 2009; Rosbjerg, 2007).  

3.1.2 Procedures of RFFA 

 

In this thesis, the analysis of regional flood frequencies were carried out using different 

packages of R-software (which includes the lmomco
10

, bootstrap
11

, LmomRFA
12

 and 

nsRFA
13

 packages) and the index flood method together with L- moment approaches. A 

fundamental assumption of the index flood method is that the normalized data at different 

sites in a region follow the same distribution and should satisfy the conditions of independent 

and identically distributed (i.i.d) (Cunnane, 1989; Hosking and Wallis, 1997). 

For data series available at large number of sites, the quantile estimation is required at each 

river station. According to Hosking and Wallis ( 1997), the regional flood frequency analysis 

using index-flood procedures together with L-moments were derived using the following 

steps (the details will follow in the next sections):  

i. Extrapolator data analysis (data screening and outlier analysis) 

ii. Develop homogeneous regions  

iii. Fitting the regional data to an  appropriate frequency distribution 

iv. Estimation the parameter values for the fitted distribution 

v. Estimation of quantile floods of the regions  

vi. Develop regional flood frequency curve 

vii. Develop regional flood frequency analysis for ungauged catchments 

 

3.2 Exploratory data analysis 

 

Exploratory data analysis is a method which employs some statistical tools that provides 

conceptual and computational tools for discovering patterns to further hypothesis 

development and refinement. It is an approach for data analysis that utilizes a variety of 

techniques to maximize insight into a dataset, extract important variables, detect outliers and 

irregularity of the observations, test underlying assumptions, and develop robust models 

                                                 
10

 http://cran.r-project.org/web/packages/lmomco/index.html  
11

 http://cran.r-project.org/web/packages/bootstrap/index.html  
12

 http://cran.r-project.org/web/packages/lmomRFA/index.html  
13

 http://cran.r-project.org/web/packages/nsRFA/  

http://cran.r-project.org/web/packages/lmomco/index.html
http://cran.r-project.org/web/packages/bootstrap/index.html
http://cran.r-project.org/web/packages/lmomRFA/index.html
http://cran.r-project.org/web/packages/nsRFA/
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(Behrens, 1997). This method of analysis is carried out by visual and graphical data 

exploration i.e., using different statistical  and graphical tools such as plotting time series of 

parent data, probability plots of the extremes, histograms, and autocorrelation functions and 

mean excess functions (Embrechts et al., 1997).  

 

 In regional flood frequency analysis, there are several factors that may influence the certainty 

of the analysis. For example, related data may exist at several sites or different population 

may exist at a single site. Hosking and Wallis (1997) suggested procedures that can be used to 

make sure that the observation series are representative of the real process, i.e., (i) checking 

each site’s data separately which may contain outliers and repeated values; ( ii) checking for 

trends and independency in the data; and (iii) checking for inter-site dependency.  

 

Moreover, it is important to check whether the sites/data fulfills the requirements of the 

analysis. In this work, the exploratory data analysis was accomplished based on two steps i.e., 

(1) data screening and (2) outlier analysis. 

 

3.2.1 Data screening  

 

Data screening is first task of an exploratory data analysis which employed methods that can 

filtered the unwanted observation from the data series as well as the sites from the analysis 

(Hosking and Wallis, 1997; Kachroo et al., 2000). For this work, the following methods of 

data screening were performed;  

 

i) Looking at the data series 

It was performed by visual inspections of some simple statistical methods of data analysis 

such as the time series plotting, probability plotting, histogram, and autocorrelation plots for 

both time series data, but more focused for AMS. In the first step, all the data were examined 

at their time series plots of the sample. The main criteria that were used to select stations were 

based on length of record period (above 15 years), continuous (no consecutive gap) and 

common record period.  

Therefore, once the above method of data screening was carried out, stations contain the 

following conditions were excluded from subsequent step of data analysis.  

i) Stations which have short record length ( i.e., <15 years) 
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ii) Stations which consist a lot of  NO data in the series ( i.e. contains  more consecutive 

gaps) 

iii) If a station contains insignificant magnitude of observed series  

iv) Rivers which reflect not natural phenomenon i.e., if stations have repeated values for 

long period of time and/or some constant fluctuations. This could be in catchments 

which are under control at somewhere upstream or in stations that the gauging 

instruments are not able to measure high magnitude floods.  

 

ii) Checking for independent and identically distribution 

By principle, it is known that flood frequency analysis is carried out when the at-site data are 

independent (without serial correlation and trends) and identically distributed (from the same 

population), i.e., when the conditions of independently, identical distribution (i.i.d.) are 

satisfied (Gottschalk and Krasovskaia, 2001; Hosking and Wallis, 1997; Kjeldsen et al., 

2002). This provides that the extreme events might appear randomly and all might have the 

same frequency distribution. However, due to the complicity of  the flood environment, it may 

be expected that the extreme events may not satisfy the conditions of i.i.d and/or stationary 

(Engeland, 2005).  

 

The presence of temporal dependency implies repetition of information given by previous 

values i.e., correlated with time. Various studies were carried out to investigate the effect of 

the presence of dependence in annual maximum series on parameter estimation. For instance, 

the review by Mkhandi et al.(2000) illustrated that the presence of dependence in data leads to 

biased quantile estimates and larger standard error than when independence and the correct 

model form is assumed. 

 

Another requirement of RFFA is that the AMS at different stations in a homogeneous region 

should be spatially independent. Stations which have significant spatial correlation implies 

that a lower degree of additional regional information can be obtained by considering both 

stations in the estimation of regional parameters (Mkhandi and Kachroo, 1997; Mkhandi et 

al., 2000). That is, the presence of two stations which are significantly correlated may be 

considered as providing redundant information.  
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Therefore, the serial and cross correlations i.e., the dependence of the observations within a 

given site and across stations were examined by computing the autocorrelation and spatial 

correlation coefficient, respectively.  

 

Autocorrelation coefficient- is a normalized measure of the linear correlation among 

successive values in a time series. The use of the autocorrelation function in characterizing the 

behavior of a time series lies in its ability to determine the degree of dependence present in 

the values. For a random process, a descriptor of the random structure of the process needs to 

be added and the autocovariance function (acf) determines this structure as an acceptable 

approximation (Gottschalk, 2005). The covariance      ’  of the state of a random process 

between two different points in time      and    ’  defines this autocovariance function of (t 

and t’): 

 

     ’                         ’              ’           ’                  

 

Similarly, the autocorrelation function (     ’   is defined as autocovariance divided by 

consecutive standard deviations ( ) of time (t and t’) by: 

 

     ’         ’   
     ’ 

       ’ 
                                                          

 

which is the correlation coefficient between      and    ’ . 

For sample size of n observations, the sample autocorrelation were estimated by calculating 

the sample covariance       first and then correlation coefficients      as follows: 

  

                   
 

     
                  

 

   

   

                                            

                
     

                                                                     

 

where,     and   
  are the square mean and variance of the sample series, respectively and k is 

the time lag in terms of the interval  t between observations in time up to K , which is the 

maximum lag. The correlation coefficients between two consecutive observations of the 

sample series were plotted and the degree of dependence was rejected at 5% significant level. 
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Spatial Correlation coefficient- calculates the dependency of the AMS between nearby 

stations. In applied situation (Gottschalk, 2005), the first and second-order sample moments 

were determined from the observations x (ui, tk) in M stations at points ui , i = 1, 2…M 

stations at k points of time, tk, k = 1, 2. . . n. As a first step, the sample means    were 

calculated for each of M stations as; 

    
 

 
         

 

   

                                                                 

 

The variance,      of the observations which measures the deviation of individual observations 

from the expected value can be obtained as; 

  

        
    

 

  
            

 
       

 

   

                                   

 

The pair wise covariance and correlation is also estimated using; 

 

                 
 

  
                        

 

   

                             

 

where   and    are the standard deviations of random variables of Xi and Xj, respectively. The 

pair wise correlation coefficients were calculated as; 

 

        
    

      
                                                                        

 

 

Thus, one of the two stations which reflect strong pair correlation coefficient was excluded 

from the analysis. 
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3.2.2 Empirical distribution 

 

It is a statistical method used to ensure that all the observations are valid representations of 

the hydrological characteristics under considerations (Haan, 2002). Haan (2002) briefed that 

after the data have been accepted as valid, basic statistical moments of the data should be 

computed and should be plotted as a probability plots. Determining the empirical distribution 

of a given extreme event is referred to determine the probability of the assign data- it could be 

probability density function, f(x) or cumulative probability function, F(x). 

 Let X is a random variable, taking values that are real number. The relative frequency with 

which these values occurred defines the frequency distribution or probability distribution of X 

and is specified by the cumulative distribution functions; 

                                                                                          

where,       denotes for the probability of the event A.       is an increasing function of  , 

and 0 ≤        ≤ 1 (Haan, 2002). 

Probability plotting of hydrological data requires that individual observations or data points 

should be independent of each other and representative of the same population (Haan, 2002). 

Generally, a sample will not contain the smallest or largest value of the unknown population 

(Cunnane, 1988; Gottschalk and Krasovskaia, 2001; Haan, 2002; Hosking and Wallis, 1997). 

Thus, plotting positions of ‘0 and 1’ should be avoided from the sample series unless one has 

additional information on the population limits. 

Gottschalk and Krasovskaia (2001) also discussed that for a given sample size n, ranked in 

ascending order, if the distribution F(x) is assumed to be a uniform distribution giving a 

probability pr related to the r
-th

 ordered value of x(r) : pr = F(x(r)) for the interval (0,1), then the 

frequency distribution is: 

      
  

            
                                                       

The mean and variance of this distribution are therefore obtained as: 
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where,       is an expression often used for plotting the empirical distribution. In hydrology 

it is usually called the Weibull's plotting position (Weibull, 1939). The popular and alternative 

methods of plotting positions are given in Table 3.1 

Table 3.1 Some of the popular probability plotting models: where ‘r’ is rank of the observed 

value to be plotted, n is number of observation. 

S.N Plotting- Position Models  Non-exceedance probably 

1 Weibull (Weibull, 1939)      
 

   
                                                                      

2 Gringorten (Gringorten, 1963) 
   

      

      
 

Using the above methods, the graphical presentation of the relationship between observed 

values x and cumulative distribution function F(x) in arithmetic scale is not usually simple 

when extreme values are of interest (Embrechts et al., 1997; Gottschalk and Krasovskaia, 

2001). However, hydrologists have been using a modified graph which is known by Reduced 

Gumbel Variate (y) for presenting the relationship between the probability and observed 

values. The Probability plots are designed for particular theoretical distributions (i.e., extreme 

value type I (EV1) (Gumbel, 1958)) by transforming the scale of the probability axis so that a 

given distribution is represented by a straight line. This provides the reduced form of F(x) 

from n observations, and it is linearly related to the observed values, x (Gottschalk and 

Krasovskaia, 2001).  

Therefore, for this analysis, the reduced Gumbel probability plotting was adapted. Gottschalk 

and Krasovskaia (2001) and Cunnane (1989) suggested that the method is recommended 

probability plotting for extreme value analysis and can be approximately expressed by 

Gringorten plotting position. It also has a theoretical background for graphical representation 

of empirical distributions. 

Suppose xi1, xi2…xin are extreme floods of n observations from i-site, ranked in ascending 

order. The probability pr related to the r
th

 ordered value      is the cumulative distribution 

|function of the theoretical distribution (i.e.,          = F(    ) for the interval (0,1). The 

Gumbel (EV1) distribution of these extreme events is; 
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where, u and  are the location and scale parameters of the Gumbel distribution, respectively. 

The cumulative distribution function F is reduced into the Gumbel variate, y which related 

through; 

                                                                              

when         is approximated by Gringorten probability plotting, the reduced Gumbel 

plotting position y for the r
th

 observation was estimated using: 

                
      

      
                                                             

As a result, the probably plot curve for every station was presented in the form of,     :  

                                                                                      

where      is the normalized r
th 

events (y-axis) and   is the linear correlation of the observed 

series, and      is the reduced Gumble variate. The curves were closely examined whether the 

AMS in every station represents the random process and comes from single population of the 

sample series. 

 

3.2.3 Outlier detection and treatments 

 

Outliers are observation values which may not be representative of the sample i.e., they might 

have apparently different frequency distribution. When the empirical distribution of the 

extreme values of the observed data is plotted, this can be located strongly deviate from the 

rest of the dataset (Gottschalk and Kundzewicz, 1995; Haan, 2002; Kottegoda, 1984). The 

existence of outliers means that there is an existences of extremes of extreme events, which 

can be the reason for  many of the problems raised in the regional analysis of hydrological 

data (Gottschalk and Kundzewicz, 1995). For example, it is entirely possible that a 100 year 

event is contained in 20 years record. If this is the case, assigning a normal plotting position 
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(i.e., pr = 1/21) to this value would not be representative of its true return period. Thus, this 

value should be detected and treated as an outlier.  

 

Although no observations are fully trustworthy, it will be considered that the data under some 

circumstances might be reasonably representative of the sample (Kottegoda, 1984). This 

means that, the uncertainties introduced during measurement and recording are supposed to be 

eliminated by establishing prior treatments to the data. Kottegoda (1984) discussed that no 

one can define exactly “what an outlier is?”. This is because the detection and treatments or 

decisions to be considered as unacceptable observation depends on the person’s choice or 

judgment. This choice may depend on the experience, personal judgment, type of the data and 

the robustness of the model for the analysis and interpretation of output should account for 

such pitfalls.  

There are some principal statistical test reviewed and recommended in the literatures by 

Kottegoda (1984), Gottschalk and Kundzewicz (1995) and Haan (2002) which are useful to 

identify and eventually eliminate outliers. Among these, the most relevant methods that are 

easily applicable and can be used directly to identify whether the largest observations of the 

sample are outliers, were employed in this analysis. The outliers from all series were detected 

using the following methods, simultaneously: 

 

i. Observed suspected outliers by visual inspection of the AM series  

ii. Identified the symmetry of the distribution of the extreme floods from the skewness 

coefficients 

iii. Detected the outliers in both tails of the AM floods (AMF) frequency distributions 

using Bulletin 17B method (USWRC, 1981)  and  

iv. Tested the significant of the suspected outliers of the AMS using student test 

statistics 

Looking at the Extreme events – was performed based on prior knowledge of the series at 

each gauging sites. It is visual inspection of observed values under some statistical methods 

such as reduced Gumbel variate – plotting position, histogram and plotting of the full time 

series of annual maximum flood (AMF). 
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As defined earlier, an outlier is an observation which is positioning apart from the rest of the 

sample groups. Hence, these visual inspection methods can give as the impression of the 

existence of outliers in the observation series.  

 

Skewness coefficient (Cs) - for a random variable X, it is the third moment which measures 

the asymmetry of the probability distribution of the observed values. The skewness coefficient 

is defined as; 

      
   

 
 
 

  
         

         
 

  
                                            

where,   and   are the mean and standard deviation of the random variable X,  respectively. 

Therefore, the skewness coefficient (gx) for a sample of n observations is given; 

   

 
 
        

  
   

 
 
 
         

 
  

    

 
  
                                                      

The skewness values can be positive, negative or nearly zero. The value indicates the 

asymmetry of the frequency distribution. For example, if Cs is approximately zero, then it 

indicates symmetrical distribution of the data. However, in this case (i.e., outlier analysis for 

maxima events), a distribution with positive and large skewness coefficient indicates heavy 

tail to the right. This gives the impression that the series of data contains one or more outlying 

observations in the sample (Gottschalk and Kundzewicz, 1995). Gottschalk and Kundzewicz 

(1995) also illustrated that “when the observed data contains a single outlier in the series, the 

skewness coefficient can be changed by a factor of two”. 

Therefore, the sample coefficient of skewness was used as indicator whether the observed 

series has one or more outliers. However, this doesn’t mean that the coefficient test whether a 

specific observation is an outlier rather merely indicates the presence of outliers.  

Bulletin 17B method - was introduced by the United States Water Resources Council (1981), 

and suggested to be useful as a tool for outlier detection in the book by Haan (2002). It is a 

method that can detect outliers from both sides of the frequency distribution curve of the 

extreme events- upper and lower tails. This method is preferable to other methods because 
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outliers at both sides (minimum and maximum) of the series can be investigated based on the 

sample characteristics (i.e., the mean, standard deviation and sample size)  

Suppose, a sample xij, j= 1, 2 … ni observations of random variable Xi  are ranked in ascending 

order, the threshold levels for high and low outliers ( i.e.,      and      , respectively) of the 

sample series were defined as; 

 

                                                                                          

                                                                                          

 

where, the   and     are the mean and standard deviation of the observed values, respectively; 

and     is approximated from the logarithmic value of the number of the observations, n as 

follows;  

                                                                     

 

Because the data used for this analysis were extreme maxima with expected positive skewness 

coefficient; the threshold level were needed only for higher outliers and estimated through 

equation. 3.18. The observations which were larger than the threshold level of the at-site 

sample series were detect as outliers.  

  

Student deviation test (t-test) - suppose the observation, xij, j= 1, 2…n belong to a normal 

distribution with the same mean. The null hypothesis is then rejected if the largest observation 

at 95% confidence interval significantly deviates from the expected value of the samples 

(Gottschalk and Kundzewicz, 1995; Kottegoda, 1984). 

  
         

  
                                                                      

         

 where,        is the largest value among the total of n observations and   and     are the mean 

and standard deviation of the observed sample, respectively. 

 

Outlier treatments - the outliers identified by the above procedures were treated in 

agreement with the recommendations of  Cunnane (1989) as follows: 
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 Because outliers are rare and do not appear in every sample, a test of any hypothesis 

about their frequency of occurrence must be done on a regional base. 

 Outliers can be excluded from the observations only if it is certain that the AM floods 

can be adequately modeled by a single known distribution form. 

 If the AMS are regarded as true observations, but come from two very different sup-

populations, then the outliers must be retained. 

 If the retained outliers are few in number and an efficient method of parameter 

estimation like PWM or ML is used, their influence is very small and should be used 

only in regional estimation procedures. 

Therefore, the regional distributions of the stations which contained one or more significant 

outliers were identified first and consequently, for every outlying observation: the region, 

station, normalized value, the expected exceedance probability and return periods were 

estimated regionally. 

 

3.2.4 Index flood method 

 

This is a procedure that assumes the data at different sites in a region follows the same 

distribution except for scaling factor (i.e., index flood).  The procedures are a convenient way 

of pooling summary statistics from different data samples (Hosking and Wallis, 1997). The 

index flood might be the mean (  ) or the median (  ) of annual maximum floods (Chebana 

and Ouarda, 2009; Farquharson et al., 1992; Gottschalk and Krasovskaia, 2001; Hosking and 

Wallis, 1997; NERC, 1975). For gauged sites, the           values can be estimated in a 

straight forward manner from the observations. However, if the record is too short (< 15 

years) and for ungauged sites, estimation of the index flood could be difficult. Thus, an 

adjustment for climatic and catchment variations might be necessary (section 3.6).  

It is obvious that an appropriate choice of representative scale factor may increase the 

performances of the estimation parameter values of the candidate distribution, especially, for 

the sites which have outliers in the sample of the floods. As mentioned earlier, for the 

catchments which have measured flood values, the index flood should be the mean or the 

median of the extreme events. However, there is no clear guideline for the choice of the value 



 

33 

 

of index flood, i.e., under which circumstances does the mean be the index flood, otherwise 

the median of the sample.  

The at-site mean annual maximum flood is often used as the index flood for RFFA 

(Farquharson et al., 1992; Kjeldsen et al., 2002; Noto and La Loggia, 2009; Rosbjerg, 2007; 

Stedinger and Lu, 1995b; Yang et al., 2010). Nevertheless, Viglione et al. (2007) discussed 

and suggested the advantages of using the sample median as the index value. When the parent 

distributions are skewed and used for flood frequency analysis, the median is preferable to 

mean. This is also discussed in the literature by Noto and La Loggia (2009) that the sample 

median can be used instead of mean in case of outlying observations in the sample. 

In this work, almost all observations in the sample reflect positive skewness coefficients. 

Hence, to make sure that the index floods was used in a better way, the index flood was 

chosen by performing sensitivity analysis of the sample mean and median to large 

observations.   

Suppose, a homogeneous region with M sites, each site i having a sample size ni, and an 

observed annual flood series    , j = 1, 2…ni. The index flood    is the mean (  ) or the 

median (  ) of the AMS. The better index flood was chosen by comparing the relative 

differences of the mean and median after the largest observation were removed from the 

series. The relative difference was calculated as: 

                              
         

   
                                                     

                                
         

   
                                                  

where, the numbers 1 and 2 indicate for the parameters values with and without the largest 

observation in the series, respectively. The less sensitive index flood (    was therefore used 

to normalize the sample series (i.e., the dimensionless variate     which is assumed to have 

the same form of distribution at every site    in the region) as: 
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where     is the normalized value of the  th
-observation in  -site and the at-site   quantile 

flood (     ) will be estimated by up scaling the regional quantile (    for the return period 

( ) as; 

                                                                                

 

3.3 Regionalization  

 

Regionalization, in the context of flood frequency analysis, refers to grouping of basins into 

homogeneous regions and selection of appropriate frequency distributions for the identified 

regions. A more specific definition of a homogeneous region is that the region consists of 

sites having the same standardized frequency distributional form and parameters (Burn, 1988; 

Chebana and Ouarda, 2008; Cunnane, 1988; Gottschalk and Krasovskaia, 2001; Hosking and 

Wallis, 1993; Hosking and Wallis, 1997; Kachroo et al., 2000; Tveito, 1993; Wiltshire, 1985, 

1986). These studies summarized that to accomplish grouping of stations or basins in to 

hydrological homogeneous regions, two basic steps should be conducted. The first step is 

delineating the regions using different methods with catchment, environment and climate 

information and the second step  is applying  heterogeneity tests (i.e., evaluating  if  the  

regions  contain statistically similar sites or not). 

 

3.3.1 Delineation of homogeneous regions 

 

Due to the complexity in understanding the factors that have direct and indirect effect on the 

generation of flood, there are no simple guidelines for identifying homogeneous regions 

(Kachroo et al., 2000). Meanwhile, experience, prior information and personal judgments can 

provide possible guidelines to delineate regions with similar hydrological features.  

 

There were several attempts made by different authors to identify hydrologically 

homogeneous regions and their emphasis were either on geographical considerations or on 

hydrological characteristics or a combination of both (Kachroo et al., 2000). For example, 

Hosking and Wallis (1997) discussed some of the methods such as geographical convenience-

based on the administrative areas; subjective partitioning - defines region subjectively by 
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inspection of the site characteristics; objective partitioning – regions formed by assigning sites 

to one of two groups depending on some threshold values; and clustering method, which is 

the standard method of statistical multivariate analysis for dividing a data set into regions. It is 

obvious that catchments might not necessarily have exactly the same behavior given the 

limited sample size, and the dynamic and infinite factors influencing flood generation. Hence, 

it is not necessarily to group sites to exactly satisfy the homogeneity tests (Hosking and 

Wallis, 1997). That is, an approximate homogeneity could be sufficient to ensure that the 

regional flood frequency analysis is preferred to at-site analysis. 

 

For this analysis, the geographical regionalization approach was carried out. It is more 

convenient, because it may divide a region into different regions based on variation of soil, 

climate and topography with latitude and longitude (Cunnane, 1989). It is also advantageous 

if unguaged/poorly gauged catchments are assumed to be assigned in the identified region. 

However, geographically proximity of two stations is not guaranteed that they have similar 

form of flood frequency distributions (Cunnane, 1989; Hosking and Wallis, 1997).  

 

All the above backgrounds were considered and the regionalization was accomplished using 

the following procedures together with the available previous grouping information such as  

Mkhandi and Kachroo (1997) and Karchroo et al.(2000). 

a) Geographic information such as drainage characteristics and geographically continuous 

catchments were used to identify likely homogenous regions. 

b) Each region identified in procedure (a) where checked for heterogeneity by its 

statistical data behavior. 

c)  The final numbers of regions were found by testing the homogeneity measure at each 

grouping procedures- which started with one group, if not homogeneous then continue 

to separate to two or three groups etc. 

 

3.3.2 Homogeneity Test  

 

The homogeneity test was based on the heterogeneity measured (H) suggested by Hosking 

and Wallis (1997). The assessment of the regional heterogeneity is obtained by comparing the 

L-moments (i.e., particularly the at-site L-Cv) of observed samples in the region. This is 
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performed after the normalized regional series are fitted to kappa distribution and later 

compared with 500 times Monte Carlo simulated values (Hosking and Wallis, 1997) using: 

  
      

  
                                                                     

where,   is the weighted standard deviation of the at-site observed L-Cv values,     and  v are 

the mean and standard deviation of simulated L-Cv values, respectively. Suppose that a region 

has M sites, for the sample and simulated regions, V is then calculated:  

 

   
      

     
  

   

   
 
   

 

 
  

                                                          

 

where, ni is record length at site i, t
i
 is the sample L-Cv at site i and t

R
 is the regional average 

sample L-Cv.  

 

The regions were declared in agreement with criteria established by Hosking and Wallis 

(1993 and 1997). That is, a regions was regard as acceptably homogeneous if H < 1; possibly 

heterogeneous if 1 < H < 2; and definitely heterogeneous if H > 2. 

 

3.4 Choice of regional flood frequency distribution  

3.4.1 Theoretical distribution functions 

 

In flood event analysis, the annual maximum flow    corresponding to a given recurrence 

intervals T, can be estimated from the annual flood series using varies theoretical 

distributions. If T is large compared with the record length of the series n and the chosen 

model is inappropriate, the error of the T-year estimated flood can be very large and 

consequently, the associated design losses could be considerable. Thus, an acceptable design 

procedures is essentially required to choose a model that minimize such uncertainties (Rossi 

et al., 1984). 

It has been suggested that, the theoretical distribution functions used in hydrology for RFFA 

are as a rule borrowed directly from the Probability Theory. For example,  the two-parameter 

Gumbel (EV1) and Exponential (EXP); and three-parameter Generalized Logistic (GLO), 
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Generalized Extreme Value (GEV), Generalized Pareto (GPA), Pearson type III (P3) and 

Lognormal (LN3) distributions etc are among the commonly employed distributions in recent 

RFFA (Gottschalk and Krasovskaia, 2001).  

 

The theoretical distributions that are of a special importance related to the family of extreme 

value distributions are the EV1, GEV and GPA distributions. It is well known that the GEV 

distribution can be Gumbel distribution for      , the Frechet distribution (EV2, k < 0) 

which is unbounded towards the extreme maxima, and the Weibull distribution (EV3, k > 0), 

bounded towards the extreme maxima (for example, see Fig. 3.1) (Gottschalk and 

Krasovskaia, 2001). In recent hydrology, it has been reported that the GPA and GEV 

distributions are commonly applied as better distributions to predicate extreme events. They 

are also interrelated. The GPA appears as a limiting form for extreme values over a given 

threshold, Peak over Threshold (POT). Whereas, the GEV distribution is the limiting form for 

extremes events selected as the largest value over a certain time interval; say a year, Annual 

Maximum Series (AMS). The relationship between the GEV and GPA distributions are 

discussed in the literature (Engeland, 2005; Gottschalk and Krasovskaia, 2001). If the number 

of events observed over a time interval follows the Poisson distribution and the intensity of 

POTs per time interval (year) is λ, the general expression for the distribution of annual 

maxima Z is: 

  

                                                                                   
 

where, FX(x) is the distribution for the POT values. If they are distributed in accordance with 

GPA, their distribution is; 

               
     

 
 

 
 

                                                      

 

This can be identified as a reduced version of the GEV distribution. It can also be written in 

the form of an ordinary GEV with changed location, u  = u +α/k (1− λ
-k

) and scale α′ = αλ
−k

 

parameters (for k=0 the corresponding expressions are: u’=u+α ln(λ) and α’=α). 
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Figure 3.1 Generalized Extreme Value (GEV) distributions: Gumbel (EV1, k=0), Frechet 

(EV2, k=-0.04) and Weibull (EV3, k=0.04) distribution (Gottschalk and Krasovskaia, 2001). 

 

In RFFA, a single frequency distribution (one of the above distributions) is fitted to data of 

several sites in a homogenous region. In most cases, regions can be slightly heterogeneous. 

This implies that there is no single distribution that may fit exactly for all sites in the region. 

Therefore, the main aim of RFFA is not to find the exact frequency distribution of the region 

rather it is to find a distribution that will yield as accurate as possible quantile estimates for 

each site (Hosking and Wallis, 1997). 

The problem of the choice of an appropriate theoretical distribution would not have arisen if a 

certain distribution function was chosen based on the hydro climatic premises. Unfortunately, 

our prior knowledge of hydrological processes could not help as much as possible. The 

extreme value theory can be instead useful but only in a very broad meaning. It does not give 

an answer for the question “what type of an extreme value distribution is going to be chosen?” 

This problem in fact might be solved based on the generalized extreme value (GEV) 

distribution if the shape parameter, ‘k’ of this distribution can be estimated accurately 

(Gottschalk and Krasovskaia, 2001). 

 

Including the recently popular methods of GEV and GPA, many flood frequency distributions 

have been practiced for flood modeling, but none has been accepted as universal (Mkhandi 

and Kachroo, 1997). Hence, seven distributions were considered for the evaluation of the 

possible distributions that can represent the average frequency distribution of the regional data 
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in Southern Africa. The distributions and their parameters are presented in Table 3.2 (the 

details are presented in Appendices E (Table 12) and Hosking and Wallis (1997) pages191-

209).  

 

Table 3.2 Summary of the employed distributions and their parameter  

Two-parameter distributions: 

Location (µ), scale () 

Three-parameter distribution: 

Location (µ/ξ*), scale (/β*) and shape (k /α*) 

 Gumbel (EV1) 

 Exponential (EXP) 

 

 Lognormal (LN3) 

 Person type III (PE3) 

 Generalized Pareto (GPA) 

 Generalized Logistic (GLO) 

 Generalized extreme Value (GEV) 

Note: the parameters with asterisk are for the Pearson type III (PE3) distribution and in 

exponential distribution the µ parameter denotes for the lower end point of the distribution. 

 

The considerations of these extreme event models were also based on previous studies in 

Southern Africa. For example, the RFFA for South Africa (Kjeldsen et al., 2002); and  the 

RFFA for Southern Africa (Mkhandi and Kachroo, 1997) considered all the above 

distributions. However, using the same methods of RFFA and AMS dataset, the suggested 

flood models were different. Mkhandi and Kachroo (1997) suggested that the PE3/PWM or 

LP3/LM distributions as an appropriate distribution for all catchments in Southern Africa 

while the Kjeldsen et al.(2002) recommended that the GPA distribution as suitable frequency 

distribution for Kwazulu-natal province catchmnets in South Africa. 

 

3.4.2 Fitting the regional data to empirical distribution  

 

After the regions were identified and confirmed as homogenous, the next step was to choose a 

stochastic model which can represent the regional flood characteristics. The fitting of the 

theoretical distributions to the regional observations was carried out with the following 

procedures: 

 

- Normalization of the observed series with respect to their index flood 
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- Calculation of the weighted at-site L-moments and then weighted average regional L-

moments using PWMs 

- Development of the L-moment ratio diagram and plotting the at-site L-moments 

together with theoretical distribution 

-  choosing candidate distributions from the diagrams  

- Finally statistical confirmation test of the best fitted distribution  

 

The above procedures were compiled into three principal steps: firstly by establishing the L-

moment ratio diagrams (L-skewness vs. L-Kurtosis), secondly by conducting  goodness- of- 

fit- test, and after developing regional growth curve ( i.e., the regional average weighted curve 

of the at-site samples) lastly by model performance evaluation. 

 

3.4.3 L-moment and L- moment ratio diagram 

 

L-moments (  , n=1, 2…) are related to the expected order statistics and have come to 

replace the use of ordinary moments in hydrological analysis. The main purpose of estimating 

L-moments and probability weighted moments (PWM) is similar to ordinary product 

moments, but increase the certainty of the models because the natural estimator of   , is based 

on a linear combination of the ordered of the observed data values (Kjeldsen et al., 2002). The 

L-moments approach covers the characterization of probability distributions, the summary of 

observed data samples, the fitting of probability distributions to data, and testing the 

hypothesis about the distributional form (Hosking and Wallis, 1997). 

 

According to Hosking and Wallis (1997), ordinary moments are not always satisfactory 

because of two major reasons: (1) they do not always reveal easily interpreted information 

about the shape of a distribution, and (2) parameter estimates of distributions fitted by the 

moments are often less accurate than those obtained by other methods, such as the PWMs 

method of parameter estimator. L-moments have the theoretical advantages over conventional 

moments for being able to characterize a wider range of distributions and, when estimated 

from a sample, they are more robust to the presence of outliers in the data. 

 

 The ‘‘L’’ in L-moments gives attention to the linearity in forming the moments by linear 

combinations of the probability-weighted moments as given by: 
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where    is the r
th

 order of PWM and       is the cumulative distribution function of a 

stochastic variable, X. Let a site i has sample size of n observations, arranged in ascending 

order (i.e., x1: n     x2: n   …     xn: n). The sample L-moments were estimated from the 

unbiased sample estimator (   ) of the probability weighted moments as (Hosking and Wallis, 

1997):  

        
                

                
 

 

     

                                                      

The unbiased sample estimators of the first four PWMs were calculated through equation 

(3.31) and then used to calculate the first four sample L-moments as follows: 

 

                                                                                                     

                                                                                            

                                                                                    

                                                                       

 

It is known that the first order L-moment    is the expected value of the normalized values of 

the AMS. Finally, the L-moment ratios   were calculated from L-moment values as: 

 

   
  

  
                  

  

  
                

  

  
                                                 

   

where,               are L-coefficient of variance (L-Cv), L-skewness (L-Cs) and L-kurtosis 

(L-Kurt), respectively.  

 

The weighted averages of the regional L- moments for the delineated regions were estimated 

from the above relationships. Suppose, there are M sites in a region with sample size n1, n2… 

nM and the sample L-moment ratios at site i are denoted by       
 

 ,   
  etc. The regional 

weighted average L-moment ratios are then given  as (Gottschalk and Krasovskaia, 2001; 

Yang et al., 2010):  
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Using the regional and theoretical L-moment relationships (see Appendices E: Table 13), the 

L-moment ratio diagram (i.e., L-Cs vs. L-kurt) was prepared. For every region, the weighted 

at-site L-skewness and L-kurtosis coefficients was plotted on the diagram along with the 

theoretical curves of the candidate distributions listed in Table 3.2. The choice of best fitted 

distribution in the L-moment analysis was then performed by comparing L-moment ratios 

samples with the theoretical values. This was carried out in agreement with the suggestions, 

for example,  (Ben-Zvi, 2010; Ellouze and Abida, 2008; Kjeldsen et al., 2002; Rosbjerg, 

2007; Yang et al., 2010) that if the points corresponding to the regional averages are located 

near the curve corresponding to a given distribution, the nearby distribution was practically a 

choice for the parent distribution of the region. 

 

3.4.4 Goodness-of-fit (GOF) test  

 

For a given region that contains sites with similar statistical distribution and parameter values, 

the main aim of this test is to examine whether the candidate distribution fits to a data set 

better than the others. There are several methods available for testing the goodness-of-fit of 

theoretical distribution for extreme events both at-site and/or regional average data. For 

example, the graphical (like histogram and probability plotting) and statistical tests such as  

chi square test (χ²- test), Kolmogorov-Smirnov statistical methods discussed in the literature 

by Gottschalk and Krasovskaia (2001) and Hosking and Wallis (1997); the      -test  

suggested by Hosking and Wallis (1997)  and the Anderson-Darling goodness-of-fit test  

which were used by  Viglione et al. (2007) and  Viglione (2010).  

In recent RFFA, the following two methods are popularly used and also discussed here as 

potential methods for regional analysis. 

The Anderson-Darling goodness-of-fit test – can be used in RFFA studies to assess the 

fitness of the candidate regional frequency distributions. This method is based on statistical 

frequency distribution behavior of the observed and Monte-Carlo simulation values. The 

model is used in Viglione et al. (2007) and also well documented in the R-software, ‘nsRFA’ 
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package by Viglione (2010).  The procedure computes the statistical summary of the observed 

data and tests the degree of the data fitting to the expected distribution function. 

For a given sample xij (j = 1, 2 . . .  n, from station i=1, 2… M), extracted from a real 

distribution FR(x), the test was used to check the null hypothesis, H0: FR(x) = F(x, ), where 

F(x, ) is the hypothetical distribution and   is an array of parameters estimated from the 

average value of sample xj. Thus, the test measures the departure between the hypothetical 

distribution F(x, ) and the cumulative frequency function       defined as follows: 

 

                    

                                                          

                          

where,      is the j
-th

 element of the ordered sample (in increasing order). The test statistic is: 

 

                                                                        
 

 

 

where     , in the case of the Anderson-Darling test is: 

 

                         
  

                                                 

 

In practice, the statistic is calculated as: 

 

         
 

 
                                                         

 

   

            

  

The obtained statistic A
2
 might be expected to be confronted with the population of the A

2
’s 

that one obtain if samples effectively belongs to the F(x,  ) candidate distribution model 

(Viglione, 2010).   

The null hypothesis was rejected when the probability of the Anderson-Darling statistics A
2
 

was greater than a probability at level of significance,   = 10% (for example,  if the pr (A
2
) is 

greater than 0.9) (Viglione, 2010). 
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Z
DIST

- goodness-of-fit test - a method suggested by Hosking and Wallis (1997). It verifies the 

selected distribution from the L-moments ratio diagram by comparing the observed regional 

L-kurtosis to the theoretical values of various candidate distributions. This has been recently a 

popular method in flood frequency analysis. For example, the RFFA studies  in South Africa 

(Kjeldsen et al., 2002); in Tunisia (Ellouze and Abida, 2008); in Pearl River Delta in South 

China (Yang et al., 2010) etc, were adequately applied the model for selecting best 

distribution. The statistics test is given by: 

  

      
   

       
     

  
                                                          

                                                        

where,   
  is the regional average L-kurtosis of the observed dataset in the homogeneous 

region and   
     is the theoretical L-kurtosis, and    is the standard deviation of   

   obtained 

from 1000 times Monte Carlo simulations using DIST distribution ( i.e., from the candidate 

regional distribution). The test declared that a particular distribution is considered acceptable 

at the 90% confidence interval if         ≤ 1.64.  

 For this work, both the above methods were adapted for the goodness- of-fit test statistics at 

90% confidence interval. This is because both methods have advantages and disadvantages. In 

agreement with the suggestions by Hosking and Wallis (1997), the Z
DIST

-goodness-of-fit test 

was used to choose the best fitted regional distribution (i.e., the lowest |Z
DIST

| value was 

chosen as the best fitted distribution), but the model was not able to test two parameter 

distributions. Meanwhile, the Anderson-darling test is able to test the fitness of all types of 

extreme event distributions for rejection, but it is less applicable in the selection of an 

appropriate regional distribution. Hence, both methods were used in order to fulfill the gaps 

one by the other. 

 

3.5 Regional flood frequency curve  

 

In every RFFA, the main goal of the analysis is to develop regional frequency curve that can 

represent the average weighted distribution of the homogenous regions. It is the final 

procedure of flood frequency analysis to estimate the normalized regional quantile floods 
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(XT); flood frequency curve (XT vs. T); and at-site flood quantiles,    for a give return period, 

T.  

For a given region, the model parameters derived from the best fitted distribution to the 

observed data are the most essential one. Because, these values are used to compute 

standardized quantile estimates, XT for the return periods T, and then used to construct 

regional frequency curves for the homogenous region (i.e., a curve showing XT against return 

period, T) (Hosking, 1990; Hosking and Wallis, 1997; Kachroo et al., 2000; Mkhandi et al., 

2000; Rosbjerg, 2007; Stedinger and Lu, 1995a; Yang et al., 2010). As mentioned earlier, this 

curve is assumed to be valid for all sites in the region. 

 

 The regional growth curves for southern Africa were constructed by performing the 

following steps; 

 

- The parameter values such as shape (k), location () and scale (µ) parameters for the 

best fitted distributions were estimated using the regional and theoretical relationships 

(see the details in Appendices E: Table 13, Hosking (1990), Hosking and Wallis 

(1997) and   Viglione ( 2010).  

- The model parameters estimated for a given region were then used to compute the 

standardized quantile estimates for the return periods T, where T= 2, 5, 10, 20, 50, 

100, 200 and 500 years.  

-   As a result, the regional frequency curve (i.e., XT  Vs. T) for each region was developed 

- The at-site quantile floods    can be then up scaled from the regional quantile flood 

(XT) through equation 3.25.  

 

3.6 Evaluation the performance of frequency distributions  

 

The results which have been obtained from statistical analysis are essentially uncertain, and to 

be trustful, methods of uncertainty assessments should be applied (Hosking and Wallis, 1997). 

The authors also illustrate that “the assessment of the accuracy of the estimates should 

therefore take into account the possibility of heterogeneity in the region, misspecification of 

the frequency distribution and statistical dependence between observations at different sites, 

to an existent that is consistent with the data”. Hence, for this analysis, two methods of 
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uncertainty assessments were performed. These are the plotting position i.e., quantile-quantile 

plot using Monte Carlo simulations; and regional growth curve verification. 

3.6.1 Quantile-quantile (qq) plots 

 

The performance of the best distribution model identified for the respective regions were 

evaluated by comparing observed values with simulated values. The argument was that the 

values that obtained by randomly simulated after 1000 times of Monte Carlo simulations 

should be matched to the particular characteristics of the data (i.e., the intersection of the 

values should be closed to the line 1:1). The best frequency distribution was subjected to 

randomly simulate the same size as observed series. Thus, the quantiles of the normalized 

streamflows and simulated values are plotted on one graph that represents on the x-axis and y-

axis, respectively.  

 

3.6.2 Growth curve verification 

 

The developed regional curves or models have to be validated mostly by an independent 

dataset. Identification and selection of stations for validation are required which depend 

highly on data availability. However, in this study, the insufficient number of stations in all 

the countries was a main constraint to choose stations for model validation. Consequently, a 

total of 10 stations from two countries having more than 17 stations were chosen. Of these, 8 

gauging sites were from South Africa and 2 were from Zambia (Appendices A: Table 6). 

Similar to other stations, these stations were subjected for data screening.  

 In order to obtained independent verifications, these series were withdrawn from the analysis 

(i.e., all the stations were used neither for homogeneity measures nor for derivation of 

regional frequency distribution). Hence, the at-site frequency curve was established by up 

scaling the regional curve (i.e., by multiplying the regional curve by the index flood of the 

specified stations through equation 3.25) and the observed AMS data was then used for 

validating the curves for a particular region.  

However, the comparison of the regional flood frequency distribution against the at-site 

observed data wouldn’t mean that they can be used to discriminate the regional distribution 

curves. This is because, the at-site data is representing only one of an infinite number of 
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relations of the real underlying population or in the inverse that the regional curve is the 

average of the numbered of at-site statistics in the region. However, the probability plots that 

shown the observed values together with the simulated from the regional values may reveal 

such as systematic regional bias in the estimation of the quantile events (Kjeldsen et al. 

(2002).  

 

3.7 Regional estimation for ungauged catchments 

 

In case of ungauged catchment, the main problem is that estimating the appropriate index 

flood without any given data or insufficient data. In this case, the mean or median values of 

the ungauged catchments can be estimated using a relation between the index flood (          ) 

and catchment characteristics, obtained using multiple regression from the available 

neighboring data sets (Cunnane, 1988; Ellouze and Abida, 2008; Noto and La Loggia, 2009; 

Rosbjerg, 2007).  

 

Different authors used different relationships because the relationships are related to the 

available catchment information. For example, the relationships that presented by Cunnane 

(1988) to estimate the index flood for ungauged catchment are: 

 

                                                                                                         

 

Where, A is the catchment area,     is the mean annual precipitation, S is slope of the 

catchment, and the             are the regeression cofficients obtaining from the 

relationships of  hommegenous catchments. 

Another example is the regression equation established by (Rosbjerg, 2007). This relates the 

index flood,   with the catchment characteristics such area (A) and the mean annual 

precipitation (MAP) as follows; 

 

                                                                           (3.44) 
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where,   and   represents the regression coefficients. 

 

This index flood-catchment characteristics relationship was adapted in this analysis. For each 

of the countries or regions identified in section 3.4, the index flood was supposed to relate 

with the catchments characteristics such as Area, mean annual precipitation (MAP), 

topography etc by means of multiple regression. However, for this analysis, the available 

catchment information was only the catchment area. Thus, a simple regression model was 

developed for those defined regions.  Thus, these regression equations could be later used to 

estimate the index flood for ungauged catchments. 
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4. RESULT AND ANALYSIS 

4.1  Exploratory data analysis  

 

This section presents the results from the data screening and later data analysis. A pooled 

daily average runoff data from 459 gauging stations were collected and AMS data from each 

station were generated. The stations containing AM series were then subjected to screening 

under different criteria and the outputs are presented in the following sections.  

 

4.1.1 Data Screening 

 

After all the sample series that were collected from all stations and different sources were 

examined at their data record lengths, the AMS collected from more than 50% of the stations 

were with short record lenegth (< 15 years), non-continuous (with consecutive gaps for years) 

and recorded  at different periods. This indicates that more than 230 stations were excluded in 

this section. 

Following these preliminary data screening, the AMS of the rest 229 stations were examined 

with time series plots (Fig 4.1) to observe the significance of the observations for analysis in 

terms of quality and quantity. Fig 4.1 shows an example of the observed daily average runoff 

series and the generated AM floods of Kafue River at Ndubeni, Zambia. Even though the time 

series of the station looks inadequate (especially the daily series) to represent the flood 

information, this is a typical example for the stations which were used for this analysis. As it 

can be seen from Fig. 4.1, most of the stations in both time series (i.e., the daily data and 

AMS) contain a lot of gaps even with no data for more than a year. Besides this, we can 

clearly observe from the graph, that the daily average runoff curves show unequal and non-

uniform changes over time in the distribution. It is difficult to conclude the data behavior with 

gaps of information (i.e., no available data for some periods); however, the curves reflect that 

the nature of the data is non-stationary with time.  
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Figure 4.1 Plotting observed data series from Zambia station ‘1591470’ (1970-2004): a) 

daily average runoff series; and (b) AMS. 

 

4.1.2 Autocorrelation and Spatial Correlation 

 

The independence of the time series was tested by computing the first order serial 

autocorrelation coefficient and then checked it for significance at the 95% confidence interval 

(Fig. 4.2).  As it can be seen from the diagrams, the daily average runoff series is strongly 

correlated with pronouncing periodic fluctuations. However, except for lag one correlation, 

the AMS that generated from this parent population are not significantly correlated. This is a 
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typical example of autocorrelation analysis in this study, which illustrates that though the 

daily runoff sounds periodic dependence, the AMS serial correlations plots reflect 

insignificance dependence with time at the 95% confidence intervals.  

 

 

Figure 4.2 the auto-correlation plots for station ‘1591001’: the left is for the daily time series 

for two years time lag and the right is for the AMS for the time lag of 35 years at 95% 

confidence interval (the dotted lines at the right plot).  

 

The result obtained from the cross-correlation coefficients also illustrated that the 

relationships of AMS in across stations were insignificant in all catchments collected from 

Malawi, Zambia (except 4 stations), Zimbabwe, and Namibia countries. However, the pair 

correlation coefficients of South Africa catchments showed that good spatial correlations 

between stations and 64 stations had significant correlations with correlation coefficient > 

0.89. Of these, 34 of the stations were in the analysis while the others were excluded. 
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4.1.3 Empirical distribution 

The graphical representation of the relationship between the observed values and their 

recurrence probabilities were plotted using the Gumbel plotting positions. The horizontal axis 

of the probability plot shows reduced variate in linear scale and the random variable values, x 

were plotted on vertical axis (Fig. 4.3). This was carried out after the streamflows were 

normalized by their index flood. 

 

(a)                                                      (b) 

 

 (c)                                                     (d) 

Figure 4.3 An example of Gumbel Probablity Plotting for the normalized annual maximum 

floods from three stations in South Africa: (a) station ‘K9H001’ which contains lower 

bounded observation; (b) station ‘X2H006’ with upper bounded normalized series; (c) station 

‘U2H048’ contains annual maximum flood series with outlier; and (d) station ‘U2H048’ 

presents annual maximum flood series after an outlier has been removed. 
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Fig.4.3 (a) shows that the distribution is bounded to the lower part of the curve (that the series 

gives repeated values of x1 or nearly values) with high values to the upper side (i.e., 

surprisingly the normalized values extended up to 200). On the other way, Fig.4.3 (b) shows 

that the frequency of the observations is bounded to the upper side of the curve (that the series 

gives repeated values of xn). Both the curves reflect that the flood events from these stations 

did not follow the assumptions of random distribution.  

 Whereas, Figs. 4.3 (c) and (d) for station ‘U2H048’ reflect that the influence of one outlier on 

probability plot of the observations series. Fig. 4.3 (d) shows the probability of the observed 

values after one outlier had been removed from the series in (c). The largest normalized value 

was diminished from 24.27 to 4.5 (i.e., almost four times lesser than). 

After the empirical distribution of all stations was thoroughly examined, the AMS from 73 

stations didn’t have smooth change of curves and bounded into either or both sides of the 

frequency distribution curve (for example, Figs. 4.3 (a) and (b)). The flood distribution from 

these stations were considered as erroneous and excluded from the analysis. Thus, a total of 

122 stations were screened out for this analysis. However, stations which contain likely 

outliers were subjected to a further outlier analysis (see section 4.1.4).  

 

4.1.4 Outlier Analysis 

 

Table 4.1 presents the summary of outlier’s analysis in Malawi catchments. This is a typical 

example used to show the outlier analysis conducted in this thesis. This has done in two 

phases; initially possible outliers were indentified based on the graphical inspection from the 

plotting time series, probability plots and histograms (Fig 4.4). All observations which are 

located at a distant apparently from the rest of the series were preliminary selected as 

suspected outliers. For instance, station ‘B8H010’ illustrates the presence of very far 

positioned large observation with a flood of 428.47m3/s in 2000. Following the outlier 

identification, the degree of the significance was checked using the skewness coefficient, the 

test for threshold value from Bulletin 17B test and test for significance (Table 4.1).  

It is known that the coefficient of skewness (             tells us the existence of skweness 

in the series. Hence, from Malawi catchments, it can be seen that stations 1992100, 1992900, 



 

54 

 

1992950 and 1992690 disclosed strong positive skewness with coefficient >1 (especially, 

station ‘1992100’ with Cs = 5.2) while the other four stations contain reasonable sample 

series (i.e., their coefficient values are less than one). These results therefore strongly 

supported for the outlier analysis using Bulletin 17B test. When the observed series in stations 

which reflect strong skewness coefficient were examined under the tests, all were shown one 

or two big observations in the series and were treated as special observations.  

  

a) 

 

b)                                                                                       c) 

Figure 4.4 Examples of visual inspections of the AMS containing suspected outliers for  

station B8H010 in South Africa: (a) Time series plotting of the annul maximum series (AMF); 

(b) Gumbel plotting positions; and (c) Histogram of the  annual extreme events. 

 

However, the outlier analysis using the student test and Bulletin 17B test were slightly 

disagreed. Even though the outliers obtained from Bulletin 17B test were significant under the 

t-statistical test at the 95% confidence interval, the total number of observations which were 
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detected as outliers were not the same. The total number of outlier throughout the region 

obtained from Bulletin 17B test and t-test were 5 and 10, respectively. The final decision was 

taken by considering the references that supplied from the statistical values, the visual 

inspections and personal judgments. As a result, for example, from Malawi catchments three 

observations have been considered as real outliers. These procedures were applied for all 

stations in Southern Africa provided for this study. 

Initially, 87 of the 122 stations have experienced at least one flood which is much larger than 

the second highest annual maximum flood.  From these stations 95 floods have been detected 

as suspected outliers and more than 85 of the outliers were found in South Africa stations. 

This implies that almost all the AMS of every station in South Africa have at least one 

extreme event. As Kjeldsen et al., (2002) explained that the annual maximum floods of 1974, 

1976, 1978, 1884, 1996 and 2000 were among the largest records of 40 years floods in south 

Africa. During this period almost all catchments of the country have uniformly high floods 

and most of the outliers were recorded during this time. 

Finally, the numbers of stations that contain outliers were reduced from 87 to 53 (of which 47 

stations were in South Africa) and the total numbers of the outliers were filtered from 95 to 

62. However, in agreement with the recommendation of Cunnane (1989) on treatments of 

outliers in AMS, the analysis was conducted regionally. Hence, for every outlier: the station, 

region, normalized value, significance and their sensitivities were estimated from the regional 

data characteristics and will be discussed later in sections 4.2. 
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Table 4.1 Summary of the outlier analysis in Malawi gauging sites  

Station 1992100 1992200 1992850 1992400 1992700 1992900 1992950 1992690 

 

Top three observations 

1
obs

 639.8 398.2 571 338 1073 2142.03 850 523 

2
obs

 184.3 373 498.37 291.1 954 2005.49 795.52 349 

3
obs

 61.13 350 488 287 952 1568 631.5 247 

Mean    53.11 219.94 242.29 166.09 620.19 1015.47 266.1 134.45 

Standard deviation Stdv.  107.96 90.89 126.02 78.65 191.58 365.25 211.58 102.87 

Coefficient of skewness Cs 5.2 -0.04 0.81 0.25 0.22 1.47 1.43 1.93 

Bulletin 17B method xH 329.3 452.4 564.6 367.2 1110.1 1949.6 807.2 397.5 

Number  outliers
14

 1 0 0 0 0 2 1 1 

Student–test  t1 5.434 1.961 2.608 2.186 2.364 3.084 2.76 3.777 

t2 1.212 1.684 2.032 1.59 1.742 2.711 2.502 2.086 

t3 0.074 1.431 1.95 1.537 1.732 1.513 1.727 1.094 

Degree of  Significant (α=0.05) 1
obs

 F P F F F F F F 

2
obs

 P P P P P F F F 

3
obs

 P P P P P P P P 

Number of significant outliers
15

 1 0 1 1 1 2 2 2 

 

NB:  from every station in the study area, the largest three observations have been chosen for student t-test. The letters in the last rows of the 

table indicates the result of significant outliers i.e., ‘P’ indicates insignificant outliers while the ‘F’ represents significantly outlying 

observations. 

                                                 
14

 The total number of outliers  in each  station  from  Bulletin 17B test 
15

 The total number of outliers  in each  station  from  student- test 
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4.1.5 At-Site flood characteristics 

 

The at-site statistics for all stations which includes the first four ordinary moments and the 

first three L-moment ratios are presented in Appendices B (Tables 7- 11). As discussed earlier 

in section 4.1.4, almost all the stations were with one or two flood events that are much larger 

than the rest of the AMS in the sample. This was clearly observed on the third order moment 

of the at-site statistics (i.e. the skewness coefficient). Though positive skewness was expected 

from the frequency of extreme maxima, the magnitude of the coefficients was relatively high 

in almost all stations of Southern Africa except the Zambia and Malawi AM series. However, 

except for exceptional stations the AM floods of Zambia and Malawi are almost 

symmetrically distributed. The Zambia flood statistics also included four stream gauging sites 

with negative skewness coefficients though the values were small. The magnitudes of the 

coefficient of variance also illustrated the proportion of the flood series. The Cv values for 

Zambia and Malawi stations were slightly lower when compared to others, i.e., their average 

Cv values are in the range 0.4-0.6. Whereas, the AMF from other countries reflected with 

average Cv values close to 1.0 and beyond in South Africa sites. The different levels of 

variability in the observed flood samples might be attributed to varying hydrological 

phenomena that generated the flood events over the different regions. This reflects that the 

AM series collected for this study were well- behaved heterogeneous and most of the stations 

that showed large Cs could be also due to the presence of one or more outliers. 

 

4.1.6 Choice of the Index Flood 

 

Table 4.2 presents the degree of the sensitivity of sample median versus sample mean when 

outlying observations were with and without the sample series in the flood frequency analysis. 

The result shows that the sample mean of the index flood is more sensitive to outliers than the 

median. After the largest observation were excluded from the series, the relative deviation of 

the sample mean is changed with the range 6.18-33.16% while the median is varied in the 

range 0.09-3.04 %, which is around 30%  less sensitive than the mean. 

This supports the suggestions by Hampel (1974) which claims that the sensitivity of the 

sample median is known to be less than the sample mean in case outliers exist in the sample 

and this phenomenon was more likely found in samples from highly skewed distributions. 



 

58 

 

 

Table 4.2 The sensitivity analysis of the index floods to the largest observations in stations 

which contains one or two large outliers. 

Index Flood (µ) Stations  contain outliers  

W2H005 W2H006 W2H009 W5H005 V1H001 V2H004 V3H002 V7H020 

The values of index flood with outliers, Ѳ1 

Mean      161.8 141.1 46.3 28.9 433.2 103.4 46.4 95.3 

Median (  ) 111.8 92.3 23.9 16.4 258.3 73.1 29.7 65.4 

The values of index flood after removing one large observation from the series, Ѳ2 

Mean       149.0 130.4 30.9 25.4 406.4 91.0 43.0 85.4 

Median (   ) 108.4 91.2 23.8 16.1 251.0 72.7 28.8 63.8 

The  relative difference in %=  
     

  
 *100 

             3.04 1.21 0.09 1.81 2.83 0.55 3.02 2.46 

Mean      7.92 7.55 33.16 12.23 6.18 12.00 7.21 10.31 

 

Therefore, the median of the observed series (which has the quantile probability of pr = 0.5) 

of each site was considered as index flood for all catchments in Southern Africa. This agrees 

with suggestions’ by Viglione et al., (2007) and Noto and La Loggia (2009) that if the series 

of the sample is skewed to the right the median might be better index flood than mean. The 

median of each station is therefore estimated and presented in Appendix A (Tables: 1-5). 

Henceforth, the flood of Southern Africa, i.e., the observed AMS at each site was normalized 

by their midpoint of the AM series and in return the regional curves will be up scaled to at-

site quantile flood by multiplying by the median values through equations 3.24 and 3.25, 

respectively. 

Though the median was preferred as better index flood, quantifying the uncertainty of the 

median was another difficult task. Nevertheless, an attempt was made to solve this problem 

using Jackknifing method of standard error estimation. The method is adapted in different 

studies since 1958 to estimate the standard error. For example,  details are discussed by Efron 

and Gong (1983) that the standard error of the mean can be easily computed from the sample 

values. However, the trouble with this is that there is no obvious ways to extend to estimators 

other than sample mean, for example, the sample median. The jackknifing could be therefore 

an alternative way of making this extension. The values were estimated by create sample data 

sets from the data leaving out one data point at a time and take the median of these sample 

sets.  

The jackknife estimate of standard error of the median        is given by: 
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where     is jackknife median value and         is average of jackknife median values from 

the sample set. The relative standard errors of the sample median for each station was 

estimated using R-bootstrapping package
16

 and presented in Appendices A (last columns of 

Tables:7-11).  

SEjack 

4.2  Identification of homogenous regions 

4.2.1  Delineation of homogenous regions 

 

The grouping of sites in to homogeneous regions was carried out by applying the hierarchical 

geographic regionalization method. The procedures considered that the entire region should 

be geographically continuous and at every grouping step, the AM series from different sites in 

the region should satisfy the Hosking and Wallis’ (1997) Homogeneity test. At the initial step, 

i.e., when all the stations were considered as a region, the computed heterogeneity measure 

was very large with the magnitude of H = 33.2. This value provides that the statistical 

characteristics of the sites were strongly different and further divisions of sites in to 

homogenous regions were needed.  

Therefore, the first step was to separate sites into their respective countries and test for 

homogeneity. Since the gauging stations in the countries of Namibia, Zimbabwe, Zambia and 

Malawi were few in number and covered large areas between sites, each country was 

considered as a region (Fig. 4.5). In fact, the stations at every country level were still not 

sufficient that the total stations provided for this analysis were varied from 7-15 (Table 4.3). 

Thus, the AM series from these stations may not necessarily satisfy the condition of regional 

homogeneity and consequently, all failed to the Hosking and Wails (1997) heterogeneity test 

(Table 4.3). Especially, the heterogeneity measure for Namibia catchments was very big 

value, i.e., with H = 7.5. However, these four countries were considered as acceptable regions 

in agreement with Hosking and Wallis (1997) suggestion that “even though a region is 

                                                 
16

 http://cran.r-project.org/web/packages/bootstrap/index.html  

http://cran.r-project.org/web/packages/bootstrap/index.html
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moderately heterogeneous, regional analysis will still yield much more accurate quantile 

estimates than at-site analysis”.   

Since around 75% of the total stations used for this study were collected from South African 

catchments, the further classification of catchments in to statistically homogenous regions was 

implemented only in this country. The choice of which sites do belong to their appropriate 

regions was performed using previous studies by Mkhandi and Kachroo (1997),  geographical 

consistency of the regions and at-site L-moments (i.e., basically the at-site L-Cv). As a result, 

9 regions (5 of them were possibly heterogeneous regions while the other 4 regions were 

defiantly heterogeneous) were formulated and the results are presented in Fig. 4.5. 

 

Figure 4.5 Delineation of southern Africa catchments into hydrologically homogenous region. 

The further classifications of South African drainage areas are shown in the right side of the 

map. The abbreviation NA indicates the countries or regions which have no available data. 

 

4.2.2 Heterogeneity test 

 

The results summarized in Table 4.4 show that regions R1 and R4 reflect definitely 

heterogeneity with H values 7.5 and 5.43, respectively. For regions R2 and R3, the 

heterogeneity measure suggested that the regions were moderately heterogeneous (i.e., with H 
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values 2.31 and 2.35, respectively) while the other five regions of South Africa are possibly 

heterogeneous regions with H values in the range of 1.41-1.91. 

When the sites containing all AM series including the outliers listed in Table 4.4 were used 

for heterogeneity test, it was difficult to form a region with sites which have the same 

statistical behaviors in its nearby stations. That is, the existence of outliers in the sample series 

was the main problem during homogenization of the regions. However, after the outliers listed 

in Table 4.4 were excluded from the series, the regions that are listed in Table 4.3 were 

formed with possible regions.  

Table 4.3 The result of Hosking and Wallis’ (1997) homogeneity test and the summery of 

their regional statistics of Southern Africa Catchments  

S.N Region  Drainage basins  NO 

stat. 

H Regional  L-moments Degree of  Heterogeneity  

     L-Cv L-Cs L-kur  

* All stations All  southern Africa 112 33.2 0.45 0.32 0.19 Strongly Heterogeneous 

1 R1(Namibia) All  Namibia 8 7.5 0.391 0.259 0.132 Definitely Heterogeneous 

2 R2(Zimbabwe) All Zimbabwe 7 2.31 0.487 0.280 0.117 Moderately  

Heterogeneous 

3 R3(Zambia) All Zambia  15 2.35 0.268 0.037 0.114 Moderately  

Heterogeneous 

4 R4(Malawi) All  Malawi 8 5.43 0.287 0.193 0.154 Definitely Heterogeneous 

5 ZA_R1 A5-A9, B  & X 14 1.43 0.508 0.372 0.186 Possibly Heterogeneous 

6 ZA_R2  A1-A4, C & D3-D8 17 1.91 0.550 0.439 0.223 Possibly Heterogeneous 

7 ZA_R3 V & W 13 1.41 0.430 0.350 0.196 Possibly Heterogeneous 

8 ZA_R4 D1& 2, R, S, T, U, L and 

Q 

21 1.88 0.397 0.298 0.166 Possibly Heterogeneous 

9 ZA_R5 E, G, and H 8 1.82 0.379 0.263 0.105 Possibly Heterogeneous 

 Total   112      

Note: *Denotes when all stations supposed to be one region and  the letters A-X in the 

drainage basin ‘column’ denotes the drainage regions of South Africa catchments. The 

specification of the drainages is described on the website of South Africa, Department of 

water affairs, hydrology section.
17

  

 

4.2.3 Regionalization of outliers 

 

                                                 
17

 http://www.dwaf.gov.za/hydrology/cgi-bin/his/maps/Drainage%20Regions.htm   

 

 

http://www.dwaf.gov.za/hydrology/cgi-bin/his/maps/Drainage%20Regions.htm
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After all the procedures in section 4.1.4 were performed and the results were analyzed, the 

next step was to decide “how to handle these extreme of extreme events”. Table 4.4 presents 

the summary of the regionally significant outliers from all the regions which were defined in 

sections 4.2.1 and 4.2.2. For every outlier: the station, region, normalized values were 

calculated from the characteristics of the regional data. As it can be seen from Table 4.4, the 

outliers were almost located in all regions of the study area except in Zimbabwe catchments. 

The total number of outliers in every region varied from 2-7 and their normalized values were 

extended from 4.63 to 26.36.  

Table 4.4  Summery of regional outliers of Southern African floods 

Region Station Year Normalized Outliers 

R4 1992100 1987 21.77 

1992900 1984 4.65 

1992690 1978 4.63 

R2 63533035 1972 11.58 

R1 1258200 1985  9.02 

1259110 1989 8.38 

  

ZA_R1 

  

  

A5H006 2000 10.78 

B8H010 2000 13.48 

X1H001  1974 10.12 

X1H014 1984 14.87 

X2H022 2000 13.31 

ZA_R2 C3H003 1975 10.82 

D3H008 1974 14.93 

D8H003 1988 13.69 

D7H005 1988 15.01 

A2H006 1978 16.22 

A2H013 1976 11.59 

A2H021 1996  13.77 

ZA_R5 H6H008 1986  9.50 

 ZA_R4 

 

R3H003 1970 15.88 

S3H004 1974 14.14 

U2H048 1976 24.27 

T4H001 1975 15.95 

ZA_R3 W2H009 1981 26.36 

W5H005 1984 10.20 

V2H004 1984 8.04 

V7H020 1975 7.31 

 

Though majority of the outliers were very large in magnitude compare to the at-site index 

flood, three observations were recognized as unacceptable observations. The magnitude of 

these outliers is highly inconsistent with the regional observed values and their return period 
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is more than 25,000 years. The reason was not well-investigated but all were excluded from 

the analysis and treated as NO data. Table 4.5 presents the list of these outliers and their 

probability (recurrence interval), location and year of occurrence. 

 

Table 4.5 Unaccepted outliers 

Region  Station Year Normalized Outliers 

 

Exceedance probability, pr(X ≥ x) Return period, T (year) 

R1 1992100 1987 21.95 1.21*10 -12 8.3*10 
11

 

ZA_R3 W2H009 1981 26.37 3.58*10-5 
277778 

ZA_R4 U2H048 1976 24.89 2.86*10-5 
34960 

 

For example, the effect of such outliers can be seen boldly from the diagram shown in Fig. 

4.6.  The Figure shows the L-moment ratio diagrams for the regional flood distribution of 

Malawi catchments (left) with and (right) without outlier. When we see at a particular station 

which indicated by an arrow (Fig. 4.6), the at-site average L-moments were almost decreased 

by half in case of no outliers in the observation series. This shows how a single outlier in 

station ‘1992100’, Malawi (Table 4.5) affects the center of the distribution both the at-site and 

regional L-moments and consequently the choice of frequency distributions.  

 

 

Figure 4.6 L-moment ratio diagram for the annual maximum floods from Malawi guaging 

sites. The diagram shows the influence of a single outlier in station ‘1992100’ (Table 4.5) in 

case of fitting theoretical distributions to the regional data. 
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4.2.4 Outlier sensitivity analysis  

 

Table 4.6 presents an example that shows the influence of the at-site and regional statistics by 

the existence of outliers in a particular region (i.e., stations from region ZA_R1). It is obvious 

that the existence of extreme events may more affect the kurtosis and skewness parts of the 

flood hydrographs.  The analysis illustrated that though the at-site sample statistics were more 

sensitive to large observations in the series, the regional weighted average statistics that 

generated from the at-site observations was less sensitive.  

Table 4.6 The comparisons of the relative differences of the at-site and regional weighted 

average statistics after suspected outliers were removed for the sample series.     and     are 

parameters values estimated from the sample series before and after the suspected outliers 

were excluded from the series, respectively. 

I. At -site L-moments 

 

At-site statistics including the largest observations    ) 

Station   1 L-Cv L-Cs L-kurt. 

A5H006 1.86 0.57 0.43 0.27 

B8H010 2.04 0.56 0.46 0.27 

X1H001 1.65 0.52 0.45 0.27 

X1H014 2.24 0.62 0.52 0.31 

X2H022 1.80 0.56 0.48 0.30 

At-site statistics after the largest observations have been removed from each station (   ) 

A5H006 1.65 0.53 0.35 0.20 

B8H010 1.97 0.52 0.38 0.18 

X1H001 1.43 0.47 0.36 0.17 

X1H014 1.98 0.59 0.47 0.27 

X2H022 1.65 0.50 0.36 0.17 

Relative difference (%) =
         

   
     

A5H006 11.75 7.02 18.51 26.36 

B8H010 3.13 8.06 18.44 34.55 

X1H001 12.97 9.17 19.41 35.47 

X1H014 11.54 5.27 8.87 13.53 

X2H022 8.65 10.62 24.03 43.80 

 

 

II. Regional  L-moments  (ZA_R1) 

With outlier,     1.65 0.51 0.39 0.21 

Without outlier,     1.58 0.49 0.36 0.18 

Relative difference (%) =
         

   
     4.26 3.42 8.24 15.93 

 

After the suspected outliers were removed from respective stations, the at-site statistics 

relatively varied from 3.13% to 43.8% whereas, the regional statistics reduced from 3.4% (L-
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Cv) to 15.93% (L-Kurt). This implies that the use of these extreme events as random 

observations might be relatively less influenced the regional analysis. 

 Therefore, except the observations which are listed in Table 4.5, all the outliers in Table 4.4 

were kept in the data sample. This was merely because of three reasons in agreement with the 

recommendations by Cunnane (1989) and applications by Kjeldsen et al., (2002): (1) the 

observations were real and occurred randomly (i.e., most of the outliers were recorded when 

there were high floods throughout the regions); (2) the frequency of outliers in the regional 

data were very few in number (from 2-7 observations); and (3) the regional statistics were less 

sensitive to suspected outliers. Hence, all large observations in every region were accepted as 

random variables which can play substantial role in the analysis of the flood situations in 

Southern Africa. Thus, henceforth, the regional flood frequency analysis was carried out by 

weighting all the observations in the samples series.  

 

4.3  Identification of regional flood frequency distribution  

 

The identification of an appropriate regional flood models for each of the grouped regions 

was accomplished based on the L-moment ratio diagrams, a goodness-of-fit tests and later 

evaluated their performance using quantile plots and model validations.  

 

4.3.1  The L-moment ratio diagram 

 

The choice of an appropriate regional distribution was performed initially by comparing the 

L-moment ratios diagram of the sample L-skewness versus L- kurtosis to the theoretical 

values.  Fig. 4.10 presents the relationships between the population L-Cs and L-Kurt for a 

range of distributions, commonly employed in flood frequency analysis. These include the 

Gumbel (EV1), Exponential (EXP), Three-parameter Lognormal (LN3), Generalized Pareto 

(GPA), and Generalized extreme Value (GEV), Pearson Type III (PE3) and Generalized 

Logistic (GLO) distributions.  

 

From the diagrams shown in Fig. 4.10, the visual observation indicates that the GPA 

distribution could be the best distribution for seven regions which includes regions R1, R2, 
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ZA_R1, ZA_R2, ZA_R3, ZA_R4 and ZA_R5. For regions R1, ZA_R1, ZA_R2 and ZA_R3 the 

PE3 distribution should be also considered as possible regional distributions. The same for 

Regions ZA_R3 and ZA_R4 that the LN3 distribution could be adopted as regional 

distribution. However, for the other two regions (i.e., R3 and R4), the choice of the best 

distribution is not easily based on the L-moment diagram. For example, for R3, it is difficult 

to conclude simply from the graph as all the LN3, PE3 and GEV might be considered as 

possible regional distribution models. This is also the same case for Malawi catchments, i.e., 

the L-moment diagram in Fig.4.10 (d)-the EXP, GEV, LN3 and PE3 could be the candidate 

regional frequency distributions. 

 

  

a) R1-Namibia  (NA)                                                b) R2-Zimbabwe (ZIM) 

  

c)    R3-Zambia (ZM)                                         d) R4-Malawi (MW) 
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e)  ZA_R1                                                                                   f) ZA_R2 

 

g) ZA_R3                                                      h) ZA_R4 

 

 

Figure 4.7 L-moment diagrams showing the 

relationships between the theoretical 

distribution curves and the regional data from 

five countries of Southern Africa: the name of 

regions is labeled under the pictures from (a-

i). 

 

 

 

                           i) ZA_R5                               
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This indicates that, it is difficult to say a given distribution is a best representative of the flood 

distribution without being doing some conformations. Hence, the suggestions from the L-

moment diagram were supported using goodness-of-fit tests presented in section 4.3.2. 

However, though all the considered distributions were subjected to goodness-of-fit tests, it is 

clear from the L-moment diagram that GLO distribution couldn’t be a model for any region in 

Southern Africa.  

 

In addition, it can be seen from the diagrams that the weighted statistics of some stations are 

located a bit far from the groups. For example, Fig. 4.7 (i)-region ZA_R6 shows that there is 

one station which has different statistical behaviors than the other stations in the group. This 

is station ‘H6H009’ containing two big floods in the series (see Table 4.4 and at- site 

statistics-Appendix B (Table 11). As  Kjeldsen et al. (2002) discussed, the significance 

difference between the average statistical properties of the stations for example, station 

‘H6H009’ and the others in the group, was mainly due to acceptance of infrequent outliers 

 

 

4.3.2  Goodness-of- fit (GOF) measures  

 

The choices of distributions from the L-moment diagram might not guarantee that the 

distribution is the real representative of flood statistics in the given region. For this reason, a 

confirmation of the candidate distributions is needed using the so called Goodness-of-fit test. 

Hence, two statistical tests namely the Anderson-Darling test and Hosking and Wallis (1993 

and 1997) Z
DIST

 test were employed. 

 

Table 4.7 summarizes the results from the Anderson-Darling goodness-of-fit test 

corresponding to the theoretical distributions for 9 regions. The results of the GOF test 

illustrates that in almost all of the regions, the PE3 and/or GPA were the distributions 

accepted at 90 % confidence intervals i.e., all the values with asterisk (*) indicate that the 

distribution is accepted as regional distribution.  

 

When the results were compared with the diagrams shown in Fig. 4.7, the L-moment 

diagrams illustrate that except for regions R3 and R4, the GPA should be an appropriate 

regional distribution whereas, the GOF test indicates that the PE3 could be an appropriate 
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flood model for all regions ( i.e., the distribution was accepted at 90% confidence interval in 

all regions).  Though the GOF suggests that the PE3 could be a regional model for all regions, 

the overall suggestions from the test were reasonably agreed with the diagrams. However, 

there are also some disagreements. For example, this was observed in R4-Malawi flood flows. 

In the L-moment diagram, the regional data are distributed around the GEV, LN3 and PE3 

theoretical curves while the test statistics indicates that the GPA, EXP and PE3 are among the 

accepted distributions. The same in R3-Zambia that the regional L-moments ratios are close to 

GEV, LN3 and PE3 curves, whereas the GOF test suggests that the regional data were fitted 

only to the PE3 distribution.  

 

Table 4.7 The result of Anderson - Darling goodness-of-fit test at 10 %  level of significant 

(Viglione, 2010)  

Distrinution  Regions 

R1 R2 R3 R4 ZA_R1 ZA_R2 ZA_R3 ZA_R4 ZA_R5 

EV1 1 1 1 1 1 1 1 1 1 

LN3 0.981 0.998 1 0.9967 0.8207* 0.955 0.3203* 0.998 0.997 

EXP 1 0.992 0.981 0.789* 0.969 1 0.963 1 0.97 

GPA 0.95 0.208* 0.974 0.643* 0.1 67* 0.925 0.898* 0.606* 0.813* 

GEV 1 0.916 1 0.998 0.997 0.998 0.991 0.996 1 

PE3 0.541* 0.622* 0.541* 0.758* 0.868* 0.649* 0.899* 0.632* 0.734* 

GLO 1 0.982 1 1 1 1 0.999 1 1 

*Denotes regional frequency distributions passed the test statistics  

 

Therefore, in order to have further confirmations and choose appropriate regional distribution, 

the Z
DIST

- goodness-of-fit test was implemented. Table 4.8 presents the result of Z
DIST

-

goodness-of-fit test for the considered three parameter regional distributions.  A distribution 

with goodness-of-fit test value |Z
DIST

| ≤ 1.64 was considered as acceptable regional 

distribution at 90% confidence level. For a given region, a distribution was chosen as giving 

the best fit among the chosen candidates if the         is small value. All distributions that 

already passed the statistical tests are marked with the asterisks (*) and ranked with numbers 

1, 2, 3 and 4.  
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Table 4.8 Hosking and Wallis (1997) goodness-of-fit test statistics for regional frequency distribution.   

Distribution  Regions 

R1 R2 R3 R4 ZA_R1 ZA_R2 ZA_R3 ZA_R4 ZA_R5 

GLO 2.84 4.04 2.52 1.19 *(4) 3.05 4.16 2.15 2.25 4.59 

GEV 1.72 3.00 -0.88 *(3) -0.17 *(1) 2.32 3.51 1.36 *(3) 1.37*(2) 3.31 

LN3 1.14 *(3) 2.29 -0.33 *(1) -0.53 *(2) 0.94 *(2) 1.87 0.27 *(1) 0.09*(1) 2.41 

PE3 0.08 *(1) 1.04 *(2) -0.44 *(2) -1.24 *(3) -1.44 *(3) -0.95 *(1) -1.60 *(4) -2.12 0.83 *(2) 

GPA -1.12 *(2) 0.23 *(1) -7.44 -3.36 -0.20 *(1) 1.00 *(2) -1.13 *(2) -1.44*(3) -0.13 *(1) 

 

Note: The z-values with asterisk (*) denote that the empirical distributions are accepted as regional flood models and the numbers in the 

brackets refer to the rank between the possible regional distributions.
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When the GOF results from both methods were compared, the appropriate regional 

distributions that obtained from both methods were more or less in good agreement except for 

regions R3, R4 and ZA_R4.  The regional distributions that passed under both statistical tests 

were similar in all regions. However, for example, for region ZA_R4, the Anderson-Darling 

test suggests that the GPA and PE3 could be the possible regional distributions whereas, the 

result from Z
DIST

 -goodness of test reflects that the LN3, GEV and GPA could be accepted 

regional distributions. This means that the regional distribution which was ranked as best 

distribution in the Z
DIST

 -goodness-of-fit test shouldn’t be considered under the Anderson-

Darling test.  Hence, the selection of best distribution was determined based on the average 

weighted regional L-moments presented in Table 4.9. The regional weighted average of L-Cs 

versus L-Kurt. values were more close to LN3, then to GEV and GPA distributions than to 

PE3 distribution. In addition, for regions R1, R3 and R4, the possible regional frequencies 

distributions were better identified by the Z
DIST

 -statistical test. That is, the possible regional 

distributions were better agreed to the L-moment diagrams than the one obtained from the 

Anderson-Darling test. 

 

When the results from the L-moment ratio diagram (Fig. 4.7) were compared to the results 

obtained from the goodness-of-fit tests (Tables 4.7 and 4.8), good correspondences were 

found in most of the regions. Both the fitting criteria suggest possible regional distribution 

functions i.e., the distributions which had chosen from the visual inspection of the regional 

data were confirmed and could be considered as appropriate regional distributions for 

southern Africa flood studies.  

 

Therefore, from the results summarized in both Figure 4.7-L-moment diagrams and Tables 

4.7 and 4.8-the GOF tests of the empirical distribution models, the following suggestions 

were forwarded: 

a) Pearson type III distribution provides best fit for 2 regions: regions R1-Nambia and 

ZA_R2-South Africa catchments. 

b) In three regions which include Zimbabwe-R2 and both ZA_R1 and ZA-R5 regions of 

South Africa, the analysis recommends GPA distribution.  

c) LN3 distribution was best fitted model for three regions; the R3-Zambia and both ZA-

R3 and ZA_R4 regions in South Africa. 

d) Even though the GEV in the L-moment ratio diagram was a candidate in R3-Zambia 

and R4-Malawi, the model under the GOF test was best fitted only to flood events in 
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Malawi catchments and considered as an acceptable distribution for floods R3, R4, 

ZA_R3 and ZA_R4 regions. 

 

However, the Gumbel (EV1), Exponential (EXP) and Generalized logistic (GLO) 

distributions couldn’t be part of the models for Southern Africa flood studies i.e., none of 

these models passed under the statistical test for any region of the study. Even though the 

GLO under the Z-test and EXP under Anderson-Darling test were passed for R4-Malawi 

catchments, they could not be as good as the others. For example in the Z
DIST

 - test, the GLO 

was ranked on the fourth place and EXP was rejected.  

 

4.4  Regional flood frequency curves 

 

As discussed in section (4.3.1), using the index flood, the annual maximum floods at each 

gauging station were reduced to dimensionless form before fitting the individual series to 

regional frequency distribution. Here, the regional flood frequency curves were derived by 

combined all the dimensionless curves from each of the stations of the entire regions.  

 For the best regional distribution, the parameter values (the location (µ), scale (α) and 

shape (k) were estimated from the regional data (i.e., from the theoretical relationship 

of the regional distributions and sample L-moments) (Table 4.10).  

 Using these parameter values and the inverse functions of the best fitted distributions 

the regional quantile floods, XT for the return periods, T=2, 5, 10, 20, 50, 100, 200 and 

500 years were computed (Table 4.10). 

 Finally, the regional flood frequency curves for the best fitted distributions were 

constructed and plotted together with the normalized regional data (i.e., the 

normalized streamflows/ regional quantile XT versus return period T (Fig.4.7). 

Regional L-moments- the weighted averages of regional L-moments for the delineated 

regions of Southern Africa were estimated from the combination of weighted at-site L-

moments.  Once again, the values are estimated after the at-site flood events have been 

normalized by their respective median, i.e., by the index value. The first two L-moments and 

the first three L-moment ratios for each region considered in the study area are given in Table 

4.9. It can be seen from Table 4.9 that the weighted expected values of the regional 

normalized floods are greater than one in all regions and reached 2.035 in region ZA_R2. This 
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implies that the median value was smaller than the mean value in almost all sites i.e., all the 

sample series were positively skewed and in some of the regions (for example, in regions 

ZA_R1, ZA_R2), very large floods and also large variability between flood events were 

experienced in the sample series. 

Table 4.9 Regional weighted average L-moments for the grouped regions of southern Africa 

  

 Regions  

Regions L-moments   

 1  2 L-Cv L-Cs L- kurt. 
R1 1.357 0.559 0.412 0.259 0.132 

R2 1.587 0.817 0.487 0.280 0.117 

R3 1.013 0.275 0.267 0.0367 0.114 

R4 1.106 0.325 0.287 0.193 0.154 

ZA_R1 1.642 0.868 0.516 0.391 0.211 

ZA_R2 2.01 1.112 0.548 0.436 0.224 

ZA_R3 1.476 0.660 0.437 0.374 0.234 

ZA_R4 1.413 0.631 0.431 0.362 0.219 

ZA_R5 1.358 0.549 0.392 0.280 0.123 

 

The regional flood frequency curves were then developed for 9 of the regions considered in 

this study based on regional L-moments. Table 4.10 provides the summary of the construction 

which includes the best fitted regional distribution, their estimated regional parameter values, 

and regional quantile floods for the specified non-exceedance probabilities (return period 

ranged from 2-500years).  
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Table 4.10 Summary of the regional growth curves which includes the non-exceedance probability, the best distribution models for respective 

regions and their parameter values and quantile floods for a range of recurrence intervals. 

Return period, T (year) 2 5 10 20 50 100 200 500 

Non-exceedance probability,            0.5 0.8 0.9 0.95 0.98 0.99 0.995 0.998 

 Parameter values                  Dimensionless regional quantile floods, XT  

Regions Regional Distribution µ (ξ*) ( β *) K(α *) X2 X5 X10 X20 X50 X100 X200 X500 

R1 PE3 -0.0128 0.831 1.648 1.09 2.17 2.94 3.69 4.67 5.40 6.12 7.07 

R2 GPA -0.149 1.952 0.124 1.15 2.70 3.76 4.73 5.90 6.69 7.43 8.30 

R3 LN3 0.995 0.486 -0.0751 0.995 1.42 1.65 1.85 2.07 2.23 2.38 2.56 

R4 GEV 0.828 0.453 -0.0365 0.995 1.53 1.89 2.25 2.73 3.10 3.47 3.99 

ZA_R1 GPA 0.0129 1.425 -0.125 1.05 2.55 3.82 5.19 7.20 8.88 10.71 13.39 

ZA_R2 PE3 0.565 3.308 0.167 1.11 3.25 5.09 7.04 9.70 11.77 13.87 16.67 

ZA_R3 LN3 1.05 0.899 -0.793 1.06 2.14 3.06 4.10 5.70 7.10 8.68 11.06 

ZA_R4 LN3 1.022 0.875 -0.767 1.02 2.06 2.93 3.91 5.39 6.68 8.11 10.26 

ZA_R5 GPA 0.191 1.312 0.124 1.06 2.10 2.81 3.47 4.26 4.79 5.28 5.87 
 

Note: The parameters µ,  and k represent for location, scale and shape parameter values of a given distribution, respectively. In case of PE3, 

these parameters have another form which estimated primarily from other parameters (moments). The parameters are instead represents by the 

symbols in brackets with the asterisk(*)  i.e., ξ (location), β (scale) and α (shape) see brief discussions and relationships by Hosking and Wallis 

(1997),. These parameters are estimated directly from the relationship of the regional L-moment and some empirical coefficients (moments) such 

as the µ-gamma mean,  -gamma standard deviation and γ - the third moment as follows; 

If      , let                         , and            
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Once Table 4.10 has been developed, the quantile results together with the recurrence interval 

T were used to construct the regional frequency curves. Hence, the derived frequency curves 

were plotted together with regional normalized data and given in Fig. 4.8. The curves 

illustrate the regional relationships between the flood magnitudes and recurrence intervals. 

Though the difference between the observed and growth curves increased with recurrence 

interval, the curves generally reflect good consistence with trend of observed regional data. It 

can also be seen that the difference is high in regions which have had statistically 

heterogonous catchments (for example, (a) Namibia catchments) and all curves 

underestimated regionally large observations.  

 

a) R1-Nambia                                                             b) R2- Zimbabwe  

 

c)  R3- Zambia                                        d)  R4-Malawi 
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e) ZA_R1                                                        f) ZA_R2 

g) ZA_R3                                                                        h) ZA_R4 

 

 

Figure 4.8 Regional flood frequency curves for 

9 regions in Southern Africa: the title of each 

curve indicates the name of the regions. The 

curves were developed from best fitted 

distribution of respective regions in Table 

4.10. 

 

 

j) ZA_R5 
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4.5  Performance evaluation using simulation 

 

 The performance of the chosen distribution as a best fitted regional model was assessed using 

two methods (1) Plotting-position i.e., quantile-quantile plot; and (2) Regional growth curve 

verification.  

 

4.5.1 Quantile-Quantile (qq) plots 

 

For 9 regions of the study, the quantile-quantile plots of the normalized observed floods 

versus the simulated values that generated from the best fitted regional frequency distributions 

were developed and furnished in Appendices C (Fig.1 (a-i)). Fig. 4.9 below also shows 

examples of the quantile-quantile plots for two regions. The figures in Appendices C illustrate 

that almost all the qq plots were well fitted to the line 1:1. This implies that the frequency 

distributions that were chosen as a best distribution could be an appropriate regional flood 

models for all southern Africa catchments. However, for example, Fig. 4.9 (a) shows that the 

regional flood frequency model for R1- Namibia underestimated the large quantiles of the 

region. Even though the model simulated values were in agreement with the prediction of 

small observations, the coordinators of the largest three q-q values deviated from the line 1:1. 

These situations happened in all quantile-quantile plots generated from all the best regional 

distributions for this study (Appendices C:  Fig. 1) 

 

a) R1                                                                                     b)  ZA_R5 

Figure 4.9 Examples of quantile-quantile plots of the normalized empirical discharge against 

the simulated values from the best fitted distributions: a) Pearson type III (PE3) for Region 

R1-Nambia; and b) Generalized Pareto distribution (GPA) for ZA_R5 
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4.5.2 Verifications of the regional flood frequency curves 

 

The ability of the selected regional frequency distribution was also evaluated by comparing 

the difference between at-site observed values and regional estimations. For the validation of 

the selected models, 10 stations were used. Although the aim was to verify all the regional 

curves, the numbers of the stations were not sufficient in all regions. Hence, the regional 

curves from five regions were verified using two stations from each region. Of these, four 

regions were from South Africa and the other was region R3-Zambia (Table 4.11). 

Table 4.11  Selected stations for model verifications and their index floods 

Station code River @ Station Region  Index flood (m3/s) 

1591404 Kafue@Kafue Hook Bridge R3 881.0 

1591474 Kafue@ Kafironda 194.0 

A5h003 Limpopo River @ Botswana ZA_R!  149.18 

X1h003 Komati River @ Tonga 128.44 

C2h008 Vaal River @ Woodlands ZA_R2 172.9 

D8h008 Orange River @ Pella Mission 239.3 

V1H038 Klip River @ Ladysmithdorpsgronde ZA_R3 134.34 

W5H024 Mpuluzi River @ Dumbarton 22.35 

T3h007 Mzimvubu River @ Ku-Makhola ZA_R4 166.88 

U2h012 Sterk River @ Groothoek 14.44 

 

The regional curves were constructed only from the best fitted distribution, i.e., mainly for 

R3-LN3, ZA_R1-GPA, ZA_R2-PE3, ZA_R3-LN3 and ZA_R4-LN3 distributions. Fig. 4.10 (a-

e) show the      relationship for each of the 10 stations collected from five of these 

regions and calculated through equation 3.25. Due to the fact that the series had records with 

the range from 22 - 40 years, the comparison was done for the quantile floods up to 100 years 

return periods. For all regions, the estimated      relationships are in good agreement with 

the observed flood events. However, except for ‘A5H003’, the chosen distributions 

underestimated the largest observation of the at-site sample series. This shows that the curves 

have consistence with the suggestions from Fig.4.8 that all the flood models underestimated 

the largest observations of the sample series. 

  

http://www.dwa.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=A5H003
http://www.dwa.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=X1H003
http://www.dwaf.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=C2H008
http://www.dwaf.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=V1H038
http://www.dwa.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=W5H024
http://www.dwa.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=T3H007
http://www.dwaf.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=U2H012


 

79 

 

 

a) Region ZA_R1 

 

b) Region ZA_R3 

 

c) Region ZA_R4 
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d) Region ZA_R2 

 

e) Region R3-Zambia 

Figure 4.10 shows the comparison of the probability plots of the quantile floods between the 

observed series (Doted) and estimated values from the best fitted of regional frequency curves 

(solid line)   
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4.6  Regional estimation for ungauged catchments 

 

 The regional estimations for ungauged catchments were derived from the relationships of the 

median and catchment area of the neighboring gauged catchments. The relationships between 

the median (the index flood) and the area of the catchments of the region are presented in 

Appendices D (Fig.2) and also summarized in Table 4.12. The regression equations were 

developed after an attempt had been made to fit the regional data to both exponential and 

logarithmic equations. As a result, a model which gives best R
2
 value was chosen as regional 

regression models to predict the median values of the ungauged /low record series 

catchments. 

Table 4.12 Derived regression models to predict the median values from catchment 

characteristics in Southern Africa. 

 Regions  Regression model ,  

where,    = index flood-median (m
3
/s) ,  A = catchment area (km

2
) 

 

R
2 

R1    = 0.0371(A)0.78 0.5117 

R2    = 0.1265(A)0.8681 0.8696 

R3    = 0.4249(A)0.6662 0.9381 

R4     = 89.786*ln(A)-409.02 0.7022 

ZA_R1    = 14.755*ln(A)-49.338 0.3664 

ZA_R2     = 52.664*ln(A)-340.28 0.7683 

ZA_R3     = 66.461*ln(A)-395.91 0.5218 

ZA_R4    = 0.6089(A)0.6639 0.5927 

ZA_R5    = 42.282*ln(A) -187.1 0.889 
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5. DISCUSSION 

5.1 Data and outlier analysis 

 

 In arid and semi-arid zones such as southern Africa, rivers which may have no flow for 

periods of time and sometimes extend to a number of years. Floods of such region raise 

mainly from intense convective thunderstorms of very limited areal extent and thus affect 

catchments randomly with little spatial pattern (Cunnane, 1989).  

For this study, the daily average streamflow data were collected from five countries (459 

stations) in Southern Africa. The departure of meaningful regional flood frequency analysis  

is that the data available should be continuous, long recorded period, non-regulated, 

independently, identical distribution (Cunnane, 1989). When the AM series were selected 

from 459 stations of parent distributions, more than 50% of the gauging sites reflected 

insignificant magnitude of observation series (AM series of zero and nearly zero values for 

most of the recorded period), with long gaps of information, and short record length (< 15 

years). This illustrated that the AM series revealed that they were poor in quality and 

shouldn’t be used in further analysis. When the rest of the AM flood samples were examined 

for dependency (i.e., the dependency between consecutive time series and across gauging 

sites) (section 4.1.2), a total of 68 stations had AM observations with strong cross-correlation 

coefficients. It was expected that due to inadequate stations collected from every corner of the 

countries, the spatial correlation of the AMS from Malawi, Namibia, Zimbabwe and Zambia 

stations might be insignificant, thus their correlation coefficients were < 0.4.  However, the 

pair correlation coefficients of South Africa catchments showed good correlations and these 

64 stations were from this country with correlation coefficient > 0.89 and the other 4 stations 

were from Zambia. Of these, 34 stations were used in the analysis while the others were 

excluded. This is in good agreement with conclusions of Mkhandi et al.( 2000) that the AMS 

form South Africa had good correlation because of the dense network of gauging stations in 

the country. None of the AMS autocorrelation plots show significant correlation at the α = 

0.05, and thus it was accepted that the AM series were independently, identical distribution. 

The curves from empirical distribution (for example, Fig.4.3) were also used to examine the 

frequency of the outliers (if available), shape of the curve and choice of theoretical 

distribution functions, etc. Fig.4.3 (a) shows that the distribution is bounded to the lower part 

of the curve (the series gives repeated values of x1 or nearly values) with high values to the 
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upper side (i.e., surprisingly the normalized values extended up to 200). This implies that the 

values from this particular river might not be natural, i.e., at somewhere upstream, the channel 

might be regulated. On the other way, Fig.4.3 (b) shows that the frequency of the observations 

is bounded to the upper side of the curve (the series gives repeated values of xn). It could also 

be the same reason that the upper limit of floods is controlled at somewhere upstream and/or 

the gauging instrument might not able to measure the floods, in case, above the maximum 

level.  

It was also observed that the AMS of some stations were with suspected outliers. For 

example, Fig. 4.3 (c) (station ‘U2H048’) illustrates that the probability plot of the 

observations is with one outlier, i.e., the normalized values raised up to 24.27 times larger 

than the index flood. Whereas, Fig. 4.3 (d) shows the probability of the observed values after 

one outlier were removed from the series in (c). As shown in the plots, the largest normalized 

value was decreased almost by 80% i.e., the largest normalized value changes from 24.27 to 

4.5. 

The presence of such stations containing outliers, upper and lower bounded observations 

obviously affected the choice of a representative regional distribution. This was clearly 

observed when the observations were tried to fit to the theoretical frequency curves under L- 

moment ratio diagram (Fig. 4.7). As a result, AM floods from 73 stations were found 

experiencing not random phenomenon (i.e. upper or lower bounded series) and all were 

excluded from further analysis. 

Flowing a thorough data screening, the AMS from 122 stations (112 for regional analysis and 

10 for regional growth curve verification) were selected.  The flood series of these stations 

were assumed that they are independent observations at the 95% confidence interval, 

independent across stations, from non-regulated rivers with record period > 15 years and few 

gaps of information. The gaps of these few runoff information were also treated as NA (NO 

data) values. 

Outliers- the AMS at each site was closely examined whether the extreme events come from 

a single population (i.e., outlier analysis). It is suggested that the existence of outliers can be 

the reason for  many of the problems raised in the regional analysis of hydrological data 

(Gottschalk and Kundzewicz, 1995). The significance of the outliers and their influence of the 

regional estimations were estimated based on detection techniques and then treatments 

(section 4.1.4 and 4.2.3). However, in consistent with the suggestion of Cunnane (1989), 
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every  hypothesis was carried out at regional base. Here, the difficult task was investigating 

how many outliers of different degree of severity have actually occurred in the region dataset. 

As a result, a total of 29 outliers which were relatively more than 10 times higher than the at-

site index flood and inconsistent with the rest of the frequency of the normalized regional data 

were selected as regional outliers (Table 4.4). The normalized values of the detected outliers 

were in the range between 4 and 27 and most of the outliers were recorded when there was 

high runoff throughout the study regions. Especially,  the  most extreme floods obtained from 

the sub-tropical hurricanes in South Africa (Kjeldsen et al., 2002), floods of 1974, 1976, 

1988, 1996 and 2000 are among the periods which records large observation. 

Though majority of the outliers were very large in magnitude compare to the at-site index 

flood, their frequency might be consistent with the theory of regional extreme values. 

However, there were three observations (Table 4.5) with normalized values extended from 

21.95 to 26.37 and their recurrence intervals lies above 27778 years. These AM floods were 

recognized as unacceptable observations. The reason was not well-investigated but all were 

extremely deviated from the rest of the regional data. The values were excluded from the 

sample series and treated as NO data.  

The treatment of the outliers was performed in agreements with the recommendations 

Cunnane (1989).  The outliers were regionalized as shown in Table 4.4 and the influence of 

the suspected outliers on at-site and regional statistics was summarized in Table 4.6. The 

outliers were considered as random observation because most of the observations have 

common record time and were recorded during high floods throughout the region. The total 

numbers of outliers recognized as regionally large observations were with a range from 2-7 

observations per region (too few to form parent distribution). In addition, the sensitivity 

analysis illustrated that the regional weighted average statistics was less sensitive to existence 

or removal of one or two outliers from the series. That is, after the suspected outliers were 

removed from respective stations, the at-site statistics relatively varied from 3.13% to 43.8% 

whereas, the regional statistics reduced from 3.4% (L-Cv) to 15.93% (L-Kurt). This is because 

the analysis adapted the PWMs methods of parameter estimation. 

Therefore, except for three observations listed in Table 4.5, all outliers were accepted as 

random variables, and allowed to have in distribution selection and parameter estimation. This 

was in agreement with the recommendation of Cunnane (1989)  that “if the AM floods come 

from two different sub-populations and are regarded as true observations, then the outliers  
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must be retained and treated as random and unbiased”. It was also experienced by other 

studies in south Africa such as Kjeldsen et al. (2002). 

 

5.2 Regional Homogeneity 

 

Regional  flood  estimations methods are based on the premise that  the normalized values of 

the floods have the same  distribution at every site in the  chosen region (i.e., the at-site 

statistics such as  Cv and Cs of the normalized values are considered  to be constant across the 

region) (Cunnane, 1989; Hosking and Wallis, 1997). In this work, the identification of 

statistically homogenous  regions were based on delineating  geographically homogenous 

regions and later evaluating for their heterogeneity using Hosking and Wallis (1997) 

homogeneity measures (H).   

The delineation of sites into statistically homogenous regions therefore adapted the context of 

geographically continues regions. This was because geographical regions are more continent 

if the region is used to assign ungauged and poorly gauged catchments, and may be easy to 

divided a country or the sturdy drainages by its variation of soil, climate and topography with 

latitude and longitude (Cunnane, 1989; Hosking and Wallis, 1997). But this doesn’t mean that 

geographically neighboring catchments could necessarily fulfill the homogeneity assumption. 

Based on these assumptions, all the AMS collected from 112 stations were delineated into 9 

regions based on hierarchical grouping procedures and summarized in section 4.2. At the 

initial stage, after all the stations failed the heterogeneity measure (H), all gauging sites were 

grouped into belonging countries. Hence, the AMS from Namibia, Malawi, Zimbabwe and 

Zambia were grouped into four regions which represent every country as one region (with H 

values 7.5, 5.43, 2.35 and 2.31, respectively). The catchments from Zambia and Zimbabwe 

were considered as moderately heterogeneous; and the Namibia and Malawi as definitely 

heterogeneous regions. The regional coefficient of variances of these regions was in the range 

0.287-0.487, which all met the recommendations suggested by Cunnane (1989). Cunnane 

(1989) stated that in regions relatively low Cv (< 0.6), a small degree of heterogeneity doesn’t 

cancel out the benefit of using an at-site/regional estimation method. Hence, all AMS from 

these countries were considered as statistically accepted regions. Meanwhile, the catchments 

of South Africa were more than 75 % of the total stations provided for this analysis. The sites 

were therefore grouped into five regions (see for details Table 4.3) slightly in agreement with 
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the delineations of  Mkhandi and Kachroo (1997). The AMS of the sample sires from all these 

regions were with heterogeneity measure H ranged between 1 and 2 (i.e., possibly 

heterogeneous regions). Though the stations in South Africa were classified into more 

regions, they still have not formed exactly homogeneous regions. This could be due to the 

following possibilities: naturally the regions can have slightly different climate and 

geographical locations, hydrological regimes (such as storage and water table levels), 

insufficient stations and datasets, highly variance with the flood events etc. The regions were 

accepted as valid regions in agreement with recommendations by Hosking and Wallis (1997) 

and Cunnane (1989) that the heterogeneity measure of the regions could be realistically 

representative of the complex system if the regions are with slight heterogeneous.  

However, the sizes of the stations in all regions were considered inadequate for any 

meaningful regionalization (especially in Malawi, Zambia, Namibia and Zimbabwe 

catchments, and even in South Africa catchments). In addition to the inadequate data available 

and short record periods, the most extreme events in the sample series resulted from 

infrequent sub-tropical cyclones (Kjeldsen et al., 2002) were another main problem during 

homogenization of the regions. Especially in South Africa catchments, floods of 2000, 1996, 

and 1976 and in some regions floods of 1974 were among the main floods that make 

difference during the selection of homogenous regions. In agreement with the 

recommendations of  Cunnane (1989) on treatments of outliers in AMS, the regions that are 

listed in Table 4.3 were therefore developed, after the suspected outliers were excluded from 

the sample series. 
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5.3 Regional flood frequency distribution    

 

The identification of an appropriate regional flood frequency distribution for each of the 

homogenized regions was based on the L-moment diagram and Goodness-of- fit tests. The L-

moment diagram indicates that the GPA could be the most suitable regional distribution for 

Namibia (R1), Zimbabwe (R2) and all South African catchments. It also suggests that the PE3 

distribution could be stochastically an alternative flood frequency model for AM series of 

catchments in these regions and the LN3 distribution for ZA_R3 and ZA_R4 catchments. 

However, it was not easy to distinguish the most likely regional distribution for Zambia and 

Malawi catchments as the GEV, LN3 or PE3 distributions could be preferably an appropriate 

regional distribution.  

For every region, the GOF tests, however, suggested the acceptable regional distribution and 

their rank of performances. From the tests analysis, the PE3 distribution was found to be an 

appropriate regional distribution for all regions of Southern Africa. It was the best regional 

frequency distribution only for two regions such as Namibia and ZA_R1 catchments and 

accepted regional frequency distribution for other 6 regions (Table 4.8). Whereas, the 

Andersen-Darling goodness-of-fit test (Table 4.7) recommends that the PE3 distribution could 

be a valid regional flood frequency model for all catchments in Southern. The performance of 

PE3, followed by GPA (for 7 regions) and then by LN3 (for 6 regions) distributions, while the 

GEV distribution recommended in recent studies performed as a fourth place (i.e., only best 

fitted to Malawi catchments and acceptable distribution to other three regions). All the 

candidate distributions which were selected from the L-moment diagram were confirmed by 

the GOF tests. Hence, the results summarized in Table 4.8 were therefore recognized as a test 

that described the performance of the candidate distributions very well. As a result, this study 

suggested that the GPA-for regions Zimbabwe and two regions of South Africa (ZA_R1 and 

ZA_R5), and LN3 for regions ZA_R3 and ZA_R4 as the most suitable regional flood frequency 

distribution. For region R4 –Malawi flood events, the GEV distribution was chosen as a best 

fitted regional flood model. The possible regional distributions for every region considered in 

this study were ranked in Table 4.8. However, from both L-moment diagram and the test 

statistics, the GLO and the two-parameter distributions (i.e., EV1 and EXP) performed very 

poor i.e., none of these distributions could be used for flood modeling in southern Africa. 
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This study also suggested that the statistical flood frequency for every country carried in this 

study could be characterized by PE3 for Namibia, GPA for Zimbabwe, LN3 for Zambia, GEV 

for Malawi and the GPA for South Africa flood events- using PWMs method of parameter 

estimators. In fact, these regions are characterized by relatively different physiographic and 

climatic conditions. This implies that, the flood situations of every catchment should be 

modeled based on the best regional flood frequency distribution. Though the empirical models 

are with the expected uncertainties (i.e., at 90 % confidence interval), these distributions 

might reasonably represent the flood phenomenon in the regionalized catchments.  

In Southern Africa, few flood frequency studies, such as the RFFA for southern Africa carried 

by Mkhandi and Kochroo (1997); and Mkhandi et al. (2000) have concluded that the best 

flood frequency distribution procedures for the region could be the LP3/MOM and/or 

P3/PWM. In contrast to this conclusion, the RFFA in south Africa by Kjeldsen et al., (2002) 

concluded that the suitable regional distribution based on the L-moments diagram are the 

GPA and GLO distributions. The literature by Kjeldsen et al.(2002) also discussed that, 

different studies in South Africa particularly in Kwazulu-natal province suggested different 

distribution function. This indicated that despite the generalization of flood frequency 

distribution at regional (Southern Africa) level, the scalling down frequency analysis could 

give differnet results and probably better estimations. This could mainly depend on the data 

inputs. 

 

However, though the delineation of the regions was slightly different, the summery of the 

frequency distribution models were generally in agreement with the conclusions by Mkhandi 

and Kachroo (1997) i.e., the three-parameters of PE3 with PWMs could be regional 

distribution for all flood events of Southern Africa. This study also supports the flood studies 

by (Kachroo et al., 2000; Kjeldsen et al., 2002; Mkhandi and Kachroo, 1997) that the three 

parameter distributions are more capable of fitting flood data in southern Africa. The two-

parameter distributions (i.e., EV1 and EXP) performed very poor i.e., any of the distributions 

shouldn’t be considered for regional frequency analysis for all Southern Africa floods. 

Though the regions (for Kwazulu-natal province catchmnets-South Africa) were slightly 

modified the identification of the regional distribution from this study was also slightly in 

agreement with the finding by Kjeldsen et al. (2002). The study area in this work includes part 

of ZA_R3 and ZA_R4 regions, but in both regions the regional flood data were fitted to LN3 

distribution.  The GEVand GPA distributions should also be consideed as the flood events 
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models of the region. The results are in good agreament because the GPA distribution was 

suggested as regional distribution in both studies.  Based on the GOf test, the LN3 was also 

choosen as best distribution in half of the regions of the previos study ( i.e.,  strongly in 

agreement with this study) ,  but,  in this study,  the choice of the GLO distribution was not 

conisdered  at all.  

 

5.4 Regional flood frequency curve 

 

The regional frequency curves are simulated values which developed to represent the average 

values of the at-site flood frequencies. A regional curve is essentially a frequency distribution 

of     . It associates a return period   with       and this relationship is assumed to be valid 

for all catchments in the region, or alternatively represent the mean of the different 

relationships for the different catchments in the region (NERC, 1975). Hence, the curves 

(Fig.4.8) represent for all regions reflect good agreement with regional normalized flood 

events. Despite the large deviation of the regionally largest observations from the curve with 

increasing return period, the agreement is relatively good in flood events of homogenous 

regions, for example, from South Africa regions (ZA_R1, ZA_R2, ZA_R3, ZA_R4 and ZA_R5). 

However, because the flood statistics from the first four regions (R1-R4) were ranged from 

moderately heterogeneous (R1 and R4) to strongly heterogonous (R2 and R3) (see section 

4.2); the curves were somewhat disagree with the observed samples, especially with increase 

return period. 

 It can also be seen that none of the regional frequency curves were able to represent the 

regional large observations. That is, as discussed in section 5.1, there were some regional 

observations which were large relative to the index flood, but since they are few in numbers, 

the values were included in the analysis. This supports the suggestions by Cunnane (1989) 

that many of the existing statistical flood frequency estimation models underestimated the 

frequency of very large floods. Hence, all the regional curves (Fig. 4.8) developed in this 

analysis reflect underestimation for the quantiles of large observations in the region.  

The regional frequency curves (constructed from 9 regions) reflect that all curves have 

different flood characteristics. This could be due to the fact that the flood in different regions 

has different flood statistics. However, and it is also obvious that the degree of the flood 

regime variation depends on the meteorological and catchment characteristics that generating 
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the flood events (Hosking and Wallis, 1993; Kachroo et al., 2000; NERC, 1975; Tveito, 

1993). Despite the effort of homogenization of the stations, examination of the regional 

curves also showed that some regions have almost the same regional frequency pattern. These 

regions were in South Africa especially regions ZA_R3 and ZA_R4. The AM floods in the 

catchments of both regions could be modeled using LN3 distribution and the gradient of the 

regional curves also showed almost the same pattern. However, examination of the regional 

homogeneity showed that both regions have different flood statistics and this might happen 

due to the acceptance of outliers in both regions. 

The gradient of the regional frequency curve describes the probability of extreme floods. i.e., 

a curve that shows large gradient reflects large variability of the regional floods or there are 

floods which occurred rarely and vice versa for the gently sloped curves. Therefore, as shown 

in Fig. 4.8, the regional curves derived from AM floods of Zambia, Malawi and one region of 

South Africa (ZA_R5) catchments were gently sloped. The remaining 6 regions ranged from 

moderate (R1 and R2) to steeper (ZA_R3 and ZA_R4), and the steepest slopes were in ZA_R1 

and ZA_R2 regions. Especially, the slope of the curve for floods ZA_R2 shows the steepest 

curve of the study area. This can be observed, for example, the 500 years flood of this region 

reaches up to 17 times of the index flood. This implies that these regions which have steeply 

sloped curves were established from highly variable floods.  

This can also be confirmed by the results from the weighted average regional L-moment 

ratios (i.e., regional coefficient of variance, Table 4.9). The regions which show small values 

of L-Cv have gentle slopes and the large L-Cv values have high gradient. For instance, the 

steep flood frequency curves such as ZA_R1 ( 2 = 0.516) and ZA_R2 ( 2 = 0.548) were the 

curves among the regions which reflect a high variation of the flood regimes and included 

large observation in the stations of the entire regions. They are regions which represent the 

inland zones of the South Africa catchments. Thus, they have high and erratic rainfall, large 

area and most of the time dry climate (see Fig. 2.4 and 2.5) especially ZA_R2. As Table 4.4 

shows, region ZA_R2 includes the semi-arid and semi-desert drainages of South Africa such 

as the Limpopo (A1-A4), Olifats (C) and the desert area of Orange (D3-D8) drainages.  

The regional growth curves of the coastal zones which includes ZA_R4 (  2 = 0.437) and 

ZA_R5 (  2 = 0.392) and partially ZA_R3 (  2 = 0.431) (see Table 4.3 and Fig.4.9 for the 

details of the drainages) of South Africa has small gradient which indicates the little 

variability in the flood size and/or frequent of floods in the entire region.  In these regions, the 
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catchments are relatively small, but supplies relatively high floods than the other catchments 

in South Africa. This might be due to the fact that coastal areas may have more frequent 

precipitation.  

The regional growth curves of regions R4-Malwi and R3-Zambia are among the gentlest 

slopes and the regional coefficients of variance are 0.287 and 0.267, respectively. These might 

indicate that the tropical humid climate and the drainage characteristics could be the main 

factors that create such small variation of the flood events. This low relative steepness may be 

explained by the relatively low variability in rainfall in the region. The flood study report 

(NERC, 1975) discussed that the effect of catchment characteristics such as large area 

coverage between stations, high ground water levels, and low soil storages can produce gentle 

regional frequency curves. The R1-Nambia and R2-Zimbawie are relatively steep as compare 

to the Malawi and Zambia frequency curves. The reason may be due to the heterogeneity in 

the flood data used in this analysis. The AM floods were pooled from different parties of the 

countries and were also inadequate in numbers (i.e., 8 and 7 stations, respectively). In 

addition, since some of the regions of Namibia were collected from semi-desert dry clime of 

the coastal areas (see Fig. 2.2 and 2.5), the rainfall from these regions could have relatively 

high variability as compare to coastal zones of the other regions (Southern Africa). 

 

5.5 Performance evaluation of empirical distributions 

 

There are several components that contribute to the errors in regional quantile estimation such 

as errors araising from estimation of the index flood, misspecisfication of the regional flood 

frquency distribution, hetergenouity in the region, number of sites in a region, record length 

and outliers at each sites and other unexpected uncertienties (Hosking and Wallis, 1997). 

Sections 4.5.1 and 4.5.2 assessed the performance of the chosen regionally best fitted 

distributions. The quantile-quantle plottes - the normalized values of observed and simulted 

were plotted to see the ablity of selcted model that were chosen based on the observed 

regional data. As shown in Apendecies C (Fig. 1), the diagarams indicated that the simulated 

values were in good agreement with the normalized observed, i.e., the predictive ablity of the 

selected regional models were very good except for the largest observations. However, all the 

regional models underestimated the largest observed events i.e., the simulated versus 
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observed values were located below the line 1:1. This was observed in all quantile-quantile 

plots shown in Appendices C (Fig.1) and agreed with the regional flood frequency curves. 

Model Validation- the comparison of the regional flood frequency curve against the at-site 

observed flood quantiles. In consistent with review by Kjeldsen et al. (2002), this was not 

used to discriminate the regional distribution curves rather to observe if there was any 

systematic regional bias in the estimation of the quantile events.  

Fig.4.10 presents the comparison diagrams of the at-site quantile floods of 10 stations from 

five regions, i.e., the at-site quantile floods derived from the regional curves vs. at-site 

quantile observed floods. In all regions, the diagrams reflect that the regional curves were 

reasonably in agreement with the quantiles of observed values. Since the regional curves were 

derived from the average values of slightly different samples in the region, it is expected to 

observe some discrepancies in between the quantiles. However, high differences were 

observed in regions which were not homogenous like R3-Zambia (Fig.4.10 (e)) and in regions 

which contain highly variable flood events such as ZA_R2. Fig.4.10 (e), station ‘1291404’ 

shows clear deviations between the at-site observed and simulated quantiles. Though both the 

curves were followed the same curve pattern, the diagrams reflect that the relative difference 

between the quantile increases with return period.  

The choice of at least two stations per region might help to see whether the best regional 

models underestimated or overestimated the frequency of the largest observations. Hence, the 

results from the diagrams show that all the models underestimated the large observations in a 

site. Therefore, it can be again concluded that from both the regional curve verifications and 

quantile-quantile plots, the efficiency of the chosen flood models in simulating largest 

quantiles is not that much worthy. This might be due to the facts that the regional data is 

heterogeneous, the acceptance of some existed outliers in the region and inadequate stations 

for the analysis.  

 

5.6  Estimation of design floods from ungauged catchments 

 

From Table 4.13 and Appendices D (Fig.2), it can be observed that the development of 

regression models for estimation of the index flood gives reasonably good fit.  The correlation 

coefficient (R
2
) obtained for each of the derived regression model was above 50% except for 
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region ZA_R1 (R
2
=0.3664) of southern Africa. However, the efficiency of the models might 

be considered that the R
2
 values were developed from few stations. This might be largely 

attributed to the limited available information and disproportion of catchment size. For 

example, in region ZA_R1, for station ‘A5H006’, the median value that was estimated from 

the catchment area of 98,240 km
2
 is 115m

3
/s which is relatively very small.   

When the result from this work were compared with previous studies by  Mkhandi and 

Kachroo (1997), the regression equations from this study provide better R
2 

values. For 

example, the regression equations for Zambia, Malawi, Namibia and Zimbabwe suggested by  

Mkhandi and Kachroo (1997),  were developed from multiple regression and the index flood 

was the mean of AMS with R
2 

value 0.78, 0.234, 0.265 and 0.732 respectively. Meanwhile, 

the regression values from this work are with R
2
 value 0.938, 0.702, 0.512 and 0.869, 

respectively. 

However, because the floods of given catchments are not only characterized by the catchment 

area, the uncertainty that generates from these regression models might be very high, 

especially on the logarithmic equations. Therefore, by taking this into consideration, the 

results presented in Table 4.13 or Appendices D (Fig.2 (a-i)) might be served as optional 

models in estimating the index flood for ungauged catchments. However, this study suggested 

that the index flood models should be established as function of several catchment 

characteristics and incorporating all the necessary catchment information.    

  

http://www.dwa.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=A5H006
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6. CONCLUSION AND RECOMMENDATIONS 

 

The main aim of the RFFA conducted in this study was to extract sufficient information from 

rarely available at-site flood events, i.e., to adequately estimate the frequency of these flood 

events. These are certainly cases for the extreme events which are of interest in hydraulic 

structure safety, emergencies, human and resource risk managements and other resources 

utilizations. Coping with floods in an efficient manner and reducing damages necessitate 

efficient methods for the estimation of design floods; and later developments of flood 

management plans such as flood inundation zones and sufficient methods of flood forecasting 

techniques. 

The data collected for this analysis was daily average runoff from 459 stations of five 

countries. After the AMS data were selected and subjected for preliminary data analysis, 

AMS data from 122 (112 for RFFA and 10 stations for model verification) were screened. 

The AM flood events generated from the daily average were positively skewed, highly 

variable and includes large observations (outliers) in the series. However, after the outliers 

have been detected and treated, except for three observations, all the AMS collected from the 

above stations were considered as random observations and used in the regional flood 

frequency analyses. 

Using the site characteristics mainly the continuity of the geographical locations of the 

catchments, the gauging sites were grouped into 9 regions. Four countries which include 

stations of Zambia-R3, Namibia-R1, Malawi-R4 and R2-Zimabawie were considered each as 

one region. However, due to existence of more stations, the South African gauging sites were 

grouped in to five regions: namely the ZA_R1, ZA_R2, ZA_R3, ZA_R4, and ZA_R5. When 

these regions were examined with respect to heterogeneity measures, the AMF obtained from 

the first four regions/countries failed the homogeneity test. Regions R1 and R4- definitely 

heterogeneous while the other two regions of R2 and R3 -moderately heterogeneous and all 

the regions of South Africa are grouped as possibly heterogeneous regions.  

The identification is performed using the hierarchical grouping method based on the 

geographical locations together with the Hosking and Wallis (1997) heterogeneity test. 

However, the study believed that the available information were not sufficient to form 

meaningful homogenous regions. It is therefore recommended that further studies should 
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investigate appropriate techniques, and consider number of sites and all necessary site 

characteristics for effective delineation of homogenous regions. 

 The identification of an appropriate regional distribution for each of the 9 regions is done 

based on the L-moment approaches: the L-moment ratio diagrams and GOF test of the L-

moments and later evaluated their performances by their probability plots. For this study 

seven types of theoretical distribution (such as the EV1, EXP, LN3, GEV, GPA, PE3 and 

GOL) have been employed. The results obtained from this analysis are generally in agreement 

with the suggestions of previous study of Southern Africa by Kachroo et al.(2000).  Both the 

L-moment diagrams and the GOF tests indicated that three parameter distributions are more 

capable of modeling the AM flood events in southern Africa. That is, the most suitable 

distributions for all regions of Southern Africa could be the PE3 and/or GPA distributions 

with PWMs method of parameter estimations. The GOF tests statistics at 10% level of 

significance, however, recommend the possible regional distributions and their prediction 

abilities (ranks). As a result, the PE3 distribution is best fitted to the regional AM floods of 

R1-Nambia and ZA_R2 catchment; and GPA is best fitted empirical distribution to three 

regions: R2-zimbabwe, and  two regions of southern Africa namely regions ZA_R1 and 

ZA_R5. For regions such as: R3, ZA_R3 and ZA_R4 the three-parameter log-normal 

distribution provides best regional frequency distribution and the GEV distribution was 

chosen as the best fitted to the AM floods of Malawi catchments. However, none of the EV1, 

EXP and GOL flood frequency models was able to model the flood events of the Southern 

Africa catchments.  

Therefore, based on this result, it can be concluded that the PE3, GPA, LN3 and GEV 

emerged as underlying regional distributions, but none of the other three distributions could 

be considered as regional flood models in southern Africa. From the present study a particular 

flood frequency model for each country’s flood events were suggested that the PE3 for 

Namibia, GPA for Zimbabwe, and South Africa, LN3 for Zambia and GEV for Malawi flood 

events could be an appropriate empirical distributions.  

For every region, from the relations of the best regional distribution and at-site AM floods, the 

regional flood frequency curve for the return periods T of 2, 5, 10, 20, 50,100, 200 and 500 

years has been developed. Since some of the regional AM floods are large even compare to 

the normalized regional data, the curves revealed that the suggested best regional flood 

models underestimated the magnitudes of these extreme events. It is known that the slope of 
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the regional frequency curves represents variability of the flood events in the region. Hence, 

the slopes of the growth curves derived in this study reflect good correspondence with the 

location and climate phenomenon of the regions /catchments in the study region. Thus, the 

curves are relatively categorized as gentle for regions R3, R4, and ZA_R5 and moderate for 

regions R2, R3  and the coastal areas of south Africa i.e., regions ZA_R3 and ZA_R4, while, 

the arid and semi- arid regions and desert areas of south Africa ( ZA_R1 and ZA_R2) as  

steeply sloped curves. 

The performance of the chosen distributions as the best regional flood models and the curves 

that developed from theses distributions were assessed by employing the quantile-quantile 

plots and the model verification techniques. The results from both methods displayed that the 

flood frequencies of the regions are well addressed by the chosen distributions except for 

large observation (outliers). However, the relative difference between the observed and 

simulated quantile floods increased with return period. In addition, as concluded in the above 

paragraph, both qq plots and the curve verifications suggested that the best fitted regional 

distributions are not able to estimate the largest regional observations. 

Finally, an attempt has been made to develop a regression regional models that can able to 

estimate the quantile floods of the ungauged catchments from the regional relationships of the 

gauged catchment characteristics. The results of the regression have shown that there is good 

correlation between the areas and the median values of the AM series of southern Africa 

catchments. For each of the recommended regions, the regression models are given with their 

corresponding R
2 

values so that one can judge the quality of the data and the likely uncertainty 

of the estimation using the regression models. However, since the regression is done only 

based on the index flood-catchment area relationships; the study recommends as an optional 

use of these relationships and if more data are available to carry out further analysis. 
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APPENDICES   

A.  Selected stations  

1. Stations used for regional flood frequency analysis  

 

Table 1 Site characteristics of Namibia catchments (from 1969-2004) 

S.N Grdc_No Nat_Id River  Station     Area (km2) Lat.(O)  Long. (0) Index flood (m3/s) 

1 1255100 2811M01 Kunene River Ruacana 89600 -17.4 14.2 591.7 

2 1257100 2511M01 Okawango Rundu 97300 -17.9 19.75 452.5 

3 1258200 2962M03 Ugab River Vingerklip 14200 -20.4 15.47 21.2 

4 1258300 2971M02 Omaruru River Etemba 3810 -21.43 15.67 38.0 

5 1258501 2991M01 Kuiseb River Schlesien 6520 -23.27 15.8 27.1 

6 1291200 2400M01 Kwando River Kongola 170000 -17.683 23.2667 33.5 

7 1291100 2300M01 Zambezi Katima Mulilo 334000 -17.47 24.3 3689.5 

8 1259110 0497M03 Loewen Altdorn 7000 -26.8 18.22 69.2 

 

Table 2 Site characteristics of Malawi rivers (from 1954-1990) 

S.N Station code
18

   River @
19

station Area (km2) Lat. (o)  Long. (0) Index Flood (m3/s) 

1 1992100 Domasi @ Domasi 72.8 -15.23 35.38 28.9 

2 1992200 luweya @ Zayuka 2320 -11.80 34.37 231.0 

3 1992850 Ruo @ M1 Roadbridge 193 -16.50 35.40 227.6 

4 1992690 RiviRivi @ Balaka 748 -15.34 34.93 174.2 

5 1992900 shire @ chiromo 149500 -16.55 35.13 610.5 

6 1992700 shire @ Liwonde 130200 -15.07 35.20 923.9 

7 1992400 south rukuru@Phewzi 11132 -10.90 34.05 182.9 

8 1992950 Thuchila@chonde 1440 -16.00 35.50 113.0 

 

Table 3  Site characteristics of Zambia Rivers (from 1970-2004) 

S.N GRDC 

Code 

National 

code 

River  Station  Area 

(km2) 

Lat. (o)  Long.(0) Index Flood 

(m3/s) 

1 1591001 2400 Zambezi Senanga 284538 -16.12 23.25 2049.8 

2 1591100 1145 Makondu Chivata village 3354 -13.33 23.15 51.0 

3 1591237 1425 Luakela Sachibondo 632 -11.53 24.42 30.3 

4 1591401 4977 Kafue Kasaka 150971 -15.82 28.22 1440.0 

5 1591404 4669 Kafue Kafue hook bridge 96239 -14.93 25.92 881.9 

6 1591406 4280 Kafue Machiya ferry 23065 -13.65 27.62 412.4 

7 1591441 4302 Luswishi Lwendo 2668 -12.92 27.35 102.0 

8 1591470 4260 Kafue Ndubeni 18509 -13.40 27.82 394.1 

9 1591471 4200 Kafue Mpatamato 12001 -13.25 28.13 323.0 

10 1591480  4200 Kafue Wusakili 9088 -12.88 28.25 230.9 

11 1591490 4015 Muchindamu Muchindamu 110 -11.87 27.13 11.1 

12 1591720 5815 Mulungushi Great north road bridge 1448 -14.30 28.55 41.8 

13 1591820 2250 Luanginga Kalabo 34621 -14.97 22.68 165.1 

14 1593100 6670 Luapula Chembe ferry 123072 -11.97 28.75 947.4 

15 1593740 6350 Lukulu Kasama/luwingu road 

bridge 

6504 -10.18 30.97 

197.2 

 

Table 4 Site characteristics Zimbabwe catchments (From 1957-1990) 

                                                 
18

 The code of the stations was given randomly by the author 
@

19
  The location of the gauging stations 

mailto:Ruo@M1%20Roadbridge
mailto:RiviRivi@Balaka
mailto:shire@chiromo
mailto:shire@Liwonde
mailto:Thuchila@chonde
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S.N FRIEND 

Code 

Local 

code 

River Location Area 

(km2) 

Lat. (O)  Long. (0) Index Flood 

(M3/S) 

1 63351113 A13 Gweru Gweru River 

Causew. 

4201 -18.72 28.80 112..8 

2 63341012 C12 Mupfure Twyford Weir 5307 -18.12 30.22 197.6 

3 63315506 D6 Shawanhowe Mutoko Road Brg. 1194 -17.63 31.60 84.15 

4 63535231 B31 Thuli Thuli Gorge 4090 -21.08 28.83 141.5 

5 63535215 B15 Lumane Insindi Weir 277 -20.60 29.60 15.5 

6 63422219 E19 Macheke Condo U/S 3383 -18.92 31.95 122.6 

7 63533035  Thuli Ntalali Causeway 5880 -21.32 28.95 450.6 

 

Table 5 Site characteristics of South Africa Rivers (From 1969-2008) 

S.NO  Station  code   River@20station Area (km2) Long (0) Lat. (o) Index Flood (m3/s) 

1  A2H006 Pienaars River @ Klipdrift 1028 28.47 -26.18 17.8 

2  A2H012 Krokodil River @ Kalkheuwel 2551 28 -26.43 68.0 

3  A2H013 Magalies River @ Scheerpoort 1171 27.86 -26.39 13.5 

4  A2H021 Pienaars River @ Buffelspoort 7483 27.74 -25.83 26.0 

5  A2H023 Jukskei River @ Nietgedacht 686 28.08 -26.22 70.9 

6  A5H006 Limpopo River @ Botswana 98240 28.04 -23.02 115.0 

7  A6H029 Mogalakwena River @ Glen Alpine 11292 28.85 -23.23 38.4 

8 A9H004 Mutale River @ Tengwe 320 30.59 -23.03 80.8 

9  B4H003 Steelpoort River @ Buffelskloof 2240 29.91 -25.76 34.2 

10  B6H004 Blyde River @ Chester 2241 30.92 -25.01 93.5 

11  B7H010 Ngwabitsi River @ Harmony 318 30.44 -24.13 15.2 

12  B8H010 Letsitele River @ Mohlabas Location 477 30.43 -24.48 31.8 

13  B1H005 Olifants River @ Wolwekrans     3256 29.29 -26.39 112.4 

14  C1H005 Leeu Spruit @ Welbedacht 341 29.4 -27.11 17.5 

15  C1H006 Blesbok Spruit @ Rietvley 1094 29.62 -27.32 147.5 

16  C2H001 Mooi River @ Witrand 3595 27.15 -27.29 7.5 

17  C3H003 Harts River @ Taung 10990 24.86 -27.98 23.0 

18  C4H004 Vet River @ Fizantkraal 16153 26.19 -28.03 179.0 

19  C6H003 Vals River @ Mooifontein 7765 26.6 -27.4 136.0 

20  C8H001 Wilge River @ Frankfort 15673 28.56 -27.57 256.2 

21 C1H007 Vaal River @ Goedgeluk 4686 29.78 -27.3 81.3 

22 D1H003 Orange River @ Aliwal-North 37075 26.86 -31.37 1485.5 

23 D1H006 Kornet Spruit @ Maghaleen 2969 27.41 -30.73 254.3 

24 D1H011 Kraai River @ Roodewal 8688 26.96 -31.65 224.4 

25 D3H008 Orange River @ Marksdrift 99316 23.81 -29.87 332.2 

26 D8H003 Orange River @ Vioolsdrif 850530 17.77 -29.23 393.2 

27 D5H003 Fish River @ Hardeheuwel 1509 20.43 -32.21 21.41 

28 D7H005 Orange River @ Upington 364560 21.29 -28.93 377.3 

29 E2H003 Doring River @ Melkboom 24044 18.71 -32.6 229.3 

30 G1H013 Berg River @ Drieheuvels 2934 18.98 -33.97 204.3 

31 H1H003 Bree River @ Ceres Toeken Geb. 657 19.32 -34.2 56.7 

32 H6H009 Riviersonderend @ Reenen 2007 20.24 -34.8 101.6 

33 H7H013 Buffeljags River @ Eenzaamheid 602 20.68 -34.17 99.1 

34 K3H003 Maalgate River @ Knoetze Kama 145 22.35 -34.4 28.2 

35 K2H002 Great-Brak River @ Wolvedans 131 22.27 -34.73 18.1 

36 K5H002 Knysna River @ Milwood Forest Res. 133 23.14 -34.35 19.8 

37 L7H006 Groot River @ Grootrivierspoort 29560 24.63 -34.58 56.9 

38 Q9H002 Koonap River @ Adelaide 1245 26.41 -33.51 17.2 

39 Q9H012 Great Fish River @ Brandt Legte 23067 26.55 -33.98 69.9 

40 R1H015 Keiskamma River @ Farm 7 2530 27.46 -33.31 85.7 

41 R3H003 Nahoon River @ Farm 305 473 27.89 -33.21 53.3 

42 R2H005 Buffalo River @ King Williams Town 411 27.53 -33.39 38.9 

43 S3H004 Black-Kei River @ Cathcarts Gift 1413 26.85 -32.07 14.8 

44 S3H006 Klaas Smits River @ Weltevreden 2170 26.81 -32.29 14.6 

45 S5H002 Tsomo River @ Wyk Maduma 2359 27.87 -32.69 52.0 

46 R2H006 Mgqakwebe River @ Msenge Ridge 119 27.41 -33.36 15.7 

47 U1H005 Mkomazi River @ Lot 93 1821 1744 29.95 -30.36 221.0 

48  U2H006 Karkloof River @ Shafton 339 30.38 -30.27 23.0 

                                                 
@

20
 The location of the gauging stations 

http://www.dwa.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=A2H006
http://www.dwa.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=A2H012
http://www.dwa.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=A2H013
http://www.dwa.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=A2H021
http://www.dwa.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=A2H023
http://www.dwa.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=A5H006
http://www.dwa.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=A6H029
http://www.dwaf.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=A9H004
http://www.dwa.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=B4H003
http://www.dwa.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=B6H004
http://www.dwa.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=B7H010
http://www.dwa.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=B8H010
http://www.dwaf.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=B1H005
http://www.dwa.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=C1H005
http://www.dwa.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=C1H006
http://www.dwa.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=C2H001
http://www.dwa.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=C3H003
http://www.dwa.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=C4H004
http://www.dwa.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=C6H001
http://www.dwa.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=C8H001
http://www.dwa.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=C1H007
http://www.dwa.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=D1H003
http://www.dwa.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=D1H006
http://www.dwa.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=D1H011
http://www.dwa.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=D3H008
http://www.dwa.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=D8H003
http://www.dwa.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=D5H003
http://www.dwa.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=D7H005
http://www.dwa.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=E2H003
http://www.dwa.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=G1H013
http://www.dwa.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=H1H003
http://www.dwa.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=H6H009
http://www.dwa.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=H7H013
http://www.dwa.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=K3H003
http://www.dwa.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=K2H002
http://www.dwa.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=K5H002
http://www.dwa.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=L7H006
http://www.dwa.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=Q9H002
http://www.dwa.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=Q9H012
http://www.dwa.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=R1H015
http://www.dwa.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=R3H003
http://www.dwa.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=R2H005
http://www.dwa.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=S3H004
http://www.dwa.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=S3H006
http://www.dwa.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=S5H002
http://www.dwa.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=R2H006
http://www.dwa.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=U1H006
http://www.dwa.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=U2H006
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49  U2H048 Mgeni River @ Midmar 928 30.23 -30.06 29.8 

50  V1H001 Tugela River @ Tugela Drift 4176 29.86 -28.89 258.3 

51  V1H010 Little Tugela River @ Winterton 782 29.65 -28.91 119.3 

52  V2H004 Mooi River @ Doornkloof 1546 30.36 -29.36 73.1 

53  V3H002 Buffels River @ Schurvepoort 1518 30.03 -27.76 29.7 

54  V6H004 Sondags River @ Kleinfontein 658 30.13 -28.69 55.5 

55  V7H020 Boesmans River @ Wagendrift 744 29.9 -29.5 65.4 

56  T3H005 Tina River @ Mahlungulu 2597 28.9 -31.93 148.4 

57  T3H006 Tsitsa River @ Xonkonxa 4268 28.87 -31.52 295.7 

58 T3H009 Mooi River @ Maclear 307 28.39 -31.37 57.4 

59  T4H001 Mtamvuna River @ Gundrift 715 29.94 -30.79 41.2 

60  T5H003 Polela River @ Coxhill 140 29.59 -30.57 26.2 

61  T5H004 Mzimkulu River @ Fp 1609030 545 29.51 -30.4 59.7 

62 W1H009 Mhlatuze River @ Riverview 2408 31.86 -29.62 55.0 

63 W2H005 White Mfolozi River @ Overvloed 3939 31.44 -28.7 111.8 

64 W2H006 Black Mfolozi River @ Native Res 12 1648 31.7 -28.24 92.3 

65 W2H009 White Mfolozi River @ Doornhoek 432 30.89 -28.74 23.9 

66 W4H006 Phongolo River @ M'Hlati 6846 31.93 -28.15 240.4 

67 W5H005 Hlelo River @ Ishlelo 804 30.83 -27.49 16.4 

68 W5H022 Assegai River @ Zandbank 2313 31.09 -27.96 64.2 

69 X1H001 Komati River @ Hooggenoeg 5499 31.13 -26.2 83.0 

70 X1H014 Mlumati River @ Lomati 1119 31.65 -26.1 59.0 

71 X2H005 Nels River @ Boschrand 642 31.11 -26.37 15.9 

72 X2H016 Krokodil River @ Tenbosch 10365 32.29 -25.49 132.7 

73 X2H015 Elands River @ Lindenau 1554 30.84 -25.91 56.6 

74 X2H022 Kaap River @ Dolton 1639 31.32 -26.13 36.3 

 

http://www.dwa.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=U2H048
http://www.dwa.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=V1H001
http://www.dwa.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=V1H010
http://www.dwa.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=V2H004
http://www.dwa.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=V3H002
http://www.dwa.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=V6H004
http://www.dwa.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=V7H020
http://www.dwa.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=T3H005
http://www.dwa.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=T3H006
http://www.dwaf.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=T3H009
http://www.dwa.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=T4H001
http://www.dwa.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=T5H003
http://www.dwa.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=T5H004
http://www.dwa.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=W1H009
http://www.dwa.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=W2H005
http://www.dwa.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=W2H006
http://www.dwa.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=W2H009
http://www.dwa.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=W4H006
http://www.dwa.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=W5H005
http://www.dwa.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=W5H022
http://www.dwa.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=X1H001
http://www.dwa.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=X1H014
http://www.dwa.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=X2H005
http://www.dwa.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=X2H006
http://www.dwa.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=X2H015
http://www.dwa.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=X2H022
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2.   Stations used for model verifications 

 

Table 6  Selected stations for model verifications 

Station code River @ Station Country  Area(km
2
) Latitude  (

0
) Longitude (

0
) Data Available Record Length  

(Years) 

1591404 Kafue@Kafue Hook Bridge Zambia 96239 -14.93 25.92 1973-2005 30 

1591474 Kafue@ Kafironda Zambia Na -13.633 27.59 1969-1991 22 

A5H003 Limpopo River @ Botswana South Africa  98160 -22.96 28.04 1959-1980 22 

X1H003 Komati River @ Tonga South Africa 8614 -25.82 31.92 1969-2008 40 

C2H008 Vaal River @ Woodlands South Africa 47214 -26.76 27.68 1969- 1996 27 

D8H008 Orange River @ Pella Mission South Africa 821850 -29.08 19.17 1979-2008 29 

V1H038 Klip River @ Ladysmithdorpsgronde South Africa 1644 -28.66 29.76 1971- 2008 38 

W5H024 Mpuluzi River @ Dumbarton South Africa 1446 -26.42 30.95 1976-2008 33 

T3H007 Mzimvubu River @ Ku-Makhola South Africa 6906 -30.95 29.11 1972-2008 24 

U2H012 Sterk River @ Groothoek South Africa 438 -29.48 30.53 1969-2008 34 

http://www.dwa.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=A5H003
http://www.dwa.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=X1H003
http://www.dwaf.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=C2H008
http://www.dwaf.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=V1H038
http://www.dwa.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=W5H024
http://www.dwa.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=T3H007
http://www.dwaf.gov.za/Hydrology/CGI-BIN/HIS/CGIHis.exe/StationInfo?Station=U2H012
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B. At- site statistical behaviors of annual maximum floods  

 

Table 7  at site statistical characteristics for Namibia Catchments  

S.N. Station       Cs CKURT  2                 
1 1255100 686.2 0.654 0.765 2.844 251.3 0.366 0.215 0.077 233 
2 1257100 493.3 0.378 0.496 3.063 107.5 0.218 0.127 0.133 19.8 
3 1258200 39.8 1.046 1.895 7.435 20.5 0.516 0.400 0.200 0.9 
4 1258300 68.2 1.018 1.367 4.968 36.4 0.534 0.337 0.121 20.9 
5 1258501 32.0 0.713 0.880 3.826 12.7 0.397 0.201 0.086 2.2 
6 1291200 44.9 0.570 1.321 4.554 13.6 0.302 0.329 0.158 1.4 
7 1291100 3784.3 0.473 0.462 2.958 1030.0 0.272 0.110 0.106 675 
8 1259110 94.3 1.188 3.224 16.563 48.8 0.517 0.405 0.290 4.3 

 

Table 8 At-site statistical characteristics for Zimbabwe Catchments  

S.N. Station       Cs CKURT  2                 
1 63315506 107.0 0.841 0.838 3.389 50.0 0.467 0.220 0.067 66.2 
2 63341012 358.6 0.980 0.823 2.444 190.4 0.531 0.289 0.018 

192.4 
3 63351113 114.5 0.585 0.285 2.688 38.6 0.337 0.079 0.080 10.32 
4 63535215 27.4 0.974 1.097 3.163 14.1 0.514 0.341 0.101 0.29 
5 63535231 208.4 0.984 1.197 3.912 109.0 0.523 0.327 0.117 31.71 
6 63533035 1220.9 1.368 2.444 9.917 749.1 0.614 0.516 0.283 147.6 
7 63422219 127.5 0.797 2.517 13.529 48.9 0.384 0.220 0.221 7.82 

 

 

Table 9 At-site statistical characteristics of Zambia Catchments  

S.N. Station       Cs CKURT  2                 
1 1591001 2046.3 0.271 -0.319 2.66 328.6 0.161 -0.040 0.099 43.4 
2 1591100 46.1 0.502 0.048 2.49 13.4 0.292 0.026 0.075 9.01 
3 1591237 32.4 0.359 0.401 3.38 6.7 0.207 0.127 0.154 1.20 
4 1591401 1412.9 0.263 0.104 3.45 212.5 0.150 0.011 0.230 36.1 
5 1591404 1006.6 0.558 0.791 3.44 316.3 0.314 0.193 0.116 5.2 
6 1591406 419.0 0.434 0.230 3.66 103.6 0.247 0.041 0.182 11.7 
7 1591441 96.1 0.465 0.032 3.47 25.3 0.264 -0.033 0.120 25.9 
8 1591470 382.9 0.471 0.212 3.75 102.0 0.266 0.049 0.193 24.3 
9 1591471 287.3 0.488 -0.379 2.25 81.6 0.284 -0.074 0.027 80.8 

10 1591480 214.9 0.476 0.309 3.57 58.3 0.271 0.049 0.156 16.6 
11 1591490 14.9 0.878 0.707 2.60 7.3 0.488 0.230 0.024 1.74 
12 1591720 45.2 0.593 0.884 4.03 14.9 0.330 0.189 0.172 0.82 
13 1591820 154.9 0.508 -0.062 2.79 45.4 0.293 -0.002 0.120 8.95 
14 1593100 1091.5 0.727 0.722 2.97 445.9 0.409 0.193 0.087 191 
15 1593740 196.3 0.249 -0.253 4.03 28.2 0.144 -0.019 0.190 10.6 
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Table 10 At-site statistical characteristics for Malawi Catchments  

S.N. Station       Cs CKURT  2                 
1 1992100 35.4 0.870 3.759 21.18 12.8 0.363 0.384 0.276 2.40 
2 1992200 219.9 0.413 0.042 2.51 53.1 0.242 0.008 0.095 4.38 
3 1992850 242.3 0.520 0.805 3.63 70.8 0.292 0.173 0.142 25.38 
4 1992400 166.1 0.474 0.247 2.61 45.5 0.274 0.076 0.085 6.80 
5 1992700 620.2 0.309 0.223 3.15 112.0 0.181 0.055 0.137 19.84 
6 1992900 1015.5 0.360 1.474 5.96 194.7 0.192 0.255 0.260 6.17 
7 1992950 266.1 0.795 1.428 4.54 109.1 0.410 0.375 0.173 21.90 
8 1992690 134.4 0.765 1.930 8.46 52.1 0.388 0.319 0.173 2.44 

 

Table 11 At-site statistical characteristics for South Africa Catchments  

S.N. Station       Cs CKURT  2                 
1 A2H006 48.6 1.395 2.044 7.08 31.0 0.637 0.527 0.260 0.63 
2 A2H012 96.5 0.892 2.150 8.09 40.9 0.424 0.423 0.264 0.55 
3 A2H013 30.0 1.336 1.869 6.06 18.8 0.626 0.496 0.232 7.27 
4 A2H021 76.0 1.262 1.711 5.22 45.8 0.603 0.486 0.205 16.67 
5 A2H023 87.7 0.795 2.586 13.07 33.4 0.381 0.320 0.235 2.40 
6 A5H006 214.4 1.235 2.426 10.09 122.5 0.571 0.433 0.271 73.38 
7 A6H029 68.0 0.977 0.950 2.74 35.7 0.525 0.306 0.066 3.73 
8 A9H004 102.9 0.879 1.147 4.54 49.0 0.476 0.253 0.111 0.44 
9 B4H003 45.7 0.787 1.636 6.05 18.5 0.406 0.329 0.173 4.92 

10 B6H004 116.7 0.848 1.393 5.29 52.3 0.448 0.294 0.131 21.27 
11 B7H010 45.5 1.607 2.422 8.48 31.0 0.681 0.563 0.319 1.79 
12 B8H010 64.8 1.257 2.810 13.19 36.4 0.562 0.463 0.271 22.78 
13 B1H005 195.2 1.189 1.828 5.98 112.2 0.575 0.435 0.216 27.45 
14 C1H005 22.0 1.289 2.740 10.91 12.0 0.547 0.448 0.344 1.48 
15 C1H006 216.9 0.907 0.930 3.21 107.7 0.496 0.259 0.071 42.16 
16 C2H001 13.7 1.360 2.397 8.83 8.3 0.606 0.501 0.282 2.50 
17 C3H003 41.9 1.259 3.108 15.89 23.1 0.551 0.460 0.270 2.19 
18 C4H004 238.9 0.965 1.022 4.06 124.8 0.522 0.247 0.047 107.32 
19 C6H003 221.3 1.211 1.903 6.17 126.9 0.573 0.461 0.249 17.28 
20 C8H001 493.3 1.239 1.917 6.52 288.9 0.586 0.490 0.215 131.58 
21 C1H007 168.6 1.039 1.409 4.51 88.7 0.526 0.405 0.131 24.51 
22 D1H003 1873.1 0.747 0.976 3.58 766.0 0.409 0.250 0.078 254.65 
23 D1H006 261.1 0.520 0.214 2.03 78.6 0.301 0.085 0.013 93.61 
24 D1H011 348.2 1.041 2.246 7.92 164.0 0.471 0.476 0.326 20.87 
25 D3H008 633.5 1.386 3.776 19.81 334.8 0.529 0.564 0.397 46.22 
26 D8H003 1137.0 1.266 3.138 17.03 634.3 0.558 0.423 0.183 13.58 
27 D5H003 33.1 1.200 2.205 9.59 19.2 0.581 0.393 0.199 11.32 
28 D7H005 1308.7 1.260 2.438 10.87 760.1 0.581 0.468 0.207 58.15 
29 E2H003 276.4 0.710 1.015 3.67 107.7 0.390 0.245 0.111 65.84 
30 G1H013 271.5 0.638 0.723 2.76 97.3 0.358 0.208 0.069 17.60 
31 H1H003 64.0 0.490 0.854 3.56 17.6 0.275 0.189 0.117 2.37 
32 H6H009 189.3 1.423 3.187 14.48 106.8 0.564 0.587 0.387 6.04 
33 H7H013 139.8 0.713 0.906 3.12 54.5 0.390 0.278 0.046 22.81 
34 K3H003 36.4 0.766 1.627 5.93 14.3 0.393 0.340 0.212 0.49 
35 K2H002 23.0 0.626 0.681 2.82 8.1 0.352 0.191 0.094 0.03 
36 K5H002 29.9 0.785 0.790 2.47 12.9 0.432 0.257 0.046 2.43 
37 L7H006 144.5 1.469 1.975 6.10 95.6 0.662 0.533 0.272 32.87 
38 Q9H002 46.0 1.359 1.551 4.26 29.7 0.644 0.488 0.188 2.56 
39 Q9H012 329.9 1.641 2.136 7.03 232.9 0.706 0.604 0.305 15.16 
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40 R1H015 100.0 0.837 1.981 8.93 41.5 0.414 0.222 0.143 27.00 
41 R3H003 100.3 1.701 3.327 15.86 67.7 0.676 0.557 0.371 6.94 
42 R2H005 63.5 1.026 2.261 9.35 30.9 0.487 0.424 0.269 11.07 
43 S3H004 27.0 1.349 3.720 19.76 14.3 0.531 0.526 0.363 8.33 
44 S3H006 26.1 1.152 2.073 7.81 14.4 0.551 0.433 0.238 4.87 
45 S5H002 48.8 0.839 2.105 9.70 19.9 0.408 0.208 0.180 0.05 
46 R2H006 16.2 0.672 0.574 2.88 6.2 0.382 0.147 0.078 2.59 
47 U1H005 250.4 0.543 1.083 3.97 74.7 0.298 0.249 0.145 10.05 
48 U2H006 31.8 1.141 4.215 24.52 13.8 0.434 0.495 0.394 2.31 
49 U2H048 53.7 2.175 5.545 36.39 34.4 0.641 0.600 0.486 0.06 
50 V1H001 432.8 0.901 1.299 4.19 204.6 0.473 0.341 0.134 45.03 
51 V1H010 146.8 0.677 1.024 3.48 54.2 0.369 0.259 0.133 9.49 
52 V2H004 103.4 1.086 3.402 15.36 43.1 0.417 0.531 0.430 2.47 
53 V3H002 46.4 1.002 1.282 4.08 24.4 0.527 0.339 0.131 6.16 
54 V6H004 68.4 0.699 1.472 5.59 25.1 0.367 0.280 0.212 9.62 
55 V7H020 95.3 0.908 2.686 12.61 39.8 0.418 0.421 0.273 9.96 
56 T3H005 186.6 0.883 1.891 7.64 82.8 0.444 0.334 0.217 29.89 
57 T3H006 325.0 0.701 1.142 4.14 123.2 0.379 0.270 0.117 76.55 
58 T3H009 90.5 0.848 1.243 4.26 40.5 0.448 0.321 0.117 1.57 
59 T4H001 86.2 1.418 3.318 16.01 48.8 0.566 0.575 0.374 14.86 
60 T5H003 35.8 0.769 2.015 8.68 13.7 0.383 0.365 0.179 12.39 
61 T5H004 74.1 0.517 1.961 6.97 18.8 0.254 0.396 0.271 10.66 
62 W1H009 141.5 1.351 2.643 11.88 84.9 0.600 0.513 0.266 7.71 
63 W2H005 161.8 0.890 2.352 8.96 66.5 0.411 0.418 0.300 20.96 
64 W2H006 141.1 0.863 1.674 5.93 61.3 0.435 0.385 0.202 6.87 
65 W2H009 46.3 2.174 5.406 34.81 29.5 0.638 0.631 0.524 0.98 
66 W4H006 307.4 0.605 0.689 2.82 104.6 0.340 0.194 0.093 14.87 
67 W5H005 28.9 1.045 2.939 14.09 13.3 0.460 0.479 0.294 1.82 
68 W5H022 81.0 0.686 0.668 2.62 31.4 0.387 0.197 0.060 17.51 
69 X1H001 136.6 1.148 2.769 13.08 70.8 0.518 0.453 0.268 2.69 
70 X1H014 132.4 1.421 2.645 10.77 82.0 0.619 0.520 0.308 12.14 
71 X2H005 25.3 1.079 2.276 8.75 12.8 0.504 0.437 0.271 0.1 
72 X2H016 258.5 1.085 1.857 6.06 134.4 0.520 0.455 0.230 59.51 
73 X2H015 56.9 0.662 0.865 3.67 20.9 0.367 0.184 0.114 17.75 
74 X2H022 65.4 1.308 3.342 17.58 36.4 0.556 0.478 0.298 19.37 

 

 



 

107 

 

C.   The quantile flood of the normalized  observed  versus simulated values 

 

 

a) R1                                                                                  b)  R2 

 

c) R3                                                                        d)    R4 
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e) ZA_R1                                                                                              f) ZA_R2  

 

a) ZA_R3                                                                                   h)   ZA_R4  
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i)   ZA_R5 

Figure 1 plotting the normalized quantile values of the observed against randomly simulated 

using best fitted regional distribution  

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

Normalized streamflow

M
o

d
e

l 
s
im

u
la

te
d

 v
a

lu
e

s
 (

G
P

A
)



 

110 

 

D. The regional Regression of at-site median values  

 

  

 

 

y = 0,0371x0,78 
R² = 0,5117 

0 

500 

1000 

1500 

2000 

2500 

3000 

3500 

4000 

1000 10000 100000 

In
d

ex
 F

lo
o

d
 (

m
3

/s
) 

 Area (km2) 

R1 

y = 0,1265x0,8681 
R² = 0,8696 

0 

50 

100 

150 

200 

250 

300 

350 

400 

450 

500 

0 2000 4000 6000 8000 

In
d

ex
  F

lo
o

d
(m

3
/s

) 

 Area (km2) 

R2 

y = 0,4249x0,6662 
R² = 0,9381 

0 

500 

1000 

1500 

2000 

2500 

100 1000 10000 100000 1000000 

In
d

ex
 F

lo
o

d
 (

m
3

/s
) 

Area (km2) 

R3 

y = 89,786ln(x) - 409,02 
R² = 0,7022 

0 

200 

400 

600 

800 

1000 

1 100 10000 1000000 

In
d

ex
 F

lo
o

d
 (

M
3

/s
) 

Area (km2) 

R4 

y = 14,755ln(x) - 49,338 
R² = 0,3664 

0 

20 

40 

60 

80 

100 

120 

140 

100 1000 10000 100000 

In
d

ex
 F

lo
o

d
 (

m
3

/s
) 

Area (km2) 

ZA_R1 

y = 52,664ln(x) - 340,28 
R² = 0,7683 

0 

50 

100 

150 

200 

250 

300 

350 

400 

450 

100 1000 10000 100000 1000000 

In
d

ex
 F

lo
o

d
 (

m
3

/s
) 

Area (km2) 
  

ZA_R2 



 

111 

 

 

 

 

Figure 2 The regional regression coefficients showing the relationships between the index 

flood (median) and catchments area.  
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E. Theatrical distributions and their relationships 
 

Table 12 Theoretical distribution functions and their moments. Taken from Geo4310 lecture 

notes by Gottschalk and Krasovskaia (2001) and Hosking and Wallis  (1997): x = observed 

values, m= mean value, σ= standard divation,Cs= coefficient of varaiance = scale 

parameter,  µ = location parameter and k = shape parameter 
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Table 13 Theoretical relationships of L-moments and the inverse of the some cumulative 

distribution function (Gottschalk and Krasovskaia, 2001; Hosking and Wallis, 1997) 

 


