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Abstract  

Underground structures are less sensitive to seismic shaking compared to surface structures. 

Several case histories reported damages to underground structures during major earthquake 

events. The damages are mainly related to the earthquake duration, seismic magnitude, and 

distance from the epicentre, ground behaviour, the depth, and the properties of the 

underground structure.  

The concepts of seismic design and modelling seismicity on tunnels excavated in rock 

masses were reviewed.  Bhasin et al. (2006) conducted numerical experiments using Phase 2 

version 5 which is a 2D elastic-plastic finite element stress analysis program for 

underground or surface excavations in rock or soil. They studied the seismic behaviour of 

rock support in circular lined tunnels excavated in weak and competent rock. Their research 

was verified and updated by using Phase 2 version 6. The verification included more 

representative factors in the analyses of the results. The software suitability in terms of 

numerical and theoretical procedures was investigated and found to be suited to the seismic 

simulations. The maximum axial force in the lining for tunnels in weak rock was found to 

increase 15% to 44% by Bhasin et al. (2006).In this thesis however it was updated to 19% to 

38% after including the effect of rock support interaction.   

Numerical experiments were conducted to study the effects of seismicity on circular tunnels 

in rock masses with joints.  The models were configured in a similar way to the earlier 

models by Bhasin and others in 2006.  The effect of single joints and their orientation was 

simulated and studied in addition to two cases studies that include multiple joints. It was 

concluded that the competent rock deform along the joints. The maximum axial force in the 

lining occurs at the intersections between the joint and the tunnel lining.  Neither the 

seismicity nor the orientation of the joint had a pronounced effect on tunnels in competent 

rocks with joints.  Weak rock on the other hand may deform regardless of the locations of 

the joints and is affected clearly by seismicity. The maximum axial force in the tunnel lining 

does not occur necessarily at the intersections between the joints and the tunnel lining. Weak 

rocks were found to be less affected by seismic loads when they contain joints.  The results 

were found to be in line with the Norwegian rock index system (Q system) guidelines and 

the earlier results by Bhasin et al. (2006).   
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1. Introduction  
 
 

1.1 Background  
 
Designing underground structures to withstand seismic shaking did not receive proper attention 

in the past. In fact, the seismic design procedure was incorporated into a tunnel project for the 

first time only in the 1960s. The reason for this ignorance was the common belief among 

engineers that tunnels are invulnerable to earthquakes. However, some underground structures 

have experienced severe damages in the recent large earthquakes such as the 1995 Kobe, Japan 

earthquake, the 1999 Chi-Chi, Taiwan earthquake and the 1999 Kocaeli, Turkey earthquake. 

This gathered evidences have awakened the designers to the limitations of the above mentioned 

belief and led to a series of research studies. 

 

The philosophy of designing tunnels to withstand seismic loading is distinct from most surface 

structures. This is because of two main reasons. The first reason is that tunnels have inherent 

features that make their seismic behaviours different from most surface structures, mainly (1) 

their complete enclosure in soil or rock, and (2) their significant length. The second reason is that 

the seismic loads which cannot be calculated accurately unlike dead and live loads have also 

some specific features. They are superimposed, temporary, and cyclic. They are also derived 

with a degree of uncertainty. For most of the underground structures, the inertia of the 

surrounding soil/rock is large relative to the inertia of the structure. Thus the seismic response of 

a tunnel is dominated by the surrounding ground response and not the inertial properties of the 

tunnel itself  (Bhasin et al., 2006). 

 

There are two methods to determine the seismic loads (1) the deterministic seismic hazard 

analysis (DSHA) and (2) the probabilistic seismic hazard analysis (PSHA). The later is the more 

recent and it explicitly quantifies the uncertainties in the analysis. It then develops a range of 

expected ground motions and their probabilities of occurrence. The probabilities can then be 

used to determine the level of seismic protection in a design (Hashash et al., 2001).  However, 

the bottom line of designing tunnels generally relies on that they are less sensitive to seismic 

shaking than surface structures.  
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1.2 Purpose and Scope 
 

The purpose of this thesis is to provide insights into the behaviours of different rock supports in 

tunnels under the effect of seismic shaking. This thesis aims to achieve three goals; (1) it reviews 

the main advances in the field of seismic shaking effects on rock tunnels and (2), it conducts 

numerical experiments to update earlier research to determine the effects of seismic loading on 

competent rocks and weak rocks in tunnels. The earlier numerical simulations did not account 

for the rock support interaction whereas; it is included in computations in this thesis. (3) It 

performs new numerical experiments to study the effects of seismicity in the tunnels that suffer 

from the existence of planes of weakness.  Similar models to the ones used in the earlier research 

were constructed and used in order to compare the results.  

 

Chapter 2 reports briefly the most recent cases for earthquake damages to underground structures 

then outlines the main lessons learned out of it. Chapter 3 outlines the three main steps to seismic 

design procedures. Chapter 4 reviews the earlier efforts in constructing models to simulate the 

effects of seismicity on underground structures. Chapter 5 investigates the reliability of Phase 2 

which is the software used conduct the numerical simulations in this thesis.  Chapter 6 describes 

the numerical analysis performed in this thesis. The chapter is divided into two parts. The first 

part presents a parametric study for the tunnels without joints and with singles joints that cross 

the tunnel in different orientations. The second part capitalizes on the findings from the 

parametric study through two case studies. The first case study is for two joints at a 45° and the 

second is for a set of multiple horizontal joints.  Chapter 7 and chapter 8 present the results and 

discuss of the numerical simulations respectively. And finally chapter 9 presents the conclusions 

and recommendations. Several conclusions were found to be in line with the Norwegian 

tunnelling method (Q system). 
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2  Case Histories and Lessons Learned  
 

 

It is useful to briefly narrate the recent important case histories for underground structures that 

were hit by earthquakes. This emphasizes the significance of this research. The lessons learned 

are highlighted afterwards.  

 
Several studies have documented earthquake damages to underground structures. ASCE (1974) 

describes the damage in the Los Angeles area as a result of the 1971 San Fernando Earthquake. 

JSCE (1988) describes the performance of several underground structures, including an 

immersed tube tunnel during shaking in Japan.  Other studies present summaries of case histories 

of damages such as; Duke and Leeds (1959), Stevens (1977), Dowding and Rozen (1978), Owen 

and Scholl (1981), Sharma and Judd(1991), Power et al.(1998) and Kaneshiro et al.(2000). Owen 

and Scholl (1981) have updated Dowding and Rozen’s work with 127 case histories. Sharma and 

Judd (1991) generated an extensive database of seismic damage to underground structures using 

192 case histories. Power et al. (1998) provide a further update with 217 case histories (Hashash 

et al., 2001).The following is a brief of some of  the recent case histories. 

2.1 Case histories  

2.1.1 The 1989 Loma Prieta earthquake 
 
The BART system is located on the San Francisco side and consists of underground stations and 

tunnels in fill and soft Bay Mud deposits, and is connected to Oakland via the transbay-immersed 

tube tunnel.  

 

During the 1989 Loma Prieta earthquake, the BART system experienced no damage and in fact, 

operated on a 24-h basis after the earthquake. This was primarily because the system was one of 

the first underground facilities to be designed with stringent considerations for seismic loading. 

The special seismic joints which were designed to accommodate differential movements 

maintained the functionality of the system. No damages were observed at these flexible joints, 

though it is not exactly known how far the joints moved during the earthquake (Hashash et al., 

2001).  
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Another case was the Alameda tubes which are a pair of immersed-tube tunnels that connect 

Alameda Island to Oakland in San Francisco Bay Area. During the 1989 Loma Prieta earthquake 

the ventilation buildings experienced structural cracking, water leakage, and lose deposits above 

the tube at the Alameda portal. It is worth it to mention that the peak horizontal ground 

accelerations measured in the Area ranged between 0.1 and 0.25 g where g is the gravity. This 

underground facility was not designed with seismic considerations (Hashash et al., 2001). 

2.1.2 The 1994 Northridge earthquake 
 

The Los Angeles Metro was designed in several phases, some of which were operational during 

the 1994 Northridge earthquake. While the concrete lining in the bored tunnel remained intact, 

there were reported damages to the water pipelines, highways bridges and buildings. The 

horizontal peak ground accelerations measured near the tunnels ranged between 0.1 and 0.25g 

with vertical accelerations that is typically two thirds as large. The earthquake in this case did not 

cause the Metro system any damages (Hashash et al., 2001). 

2.1.3 The 1995 Hyogoken-Nambu earthquake 
 

The 1995 Hyogoken-Nambu earthquake caused a major collapse of the Daikai subway station in 

Kobe, Japan. This station represents the first modern underground structure to fail during an 

earthquake event. The design of the station did not take into account any seismic consideration. 

During the earthquake, shear walls at the ends of the station and at areas where the station 

changed width resisted the collapse of the structure. These walls suffered significant cracking. 

However the interior columns did not suffer as much damage. In the regions with no shear walls, 

the collapse of the centre columns caused the ceiling slab to crack. There was also significant 

separation at some construction joints, and corresponding water leakage through the cracks. The 

centre columns which were designed with very light shear reinforcement relative to the main 

bending reinforcement suffered damage ranging from cracking to complete collapse (Hashash et 

al., 2001). 
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2.1.4 The 1999 Chi Chi earthquake  
 
Several large highway tunnels excavated in rocky grounds were located within the zone heavily 

affected by the September 21, 1999 Chi Chi earthquake (ML 7.3) in central Taiwan. Most of the 

damages occurred at the tunnel portals because of slope instability triggered by the earthquake. 

Minor cracking was observed in the tunnel lining. No damage was reported in the Taipei 

subway, which is located over a 100 km from the ruptured fault zone (Hashash et al., 2001). 

2.1.5 The 1999 Duzce earthquake  
 
The Bolu tunnels are a 16-m-wide and 3.2-km-long twin tunnels and are part of the new 

Istanbul-Ankara highway. Their lines cross the North Anatolian Fault Zone (NAFZ). The tunnel 

is embedded in weak rock mass consisting of highly plastic clay which has poor strength. The 

extreme deformation due to the squeezing of this weak rook  reached  720 mm near the opening 

of the tunnel .The 1999 Duzce earthquake (Mw=7.2) associated with the NAFZ caused a 

collapse within the portals (Kontogianni Villy and Stiros Stathis, 2003). 

2.1.6 The 2004 Mid Niigata earthquake  
 

The Joetsu–Shinkansen’s (bullet train) Uonuma tunnel which is 8625m long concrete tunnel 

constructed with the New Austrian Tunnelling Method crosses the Inokurayama fault. This fault 

was located just above the epicentre of the earthquake. The damage to the Uonuma tunnel is due 

to a possible activation of this fault. There was a large amount of leakage (200 l/min) during the 

construction time and an abrupt change in the geological layers. The leakage may have been 

connected  to the river passing above the tunnel (Gazetas et al., 2005). 

2.1.7 Main lessons learned from the case histories  
 
The following are the main  lessons learned from the case histories (Hashash et al., 2001):  

 

1. Underground structures suffer less damage than surface structures 

2. Reported damage decreases with increasing overburden depth. 

3. Underground facilities constructed in soils and weak rocks suffer more damage compared 

to those which are constructed in competent rock. 
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4. The damage can be related to peak ground acceleration which is based on the earthquake 

magnitude and the distance from the epicentre.    

5.  The damages can be related to the duration of the earthquake because a longer 

earthquake may cause fatigue failure. 

6. Damages at the near tunnel portals can be significantly attributed to slope instabilities. 
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3 Seismic Design of Underground Structures 
 
 

3.1 Seismic design steps for underground structures  
 
This chapter is organized as it was suggested by the extensive literature review conducted by 

Hashash, Hook, Schmidt, and Yao in 2001.  It explains the philosophy for designing tunnels and 

it emphasise the concepts employed in the numerical experiments performed later in this thesis 

as shown in Figure 3-1.  

 

 

 

 
Figure  3-1: Steps of Underground Structures Seismic Analysis and Design Procedure Modified after 
Hashash, Hook, Schmidt, and Yao in 2001. 
 

 

The following three steps were suggested to seismic design procedures for tunnels.  

 

1- Definition of seismic environment 

2- Evaluation of the ground response to shaking 

3- Assessment of structure behaviour due to seismic shaking 

 
Figure 3-1 outlines the main three steps of underground Structures seismic analysis and design 

procedure suggested by Hashash, Hook, Schmidt, and Yao in 2001.However the figure was 

modified to show only the steps and not their extensive details in their review. The review is 

further adjusted and updated to focus mainly on the relevant topics for the thesis scope.  
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3.1.1 Definition of seismic environment 
 
Figure 3-2 shows the commonly identified types of seismic waves resulted from earthquakes. 

The most damaging type is the so-called Rayleigh waves which result from the compound effect 

of the primary waves and the secondary waves. In fact, one reason for the less vulnerability of 

underground structures is because Rayleigh waves decay exponentially with depth and become 

negligible when down to 15-20m (Singh, Goel 2006). 

 
The response of rock tunnels to seismic waves is expressed by their deformations. For simplicity, 

these deformations are assumed usually to be identical to the deformations of the surrounding 

rock mass (Kolymbas 2005). In order to identify the ground motion parameters for example 

velocities and accelerations, one must conduct the so called deterministic seismic hazard analysis 

(DSHA) and/or the probabilistic seismic hazard analysis (PSHA). 

 

After the DSHA and/or the PSHA have identified the level of shaking at the site, it becomes 

possible to identify the parameters needed for the engineering design. The choice of these 

parameters depends on the design method.  

 

At a particular point in the ground or on a structure, ground motions can be described by three 

translational components and three rotational components. The components of  ground motion 

can be characterized by acceleration, velocity or displacement coupled with three significant 

parameters; amplitude, frequency and duration  (Hashash et al., 2001). 

 

Research has shown that transverse shear waves transmit the greatest proportion of the 

earthquake’s energy.  The amplitudes in the vertical plane have been typically estimated to be a 

half to two-thirds as great as those in the horizontal plane. However, in recent earthquakes such 

as 1994 Northridge and 1995 Hyogoken-Nambu, measured vertical accelerations were equal to 

and sometimes larger than horizontal accelerations (Hashash et al., 2001).  
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Figure  3-2: Typical types of different seismic waves resulting from earthquakes modified after the west 

publishing company (1995). 
 
 

3.1.2 Evaluation of the ground response to shaking 
 

Ground response to shaking may vary between failure to no or limited damages. Ground failure 

as a result of seismic shaking includes liquefaction, slope instability, and fault displacement. 

Ground failure is particularly prevalent at tunnel portals and in shallow tunnels. 
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Liquefaction is a term associated with a host of different, but related phenomena. It is used to 

describe the phenomena associated with increase of pore water pressure and reduction in 

effective stresses in saturated Cohesionless soils the rise in pore pressure can result in generation 

of sand boils, loss of shear strength, Lateral spreading and slope failure. Slope instability results 

in landslides which affects mostly the tunnel portals. In this case, the primary failure mode tends 

to be slope failures (Hashash et al., 2001).  

 

Fault displacement cause severe damages to underground structures. It is not always possible to 

avoid crossing a fault zone. If the design of the underground structure does not accommodate the 

resulting displacements, serious damages may occur.  The case of the railway tunnel crossing the 

White Wolf Fault (WWF) is an example. The tunnel was seriously damaged during the 1952 

Kern County earthquake (Mw=7.5) associated with this fault. Luckily for Norway and North 

West Europe in general, the tunnels are not highly vulnerable to seismic shaking. This is because 

these areas  are identified as tectonically inactive areas (Kontogianni Villy and Stiros Stathis, 

2003). 

 

This thesis examines rock tunnels in particular. Subaqueous tunnels, immersed, soft ground 

tunnels and tunnels bored through soil grounds are not the main interest in the scope of this 

work. For rock tunnels, Ground shaking and deformation will be the most expected behaviour 

during and after earthquake event. Figure 3-3 shows the typical cross section of tunnels. 

 

The major factors influencing shaking damage include: 1. the shape, dimensions and depth of the 

structure; 2. the properties of the surrounding soil or rock; 3. the properties of the structure; and 

4. the severity of the ground shaking (Hashash et al., 2001). 

 

The design of tunnels to accommodate seismicity differs from the design of surface structures. 

While surface structures are not dominated by the inertia of the ground, rock tunnels are 

dominated by the properties and the response of the surrounding ground. Therefore, it is usually 

represented by an elastic beam subject to deformations induced by the surrounding medium. 

Axial deformations in tunnels are caused by the parallel components of seismic waves to the axis 

of the tunnel which alternates between compression and tension. 
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Figure  3-3: Typical cross section of tunnels (Hashash et al., 2001). 
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Figure  3-4:  Effects of deformations of tunnels due to the seismic shaking (Hashash et al., 2001). 
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The response of tunnels to seismic motions can be categorized into three types which are shown 

in the figure 3.4 where, (1) Axial compression and extension, (2) longitudinal bending (3) 

ovaling/racking (Bhasin et al., 2006). 

 
Longitudinal Bending deformations are caused by the perpendicular components of seismic 

waves to the longitudinal axis of the tunnel. Ovaling or racking deformations are caused by shear 

waves propagating normal or nearly normal to the tunnel axis  (Hashash et al., 2001). 

3.1.3 Assessment of structure behaviour due to seismic shaking 
 
The assessment of seismic design is based on two main concepts; the maximum design 

earthquake (MDE) and the operating design earthquake (ODE).  

 

In the deterministic seismic hazard analysis (DSHA) the MDE is the maximum level of shaking 

that can be experienced at the site, while in the probabilistic seismic hazard analysis (PSHA) the 

MDE is defined as an event with a small probability of exceedance (2-3%) during the life of the 

structure.  In risk analysis studies it is commonly acknowledged that the risk equals the hazard 

times the consequence (R= H× C).  This is why the MDE design goal is to secure only the public 

safety during and after the earthquake event and allows controlled damages for the structure. The 

design loads for the MDE are a product of the worst scenario of load combinations.   

 

The operating design earthquake (ODE) is an earthquake event that can be reasonably expected 

to occur at least once during the design life of the structure. In the probabilistic seismic hazard 

analysis (PSHA) this is coupled with probability of exceedance between 40 and 50%.  The ODE 

design goal is that the overall system shall continue operating during and after an ODE.  In this 

design criterion a little or no damage is allowed.  Inelastic deformations must be kept to a 

minimum meaning that the response of the underground facility should therefore remain within 

the elastic range (Hashash et al., 2001) 

 
There are several engineering approaches to compute the deformations and forces induced by 

seismic waves. These deformations depend on the type of ground, the type of structure and, the 

interaction between the ground structure interactions.   
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3.2 Examples for seismic tunnel approaches   
 

The simplest approach is the free-field ground deformations. In this approach the interaction of 

the underground structure with the surrounding ground is ignored. The deformations due to a 

seismic event are then estimated, and the underground structure is designed to accommodate 

these deformations. This approach is satisfactory when low levels of shaking are anticipated or 

the underground facility is in a stiff medium such as rock.  

 

In the dynamic analysis approach, a dynamic soil structure interaction is conducted using 

numerical analysis tools such as finite element or finite difference methods. In the pseudo-static 

analysis approach, the ground deformations are imposed as a static load and the soil-structure 

interaction does not include dynamic or wave propagation effects (Hashash et al., 2001). 

 

However, it is important to understand the hypothesis of these approaches. The pseudo-static 

approach is incorporated in the software tool Phases 2 which is used to compute the numerical 

simulations later in this thesis. The analytical solutions of ovaling deformations of circular 

tunnels the pseudo- static theory and it is practical application are briefly discussed in the 

following text. 

3.2.1 Free field approach and a solution to ovaling deformations 
 
This type of deformation occurs only for circular tunnel cross sections. The circular shape is 

going to be the subject of the numerical simulations conducted later in this thesis.  The simplest 

form to estimate ovaling deformations is to neglect the effect of soil-structure. This assumption 

is reasonable when the ovaling stiffness of the lined tunnel is equal to the surrounding ground. In 

other words the model assumes that there is no tunnel (referred as non-perforated ground) as 

shown in figure 3-5. 

The diametric strain for a circular section is calculated as: 

 
∆𝒅𝒅 𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇−𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇

𝒅𝒅
= ± 𝜸𝜸𝜸𝜸𝜸𝜸𝜸𝜸

𝟐𝟐
                                                                                                               Equation  3-1 

 

Where: 
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∆d free-field: Free field diametric deflection in non-perforated ground 

d: diameter or equivalent diameter of tunnel lining  

γmax: maximum free-field shear strain of soil or rock medium 
 
 

If the ovaling tunnel stiffness is very small compared to the surrounding ground, the model of 

perforated ground is invoked. This will lead to adjusting the equation to: 

 
∆𝑑𝑑  𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 −𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

𝑑𝑑
= ±2𝛾𝛾𝛾𝛾𝛾𝛾 𝑥𝑥(1 − 𝜈𝜈𝜈𝜈)                                                                                         Equation  3-2 

 

Where νm: the Poisson’s ratio of soil or rock medium    

 

The deformations induced in this case are clearly more that the pervious case. The lining 

interaction with the ground has to be taken into account in most cases.  To do so, the relative 

stiffness of tunnel is first quantified by the compressibility and flexibility ratios (C and F) which 

are given by the following equations 

 

𝐶𝐶 =
𝐸𝐸𝐸𝐸 (1−𝜈𝜈1)𝑟𝑟

2

𝐸𝐸𝐸𝐸 .𝑡𝑡(1+𝜈𝜈𝜈𝜈 )(1−2𝜈𝜈𝜈𝜈 )
                                                                                                                 Equation  3-3 

𝐹𝐹 =
𝐸𝐸𝐸𝐸 (1−𝜈𝜈1)𝑟𝑟3

2

6𝐸𝐸𝐸𝐸 .𝐼𝐼(𝐼𝐼+𝜈𝜈𝜈𝜈 )
                                                                                                                             Equation  3-4 

  
Where: 
 

C: compressibility ratio of tunnel lining 

Em: modulus of elasticity of soil or rock medium 

ν1: Poisson’s ratio of tunnel lining 

t: thickness of tunnel lining 

I: moment of inertia of the tunnel lining (per unit width) 

for circular lining 

F: flexibility ratio of tunnel lining 

r: radius of circular tunnel 

Figure  3-5: Tunnel in a free field shear strain 
(Hashash et al., 2005). 
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In 2005, Hashash and others updated the analytical solutions for estimating the ovaling 

deformations and forces in circular tunnels due to soil-structure interaction under seismic loading 

(Hashash et al., 2005). 

 

There are two analytical solutions available: (1) Wang (1993) and (2) Penzien (2000). Wang 

(1993) reformulated the above mentioned equations to adapt to the seismic loading caused by 

shear waves. The free –field shear stresses were replaced by in-situ overburden pressure and the 

at rest of the coefficients of earth pressure is assigned a value of (-1) to simulate simple shear 

condition. The shear stress is later expressed as a function of shear strain. The solution will 

handle three cases (1) thrust (full-slip, no-slip), (2) shear and (3) moment in the tunnel lining. 

Penzein (2000) developed similar analytical solutions. However, a comparison with the 

numerical analysis discovered that Penzien (2000) solutions significantly underestimates the 

thrust in the tunnel lining  for the condition of no-slip and therefore should not be used for this 

condition(Hashash et al., 2005). 

 

3.2.2 Pseudo-static analysis approach  
  

The analysis of seismic response may be approached by many methods such as static approach, 

pseudo-static approach, and dynamic approach. The pseudo-static approach has gained more 

popularity in geotechnical engineering because it is neither simple like the static nor complex 

and time consuming like the dynamic. It is also being used by the software which will compute 

the later numerical simulations in this thesis. 

 

This approach assumes as shown in the figure 3-6 that the unit weight of rock mass (γ) is 

modified to ((1+αv).γ) to represent the seismic loads. An approximate estimation of the increase 

in the support pressure is as follows 

 

In the roof 

P (seismic) = (αv). P (roof)          Equation  3-5 
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In the walls 

P (seismic) = (αh). P (wall)         Equation  3-6   
 
Where P (seismic), P (roof), P (walls) are the earthquake, static pressure in the roof and the static 

pressure in the walls sequentially. The coefficients of vertical (αv) and horizontal acceleration 

(αh) are approximated to (0.25).  

This approach constitutes the basis for seismic design of rock tunnels in NGI quality index 

system (Q) which is given by the following formula: 

 

 Q (seismic) ≈ 𝑄𝑄 (1 + 𝛼𝛼)3�   ≈ 𝑄𝑄
2�                                                                                          Equation  3-7 

 
In other words: 

 

 Q (seismic)≈ 1
2�  Q (static)≈ 𝑅𝑅𝑅𝑅𝑅𝑅

𝐽𝐽𝐽𝐽
× 𝐽𝐽𝐽𝐽

𝐽𝐽𝐽𝐽
× 𝐽𝐽𝐽𝐽

2(𝑆𝑆𝑆𝑆𝑆𝑆)
   (Barton, 1984)                               Equation  3-8 

 

 

The above equation suggests a 25% increase in 

rock support pressure according to the charts of 

the Q system (Singh, Goel 2006). 

 

Rushan and Hongbin (2006) improved a Pseudo-

static method for a simple boxed-tunnel shape 

embedded one- dimensional soil layer. One of the 

key improvements in their method is to include 

the effect of soil damping. They found that the 

soil damping is responsible for the deviation in the results from the dynamic analysis. The 

Improved Pseudo static method consists of two main steps: The first is using one-dimensional 

seismic response analysis program to conduct the seismic free field analysis. Secondly is to 

conduct the pseudo- static approach with the help of numerical modelling tools. They did not 

apply the method on rock tunnels but they argue that their method may be applicable for any 

complex soil condition (Rushan and Hongbin, 2006). 

Figure  3-6: Seismic loads on a tunnel 
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4 Modelling Seismic Effects on Tunnels in Rock Masses 
 

 

One of the main goals of this thesis is to investigate the effects of seismicity on tunnels 

excavated in rocks with and without joints.  Later in this thesis models for single and multiple 

joints crossing and intersecting with the tunnel lining were simulated. This chapter discuss 

briefly the state of the art regarding the aspects of modelling seismicity on rocks with and 

without joints.  

 

When dealing with underground structures, the main aspects of concern regarding joints are the 

following: 

 

1. Construction of  a representative model to simulate jointed rocks 

2. Failure due to fatigue or cumulative displacements 

3. Joint orientation and spacing  

 

The above mentioned aspects will be discussed in this chapter in the same order .in the last 

section, Bhasin and others research on tunnels in rocks without joints will be presented in more 

detail.  The numerical simulations that were conducted by Bhasin and others in 2006 were 

replicated and the results were verified once again. The figures presented in this section are 

similar to those presented in their research. This is the only part in the thesis where the author of 

this thesis used Phase 2 version 5 instead of version 6 to replicate the earlier research. 

 

4.1 Construction of a representative model to simulate jointed rocks 
 
The following are the main types of the physical models used to represent rock joints.  

4.1.1 Phenomenological-type models  

 
Those are the types of models that are produced in order to match or explain a phenomenon in 

the field. In practice, the loading conditions are more complicated than those used in these 
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models. As an example, Heuze and Barbour (1982) developed a model to reproduce peak Shear 

stress measurements under constant normal load (CNL) and constant normal stiffness (CNS). 

This model assumes that the joint dilates immediately upon shear displacement. This means that 

the dilation angle is assumed to be constant just until the joint fails then after this point it drops 

to zero instantaneously(Morris, 2003).   

4.1.2 Continuum-theory inspired models 
 
These models are built upon the continuum treatments of rock mechanics. Morris ( 2003) argues 

that the theoretical base of these models are solid, But that it is difficult to relate the variables 

and parameters used by such models to the results of specific experiments. As an example, 

Nguyen and Selvadurai (1998) suggested a model to account for hydraulic behavior in rock 

joints. In this model before the yield, the joint response is elastic. When yielding, the 

displacement on the joint has elastic and plastic components. These plastic components of 

displacement can include dilatant effects. The plastic deformation leads to degradation of the 

joint asperities and a reduction in friction angle (Morris, 2003).  

 

4.1.3 Generalized phenomenological models 
 
This type of model combines the spirit of the phenomenological-type models and the continuum-

theory inspired models mentioned earlier. They are less complicated than the continuum-theory 

inspired models. As example for those models is the Itasca’s 3DEC models which employ the 

concept of plastic deformation (Morris, 2003). 

 

4.1.4 Numerical representation of joints 
 
The mechanical behaviour of a jointed rock mass is difficult to model because of the complexity 

of discontinuities. This complexity is due the difficulty to represent the jointed rock mass 

geometrically and behaviourally. Therefore, it is well recognized that there are severe limitations 

on the applicability of the empirical relationships. Those empirical relationships such as Hoek-

Brown strength criterion are the basis for the output of numerical models. The following are the 

four approaches often adopted in rock mechanics (Lin and Ku, 2006). 
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1. The equivalent continuum approach which modifies the rock constitutive law to include 

the mechanical effects of joints that are dense and follow a regular pattern. 

2. The continuum with joint interface approach which introduces discontinuous interfaces to 

model each joint in a rock mass. This approach is simple to implement into finite 

elements but its application is limited to cases where the geometry does not undergo 

substantial changes.  

3. The discrete element approach which models the kinematics across each joint explicitly. 

This is a powerful tool if a rock mass is delimited into blocks by joints. 

4. The discrete–continuum approach which encompasses the strength of both the continuum 

and the discrete approach. Recent advances in discontinuity modelling provide an 

opportunity for two-scale modelling. 

 

4.2 Failure due to fatigue or cumulative displacements 
 
As discussed before, there is gathered evidence that underground structures suffer less damage 

compared to surface structures under an earthquake event.  However, there are other types of 

seismicity that affect only underground structures for example; mining -induced seismicity and 

explosions.   

 

Peak particle velocity (PPV) in a ground wave is usually one of the accepted representative 

parameters for defining dynamic design loads. One concept for expressing damages in 

underground structures is to relate the PPV to the extent of damage. So if the PPV at a site is 

smaller than the threshold value, then no damages are to be expected (Ma and Brady, 1999). 

 

It is recognized that joint deformation is a critical aspect of the response to dynamic loading of 

excavations in jointed rock. Under cyclic shear loading, joint deformation increases and joint 

shear strength decreases. Catastrophic failure occurs when the accumulation of deformation is 

such that the residual strength locus is intercepted. St John and Zahrah (1987) proposed that 

under dynamic loading, damage to an excavation is determined by the number of excursions of 

joint motion into the range of plastic constitutive behaviour (Ma and Brady, 1999).  
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Ma and Brandy (1999) conducted a numerical study to investigate the dynamic performance of 

an underground excavation in jointed rock subject to repeated seismic loading. They used the 

Universal Distinct Element Code to perform the numerical simulation. They simulated the field 

situation for Lucky Friday mine in Mullan-Idaho- USA and compared their results with the 

observations collected from the field. In that case of Lucky Friday mine, the seismicity was 

induced by slip on structural features in the stress field caused by mining.  

 

Ma and Brandy (1999) discussed the differences in the results when using the dilation angle in 

two criterions namely the Mohr-Coulomb and the continually yielding. The figure bellow shows 

the model geometry for the site.  

 

 
Figure  4-1: Model geometry for Lucky Friday mine in Mullan-Idaho- USA site (Ma and Brady, 1999). 
 
They compared the results of the cumulative joint displacements and proposed that the 

continuously yielding joint model better produces the observed results than the Mohr–Coulomb 

joint model. They concluded that, in rock masses subject to repeated dynamic loading, 
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excavation design may need to account for the prospect of repeated episodes of transient loading 

at the excavation site (Ma and Brady, 1999). 

 

Their study stressed the effects of repeated seismic loading in terms of the cumulative joint 

displacements because after a threshold point failure is expected. The jointed model of their 

simulation was complicated but was backed by the historical data collected from the field.   

4.3 Joint orientation and spacing 
 
Tunnels in jointed rocks are affected by the joint orientation during the excavation process and 

after construction. During the excavation the favourable joint orientation will affect the 

excavation process positively. The performance of tunnel boring machines (TBM) is highly 

dependent on the fragmentation efficiency of its cutters. The efficiency of those cutters is related 

closely to the joints orientation. This is because the joint orientation affects the crack initiation 

and propagation as well as the fragmentation pattern. 

 

The cutter penetration in the TBM may be 

affected by two angles: the angle α between 

the tunnel axis and the joint plane, and the 

attack angle ß between the cutter rolling 

direction and the joint outcrop in the tunnel 

face (Gong et al., 2005). However, a 

detailed illustration is not the main focus of 

this thesis.  Figure 4-2 shows the influence 

of joint orientation on TBM penetration. 

 

Tunnels in jointed rocks can be subjected to 

severe dynamic loads due to rock bursts, 

coal bumps and large earthquakes. The 

effects of joint orientation in such cases 
Figure  4-2: Influence of joint orientation on TBM 
penetration (Gong et al., 2005). 
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were modelled by Heuze (2004). He used a series of 3-dimensional simulations based on discrete 

element analysis namely the LDEC 3-dimensional discrete element code. He configured two 

rock-island configurations and described his models as follows  

 
 “The rock island is 16mx16mx1m. The tunnel is 4-m wide by 5-m high. The rock joint spacing is 

0.7m in the plane of the figure and there is one block in the thickness of the island. The 

simulations were performed in plane strain” 

 

He concluded that joint orientation has a significant effect on the tunnel hardness. He compared 

between two models where he changed the angles of the joints orientation. The tunnel stability 

was greatly enhanced when the joint dip angles was reduced which is an acknowledged field 

observation (Heuze, 2004). 

 

In another study, the stability of underground openings excavated in a blocky rock mass was 

studied using the discontinuous deformation analysis (DDA) method.  The research focused on 

kinematical analysis of the rock deformation as a function of joint spacing and friction. It has 

been concluded that the joint orientation is an important factor in the stability. Different 

geometries were used for the excavations and the geometries were found to have different states 

of stabilities (Tsesarsky and Hatzor, 2006) 

 
Joints spacing was also investigated by Heuze (2004) in his previously mentioned models. He 

found that when reducing the joint spacing from 70cm to 35 cm, the tunnel stability was 

dramatically affected. Reducing the joint spacing will decrease the stability of the tunnel (Heuze, 

2004).  

 

Notice that Heuze (2004) performed many simulations for underground openings in jointed 

rocks. He used the discontinuous deformation analysis (DDA) method to conduct his 

simulations. The geometries that he studied were for complicated sets of joints. When Ma and 

Brandy (1999) conducted a numerical study to investigate the dynamic performance of an 

underground excavation in jointed rock subject to repeated seismic loading, they used the 

Universal Distinct Element Code to perform the numerical simulation.  The geometry for their 

model was also complicated.  



27 
 

4.4 Bhasin et al. (2006) research on tunnels in rock without joints 
 
The following is a literature coupled with verification of its results. All the experiments were 

verified solely to cross check the results and the findings. The reason for this is that, these 

numerical experiments are further built upon to construct the models used in the rest of the 

numerical simulations in the thesis.  

 
An earlier research took place in a joint cooperation between the Norwegian Geotechnical 

Institute (NGI) and the Indian institute of technology Roorkee by Bhasin and others.  The 

research results were published on the 13th symposium on earthquake engineering in 2006. The 

methodology was based on a series of numerical simulations using 2D finite element programme 

Phase2, version 5 (2004) and the research aimed to investigate the effect of seismicity on tunnel 

lining in tunnels of different sizes. Both linearly elastic and elastic-plastic analyses were 

performed. The elastic material in the elastic model was defined as not to undergo a progressive 

failure such as in weak rocks whereas, in the plastic analysis the material was defined as elastic-

perfectly plastic in which no brittle failure can occur (Bhasin et al., 2006). 

 

In the numerical simulations the overburden was kept constant for all the models. That is, 60 

meters above the roof of all the circular tunnels. The size of the tunnels varied from 5 to 20 m in 

diameter. For simplicity, the tunnels were assumed to be dug on two stages. In stage one the 

excavation took place and in stage two a tunnel lining of 0.1m thick shotcrete was applied. The 

time between the completions of stages one and two was assumed to be short enough not to 

allow for deformations in the tunnel.  

 

The models were run to equilibrium in both the linear elastic (competent rock) and elastic 

perfectly-plastic (weak rock) cases considering only the static loads at first then, the seismic 

loads were superimposed. The seismic loading was superimposed as quasi-static and in different 

directions. For all the model simulations the following multiple analyses were performed: 

 

1- Seismic coefficient in the horizontal direction; h=0.3 

2- Seismic coefficient in the vertical direction; v=0.3 

3- Seismic coefficients in both the horizontal and vertical direction; h=0.3 and v=0.2 
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Figure  4-3: Static loading in a 10m diameter tunnel in elastic rock. 

 

 

Fig 4-3 shows the case of a static loading in a 10m diameter tunnel in an elastic rock. Figure4-4 

shows an elastic analysis plot for a 10 m diameter tunnel when the horizontal seismic coefficient 

is 0.3. In this case the maximum axial force on the lining is 0.346 MN which is almost the same 

as that in static loading conditions in elastic analysis. However, there has been a redistribution of 

forces along the periphery of the lining after the application of peak horizontal acceleration, 

though the maximum axial force remains the same for both static and dynamic loading 

conditions. Figure 4-5 shows a corresponding plastic analysis plot for a 10 m diameter tunnel. In 

this case the maximum axial force on the lining is 0.716 MN which is much higher than in the 

elastic analysis 

 

Figures 4-6 and 4-7 show respectively the elastic and plastic analyses. This is shown when the 

vertical seismic coefficient is 0.3. It can be seen that the maximum axial force on the lining is 

higher for the plastic analysis (0.941 MN) than for the elastic analysis (0.346 MN). 



29 
 

 
Figure  4-4: Elastic analysis plot for a 10 m diameter tunnel when the horizontal seismic coefficient is 0.3. 

 
 
 

 
Figure  4-5: Plastic analysis plot for a 10 m diameter tunnel when the horizontal seismic coefficient is 0.3. 

 
Figure  4-6: Elastic analyses for a 10 m diameter when the vertical seismic coefficient is 0.3. 
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Figure  4-7: Plastic analyses for a 10 m diameter when the vertical seismic coefficient is 0.3. 

 

 

Figures 4-8 and 4-9 show respectively the maximum axial force on the lining for the elastic and 

the plastic analysis. It shows the analysis when both the horizontal and vertical seismic 

coefficients are applied. Once again it can be seen that the maximum axial force on the lining is 

much higher for the plastic analysis than for the elastic analysis. 

 

 

 
Figure  4-8: Elastic analyses for a 10 m diameter when both the vertical seismic coefficient and the horizontal 
are applied. 
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Figure  4-9: Plastic analyses for a 10 m diameter when both the vertical seismic coefficient and the horizontal 
are applied. 
 

Similar elastic and plastic analysis studies were performed for tunnels of different sizes and the 

results are summarised in table 1. Figure 4-10 compare and summarize the results also between 

the elastic and the elastic-perfectly plastic rocks. It can be seen from this figure that for the 

elastic analysis there is not much difference in the maximum axial force on the lining as the 

tunnel dimension increases from 5 to 20 m. In addition there is not much difference in the 

maximum axial force on the lining when dynamic loading is applied as compared to static 

loading. For plastic analysis the load on the lining increases significantly with the tunnel 

diameter when dynamic loading is applied. Furthermore, there is a significant increase in the 

maximum axial force when dynamic loading is applied as compared to static loading. 
 
Table 1: Summary of the numerical results 
 

  

Static loading on 

strong rock 

Static loading on 

weak rock 

Seismic loading h=0.3& 

v=-0.2 on strong rock 

Seismic loading 

h=0.3& v=-0.2 on 

weak rock 

%increase of 

MAFL in the 

weak Rock 

D diameter Max. Axial Force Max. Axial Force Max. Axial Force Max. Axial Force 

 5 0.30974 0.57417 0.31035 0.66227 0.15 

10 0.34698 0.72916 0.34799 0.95664 0.31 

15 0.36978 0.86691 0.37661 1.2502 0.44 

20 0.38242 1.1259 0.38877 1.4092 0.25 

 



32 
 

 
Figure  4-10: Summary and of the results and a comparison between the weak and competent rock 
 

The following points are the main outcomes of the pervious experiments:  

 

1- For elastic rock (competent rock), there is no significant difference in the Maximum axial 

force in the lining (MAFL) between static loading and after superimposing the seismic 

loading.  

2- For elastic -perfectly plastic rock (weak rock), there is a significant difference between the 

static loading and after superimposing the seismic loads in the (MAFL). 

3- For elastic rocks, there is no significant effect for changing the size of the tunnel on the 

(MAFL). 

4- For elastic -perfectly plastic rock, as the size increases the (MAFL) increases significantly. 

5- It was also shown that for the weak rock mass the difference in the axial force on the lining 

ranges from 15% to 44% between the static and dynamic loading. In the opinion of 

researchers who conducted this research, this complies with the Q-system suggestion of 

25% increase in the support pressure to account for the seismic forces (Bhasin et al., 2006). 
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5  Suitability of the Phase 2 Program for Seismic 
Simulations 

 
 
The method of performing research in this short thesis was mainly based on bibliographic, 

internet research and the simulations run in Phase 2 version 6 (2006). The following journals 

were very useful ; Tunnelling and underground space technology, International journal of rock 

mechanics &Mining sciences, Soil dynamics and earthquake engineering, structural design, and 

earthquake engineering and other journals.  

 

Phase 2 version 6 (2006) is a 2D elastic-plastic finite element stress analysis program for 

underground or surface excavations in rock or soil. This software offers to employ the following 

criterions; Mohr-coulomb, Hoek-Brown, Drucker-Prager and Generalized Hoek-Brown for 

plastic modelling. If no criterion was chosen the model will assume an elastic model. 

Discontinuities can only be introduced by adding joints. Joints can be defined by joint normal 

stiffness and shear joint stiffness. One can choose between Mohr-coulomb and Barton-Bandis for 

a slip criterion in rock joints. In this chapter Phase 2 will be examined in terms of theory and 

numerical analysis. The aim is to justify its validity to the research problems in this thesis. The 

relevant numerical analysis models are discussed in the first section followed by a judgement on 

the suitability of phase 2. In the second section, the   criterions for circular excavation models are 

discussed followed by a judgment on the suitability of phase 2. 

5.1 Relevant numerical methods in rock mechanics  
 
 
There are a variety of rock mechanical modelling methods.  These methods can be classified in 

different manners. One way of classifying them is to group them under four main categories as 

follows (Jing and Hudson, 2002) 

 

A. Methods based on previous experience  

B. Methods based on  simplified models 

C. Methods based  on modelling which attempts to capture most relevant mechanisms 

D. Methods based on all- encompassing modelling 
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The figure above illustrates the classification which was proposed by Jing and Hudson in 2002. 

They explain it as follows 

“Level 1, includes methods in which there is an attempt to achieve one-to-one mechanism 

mapping in the model. In other words, a mechanism which is thought to be occurring in the rock 

reality and which is to be included in the model is modelled directly, such as an explicit stress–

strain relation 

Level 2, includes methods in which such mechanism mapping is not totally direct, e.g. the use of 

rock mass classification systems. Some of the rock mass characterization parameters will be 

obtained from site investigation, the left-hand box. Then the rock engineering design and 

construction proceeds, with feedback loops to the modelling from construction” 

 

Figure  5-1: The four basic methods, two levels, and hence eight different approaches to rock mechanics 
modeling and providing a predictive capability for rock engineering design(Jing and Hudson, 2002). 
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The most commonly applied numerical methods for rock mechanics fall in the following three 

categories (Jing and Hudson, 2002). (Notice that the above mentioned classification was for the 

modelling methods in general but now it is the numerical methods specifically which are to be 

classified). 

 
1. Continuum methods—the finite difference method (FDM), the finite element method 

(FEM), and the boundary element method (BEM). 

2. Discrete methods—the discrete element method (DEM), discrete fractures network 

(DFN) methods. 

3. Hybrid continuum/discrete methods. 

 

The choice of the method depends on the problem under research. The continuum methods can 

be used when few fractures are present in the rock mass under modelling.  The discrete methods 

are used for moderately fractured rock. If the rock contains a large number of fractures, then 

hybrid methods are used (Jing and Hudson, 2002).    

5.1.1 Finite difference method and related methods 
 
The basic technique in the finite difference method FDM is the discretization of the governing 

partial difference equations (PDEs). This is by replacing the partial derivations with differences 

defined at neighbouring grid points. There is no need for a global system of equations in a matrix 

form in the FDM. After the replacing of the partial derivations with differences, the solutions of 

the equations become localized. This is a very useful advantage because it reduces the storage 

and the memory requirements needed from   the computer. Also the PDEs are not approximated 

in the FDM which means that there are no iterative solutions. This allows for simulating difficult 

behaviours such as plastic behaviour of rocks in a very straight and fast manner (Jing and 

Hudson, 2002).  

 

The disadvantages in this method are due to that it cannot deal properly with fractures, complex 

boundary conditions and material heterogeneity. These disadvantages tie the applicability of the 

FDM in many important problems in rock mechanics.  However, the ability of the FDM to deal 

with irregular meshing and material heterogeneity can be enhanced greatly through the so called 
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finite volume method FVM. A well-known computer code that uses the FDM coupled with FVM 

is the FLAC code group. Even after coupling FDM with FWM, it still becomes not easy to 

explicitly represent fractures. Therefore this defect remains as the main disadvantage of this 

Method (Jing and Hudson, 2002).  

5.1.2 Finite element method and related methods 
 
The finite element method (FEM) is probably the most applied numerical method in rock 

mechanics.  Before using the FVM to enhance the flexibility of the ordinary FDM, the FEM had 

a clear advantage because of its flexibility to treat material heterogeneity, non-linear 

deformability, complex boundary conditions, in situ stresses and gravity. However, the treatment 

of fractures and fracture growth remained the most important limitation for this method. This is 

because of the global stiffness matrix becomes ill-conditioned after introducing multiple 

fractures in the continuum. It is also not possible to treat problems of block rotations and large 

scale fractures openings. The FEM cannot treat fracture growth problems because it is limited to 

a small element size and the need for continues re-meshing with the fracture growth. This 

shortcoming in the FEM led to the development of the so called bifurcation theory, enriched 

FEM and generalized FEM.  Those techniques use discontinues shape functions for implicit 

simulations of the crack initiation and fracture growth problems. The meshes can be independent 

of the problem geometry (Jing and Hudson, 2002).   

 

There is also another type of shortcoming in FDM regarding it is meshing. The ordainary FDM 

cannot deal with complex interior and exterior boundaries. This shortcoming can be fixed by 

using the so called element-free methods. These are methods to simplify the meshing process 

and can represent complex boundaries. However, one element remains the main powerful side in 

FDM in general which its computational power. It provides high accuracy(Jing and Hudson, 

2002).   

 

5.1.3 Boundary element method and related methods 
 
The boundary element method BEM employs a different procedure when compared to the FDM 

and the FEM. It seeks a weak solution initially and then improves it later. This method has been 
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used successfully to solve different problems such as; the general analysis for the stresses and 

deformations around underground excavations, soil structure interaction applications, ground 

water flow and fracturing processes (Jing and Hudson, 2002).  

 

One of the main advantages of the BEM is that it reduces the model dimensions. This advantage 

made the method very suitable to simulate the 3-D applications.  There are two related methods 

used with this method to simulate the fracture growth problems and to simulate the stresses. 

These methods are namely and sequentially, the displacement discontinuity method (DDM) and 

the fictitious stress method(Jing and Hudson, 2002).   

 

The BEM can simulate with simplicity the 3-D problems unlike the traditional the FDM and the 

FEM. However, it is not an efficient method to deal with material heterogeneity such as the 

FEM. It is also efficient to simulate the non-linear material behaviour such as plasticity. The 

BEM is suitable for simulating  fracturing in homogenous  elastic bodies (Jing and Hudson, 

2002).   

5.1.4 Distinct element method  
 
The concept of the distinct element method (DEM) was originally used to solve problems in rock 

mechanics. The DEM treats the domain of interest in the problem in a unique way. It represents 

the domain by assemblage of rigid and deformable blocks or particles.  The contact among those 

rigid and deformable blocks are updated continuously and represented during the deformation 

process. The theoretical foundation of the method is the formulation and solution of equations of 

motion of rigid and/or deformable bodies using implicit (based on FEM discretization) and 

explicit (using FDM/FVM discretization) formulations. In fact this is the main difference 

between the DEM and the continuum-based methods. The previously mentioned continuum-

based methods lack the ability to update and continuously change the boundaries during the 

deformation process. The most common DEM codes are the UDEC and 3DEC computer codes 

which handle two and three dimensional problems (Jing and Hudson, 2002).  

 

The DEM is suitable to a very wide range of applications in rock mechanics. It also has been 

expanded to deal with granular materials for geo-mechanics and rock engineering. The PFC 
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codes for both two and three dimensional problems also the DMC codes are popular in this field. 

Actually, the DEM has been applied in many other fields such as soil mechanics, the processing 

industry and defence research (Jing and Hudson, 2002).  

 

The method is implicitly incorporated in the so called, the discontinuous deformation analysis 

(DDA) approach which is a tool to analyze stress deformations. The DEM uses the standard 

FEM meshes over blocks. The contacts between those blocks are dealt with using the so called 

penalty method. There are similar approaches in the field of numerical methods such as; the 

discrete finite element method and the combined finite – discrete element method. However the 

DDA comes in the first position in terms of development. The DDA uses larger time steps that 

the ordinary DEM and can accept easily transformations from other codes such as FEM codes 

(Jing and Hudson, 2002).   

5.1.5 Hybrid models 
 
The so called hybrid models are frequently used in rock engineering, and basically for flow and 

stress deformation problems in fractured rocks.  The main hybrid combinations are BEM/FEM, 

DEM/FEM and DEM/BEM. In the case of the hybrid BEM/FEM, the BEM is used to simulate 

the far field rocks as an equivalent elastic continuum and the FEM to simulate the near field non-

linear behaviours. This provides more effective simulations of the far field and the near field 

rock masses. The Hybrid FEM/BEM is a common hybrid and is used mainly for simulating the 

mechanical behaviours of underground excavation and the hybrid DEM/BEM model is used 

mainly to deal with stress/deformation analysis(Jing and Hudson, 2002). 

 

The hybrid models are clearly advantageous compared to the single methods because it deals 

with the domains in a more specific manner. Thus, it employs the appropriate method for each 

part in the problem. 

5.1.6 Suitability of Phase 2 numerical procedure     
 

The above mentioned methods are just those which are commonly used to deal with underground 

excavations in rock mechanics and also within the domain of our research questions.  Popular 

methods like the inverse solution methods or the neural networks are not illustrated here because 
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they are irrelevant to this research. However, an extensive review of these methods is found in 

Jing, L. paper “A review of techniques, advances and outstanding issues in numerical modelling 

for rock mechanics and rock engineering” (Jing, 2003). 

 

The main reason we went through the trouble of presenting the above motioned numerical 

methods was to evaluate the objectivity of using our modelling software. As stated by Phase 2 

developers, it is a 2D elasto-plastic finite element stress analysis program for underground or 

surface excavations in rock or soil. This means that it enjoys all the ordinary FEM properties but 

also suffers also from its shortcomings. But this suits our research problems well, because our 

models contain no fractures.  

 

The parameter study and the case studies presented in this thesis later require the representation 

of the plastic behaviour of rock masses. If Phase 2 program for example had the BEM in its 

calculation system, then the software should not be suitable methodologically for simulating the 

elastic and plastic models in this these.  

 

 With the introduction of joints, the program should not be able to produce highly accurate 

results compared to the software which incorporates DEM codes. Phase 2 deals with only two 

dimensional problems and can only deal with some three dimensional problems if the geometry 

includes spherical shapes like the end of a tunnel for example. Since most of our models are 

simple and the number of joints is limited, we can fairly consider Phase 2 suitable software for 

all the problems presented and simulated in this thesis. The exceptional case is the last case study 

because it includes a set of joints. This case may have been dealt with better with software that 

incorporates the DEM codes. 

 

5.2  Criterions for circular tunnel models  
 
The process of producing constitutive models to illustrate rock excavations behaviours is quite a 

challenging task. This is because of the difficulties encountering measuring rock geotechnical 

and geological properties. In addition, there are numerous factors that affect those properties and 

cause them to change over time. The testing methods implicitly contain uncertainty. The 
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laboratory tests of rock strength do not show consistency and may have an error of ±20% 

especially for weak rock samples (Tony Waltham, 2004).  Therefore, it is not only important to 

understand the limitations of the numerical models but also the criterions for the circular   tunnel 

models.  

5.2.1 Modelling ground behaviour  
 
The reason, it is important to identify the ground behaviour is because it is based on that 

behaviour that the tunnel support system is to be designed. There exist adequate techniques to 

obtain the ground behavioural patterns for tunnels excavated in elastic, elastic brittle and 

perfectly plastic materials.  

 
Figure  5-2: Ground response curve, support characteristic line and failure zone radius (Alonso, 2003). 
 

Finding the right support and/or reinforcement and the right time to install them is the main 

philosophy of a tunnel design. When this is not correctly done, uncontrolled displacements of the 

rock mass or over-stressing on the support system may result in that  the  tunnel collapses 

(Alonso, 2003).  
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The response of circular tunnels excavated in elasto-plastic continua under hydrostatic stress can 

be shown in figure 5-2.  Figure 5-2 is known as the ground reaction curve and relates the 

convergence on the wall ur to the formation of a plastic zone around a tunnel of radius R under a 

hydrostatic field stress of magnitude σ°. The convergence and the extent of the plastic zone can 

be related to the internal or equivalent pressure Pi, also referred to as support pressure. When the 

internal pressure attains a critical value, Pi ٭, a failure zone of radius Rp, develops around the 

tunnel, in such a way that this radius increases as far as the internal pressure decreases. The 

intersection point between the support line and the ground reaction curve is the tunnel 

equilibrium point. This point can be obtained theoretically by projecting the point in the equation 

of both curves. When this point is obtained, it becomes possible to design the tunnel support 

stiffness. However, the accuracy of this philosophy can be questioned because usually the 

behaviour of the support stiffness is not constant and the support reaction relationship is non 

linear (Alonso, 2003). 

 

The post- failure behaviours for elasto-plastic ground can be classified into four main behaviours 

which are the following: 

 

1. Perfectly brittle behaviour  

2. Perfectly plastic or ductile behaviour 

3. Strain-softening behaviour 

4. Strain-hardening materials behaviour 

 

Hoek and Brown suggested based on their experience that average rocks  follow strain-softening 

behaviour, soft rock masses follows  the ductile behaviour whereas, hard rock behaves as 

perfectly brittle. Most of the solutions available to study tunnel behaviours concentrate on 

perfectly plastic and perfectly brittle behaviours. table 2 shows a set of the most common 

solutions together with the most relevant topics of their formulation, which include rock mass 

behaviour model, failure criterion, flow rule type and particular features (Alonso, 2003).    
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Table 2 Ground response curve most commonly used solutions (modified after Alonso (2003). 

Behaviour Failure criterion Flow-rule 

Elastic-perfectly plastic 

Mohr-Coulomb 
Associated 

Non-associated 

Hoek-Brown 
Associated 

Non-associated 

Elastic-perfectly brittle 

Mohr-Coulomb 
Associated 

Non-associated 

Hoek-Brown 
Associated 

Non-associated 

Strain softening 

Mohr-Coulomb 
Associated 

Non-associated 

Hoek-Brown 
Associated 

Non-associated 

 

The failure Mohr-Coulomb criterion is used to describe the elastic perfectly plastic behaviour for 

the models in this these. According to the classification in table 2, it is the appropriate criterion 

to describe such behaviour. Phase 2 allows using Mohr-Coulomb criterion for the elastic-

perfectly plastic models constructed and simulated in thesis. Therefore, phase 2 contains the 

appropriate criterions for our research problems.  

 
Figure 5-4  explains the post failure behaviours of grounds of elastic- plastic nature (Chang et al., 

2007).  The models describe the behaviours after crossing the elastic region. In our studies in this 

thesis we used only the elastic- perfectly plastic model. This is shown in case (c) in figure 5-4. 
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Figure  5-3: Post-failure characteristics for different quality rock masses (Chang et al., 2007). 
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5.2.2 Circular excavations models  
 
 
Phase 2 uses Kirsch model solution to simulate the elastic behaviour of a circular tunnel as 

outlined in the stress verification manual of phase 2.  Kirsch model gives a closed form solution 

to the displacements and stresses around a cylindrical hole in an infinite isotropic elastic medium 

under plane strain conditions. This model is applicable to the rock which is stressed below its 

elastic limit, that is, below one-half of it is compressed strength(Goodman, 1989).  

 

 Consider the following figure (Rocscience, 2007). 

 
Figure  5-4: Polar coordinates  r, Ѳ near the opening with radius a and affected by he stresses σr, σѲ, τrѲ 
(Rocscience, 2007). 
 
For a point located at a polar coordinate r, Ѳ near the opening with radius a, the stresses σr, σѲ, 

τrѲ are given by  

 

𝜎𝜎𝑟𝑟 = 𝑃𝑃1+𝑃𝑃2
2

�1 − 𝑎𝑎2

𝑟𝑟 2� + 𝑃𝑃1−𝑃𝑃2
2

�1 − 4𝑎𝑎2

𝑟𝑟 2 + 3𝑎𝑎4

𝑟𝑟 4 � 𝑐𝑐𝑐𝑐𝑐𝑐2Ѳ                                                         Equation  5-1 

 
 

𝜎𝜎Ѳ = 𝑃𝑃1+𝑃𝑃2
2

�1 + 𝑎𝑎2

𝑟𝑟 2� − 𝑃𝑃1−𝑃𝑃2
2

�1 + 3𝑎𝑎4

𝑟𝑟 4 � 𝑐𝑐𝑐𝑐𝑐𝑐2Ѳ                                                                   Equation  5-2 

 
 
𝜏𝜏𝜏𝜏Ѳ = − 𝑃𝑃1−𝑃𝑃2

2
�1 + 2𝑎𝑎2

𝑟𝑟 2 − 3𝑎𝑎4

𝑟𝑟 4 � 𝑠𝑠𝑠𝑠𝑠𝑠2Ѳ                                                                                   Equation  5-3 
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The radial and tangential displacements Ur, UѲ are given by  

 

𝑈𝑈𝑈𝑈 = 𝑃𝑃1+𝑃𝑃2
4𝐺𝐺

𝑎𝑎2

𝑟𝑟
+ 𝑃𝑃1−𝑃𝑃2

4𝐺𝐺
𝑎𝑎2

𝑟𝑟
�4(1 − 𝜈𝜈) − 𝑎𝑎2

𝑟𝑟 2� 𝑐𝑐𝑐𝑐𝑐𝑐2Ѳ                                                               Equation  5-4 

 
𝑈𝑈Ѳ = − 𝑃𝑃1−𝑃𝑃2

4𝐺𝐺
𝑎𝑎2

𝑟𝑟
�2(1 − 2𝜈𝜈) + 𝑎𝑎2

𝑟𝑟 2� 𝑠𝑠𝑠𝑠𝑠𝑠2Ѳ                                                                            Equation  5-5 

 
 
Where G is the shear modulus and 𝜈𝜈 is the Poisons ratio. 

 

It is important to note that the gravity effect is not fully represented in the above equations. The 

gravity force is only represented through P1 and P2 but in fact, it also has a loosening effect on 

the rock near the roof. This is why kirsch model does not show a size effect, meaning that the 

stresses on the walls σr, σѲ, and τrѲ are the same regardless of the diameter of the opening. To 

correct this clear misjudgement, the modeller should add additional stresses to account for the 

effect of the gravity force. Also, introduce the size effect possibly by reducing the strength of the 

rock as the size of the opening increases(Goodman, 1989).   It was shown earlier in the research 

conducted by Bhasin and others that the size of the circular tunnel does not affect the maximum 

axial force in the lining. This is maybe a suitable explanation for these results.     

5.2.3 Suitability of Phase 2 criterions   
 
 
In this thesis, two types of rock grounds are simulated by Phase 2 program namely the elastic 

rock and the elastic-perfectly plastic rock. The first behaviour is calculated according to Kirsch 

solution. As discussed above it is expected that the size effect is not going to appear in the results 

because the gravity is not being taken into account in kirsch solution.  The second behaviour is 

usually simulated by Mohr-Coulomb criterion which is allowed by phase 2. Therefore phase 2 

has what is needed to compute appropriately the simulations in this thesis.   
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6 Numerical Analyses Performed  
 
 
 
This chapter describes the numerical simulations performed in this thesis. The numerical analysis 

is divided into two parts. In the first part, a parametric study was conducted to study the effect of 

seismicity on tunnels without joints and with single joints in different orientations. In the second 

part, two case examples were presented to investigate the effects of multiple joints. The criterion 

which was used to describe the joint slip was Mohr-Coulomb. The cohesion and the tensile 

strength was kept constant and equal zero however, the stiffness and the friction angle for the 

joints were varied in some cases. Presentation and discussion of the computed results for the 

different simulations are presented in chapter 7 and discussed in chapter 8 respectively. 

6.1 Parametric study  

6.1.1 Configurations to the numerical simulations   
 

The models were all run for both elastic and elastic-perfectly plastic mediums and for both; the 

static and the dynamic (seismic) cases of loading. The seismic loads were in the form of quasi- 

static loads and were simulated in different directions and combinations for each model. 

The models for the tunnels were kept consistent for one shape which is the circular shape. The 

size was varied from 5 meters to 20 meters. Figure 6-1 shows the finite mesh for 15 meters in 

diameter circular tunnel excavated in elastic-perfectly plastic rock (weak rock). 

 

Phase 2 offers different types of finite element meshes. For all the models, the graded type finite 

element mesh was used with a three nodded triangles. The gradation factor was 0.1 and the 

default number suggested in the program settings for the number of nodes in all the excavation 

was kept unchanged (75). 
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Figure  6-1: The finite elements mesh for 15 meters in diameter circular tunnel excavated in an elastic-

perfectly plastic rock (weak rock). 
  

Mohr-Coulomb failure criterion was employed to describe the behaviour of the rocks under 

loading. The static loading was kept constant and in the form of 60 meters overburden.  The unit 

weight for the rock was set to 0.027 Mega Newton per cubic meters (MN/m³).  Table 3 below 

shows values for the parameters used to describe the material properties in Mohr-Coulomb 

criterion for the elastic and elastic-perfectly plastic rocks. The unit (MPa) stands for the Mega 

Pascal and the modulus (E) stands for Young’s modulus. The quasi- static seismic loads were 

then superimposed in every case in different directions. The values and the directions of the 

seismic coefficients were kept similar to the previous research conducted by Bhasin and others in 

2006 and as follows. 

 

1- Seismic coefficient in the horizontal direction; h=0.3 

2- Seismic coefficient in the vertical direction; v=0.3 

3- Seismic coefficients in both the horizontal and vertical direction; h=0.3 and v=0.2 
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Table 3: Values of the parameters which describe the properties of elastic and elastic-perfectly plastic rocks. 

Parameters Elastic Model Elastic-Perfectly plastic Model 

Modulus E 10000 MPa 10000 MPa 

Poisson’s ratio ν 0.25 0.25 

Tensile strength 0 MPa 0.02 MPa 

Peak friction angle Фp 35° 35° 

Peak cohesion, c 0.5 MPa 0.5 MPa 

Dilation angle - 0° 

Residual friction angle Фr - 25 

Residual cohesion, cr - 0.1 MPa 

 

The projects for the tunnels in phase 2 were all done over two stages as specified in the program. 

The staging allows load splitting. For simplicity and to keep the consistency with the earlier 

research the tunnels were assumed to have been supported by shotcrete liner shortly after the 

excavation in manner that does not allow load dissipations. Thus, no load splitting was 

configured. The shotcrete liner was of 10 cm thickness. Table 4 shows the values used to 

describe the properties and behaviour of the liner.  

 
  
Table 4:  Values of the parameters used for the tunnel lining. 

Parameters  10 cm shotcrete liner 

Modulus E 15000 MPa 

Poisson’s ratio ν 0.20 

Liner type Beam and formulated as Timoshenko beam  

Material type Elastic  

 

6.1.2 Effect of seismicity on tunnels in rock without joints  
 
This part is similar to the work conducted by Bhasin and others in 2006. Bhasin and others 

conducted the numerical simulations by Phase 2 version 5. Similar models to the models used in 
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the earlier research were numerically analyzed by version 6. The reason for this, is that in version 

6 the calculations included a new factor. This factor is the rock support interaction. The 

interaction between rock support (shotcrete) and the surrounding rock is not very straight 

forward especially when the discontinuities intersect the excavation (Rejinder Bhasin, NGI). The 

program does not allow the user to specify variables to describe this factor and it is implicitly 

calculated.  

6.1.3 Effect of seismicity on tunnels in rock with joints  
 
This part of the research constitutes a step further for the earlier research. The effect of 

discontinuities on the previously described models was investigated under the same conditions of 

loading and the same types of materials. The discontinuities were described as joints in Phase 2 

program. The joints were described by Mohr-Coulomb slip criterion. Neither groundwater pore 

pressure nor any additional pressures were added into the joints. Table 5 shows the typical 

properties used for joints.  

 
 
Table 5: Typical joint properties assigned for the models. 

Parameter  Value  

Tensile strength  0 

Cohesion  0 

Friction angle  20 or 10 degrees  

Normal stiffness  100 000 or  10 000 MPa/m 

Shear stiffness 10 000 or 1000 MPa/m 

 

The friction angle was chosen relatively low as 20 degrees and lowered sometimes to 10 degrees 

in order to show the effects of the joint more clearly. The same concept was adopted for the 

normal and shear stiffness. Notice that the normal stiffness is assigned a value that is one order 

of degree higher than the shear stiffness. This is typical for the stiffness and as an example of this 

trend; the NGI used the following values in numerical modelling of the underground stadium 

near Lillehammer for hard gneissic rocks   
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Joint normal stiffness: 4.5E6 MPa/m 

Joint shear stiffness: 3.5E3 MPa/m 

 

In another case where the NGI used in parametric studies for a large underground power in the 

Himalayas in gneissic-schist rocks we used the following values: 

 

Joint normal stiffness: 1.4 E6 MPa/m 

Joint shear stiffness: 3.2 E3 MPa/m 

 

The above examples from the NGI were provided to the author by Rejinder Bahsin who works at 

the Engineering Geology and Avalanches division at the Norwegian Geotechnical institute 

(NGI).  Therefore, when the joint stiffness was lowered to increase the effect of the discontinuity 

(joints) the order of magnitude difference was kept unchanged between the normal and the shear 

joint stiffnesses.  

 

 

 
Figure  6-2:  Example for a joint model where a horizontal joint is crossing a 10m in diameter circular tunnel 

under a combination of quasi-static seismic loads. 
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The simulations were performed for three different joint orientations; horizontal joint, diagonal 

joint (45°) and vertical joint.  The models were mainly run for a 10 meters diameter circular 

tunnel as standard size for cases. Figure 6-2 shows an example for a joint model; a horizontal 

joint crossing a 10 m in diameter circular tunnel under a combination of quasi-static seismic 

loads, and Figure 6-3 shows the same an example for a diagonal joint. The diagonal joint 

inclination is 45 degrees. The boundaries around the tunnel are extending 60 meters in the 

horizontal and vertical directions starting from the tunnel periphery.  

 

 
Figure  6-3: Example for a joint model where a diagonal joint is crossing a 10m in diameter circular tunnel 

under a combination of quasi-static seismic loads. 
 
 
 
All the joints passed through the centre of the circular tunnel. Notice that the colour of the tunnel 

lining was changed. It changed when the joints intersected the tunnel. This is because a different 

type of lining was used. For the new tunnel lining the properties of the old lining were kept 

unchanged but the liner was defined as a composite liner. As stated by the software developer 

when a joint intersects with a tunnel lining the lining must be set to the composite type. 
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6.2 Case studies  

6.2.1 Case study 1: Effect of 2 parallel joints at 45° 
 
In the first case study and as shown in figure 6-4 two joints parallel and spaced 2 metered in the 

vertical direction intersected the lining of a circular tunnel. The tunnel diameter was set to 10 

meters to continue the consistency with the earlier models.  The simulations were run under the 

same conditions of loading and for both the elastic and elastic-perfectly plastic rocks.  

 

 
Figure  6-4: Case study for two parallel joints crossing a 10m in diameter circular tunnel under a combination 

of quasi-static seismic loads. 
 
 
A friction angle of 10 degrees, 10 000 MPa/m normal joint stiffness and 1000 MPa/m shear joint 

stiffness were assigned to the pair of joints in case 2. 

6.2.2 Case study 2: Effect of multiple horizontal parallel joints  
 
The input parameters for the second case study were similar to the first case study. Figure 5-5 

shows a set of six parallel horizontal joints crossing a 10 m in diameter circular tunnel under a 

combination of quasi-static seismic loads. The joint spacing was constant and = 2 m.  
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Figure  6-5: Case study number 2 for a set of six parallel horizontal joints crossing a 10 m in diameter circular 

tunnel and spaced two meters under a combination of  quasi-static seismic loads. 
 
 

The simulations were run for two different sets of joints. A friction angle of 10 degrees, 10 000 

MPa/m normal joint stiffness and 1000 MPa/m shear joint stiffness were assigned to the first set 

of joints, whereas for the other set the friction angle was increased to 20 degrees and the normal 

and shear joints stiffnesses were raised by an order of magnitude.   
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7 Results of the Numerical Analyses 
 

7.1 Parametric study  

7.1.1 Effect of seismicity on tunnels in rock without joints  
 
Even though that this part is a similar study to the research conducted by Bhasin and others in 

2006, the presentation of the results was extended to include new references. The earlier research 

used only the maximum axial force in the lining (MAFL) as a reference to justify the effects on 

the tunnel lining. The maximum shear force in the lining (MSFL) and the maximum bending 

moment in the lining (MML) are included in addition to the MAFL. The locations of the MAFL, 

the MSFL and the MML on the tunnel lining were studied. Figure7-1 shows the results of the 

simulations for a 15 m diameter circular tunnel. 

 

 Static loading Seismic loading h=0.3& v=-0.2 

MAFL 

  

MSFL 

  

MML 

  

Figure  7-1: Results of the elastic rock simulations for a 15 m diameter circular tunnel under the static loading 
and after superimposing the quasi-static seismic load combination. 
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Two cases of loading are compared; the static loading case and the case after superimposing the 

quasi-static seismic load combination. The seismic coefficients h and v were assigned the values 

0.3 and -0.2 sequentially. The simulations results are shown in figure 7-1 for elastic rocks. Figure 

7-2 the results for elastic-perfectly plastic.    

 

 Static loading Seismic loading h=0.3& v=-0.2 

MAFL 

  

MSFL 

  

MML 

  

Figure  7-2: Results of the elastic perfectly- plastic rock simulations for a 15 m diameter circular tunnel under 
the static loading and after superimposing the quasi-static seismic load combination. 

 
In figure 7-1 and 7-2, the locations the MAFL, the MSFL and the MML on the lining are shown. 

The arrows show the directions of the deformation vectors and the units for the MAFL and the 

MSFL (MN) are in mega Newton.  
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Figure  7-3: Summary of numerical results for the MAFL for both the elastic rock and elastic- perfectly 

plastic rocks. 

 
Figure  7-4: Summary of numerical results for the MSFL for both the elastic rock and elastic- perfectly plastic 

rocks. 
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In addition to the 15 m diameter tunnel simulations, more simulations were conducted for three 

different tunnel diameters (5m, 10m, and 20m) to investigate the size effect on the results. The 

summary for the results is shown in figure 7-3 and figure 7-4. The summary in figure 7-3 shows 

the MAFL for varying sizes of tunnels also shows a comparison between the static and seismic 

loading for both the elastic and elastic-perfectly plastic rocks. Similar summary is given for the 

MSFL in figure 7-4. 

7.1.2 Effect of seismicity on tunnels in rock with joints  
 
The effect of discontinuities was investigated using identical loads and material configurations as 

in the earlier numerical models. The joints were simulated as one at the time in three different 

inclinations. The inclination was described by an angle from the x axis as in the typical the 

Cartesian coordinates and in the counter clockwise direction. Based on this, the joints are 

sometimes refereed at to as 0, 45, and 90 to describe the horizontal, diagonal and vertical joints 

sequentially. Figure 7-5 shows the results of the simulation for a 10 m diameter circular tunnel 

with a horizontal joint under the static loading case and after superimposing the different quasi-

static seismic load combinations.  

 

 Static loading Seismic loading h=0.3& v=-0.2 

M
A

FL
 

  
 Seismic loading h=0.3 Static loading & v=-0.3 

M
A

FL
 

  

Figure  7-5: Results elastic rock simulations for a 10 m diameter circular tunnel with a horizontal joint under 
the static loading and after superimposing the different quasi-static seismic load combinations. 
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While figure 7-5 shows the results for the elastic material, figure 7-6 shows similar pattern of 

results to the elastic-perfectly plastic material. Notice that more seismic combinations were 

introduced in the results. The locations of the maximum values of the MAFL are shown on the 

figures for all cases. The author performed numerous simulations and similar figures were 

studied for the maximum shear force in the lining (MSFL) and the maximum bending moment in 

the lining (MML). This is only an example of the results, however in the rest of the results are 

discussed and concluded all together in discussions and conclusions section presented in the next 

chapter.  

       
 Static loading Seismic loading h=0.3& v=-0.2 

M
A

FL
 

  

M
A

FL
 

  

Figure  7-6: Results of elastic-perfectly plastic rock simulations for a 10 m diameter circular tunnel with a 
horizontal joint under the static loading and after superimposing the different quasi-static seismic load 

combinations. 
 
Similar numerical simulations were conducted for the diagonal and the vertical joints under the 

same earlier configurations. The numerical results for the MAFL are summarized in figures 7-7, 

7-8 and 7-9.  Similar figures are obtained for the MSFL and MML but they are not shown in this 

section. The reason for this is that for the input numerical model configuration, the resulting 

MSFL and MML are significantly small in comparison to the MAFL. This is why they are not as 

significant to describe the behaviour of the tunnel lining compared to the MAFL. 
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In figures 7-7, 7-8 and 7-9 the horizontal, diagonal and vertical joints are noted by the numbers 

0, 45 and 90 in the same order.  Notice the consistency in the colours and the scales. In this 

research the weak rock (elastic- perfectly plastic) is assigned the red colour whereas, the 

strong/competent (elastic) rock is assigned the blue colour.  The MAFL is given in Mega Newton 

units on the vertical axis. The horizontal axis describes the following five cases of loading 

respectively: 

 

1. Static loading on a circular tunnel without any joints. 

2. Static loading on a circular tunnel with a single joint. 

3. Superimposition of a seismic load with a seismic coefficient in the horizontal direction 

=0.3 on case (2). 

4. Superimposition of a seismic load with a seismic coefficient in the vertical direction =-

0.3 on case (2). The negative sign refers to the downward direction. 

5. Superimposition of a seismic load with a combination of seismic coefficients =0.3 and =-

0.2 in the horizontal and downward direction sequentially on case (2).  

 
Figure  7-7:  Summary of results for the MAFL in the different cases of loading for the horizontal joint model. 
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Figure  7-8: Summary of results for the MAFL in the different cases of loading for the diagonal joint model. 

 
 

 
 

Figure  7-9: Summary of results for the MAFL in the different cases of loading for the vertical joint model. 
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As mentioned earlier in the parametric study section, the simulations were performed once again 

after changing the joint parameters. In the inputs for the joints which were shown in the previous 

simulation, the joints were given a friction angle = 10° and the joint normal and shear stiffness 

were 10 000 and 1000 MPa/m respectively. These inputs were changed to a friction angle =20°, 

100 000 and 10 000 MPa/m joint normal and shear stiffness respectively. A summary of the 

numerical results is shown in figures 7-10, 7-11 and 7-12.  Those figures follow in presentation 

the same analogy described in previous figures. The locations of the maximum forces on the 

lining are not shown here because they do not significantly change the overall conclusions. 

However in some cases, they were compared to the earlier results and commented and on in the 

next chapter. 

 

 

 
Figure  7-10: Summary of results for the MAFL in the different cases of loading for the horizontal joint model 

after changing the joint parameters. 
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Figure  7-11: Summary of results for the MAFL in the different cases of loading for the diagonal joint model 

after changing the joint parameters. 
 

 
Figure  7-12: Summary of results for the MAFL in the different cases of loading for the vertical joint model 

after changing the joint parameters. 
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7.2 Case studies  

7.2.1 Case study 1: Effect of 2 parallel joints at 45° 
 

In figure 7-13, the locations of the MAFL are shown for the static loads and the different seismic 

loads in the case of the elastic rock. In Figure 7-14, the locations of the MAFL are shown in a 

similar manner for the elastic-perfectly plastic rock.   
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Figure  7-13: locations of the MAFL for the elastic rock in case study 1 under the static loading case and after 
superimposing the different quasi-static seismic load combinations. 

 
 
In figure 7-15, a summary of the results is presented. The summary illustrates the behaviour of 

for the MAFL under static and different seismic loads for both the elastic (strong) rock and 

elastic- perfectly plastic (weak) rock. The case numbers on the horizontal axis are in the same 

order and description as it was outlined previously.  
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 Static loading Seismic loading h=0.3& v=-0.2 
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Figure  7-14: locations of the MAFL for the elastic-perfectly plastic rock in case study 1 under the static 
loading case and after superimposing the different quasi-static seismic load combinations. 

 

 
Figure  7-15: Summary of results for the MAFL in the different cases of loading in case study 1 
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7.2.2 Case study 2: Effect of multiple horizontal parallel joints  
 
This section presents the numerical results for the second and last case study which was 

described in the parametric study section in the earlier chapter. In figure 7-16, the locations of 

the MAFL are shown for the static loads and the different seismic loads in the case of the elastic 

rock. In Figure 7-17, the locations of the MAFL are shown in a similar way for the elastic-

perfectly plastic rock.  The results for the MSFL and the MML in terms of locations and values 

were studied in this research. The examples results shown here are representative and would lead 

to the main conclusions of the whole group of results. It was specially focused on the MAFL 

because it is the most representative force for the configured and studied models.  
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Figure  7-16:  locations of the MAFL for the elastic rock in case study 2 under the static loading case and after 
superimposing the different quasi-static seismic load combinations. 

 
 
Figure 7-18 and figure 7-19 summarize the results for the MAFL and the MSFL for the tunnel 

under static and different seismic loads for both the elastic (strong) rock and elastic- perfectly 

plastic (weak) rock.  
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 Static loading Seismic loading h=0.3& v=-0.2 
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Figure  7-17: locations of the MAFL for the elastic-perfectly plastic rock in case study 2 under the static 
loading case and after superimposing the different quasi-static seismic load combinations. 

 
 

 
Figure  7-18: Summary of results for the MAFL in the different cases of loading in case study 2 
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Figure  7-19: Summary of results for the MSFL in the different cases of loading in case study 2 

 

 
Figure  7-20: Summary of results for the MAFL in the different cases of loading in case study 2 after changing 

the friction angle from 10 °to 20 ° 
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In the inputs for the joints shown in the above simulations, the joints were given a friction angle 

= 10° and the joint normal and shear stiffness were 10 000 and 1000 MPa/m respectively. These 

inputs were changed to a friction angle =20° and 10 000 and 1000 MPa/m for the joint normal 

and shear stiffness respectively. Notice that this time, it was only the friction angle in Mohr-

Coulomb criterion that was changed and that both the normal and shear joint stiffnesses 

remained untouched. A summary of the numerical results for the MAFL and MSFL is shown in 

figures 7-20 and 7-21.  

 

 
Figure  7-21: Summary of results for the MSFL in the different cases of loading in case study 2 after changing 

the friction angle from 10 °to 20 ° 
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8 Discussion of the Numerical Results  
 
 

The author has conducted hundreds of simulations but decided to elaborate only on the most 

significant findings.  

8.1 Parametric study  

8.1.1 Effect of seismicity on tunnels in rock without joints  
 
 Figure 7-1 outlines the results of the simulations for a 15 m diameter circular tunnel.  In this case 

the material was elastic rock and the loading was varied from static loading to dynamic by 

superimposing the quasi-static seismic load combination.  The seismic coefficients h and v were 

assigned the values 0.3 and -0.2 sequentially. The figure shows also the deformations in the 

tunnel lining and the direction of deformation vectors for every simulation. It can be seen that the 

locations of the MSFL and the MML did not change after superimposing the seismic load 

combination this is not the case for the location of the maximum MAFL which changed after 

imposing the Seismic loads by shifting slightly to the left. Notice that the figure shows the 

minimum and the maximum values. The maximums are assigned the red colour while the 

minimums are assigned a blue colour. It is focused mainly on the Maximum values in this 

analysis. 

 

Figure 7-2 is analogous to figure 7-1 but shows instead the simulations for the elastic- perfectly 

plastic rock. The locations of the MML not change significantly however the locations of the 

MAFL and MSFL changed after superimposing the seismic load combination.  Figures 7-1 and 

7-2 show only the case of the 15 m diameter circular tunnel .The simulations were conducted for 

the diameters 5 m, 10 m, and 20 m as well. The locations of the extreme values were studied and 

compared in the same manner as before. It was observed that the locations of the MAFL, MSFL 

and the MML remain unchanged in most cases for the elastic rock, whereas in the case of the 

elastic- perfectly plastic rock there is no specific trend.  

 

Figure 7-3 shows a summary of the numerical simulation results for the MAFL.  On the 

horizontal axis the tunnel sizes are varied from 5 m to 20 m. The simulations were run as usual 
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for both materials; the elastic and the elastic- perfectly plastic rocks under different static and 

seismic loads. It is pleasant to see that figure 7-3 follows in the trend the earlier research 

conducted by Bhasin and others in 2006 (Bhasin et al., 2006).   

 

For elastic rock, there was no significant difference in the MAFL between the static loading and 

after superimposing the seismic loading. Even with varying the size of the tunnel, no significant 

changes took place. The opposite is true for the elastic- perfectly plastic rock. Bhasin and others 

showed that for weak rock the difference in the MAFL ranges from 15% to 44% between the 

static and dynamic loading. In this research, the results here suggest that the percentage of 

increase in the MAFL is 18-39%.  

 

Figure 7-4 shows the summary of the MSFL for different tunnel sizes and under different static 

and seismic loads for the elastic and elastic- perfectly plastic rocks.  It may seem unexpected that 

the MSFL is declining when increasing the tunnel diameter. This may be explained by the 

reduction in stiffness in the tunnel lining. The increase in the tunnel size and hence the periphery 

leaving the thickness of the tunnel lining constant ( 10 cm shotcrete) leads to a reduction in the 

stiffness of the tunnel lining.  

 

8.1.2 Effect of seismicity on tunnels in rock with joints  
 

Figure 7-5 shows the results of the simulation for a 10 m diameter circular tunnel with a 

horizontal joint under the static loading case and after superimposing the different quasi-static 

seismic load combinations. The MAFL locations on the lining are shown after the every case of 

loading. Similar simulations were performed for the diagonal and vertical joint but the results 

were similar in the trends and therefore it is not shown here.  

 

After studying the locations for the MAFL, MSFL and the MML, the following was observed for 

the horizontal, vertical and diagonal joints in the case of elastic rocks: 

 

1. For the horizontal joint, there was no significant change in the locations of the MAFL, 

the MSFL and the MML. The locations of the MAFL stayed without any changes in fact. 
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The MAFL occur at the point of intersection between the horizontal joint and the tunnel 

lining.  

2. For the vertical joint, there was no significant change in the locations of the MAFL, the 

MSFL and the MML. The locations of MAFL stayed without any changes. The MAFL 

occurred at the point of intersection between the vertical joint and the tunnel lining. 

3. For the diagonal joint, there was no significant change in the locations of the MAFL. This 

time it the locations of the MSFL and the MML changed. The locations of MAFL which 

is the main reference in our research stayed without any changes and occurred at the 

point of intersection between the diagonal joint and the tunnel lining.  

 

 

Similarly, Figure 7-6 shows the results for the horizontal joint for the elastic- perfectly plastic 

rocks. The results of the simulations for the diagonal and the vertical joint were studied and 

commented on but it is not shown here. The following was observed: 

 

1. For the horizontal joint, the locations of the MAFL, the MSFL and the MML changed 

after applying each case of the seismic loads. The locations of the MAFL did not occur at 

the point of intersection between the horizontal joint and the tunnel lining. 

2. The vertical joint simulations produced different locations for the MAFL, the MSFL and 

the MML than those in the horizontal joint. However and similar to the horizontal joint 

case, the MSFL and the MML changed location after applying each case of the seismic 

loading. Also, the locations of the MAFL did not occur at the point of intersection 

between the vertical joint and the tunnel lining. 

3. The diagonal joint simulations produced different locations for the MAFL, the MSFL and 

the MML than those in the horizontal and the vertical joint. However and similar to the 

earlier cases, the MSFL and the MML changed location after applying each case of the 

seismic loading. The locations of the MAFL did not occur at the point of intersection 

between the Joints and the tunnel lining.  

 

Figures 7-7, 7-8 and 7-9 give a summary of the numerical results for the MAFL for the different 

cases of loading and the different joint orientations. Those figures aim to compare the strong 
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rock (elastic rock) and the weak rock (elastic-perfectly plastic rock) simulations. Similar figures 

were obtained for the MSFL and MML but they are not shown because the values were very 

small and not representative like the MAFL. Notice that the case number on the horizontal axis 

describes the cases of loading. Those cases are described in detail in the previous chapter. The 

following was observed form the figures: 

 

1. For strong (elastic) rock, The MAFL jumps up in case number 2 in comparison to case 

number 1. This behaviour is observed regardless of the joint orientation. It was expected 

that the MAFL increases when the medium that enclose the tunnel is weakened by 

introducing a crossing joint in the tunnel. 

2. For strong rock, the MAFL in cases numbers 3, 4 and 5 stays constant regardless of the 

varied seismic loads and directions. This behaviour is observed regardless of the joint 

orientation. 

3. For the weak rock, the MAFL does behave similar to its behaviour in the strong rock.  No 

specific trend is observed between case 1 and case 2. In some occasions the MAFL in 

case 2 is less than it in case 1. This means that the joint weakening effects do not work in 

a similar way as in the strong rock situation. 

4. For the weak rock in all the pervious figures, cases 3, 4 and 5 have a pronounced effect 

on the MAFL.  There is no specific trend and the MAFL fluctuates up and down after 

applying each seismic load. This is unlike the case of the strong rock where it stayed 

almost constant.   

 

The previous experiments were conducted once again in the same detail but after changing the 

joint input parameters. The joints in the earlier models had friction angle=10° and normal and 

shear joint stiffnesses 10 000 MPa/m, 1000 MPa/m sequentially, whereas the in the new 

experiments, the joints where given a friction angle =20° and 100 000 MPa/m, 10000 MPa/m for 

the normal and shear joint stiffnesses respectively.   

 

The results of the new experiments showed that for strong rock, the locations of the MAFL did 

not change for the vertical and horizontal joints. MAFL changed location slightly in the case of 

the diagonal joint.  
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The figures 7-10, 7-11 and 7-12 gave a summary of the results for the new experiments. It was 

concluded that the pervious summary of observations for he earlier experiments holds true for 

the new ones with two exceptions for the strong rocks: 

 

1. The location of the MAFL does not occur at the intersection between the joint and the 

tunnel lining in the case of the diagonal joint.   

2. The jump between case 1 and case 2 in the magnitude of the MAFL is not big as before.  

 

However, these results do not weaken the previous trends in the earlier experiments. They 

mainly refer to that the joint parameters have been improved in a manner that hid the effects of 

the joint. In the earlier experiments, the joints were given inferior parameters to show 

pronounced effects.   

 

The author did several simulations and found that decreasing the joint stiffness by an order of 

magnitude produces a more pronounced effect than in the case of reducing the joint friction 

angle. This is why in the case studies  discussed in the following text, the joint friction angle 

were changed from 10° to 20° but the normal and shear  joint stiffnesses were kept as  10 000 

MPa/m, 1000 MPa/m sequentially. These values show pronounced effects for the joint 

experiments.  

8.2 Case studies  

8.2.1 Case study 1: Effect of 2 parallel joints at 45° 
 
In this case study, the joints were configured with 10°, 10 000 MPa/m and 1000 MPa/m for the          

friction angle, normal joint stiffness and shear joint stiffness respectively. In Figure 7-13 shows 

the locations of the MAFL are shown for the static and the different seismic loads. The 

simulations were run for elastic rock. Similarly in figure 7-14, the locations of the MAFL are 

shown in for the elastic-perfectly plastic rock.   

 

The results show that the MAFL occurred at the intersection points between the joints and the 

tunnel lining in the case of the elastic rock. This trend is in line with what was observed in the 

earlier single joints with different orientations in the parametric study. As it was expected the 
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elastic-perfectly plastic rock did not show consistency for the locations of the MAFL and there 

was no specific observed trend.  

 

Figure 7-15 summaries the numerical results for the tunnel in the first case study. The figure 

shows the cases of the   static and the different seismic loads for both the elastic 

(competent/strong) rock and elastic- perfectly plastic (weak) rock. It can be seen that the MAFL 

agrees reasonably with the findings in the parametric study.  For elastic rock, case loading 

number 2 jumped up abruptly over case loading number 1. The jump was clearer because two 

joints have more effect than one joint.  The seismic loads have no significant effect on the MAFL 

as was also seen in the parametric study for elastic rock.  

8.2.2 Case study 2: Effect of multiple horizontal parallel joints  
 
In case study 2, a set of six parallel horizontal equally spaced (2 m) joints are configured. All 

The joints cross and intersect with the tunnel lining. For the sake of consistency the circular 

tunnel was also of 10 m diameter. The joints were given a friction angle =10°, normal and shear 

stiffness= 10000MPa/m and 1000MPa/m sequentially. These parameters describe the weakest 

joints in our models and it shows a pronounced effect on the forces in the lining. 

 

In figure 7-16, the locations of the MAFL are shown for the static and the different seismic loads 

in the case of the elastic rock. In Figure 7-17, the locations of the MAFL are shown in a similar 

way but for the elastic-perfectly plastic rock.  The locations of the MAFL occur at the 

intersection points for all cases and for both the elastic and the elastic perfectly plastic rocks. 

This time and after introducing several joints, it was expected to see more pronounced effects of 

the joints on the MAFL, the MSFL, and the MML. This happened and is illustrated clearly in 

figures 7-18 and 7-19.  The trends in the figures for the 5 cases of loading follow in the trend 

experienced earlier for  elastic rocks and weak rocks from the parametric study and in case study 

1. The most interesting thing about those figures is that the MAFL jumps higher than in all the 

previous simulations in the case of the elastic rock. The same trend appears in the MSFL 

summary of results as well. 
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The previous experiments in case study 2 were repeated after increasing the joint friction angle 

to 20°. Figure 7-20 and 7-21 summarize the results of the experiments after the friction angle 

change.  

The locations of the MAFL occurred at the point of intersection the lowest joint and the tunnel 

lining for elastic rock.  Because the friction angle was improved for the joints, the location of the 

MAFL changed as it was expected in the case of the elastic-perfectly plastic rock.  With varying 

the cases of loading, the trends for behaviour were similar to the earlier experiments.  The MAFL 

and the MSFL were decreased in the value because of the joint friction angle improvement.  

 

8.2.3 Lessons learned from the case studies  
 
The following was learned from both case studies for elastic rocks:  

 

1. The MAFL occurs at the intersection points between the joints and the tunnel lining.   

2. The MAFL in figure 7-15 and in figures 7-18 and 7-20 significantly increases when 

moving from the case number 1 of loading to case number 2 of loading.  

3. The MSFL in figures 7-19 and 7-21 behaves similar to the MAFL.  

4. In case study 2 the MAFL in figures 7.18 and 7-20 jumps higher than the MAFL for 

elastic-perfectly plastic rocks.  

5. The last three cases of loading (3, 4 and 5) represent the effects of seismicity on the 

tunnel excavated in the discontinuous rock.  The straight line means from case 2 until 

case 5 means that the MAFL is not sensitive to seismicity for the tunnels excavated in 

competent (elastic) rock.  

 

The explanation for the above mentioned points is backed by the evidence observed in figures 8-

1 and 8-2. Figure 8-1 shows the distribution of the MAFL along the tunnel lining in case study 1 

for the second case of loading for elastic rock. Figure 8-2 shows the distribution of the MAFL 

along the tunnel lining in case study1 for the third case of loading for elastic rocks. Four peaks 

can be seen on both figures. Those peaks occur at the four intersection points between the tunnel 

lining and the two parallel joints at 45°. This means that the seismic loads cannot show 
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noticeable effects because they are always hidden behind the peaks that occur at the points of 

intersection because of the joints effect on the MAFL.  

 

 

 
Figure  8-1: Distribution of the MAFL along the tunnel lining in case study 2 for the second case of loading for 

elastic rocks. 

 
Figure  8-2: Distribution of the MAFL along the tunnel lining in case study 2 for the third case of loading for 

elastic rocks. 
 

 



77 
 

Figure 8-3 shows the distribution of the MAFL along the tunnel lining in case study 2 for the 

second case of loading. In case study 2, the same behaviour outlined before takes place. Six 

peaks occur at the intersection points hide the effects of the seismicity.  

 

The peaks in case study 2 are not equal in the value. The highest peak values occur at the bottom 

and on the roof of the tunnel. The peak values increase as the joints become closer to the bottom 

or to the roof of the tunnel. The author has conducted several other simulations where single 

joints crossed the tunnel in different locations and in different directions.  The results showed 

that the MAFL is sensitive to the location of the joint to some extent. It was seen that the closer 

the joint to the tunnel periphery the higher the MAFL. These results are not presented here, but 

the behaviour can be seen on the six peaks that grow as they approach the bottom and the crown 

of the tunnel. This behaviour occurs only in the case of the elastic rock.  

 

 
Figure  8-3: Distribution of the MAFL along the tunnel lining in case study 2 for the second case of loading. 
 
 

The NGI quality index system (Q system) for rock mass classification and rock support in 

tunnels is described by the following formula 

𝐐𝐐 = 𝐑𝐑𝐑𝐑𝐑𝐑
𝐉𝐉𝐉𝐉

∗ 𝐉𝐉𝐉𝐉
𝐉𝐉𝐉𝐉

∗ 𝐉𝐉𝐉𝐉
𝐒𝐒𝐒𝐒𝐒𝐒

                                                                                                                     Equation  8-1 
 

Where: 
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I. Relative block size (RQD/Jn). 

II. Inter-block shears strength (Jr/Ja). 

III. Active stresses (Jw/SRF). 

 

The manual of the Q system states that in hard rocks, deformations will occur as shear 

displacements along the joints (Barton et al., 1974). The friction along the joints will therefore be 

significant for the stability. The previous results are in line with the Q system statement and 

further suggest that the significance of the joints is going to be more pronounced than the effect 

of an earthquake event on the tunnel.  

 

In case study 2, it was also shown that the introduction of joints in the body of the model resulted 

in higher MAFL in the elastic rock than for elastic-perfectly plastic rock.  

 

 
Figure  8-4: Discrete element simulation for  underground shock showing the wave-guide action of parallel 
joints on the left-hand side (Heuze and Morris, 2007). 
 
This may be explained   by assuming that the joints work as stress collectors or directors in the 

case of elastic rocks. The stress seems to flow in the direction of the weakest points. Therefore 
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the MAFL becomes concentrated at the joints in the case of elastic rock. This suggestion is in 

line with the findings by Heuze and Morris concluded in their study for ground shock effects on 

rocks (Heuze and Morris, 2007).They found that the geological discontinuities (joints, bedding 

planes, shears, and faults) can act as wave-guides to ground motion, thus accentuating damage or 

minimizing it in different directions. Figure 8-4 shows the results of their discrete element 

simulations for underground shock.  The wave-guide action of parallel joints on the left-hand 

side can be seen (Heuze and Morris, 2007) 

 

For weak rocks the case, There are no consistencies in the locations of the MAFL after moving 

from one case of loading to the other. The seismic loads change the MAFL location and increase 

its value for weak rock in most cases but not always (refer to the results of the parametric study 

for singles joints). This also is in line with statement of the Q system manual that soft rock may 

deform independent of the joints (Barton et al., 1974).  Figure 8-5 shows the distribution of the 

MAFL for weak rocks in case study 1 for the second case of loading. The figure shows no peaks 

like it was shown in the case of the elastic rock. Instead, a pattern of deformation that is 

independent of the joint intersection with the tunnel lining. 

 

 

 
Figure  8-5: Distribution of the MAFL along the tunnel lining in case study 2 for the second case of loading for 
weak rocks. 
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9 Conclusions and Recommendations 
 

9.1 Summary and Conclusions 
 
 
This thesis aimed at three targets; (1) review the literature of the effect of seismicity on 

underground structures, (2) verify and improve the earlier research results for tunnels without 

joints conducted by Bhasin and others in 2006, and (3) investigate the effects of seismicity on 

tunnels in rocks with joints.  

 

Underground structures are not invulnerable to earthquakes however they are considerably less 

vulnerable compared to surface structures. The case histories showed that all the following may 

endanger the safety of underground structures; (1) light overburden, (2) longer duration of an 

earthquake,(3) higher magnitude of earthquake and (4) the shorter distance from the epicentre.   

 

Seismicity can cause complete failure to underground structures which are excavated in soft or 

weak soils by liquefaction or destabilizing slopes.  Underground structures in competent rocks 

suffer fewer damages in comparison to weak rocks.  

 

The seismic design of underground structures can be divided into three main steps ;( 1) definition 

of seismic environment, (2) evaluation of ground response to shaking and (3) assessment of 

structure behaviour due to seismic shaking.  Defining the seismic environment requires 

conducting   deterministic (DSHA) and/or deterministic seismic analysis (PSHA). The major 

factors influencing shaking damage include: 1. the shape, dimensions and depth of the structure; 

2. the properties of the surrounding soil or rock; 3. the properties of the structure; and 4. the 

severity of the ground shaking. the response of tunnels to seismic motions can be categorized 

into three types(1) Axial compression and extension, (2) longitudinal bending (3) 

ovaling/racking. The assessment of underground structures is based on two main concepts; the 

maximum design earthquake (MDE) and the operating design earthquake (ODE).  

 

Now there are several available closed form solutions to the different types of tunnels elastic and 

plastic mediums. Most of these solutions deal with the circular cross section.  The reliability of 
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these solutions depends on the accuracy of the model adopted to describe ground response. Since 

the description of ground response is dependent on the accuracy of the ground properties, the 

solutions accumulate more uncertainties.  Usually, it is not adequate to describe the behaviour of 

plasticity without employing numerical models. The software used in this thesis (Phase 2) uses 

the pseudo static analysis coupled by numerical methods to simulate plasticity.  

 

The behaviour of underground structure during seismic shaking has been simulated in several 

studies. The earlier studies dealt with underground structures in rocks with and without joints. 

However, no studies found investigated the effect of seismicity on tunnels in rocks with limited 

number of joints such it was investigated in this thesis. The earlier models included complicated 

system of joints   

 

Displacements may accumulate within the joints as a result of seismic shaking   causing failure 

due to fatigue in jointed rocks.  The joint orientation and the spacing between the joint affects the 

stability of the tunnels.  It has been outlined that the small spacing and unfavourable joints 

orientations lead to  significant instability within the models studied by (Heuze, 2004).  

 

Bhasin and others in 2006 studied the seismic behaviour of rock support in tunnels by 

performing several numerical simulations using Phase 2. Similar numerical simulations were 

performed to verify their study results. The results in this thesis agreed with their findings and 

concluded that in tunnels excavated in elastic rocks, the MAFL does not change due to seismic 

loads or varying the size of the tunnel. The opposite was found true for elastic- perfectly plastic 

rocks. Bhasin and others also concluded that the increase in the maximum axial force in the 

lining (MAFL) ranges between 15% and 44% after superimposing seismicity on the initial static 

loads.       

 

Phase 2 version 6 (2006) is a 2D elastic-plastic finite element stress analysis program for 

underground or surface excavations in rock or soil. The program uses the finite elements method 

which is a suitable numerical procedure to compute the models in this thesis. Also, the 

theoretical procedure in the software allows using the Mohr-Coulomb failure criterion which 

suits well with elastic and elastic- perfectly elastic models computed in this thesis. Because of 
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the limitations of the finite element method, Phase is suited to compute models with a limited 

number of joints.  

 

The numerical analysis in this thesis was performed for circular in rocks with and without joints. 

The models without joints are similar to the models studied by Bhasin and others in 2006 

however; they produced improved and detailed results. This is because the models in this thesis 

were computed by Phase 2 version 6 (2006) while Bhasin and others used Phase 2 version 5 

(2004) which does not include the effect of rock support interaction.   

 

The originality in this thesis is more established in the configured numerical simulations 

performed for tunnels in rock with joints.  The effects of single joints were studied in terms of 

orientation.  Two case studies were configured to study the effect of multiple joints. The location 

of joints was not emphasized in this thesis, however was discussed and implicitly shown in the 

case study 2.   

 

The numerical experiments conducted in this thesis showed that seismicity has no significant 

effect on tunnels in elastic rocks with and without joints.  In contrast to this, it was shown that 

seismicity has a pronounced effect on tunnel excavated in weak rock with or without joints.   

 

 

After introducing joints in the model, the maximum axial force in the lining   jumps higher in the 

case of elastic rocks when comparing the case number 1 of loading and the case number 2. It was 

shown that the location of the MAFL occur at the intersections points between the joints and the 

tunnel lining. This behaviour does not take place in the case of weak rock. This is because in the 

elastic rocks the deformations occur along the joints.  This result showed that joints in competent 

rocks increase the MAFL more than in the joints in weak rocks.  

 

It was shown that the orientation of the joint in the model have no significant effect for the 

different cases of loading in both competent and weak rocks. This is because the models where 

completely symmetrical with the exception of the vertical direction.  In the field this is hardly the 

situation and therefore the joint orientation may have an effect. The location of the joint may 
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have produce higher forces in the tunnel lining. As shown in Case study 2, the joints at the top 

and the bottom of the tunnel have higher peaks than those close to the middle of the tunnel.  

 

Weak rock with joints is less sensitive to seismicity in comparison to weak rock without joints. 

As it was shown before, the MAFL in weak rock without joints increased in the range 18-39%. 

The MAFL in weak rocks with joints did not show a clear trend like this but just fluctuated after 

superimposing the seismic loads with a small increase or decrease.  

9.2 Applications and implications for practice  

Tunnels are of definite importance to the modern society, because of all the alternatives they 

provide to solve the problems of difficult topographies and transport in crowded cites. 

Subaqueous tunnels provide a path under water. Rock tunnels may penetrate mountains to allow 

for traffic. Weak soils can be tunnelled by the Soft-ground tunnels. 

 

Generally, the design of all engineering structures including tunnels as stated in the modern 

codes such as the European code (EN, 1990) must satisfy structural resistance, durability and 

Serviceability (Palmstrom and Stille, 2007).  Modern design theories such as the ultimate limit 

state design or the serviceability limit state design may be invoked to serve in the design 

calculations.  

 

However, no sound design may start before identifying the material types, the loads and the 

purpose of the engineering structure. Unfortunately, the task of classifying the ground and 

identifying the loads is a problematic task in tunnel mechanics.  The difficulty arouses because 

the ground to be excavated, exhibits heterogeneity and anisotropy for most of the geotechnical 

properties of concern, not to mention the relative inaccessibility before the excavation takes 

place. This thesis helps in creating a better understanding of the behaviours of different rock 

masses during seismic shaking. 

 

As mentioned before, it was shown from the research conducted by Bhasin and other that for the 

weak rock masses the difference in the axial force on the lining ranges from 15% to 44% 

between the static and dynamic loading. In the opinion of researchers who conducted this 
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research, this complies with the Q-system suggestion of 25% increase in the support pressure to 

account for the seismic forces (Bhasin et al., 2006) . The updated research in this thesis confirms 

those results but suggest instead 18-39%. This is still in line with the Q system suggestion with a 

25% increase in the support pressure.  

 

The same 18-39% increase was not valid in weak jointed rocks.  In fact, it was shown that the 

several factors affected the location and the magnitude of the MAFL. Both vary due to changing 

joint parameters, seismic loads, and size of the tunnel and the orientation of the joints.   

 

The Q system stated that the deformations in strong jointed rocks are controlled by the joints, 

and that they occur along the joints.  The Q system also stated that weak jointed rocks may 

deform regardless of its joints. These statements were confirmed by the numerical results of this 

thesis.   

9.3 Suggestions for future research   
 
 
This thesis suggests new numerical simulations to study the effects of seismicity on tunnels 

excavated in rocks with and without joints. The effect of orientation was studied by three 

different orientations; horizontal, inclined with 45° and vertical. It is recommend therefore 

configuring new models to study the location and the orientation more specifically. The joint 

spacing is an important factor that is needed to be included in the simulations.  

 

New models need to be tested for different materials and different behavioural models. For 

example a models that includes two and multiple layers of different ground properties. The 

Mohr-coulomb criterion was used to describe the elastic-perfectly plastic models. Other 

criterions maybe used and other types of materials maybe introduced. 

 

The new advances in numerical modelling allow modelling to sets of joints with different 

orientations. This can be used to study more complicated joint models under the effect of 

seismicity. In this case it will be recommended to use other programmes than phase 2, because 

phase 2 is not suited to compute complex jointed rock models.  
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A. Parametric Study Experiments For tunnels without joints 
(diameters = 5, 10, 20 m) 

A.1 Simulation results  for a 5 m tunnel  

A.1.1 Strong rock 
 

 Static loading Seismic loading h=0.3& v=-0.2 

MAFL 

  

MSFL 

  

MML 

  

 

• These figues show the deformations in the tunnel lining and the direction of deformation verctors. 

• The locations of  the maximums and minimums for the MAFL and the MSFL did not change after 

superimposing the seismic load combination in strong rocks  

• The locations of the maximums of the MAFL,MSFL and MML  did not change in all cases  
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A.1.2 Weak rock 
 

 Static loading Seismic loading h=0.3& v=-0.2 

MAFL 

  

MSFL 

  

MML 

  

 

The locations of  the maximums and minimums for the MAFL , MSFL and MML change after 

superimposing the seismic load combination in weak rocks in the case of the 5meters diameter tunnel.   
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A.2 Simulation results  for a 10 m tunnel 

A.2.1 Strong rock 
 

 Static loading Seismic loading h=0.3& v=-0.2 

MAFL 

  

MSFL 

  

MML 

  

 

• The locations of  the maximums for the MSFL and the MML did not change after superimposing 

the seismic load combination in strong rocks  

• After imposing the Seismic loads the minimum and the  maximum MAFL shifted to the left and the 

right sequentially.  

• The locations of the maximims and minimums of the  MSFL stay almost unaffceted. 
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A.2.2 Weak rock 
 

 Static loading Seismic loading h=0.3& v=-0.2 

MAFL 

  

MSFL 

  

MML 

  

 

• The locations of  the maximums and minimums for the MAFL , MSFL and MML change after 

superimposing the seismic load combination in weak rocks in the case of the 10 meters diameter 

tunnel.   
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A.3 Simulation results  for a 20 m tunnel 
 

A.3.1 Strong rock 
 

 Static loading Seismic loading h=0.3& v=-0.2 

MAFL 

  

MSFL 

  

MML 

  

 

• The locations of  the maximums and the minimums  for the MSFL and the MML did not change 

after superimposing the seismic load combination.  

• After imposing the Seismic loads the  location of the maximum MAFL shifted to the left while the 

minmum location stays almost unaffected. 
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A.3.2 Weak rock  
 

 Static loading Seismic loading h=0.3& v=-0.2 

MAFL 

  

MSFL 

  

MML 

  

 

• The locations of  the maximums and minimums for the MAFL , MSFL and MML change after 

superimposing the seismic load combination in weak rocks in the case of the 20 meters diameter 

tunnel. 
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B. Parametric Study Experiments for Joints 0, 45 And 90 
 

 

The joints strength parameter was increased as follows to investigate the effect of joint strength 

on the results. (Normal stiffness=100000 MPa/m, Shear stiffness= 10000MPa/m and friction 

angle=20 degrees) 

 

B.1 Horizontal joint (0) 

B.1.1 Strong rock  
 Static loading Seismic loading h=0.3& v=-0.2 

MAFL 

  

MSFL 

  

MML 
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 Seismic loading h=0.3 Seismic loading v=-0.3 

MAFL 

  

MSFL 

  

MML 

  

No changes in the locations of the maximums and minimums of the MAFL, MSFL and the MML for the 

different combinations of seismic loads in strong rocks in the case of the horizontal joint 

B.1.2 Weak rock  
 Static loading Seismic loading h=0.3& v=-0.2 

MAFL 

  



X 
 

 

MSFL 

  

MML 

  

 

 Seismic loading h=0.3 Seismic loading v=-0.3 

MAF

L 

  

MSFL 

  

MML 
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The locations of the maximums and the minimums for the MAFL, MSFL and MML change after 

applying seismic loads in each case of loading in the case of the horizontal joint 

B.2 Vertical joint (90) 

B.2.1 Strong rock  
 Static loading Seismic loading h=0.3& v=-0.2 

MAF

L 

  

MSFL 

  

MML 
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 Seismic loading h=0.3 Seismic loading v=-0.3 

MAFL 

  

MSFL 

  

MML 

  

No changes in of the MAFL, MSFL and the MML for the different combinations of seismic loads in 

strong rocks in the case of the vertical joint. 

B.2.2 Weak rock  
 

 Static loading Seismic loading h=0.3& v=-0.2 

MAFL 
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MSFL 

  

MML 

  

 

 Seismic loading h=0.3 Seismic loading v=-0.3 

MAFL 

  

MSFL 

  

MML 
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The locations of the MAFL, MSFL and MML change after applying seismic loads in each case of loading 

in the case of the vertical joint. 

B.3 Diagonal joint (45) 

B.3.1 Strong rock  
 Static loading Seismic loading h=0.3& v=-0.2 

MAFL 

  

MSFL 

  

MML 
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 Seismic loading h=0.3  Seismic loading v=-0.3 

MAFL 

  

MSFL 

  

MML 

  

 

The locations of the MAFL do not change. The MSFL and MML change under the different combinations 

of seismic loads in strong rocks in the case of the diagonal joint. 

The locations of the MAFL occur at the point of intersection between the horizontal and vertical planes of 

weakness and the tunnel lining in strong rocks but not in the case of the diagonal joints. 
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B.3.2 Weak rock 
 Static loading Seismic loading h=0.3& v=-0.2 

MAFL 

  

MSFL 

  

MML 

  

 

 Seismic loading h=0.3 Seismic loading v=-0.3 

MAFL 
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MSFL 

  

MML 

  

The locations of the MAFL, MSFL and MML change after applying seismic loads in each case of loading 

in the case of the diagonal joint 

B.4 Summary of the results   

10 m  
diameter 

Static loading on 
strong rock 

Seismic loading 
h=0.3on strong 

rock 

Seismic loading 
v=-0.3 on 

strong rock 

Seismic loading 
h=0.3& v=-0.2 
on strong rock 

MAFL(MN) MAFL(MN) MAFL(MN) MAFL(MN) 

without 0.35678 0.36006 0.35872 0.36136 

0 0.35399 0.3533 0.35434 0.35353 

45 0.3434 0.34616 0.34671 0.34775 

90 0.36866 0.36902 0.36797 0.36857 

 

10 m  
diameter 

Static loading on 
strong rock 

Seismic loading 
h=0.3on strong 

rock 

Seismic loading 
v=-0.3 on 

strong rock 

Seismic loading 
h=0.3& v=-0.2 
on strong  rock 

MSFL(MN) MSFL(MN) MSFL(MN) MSFL(MN) 

without 0.0071068 0.0070624 0.0071393 0.0070841 

0 0.009263 0.0092123 0.0093228 0.0092522 

45 0.0075652 0.0075995 0.0075848 0.0075711 

90 0.0086138 0.0085557 0.0086585 0.0085849 
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10 m  
diameter 

Static loading on 
strong rock 

Seismic loading 
h=0.3on strong 

rock 

Seismic loading 
v=-0.3 on 

strong rock 

Seismic loading 
h=0.3& v=-0.2 
on strong rock 

MML(MN*m) MML(MN*m) MML(MN*m) MML(MN*m) 

without 0.00044546 0.00044959 0.00044277 0.00044779 

0 0.00048313 0.00048046 0.00048549 0.00048204 

45 0.00045772 0.0004618 0.00046069 0.00046378 

90 0.00046444 0.0004622 0.00046676 0.00046372 

 

10 m  
diameter 

Static loading on 
weak rock 

Seismic loading 
h=0.3on weak 

rock 

Seismic loading  
v=-0.3 on weak 

rock 

Seismic loading 
h=0.3& v=-0.2 on 

weak rock 

MAFL(MN) MAFL(MN) MAFL(MN) MAFL(MN) 

without 0.80318 0.72876 0.84632 0.8456 

0 0.72849 0.78552 0.83998 0.90194 

45 0.79327 0.77666 1.0021 0.85302 

90 0.73468 0.68232 0.87028 0.83762 

 

10 m  
diameter 

Static loading on 
weak rock 

Seismic loading 
h=0.3on weak 

rock 

Seismic loading  
v=-0.3 on weak 

rock 

Seismic loading 
h=0.3& v=-0.2 on 

weak rock 

MSFL(MN) MSFL(MN) MSFL(MN) MSFL(MN) 

without 0.036218 0.039723 0.038513 0.042701 

0 0.037726 0.040056 0.043521 0.044558 

45 0.036311 0.03709 0.04758 0.03964 

90 0.056328 0.054487 0.048825 0.04263 
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10 m  
diameter 

Static loading on 
weak rock 

Seismic loading 
h=0.3on weak 

rock 

Seismic loading  
v=-0.3 on weak 

rock 

Seismic loading 
h=0.3& v=-0.2 on 

weak rock 

MML(MN*m) MML(MN*m) MML(MN*m) MML(MN*m) 

without 0.0033413 0.0037467 0.0035367 0.0039168 

0 0.0044101 0.0037962 0.0047185 0.0045591 

45 0.0060445 0.0053596 0.005653 0.005053 

90 0.0040222 0.0040378 0.0051057 0.0034207 
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C. Case study 2 experiment (friction angle from 10° to 20°) 

C.1 Strong rock  
 Static loading Seismic loading h=0.3& v=-0.2 
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 Seismic loading h=0.3 Seismic loading v=-0.3 
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C.2 Weak rock  
 

 Static loading Seismic loading h=0.3& v=-0.2 
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