Strukturell utvikling av vestre del av Ringkøbing-Fynhøyden

Eli Brox

Cand. Scient. oppgave i Anvendt Geofysikk Institutt for Geofag Universitetet i Oslo Høst 2005

Forord

Det er med glede og stolthet jeg avslutter dette hovedfaget, men allikevel med ettertenksomhet over at dette er avslutningen på et godt samarbeid med min veileder Annik M. Myhre og med Avdelingen for Geofysikk ved Institutt for Geologi i Oslo. Under arbeidet med oppgaven har det vært mye inspirasjon å hente fra min veileder Annik M. Myhre. Våre faglige diskusjoner og vurderinger har gjort det mulig for meg å komme til de konklusjoner som oppgaven legger fram. Jeg ønsker å takke Annik M. Myhre for all den veiledningen og støtten hun har gitt og for den faglige hjelpen som har vært der under hele prosessen.

Jeg vil takke Jan Inge Faleide for de faglige ideene og forslagene som ble til stor nytte for å gi oppgaven den helhetlige geofysiske tyngden. Takk for hjelp til å skaffe et variert utvalg av seismiske data og assistanse under tolkningsprosessen.

En takk til Michel Heeremans for faglig og teknisk hjelp under hovedfaget. Hans geologiske ekspertise og forskningsarbeid fra studieområdet har vært til stor hjelp i arbeidet med denne hovedfagsoppgaven.

En spesiell takk til TGS-NOPEC for muligheten til å disponere DS-99 linjesettet som danner grunnlaget for selve oppgaven.

Annik, takk for god veiledning og måtte våre veier krysses igjen!

Oslo, 7. november 2005

Eli Brox

1	Inr	Innledning							
2	Ge	olog	isk rammeverk	9					
	2.1	Pla	tetektonisk konsolidering og basementutvikling	9					
	2.2	2.2 Stratigrafisk utvikling							
	2.	.2.1	Tidlige paleozoikum	17					
	2.	.2.2	Silur-devon	18					
	2.	.2.3	Karbon-perm	21					
	2.	.2.4	Trias	25					
	2.	.2.5	Jura	26					
	2.	.2.6	Kritt og kenozoikum	28					
3	Da	ıtakil	der og tolkningsprosedyre	31					
	3.1	Brø	mner boret i basement	33					
	3.2	Brø	ønner boret i paleozoiske og mesozoiske avsetninger	35					
	3.3	Bes	skrivelse av seismiske data	41					
	3.4	Da	akvalitet til de seismiske undersøkelsene	44					
	3.5	Dy	bdekonvertering	54					
4	То	lknir	g av seismiske data integrert med brønninformasjon og gravimetriske data	57					
	4.1	Pro	filer fra studieområdet	57					
	4.	.1.1	Regionale profiler	61					
	4.	.1.2	Lokale DS-99 profiler over høyden	66					
	4.2	Ty	ngdedata fra Ringkøbing-Fynområdet	72					
	4.3	Tel	xtonisk tolkning	77					
	4.	.3.1	Horngraben og den østlige del av Ringkøbing-Fynhøyden	78					
	4.	.3.2	Sentralgraben og den vestlige delen av Ringkøbing-Fynhøyden	82					
	4.	.3.3	Området nordvest for Ringkøbing-Fynhøyden	85					
	4.4	To	kninger av avsetningssekvenser	85					
	4.	.4.1	Basement	87					
	4.	.4.2	Paleozoiske avsetninger	88					
	4.	.4.3	Triasiske sekvenser	92					
	4.	.4.4	Jurasiske sekvenser	94					
	4.	.4.5	Avsetninger fra kritt og kenozoikum	96					

5	Stru	trukturell og geologisk diskusjon								
	5.1	Utbredelsen av den kaledonske deformasjonsfronten	99							
	5.2	Paleozoisk forkastningsmønster, strukturering og avsetninger	102							
	5.3	Tektonisk strukturering i trias	109							
	5.4	Tektonisk utvikling i jura	112							
	5.5	Avsetninger fra kritt	114							
	5.6	Utviklingen av kenozoikum	116							
6	Ko	nklusjon	119							
R	eferai	nser:	124							
A	ppend	diks I	131							
A	Appendiks II									
A	Appendiks III									

1 Innledning

Gjennom den sentrale delen av Nordsjøen strekker det seg en strukturell høyde i øst-vest retning. Denne strukturelle høyden krysser over Danmark ut i Nordsjøen og over på engelsk sokkel. Høyden kalles Mid-North Sea-Ringkøbing-Fynhøyden og den deles av gjennomskjærende grabenstrukturer i nord-syd retning. Det største grabensystemet, Sentralgraben, deler høyden i to hoveddeler, Mid-North Seahøyden i vest og Ringkøbing-Fynhøyden i øst. Ryggsystemet har et skifte i azimuth på hver side av Sentralgraben. Mid-North Seahøyden har en øst-vest retning og Ringkøbing-Fynhøyden har en vestnordvest-østsydøst retning. Ringkøbing-Fynhøyden gjennom skjæres videre av Horngraben og flere andre grabensystemer mot øst (Figur 1.1).

Hensikten med oppgaven er å øke forståelsen av den sen paleozoiske struktureringen av Ringkøbing-Fynhøyden i området mellom Sentralgraben og Horngraben. Det er lagt vekt på å få fram ny strukturell tolkning av denne delen av Ringkøbing-Fynhøyden samt en geologisk utviklingsmodell av høyden sett i sammenheng med utviklingen av områdene rundt. Oppgaven kartlegger både dannelsen og utviklingen av de paleozoiske og tidlig mesozoiske riftstrukturene. I sammenheng med den tektoniske utviklingen er det gjort en vurdering av vulkanisme i karbonperm overgangen.

Ringkøbing-Fynhøyden ser ut til å ha en liknende strukturering som de omkringliggende bassengene. Selv om det er et mindre bevaringspotensial av sedimenter og strukturelle elementer på en høyde så gjenspeiler det observerte strukturmønsteret utviklingshistorien. Både hovedtrekk og variasjoner i forkastningsmønsteret viser utviklingen av området. Strukturmønsteret av den delen av Ringkøbing-Fynhøyden som ligger mellom Sentralgraben og Horngraben vil bli kartlagt og sammenliknet med strukturer i området rundt. Det geologiske rammeverket basert på tidligere arbeider og brønninformasjon fra studieområdet legges til grunn for tolkningen av de seismiske refleksjonsdataene og brukes for å rekonstruere hendelsesforløpet for struktureringen av høyden.

Studieområdet for denne oppgaven ligger mellom 55,5°- 56° nord og mellom 5°- 6,5° øst på Ringkøbing-Fynhøyden (Figur 1.2). Grunnlaget for den strukturelle kartleggingen av området baserer seg på tolkninger av seismiske refleksjonsdata knyttet opp mot brønndata og korrelert med tidligere studier fra områdene rundt (Appendiks I, II, III). Samtidig sammenliknes de tolkede strukturelementene med gravimetriske data fra området for å øke den strukturelle forståelsen.

Figur 1.1: Strukturkart over Ringkøbing-Fynhøyden, med oppgavens område rammet inn i en boks. SNF- sveco-norvegisk frontal transversal sone, SKP-Skagerrak-Kattegat plattformen, AF-Anholt forkastningen, STZ-Sorgenfrei-Tornquistsonen, NDB-Norsk-Danskebasseng, SSF-Silkeborg-Samsø forkastningen, RFH-Ringkøbing-Fynhøyden med prekambrisk grunnfjell med tilhørighet til SN-sveco-norvegisk basement fra Balticaskjoldet, CDF-kaledonsk deformasjonsfront som i syd dreier i en østsydøst retning i den Nord Tysk-Polske forgreningen, TEF-Trans-Europeisk forkastning, TTZ-Teisseyre-Tornquistsonen, GT-Glücstadt-trau, BG-Blekinge kystgneis, SF-Svecofennian, TIB-Trans-Skandinavisk intrusivt belte, JS-Jotnian sandstein og tilhørende vulkanitter, PZ-Protogen sone, Mz- Mylonitt sone, GZ-Gøta-elv sone, DT-Dalsland forkastningen, ÅZ-Åsene skjærsone, KB-Kristiansand Bagn skjærsone, MU-Mandal Ustaoset lineament. (Berthelsen, 1988). Ringkøbing-Fynhøyden har prekambrisk basement med en tilhørighet til Balticaskjoldet. Utviklingen av kaldonidene har gitt lavgrads metamorf påvirkning fra silur helt i vest av Ringkøbing-Fynhøyden som påvist i brønner (Appendiks I). Mellom Sentralgraben og Horngraben er det en overgang mellom kaledonsk basement og prekambrisk basement (Figur 1.1). Oppgaven kartlegger disse to basement enhetenes utbredelse og den videre utviklingen og struktureringen av disse. Tidligere studier fra området har i detalj kartlagt områdene rundt studieområdet, men har et relativt grovmasket datanett over selve studieområdet på Ringkøbing-Fynhøyden (Figur 1.2). Studier fra de omkringliggende områdene rundt Ringkøbing-Fynhøyden er i denne oppgaven brukt som grunnlag for en videre tolkning og korrelering av data på høyden (Cowie et al., 1972; Ziegler, 1978; Frost et al., 1981; Best et al., 1983; Sørensen, 1986; Berthelsen, 1988; 1992; 1998; Cartwright, 1990; Gabrielsen et al., 1990; Nilsen og Japsen, 1991; Blundell og Freeman, 1992; Michelsen og Nielsen, 1993; Michelsen et al., 1994; Thybo, 1997; Vejbæk, 1997; Zhou og Thybo, 1997; Abramovitz et al., 1997A; 1997B; Pharaoh, 1999; Heeremans og Faleide, 2004; Heeremans et al., 2004A).

Det ble i oppgaven brukt flere 2D seismiske refleksjonsdatasett, tre regionale datasett, RTD-81, DCS-81 og SP-82 og et lokalt datasett DS-99 med 5x5 km grid. Tolkningen ble korrelert med brønndata fra danske brønner rundt og på Ringkøbing-Fynhøyden. Tolkningene av de seismiske dataene er også korrelert med variasjoner i gravimetriske data.

Nord og syd for Ringkøbing-Fynhøyden er det langstrakte lineamenter med en nordvest-sydøst utstrekning der det i tidlig paleozoikum har vært transversal bevegelse og forskyvning av prekambrisk basement (Berthelsen, 1988). Ringkøbing-Fynhøyden krysses helt i vest av den kaledonske deformasjonsfronten (Berthelsen, 1988; Abramovitz et al., 1997B). Ryggaksen på Ringkøbing-Fynhøyden har en tilsvarende geometri som lineamentene langs høyden. Det er antatt en senere reaktivering av de tidlig paleozoiske lineamentene (Thybo, 1997). Bevegelse langs lineamentene i nord og syd har medført at Ringkøbing-Fynhøyden har hatt en langsommere innsynkning enn de omkringliggende områdene (Figur 1.1) (George og Berry, 1997). Grabenstrukturene slik som Sentralgraben og Horngraben skjærer gjennom høyden og danner dype avsetningsbassenger. En kartlegging av forkastningsmønsteret på Ringkøbing-Fynhøyden kan vise om riftsystemet som har skapt de store grabenstrukturene har en større utstrekning og fortsetter inn over høyden. Kartleggingen kan også vise den påvirkningen de transversale lineamentene langs flankene av Ringkøbing-Fynhøyden har hatt i forbindelse med strukturering og utvikling av området

Figur 1.2: Kart der studieområdet er market med lys blå ramme og struktureringen fra tidligere arbeid er tegnet inn med sort strek (Heeremans et al., 2004A).

I kapittel 2 presenteres den generelle geologiske utviklingen av området. Både den platetektoniske og den stratigrafiske utviklingen blir presentert. Seismiske data samt dybdekonvertering og brønndata blir presentert og kvalitetsvurdert i kapittel 3. Kapittel 4 er en beskrivelse og dokumentasjon av tolkningen av seismiske data integrert med brønner. Det er også inkludert tyngdekart og beskrivelse av tyngdeanomalier på høyden. Kapittelet viser tolkninger av dataene i området hvor de ulike avsetningsstrukturene og forkastningsmønstrene legges fram. Resultatet fra tolkningen diskuteres i kapittel 5 med vekt på avsetningsmønster og strukturering. Kapittel 6 oppsummerer og konkluderer oppgaven.

2 Geologisk rammeverk

Ringkøbing-Fynhøyden har en langvarig geologisk utvikling. Høyden har prekambrisk basement og er en del av Balticaskjoldet og har blitt påvirket av den kaledonske deformasjonen og fjernpåvirket fra dannelsen av den varisiske fjellkjeden. Det har vært intense perioder med vulkanisme og med erosjon, men også med rolig termal innsynking og bassengavsetninger med en betydelig regional utstrekning fram til dagens Nordsjøbasseng.

2.1 Platetektonisk konsolidering og basementutvikling

Kontinentene rundt Nordsjøen består av gamle skjold som Baltica, Laurentia og deler med opprinnelse fra Gondwanaskjoldet. Gjennom flere orogene sykler har skjoldene blitt skjøvet mot hverandre og har inngått i fjellkjeder og superkontinenter. Basement under Nordsjøen er en sammensetning av prekambriske grunnfjellsenheter og kaledonske bergarter (Ziegler, 1990).

Figur 2.1: Tidlig paleozoisk fordeling av kontinentene Laurentia, Baltica og Gondwana på den sydlige halvkule. S er Skottland og E er England (Glennie og Underhill, 1998).

Baltica, Laurenita og Gondwana var i prekambrium deler av superkontinentet Rodinia (Berthelsen, 1992). Rodinia begynner å sprekke opp rundt 750 Ma og Laurentia og Baltica skiller lag ved havbunnsspredning. Dette dannet Iapetushavet (Figur 2.1) (Harland og Gayer, 1972; Drinkwater et al., 1996). Tornquisthavet utviklet seg mellom Baltica og Gondwana og får direkte tilnytning til Iapetushavet i siste fase av proterozoikum (Berthelsen, 1992; Glennie og Underhill, 1998).

På grunn av subduksjon av Iapetus oseanskorpe under både Laurentia og Baltica begynte disse kontingentene å bevege seg mot hverandre i siste fase av prekambrium og den nordlige armen av Iapetushavet ble lukket først. Baltica, Laurentia og Gondwana fortsetter å bevege seg mot hverandre inn i sen kambrium (Keller og Hatcher, 1999). Under Baltica har det vært subduksjon av Iapetushavet fra vest. Samtidig begynte subduksjonen av Tornquisthavskorpen fra syd under Baltica og lukking av Tornquisthavet (Figur 2.2). Allerede under lukkingen av Iapetushavet i tidlig paleozoikum kan det være skapt svakhetssoner som Viking-Sentralgraben-riftsystemet senere følger (Berthelsen, 1988).

Figur 2.2: Tidlig ordovisium hvor lukkingen av Iapetus- og Tornquist- havet pågår ved subduksjon langs alle kontinentmarginene (Glennie og Underhill, 1998).

I sen ordovisium og fram til silur subduseres oseanskorpe fra Tornquisthavet under både Balticamarginen og det mikrokontinentet som er løsrevet fra Gondwanaskjoldet (Figur 2.2; 2.3). Ved lukkingen av Tornquisthavet dannes det svakhetssoner i de transversale bevegelseslineamentene i nordvest-sydøst retning rundt Ringkøbing-Fynhøyden (Cocks og Fortey, 1982; Berthelsen, 1988; 1998). I sen ordovicium lukkes Iapetushavet i nord, men det er fortsatt subduksjon lenger syd fram til sen silur-tidlig devon (Figur 2.3).

Figur 2.3: Tidlig silur der mikrokontinent(MK) fra Gondwanaskjoldet har lukket Tornquisthavet. Det er en fortsatt subduksjon av Iapetushavet mellom Laurentia og Baltica (Glennie og Underhill, 1998).

Dannelsen av den kaledonske fjellkjeden mellom Laurentia og Baltica fulgte etter lukkingen av Iapetushavet og begynte i nord. Den utviklet seg sydover langs Laurentia-Balticamarginen fram til silur-devon overgangen (Ziegler, 1981; Berthelsen, 1988). Den kaledonske deformasjonen bøyer rundt Balticamarginen og går mot syd i en sydøstlig retning representert ved den Nord Tysk-Polske kaledonske forgreningen (Figur 2.4) (Ziegler, 1978). Den mer østlige retningen av den sydlige delen av den kaledonske fjellkjeden ble dannet ved at mikrokontinent løsrevet fra Gondwana ble presset inn mot Baltica etter lukkingen av Tornquisthavet (Frost et al., 1981; Keller og Hatcher, 1999).

Den sydlige delen av kaldonidene i den Nord Tysk-Polske forgreningen følger sen prekambriske lineamenter langs den Trans-Europeiske forkastningen og Teisseyre-Tornquistsonen i østvestlig retning (Zwart og Dornsiepen, 1978; Berthelsen, 1988). Under perioden med subduksjon og dannelse av den kaledonske fjellkjeden nordvest for området har det fra tidlig kambrium vært en transversal bevegelse langs Sorgenfrei-Tornquistsonen og en fortsatt transpressjonsbevegelse langs den Trans-Europeiske forkastningen og Teisseyre-Tornquistsonen (Figur 1.1) (Pharaoh, 1999). Basement i hoveddelen av den kaledonske deformasjonsfronten har under dannelsen av fjellkjeden vært utsatt for en høygrads metamorfose. I den Nord Tysk-Polske kaledonske delen har deformasjonspåvirkningen bare vært lavgrads metamorfose (Frost et al., 1981; England et al., 1997). Basementet under den Nord Tysk-Polske kaledonske forgreningen er datert til å være mellom 450-415 Ma (Frost et al., 1981).

Figur 2.4: Paleozoiske fjellkjedebelter i Nordsjøområdet. Det kaledonske og det varisiske foldebeltet har begge hatt en påvirkning på Ringkøbing-Fynhøyden. LBM London Brabant massiv (Ziegler, 1981).

Mid-North Sea-Ringkøbing-Fynhøyden er gjennomskåret av større nord-sydgående grabensystemer. Allerede i devon eksisterte det en proto-Sentralgraben. Det er mulig at det finnes avsetninger fra devon i eldre riftstrukturer på Ringkøbing-Fynhøyden dannet under kollaps av den kaledonske fjellkjeden (Downie, 1998; Viejo, 2002). I halvgrabenstrukturer med nord-syd retning over Mid-North Seahøyden er det funnet tykke syn-rift sedimentære avsetninger helt tilbake til devon. Nord-syd riftstrukturering fra devon har kontrollert retningen på senere tektonisk aktivitet i Ringkøbing-Fyn området. Det er reaktivering av de eldre forkastningssystemene gjennom høyden i senere perioder (Downie, 1998).

Ringkøbing-Fynhøyden krysses i vest av den Nord Tysk-Polske deformasjonsfronten (Figur 1.1; 2.4) (Frost, 1977; Berthelsen, 1988; Michelsen et al., 1992) slik at den sydvestlige delen av høyden består av basement påvirket av kaledonsk metamorfose påvist i brønnene Per-1 og Ugle-1 (Larsen, 1971; 1972; Frost et al., 1981) (Appendiks I).

I området rundt den nordøstlige delen av Ringkøbing-Fynhøyden er det dype brønner ned til basement med dateringer til prekambrisk alder i Ibenholt-1, Grindsted-1 og Glamsbjerg-1 (Appendiks I). Den kaledonske deformasjonsfronten går syd for disse brønnene. Den ytre grensen av Balticaskjoldet går gjennom Ringkøbing-Fynhøyden i syd og følger inn i Teisseyre-Tornquistsonen (Berthelsen, 1988).

Figur 2.5: Paleogeografisk tidssnitt fra omkring 354 Ma som viser karbonbasseng i området syd for Ringkøbing-Fynhøyden (RF), med en begynnende oppbygging av den varisiske fjellkjeden i syd og en ekstensjon i forlandsbassenget opp mot høyden (Maynard et al., 1997).

Syd for Ringkøbing-Fyn området har den varisiske orogenesen blitt konsolidert under sen karbon (Figur 2.4). Den varisiske fjellkjeden har hatt en fjernpåvirkning på Ringkøbing-Fyn området (Ziegler, 1981). Det har i overgangen karbon-perm i nordvest Europa vært en tektonisk påvirkning i forbindelse med den varisiske fjellkjedens kollaps. Dette har gitt ekstensjon i det varisiske forlandsbassenget syd for Ringkøbing-Fynhøyden. Samtidig har det vært en relativ hevning av den strukturelle Mid-North Sea-Ringkøbing-Fynhøyden (Figur 2.5) (Glennie og Underhill, 1998; Viejo et al., 2002).

Rundt overgangen mellom karbon-perm var det en utstrakt magmatisk aktivitet i sydlige Nordsjøen (Stemmerik et al., 2000; Heeremans og Faleide, 2004; Heeremans et al., 2004A). Den store magmatiske aktiviteten er karakteristisk for mye av utviklingen av nordvest Europa i sen karbon-perm (Larsen 1972; Heeremans et al., 2004B). Dette kan settes i sammenheng med en begynnende ekstensjon av området (Figur 2.5; 2.6) (Thybo, 1997; Viejo et al., 2002).

Nord-syd ekstensjon av det varisiske forlandsbassenget vestsydvest for Ringkøbing-Fynhøyden (Figur 2.5) sammen med påvirkning fra den varisiske fjellkjededannelsen øst for Teisseyre-Tornquistsonen har gitt en øst-vest tektonisk aktivitet i området (Figur 2.6) (Pharaoh, 1999). Denne tektoniske aktiviteten har fulgt den Trans-Europeiske forkastningen og Sorgenfrei-Tonrquistsonen med transversal bevegelse. Det har vært transpressjon inn mot Teisseyre-Tornquistsonen som har vært et senter for den store magmatiske og vulkanske aktiviteten i området (Figur 2.6).

Det har under denne tektoniske aktive perioden i overgangen mellom karbon-perm vært en høy magmatisk aktivitet inn mot et senter i Teisseyre-Tornquistsonen (Thybo, 1997). Den transversale bevegelsen langs den Trans-Europeiske forkastningen og langs Sorgenfrei-Tornquistsonen samt Silkeborg-Samsø forkastningen har påvirket området mellom med tverrgående riftutvikling og begynnende Horngrabendannelse (Figur 2.6). Blokkene i Ringkøbing-Fynhøyden er rotert av den motsatte bevegelsesretningen på transversal lineamentene rundt høyden slik at det inn mot Teisseyre-Tornquistsonen er utviklet asymmetriske riftstrukturer som i Horngraben (Thybo, 1997).

Syd for den Trans-Europeiske forkastningen mellom den varisiske fjellkjeden og Ringkøbing-Fynhøyden har det på grunn av transtensjonsbevegelsen blitt dannet et elongert og dypt akkomodasjonsrom i det sydlige permbassenget (George og Berry, 1997). Etter den tektoniske og magmatiske aktiviteten har området vært utsatt for termal innsynking (Figur 2.6; 2.7) (Vejbæk, 1998; Stemmerik et al., 2000).

Figur 2.6: Sen karbon til tidlig perm tektonikk med sidelengs bevegelse av området mellom den Trans-Europeiske forkastningen og Sorgenfrei-Tornquistsonen fra Teisseyre-Tornquistsonen i øst (Thybo, 1997). HG-Horngraben, RFH-Ringkøbing-Fynhøyden, CDF-Kaledonsk deformasjonsfront, TEF-Trans-Europeisk forkastning, TTZ-Teisseyre-Tornquistsonenen, SSF-Silkeborg-Samsø forkastningen, STZ-Sorgenfrei-Tornquistsonen og AF-Anholt forkasningen.

Innsynkingen av Mid-North Sea-Ringkøbing-Fynhøyden har vært mindre enn innsynkingen i resten av det Norsk-Danskebassenget. Mid-North Sea-Ringkøbing-Fynhøyden har dermed fått en relativ hevning i forhold til områdene rundt. Denne relative hevningen har ført til at høyden delte permbassenget i en nordlig og en sydlig del (Stemmerik et al., 2000). Den store innsynkningen og forkastningsaktiviteten i området foran den varisiske fjellkjeden har gitt rom for betydelige sedimentinnfyllinger av kontinental opprinnelse (Figur 2.5) (Maynard et al., 1997; George og Berry, 1997).

Det sydlige permbassenget har en asymmetrisk form inn mot den Trans-Europeiske forkastningen. Sedimenttilførselen er fra den varisiske fjellkjeden i syd, og det er også en mulighet for sedimenttransport fra Mid-North Sea-Ringkøbing-Fynhøyden (George og Berry, 1997). Nord for Ringkøbing-Fynhøyden dannes et nordlig mindre permbasseng. Det nordlige permbassenget har fått sedimenttilførsel både fra nord og fra Ringkøbing-Fynhøyden, og fra området syd for høyden gjennom proto-grabenstrukturer (Downie, 1998).

Figur 2.7: I sen karbon er det en termal innsynkning av området nord for den varisiske fjellkjeden. Etter den tektoniske aktiviteten og vulkanismen gis det ytterligere rom for avsetning av sedimenter. Ringkøbing-Fynhøyden, RF. Området med termal innsynkninger er markert med tette prikker (Maynard et al., 1997).

Den magmatiske aktiviteten fra karbon-perm var starten på utviklingen av en større regional ekstensjon og oppsprekking av Pangaea. Denne tektoniske aktiviteten etterfølges av termal innsynkning regionalt (Viejo et al., 2002). Lokalt i tilknytning til det varisiske forlandsbasseng begynte en ekstensjon allerede i karbon (Figur 2.5; 2.6).

Syd i den sentrale delen av Nordsjøen har det vært en begynnende vulkansk aktivitet i overgangen mellom karbon og perm (Michelsen og Nielsen, 1993; Heeremans et al., 2004A; 2004B). I forbindelse med den magmatiske og tektoniske aktiviteten utviklet også Osloriften seg (Olaussen et al., 1994). En ekstensjon av området vest for Norge skapte riftstrukturer og utviklet seg til en videre generell ekstensjon av Nord-Atlanteren (Ziegler, 1982). Det fortsetter videre med riftaktivitet inn i trias og fram til sen jura-tidlig kritt (Badley et al., 1988; Ziegler, 1990; Gabrielsen et al., 1990). Horngraben og deler av Sorgenfrei-Tornquistsonen har utviklet seg i trias med store deposentre av triasiske sedimenter (Best et al., 1983; Sørensen, 1986; Fisher og Mudge, 1998). Sentralgraben og Vikinggraben har hatt en senere utvikling hovedsaklig i sen jura og inn i kritt (Møller, 1986).

Gjennom kritt er det en betydelig termal avkjøling og innsynkning av Nordsjøen i tillegg til halokinetisk tektonikk av mobile saltavsetninger avsatt i permbassengene. I den sydlige delen av Nordsjøen har det også i sen kritt vært kompresjonstektonikk og dannelse av kompresjonsstrukturer i kritt avsetningene (Oakman og Partington, 1998). Den store termale innsynkningen av Nordsjøen har fortsatt videre gjennom kenozoikum (Michelsen et al., 1994; 1997; Bowman, 1998).

2.2 Stratigrafisk utvikling

Hovedmengden av sedimenter avsatt på Ringkøbing-Fynhøyden er avsatt under den termale innsynkningen fra tidlig kritt og fram til dagens Nordsjøbasseng. Før dette har det vært perioder med stor erosjon av Nordsjøområdet der en strukturell høyde som Ringkøbing-Fynhøyden blir ekstra utsatt. Strukturelle feller på høyden kan bevare eldre sedimentavsetninger gjennom erosjonsperiodene. På Ringkøbing-Fynhøyden kan det være bevart paleozoiske sedimenter avsatt på prekambrisk basement i øst (Figur 2.1). Over den vestre delen av høyden med kaledonsk basement vil det kunne være bevart sedimenter fra sen silur og yngre (Berthelsen, 1988).

2.2.1 Tidlige paleozoikum

Det eldre superkontinentet Rodinia har under sin oppsprekking gitt en økt produksjon av osean skorpe og med dette en transgresjon inn over kontinentalmarginene i kambrium. Baltica lå i de tidlige delene av paleozoikum nærmere ekvator med et varmt og humid klima. Transgresjonen inn over store deler av marginen til Baltica har gitt en betydelig karbonatproduksjon (Glennie og Underhill, 1998). Det varme og humide klima har vedvart gjennom lukkingen av Iapetushavet. På den nordøstlige delen av Ringkøbing-Fynhøyden over det Baltiske grunnfjellet vil det være muligheter for bevarte sedimentavsetninger i forbindelse med den kambriske transgresjonen (Figur 2.1). Marine avsetninger fra kambrium, ordovicium og silur samt kontinentale klastiske sedimentavsetninger fra øvre silur nedre devon er avsatt i det kaledonske forlandsbasseng og inn over Balticamarginen. Ved gunstige bevaringsforhold på Ringkøbing-Fynhøyden kan avsetninger fra tidlig paleozoikum være bevart i det kaledonske forlandsbassenget.

Under dannelsen av den kaledonske fjellkjeden har det i syd vært et skifte fra hovedkompresjonsretningen til mer øst-vest transpressjon og transversal bevegelse langs de sen prekambriske lineamentene (Zwart og Dornsiepen, 1978). Skiftet i deformasjonsretning inn mot den Nord Tysk-Polske kaledonidegrenen fra hovedretningen av deformasjonsfronten har gitt en svakere metamorfose fra overgangen silur-devon. Denne lavere grad av metamorf påvirking har muliggjort bevaring av eldre strukturelementer i den Nord Tysk-Polske kaldonidegrenen (Frost et al. 1981). Både transversalbevegelsen i nordvest-sydøst retning rundt Ringkøbing-Fyn området (Mogensen, 1994) og nord-syd gående rifter i området (Heeremans og Faleide, 2004) kan ha skapt bevaringsmuligheter for eldre sedimentavsetninger.

2.2.2 Silur-devon

I silur har den kaledonske deformasjonen dreid inn over den vestre delen av Ringkøbing-Fynhøyden. Dette har gitt en metamorf påvirkning av området. Under dannelsen av den kaledonske fjellkjeden i silur har det vært lite potensial for bevaring av sedimenter. Derimot har kollaps av den kaledonske fjellkjeden i devon gitt mulighet for avsetning og bevaring av sedimenter i området.

Langs marginen mellom Laurentia og Baltica er det dannet sedimentasjonsområde i devon (Figur 2.8). I syd i et proto-Sentralgraben riftsystem er det fra midtre til sen devon avsatt marine sedimenter (nederst Figur 2.8). Det strekker seg en marin arm gjennom proto-Sentralgraben fra proto-Tethyshavet i syd og inn over de sentrale delene av Nordsjøen. Denne marine facies opp mot sydvest Storbritannia gjennom proto-Sentralgraben er sandsteinsavsetninger med noe skifer og kalkstein (nederst Figur 2.8; 2.9). Bortsett fra denne marine armen i proto-Sentralgraben er det kontinentale sedimentavsetninger fra devon. Over Ringkøbing-Fyn området er det hovedsakelig

Old Red sandstein avsatt i et arid kontinentalt miljø, med aeoliske dyner, alluviale vifter og lakustrine avsetninger (Figur 2.9) (Downie, 1998).

Figur 2.8: Øverst vises et forenklet distribusjonskart (Ziegler, 1990) av devonsedimenter i studieområdet og rundt Nord-Atlanteren. Nede til venstre vises utstrekningen av midtre til sen devonavsetninger i de sentrale delene av Nordsjøen og gjennom proto-Sentralgraben (CG). Nede

til høyre vises fordelingen av de ulike sen devonavsetningene i de sentrale delene av Nordsjøen, Storbritannia (UK) og Midland Valley (MV) (Downie, 1998).

De kontinentale Old Red avsetningene fra devon ligger stort sett inkonformt over silur eller eldre bergarter der dette er bevart. Det har vært perioder med stor utbredelse av devonavsetninger avbrutt med betydelig erosjon og opphold i sedimentasjonen slik at Old Red sandstein er inndelt i en nedre, midtre og øvre del med regional utstrekning (Figur 2.9). Devonske bassengstrukturer med størst utstrekning i Nordsjøområdet har opprinnelse i forbindelse med ekstensjonstektonikk drevet av gravitativ utjevning i det kaledonske forlandet på grunn av kollaps av den kaledonske fjellkjeden (Downie, 1998).

Figur 2.9: Kronostratigrafi i sentrale deler av Nordsjøen og over de sydlige delene av Storbritannia (Downie, 1998). Søylen til venstre markerer den sentrale Nordsjøen mot Sentralgraben.

I den sydlige og den sentrale delen av Nordsjøen har devonavsetningene en utstrekning i nordvest-sydøst som er perpendikulær til avsetningenes utstrekning nord i Nordsjøen. Den sydlige delen av devonavsetningen følger utstrekningen av den Nord Tysk-Polske grenen av fjellkjeden (Figur 2.8) og har tykke avsetninger langsmed riftstrukturene i en nord-syd retning i proto-Sentralgraben og lengre syd (Downie, 1998).

2.2.3 Karbon-perm

Det kontinentale varme klimaet fra devon fortsetter i karbon-perm med en fortsettelse av Old Red kontinentale sandsteinsavsetninger (Figur 2.7) (Heeremans et al., 2004B). Under dannelsen av den varisiske fjellkjeden lengre syd har Ringkøbing-Fynhøyden vært utsatt for en relativ hevning som tidvis har gitt erosjon og opphold i avsetning utover i siste delen av karbon.

Figur 2.10: Diagram over den sentrale delen av Nordsjøens karbon-perm stratigrafi relatert til tektoniske hendelser (Heeremans et al., 2004B).

Tidlig i karbon inntil den påbegynnende sutureringen av den varisiske fjellkjeden var det i syd hav med marine devon-karbon avsetninger (Maynard et al., 1997). Vest for Ringkøbing-Fynhøyden i det varisiske forlandsbassenget var det tidlig i karbon ekstensjonsaktivitet. Det varisiske forlandsbassenget i syd fylles med sedimenter og gir et smalt dypt basseng med dype marine avsetninger. Dette strekker seg mot nord over proto-Sentralgrabenområdet og inn på engelsk sokkel.

I forlandsbassenget mot Ringkøbing-Fynhøyden i syd er det grunne avsetninger med en blanding av karbonater og klastiske sedimenter (Figur 2.10) (Maynard et al., 1997). Kollaps av den kaledonske fjellkjeden har gitt mulighet for sedimenttilførsel fra nord over Skottland, Nord-England og Mid-North Seahøyden og inn mot Ringkøbing-Fynhøyden (Maynard et al., 1997). Kollaps av kaldonidene kan ha gitt strukturelle avsetningsfeller rundt proto-Sentralgraben (Figur 2.8).

Figur 2.11: Pre-perm geologisk kart med suturering av den varisiske fjellkjeden i syd og dannelse av et forlandsbasseng foran fjellkjeden og nordover (Ziegler, 1982; 1990; Downie, 1998).

Nord for den varisiske fjellkjeden har det vært perioder med marine avsetninger som har avtatt fram mot den vulkanske aktiviteten i overgangen karbon-perm (Figur 2.11). Mot siste del av karbon har det hovedsaklig vært avsatt kontinentale lakustrine og klastiske avsetninger i Ringkøbing-Fyn området. Det varisiske forlandsbassenget har et akkomodasjonsrom som grunner opp mot Ringkøbing-Fynhøyden. Den tidligere ekstensjonen av området vest for Ringkøbing-Fynhøyden etterfølges av en kortere periode med innsynkning og oversvømte sletter som har gitt store kullavsetninger i Storbritannia (Figur 2.10). Store mengder med klastiske sedimenter er tilført fra den varisiske fjellkjeden i sydvest og inn mot Ringkøbing-Fynhøyden (Figur 2.11) (Maynard et al., 1997).

I sen karbon er det en øst-vest transversal bevegelse i eldre prekambriske lineamenter i Ringkøbing-Fyn området (Figur 2.6). Denne transversale bevegelsen har en tilknytning i øst til dannelsen av den varisiske fjellkjeden (Michelsen et al., 1992; Pharaoh, 1999). Det har vært sidelengs bevegelse fra sydøst langs øst-vest lineamentene rundt Ringkøbing-Fynhøyden. Denne bevegelsen kan ha skapt lokale avsetnings og bevaringsrom på og rundt høyden (Figur 2.6) og er en viktig faktor i dannelsen av det dype sydlige permbassenget (George og Berry, 1997). Senteret av den transversale bevegelsen i øst har vært et stort vulkansk senter og det har vært mye vulkansk aktivitet i området i overgangen karbon-perm (Figur 2.12). Denne vulkanske aktiviteten øst for Ringkøbing-Fynhøyden og den transversale bevegelsen rundt høyden kan ha startet en rifting av Nordsjøen med en begynnende rifting av Horngraben (Thybo, 1997). Den store tektoniske aktiviteten sammen med den høye magmatiske aktiviteten i overgangen karbon-perm har medvirket til den regionale relative hevningen og den utstrakte erosjonen av området ved dannelsen av Saalian inkonformiteten.

I overgangen karbon-perm var det stor vulkansk aktivitet både på og rundt Ringkøbing-Fynhøyden med avsetninger av både vulkanitter og vulkanoklaster (Figur 2.12). Den tektoniske aktivitet og vulkanismen i overgangen karbon-perm etterfølges av en utstrakt erosjon i store deler av Nordsjøområdet. Det har vært en reduksjon i dannelse av avsetningsrom i perm som har medført stor erosjon i midtre perm (Figur 2.10) (Heeremans og Faleide, 2004; Heeremans et al., 2004B). Mengden av magmatiske avsetninger i karbon-perm overgangen var betydelige og de er bevart over større områder gjennom erosjonsperioden i Saalian. Over høyden er det også bevart Rotliegende vulkanitter i mindre mengder i riftstrukturer. (Heeremans et al., 2004B).

Figur 2.12: Kart over sedimentære basseng og magmatiske senter i overgangen mellom karbonperm (Heeremans et al., 2004A).

Etter hevningen i midtre perm og dannelsen av Saalian inkonformiteten begynte en termal innsynkning og kontinentale sedimenter avsettes (Figur 2.10). Ringkøbing-Fynhøyden har under denne termale avkjølningen hatt en langsommere innsynkning enn områdene rundt. Av den grunn har den stått som en barriere mellom det nordlige og det sydlige permbassenget (George og Berry, 1997; Maynard et al., 1997). Den termale innsynkningen har gitt avsetning og bevaring av kontinentale Red Beds etterfulgt av store saltavsetninger i bassengene rundt høyden. I perm var det et arid klima i Ringkøbing-Fyn området med aeoliske og wadi avsetninger.

Etter som innsynkningen av området fortsatte og det relative havnivået steg, har det mot slutten av perm i de dypere delene av bassengene vært perioder med marin tilknytning og avsetning av saline innsjøer. Dette har gitt store Zechstein evaporitt avsetninger (Figur 2.10). Ringkøbing-Fynhøyden har stått for høyt slik at det ikke er Zechsteinsalt avsatt på høyden (Vejbæk, 1997). Rundt høyden i grabenstrukturene er det saltstrukturer og det er store saltavsetninger i det sydlige og nordlige permbasseng. Disse går over til karbonatavsetninger under grunnere forhold opp mot høyden.

Ringkøbing-Fynhøyden har bidratt med klastiske erosjonsprodukter ut i bassengene siden den har hatt en langsommere innsynking og har stått opp som et positivt element (Viejo et al., 2002). Den videre tektoniske aktiviteten av området i overgangen perm-trias er starten på oppsprekkingen av Pangaea og en fortsatt tektonisk strukturering og innsynkning av Ringkøbing-Fynområdet (Sørensen, 1986; Thybo, 1997).

2.2.4 Trias

Den termale innsynkningen avtok i tidlig trias. De marine avsetningene går gradvis over til mer kontinentale avsetninger rundt Ringkøbing-Fynhøyden (Vejbæk, 1998; Fisher og Mudge, 1998). Deposenteret i bassengavsetningene følger de store øst-vest lineamentene og riftstrukturene (Michelsen, 1997). Det har vært avsatt og bevart triasiske sedimenter både i Sentralgraben og Horngraben. Horngraben har hatt en stor triasisk riftaktivitet og har en mektig trias lagpakke bevart. Horngraben har en strukturelt asymmetrisk bassengform (Figur 2.6). Horngraben har de mektigste trias avsetningen bevart i syd mot det sydlige permbassenget. Den nordlige delen av grabenstrukturen er asymmetrisk dyp mot øst mens den sydlige har en omvendt struktur (Thybo, 1997).

Series	Stage		er Moray Firth	Western Platform	Central North Sea	Central Graben	Norwegian-Danish Basin	Denmari	,				
	RHAETIAN		STOTFIELD CALCRETE FM		Marmark Cat	Joshua Mdst Mbr	04000000504	GASSUM FM	Sad				
		1			Marnock Sst	Josephine Sst Mbr	GASSUM FM	VINDING FM	NO O				
ER TRIASSIC	NORIAN	HERON GROUP	LOSSIEHEAD FM			Jonathan Mdst Mbr		ODDESUND FM	duor				
Iddn	CARNIAN			Skagerrak Mdst			TØNDER	JYLLAND GF					
MIDDLE TRIASSIC	LADINIAN		HERON	HERON	HERON	HERON			Skagerrak Sst	Sst Mbr 0	FM	FALSTER FM	GROUP
	ANISIAN						Judy Sst Mbr		ØRSLEV	LOLLAND			
ER TRIASSIC	SCYTHIAN		HOPEMAN SANDSTONE FM		SMITH BANK FM			BUNTER SST FM	ON GP				
LOWE							FM	BUNTER SHALE FM	BACT				

Figur 2.13: Trias lithostratigrafi fra den sentrale Nordsjøen (Fisher og Mudge, 1998).

Trias avsetningene i Sentralgraben kiler ut mot nord. Avsetningene fra tidlig trias i grabenstrukturene er av Bunterformasjonen. Gjennom tidlig trias avsettes sandstein med fluvial, lakustrin og aeolisk opprinnelse. I Sentralgraben er det fra trias kun de eldre triasiske avsetningene som er bevart. I Horngraben er det også bevart trias avsetninger opp til Falsterformasjonen over de områdene som har stor ekstensjon (Clausen og Pedersen, 1999). De triasiske avsetningene har et økende bevaringspotensiale mot øst. I Danmark er det bevart triasiske avsetninger fra hele perioden (Figur 2.13) (Sørensen, 1986).

2.2.5 Jura

I Horngraben og over Ringkøbing-Fynhøyden er det ikke bevart noen nedre og midtre jura avsetninger. I Sentralgraben er det bare bevart en mindre lagpakke fra nedre og midtre jura i syd som tynner ut mot nord (Figur 2.14). Selv om det i Sentralgraben har vært riftaktivitet i jura, så har det i nedre, midtre og inn mot øvre jura også vært stor erosjon. I jura var det vulkansk oppdoming nordvest for Ringkøbing-Fynhøyden. (Michelsen et. al., 1992; Michelsen og Clausen, 2002). Oppdomingen og høydens langsomme termale innsynkning har bidratt til en stor erosjon av høyden (Ziegler, 1990). Over store deler av Ringkøbing-Fynhøyden har erosjonen gått ned til perm og på enkelte områder helt ned til basement (Michelsen et al., 1992).

Figur 2.14: Lithostratigrafisk søyle fra jura (Richards et al., 1993).

Det oppdomete senteret kollapser i øvre jura og en transgresjon kommer inn over Nordsjøområdet fra nord. Den har stor utstrekning med dannelse av anoksiske forhold i de dype riftbassengene (Michelsen et al.,1992; Michelsen og Nielsen, 1993). Riftaksen forskyver seg mot vest og danner ekstensjon av proto-Nord-Atlanteren (Underhill, 1998).

I Sentralgraben er det en betydelig innsynkning slik at det i sen jura er avsatt marine shelfavsetninger i grabenstrukturen (Michelsen et al., 1992). Sentralgraben har tykke avsetninger

bevart fra øvre jura mens det i Horngraben bare er bevart en tynn øvre jura sekvens. På Ringkøbing-Fynhøyden er det avsatt varierte mektigheter av øvre jura, men det er ikke spesielt tykke lag. Den betydelige utstrekningen av transgresjonen er et resultat av en begynnende regional termal innsynkning av Nordsjøområdet. Denne termale innsynkingen fortsatte i kritt.

2.2.6 Kritt og kenozoikum

Nordsjøen har i jura-kritt overgangen hatt en betydelig rift med etterfølgende termal innsynkning. I tidlig kritt avtok den tektoniske aktiviteten i Nordsjøen (Ziegler, 1990). Det har i det Norsk-Danskebassenget vært et grunt havområde gjennom mesozoikum (Vejbæk, 1998).

Figur 2.15: Lithostratigrafisk søyle fra kritt der Offshore Denmark og UK Central trough søylene har tilsvarende avsetninger fra kritt som finnes på Ringkøbing-Fynhøyden og ut i Sentralgraben, dette er markert lys grønn (Oakman og Partington, 1998).

Tidlig kritt har en stor bassengutstrekning inn over kontinentene rundt Nordsjøen. Dette har gitt avsetning av pelagiske sedimenter på Ringkøbing-Fynhøyden (Oakman og Partington, 1998). Nedre kritt har hatt et varmt klima. Mergel ble avsatt i topp Cromer knoll gruppen i store deler av Nordsjøbassenget (Figur 2.15). Denne mergelen har liten tilførsel av hemipelagisk og klastisk materiale fra landområdene og gir et høyt seismisk utslag. I kritt har det varme klimaet samt den store overflateutstrekningen av kritthavet gitt en stor organisk produksjon i vannmassene. Denne produksjonen har ført til mektige kalkavsetninger i kritt bassenget. Overgangen mellom nedre og øvre kritt dannes av Cromer knoll mergelen som med sitt sterke utslag og kontinuerlig utstrekning kan følges over et større område av Nordsjøen (Oakman og Partington, 1998).

Havnivået har hatt en hevning og bassenget har fortsatt med en innsynkning inn i øvre kritt. Det er i øvre kritt avsatt pelagiske kalkavsetninger med et høyt innhold av coccolithskall. Denne kalkavsetningen danner chalk gruppen og har stor tykkelse og regional utstrekning (Figur 2.15) (Michelsen, 1997; Michelsen et al., 1998).

Den regionale hevningen av Skandinavia i kenozoikum har sammen med videre innsynkning av Nordsjøen gitt tykke klastiske kenozoiske avsetninger i Ringkøbing-Fynområdet og større deler av Nordsjøbassenget (Bowman, 1998). I tidlig kenozoikum ble det dannet erosjonsstrukturer i øvre kritt avsetninger i det Norsk-Danskebassenget og på Ringkøbing-Fynhøyden. Erosjonskanalene stammer fra et fall i havnivået og en tilting av området mot vestsydvest på grunn av den begynnende landhevningen.

I Sentralgraben og området rundt er det i sen paleocen og eocen avsatt klinoformstrukturer av tynne hemipelagiske leir- og mergellag. Disse danner en tykk avsetningspakke som oppbygges til øvre eocen med sedimenter tilført fra nordøst i området nord for Ringkøbing-Fynhøyden (Figur 2.16) (Michelsen et al., 1994; Huuse et al., 2001).

Fra oligocen og til midten av pleistocen bygger avsetningsstrukturene seg i en flere kilometer tykk lagpakke på Ringkøbing-Fynhøyden. Avsetingene går over i et kystnært avsetningsmiljø fra hemipelagiske til pro-delta og videre til delta-avsetninger som prograderer ut mot sydvest. Gjennom oligocen har vanndybden økt sentralt i Nordsjøen og klinoformene prograderer ut i Nordsjøen med sedimenttilførsel fra landområdene i nordøst og i øst (Figur 2.16) (Huuse et al., 2001).

Figur 2.16: Kenozoisk enhetsinndeling markert med beige fra Michelsen et al. (1998) som er brukt som inndeling i strukturering av seismiske undersøkelser (Huuse et al., 2001).

3 Datakilder og tolkningsprosedyre

På Ringkøbing-Fynhøyden er det i denne oppgaven brukt et lokalt grid med 2D seismikk, DS-99 (Figur 3.1) og tre regionale seismiske undersøkelser fra et større område, RTD-81, DCS-81 og SP-82 (Appendiks II; III). Undersøkelsene knyttes til brønnene på høyden og til brønner i området rundt (www.geus.dk). Tolkningen og kartleggingen av eldre strukturelementer over den vestre delen av Ringkøbing-Fynhøyden er gjort på grunnlag av de seismiske refleksjonsdatasettene sammen med tyngdeanomali og brønndata fra området (Appendiks I).

Figur 3.1: Oversiktskart over hovedforkastninger i området (tynn sort strek). Sentrale seismiske linjer over Ringkøbing-Fynhøyden mellom Sentralgraben og Horngraben. DS-99 undersøkelsen har grønn strek og regionale linjer skutt nær dype brønner er markert blå. Kaledonsk deformasjonsfront (stiplet sort) avgrenser kaledonsk basement (rosa) fra Abramovitz et al. (1997A).

Brønnene som er brukt ligger spredt og brønndata knyttes sammen med de regionale seismiske linjene. Regionale linjer som krysser gjennom brønner er tolket inn mot høyden fra flere kanter for å kunne få gode kronostratigrafiske tolkninger av sedimentene på Ringkøbing-Fynhøyden. Linjene er også tolket gjennom den lokale DS-99 undersøkelsen slik at tolkninger av disse skal ha en større sikkerhet selv om de ikke direkte kan knyttes til mer enn to brønner (Figur 3.1). Brønnene gir en verdi på tykkelsen av lagpakkene i brønnlokasjonen både i toveis gangtid og i dyp, og kan korreleres med de kryssende seismiske snittene. De eldre avsetningene i dypet kan ikke knyttes sammen mellom brønnene, men de viser hvilke avsetninger som kan være bevart.

I Nordsjøen er det særlig boret mange letebrønner i områder som har vært av interesse for hydrokarbonutvinning slik som i Sentralgraben. Områdene rundt Sentralgraben har en betydelig mindre tetthet av brønner. På Ringkøbing-Fynhøyden mellom Sentralgraben og Horngraben er det bare boret to brønner, Per-1 og Ugle-1. I Sentralgraben er det få brønner som går dypere enn mesozoikum slik som Q-1. Det er boret noen brønner langs med høyden (Elna-1, L-1, D-1, Ibenholt-1) i nord og enkelte i Horngraben(S-1, R-1, C-1) (Figur 3.1; Tabell 3.1) (Appendiks I).

	Quarternary		Quarternary Tertiary		Cretaceous		Jurassic		Triassic		Permian Zechstein Group		Permian Rotliegende Group		Precambrian Caledon	
	TWT	Depth m.below msl.	TWT	Depth m.below msl.	TWT	Depth m.below msl.	TWT	Depth m.below msl.	TWT	Depth m.below msl.	TWT	Depth m.below msl.	TWT	Depth m.below msl.	TWT	Depth m.below msl.
C-1	36	27	-	159	-	657	1081	1286	1151	1373	1863	2529	2138	3161	-	-
D-1	66	49	-	301	1239	1205	1391	1511	1416	1543	1501	1687	2252	3321	-	-
Elna-1	85	63	-	340	2350	2474	-	Non		Non	2496	2790	2500	2798	-	-
Ibenholt-1	53	39	-	252	-	1479	1520	1701	1559	1749	1696	1954	1910	2491	1931	2533
L-1	74	55	-	323	-	2069	2147	2377	2176	2416	2101	2455	2236	2553	-	-
Per-1	~49	35	-	382	2069	2119	-	Non		Non		Non		Non	2370	2730
Q-1	81	60	-	595	2962	3033	3347	3967	-	4201	-	4419	-	-	-	-
R-1	50	37	-	168	-	905	1202	1262	1230	1303		Non	1693	1998	-	-
S-1	41	30	-	367	1037	991	1395	1519	1433	1574	-	-	-	-	-	-
Ugle-1	~73	53.1	-	329	2091	2148	2231	2416		Non		Non		Non	2518	2998

Tabell 3.1: Brønner der eldre trias eller paleozoiske avsetninger er boret i området rundtRingkøbing-Fynhøyden (Appendiks I; www.geus.dk).

Brønnene på og rundt Ringkøbing-Fynhøyden er satt på positive strukturer, ofte i tilknytning til forkastninger. Når brønnene er satt på lokale høyder vil det i bassengene rundt være avsetninger som ikke er tilstede i brønnene. De er enten fjernet ved erosjon eller ikke avsatt. Tidsepokene som er representert i brønndata og det avsetningsmiljøet som finnes i brønnene kan være typiske i en viss utstrekning rundt brønnene. Den store spredingen mellom brønnene gir en generell god beskrivelse av avsetingsmiljøet regionalt.

For at brønnene skal kunne benyttes i tolkningen må beliggenheten være nær Ringkøbing-Fynhøyden og være boret ned til trias eller eldre bergarter (Tabell 3.1). Ved å ha brønner som går igjennom eller tett opp til de seismiske undersøkelsene kan avsetningsstrukturer følges i refleksjonsmønsteret. Dateringer av sekvenser i brønnene gir en mulighet for en kronostratigrafisk inndeling i lag og datering av reflektorer. Ved bruk av brønndata er det gjort en vurdering av den videre utviklingen ut fra brønnens beliggenhet. I forbindelse med korrelasjon av seismiske data og brønninformasjon er det lagt størst vekt på de brønnene som kan knyttes direkte til seismiske snitt.

3.1 Brønner boret i basement

Det er på dansk sokkel og i Danmark boret få brønner til basement. De brønnene som er boret i basement er brukt for å kartlegge den mulige utstrekningen av en kaledonsk deformasjonsfront. Brønnene er enten boret i basement med kaledonsk metamorf påvirkning, eller i prekambrisk basement fra Balticaskjoldet.

Av de brønnene som går ned i prekambrisk basement ligger Ibenholt-1 nord for Ringkøbing-Fynhøyden og Frederikshavn-1, Glamsbjerg-1 og Grindsted-1 øst for studieområdet. Per-1 og Ugle-1 er boret i kaledonsk basement vest på Ringkøbing-Fynhøyden. Lengre vest, på Mid-North Seahøyden er P-1 brønnen også boret i kaledonsk basement. I brønner sydøst for studieområdet er det boret i kaledonsk metamorft basement i Borg-1 og Løgumkloster-1 (Tabell 3.2) (Appendiks I).

Brønnene Per-1 og Ugle-1 (Figur 3.2; Tabell 3.2) er boret i kaledonsk metamorf basement med en lavgrads silur metamorf påvirkning (Frost et al., 1981). Kaledonsk basement i den vestre delen av Ringkøbing-Fynhøyden ved Per-1 og Ugle-1 kan være i grenseområdet for utbredelsen til den kaledonske deformasjonsfronten. Brønnene Per-1 og Ugle-1 bekrefter at deformasjonsfronten går inn på Ringkøbing-Fynhøyden (Appendiks I).

Tabell 3.2: Brønner boret til basement rundt og på Ringkøbing-Fynhøyden som er med på å avgrense utstrekningen av den kaledonske deformasjonen på høyden (Appendiks I; www.geus.dk).

	Kaledor	nsk basement		Prekambrisk basement						
Vest Ringk Fynh	for/på øbing- øyden	Sydøst for studieområdet		Nord studieoi	for nrådet	Øst for studied	området			
	55° 47'		55° 2'		56° 23'		57° 26'			
Dar 1	30"N	. Borg-1	57"N	Ibenholt-	26"N	Frederikshavn-	16"N			
1 01-1	5° 5'		8° 48'	1	5° 58'	1	10° 31'			
	1"Ø		23"Ø		29"Ø		16"Ø			
	55° 43'		55° 2'		I		55° 17'			
Ugla 1	15"N	Løgumkloster-	33"N			Glamshiara 1	33"N			
Ogic-1	5° 12'	1	8° 57'			Glainsbjerg-1	10° 7'			
	10"Ø		4"Ø				47"Ø			
	56° 2'						55° 45'			
P-1	4"N					Grindsted-1	27"N			
	3° 46'	1				Simusted 1	8° 49'			
	10"Ø						24"Ø			

Borg-1 og Løgumkloster-1 brønnene sydøst for studieområdet (Tabell 3.2) bekrefter at den kaledonske deformasjonsfronten i syd har en utstrekning mot øst. Nord og øst for disse to brønnene er det i Grindsted-1 og Glamsbjerg-1 brønnene funnet prekambrisk basement slik at avgrensingen av den kaledonske deformasjonsfronten er ganske nøyaktig plassert sydøst for studieområdet (Tabell 3.2; Appendiks I).

Figur 3.2: Ugle-1 brønnen til venstre og Per-1 til høyre går begge ned til kaledonsk deformert basement (www.geus.dk).

3.2 Brønner boret i paleozoiske og mesozoiske avsetninger

De eldste sedimentære avsetningene i området er funnet øst for Ringkøbing-Fynhøyden og er av kambrisk alder (Terne-1; Slagelse-1) (Sørensen, 1986). Avsetninger fra karbon er funnet i et større område og i flere bønner øst for Horngraben (Nøvling-1; Rønde-1; Terne-1; Slagelse-1), men det er også funnet avsetninger fra karbon i brønner vest for Ringkøbing-Fynhøyden med underliggende kaledonsk basement (39/2-1; P-1; Gert-1). Syd for høyden i området med kaledonsk påvirkning (Borg-1) er det også funnet avsetninger fra karbon (Appendiks I).

Av brønnene brukt i forbindelse med tolkningen av seismiske data i nær tilknytning til Ringkøbing-Fynhøyden (Tabell 3.1) er de fleste boret i Rotliegende avsetninger. Brønnene som går ned i Rotliegende avsetninger viser at disse inneholder magmatisk materiale der radiometriske K/Ar dateringer viser perm alder. Det er i 39/2-1 brønnen vest for Ringkøbing-Fynhøyden påvist forkastningsaktivitet i karbon-perm overgangen som har forkastet lavaer fra denne vulkanske perioden. Vulkanittene må derfor være eldre enn perm alder. I følge Larsen (1972) og Heeremans et al. (2004B) er de magamtiske Rotliegende avsetningene eldre enn det K/Ar dateringen viser. Det radiogene argonet er tapt under en senere oppvarmingsfase i perm. Antagelig har denne oppvarmingen vært en mindre regional oppvarming (150-200°C) som har påvirket de tidligere avsatte eruptiver (Larsen, 1972; Heeremans et al., 2004B). Den vulkanske perioden har i dette området vært i overgangen mellom karbon og perm. Vulkansimen kan følges i brønner fra Danmark, over Ringkøbing-Fynhøyden og videre inn på engelsk side (Figur 2.12).

I Horngraben er det boret to brønner ned i Rotliegende avsetninger fra overgangen karbon-perm (R-1; C-1; Figur 3.3). R-1 brønnen sentralt i Horngraben i overgangssonen fra den nordlige til den sydlige delen ender i basaltisk lava fra Rotliegende gruppen. Over eruptivene er det avsatt kiler fra nedre perm med klastiske syn-rift-sedimenter. Mot nordvest i Horngraben er C-1 boret inn i pyroklastiske Rotliegende avsetninger i overgangen mellom karbon-perm (Vejbæk, 1990). Det er funnet tykke Rotliegende eruptiver i den tyske delen av sydlige Horngraben. S-1 brønnen på dansk side i den sydlige delen av Horngraben er bare boret ned i trias sedimenter. Antagelig finnes det Rotliegende eruptiver dypere enn S-1 er boret fordi det er funnet karbon-perm eruptiver rett syd for S-1. Helt syd i den sydlige Horngraben er det boret 80 meter inn i basaltiske lavaer, vulkansk breksjer og tuff (Best et al., 1983).

Brønnene nord for Ringkøbing-Fynhøyden og brønnene i Sentralgraben viser lik bevaring av borete paleozoiske avsetninger. Det er i denne delen boret i trias og Rotliegende avsetninger, men her har det ikke vært triasisk riftaktivitet som i Horngraben. Nord for Ringkøbing-Fynhøyden er L-1, D-1 og Ibenholt-1 boret ned i Rotliegende avsetninger. Videre mot vest er også Elna-1 boret til Rotliegende avsetninger. Syd for Elna-1 inn i Sentralgraben er Q-1 brønnen boret ned i omarbeidet vulkansk materiale fra Rotliegende (Figur 3.1; Tabell 3.1). Brønnene nord for Ringkøbing-Fynhøyden (Elna-1, L-1 D-1 og Ibenholt-1) har alle Zechstein gruppen bevart. Q-1 brønnen nord i Sentralgraben har ikke Zechstein avsetninger (Figur 3.4; 3.5).

Lithostratigraphy (Groups)

Тор	Bottom	Unit
ft. below ref. level		
212.0	2010.0	Post Chalk Group
2010.0	3828.9	Chalk Group
3829.0	4341.0	L. Cretaceous units
4341.0	4627.0	Jurassic units
4341.0	4627.0	U. Jurassic undiff
4627.0	8418.9	Triassic units
6535.9	8418.9	Bacton Group
8418.8	10492.8	Zechstein Group
10492.8	10525.8	Rotliegende Group

Chronostratigraphy (Periods)

Тор	Bottom	Unit
ft. belo	w ref. level	
212	600	Quaternary
600	2232	Tertiary
2232	4341	Cretaceous
4341	4627	Jurassic
4627	8418	Triassic
8418	10526	Permian

Lithostratigraphy (Groups)

oup
units
ndiff
roup
· · · · · · · · · · · · · · · · · · ·

Chronostratigraphy (Periods)

Тор	Bottom	Unit
ft. below ref. level		
206	635	Quaternary
635	3055	Tertiary
3055	4226	Cretaceous
4226	4360	Jurassic
4360	6641	Triassic
6641	8865	Permian

Lithostratigraphy (Groups)

Тор	Bottom	Unit
ft. below ref. level		
195.1	3348.0	Post Chalk Group
3348.0	4570.0	Chalk Group
4570.0	5082.0	L. Cretaceous units
5082.0	5262.0	Jurassic units
5082.0	5262.0	U. Jurassic undiff
5262.0	12511.9	Triassic units
8840.9	12511.9	Bacton Group

Chronostratigraphy (Periods)

Top	Bottom	Unit
ft. below ref. level		
195	1107	Quaternary
1107	3347	Tertiary
3347	5082	Cretaceous
5082	5262	Jurassic
5262	12512	Triassic

Figur 3.3:Brønner i Horngraben, fra nord til venstre mot syd til høyre (www.geus.dk).

I R-1 brønnen er det ikke funnet Zechstein salt fra perm. Det er lite tegn til at det har vært avsatt salt sentralt i Horngraben. Det er funnet saltstrukturer i den sydlige delen og på den nordøstlige flanken av den nordlige delen. I den nordøstlige delen av Horngraben i C-1 brønnen er det store saltavsetninger bevart. Saltet i C-1 brønnen ble avsatt i det nordlige perm bassenget. S-1 brønnen er ikke boret tilstrekkelig dypt for å finne saltavsetninger (Figur 3.3).

Triasiske sedimenter er boret både i den nordlige og i den sydlige delen av Horngraben. I den nordlige delen er det funnet eldre og yngre triasiske avsetninger i brønnene C-1 og R-1. I den sydlige delen er det i S-1 brønnen mektige yngre triasiske avsetninger over eldre trias. S-1 brønnen ender i Bunter formasjonen fra Bacton gruppen og denne er til stede i C-1 og R-1 også (Figur 3.3) (Vejbæk, 1990). Fra midtre trias i brønnene C-1 og S-1 er det bevart avsetninger fra Ørslev formasjonen. Det er bevart avsetninger fra Falster formasjonen i C-1, R-1 og S-1. Fra øvre trias er det i C-1 og R-1 bevart Tønder formasjonen og Oddesund formasjonen er bevart i C-1 og S-1 (Appendiks I).

I Sentralgraben i Q-1 brønnen er det avsetninger fra Bacton gruppen. Disse triasiske avsetningene tynner og er borte i Elna-1 lenger nord. Fra Elna-1 og østover i brønnene nord for Ringkøbing-Fynhøyden kommer de triasiske avsetningene tilbake. Det er kun observert trias avsetning i bunnen av L-1, østover i D-1 og Ibenholt-1 brønnene øker tykkelsen av Bacton gruppen fra eldre trias (Figur 3.4; 3.5). Videre øst i Horngraben øker mektigheten av trias avsetningen. I øst og i syd av Horngraben er både eldre og yngre trias bevart.

Sentralgrabenbrønnene har vært utsatt for erosjon i trias avsetningene slik at det her ikke er bevart yngre trias avsetninger. Sentralgraben har en liknende triasisk avsetning bevart som nord for Ringkøbing-Fynhøyden, og ikke som i Horngraben der det er syn-rift triasiske avsetninger. De triasiske avsetningene fra brønnene i Sentralgraben tynner mot det jurasiske erosjonssenteret i nordvest. Brønnene nord for Ringkøbing-Fynhøyden tynner også mot dette jurasiske erosjonssenteret (Appendiks I).

Avsetningene fra jura i brønnene i Horngraben har en jevn tykkelse på omtrent 100 meter. Det er bare jura avsetninger fra øvre jura periode i hele Horngraben (Figur 3.3).

Figur 3.4: Brønner fra Sentralgraben og nord for Ringkøbing-Fynhøyden (www.geus.dk).

Figur 3.5: Nord for Ringkøbing-Fynhøyden er Ibenholt-1 boret i prekambrisk basement (www.geus.dk).

Brønndata fra Sentralgraben har, som i Q-1, en tykk lagpakke fra øvre jura (Figur 3.4). Riften i Sentralgraben har hatt en aktivitet gjennom hele jura slik at det har blitt bevart store øvre jura sedimenter. Vest på Ringkøbing-Fynhøyden er det to brønner Per-1 og Ugle-1. Ugle-1 har en øvre jura lagpakke representert. I Per-1 brønnen er ikke jura bevart, her ligger kritt avsetningene rett oppe på kaledonsk deformert basement. Øvre jura avsetninger fra Ringkøbing-Fynhøyden varierer i tykkelse, slik at det i Ugle-1 finnes øvre jura avsetninger mens like i nærheten i Per-1 er det ikke øvre jura avsetninger (Figur 3.2).

Brønnene rundt Ringkøbing-Fynhøyden har krittavsetninger med en mektighet på omtrent 300 meter. I de store grabenstrukturene som i Sentralgraben og Horngraben er det muligheter for kompaksjon av mektige sedimentbasseng og halokinetisk bevegelse. Dette har gitt mektigere krittavsetninger enn på høyden som i Q-1 og S-1. Krittavsetningene i brønnene er kalkavsetninger med bare en tynn nedre krittlagpakke med en vesentlig større chalk avsetning over (Appendiks I).

De kenozoiske avsetningene mellom Sentralgraben og Horngraben viser i brønner en variasjon i mektighet fra to kilometer i Sentralgraben til en kilometer i Horngraben av klastiske sedimenter (Appendiks I).

3.3 Beskrivelse av seismiske data

Det er brukt flere ulike undersøkelser av todimensjonale multikanal seismiske refleksjonsdata i denne oppgaven. De seismiske refleksjonsdataene kan deles i to hovedgrupper, de regionale datasettene RTD-81, SP-82 og DCS-81 og det lokale datasettet DS-99. Det lokale datasettet har tett grid over den vestre delen av Ringkøbing-Fynhøyden mellom Sentralgraben og Horngraben der de regionale undersøkelsene kun består av et grovt grid (Figur 3.6) (Appendiks III). DS-99 linjene er samlet inn i et nord-syd og et øst-vest grid (Figur 3.1). De regionale datasettene skrår over høyden og ut i bassengene rundt og kan knyttes til brønnene Q-1, Elna-1, L-1, D-1, Ibenholt-1, R-1, C-1, S-1 og på høyden til Per-1 og Ugle-1 (Tabell 3.1; Appendiks I; III).

De regionale linjesettene RTD-81, SP-82 og DCS-81 er samlet inn tidlig på 80-tallet og dekker store deler av dansk sokkel. RTD-81 er samlet inn av GECO i samarbeid med NOPEC i 1981 og prosessert av GECO i 1981-82. DCS-81 undersøkelsen er skutt av Western Geophysical i 1981 og prosessert av Western Geophysical i 1982. SP-82 undersøkelsen er samlet inn av Seismic Profilers i samarbeid med Merlin Geophysical og prosessert av Merlin Geophysical i 1982. RTD-81, SP-82 og DCS-81 finnes kun i papirformat for denne oppgaven (Figur 3.6) (Appendiks III). DS-99 linjesettet er gitt til Universitetet i Oslo fra TGS-NOPEC. Dette datasettet har hoveddekning mellom 5° og 6°30′ øst og fra 55°30′ til 56° nord (Figur 3.1). Datasettet ble samlet inn av NOPEC International for TGS NOPEC og prosessert i 1999 av TGS NOPEC. Alle datasettene har likt innsamlingsoppsett og er skutt med en singel kilde og har en fold på 60 og kabellengde på 2950 m.

Universitetet i Oslo mottok DS-99 datasettet på digitalt format for tolkning på Kingdom suite versjon 7.4. Kingdom er et interaktivt tolkningsverktøy som bruker Microsoft operativsystem som plattform. Selv om DS-99 linjene er i et 2D grid, så kan de øvre sedimentære sekvensene med en kontinuerlig utvikling over hele gridet interpoleres mellom linjene. En interpolering av en tolket reflektorhorisont gir et inntrykk av avsetningsstrukturens helling i området. En interpolering av de sedimentære sekvensene bør ikke gjøres hvis sekvensene har liten utstrekning og stor strukturell variasjon i forhold til gridrutene. Småskala variasjoner i horisontene vil forsvinne i interpoleringen.

Figur 3.6: De regionale linjene er markert med ulike farger: RTD-81-brune, SP-82-blå og DCS-81-grønne. Området på Ringkøbing-Fynhøyden hvor DS-99 undersøkelsen ligger er markert med lys blå.

De regionale linjene er sammenliknet med arbeider av Møller (1986), Vejbæk (1990; 1997), Michelsen et al. (1994), George og Berry (1997) og Huuse et al. (2001) og knyttet til brønndata rundt høyden (Tabell 3.1) (www.geus.dk). Linjer som krysser hverandre er korrelert og tolket opp mot og over Ringkøbing-Fynhøyden. På Ringkøbing-Fynhøyden er tolkningene på de regionale linjene korrelert inn til DS-99 linjene. Korreleringen med flere brønner og tidligere arbeider gir en god kronostratigrafisk sikkerhet og en større kontroll av tolkningene i studieområdet (Appendiks I).

Seismisk data med regional utstrekning rundt Ringkøbing-Fynhøyden ble benyttet under tolkingen for å få en helhetlig forståelse av området og for å sette de strukturelle elementene på Ringkøbing-Fynhøyden inn et større strukturelt bilde. Eldre strukturering kan ofte vises i yngre sedimentære avsetninger og forkastningsmønster. En del sentrale linjer som krysser Ringkøbing-Fynhøyden er beskrevet og vist i denne oppgaven.

I området rundt Ringkøbing-Fynhøyden svekkes mye av refleksjonsmønsteret fra de paleozoiske avsetningene på grunn av sterke reflektorer i lagpakken over. Der det er påviste paleozoiske bassengavsetninger er ofte den seismiske avbildningen av disse sekvensene vanskelig å fange opp (Viejo, 2002). Sterke reflektorer som bunn av chalk tar opp mye av den seismiske energien. Dypere strukturer og eldre avsetninger vil ha mindre akustisk impedansekontrast ettersom de fleste bergartene har en økning i hastighet og tetthet i dypet. Mye tektonisk aktivitet og vulkanisme varmer opp og forstyrrer de avsatte sekvensene, slik at disse kan være vanskelige å følge over et større område.

Saltets bevegelse i bassengene rundt kompliserer mulighetene til kronostratigrafisk å følge reflektorene mot og over Ringkøbing-Fynhøyden. Selv om ikke alle de dype avsetningene kommer klart fram i de seismiske profilene så kan forkastningsmønsteret og struktureringen av Ringkøbing-Fynhøyden skape et bilde av mulige avsetningsområder.

Mindre lokale riftbassenger på Ringkøbing-Fynhøyden vil ikke kunne tidskorreleres med brønndata når brønnen ikke er boret i selve avsetningen. Mindre og større riftstrukturer som har en liknende utstrekning kan ha en felles opprinnelse. Hvis det seismiske signalet i bassengstrukturen har en likhet i karakter i forskjellige områder kan disse tolkes til likhet i avsetning og lithostratigrafisk innehold.

3.4 Datakvalitet til de seismiske undersøkelsene

Det er stor forskjell mellom seismiske datasett samlet inn til forskjellig tid da det har vært en enorm utvikling innen seismisk innsamling og prosessering fra 80-tallet og fram til i dag. RTD-81, SP-82 og DCS-81 som alle er fra tidlig i 80-årene har et mer diffust og støyende bilde enn DS-99 undersøkelsen. Ved at de eldre datasettene i denne oppgaven kun er tilgjengelig som papirkopi er muligheten begrenset for å variere skalaen på snittene. Forkjeller i amplitudeutslag kan ikke framheves ved variasjon i fargeskala og intensitet slik det er mulig med moderne tolkningsverktøy og digitale data. Med det digitale DS-99 linjesettet er det mulig på en interaktiv tolkningsstasjon å variere skala, farger og intensitet på varierende amplitudeutslag ved tolkning av forskjellige fenomener.

Figur 3.7: Oversiktskart som viser seismiske linjer hvor den seismiske kvaliteten kan sammenliknes. DS-99 101 og 107 linjene er markert med tekst i vest. SP-82 36 linjen er markert med oransje og RTD-81 30 linjen med lilla. Maksimal utstrekning av den kaledonske deformasjonsfront fra Abramovitz et al. (1997A).

Ved å sammenlikne de forskjellige datasettene kommer det tydelig fram forskjeller i det seismiske signal/støyforholdet (Figur 3.7; 3.8; 3.9). Forbedringer i signal/støyforhold ved nyere prosesseringsmetoder gir en bedre seismisk oppløsning. Tettere seismisk datadekning og flere kontroller mot andre typer av data gir sikrere og mer entydig tolkning. Kontroll av seismiske tolkninger på den enkelte linje ved hele tiden å tolke i løkker, gir en sjekk og kvalitetssikring på at det er reelle reflektorer som videreføres.

Figur 3.8: Seismisk snitt av DS-99 107 linjen der innrammet område er forstørret og sammenliknet med RTD-81 linje 30 i figur 3.9. Intrusjoner markert med røde piler på hver side av et større forkastningsplan. Kryssende RTD-81 linje 30 markert med blå strek. Topp og bunn krittreflektorer markert lys og mørk grønn og Bougueranomali markert rosa. Brønnen Per-1 er markert med stjerne☆.

Støy i det seismiske bildet varierer mellom de forskjellige undersøkelsene. Det varierer også fra linje til linje i en og samme undersøkelse. Ved å bruke flere forskjellige datasett kan den varierende støyen mellom linjesettene fanges opp og en unngår å tillegge støyen noen reell betydning. Hvis tolkningen i tillegg knyttes til andre typer av data, som her med brønn- og tyngde-data integrert med andre arbeider fra områdene rundt, så gir dette en sikker og god tolkning.

Figur 3.9: Til venstre DS-99 del av linje 107 hentet 1 km øst for Per-1. Til høyre RTD-81 et tilsvarende utsnitt fra 30 linjen der vestre del er 1km syd for DS-99 linje107 og utsnittet er mindre enn 500 meter øst for Ugle-1. Referansereflektor, grønn, er bunn nedre kritt. Linjene er her vist med vest mot venstre. Rød pil markerer intrusjoner.

De dype reflektorene på Ringkøbing-Fynhøyden har ofte en kort og mindre kontinuerlig utstrekning. Ved først å tolke reflektorer i den øvre lagpakken så gir dette en bedre vurdering av de dype reflektorene. En jevn kontroll av linjene inn mot brønndata fra flere retninger gir en kronostratigrafisk sikker tolkning av de seismiske datasettene. En sammenlikning av den seismiske avbildningen fra ulike linjer inn til en brønn gir en god vurdering av utstrekningen til lithostratigrafien funnet i brønnen, og kan brukes til å forklare det seismiske mønsteret rundt brønnen.

DS-99 linjene sammenliknet med de regionale linjesettene viser at DS-99 linjene har et sterkere og klarere refleksjonsmønster fra de enkelte linjene(Figur 3.9). I de eldre regionale undersøkelsene er det enkelte linjesett som skiller seg ut som bedre enn andre. SP-82 har en bedre seismisk oppløsning enn de andre seismiske undersøkelsene fra denne tidsperioden brukt i denne oppgaven. Særlig i de områdene der flere av linjesettene har linjer nær hverandre er det lagt større vekt på linjene med det beste signal/støyforholdet (Figur 3.7).

RTD-81 30 linjen krysser over DS-99 107 linjen i en spiss vinkel (Figur 3.7; 3.8). De to snittene kan følges over det samme området med kort avstand mellom linjene inn mot Coffee Soil forkastningen på flanken til Sentralgraben. Ved en sammenlikning av disse linjene (Figur 3.9) er det en klar forskjell i kvaliteten på de seismiske signalene. RTD-81 30 linjen viser at under bunn kritt reflektoren har DS-99 107 linjen en bedre oppløsning som får fram strukturelementer som det eldre datasettet ikke viser.

RTD-81 30 linjen og SP-82 36 linjen følger hverandre parallelt nordøst mot R-1 brønnen med mindre enn 500 m avstand (Figur 3.7). Både RTD-81 30 linjen og SP-82 36 linjen krysser DS-99 101 linjen i samme område. Strukturene i dypet er ikke tydelige under de sterke reflektorene fra kenozoikum og kritt. Den dypeste tolkningen som er mulig av RTD-81 30 linjen i dette området er fra overgangen jura-kritt. Her viser RTD-81 30 linjen mange jevne multippelreflektorer som strekker seg over et uklart mønster (Figur 3.10). Det strukturelle mønsteret under jura-kritt overgangen er uryddig med en del støy og svak refleksjonsenergi sammen med høy multippelenergi over.

Figur 3.10: RTD-81 30 linjen som krysser DS-99 101 linjen (markert grønn). RTD-81 30 linjen går parallelt med SP-82 36 linjen med mindre enn 500 m avstand. Oransje markerer topp chalk, rosa markerer bunn kritt, stiplet blå markerer bunn jura og gul strek markerer intrusjoner og vulkanitter.

I krysningen mellom DS-99 101 linjen og RTD-81 30 linjen kan tolkninger fra 101 linjen korreleres med de svakere reflektorene i RTD-81 30 snittet. Flere kryssende linjer over en linje med dimmet refleksjonsmønster kan muliggjøre en tolkning over linjen. Uten korrelasjoner er det vanskelig å følge dypere strukturering langs en linje som RTD-81 30 linjen. SP-82 linje 36 (Figur 3.11) krysser også DS-99 101 linjen (Figur 3.7). I SP-82 36 linjen kommer de dypere strukturene godt fram. Over disse strukturene har man innslag av gjennomskjærende multippelreflektorer nedover i dypet, men fortsatt er det mye energi fra reelle reflektorer (Figur 3.11).

Figur 3.11: SP-82 linje 36 som går parallelt med RTD-81 30 linjen med mindre enn 500 meters avstand og krysser DS-99 101 linjen (markert grønn). Oransje markerer topp chalk, rosa markerer bunn kritt, stiplet blå markerer bunn jura og gul strek markerer intrusjoner og vulkanitter.

Et dypere forkastningsblokkmønster med vulkansk karakter over blokkene kommer klart fram på SP-82 36 linjen. De dypere forkastningsblokkene vises like godt på SP-82 36 linjen (Figur 3.11) som på DS-99 101 linjen (Figur 3.12) selv om det er noe mindre støy og lite multippelenergi i DS-99 linjene.

DS-99 linjene har lite multippelstøy (Figur 3.12; 3.13) i forhold til de eldre datasettene (Figur 3.10; 3.11). Støyforholdet i DS-99 er betydelig forbedret gjennom en bedre prosessering.

Forkastningsstrukturene og magmatiske intrusjoner kommer klarere fram i DS-99. Der det er lite refleksjonsmønster i dypet er det heller ikke mye multippelrefleksjoner, men bare en matt karakter i seismikken slik som inne i strukturelle høyder med lite intern akustisk impedansekontrast.

Figur 3.12: DS-99 linje101 krysses av RTD-81 30 linjen markert med lilla og SP-82 36 linjen markert med oransje. Bunn kritt markert rosa, topp chalk markert grønn, stiplet blå bunn øvre jura, gul strek ved vulkanitter og intrusjoner (oversiktskart, Figur 3.7).

DS-99 linjesettet har også god avbildning over områder med mye variasjon i seismisk karakter. Der det er et stort skifte i seismisk karakter fra områder med sterk refleksjonsenergi til homogene områder med lite seismisk refleksjon, er det klare avbildninger i skiftet i overgangen mellom strukturene.

Figur 3.13:Til venstre er DS-99 linje 104 og til høyre DS-99 linje 108. linjene viser en ensartet kvalitet på seismikken og den seismiske karakteren varierer lite i områder med en lik geologi. Rosa linje er tyngdeanomali. Grønne linjer markerer topp chalk og topp nedre kritt.

DS-99 linjenes gode signal/støyforhold gjør at både grunne og dype strukturer vises (Figur 3.13). De sterke dype elementene som kommer fram i de ulike undersøkelsene får en klar og veldefinert avgrensing i DS-99 linjene. DS-99 linjene viser både store forkastningssystem som kan følges fra linje til linje, og småskala forkastninger langs reflektoren i den enkelte linje. Med dataene på digital form kan både mindre lokale og storskala strukturelle elementer studeres i detalj.

DS-99 datasettet har gjennomgående lik seismisk oppløsning og kvalitet i hele området (Figur 3.13) mens de regionale linjene kan variere mye fra en del av en linje til en annen. Langs RTD-81 30 linjen er det stor variasjon av den seismiske kvalitet langs linjen (Figur 3.14). Linjen har en bedre oppløsning over høyden ved Sentralgraben enn ved Horngraben. I RTD-81 30 linjen fra høyden mot Coffee Soil forkastningen vises enkelte eldre strukturer sammen med multippelstøy (Figur 3.9). Øst på høyden mot Horngraben langs RTD-81 30 linjen forsvinner omtrent alle tegn til dypere struktureringer og det er bare multippelstøy som vises (Figur 3.10).

Variasjon innad i de regionale linjene kan gjøre at enkelte deler av en linje inneholder mye informasjon, men å videreføre denne informasjonen til et større område blir umulig gjennom de delene av linjen som har et dårligere signal/støyforhold. Troverdigheten til informasjonen i den del av linjen som er god svekkes når en halvdel av linjen bare viser støyelementer. Når det er mye støy og støynivået er varierende i datasettet vil strukturelle høyder som ikke har et indre mønster lett kunne oppfattes som støy.

Det er stor forskjell mellom de enkelte regionale linjesettene. SP-82 linjene har god oppløsning internt og mulighet til tie mellom linjene. Dette linjesettet skiller seg ut med en bedre kvalitet enn DCS-81 og RTD-81 linjesettene. RTD-81 30 linjen og SP-82 36 linjen (Figur 3.7) viser et refleksjonsbilde fra det samme området på høyden fra Sentralgraben og fram til R-1 brønnen i Horngraben (Figur 3.14). SP-82 36 linjen gir et klarere bilde og viser bedre den dype struktureringen på Ringkøbing-Fynhøyden. RTD-81 30 linjen viser bare et klart bilde ned til bunn kritt og enkelte dype strukturer i kort avstand fra Sentralgraben (Figur 3.14). Enkelte av RTD-81 linjene slik som linje 30 skiller seg ut med et dårlig signal/støyforhold, men det er stor variasjon mellom linjene i settet. DCS-81 linjene er middels gode linjer med lik oppløsning fra linje til linje, men har ingen linjer som krysser over Ringkøbing-Fynhøyden i øst-vest retning.

S

Figur 3.14: Til venstre SP-82 linje 36 og til høyre RTD-81 linje 30 som følger hverandre med under 500 m avstand over høyden (oversiktskart, Figur 3.7). Snittene har sydvest ned og nordøst opp. Beige strek markerer midt miocen, bunn sekvens 7 fra figur 2.16. Lys grønn strek topp chalk og mørk grønn strek topp nedre kritt. Bunn kritt er markert med lys blågrønn strek i figuren til venstre og bunn jura i Sentralgraben er markert med rød strek. Gul strek markere intrusjoner og vulkanitter fra Rotliegende.

3.5 Dybdekonvertering

Seismiske snitt i toveis gangtid gjenspeiler variasjoner i hastighet og tetthet ut fra områdets geologi. Overganger mellom forskjellige avsetningsmiljø kan følges og tolkes på de seismiske snittene. Basseng og høydekonfigurasjoner kommer ikke alltid fram i det sanne forhold i toveis gangtid. For å få fram reelle dyp og riktig strukturering på tolkningene kan lagstrukturene dybdekonverteres ut fra hastighetsverdier til de enkelte lagene. Enkelte av de sentrale seismiske snittene er digitalisert til profiler og legges fram i oppgaven kapittel 4.1. Profilene kan eventuelt konverteres fra sekunder i toveis gangtid til dyp i kilometer. Under konverteringen brukes representative hastigheter for de enkelte sekvensene. Hastighetsverdiene for sekvensene er hentet fra brønner i et stort område rundt Ringkøbing-Fynhøyden (Appendiks I).

Det er et fåtall av brønnene som er boret i basement i nærheten av Ringkøbing-Fynhøyden. Det er også få brønner boret i de paleozoiske avsetningene i nær tilknytning til høyden. Det er kun mindre variasjoner mellom hastighetene i de eldre og dype bergartene. Dette fordi hastighetsvariasjonen utjevnes mellom forskjellige bergarter ved kompaksjon. Dypere og eldre sedimentære bergarter får hastigheter nært opp mot det vulkanitter og metamorfe bergarter har. For å kunne skille de eldre bergartene fra hverandre i en dybdekonvertering på høyden trengs det hastigheter lokalt. Brønndata med gode hastighetsmålinger er blitt brukt sammen med en generell vurdering av lithologien for at dybdekonverteringsverdiene skal være mest mulig troverdige. Nøyaktigheten av hastighetsverdier på høyden for paleozoiske og tidlig mesozoiske lag er antagelser ut fra brønner der disse lagene vanskelig kan følges kontinuerlig inn på høyden slik at det gir høy usikkerhet ved konvertering av profilene.

Metamorf og prekambrisk basement, eruptiver og intrusjoner har høye og ganske like hastighetsverdier (Abramovitz et at., 1997B). En økning i hastighetene i de sedimentære lagpakkene på grunn av det lithologiske innhold som salt, karbonat og skifer samt kompaksjon i dypet gir en høy hastighet, nesten like høy som i basement. Lagene i dypet på høyden viser etter konvertering til kilometer en økning i tykkelse i forhold til toveis gangtid (Figur 3.15; 3.16). Overgangen fra toveis gangtid til kilometer i profilene gir de seismiske profilene et blokkmønster med brattere forkastningsplan. Sp 43 + 47

Figur 3.15: Profil av Sp-82 43 og 47 linjene i toveis gangtid.

Sp 43+47

Figur 3.16: Dybdekonvertert profil av Sp-82 43 og 47 linjene.

En varierende tykkelse av karbon-perm eruptiver og intrusjoner, sammen med variasjoner i avsetninger i subbassenger på høyden kan skape variasjoner i hastighet. Eldre sedimentære

bergarter fra paleozoikum og magmatiske avsetninger kan ha en hastighet tett opp mot hastigheten i basement og kan vanskelig skilles fra hverandre. Skiftet i basement fra kaledonsk metamorf til prekambrisk kan ha en hastighetsvariasjon, men denne er også ganske liten da de begge generelt har høy hastighet. En liten variasjon i hastighet fra kaledonsk metamorf basement til prekambrisk grunnfjell er også vanskelig å skille på det seismiske snittet (Abramovitz et al., 1997B).

Variasjonen i det strukturelle mønsteret ved konverteringen fra tid til dyp over Ringkøbing-Fynhøyden er liten (Figur 3.15; 3.16). De seismiske dataene viser at de både før og etter en konvertering fra toveis gangtid i sekund (Figur 3.15) til dyp i km (Figur 3.16) er svært like i hovedtrekkene. Mot dypet blir lagene tykkere fordi hastigheten til bergartene øker med dyp. Saltstrukturene blir også noe vertikalt strukket ved at saltet har en høyere hastighet enn sedimentlagene rundt. Nedre kritt og chalk lagpakken har i dette området en høyere hastighet enn de kenozoiske bergartene og får dermed en relativ økning i vertikal retning (Japsen, 2000). Chalk har en ganske jevn tykkelse over høyden og variasjonen strukturelt fra toveis gangtid til dyp for hele kenozoikum-mesozoikum lagpakken er av en lik karakter etter konverteringen. Den relative økningen i hastighet i avsetningene fra kritt perioden skyldes det høye innholdet av kalk og den kompakte strukturen i enkelte lag. Det er noe variasjon i tykkelse av jura lagene på høyden. Selve jura lagpakkens maksimale tykkelse er omtrent to hundre meter og gir lite utslag ved konvertering.

De dype riftbassenger som Sentralgraben og Horngraben med lave hastigheter i motsetning til Ringkøbing-Fynhøydens høye hastigheter medfører ved konvertering at bassengene blir sammenpresset og høyden blir strukket i vertikal retning. Eldre sedimenter i riftbassengene vil likevel få en strekking i forhold til de yngre sedimentpakkene fra kenozoikum på grunn av økning av hastighet nedover i dypet (Japsen, 2000; Appendiks I).

Da det er få nærliggende brønner som data kan kontrolleres mot og konvertering bare gir meget små strukturelle variasjoner internt over Ringkøbing-Fynhøyden er det valgt å legge vekt på profilene i toveis gangtid. Ved å bruke profilene i toveis gangtid vil eventuelle usikkerheter i forbindelse med antagelser og gjennomsnittsverdier av hastigheter av lagene ikke videreføres inn i profilene. Ringkøbing-Fynhøyden har et diffust internt mønster med en uklar avgrensning mellom intrusjoner og bassengavsetninger. Det er valgt å vise de digitaliserte profilene i toveis gangtid i kapittel 4 og ikke som dybdekonverterte profiler da dette gir minst usikkerhet.

4 Tolkning av seismiske data integrert med brønninformasjon og gravimetriske data

Tolkninger av reflektorer i seismiske snittene er basert på variasjoner i akustisk impedans og gjenspeiler variasjonene i geologien. Integrering av seismiske refleksjonsdata sammen med data fra brønner og tyngdedata gir sikrere og bedre forståelse av geologien i et område.

Figur 4.1: Kart over brønner og seismiske linjer som er vist som digitaliserte profiler. Profilene er markert med rød strek. Studieområdet på Ringkøbing-Fynhøyden mellom Sentralgraben og Horngraben er markert med blå ramme.

4.1 Profiler fra studieområdet

Det er laget digitaliserte profiler for enkelte av de seismiske linjene over Ringkøbing-Fynområdet (Figur 4.1). Både fra de lokale DS-99 linjene og fra de regionale linjene er det konstruert profiler. Langs x-aksen er skalainndelingen på alle profilene i kilometer. Y-aksen til profilene er dybden inndelt i toveis gangtid i sekunder (Figur 4.3-4.13). De linjene det er valgt å vise som profiler i oppgaven viser områdets strukturmønster og har god dekning av studieområdet og med innbyrdes god spredning mellom linjene (Figur 4.1). Det er valgt ut linjer med beste mulige seismisk oppløsning. Profilene er delt inn i forskjellige sedimentære lagpakker ut fra refleksjonsmønster og veldefinerte reflektorer knyttet til kronostratigrafien i området. Det øverste laget viser havdypet i området og er markert blått (Figur 4.2). Kenozoikum er delt inn i 4 sekvenser fra oligocen og fram til i dag. De tre yngste delene er markert som enheter i forskjellige beige farger. Den fjerde og eldste består av utbyggende sekvenser fra oligocen og er markert med beigegrønn farge. Det er brukt de samme enhetsinndelingene i kenozoikum som i Michelsen et al. (1994; 1998) (Figur 2.16). Denne inndelingen av kenozoikum er valgt siden lagene i de seismiske snittene er korrelert inn mot tolkede snitt fra Michelsen et al. (1994). Den yngre delen av kritt avsetningene, chalksekvensen, er markert i lys grønn og nedre kritt avsetningen har en mørkere grønn farge (Michelsen, 1997). De tre forskjellige tidsepokene av jura er delt inn i forskjellige varianter av blå med en mørkere blåfarge ved økende alder (Møller, 1986; Michelsen et al., 1992). Antatte triasiske avsetninger er markert med en lys lilla (Clausen og Pedersen, 1999; Michelsen og Clausen, 2002). I de områdene der det kommer klart fram et skille ned til eldre trias er dette markert med en mørkere lilla (Clausen og Pedersen, 1999). Zechstein salt fra området rundt høyden er markert med oransje (Vejbæk, 1997) (Figur 4.2).

De regionale linjene har en utstrekning over Ringkøbing-Fynhøyden og inn i området rundt høyden. Disse linjene er brukt for å kartlegge regionale variasjoner både inne på høyden og på flankene av høyden. De regionale linjene er valgt med lengre utstrekning enn selve høydestrukturen fordi det gir mulighet til å sammenlikne og følge struktureringen fra de dype grabenstrukturene og inn mot høyden samt å definere høydens utstrekning (Figur 4.3-4.7).

De lokale DS-99 linjene dekker Ringkøbing-Fynhøyden (Figur 4.8-4.13). DS-99 linje 115 er skutt fra Sentralgraben i vest og til Horngraben i øst og er den lengste linjen i det lokale linjesettet (Figur 4.13). Profilene DS-99 107 og 108 strekker seg også inn i Sentralgraben (Figur 4.10; 4.11).

I Horngraben, som er en delt grabenstruktur med en sydlig og en nordlig del, er det valgt ut profiler som er skutt over den nordlige delen slik som SP-82 36 og SP-82 43 og 47 (Figur 4.5; 4.7) og over den sydlige som SP-82 35 og SP-82 37 profilene (Figur 4.4; 4.6). I tillegg har RTD- 81 34 profilet en utstrekning sentralt i overgangen mellom den sydlige og den nordlige delen (Figur 4.3). Det regionale SP-82 43 og 47 profilet og det lokale DS-99 101 profilet går så langt nord at de har en utstrekning ute i det Norsk-Danskebassenget på den nordlige flanken av høyden (Figur 4.7; 4.8).

I profilene er de største og viktigste forkastningsstrukturene markert. Forkastningene er navngitt med en bokstav eller et nummer for å lettere skille dem fra hverandre. Bokstavinndelingen begynner i Sentralgraben og fortsetter østover på Ringkøbing-Fynhøyden og ut i Horngraben. Tallinndelingen begynner nordvest i det Norsk-Danskebasseng og fortsetter inn mot Horngraben. Det er lagt vekt på en tolkning av forkastningsmønsteret fra mesozoikum eller eldre tektoniske faser. I dypet i profilene der det er enkelte reflektorer som står kraftig fram er disse også digitalisert inn i tillegg til reflektorene fra den mer veldefinerte laginndelingen (Figur 4.3-4.13).

Coffee Soil forkastningssystemet øst i Sentralgraben er satt sammen av A'-, A- og Bforkastningene der B-forkastningen er den østligste mot Ringkøbing-Fynhøyden. Det er valgt å dele opp disse forkastningene i A', A og B da de seismiske snittene ikke er klare nok i dypet for å kartlegge der forkastningene går sammen over et større område. B-forkastningen avgrenser Ringkøbing-Fynhøyden og det er et stort sprang inn mot Sentralgraben over denne forkastningen. De profilene fra linjer som er skutt ut i Sentralgraben viser langs den vestlige flanken av Ringkøbing-Fynhøyden en horststruktur mellom B-forkastningen og C-forkastningen (Figur 4.4).

Forkastningsmønsteret med samme retning som Sentralgraben kan i profilene følges på Ringkøbing-Fynhøyden fra vest mot K forkastningen med sprang mot vest. Over Kforkastningen er det et skifte i forkastningsretning til nord-syd retning og med forkastningssprang mot øst (Figur 4.6). Forkastningsstrukturen både mot øst og mot vest fra skiftet midt på høyden er nedforkastet slik at det i overgangen bak K-forkastningen dannes en smal høydestruktur. Øst på høyden fra K-forkastningen og mot Horngraben følger forkastningene en liknende retning som Horngraben (Figur 4.4; 4.13). Reflektorer i profilene viser en trinnvis nedforkastning ned mot Horngraben.

Horngraben er delt i en dyp østlig del og en grunnere vestlig del både i nord og syd. I den sydlige delen av Horngraben er den dype østlige delen avgrenset av S-forkastningen mot vest og U-forkastningen mot øst (Figur 4.6). Den nordlige delen av Horngraben avgrenses mot øst av U'-forkastningen og har en halvgrabenstruktur opp mot 12-forkastningen (Figur 4.5). Den vestlige

delen av den nordlige Horngraben er også en halvgrabenstruktur forkastet langs 12forkastningen. Begge halvgrabenstrukturene har sprang mot vest. I den sydlige delen av Horngraben er det sprang i vest langs R-forkastningen som danner terrasse ned mot den dype østlige Horngraben (Figur 4.4). Inn i skillet mellom den nordlige og sydlige delen av Horngraben strekker 12-forkastningen seg. RTD-81 34 profilet krysser over fra den sydlige til den nordlige Horngraben. I overgangen mellom grabenstrukturene kan det observeres en horst struktur ved 12forkastningen (Figur 4.3). Forkastningsmønsteret øst i Horngraben kan følges videre øst mot Danmark (Figur 4.7).

Figur 4.2: Fargekart over sekvensinndelingen i profilene i figur 4.3 til 4.13.

4.1.1 Regionale profiler

Profilet går inn i Horngraben ved S-forkastningen. Profilet krysser i overgangen mellom den sydlige og den nordlige Horngraben ved forkastning 12. Dyp i toveis gangtid i sekund, avstand i km der origo er i sydvest (SV). Sterke reflektorutslag er markert inn Figur 4.3: Profil av RTD-81 linje 34. Profilet har et skifte i forkastningsmønster mellom G- og K-forkastningene. Ringkøbing-Fynhøyden avgrenses av B- og R-forkastningene. I sydvest strekker profilet seg inn i den sydlige delene av Sentralgraben. selv om det ikke vises noen klar avsetningssekvens (Appendiks II).

SV

N

Figur 4.7: Profil av SP-82 linje 43 og 47. Profilet følger i det Norsk-Danskebasseng langs den nordlige flanken av høyden med et skifte i forkastningsmønster over N-forkastningen for å krysse sentralt over Horngraben i skillet mellom den nordlige og den sydlige grabenen. Profilet går ikke ut i Sentralgraben. Dyp i toveis gangtid i sekund, avstand i km der origo er i nordvest (NV) (Appendiks II).

4.1.2 Lokale DS-99 profiler over høyden

høyden til et skifte i forkastningsmønster mellom J- og N-forkastningen. Sterke reflektorutslag er markert inn på profilet. Dyp i toveis gangtid i sekund, avstand i km der origo er i vest (V).

forkastningsmønster mellom H- og K-forkastningen inne på høyden. Det er tykkere øvre jura lagpakker over den vestre delen av høyden enn den østre. Dyp i toveis gangtid i sekund, avstand i km der origo er i vest (V).

på Ringkøbing-Fynhøyden fra H- til K-forkastningen. Dyp i toveis gangtid i sekund, avstand i km der origo er i vest (V).

Figur 4.12: Profil av DS-99 linje 113. Det er et skifte i forkastningsmønster på Ringkøbing-Fynhøyden fra G- til Kforkastningen. Dyp i toveis gangtid i sekund, avstand i km der origo er i vest (V).

тмт

forkastningen. Sentralgraben har en tykk jura lagpakke med både nedre, midtre og øvre jura bevart. Horngraben har en tykk trias Figur 4.13: Profil av DS-99 linje 115. Profilet går ut i Sentralgraben Langs B- og A-forkastningen og ut i Horngraben langs Slagpakke med både yngre og eldre trias bevart. Dyp i toveis gangtid i sekund, avstand i km der origo er i vest (V).

4.2 Tyngdedata fra Ringkøbing-Fynområdet

Det er brukt Bouguer anomalier med korreksjon for breddegrad gjennom området. Interpoleringen av tyngdedata er gjort på Kingdom tolkningsstasjon. Tyngdevariasjonene over høyden er basert på de lokale DS-99 snittene (Figur 3.13; 4.15) og interpoleres over området til tyngdefeltskart (Figur 4.14).

De dype bassengstrukturene med store mektigheter av sedimentære bergarter slår ut med negative tyngdeverdier (Figur 4.14). Både eldre basementstrukturer som står opp som høyder og store intrusjoner gir positive tyngdeverdier. Variasjon i tyngdeanomaliene på Ringkøbing-Fynhøyden gjenspeiler muligheten for at det kan være bevart riftstrukturer og sedimentære avsetninger side om side med vulkanske intrusjoner og basement (Frost, 1977). Området har hatt mye vulkanisme i karbon-perm overgangen og det kan være større intrusjoner og magmatiske ansamlinger som gir store positive utslag på tyngdefeltskartet (Zhou og Thybo, 1997). En annen forklaring kan være tetthetsvariasjoner dypere i skorpen som gir slike positive utslag (Abramovitz, 1997B). Tyngdefeltsvariasjonene lateralt kan være variasjon i bassengavsetningene eller strukturforskjeller.

Figur 4.14:Bouguer anomalikart over området med DS-99 linjegrid. Skala fra blå-grønn (negativ verdi) til rød-rosa (positiv verdi).

Figur 4.15: DS-99 linje 107 viser et fall i Bouguer anomali langs østflanken av Ringkøbing-Fynhøyden markert med blå piler. Det er negativ tyngdeverdi mellom C- og K-forkastningene på høyden. Det er en økning i tyngdeverdi mot midten av høyden, gul pil. Det er gradvis fall i tyngdeverdi fra midten av høyden og øst mot Horngraben, røde piler. K-forkastningen danner et skille i forkastningsmønster over høyden. Topp chalk og topp nedre kritt reflektorer er markert henholdsvis lys- og mørk-grønn og Bouguer anomalien er markert rosa. Forkastningsstrukturering se profil i Figur 4.10. ★ markerer Per-1 brønnen.

De dype sedimentære riftbassengene har negative tyngdeverdier (Figur 4.14; 4.15) fordi det her er bergarter med lavere tetthet enn områdene rundt. I Sentralgraben er det negative tyngdeverdier i grabenstrukturen og positive verdier vest mot flanken til Ringkøbing-Fynhøyden (Figur 4.17). Variasjonene i tyngdefeltet fra Sentralgraben og inn på høyden følger overgangen fra de dype mesozoiske avsetningene med lav tetthet og negativ tyngdeverdi til den kaledonske basementhøyden med positiv tyngdeverdi. Basement som står høyt relativt til omkringliggende basement har positiv tyngdeverdi i forhold til bassengene på alle kanter rundt Ringkøbing-Fynhøyden. Hvis hele Ringkøbing-Fynhøyden hadde vært en basementstruktur ville tyngdefeltet over ha vært jevnt og med et positivt utslag forutsatt at det ikke er intra skorpe variasjoner. Det er store variasjoner i tyngdefeltet over Ringkøbing-Fynhøyden og den er derfor ikke homogen, men har intrusjoner og interne riftbassenger (Figur 4.15; 4.16). Det er spesielt positiv tyngdeverdi langs flanken vest på høyden der data fra brønnene har bekreftet basement. Dette positive utslaget ligger øst for Coffee Soil-forkastningssystemet mellom B- og C-forkastningen og har liten utstrekning i øst-vest retning på høyden (Figur 4.14; 4.15). Utsalget indikerer den smale horsten som er dannet mellom B- og C-forkastningen (Figur 4.15).

Figur 4.16: DS-99 linje 113 ligger syd i undersøkelsen og har trinnvis fall i tyngdeanomali inn på Ringkøbing-Fynhøyden markert med røde piler. Stort negativt tyngdeutsalg sydøst mot Horngraben helt syd på høyden markert med gul pil. Blå piler markerer økning i tyngdefeltet nært inn mot dype magamtiske ansamlinger. Lys- og mørk-grønn markerer henholdsvis topp chalk og topp nedre krittreflektorer og rosa markerer variasjoner i tyngdeanomali. Variasjonene i området gir tyngefeltet som er vist i figur 4.17.

Langs den vestlige delen av Ringkøbing-Fynhøyden ved C-forkastningen er det fall i tyngdefeltet videre inn mot høyden. Reduksjonen i Bouguer anomalien er mindre enn langs Coffee Soilforkastningssystemet i Sentralgraben. Området med negative verdier på vestre del av høyden (Figur 4.15) har utstrekning over forkastninger med samme nordvest-sydøst retning som Sentralgraben (Figur 4.17). Helt i sydvest langs flanken mot Sentralgraben er de positive

9° 6° 4° 5 57° 57 ╋ 0 56 5(Ø R Н 55° 55 9° 8° 6° 4° 5

tyngdeverdiene noe uregelmessig (Figur 4.16). Disse verdiene i syd har trappetrinnstruktur med mindre fall i tyngdeverdi enn i den nordlige delen av høydens vestre del.

Figur 4.17: Bouguer tyngdeanomalikart over regionen med forkastningsmønsteret inntegnet. Tyngdefeltskala fra blå (negativ verdi maksimal) til rødrosa (positiv verdi maksimal). Rammen i mørk brun dekker området med DS-99 undersøkelsen på Ringkøbing-Fynhøyden. NØHG=den dype nordøstlige Horngraben, SØHG=den dype sydøstlige Horngraben. NVHG=den nordvestlige Horngraben. SVHG=den sydvestlige Horngraben. K markerer K-forkastningen. Den nordlige delen av Ringkøbing-Fynhøyden har en økning i tyngdefeltet midt på høyden i overgangen fra forkastningssystemet relatert til Sentralgrabens tektonikk til forkastningssystemet som følger Horngrabens strukturelle stil (Figur 4.15; 4.17). Forkastningssystemet som følger Sentralgrabenmønsteret på Ringkøbing-Fynhøyden avgrenses i alle retninger av positive tyngdeverdier, i nord langs flanken av høyden mot det Norsk-Danskebasseng, i øst mot Kforkastningen, i syd med ekstremutslag langs flanken av høyden og i vest på horsten langs Sentralgraben. Dette negative tyngdefeltet mellom C- og K-forkastningene (Figur 4.15) med positive utsalg rundt kan være dannet av en innsynkning av basement med mulige sedimentære avsetninger over.

De positive tyngdeverdiene inn mot K-forkastningen midt på høyden i nord kan følges mot syd sentralt gjennom høyden med et avtagende utslag og utstrekning. Fra den positive anomalien midt på høyden avtar tyngdefeltet trinnvis fra K-forkastningen og mot Horngraben. Reduksjonen i tyngdefeltet er større mot syd enn mot nord. De maksimale negative tyngdeverdiene finnes sydøst på høyden (Figur 4.16).

Det er en økning i tyngdeverdi i overgangen mellom den nordlige og den sydlige delen av Horngraben. Denne positive tyngdeverdien følger forkastningsmønsteret inn mot senteret av Horngraben både fra nord og fra syd (Figur 4.17). Bouguer anomaliøkningen ligger mellom den vestlige delen av Horngraben og den østlige dype delen av Horngraben. Forkastningen som definerer den vestlige delen av den nordlige Horngraben følger samme nordvest-sydøst retning som den nordlige tyngdefeltsøkningen og nordlige Horngraben (Figur 4.17). En betydelig positiv anomali syd i Horngraben følger retningen til den sydlige Horngraben og ligger mellom den dype østlige delen av Horngraben og den vestlige delen. Ellers i Horngraben er det negative tyngdeverdier med en nordvest retning i nord og en sydvest retning i syd som tydelig definerer grabenstrukturen.

Det er ekstremt store positive tyngdeanomalier både i syd og nordenden av Horngraben (Figur 4.17). Helt i syd går linjene i DS-99 undersøkelsen inn mot dette området. Disse ekstreme verdiene sammenfaller med positive magnetiske anomalier ved S-1 brønnen i Horngraben (Figur 4.18). Anomaliene kan være dannet av en nærliggende eller dypereliggende magmatisk kilde (Figur 4.14; 4.17; 4.18) (Zhou og Thybo, 1997).

Figur 4.18: Total magnetisk intensitet målt fra 730 m over havnivå. De store positive anomalier i området er sannsynligvis dannet av store magmatiske intrusjoner. Skalaen viser nT (Zhou og Thybo, 1997).

Over store forkastninger og ved skifte i strukturell stil i forkastningssystemet på Ringkøbing-Fynhøyden og i grabenstrukturene er det store variasjoner i tyngdeverdiene. Disse store variasjonene kan knyttes til variasjoner i basement og det kan også knyttes til vulkansk aktivitet langs forkastningssystemene. I tillegg til disse variasjonene i tyngdefeltet langs forkastningssystemene er det enkelte ekstreme utslag både i tyngde- og magnetisk-felt over mindre områder der det sannsynligvis er store magmatiske legemer i dypet (Figur 4.17; 4.18) (Zhou og Thybo, 1997).

4.3 Tektonisk tolkning

De utvalgte profilene representer de strukturelle variasjonene på Ringkøbing-Fynhøyden. Under kartleggingen av forkastningsmønsteret i studieområdet er det valgt å vise profiler som både har god seismisk avbildning og der de ulike strukturelementene på Ringkøbing-Fynhøyden kommer fram. Langs de enkelte profilene er de større forkastningene tolket og navngitt med en bokstav eller tall for lettere å kunne skille dem fra hverandre. De regionale profilene som vises, krysser høyden i nesten vest-øst retning slik at de har en god vinkel omtrent perpendikulært på hovedretningene til forkastningssystemene (Figur 4.19). De lokale profilene som vises er valgt på liknende måte som de regionale og de valgte profilene fra DS-99 linjene har en vest-øst retning og god dekning over studieområdet (Figur 4.19).

Figur 4.19: Strukturkartet viser tolket forkastningsmønster (blå linjer). Bokstav eller tall er brukt langs de forskjellige forkastningene for å skille dem. De regionale profilene (rød strek) og de lokale profilene (grønn strek innenfor gul ramme) vist som digitaliserte profiler tidligere i kapittelet.

4.3.1 Horngraben og den østlige del av Ringkøbing-Fynhøyden

De regionale snittene som er digitalisert til profiler har alle en utstrekning over Horngraben. Horngraben deles i en nordlig og en sydlig del. SP-82 linje 36 og RTD-81 linje 34 er skutt inn i Horngraben i sydvest-nordøstlig retning (Figur 4.5; 4.3). RTD-81 34 linjen krysser overgangen mellom den sydlige og den nordlige Horngraben og SP-82 36 linjen krysser Horngraben lengst i nord. SP-82 43 og 47 profilet er nord for Ringkøbing-Fynhøyden og har en utstrekning over den nordlige Horngraben (Figur 4.7). SP-82 43 og 47 linjene er samlet inn i en nordvest-sydøst retning. SP-82 linje 35 og SP-82 linje 37 er begge skutt over den sydlige delen av Horngraben i nordvest-sydøst retning (Figur 4.4; 4.6) (Appendiks II; III). Av de DS-99 linjene som er vist som digitaliserte profiler, er det kun linje 115 som er skutt helt til kanten av Horngraben inn mot den sydlige grabenstrukturen (Figur 4.13; 4.19).

Figur 4.20: Utsnitt av den sydlige Horngraben fra SP-82 35 profilet (Figur 4.4). Fargene følger inndelingen av sekvenser fra figur 4.2. I tillegg er det lagt inn prekambrisk basement mørk brun, og en enhet vest mot Ringkøbing-Fynhøyden som kan være prekambrisk basement, men som også kan være sedimentære avsetninger med lys brun (Figur 4.19).

De store forkastningene S, U og U' definerer Horngraben som har en utstreking i nordøst-sydvest retning (Figur 4.19; 4.20; 4.21). Den sydlige delen har stort sprang langs forkastningsplanet i vest ved S-forkastningen og langs U-forkastningen i øst (Figur 4.4; 4.6; 4.13). Den nordlige delen av Horngraben viser lite forkastningssprang i vest langs S'-forkastningen. I øst er det et stort sprang langs U'-forkastningen slik at det dannes en halvgrabenstruktur i den nordlige delen av Horngraben (Figur 4.5). Negative verdier i tyngdefeltet er med på å definere Horngraben (Figur 4.17).

Figur 4.21: Utsnitt fra SP-82 36 profilet over den nordlige Horngraben (Figur 4.5), viser både den vestlige delen og hovedgrabenstrukturen av Horngraben. Prekambrisk basement er markert brunt. Sekvensen mellom eldre trias og basement kan være paleozoiske avsetninger og markert lys brun. Yngre sekvenser følger inndelingen i profilene fra figur 4.2 (Figur 4.19).

Vest for Horngrabens dypeste del er det en vestre del med en stor forkastning mot overgangen til Ringkøbing-Fynhøyden. Denne vestlige delen av Horngraben kan også deles i en sydlig og en nordlig del (Figur 4.19; 4.20; 4.21). I den sydlige delen er det et betydelig forkastningssprang langs R-forkastningen vest for S-forkastningen slik at grabenstrukturen gradvis trapper opp mot høyden (Figur 4.4; 4.6; 4.20). I den nordlige delen av Horngraben er det en halvgrabenstruktur med et sprang langs 12-forkastningen vest for den dype østlige halvgrabenen. Denne vestlige halvgraben grunner opp mot Ringkøbing-Fynhøyden i vest (Figur 4.5; 4.21).

I skillet mellom den nordlige og den sydlige Horngraben stryker 12-forkastningen og danner i nord den vestlige Horngraben (Figur 4.21). Denne forkastningen følger den nordlige grabenstrukturen men avviker noe. 12-forkastningen har en nordvest-sydøst retning (Figur 4.19). Forkastningsspranget langs 12-forkastningen øker fra nord (Figur 4.7) mot syd (Figur 4.3) inn mot overgangen mellom den nordlige og sydlige del av Horngraben. Med unntak av 12forkastningen avtar forkastningssprangene for de ulike forkastningene inn mot denne overgangssonen mellom nordlige og sydlige Horngraben.

Forkastningene fra K-forkastningen og østover på Ringkøbing-Fynhøyden har samme nord-syd retning som akseretningen til Horngraben (Figur 4.19; 4.22). Forkastningene og Horngraben vris noe i møtet med 12 forkastningen og får en mer nordøst-sydvest retning enn de nord-syd rettede forkastningene øst på Ringkøbing-Fynhøyden (Figur 4.19).

Øst på Ringkøbing-Fynhøyden mellom K-forkastningen og vestre del av Horngraben er det nedforkastende blokker mot grabenen langs K-, L- og M-forkastningene (Figur 4.19; 4.22). Dette vises også i tyngdefeltet hvor man kan observere et trinnvis fall i tyngdefeltet mot Horngraben fra en relativ positiv verdi sentralt på høyden ved K-forkastningen (Figur 4.15; 4.17). I området fra K-forkastningen til R- og R'-forkastningen er det få reflektorer fra avsetninger under den tynne jevne jura lagpakken med unntak av et reflektorbånd noe som kan tyde på en homogen lagpakke. Dette reflektorbåndet er forkastet langs forkastningene øst på høyden fra Kforkastningen og mot Horngraben. Reflektorbåndet viser sprang i forkastningen på denne delen av høyden ned mot Horngraben. Den manglende seismiske reflektiviteten over det sterke reflektorbåndet likner dyp seismisk avbildning korrelert med eldre trias avsetninger fra brønner i Horngraben (Figur 3.3; 4.22).

Figur 4.22: Østlige delen av Ringkøbing-Fynhøyden fra Sp-82 37 profilet (Figur 4.6; 4.19). Figuren viser prekambrisk basement og mulige paleozoiske sedimenter på den østlige delen av Ringkøbing-Fynhøyden markert med mørk og lys brunn. Bunn trias avgrenses av et vulkansk reflektorbånd. Yngre sekvenser følger inndelingen i profilene fra figur 4.2.

4.3.2 Sentralgraben og den vestlige delen av Ringkøbing-

Fynhøyden

Av de regionale profilene dekker alle unntatt SP-82 43 og 47 profilet den østlige delen av Sentralgraben (Figur 4.3; 4.4; 4.5; 4.6). Av DS-99 linjene er 107, 108 og 115 skutt så langt vest at profilene krysser B-forkastningen som avgrenser Ringkøbing-Fynhøyden ved Coffee Soil mot Sentralgraben (Figur 4.10; 4.11; 4.13). I Sentralgraben er det stort forkastningssprang i øst mot Ringkøbing-Fynhøyden som kan følges fra nord til syd i B-forkastningen langs hele høyden (Figur 4.19; 4.23). Tyngdefeltet er negativt i Sentralgraben og skifter til positive verdier langs flanken av Ringkøbing-Fynhøyden.

Figur 4.23: Utsnitt fra SP-82 35 profilet over Sentralgraben (Figur 4.4). Fargene følger inndelingen fra figur 4.2 og der er i tillegg lagt inn devon-karbon sekvens mørk grønn og kaledonsk basement grå.

Lenger øst i området med Sentralgrabens strukturelle stil på forkastningsmønster på Ringkøbing-Fynhøyden er det negative tyngdeverdier fra C-forkastningen og fram til skifte i forkastningsmønsterets strukturelle stil langs K-forkastningen (Figur 4.15; 4.17). Langs Cforkastningen er det et nedforkastet basseng og dette kan observeres videre østover mot Kforkastningen (Figur 4.11). Langs den vestlige flanken på Ringkøbing-Fynhøyden har C- forkastningen et forkastningssprang mot høyden og danner den vestlige grensen av en symmetrisk bassengsstruktur (Figur 4.19; 4.24). Bassenget avsluttes mot øst av forkastninger som avskjæres av K-forkastningen. Dette bassenget mellom C- og K-forkastningene gjenspeiles i negative tyngdeverdier. Disse verdiene faller sammen med området med magmatiske intrusjoner langs eldre lagstrukturer i dypet. Intrusjonene ligger i en tykk sedimentær avsetningssekvens. Selv om det er sill intrusjoner mellom enkelte av lagene så er bassenget kjennetegnet ved lavere tyngdeverdier enn området med grunt basement rundt.

Figur 4.24: Utsnitt fra DS-99 108 profilet (Figur 4.11). Sekvensinndelingen er fra figur 4.2, med tilleggsinndeling av Rotliegende vulkanitter og intrusjoner mørk lilla og devon-karbon avsetninger mørk grønn over kaledonsk basement grå. Horst inn mot skifte i forkastningsretning i øst inn mot område med prekambrisk basement brun.

4.3.3 Området nordvest for Ringkøbing-Fynhøyden

Store deler av den vestre delen av SP-82 43 og 47 profilet strekker seg fra Horngraben og ut i det Norsk-Danskebassenget (Figur 4.7; 4.19). Det nordligste profilet fra DS-99 linjesettet, linje 101, strekker seg over den nordlige flanken av høyden (Figur 4.8). Den regionale linjen SP-82 37 krysser Ringkøbing-Fynhøyden, fortsetter sydvest i det Norsk-Danskebasseng og ut i Sentralgraben (Figur 4.6; Figur 4.19).

Forkastningene nordvest for Ringkøbing-Fynhøyden har en annen retning enn forkastningene på selve høyden. Fra det Norsk-Danskebassenget har forkastningene en nord-østlig retning inn mot den vestlige delen av Ringkøbing-Fynhøyden. Like ved høyden, bøyes de av mot vest og følger flanken av høyden mot Sentralgraben. Disse forkastningene går i viftesystem ut mot Sentralgraben og Coffee Soil forkastningssystemet hvor de stopper (Figur 4.19). Inn mot høyden er forkastningene sydvest rettet med et rotert forkastningsblokksystem ned mot nordvest (Figur 4.7). Området mellom dette forkastningssystemet og Ringkøbing-Fynhøyden karakteriseres av positive tyngdeverdier (Figur 4.17).

Mot den østlige delen av Ringkøbing-Fynhøyden øst for K-forkastningen har forkastningene i det Norsk-danskebasseng en lik retning som forkastningene på høyden og ut i Horngraben. Forkastningene i denne delen av det Norsk-Danskebasseng, øst på høyden og i Horngraben har en nord-sydlig til nordøst-sydvestlig retning med unntak av 12-forkastningen som har en nordvest-sydøstlig retning.12-forkastningen strekker seg fra det Norsk-Danskebasseng inn mot overgangen mellom den nordlige og sydlige Horngraben. Tyngdefeltet avtar gradvis fra Kforkastningen og øst mot Horngraben. I Horngraben inn mot 12-forkastningen og langs denne er det positive tyngdeverdier der grabenstrukturen deles i en vestlig del og en hoveddel (Figur 4.17; 4.19).

4.4 Tolkninger av avsetningssekvenser

De tolkede sedimentære avsetningssekvensene er valgt fra bønnene rundt Ringkøbing-Fynhøyden (Tabell 3.1) (Appendiks I). De er valgt slik at de i det seismiske bildet avgrenses av relativt sterke reflektorer med en viss utstrekning og et relativt konformt internt mønster. I bassengområdene, spesielt i de dype grabenstrukturene, men også nord og syd for høyden er det tykke og veldefinerte sedimentære avsetninger (Nilsen og Japsen, 1991). Fra brønner i disse områdene er de sedimentære sekvensene tolket inn mot og over høyden (Figur 4.2; profilene 4.3-4.13).

I enkelte brønner fra området rundt Ringkøbing-Fynhøyden er det påvist magmatiske avsetninger fra overgangen karbon-perm (Heeremans et al., 2004A; 2004B). Disse har en varierende utbredelse og seismisk karakter og er ofte vanskelig å følge fra profil til profil og korrelere mot brønndata. Karbon-perm avsetningene er derfor ikke definert som en egen enhet i profilene. Det er valgt å tolke Zechstein saltavsetninger rundt Ringkøbing-Fynhøyden som en egen enhet da disse saltstrukturene er lett gjenkjennelige som dome- og pute-strukturer og med sterke reflektorer som avgrenser enheten (Figur 2.10; Tabell 3.1) (Vejbæk, 1997).

Trias lagpakken er i de områdene der det kan skilles ut en yngre trias avsetning delt i en eldre og en yngre trias sekvens (Clausen og Pedersen, 1999). Der trias avsetningen bare består av en enhet er dette avsetninger fra Bacton gruppen i eldre trias (Figur 2.13; 3.3; 3.4; 3.5). De eldre triasiske avsetningene er kontinentale avsetninger med stort sandinnhold og har liten intern seismisk lagdeling (Michelsen og Clausen, 2002). De yngre triasiske avsetningene har en mer skifrig avsetning og har tynne interne avsetningssekvenser i de seismiske data. Det er i studieområdet bare bevart sen trias i Horngraben der trias avsetningene er tykke og kan karakteriseres som en syn-rift avsetning.

Jura kan deles inn i nedre, midtre og øvre jura sekvenser. Nedre og midtre jura er kun bevart i et mindre område i Sentralgraben (Michelsen et al., 1992), mens øvre jura har en stor regional utstrekning som kan følges fra brønnene rundt Ringkøbing-Fynhøyden og inn på høyden (Figur 2.14) (Underhill, 1998). Jura avsetningene er syn-rift og har en stor mektighet i Sentralgraben (Møller, 1986).

Kritt og kenozoiske avsetninger har en regional utstrekning i hele området (Michelsen, 1997). Kritt avsetningene deles i to sekvenser av topp Cromer Knoll. Cromer Knoll avgrenses i toppen av en kraftig seismisk reflektor dannet av mergelkalk (Offshore Denmark inndelingen, Figur 2.15) (Oakman og Partington, 1998). Cromer Knoll avsetningene i den nedre kritt sekvensen har liten tykkelse på Ringkøbing-Fynhøyden og er en fortsettelse av øvre jura avsetningene (Vejbæk, 1998). Den øvre krittlagpakken representerer kalkavsetninger fra chalk gruppen (Figur 2.15). De kenozoiske sekvensene tolkes og deles inn etter samme inndeling som brukt av Michelsen et al. (1994; 1998). Disse sekvensene består av en veksling mellom skifer- og sandsteinavsetninger (Figur 2.16; 4.22; 4.24).

4.4.1 Basement

Basement i Sentralgraben har en kaledonsk opprinnelse og den kaledonske deformasjonsfronten strekker seg inn på vestre delen av Ringkøbing-Fynhøyden. Utstrekningen av deformasjonsfronten har gått lenger øst enn brønnene Per-1 og Ugle-1 da disse stopper i kaledonsk basement (Figur 3.2) (Frost et al., 1981). På Ringkøbing-Fynhøyden rett øst for Sentralgraben står kaledonsk metamorf berggrunn høyt i form av en horst mellom B- og C-forkastningene (Figur 4.23). Over denne horsten er det bevart lite eller ingen jura avsetninger (Figur 4.3; 4.11) og området sammenfaller med en positiv tyngdeverdi (Figur 4.17). På begge sider av horsten faller tyngdeverdiene kraftig. I horsten kan det ikke observeres noen intern lagstruktur, men på flankene er det observert reflektorer langs lagstrukturer under jura avsetningene (Figur 4.23; 4.24).

De dypeste reflektorene på Ringkøbing-Fynhøyden er ikke kontinuerlige og varierer i karakter. På den vestlige delen av Ringkøbing-Fynhøyden har de dypeste seismiske reflektorene en uryddig karakter (Figur 4.24; 4.25). Dette sterke refleksjonsmønsteret er tolket til kaledonsk basement. De sterke reflektorene i dypet kan riktignok være fra magmatiske intrusjoner som maskerer overgangen sedimenter basement og da ligger basement dypere. Dette refleksjonsmønsteret kan følges fra C-forkastningen over hele området med forkastningsmønster lik Sentralgrabenretningen fram til K-forkastningen (Figur 4.19). I dette området vest for Kforkastningen er det mellom jura avsetningene og den dypeste reflektoren et området med mange sterke reflektorer (Figur 4.25). Øst for K-forkastningen skifter dette refleksjonsmønsteret karakter til kun et dypt reflektorbånd som fortsetter mot Horngraben (Figur 4.12; 4.25). Det er positive tyngdeverdier sentralt på høyden i skiftet av forkastningsmønsteret med fall i tyngdeverdi på begge sidene (Figur 4.25). Skiftet i det dype refleksjonsmønsteret og skiftet i forkastningsmønster ved K-forkastningen faller sammen med et skifte i basement fra kaledonsk til prekambrisk (Berthelsen, 1988). Det dype reflektorbåndet øst på høyden kan være refleksjoner fra eruptiver på en inkonformitetsflate over eldre sedimentære bergarter eller fra basement som her er prekambrisk (England et al., 1997).

I Sentralgraben og Horngraben er de sedimentære avsetningene så mektige at det i de seismiske dataene ikke observeres basement. Basert på den geologiske utviklingen i området har basement i Sentralgraben en kaledonsk opprinnelse mens det i Horngraben er av prekambrisk opprinnelse (Abramovitz et al., 1997A).

Figur 4.25: Refleksjoner fra magmatiske intrusjoner i DS-99 108 linjen. Gule piler peker på intrusjoner som følger langs eldre lagstrukturer og forkastningsplan. Røde piler peker på eruptivt bånd som senere er forkastet eller båndet kan også representere forkastet prekambrisk basement. Blå piler peker på mulig kaledonsk basement. Rosa linje er variasjon i tyngdefelt i området. Lys grønn markerer topp chalk reflektor og mørk grønn er topp nedre kritt reflektor.

4.4.2 Paleozoiske avsetninger

De eldste avsetningene i bassengene i studieområdet er avsetninger fra tidlig paleozoikum. I området som har vært utsatt for kaledonsk deformasjon er første mulige sedimentære avsetninger fra devon og karbon, men på prekambrisk basement kan avsetningene være eldre (Pharaoh, 1999). Disse mulige tidlig paleozoiske avsetningene fra Tornquisthavet observeres ikke som egen sekvens i seismisk data. Det er lite tidlig paleozoiske sedimentære avsetninger observert i brønnene ned til prekambrisk basement (Tabell 3.2; Appendiks I) (Berthelsen, 1988). Fra kollaps av den kaledonske fjellkjeden er det mulig med sedimentære avsetninger bevart over kaledonsk basement. Det mektige eldre riftbassenget inne på Ringkøbing-Fynhøyden i området med Sentralgrabenmønster mellom C- og K-forkastningen har en opprinnelse fra denne kollapsen og har mektige devon-karbon avsetninger bevart (Figur 4.24). Disse devon-karbon avsetningene består av relativt homogene kontinentale sandige lagpakker (Figur 2.9; 2.10) (Downie, 1998; Viejo et al., 2002). De seismiske dataene fra denne delen av høyden viser en vulkansk karakter med et mønster som tilsier at dette er sill intrusjoner i dette eldre devon-karbon bassenget (Figur 4.24). Sill intrusjonene er fra overgangen karbon-perm. Intrusjonene følger mellom avsetningslag og klatrer opp langs forkastningsplan for å fortsette mellom lagstrukturen i hele devon-karbon bassenget (Figur 4.24; 4.25) (Heeremans et al., 2004A).

Brønner som er brukt for korrelering med seismisk data stopper ofte i vulkanitter fra karbonperm overgangen. I permbassengene nord og syd for Ringkøbing-Fynhøyden er det bevart avsetninger både fra tidlig og sen perm selv om det i midtre del av perm har vært stor erosjon (Figur 2.10). Ringkøbing-Fynhøyden har stått høyt i perm og det er lite bevaringspotensial for perm avsetninger. Det er fortsatt mulig at det er bevart vulkanitter fra Rotliegende over høyden da disse har vært avsatt med stor mektighet i området. (Heeremans et al.,2004A). Vulkansk Rotliegende avsetninger fra karbon-perm overgangen er avsatt i et kontinentalt avsetningsmiljø bestående av vulkanoklastiske lag og kontinentale sandavsetninger i tillegg til vulkanitter (Stemmerik et al., 2000) (Figur 2.12). Eruptivene og intrusivene er ofte brede bånd i de seismiske data med sterke utslag og har ofte et uryddig mønster (Viejo et al., 2002).

Vest på Ringkøbing-Fynhøyden mellom C- og K-forkastningene er det en tynn sekvens med et sterkt reflektormønster mellom jura og devon-karbon avsetningene. Denne tynne sekvensen er vulkanitter fra karbon-perm overgangen (Figur 4.24; 4.25).

Øst på Ringkøbing-Fynhøyden er det ikke observert sill langs eldre lagpakker. Fra Kforkastningen og østover mot Horngraben har refleksjonsmønsteret et reflektorbånd som tolkes til å være fra eruptiver fra overgangen karbon-perm (Figur 4.25; 4.26). Reflektorbåndet er brutt av forkastningene (Figur 4.22) og det er i enkelte områder store oppbyggende strukturer over en jevn flate (Figur 4.27). Dette tolkes som eruptive lavaer over en erosjonsflate med en senere forkastningsaktivitet (Heeremans et al., 2004A). De vulkanske lavaene skrår opp mot flanken av Horngraben (Figur 4.26). På denne delen av høyden viser det vulkanske båndet et blokkmønster som indikerer en yngre forkastningsaktivitet (Figur 4.19; 4.25; 4.26).

Figur 4.26: Utsnittet av DS 99 115 linjen viser vestflanken på sydlige Horngraben. I dypet ved røde piler er det kraftige skråstilte reflektorbånd, markert med gult både på Ringkøbing-Fynhøyden og i grabenstrukturen. Lys grønn markerer topp chalk reflektor, grønn markerer overgangen mellom chalk og nedre kritt langs topp Cromer Knoll reflektor og mørk grønn markerer bunn nedre krittreflektor. Forkastningsstruktur er vist i profil (Figur 4.13).

Figur 4.27: Utsnitt av DS-99 linjen 104 nordøst på Ringkøbing-Fynhøyden. Linjen viser eruptiver med ruglete og ujevn overflatekarakter bygget opp i en positiv struktur (rød pil). Lys grønn markerer topp chalk og mørk grønn marker topp nedre kritt reflektor langs topp Cromer Knoll mergel.

I sedimentbassengene rundt Ringkøbing-Fynhøyden er det i øvre perm avsatt store mektigheter med Zechstein evaporitter som senere har utviklet dome- og diapir-strukturer (Figur 4.20; 4.22; 4.23) (Vejbæk, 1997). Evaporittene i sen perm er dannet ved gjentatte oversvømninger og uttørkninger av bassengene i et varmt og tørt klima. Avsetningene har en kraftig reflektor som danner bunnen av saltlaget og også en sterk reflektor fra toppen (Figur 2.10; Appendiks II). Nord for Ringkøbing-Fynhøyden (Figur 4.7) tynner Zechstein lagene inn mot høyden og består sannsynligvis av ikke mobile evaporitter. Der Zechstein avsetningene tynner skifter også den seismiske karakteren og den sterke reflektoren langs bunnen dempes (Appendiks II). Det er ikke funnet Zechstein avsetninger på selve høyden.

Det er ikke observert avsetninger av mobile Zechstein evaporitter sentralt i Horngraben i overgangen mellom den nordlige og den sydlige delen (R-1 Figur 3.3; 4.21). Nordøst i Horngraben og i den sydlige delen er det avsatt Zechstein salt (Figur 4.5; 4.6; 4.20). I det sydlige permbassenget syd for Ringkøbing-Fynhøyden har det vært avsatt store mengder salt i Zechstein (George og Berry, 1997). I Sentralgraben er det dannet Zechstein saltavsetninger inn mot senteret av grabenstrukturen og i den sydlige delen og danner dome- og pute-strukturer (Figur 4.3; 4.4; 4.5;4.6; 4.13; 4.23).

4.4.3 Triasiske sekvenser

De seismiske dataene viser lite reflektivitet fra trias avsetninger bevart på Ringkøbing-Fynhøyden (Figur 4.28). Vest for K-forkastningen og til Sentralgraben er det ingen avsetninger bevart mellom perm og øvre jura (Figur 4.24). Øst for K-forkastningen og mot Horngraben følger jura avsetningene ikke rett over vulkanitter fra karbon-perm noe som gir muligheter for bevarte trias avsetninger (Figur 4.22). I dette området er det avsetninger med lite interne reflektorer mellom øvre jura sedimenter og det eruptive reflektorbåndet av paleozoisk alder (Figur 4.28). Det svake refleksjonsmønsteret likner på eldre trias avsetninger i Horngraben og Sentralgraben (Figur 4.26). De eldre triasiske avsetningene i dette området består hovedsakelig av sandige avsetninger, spesielt i de yngre avsetningene av Bacton gruppen (Figur 2.13) (Clausen og Pedersen,1999). De er homogene og har liten intern reflektivitet. Mektigheten av denne tykke triasiske avsetningen øst for K forkastningen på Ringkøbing-Fynhøyden er mer enn 500 meter (Figur 4.6; 4.22)

Figur 4.28: Linje DS 99 108. Blå markering er bunn øvre jura reflektor. Lilla markering er en mulig intern reflektor i eldre triasiske avsetninger. Gul markering følger reflektorer langs sill intrusjoner og vulkanitter. Lys grønn er topp chalk reflektor. Grønn og mørk grønn representerer henholdsvis topp og bunn nedre kritt reflektorer. Svart ramme forstørret i figur 4.29 og strukturering av snittet vises i profilet i figur 4.11.

I Horngraben er det avsatt betydelige mektigheter med trias sedimenter, i nord en km og i syd fire km tykke (Figur 4.20; 4.21) (Fisher og Mudge, 1998). Det har i denne perioden vært en stor riftaktivitet som har utviklet den dype Horngraben. Den tektoniske aktiviteten i trias var betydelig større i Horngraben enn i Sentralgraben noe som gjenspeiles i de store mektighetene med trias sedimenter som er bevart (Best et al., 1983). Horngraben har en større avstand fra det jurasiske hevede området i nordvest og kan ha vært utsatt for mindre erosjon ned i trias avsetningen enn Sentralgraben. I de seismiske snittene i Horngraben består trias av en yngre del med intern lagdeling avgrenset i bunnen med en sterk reflektor og en eldre mer homogen del. Den yngre trias sekvensen er av skifrig karakter og finnes bare i den dype Horngraben. Den eldre sekvensen er av Bacton alder og er bevart i et større område rundt Ringkøbing-Fynhøyden, også øst på høyden (Figur 4.20; 4.21; 4.22). Trias avsetningene er erodert og de største mektighetene er bevart i den dype sydlige Horngraben (George og Berry, 1997; Sørensen, 1986).

I Sentralgraben er det bevart en jevn tykk tidlig triasisk avsetningssekvens på en km som tynner mot nord (Figur 4.23). Lagpakken kan følges helt inn mot B forkastningen. Den er noe strukturert rundt de områdene der det har vært bevegelse i Zechstein saltet og dannelse av diapirstrukturer (Figur 4.3). Toppen av tidlig trias avsetningene i Sentralgraben viser betydelig tegn på erosjon og avsetningene viser lite intern strukturering. I Sentralgraben er det ikke bevart yngre trias sedimenter (Michelsen og Clausen, 2002).

4.4.4 Jurasiske sekvenser

Gjennom store deler av jura har Ringkøbing-Fynhøyden og mye av området rundt stått høyt og vært utsatt for erosjon. Det er lite avsetnings- og bevarings-potensial fra nedre og midtre jura i hele området. Muligheten for bevaring av avsetninger kom først under den vidstrakte transgresjonen i øvre jura. Det har under hevningen i nedre og midtre jura også vært perioder med forkastningsaktivitet i Sentralgraben (Figur 2.14) (Michelsen et al., 1992).

Det er ikke bevart nedre og midtre jura avsetninger i Horngraben og på Ringkøbing-Fynhøyden. Nedre jura sekvensen er bevart inn mot senteret av riftaksen i Sentralgrabens sydlige del (Figur 4.3-4.6; 4.13) (Richards et al., 1993). Utstrekning av midtre jura avsetninger er større enn nedre jura sekvensen. De midt jurasiske sedimentene strekker seg inn mot Ringkøbing-Fynhøyden og følger B-forkastningen. Midtre og nedre jura sekvensene tynner mot nord (Figur 4.23).

I øvre jura har det vært en utstrakt transgresjon etter kollapsen av den jurasiske oppdomingen og en begynnende rifting og termal innsynkning av Nordsjøområdet (Figur 2.14) (Badley et al., 1988). Denne transgresjonen har i Nordsjøen hatt en regional utstrekning og medført avsetning av sedimenter over større deler av området (Appendiks I). Riftaktiviteten i Sentralgrabenområdet fortsatte inn i øvre jura og tykke lagpakker ble avsatt i Sentralgraben (Figur 2.14; 4.23) (Michelsen, et al., 1992). Avsetningene som er bevart fra øvre jura i Sentralgraben er fire kilometer tykke (Figur 4.3-4.6) (Møller, 1986). V

Figur 4.29: Linje DS-99 108. Til venstre uten tolkninger og til høyre med tolkninger. Bunn jura kiler er markert med blått, magmatiske intrusjoner er markert med gult. Topp chalk er markert grønt og bunn kritt er rosa. Strukturering av snittet vises i profilet i figur 4.11.

Riftstrukturmønsteret på Ringkøbing-Fynhøyden viser at det var en tektonisk aktivitet fra Sentralgraben og inn mot midten av høyden i øvre jura. Over den vestlige delen av høyden er det av den grunn bevart små tykke kiler med øvre jura syn-rift sedimenter opptil 200 meters tykkelse (Figur 4.24; 4.29). Fra midten av høyden, langs K-forkastningen, skifter øvre jura karakter til en jevn tynn 100 meters lagpakke ut i Horngraben (Figur 4.22; 4.28) (Møller, 1986).

Transgresjonen i jura har hatt en stor utstrekning, men sedimentene viser på enkelte deler av høyden tegn til erosjon der hvor riftblokker har stått opp (Figur 4.28; Per-1). De interne reflektorene har en kontinuerlig horisontal karakter som skyldes de skifrige pelagiske avsetningene (Figur 2.14) (Underhill, 1998). Avsetningene fra jura og kritt har samme laghelning internt (Figur 4.28) (Vejbæk, 1998).

4.4.5 Avsetninger fra kritt og kenozoikum

Kritt avsetningene er delt i to sekvenser, chalk og nedre kritt. Begge sekvensene er avsatt jevnt tykt over hele Ringkøbing-Fynområdet med en helning inn mot Sentralgraben som skyldes en senere innsynkning i vest og hevning av landområdene i øst-nordøst (Figur 4.30) (Michelsen,1997). De sterke reflektorene i kritt kan følges regionalt. Kritt reflektorenes sterke seismiske karakter skyldes det høye innholdet av kalk (Japsen, 2000).

I brønnen Per-1 på den vestlige delen av høyden er det ingen avsetninger eldre enn nedre kritt som ligger rett på kaledonsk basement. Nedre kritt sekvensen er den første lagpakken som dekker hele høyden (Figur 4.25; 4.30). Denne sekvensen er meget tynn (Figur 4.5; 4.13). Den akustiske impedans er sterk i topp nedre kritt Cromer Knoll (Offshore Denmark Figur 2.15).

Chalk sekvensen er definert av sterk topp chalk reflektor i topp og sterk topp Cromer Knoll reflektor i bunn. Sekvensen er en pelagisk kalkavsetning jevntykk over hele Ringkøbing-Fynhøyden (Figur 4.11; 4.12) (Oakman og Partington, 1998). I toppen av chalkavsetningen kan det observeres erosjonsstrukturer som kan tolkes som kanaler og innskårete dalsystemer (Figur 4.9). Tidlig kenozoikum trunkerer inn mot topp chalk reflektoren (Figur 4.4) (Michelsen, 1997).

De seismiske dataene viser ingen reflektorbrudd i krittavsetningen på selve Ringkøbing-Fynhøyden. Rundt høyden er det enkelte mindre reflektorbrudd i bassengene. Disse bruddene observeres i områder med store sediment mektigheter under. Kritt reflektorene viser også en domestruktur langs B-forkastningen inn mot Ringkøbing-Fynhøyden i vest. Denne domestrukturen blir større og tydeligere mot syd og skyldes kompresjon i krittbassenget fra syd (Oakman og Partington, 1998).

Figur 4.30:Tolkning av topp chalk til venstre og topp nedre kritt til høyre i DS-99 linjene. Øverst vises linjer og nederst vises interpoleringer av horisontene. Fargeskalaen blå til gul viser variasjon i dyp av reflektorene, blå er dypest og gul er grunnest.

I kenozoikum er det en sterk økning i sedimenttilførsel på grunn av landhevning i nordøst og øst (Michelsen et al., 1998). En stor innsynkning i sentrale deler av Nordsjøen og en hevning av landområdene rundt gir klinoforme utbygningskiler ut i bassenget (Figur 2.16; 4.6). Tolkningen av kenozoikum videreføres fra studier gjort i området med hovedvekt på inndelingen til Michelsen et al. (1994; 1998) og med tillegginformasjon fra Huuse et al. (2001) (Figur 2.16). Tolkningen av kenozoikum er over Ringkøbing-Fynhøyden delt inn i fire deler (Figur 4.2) enhet 7, 6, 5 og sekvens 4. Enhet 7 er den yngste og sekvens 4 er den eldste. Dette er navneinndelingen fra Michelsen et al. (1994).

Sekvens 4 lapper på Ringkøbing-Fynhøyden fra Sentralgraben og er den eldste kenozoiske avsetningen på høyden og er fra oligocen (Figur 2.16). Sekvensen har aggraderende klinoformstrukturer fra Sentralgraben og inn over Ringkøbing-Fynhøyden (Figur 4.4). De interne reflektorene i sekvensen har laginndeling som følger dagens havbunn og avviker fra den underliggende helningen på krittlagene. I den nordlige delen av studieområdet lapper sekvens 4 på topp chalk nesten inn til Danmark. Sekvens 4 jevner ut overflaten på Ringkøbing-Fynhøyden slik at det ikke lenger er et dypere basseng ut i Sentralgraben. Den går ikke høyt nok til å dekke hele høyden mot sydøst (Michelsen et al., 1994).

Enhet 5 og 6 er to sekvenser som er jevnt tykke på Ringkøbing-Fynhøyden (Figur 2.16) (Michelsen, 1998). Nordover viser begge enhetene en økning i tykkelse. Denne økningen kan observeres ved linjene DS-99 101, 104, 107 og 108 (Figur 4.8; 4.9; 4.10; 4.11) i nord har en tykkere enhet 5 og 6 enn linjene DS-99 113 og 115 i syd (Figur 4.12; 4.13). Regionalt viser enhetene litt tynning inn mot Danmark. Enhet 5 lapper ned på topp chalk reflektoren i øst og har en lengre utstrekning mot øst enn sekvens 4.

Figur 4.31: Det er interpolert en intern klinoform reflektor i enhet 7 fra sen tertiær som har en prograderende struktur med en helning som vist i figuren. Skala i toveis gangtid i sekunder.

Enhet 7 blir tykkere mot vest i retning mot bassengsenteret og tynner mot Danmark. Internt i enhet 7 er det klinoforme strukturer i bunnen av enheten som prograderer ut i bassenget med en øvre lagpakke som er jevn over hele området (Figur 4.31). Enhet 7 er tykkest ut mot bassenget og avtar i tykkelse inn mot landområdene (Figur 4.3). Enhet 7 består av både kvartære og øvre tertiære sedimenter (Figur 2.16) (Huuse et al., 2001). Over hele Ringkøbing-Fynhøyden har denne lagpakken en tykkelse på minst 1 kilometer.

5 Strukturell og geologisk diskusjon

Basert på tidligere arbeider, brønndata og seismiske refleksjonsdata samt gravimetriske data kan man tolke og forstå utviklingen av Ringkøbing-Fynhøyden gjennom geologisk tid (Appendiks I; II; III). Brønner og tolkede seismiske profiler gir et bilde av avsetningsmønster og strukturering og dette gir en forståelse av områdets utvikling.

5.1 Utbredelsen av den kaledonske deformasjonsfronten

Både syd og nord for området som utgjør Ringkøbing-Fynhøyden har det i tidlig paleozoikum vært en bevegelse langs mer vest-øst rettede lineamenter (Berthelsen, 1988). Disse lineamentene har hatt en sidelengs bevegelse langs en prekambrisk basementkjerne i Ringkøbing-Fynhøyden. Den kaledonske deformasjonsfronten bøyer seg inn i de tidlig paleozoiske transversale lineamentene sydøst for høyden. Sen paleozoisk og mesozoisk tektonisk aktivitet er styrt av de transversale lineamentene og følger også skillet i kaledonsk og prekambrisk basement (Figur 5.1).

Lukkingen av Tornquisthavet i tidlig silur har gitt en kompresjon mellom Laurentia, Baltica og mikrokontinent fra Gondwana inn mot denne prekambriske yttergrensen av Balticaskjoldet ved Ringkøbing-Fynhøyden (Abramovitz et al., 1997A; England et al., 1997). Høyden har under dannelsen av kaldonidene hatt en kompresjon både fra vest og fra syd. Denne kompresjonen rundt det rigide Balticabasementet i Ringkøbing-Fynhøyden har gitt en avbøying av den kaledonske deformasjonsfronten (Berthelsen, 1988). Fronten bøyer av rundt Ringkøbing-Fynhøyden ved å skrå over den vestre delen av høyden og følge inn langs de tidlig paleozoiske transversale lineamentene syd for høyden. Forkastningsmønsteret i Sentralgraben følger retningen til den kaledonske deformasjonsfronten (Figur 5.2).

Figur 5.1: Kaledonske deformasjonsfront i studieområdet. Det grå området representerer den maksimale utstrekningen av den kaledonske deformasjonsfronten basert på brønndata. Kaledonsk deformasjonsfront fra Abramovitz et al., (1997A) vist med stiplet rosa linje. Ut fra studieområdets strukturelle stil og de gravimetriske dataene over området viser oppgavens resultater en maksimal utstreking på den kaledonske fronten markert med grønn strek og en minimal utstrekning på den kaledonske deformasjonsfronten markert med oransje strek.

Den lave graden av deformasjon inn mot den Nord Tysk-Polske deformasjonsfronten kan være på grunn av en mer perifer plassering i forhold til selve senteret av orogenesen, men det kan også ha vært en spenningsavlastning langs de transversale elementene langs høyden (Frost et al., 1981). De mesozoiske forkastningsstrukturene i studieområdet følger eldre

forkastningsstrukturer. Dette skiftet i sprangretning på selve Ringkøbing-Fynhøyden følger den kaledonske deformasjonsfronten slik at Sentralgrabenmønsteret vest på høyden ligger over det kaledonsk deformerte basement (Figur 4.24) og Horngrabenmønsteret øst på høyden ligger over det prekambriske grunnfjellet (Figur 4.22).

Den kaledonske deformasjonsfronten utviklet seg i silur og har hatt en dreining fra nordvest og inn i den Nord Tysk-Polske forgreningen mot sydøst over den vestre delen av Ringkøbing-Fynhøyden og videre mot øst (Berthelsen, 1988; Abramovitz et al., 1997B). Denne dreiningen i deformasjonsfronten som krysser over den vestligste delen av høyden er dokumentert i de dype brønnene (Figur 5.1; Tabell 3.2) (Larsen, 1971; Nilsen og Japsen, 1991). Avbøyingen av den kaledonske deformasjonsfronten over og rundt høyden har påvirket forkastningsmønsteret gjennom høyden i senere perioder (Pharaoh, 1999).

Ringkøbing-Fynhøyden har i vest et kaledonsk basement som er dokumentert i Per-1 og Ugle-1 (Michelsen og Nielsen, 1993; Abramovitz et al., 1997B). Den kaledonske deformasjonen dør ut over Ringkøbing-Fynhøyden (Berthelsen, 1988). Denne minste utstrekningen av kaledonsk basement er øst til Per-1 og Ugle-1 og her faller minste yttergrense av deformasjonsfronten sammen med en positiv tyngdeanomali (Figur 4.17) (Appendiks I). Denne tyngdeanomalien mellom B- og C-forkastningen dannes av en horst langs marginen av Ringkøbing-Fynhøyden (Figur 5.2). Deformasjonsfronten strekker seg videre syd for høyden mot øst og er boret i brønnene Løgumkloster-1 og Borg-1 (Figur 5.1).

Nordøst for Borg-1 og Løgumkloster-1 er det i Glamsbjerg-1 boret i prekambrisk basement. Det er også boret i prekambrisk basement i Grindsted-1 rett nord for Borg-1 (Figur 5.1). Disse prekambriske funnene i brønnene gir en maksimal nordlig utstrekning av den kaledonske deformasjonsfronten syd for Ringkøbing-Fynhøyden. Deformasjonsfronten må gå mellom disse brønnene. Nord for høyden er det i Ibenholt-1 funnet prekambrisk basement. Det er ikke boret til basement i D-1 og L-1 brønnene nord for høyden så deformasjonsfronten kan ha hatt en utstrekning forbi disse, men ikke fram til Ibenholt-1. Den maksimale utbredelsen av deformasjonsfronten gjennom Ringkøbing-Fynhøyden mot øst, stopper før Ibenholt-1, Grindsted-1 og Glamsbjerg-1 (Figur 5.1) (Appendiks I). Det er observert et skifte i strukturell stil fra vestlig nedforkastede blokker til østlig nedforkastede blokker på Ringkøbing-Fynhøyden ved K-forkastningen (Figur 5.2). Utstrekningen av den kaledonske deformasjonsfronten kan være sammenfallende med den første store tyngdeanomalien over horst strukturen mellom B- og C-forkastningen helt vest på høyden, men kan også ha hatt en større utstrekning innover høyden. Det kaledonske basement kan ha styrt den yngre tektonikken og siden forkastningsmønsteret fra Sentralgraben kan følges helt inn mot K-forkastningen indikerer dette en maksimal utstrekning av deformasjonsfronten mot øst på Ringkøbing-Fynhøyden (Zhou og Thybo, 1997).

Det er en økning i tyngdefeltet sentralt på Ringkøbing-Fynhøyden i overgangen for de ulike forkastningsmønstrene. Denne tyngdefeltsøkningen og forkastningsmønsterskifte kan være over en grense mellom de to ulike basementene (Abramovitz et al., 1997A). En yttergrense på den kaledonske deformasjonsfronten til K-forkastningen kan representere en maksimal utstrekning på Ringkøbing-Fynhøyden (Figur 5.1). Den senere tektoniske aktiviteten med variasjonen mellom Sentralgraben- og Horngraben-forkastningsmønster følger basementovergangen.

5.2 Paleozoisk forkastningsmønster, strukturering og avsetninger

Det prekambriske basementet på Ringkøbing-Fynhøyden med opprinnelse fra Balticaskjoldet er lite tektonisk påvirket av den kaledonske fjellkjededannelsen. På denne prekambriske delen har det vært bevegelse primært rundt høyden langs de transversale lineamentene i tidlig paleozoikum fram til en begynnende rift og vulkanisme i sen paleozoikum (Berthelsen, 1988). Den delen av Ringkøbing-Fynhøyden med antatt kaledonsk påvirkning har hatt en rift aktivitet knyttet til kollaps av fjellkjeden i sen paleozoikum.

Det er avsetninger eldre enn karbon-perm bevart på Ringkøbing-Fynhøyden. I området med prekambrisk basement kan det være bevart avsetninger fra tidlig paleozoikum. De paleozoiske avsetningene over området med prekambrisk basement kan være avsatt i kambro-silur, men det er lite dyp reflektivitet som kan observeres i denne delen av høyden (Figur 4.26) (Thybo, 1997).

Over området med kaledonsk basement er det ikke bevart avsetninger eldre enn silur da den metamorfe påvirkningen er datert til silur (Frost et al., 1981). Over området med kaledonsk

basement vest på Ringkøbing-Fynhøyden knyttes den første tektoniske aktiviteten til kollaps av den kaledonske fjellkjeden. Under kollaps av kaldonidene har det i devon vært en dannelse av en proto-Sentralgraben (Downie, 1998). Denne riftingen og dannelsen av proto-Sentralgraben kan ha hatt en utstrekning i området rundt. Det er marine devon sedimenter avsatt i proto-Sentralgraben og kontinentale Old Red sandsteiner på Mid-North Seahøyden (Heeremans et al., 2004A). I området med en strukturell stil som følger Sentralgrabenmønsteret har det vært paleozoisk riftaktivitet og tektonisk aktivitet knyttet til kollaps av kaldonidene. De seismiske undersøkelsene vest på Ringkøbing-Fynhøyden dokumenterer en fortsettelse av devon-karbon tektonikken knyttet til kollaps av kaldonidene og dannelse av proto-Sentralgraben inn på Ringkøbing-Fynhøyden. Riftbassenget vest på høyden har negative tyngdeanomalier som indikerer mektige sedimentære avsetninger over et dypereliggende basement (Figur 4.17). Den strukturelle tolkningen av profilene sammen med karakteren til den senere intrusive vulkanske aktiviteten i de seismiske undersøkelsene vest på Ringkøbing-Fynhøyden påviser et mektig riftbasseng vest på Ringkøbing-Fynhøyden (Figur 4.25). Riftbassenget har bevart avsetninger fra devon-karbon mellom C- og K-forkastningen (Figur 4.24). Over K-forkastningen og øst på Ringkøbing-Fynhøyden over prekambrisk basement er det lite reflektivitet under de mesozoiske avsetningene og det er lite tegn til tektonisk aktivitet i devon-karbon. Det er ingen devon-karbon riftaktivitet øst for K-forkastningen i den prekambriske delen av Ringkøbing-Fynhøyden.

På Ringkøbing-Fynhøyden øst for C-forkastningen mot K-forkastningen følger sill i dypet lagstrukturer i forskjellige nivåer og klatrer langs eksisterende forkastninger. Det faktum at sillintrusjonene klatrer mellom lag i forskjellige nivåer og i forkastningsplan indikerer at bassenget er noe eldre enn karbon-perm vulkanismen (Figur 4.24). Dette eldre bassengområdet har negative tyngdeverdier som kan følges på hele den vestlige delen av Ringkøbing-Fynhøyden. Den negative anomalien er større i nord enn i syd. Den store negative tyngdeanomalien i nord indikerer et dypere basseng enn lenger syd. Oppgrunningen i syd knyttes til dreiningen av kaldonidene. Kaldonidene er antatt å ha hatt en utstrekning over hele denne vestlige delen av Ringkøbing-Fynhøyden. Bassenget følger utstrekningen til deformasjonsfronten over området med kaledonsk basement og er dannet under kollaps av den kaledonske fjellkjeden i devonkarbon (Figur 5.1).

Bassenget vest på Ringkøbing-Fynhøyden må være yngre enn silur da området har vært metamorft påvirket under sutureringen av kaldonidene, og eldre enn sillstrukturene fra overgangen karbon-perm. Bassengavsetningene er da fra devon-karbon og avsatt i forbindelse med og etter kollaps av den kaledonske fjellkjeden. En intern lagdeling i avsetningene er vanskelig å identifisere i de seismiske snittene med unntak av sillene langs laggrensene (Figur 4.25). De manglende interne refleksjonene fra de eldre bassengavsetningene vest på høyden kan skyldes at dette er homogene kontinentale sandige avsetninger.

Transversale lineamenter, I, II, III og 12

Figur 5.2: Forkastningsmønsteret over høyden. Forkastninger er markert med bokstaver og tall brukt i profilene i kapittel 4.2 (Figur 4.3-4.13). Transversal lineament 12 og 12-forkastningen er sammenfallende.

I sen paleozoikum har det vært en reaktivering av de tidlig paleozoiske lineamentene ut fra Teisseyre-Tornquist sonen i øst. I følge Thybo (1997) kan en reaktivering av lineamentene rundt Ringkøbing-Fynhøyden ha startet riftdannelsen av Horngraben (Figur 2.6). Den sen paleozoiske reaktiveringen av lineamentene er forårsaket av dannelsen av den varisiske fjellkjeden. Den vulkanske aktiviteten i overgangen mellom karbon-perm knyttes til denne sidelengs bevegelsen med et vulkansk senter øst mot Teisseyre-Tornquist sonen og langs lineamentene (Berthelsen, 1988; Thybo, 1997).

Ringkøbing-Fynhøyden avgrenses av tidlig paleozoiske transversale lineamenter som har hatt en reaktivering i sidelengs bevegelse rundt høyden inn i overgangen mellom karbon-perm (Figur 2.6; 5.2). Ved flanken av høyden i nordvest avgrenses forkastningsmønsteret med samme strukturelle stil som Sentralgraben av lineament I. Forkastningsmønsteret på Ringkøbing-Fynhøyden kan ikke følges nord i det Norsk-Danskebassenget over dette lineamentet. Lineament I viser en sidelengs bevegelse ved at det over dette lineamentet er en forskyvning av flanken på Sentralgraben (Figur 5.2). Forkastningssystemet i det Norsk-Danskebassenget mot den vestre delen av Ringkøbing-Fynhøyden har en retning som bøyer av fra nordøst og mer mot vest ved flanken av høyden. Dette forkastningsmønsteret i nord har en trappestruktur mot høyden og inn mot det transversale lineament I som følger høyden i nordvest (Figur 4.7; 5.2). Reaktiveringen i en sidelengs bevegelse har gitt en forskyvning i Sentralgrabens ytre forkastning og horsten vest på Ringkøbing-Fynhøyden er forskjøvet mot vest i det Norsk-Danskebassenget.

Øst på Ringkøbing-Fynhøyden der forkastningsmønsteret kan knyttes mot Horngraben, avgrenses høyden i nordøst av lineament III. Forkastningsmønsteret fra Horngraben er forskjøvet langs lineament III slik at retningen på forkastningene i det Norsk-Danskebassenget er mot nordvest mens det øst på høyden og i vestre del av Horngraben syd for lineament III har en nordsyd retning. Høyden viser også en sidelengs forskyvning av forkastningsmønsteret langs lineament II som kan følges mot vest helt ut til Sentralgrabenflanken. Det er en minkende forskyvning av lineament II vekk fra Horngraben og har sin opprinnelse fra grabenstrukturen. Både lineament II og III går sammen og inn mot den større 12-forkastningen i den nordlige Horngraben (Figur 5.2).

12-forkastningen går inn i overgangen mellom den nordlige og sydlige Horngraben. En sidelengs bevegelse sammen med transpresjon forskyver Horngraben i en nordlig og en sydlig del (Figur 5.2) og har gitt mindre forkastningssprang sentralt i Horngraben samt en asymmetrisk riftstruktur (Figur 4.21). Transpresjonen har fulgt 12-forkastningen og har gitt mindre nedforkastning i den nordlige Horngraben enn i den sydlige (Figur 5.2) (Thybo, 1997).

De transversale lineamentene gjennom Horngraben og inn på høyden faller sammen med en økning i tyngdefeltet. Det er store tyngdeanomalier nord og syd for Horngraben langs lineamentene inn mot Teisseyre-Tornquistsonen (Figur 2.6; 4.17). De seismiske dataene viser oppbyggende strukturer med mye vulkanitter langs lineamentetene som har hatt en sidelengs bevegelse (Figur 4.27). De transversale lineamentene har vært fokusområdet for stor magmatisk aktivitet i overgangen karbon-perm og da spesielt inn mot Teisseyre-Tornquist sonen i øst der de større lineamentene rundt Ringkøbing-Fynhøyden smalner sammen mot hverandre (Figur 2.6; 2.12). Rundt lineamentene II, III og 12 inn mot Horngraben og langs lineamenter inn i Teisseyre-Tornquist sonen nord og syd for Horngraben er det enkelte store positive tyngdeverdier som er forårsaket av magmatisk ansamling (Figur 4.17). Ved 12-forkastningen i høydeblokken bak lineamentet er det boret i eruptiver i R-1 brønnen og ut av Horngraben rett syd for S-1 brønnen er det boret i tykke eruptiver på tysk sokkel. Det er sidelengs bevegelse i lineamentene II, III og 12 og det har vært høy vulkansk aktivitet i disse lineamentene i karbon-perm overgangen. Forskyvningen i lineamentene fra Teisseyre-Tornquist sonen i sen paleozoikum og starten på dannelsen av Horngraben har gitt mye vulkansk aktivitet (George og Berry, 1997).

Bevegelsen sideveis i de transversale lineamentene rundt Ringkøbing-Fynhøyden har ført til en langsom innsynkning av høyden i perm. Det har vært en større transtensjonsbevegelse syd for Ringkøbing-Fynhøyden som har vært med på dannelsen av det dype permbassenget (George og Berry, 1997). Det har i tillegg vært en tektonisk fjernpåvirkning fra den varisiske fjellkjeden i syd, da det sydlige permbassenget er en del av det varisiske forlandsbassenget (Figur 2.11). Det dype sydlige permbassenget kan følges inn i grabenstrukturene og både Sentralgraben og Horngraben er dypest i syd noe som kan tyde på at deler av disse grabenene hadde en tektonisk utvikling i perm (Figur 4.20; 4.23). Grabenstrukturene viser derfor en tilknytning til de transversale lineamentene som antatt av Thybo (1997). Horngraben har en tilknyttning til de transversale lineamentene i over hele grabenstrukturen da den dype delen i syd kan knyttes til transtensjon langs lineamentene syd for Ringkøbing-Fynhøyden og overgangen fra den sydlige til den nordlige Horngraben knyttes til en sidelengs bevegelse med transpresjon fra nordvest langs 12-forkastningen. Denne transpresjonen og sidelengs bevegelse har ført til en halvgrabenstruktur i denne delen av Horngraben.

Sentralgraben og den vestre delen av høyden viser liten tektonisk aktivitet i perm med unntak av den dypere grabenstrukturen helt i syd inn mot det dype sydlige permbassenget. Sillstrukturer skjærer igjennom de eldre devon-karbon bassengene over den vestre delen av høyden med strukturell stil som Sentralgraben og har liten reaktivering i forkastningene. Det er kun mindre forkastningsbrudd av sillstrukturene. Forkastningsbruddene i sillintrusjonene følger de jurasiske avsetningene og passer i størrelsesorden med den tektoniske aktiviteten som har vært i jura. Det har derfor ikke vært en fortsettelse i riftaktiviteten fra devon-karbon inn i perm over høyden selv om det har vært stor tektonisk og vulkansk aktivitet i lineamentene rundt høyden og inn mot Teisseyre-Tornquist sonen.

Fra K-forkastningen og østover på Ringkøbing-Fynhøyden til Horngraben har forkastningene et sprang ned mot øst og lik retning som Horngraben (Figur 5.2). Eruptive lavaer på denne delen av høyden er forkastet ned mot Horngraben noe som viser at forkastningene har hatt en yngre aktivitet enn de avsatte lavaene (Figur 4.25; 4.26). Forkastningene med dette Horngrabenmønsteret på Ringkøbing-Fynhøyden har hatt en riftaktivitet i trias (Sørensen, 1986). Det er i de seismiske dataene lite tegn til en riftaktivitet knyttet til dette nord-syd rettede forkastningssystemet på høyden da det er lite reflektivitet eldre enn mesozoiske avsetninger i dette området. De eruptive lavaene som er den eneste lagstrukturen som kommer fram i dypet følges jevn over området med en senere forkastningsaktivitet med unntak av større magmatiske sentere inn mot de transversale lineamentene. De transversale lineamentene har hatt en tektonisk og vulkansk aktivitet på høyden, men det har vært liten tektonisk aktivitet i de nord-syd rettede forkastningene i karbon-perm. I denne delen av området er det i brønner ikke dokumentert noen avsetninger eldre enn Rotliegende, men det er en mulighet for avsetninger tilbake til kambrosilur over det prekambriske basementet (Figur 4.22) (Berthelsen, 1988).

Fra K forkastningen og østover på Ringkøbing-Fynhøyden viser den seismiske karakteren under øvre jura lite reflektivitet ned til et dypt reflektorbånd (Figur 4.25; 4.26). Dette reflektorbåndet kan være dannet av Rotliegende eruptiver. Disse Rotliegende eruptivene kan ligge rett på prekambrisk basement, men det kan også ligge på eldre sedimenter avsatt før og under den kaledonske orogenesen eller senere i devon-karbon parallelt med kollaps av den kaledonske fjellkjeden og i yttergrensen til det varisiske forlandsbassenget (Berthelsen, 1988). Tyngdefeltet viser negative verdier over denne delen av Ringkøbing-Fynhøyden. Denne negative tyngdeverdi gjenspeiler de triasiske forkastede bassengene mot øst og viser da ikke devon-karbon bassengavsetninger som vest for K-forkastningen. Det dype reflektorbåndet er senere forkastet i forkastningsmønsteret med mulig aktivitet i trias og har en liknende karakter som eldre avsetninger i Horngraben.

Det er mye Rotliegende eruptiver avsatt og bevart i Horngraben, særlig i skillet mellom den nordlige og den sydlige delen av grabenstrukturen og ut på flankene av Horngraben både mot nord og syd (Heeremans et al., 2004A). Under Rotliegende kan det være avsetninger bevart helt ned til tidlig paleozoikum avsatt i Tornquisthavet (Figur 2.1) (Mogensen, 1994). Øst på høyden og i Horngraben er prekambrisk basement bevart.

Ringkøbing-Fynhøyden var en høyde ved slutten av perm og ble utsatt for betydelig erosjon, men tektonisk strukturering av høyden kan ha medført at avsetninger er bevart (Stemmerik, 2000). Den vulkanske aktive perioden i overgangen karbon-perm etterfølges av stor erosjon og dannelse av Saalian inkonformiteten i midtre perm (Heeremans et al., 2004A). På Ringkøbing-Fynhøyden har det vært en relativt mindre innsynkning og større erosjon under Saalian enn av områdene rundt. Kontinentale avsetninger har blitt bevart rundt høyden. Hele permperioden var en varm og tørr periode. Mot slutten av perm har det i de dype bassengområdene rundt hele studieområdet blitt avsatt og bevart saltavsetninger fra Zechstein (Figur 4.7; 4.20; 4.23) (Vejbæk, 1997).

På Ringkøbing-Fynhøyden i den vestre delen er det tolket vulkanitter rett under øvre jura avsetningene (Figur 4.24). Mellom C- og K-forkastningen er vulkanitter bevart i devonkarbonbassenget som sillstrukturer og over bassenget som lavaer (Figur 5.2). I dypet vest på Ringkøbing-Fynhøyden tolkes det sillstrukturer som i likhet med vulkanittene er avsatt i karbonperm overgangen. Forkastningen i området med Sentralgrabenmønster på høyden er eldre enn sillstrukturene selv om det har vært en mindre reaktivering i jura.

Saltavsetningene i det sydlige permbassenget har store diapirstrukturer som er avsatt i det dype innsynkningsbassenget syd for Ringkøbing-Fynhøyden. I den sydlige delen av Horngraben og Sentralgraben er det store velutviklede saltdiapirstrukturer (Figur 4.5; 4.6). Diapirismen i Sentralgraben er dannet inn mot senteret av grabenstrukturen og mangler ut mot B forkastningen (Figur 4.23). I Sentralgraben følger saltavsetningene, som nedre jura avsetningene, en avsetningsgrense som ligger mer sentrert inn i grabenstrukturen. Denne sentraliseringen av saltavsetningene og tidlig jura avsetningen tyder på at proto-Sentralgraben har vært smalere enn øvre jura Sentralgraben (Downie, 1998).
Horngraben har hatt erosjon i de vulkanske avsetningene og overgangen mellom den nordlige og sydlige grabenstrukturen har vært en positiv struktur uten avsetninger av Zechstein salt og virket som en barriere mellom nordlige og sydlig Horngraben slik at Zechstein salt kun er avsatt i syd.

Nord for Ringkøbing-Fynhøyden har det i det nordlige permbasseng vært mindre avsetning av mobilt salt enn i det sydlige permbassenget (Vejbæk, 1997). Det har allikevel vært bevegelse i saltet i den nordlige delen der disse ikke har dannet diapirstrukturer, men putestrukturer. Inn mot Ringkøbing-Fynhøyden fra nord tynner evaporittene ut og det er ikke avsatt salt på høyden (Figur 4.7). Det er et skifte i seismisk karakter med en dempning i refleksjon ved uttynningen. Ved dette skifte kan saltavsetningen ha gått over til avsetning av karbonat som ikke danner en like sterk refleksjon fra bunnreflektoren som saltet gjør. Overgangen fra salt til karbonat kommer av at Zechsteinbassenget har grunnet opp mot høyden. Ringkøbing-Fynhøyden har vært en positiv struktur som har stått opp som en rygg mellom det nordlige og det sydlige permbasseng (Figur 2.12).

Zechstein avsetningene rundt Ringkøbing-Fynhøyden er avsatt over en erodert flate, Saalian inkonformiteten. Erosjonen i Saalian har vært stor og har erodert avsetninger både på og rundt Ringkøbing-Fynhøyden (Heeremans et al., 2004B). I området rundt og muligens på Ringkøbing-Fynhøyden er det sammen med vulkanittene bevart mindre vulkanoklastiske og sandige avsetninger. Antagelig har de vulkanske avsetningene vært mye større i området, men har vært utsatt for kraftig erosjon i perm under Saalian.

5.3 Tektonisk strukturering i trias

I de dype grabenstrukturene som skjærer gjennom Ringkøbing-Fynhøyden er det bevart store mektigheter med triasiske sedimenter med mer enn en kilometer tykkelse (Sørensen, 1986). Det har vært en jurasisk erosjon i toppen av de triasiske avsetningene i Sentralgraben og i Horngraben. Sentralgraben har en tynnere triasisk avsetningssekvens enn Horngraben (Clausen og Pedersen, 1999). Horngraben har mektige triasiske syn-rift avsetninger bevart noe som viser den forskjellige utviklingen av Horngraben og Sentralgraben (Figur 4.20; 4.21; 4.23) (Thybo, 1997). Over Ringkøbing-Fynhøyden er det lite seismisk refleksjon fra sekvenser som kan tolkes til å være av trias alder. I Horngraben varierer tykkelsen på avsetningene fra trias, mens avsetningene fra jura er kun en tynn lagpakke med jevn tykkelse (Figur 4.20; 4.21). Horngraben var tektonisk aktiv i trias, mens det i jura har vært en roligere periode (Best et al., 1983). De triasiske avsetningene som er bevart i Horngraben har en betydelig større mektighet og representerer en mer komplett del av trias lagpakken enn i Sentralgraben.

I Sentralgraben har det vært stor erosjon ned i de triasiske avsetningene og det er bare bevart avsetninger fra eldre trias under de store jura avsetningene (Figur 4.3-4.6; 4.13). Trias sedimentene i Sentralgraben tynner ut mot nord mot det jurasiske oppdomete senteret i nordvest. De seismiske dataene viser ikke syn-rift triasiske avsetninger i Sentralgraben og den triasiske sekvensen er jevntykk og er sannsynligvis bevart av senere jurasisk tektonisk aktivitet (Møller, 1986). Trias avsetningene går i Sentralgraben helt inn til B-forkastningen. Det har derfor vært en forkastningsaktivitet langs denne, slik at de triasiske avsetningene har blitt bevart. Denne forkastningsaktiviteten kan ha vært i trias, men mest sannsynlig i jura. Selv om trias er forkastet i Sentralgraben så er den jevne tykkelsen i øst-vest retning en indikasjon på at disse forkastningene har vært aktive senere enn da sedimentene ble avsatt. I jura kan det ha vært en forkastningsaktivitet i en jevnt erodert trias lagpakke som har gitt en trappetrinnsstruktur av lagene ned mot senteret av Sentralgraben (Figur 4.23).

I den nordligste del av Sentralgraben (Elna-1, Figur 3.4) er de triasiske avsetningene helt fjernet av erosjon. Fra brønnen Elna-1 både mot syd og øst øker trias avsetningene i de andre brønnene (Figur 5.1). I Sentralgraben i Q-1 er trias avsetningene bevart og mektigheten øker mot syd. Øst for Elna-1 i L-1 brønnen er trias avsetninger også bevart. Videre mot øst øker denne avsetningen inn i brønnene D-1 og Ibenholt-1 (Figur 3.4; 3.5). Den triasiske avsetningen er i brønner dokumentert økende fra det jurasiske erosjonssenteret i nordvest mot syd og øst rundt Ringkøbing-Fynhøyden (Appendiks I).

Det er ikke dokumentert avsetninger fra trias på den vestlige delen av Ringkøbing-Fynhøyden fram til K-forkastningen. De yngste avsetningene under øvre jura er her avsetninger fra karbonperm overgangen (Figur 4.24). Det er ikke bevart triasiske avsetninger over skillet mellom Sentralgraben- og Horngraben- mønsteret sentralt på Ringkøbing-Fynhøyden (Figur 5.2).

I K-forkastningen skifter det seismiske mønsteret karakter og forkastningene skifter fra sprang mot vest til sprang mot øst (Figur 4.15). Fra K-forkastningen og øst på Ringkøbing-Fynhøyden er det mulig at det er bevart triasiske avsetninger (Figur 4.22) (Clausen og Pedersen, 1999). Mønsteret i de seismiske data på høyden fra K-forkastningen og østover har få veldefinerte reflektorer med unntak av et dypt og kraftig reflektorbånd. Dette dype reflektorbåndet er forkastet og har en liknende karakter som de dype reflektorbåndene i Horngraben (Figur 4.26). Båndet kan tolkes som eruptiver fra karbon-perm avsatt over en jevn eldre inkonformitetsflate og forkastet i forbindelse med en triasisk riftaktivitet (Figur 4.22) (Thybo, 1997). Det meste av lagpakkene over dette sterke båndet er antatt å være avsetninger fra eldre trias som består av en betydelig mengde syn-rift avsetninger med homogene kontinentale sandige avsetninger som har liten intern strukturering og liten reflektivitet (Fisher og Mudge, 1998) (Figur 4.26; 5.2).

Avsetningene fra trias er tykkest og mest komplett bevart i Horngraben mellom S- og Uforkastningene (Figur 4.20; 5.2) og øker i tykkelse mot syd hvor både nedre og øvre trias er bevart (Michelsen og Clausen, 2002). Inn mot Ringkøbing-Fynhøyden der spranget på forkastningene avtar er trias sedimenter erodert i jura, og det er bare bevart eldre trias avsetninger (Figur 4.22). I den nordlige delen av Horngraben øker trias sedimentene i tykkelse mot øst og i de seismiske data kan det observeres halvgrabenstruktur (Figur 4.21). Det er store sprang langs forkastningen i øst både langs 12- og U'-forkastningen med bare mindre sprang mot øst i S'forkastningen.

Horngraben er todelt i vest-øst retning (Figur 5.2). Denne todelingen vises i tyngdefeltet med en negativ tyngdeverdi over den østlige delen og en negativ tyngdeverdi over den vestlige delen av Horngraben (Figur 4.17). Hele den østlige delen av Horngraben har store forkastninger både i den sydlige delen mellom S- og U-forkastningene (Figur 4.20) og i den nordlige delen med forkastningssprang langs U'-forkastningen (Figur 4.21).

I den vestlige delen av Horngraben langs Ringkøbing-Fynhøyden er det mindre sprang i forkastningene enn i den østlige delen. I syd ved R-forkastningen er det betydelige triasiske avsetninger bevart, men med mindre sprang enn i S-forkastningen (Figur 4.20). Spranget på Rforkastningen avtar nordover på samme måte som langs S-forkastningen. Mot vest er den nordlige riftstrukturen begrenset av 12-forkastningen. På Ringkøbing-Fynhøydens østre del er det en svak vridning i forkastningsmønsteret fra en nordøst-sydvest retning i Horngraben til en nordsyd retning (Figur 5.2). Det har vært en betydelig forkastningsaktivitet i trias i Horngraben og øst på høyden vestover til K-forkastningen som er etterfulgt av en tektonisk rolig jura periode med erosjon (Figur 5.2) (Sørensen, 1986). Forkastningsmønsteret i Horngraben avskjæres av de transversale bevegelseslineamentene II, III og 12 (Figur 5.2). Disse lineamentene kan ha hatt en reaktivering i trias. Langs lineament 12 er det avsatt trias syn-rift sedimenter og dette lineamentet har derfor hatt en tektonisk aktivitet i denne perioden (Figur 4.21). Den store 12-forkastningen som kommer inn i Horngraben med en mer nordvest-sydøst retning enn hovedretningen av Horngraben, kan ha vært med på å vri forkastningsmønsteret over høyden til en mer nord-syd retning.

5.4 Tektonisk utvikling i jura

Området nordvest for Ringkøbing-Fynhøyden var i jura hevet med et større oppdomet senter (Richards et al., 1993). Dette medførte at det på Ringkøbing-Fynhøyden var et lite potensial for dannelse av akkomodasjonsrom og store muligheter for dyp erosjon av avsatte sedimenter i jura. For at materialet fra nedre eller midtre jura skal bli bevart i nær tilknytning til det oppdomete senteret, må forholdene for avsetning og bevaring ha vært gode. Det er større sannsynlighet for bevaring lengst vekk fra det oppdomete senteret eller ved en gunstig strukturering.

På Ringkøbing-Fynhøyden og i Horngraben mangler avsetninger fra nedre og midtre jura (Figur 4.3; 4.6). Både nedre og midtre jura er bevart syd i Sentralgraben (Figur 4.23). Begge sekvensene har sin største mektighet i syd og tynner mot erosjonssenteret i nordvest. Sekvensen fra nedre jura har mindre utstrekning enn sekvensen fra midtre jura (Michelsen et al., 1992).

Den jurasiske riften må ha vært dyp i Sentralgraben siden det her er bevart materiale fra både nedre og midtre jura. Den dype grabenstrukturen har hatt betydelig sprang mot A'-forkastningen slik at nedre jura er bevart her (Figur 4.3-4.6; 4.13, 4.23). Det kan ha vært stor forkastningsaktivitet nordover i Sentralgraben også, men at det her ikke er bevart nedre og midtre jura sedimenter da dette er nærmere det jurasiske erosjonssenteret. Sentralt inn mot aksen av Sentralgraben har det i tidlig jura vært større innsynkning enn ved flanken mot Ringkøbing-Fynhøyden. Tidlig og midtre jura viser syn-rift avsetninger. Nedre jura er kun bevart sentralt i grabenstrukturen mens midtre jura kan kartlegges helt til B-forkastningen. Avsetningen ligger her inkonformt over avsetninger fra eldre trias (Figur 4.23). Dette viser at det allerede har vært en stor erosjon i de triasiske avsetningene før jurasisk rifting og sedimentasjon. Ned på nedre jura sedimenter lapper midtre jura avsetninger med største utbredelse langs Bforkastningen. Denne midtre jura avsetningen er erodert i overflaten og tynner ut mot nordvest. Deposenteret for midtre jura lagpakken ligger lengre mot øst i Sentralgraben enn lagpakken fra nedre jura. Midtre jura sekvensen er jevntykk inn mot aksen som viser at det har vært størst forkastningsaktivitet langs Sentralgrabens flanke inn mot Ringkøbing-Fynhøyden (Figur 4.23). Forkastningen i de sentrale delene har ikke noen tydelig forkastningsaktivitet i midtre jura. Den store forkastningsaktiviteten har mot slutten av jura forflyttet seg til Coffee Soil forkastningen og Sentralgrabens østlige grense (Michelsen et al., 1992).

Avsetninger i nedre og midtre jura har fylt opp akkomodasjonsrommet i Sentralgraben og enhetene viser erosjon i toppen (Michelsen et al., 1992). Det oppdomete senter hadde sin maksimale størrelse i midtre jura noe som har medført at denne perioden har lite bevaringspotensial (Richards et al., 1993). Den større utstrekningen av midtre jura sekvensen over nedre jura i Sentralgraben tyder på en økende forkastningsaktivitet gjennom jura.

Mot øst i Horngraben er avstanden fra erosjonssenteret stor og bevaringspotensialet for nedre og midtre jura er derfor bedre enn i Sentralgraben. Det har ikke vært den samme forkastningsaktiviteten i Horngraben som i Sentralgraben i jura (Møller, 1986). Horngraben har hatt en tektonisk rolig nedre og midtre jura periode og har derfor ikke bevart nedre og midtre jura avsetninger (Figur 4.20; 4.21).

I øvre jura har den oppdomete strukturen i trippelpunktet mellom Sentralgraben, Vikinggraben og Moray Firth kollapset, og det har vært en betydelig transgresjon inn over store deler av Nordsjøen (Badley et al., 1988). I Sentralgraben har riftaktiviteten fortsatt, og mektige avsetninger fra øvre jura bevart i selve grabenen (Figur 4.23). Øvre jura avsetningene er her flere kilometer tykke inn mot flanken av høyden og det er et betydelig sprang i B-forkastningen (Figur 4.3-4.6; 4.10; 4.11; 4.13).

Transgresjonen i øvre jura har gått inn over høyden, men det er enkelte mindre områder som ikke har avsetninger bevart før tidlig kritt (Figur 3.2). Det har vært en tektonisk aktivitet på den vestre delen av Ringkøbing-Fynhøyden i sen jura samtidig med den store forkastningsaktiviteten i Sentralgraben. Forkastningsplanene vest på Ringkøbing-Fynhøyden følger samme retning som forkastningene i Sentralgraben med nordvest-sydøst utstrekning (Figur 5.2). På Ringkøbing-Fynhøyden i vest er øvre jura syn-rift avsetningene ofte bevart i mindre halvgrabener inn mot forkastningsplanene (Figur 4.24; 4.29). Enkelte mindre sedimentære kiler kan observeres over riftblokksystemet på høyden mellom B-forkastningen og K-forkastningen. Her er tykkelsen på øvre jura sedimentene opp til et par hundre meter i de forkastede blokkene med størst øvre jura sprang (Underhill, 1998).

Sen jura forkastningene vest på Ringkøbing-Fynhøyden stopper i nord mot det eldre forkastningssystemet (7-, 6-, 5- og 4-forkastningene) i det Norsk-Danskebassenget (Figur 5.2). Den jurasiske forkastningsaktiviteten vest på høyden reaktiverer forkastninger som var aktive under kollaps av kaldonidene og disse eldre forkastningene er avgrenset av de transversale lineamentene rundt høyden.

Området vest på Ringkøbing-Fynhøyden med forkastningsmønster som følger retningen til Sentralgraben smalner inn mot syd (Figur 5.2). Sentralgraben og Horngraben konvergerer noe i syd og dette kan følges i forkastningsmønsteret over den vestlige delen av høyden samt i tyngdeanomaliene på Ringkøbing-Fynhøyden (Figur 5.2). Sentralgrabenmønsteret vest for Kforkastningen har nordvest-sydøst retning og Horngrabenmønsteret øst for K-forkastningen har nord-syd retning. Skiftet i forkastningsmønsteret kan følges i øvre jura avsetningene (Figur 4.15). Øvre jura på Ringkøbing-Fynhøyden er vest for K-forkastningen avsatt i syn-rift kiler (Figur 4.24) og øst for K-forkastningen som en jevn lagpakke som fortsetter over Horngraben (Figur 4.22; 4.28). Dette viser et tydelig skille på selve høyden med sen jura tektonikk kun i vest. Sen jura lagpakke varierer fra 0 til 200 meter tykkelse på den vestre delen, mens lagpakken på den østre delen og over Horngraben har en mektighet på omtrent 100 meter (Appendiks I).

I bassengstrukturene rundt høyden der det har vært bevegelse av Zechstein saltet, har det blitt dannet små lokale depotsenter internt i bassengene særlig i overgangen jura-kritt. Den termale innsynkningen som begynte etter kollapsen av jura oppdomingen har fortsatt inn i kritt (Michelsen, et al., 1992).

5.5 Avsetninger fra kritt

Det har på mesteparten av Ringkøbing-Fynhøyden vært en jevn overgang i avsetninger fra jura til tidlig kritt og det er liten forskjell i bassengformen i jura-kritt overgangen (Michelsen, et al., 1992; Vejbæk, 1998). Enkelte områder, spesielt inn mot Sentralgrabenområdet, har stått høyt gjennom juraperioden og her finnes kritt avsetninger rett på kaledonsk basement (Per-1; Figur 3.2; 4.15). Den termale avkjølingen og innsynkningen begynte i jura og fortsatte inn i kritt.

Kritt er delt inn i to enheter på Ringkøbing-Fynhøyden der nedre kritt består av Cromer Knoll gruppen og øvre kritt består av chalk (Figur 4.30). Nedre kritt er en tynn jevn sekvens med et kraftig seismisk refleksjonsutslag i toppen. Det kraftige utslaget i overgangen mellom nedre kritt og chalk er fra et konsolidert lag med kalkmergel som kan følges over større deler av Nordsjøen (Oakman og Partington, 1998). Det har i forbindelse med avsetningen av dette laget vært en maksimal utstrekning av krittbassenget samtidig som det har vært tilført lite materiale fra land. Det kraftige seismiske utslaget i forbindelse med mergelen er dannet ved ansamling av tungmetaller og høyt innhold av kalk (Figur 2.15). Det høye innholdet av kalk i hele krittpakken gir en generell kraftig seismisk signatur fra de seismiske sekvensene (Figur 5.3). Seismisk data viser at kritt avsetningene i det sydlige Nordsjøområdet er flate og jevntykke lag (Figur 4.28).

I toppen av chalk sekvensen er det erosjonsstrukturer som viser at det har vært en oppfylling av krittbassenget mot slutten av krittperioden. Dette kommer fram i både stor og liten skala i de seismiske snittene og det er store erosjonsstrukturer 80 km fra origo mot sydøst i figur 4.7 og 73 km fra origo mot nordøst i figur 4.5. Erosjonsstrukturene i toppen av krittbassengavsetningene tolkes som kanalstrukturer og dalsystemer dannet av nedskjærende erosjon. Til tross for at chalklaget har erosjonsstrukturer i toppen så har laget allikevel en jevn tykkelse over høyden. (Appendiks I; II).

I de seismiske linjene viser krittreflektorene god kontinuitet, men det er enkelte brudd i reflektorene som skyldes kompaksjon i de større sedimentbassengene rundt Ringkøbing-Fynhøyden (Michelsen et al., 1998). På selve høyden er det relativt tynne ukonsoliderte sedimentsekvenser noe som medfører få reflektorbrudd knyttet til kompaksjon.

I de områdene i Nordsjøen hvor Zechstein halitt er avsatt er enkelte reflektorbrudd i kritt forårsaket av dette mobile saltet. Det er ikke funnet saltavsetninger fra Zechstein på høyden, men rundt høyden er det flere reflektorbrudd og dannelse av avsetningsrom helt opp til chalk på grunn av halokinetisk aktivitet.

Gjennom krittperioden har det vært en jevn termal innsynkning særlig av området rundt Ringkøbing-Fynhøyden og det kan observeres et ensartet avsetningsmønster over hele området som har vært dekket av krittbassenget. I krittperioden har det i Nordsjøområdet vært noe transpressjonal bevegelse. Denne bevegelsen har senter i syd, og i den sydlige delen av Nordsjøen er det enkelte steder dannet kompresjonsstrukturer. Figur 5.3 viser at i kritt avsetningene kan en tektonisk kompresjonsstruktur observeres langs B-forkastningen. Den jevne termale innsynkningen kamuflerer kompresjonen lenger mot nord slik at den ikke vises her.

Figur 5.3: Kompresjonsstruktur i nedre kritt ved Coffee Soil forkastningen vises i både DS-99 107 og 108 linjene, men er mye mindre enn kompresjonsstrukturene fra DS-99 115 linjen som ligger helt i syd av Ringkøbing-Fynhøyden.

Kompresjonsstrukturene vises langs Ringkøbing-Fynhøyden inn mot den store B-forkastningen på kanten av Sentralgraben (Figur 5.2; 5.3). Langs enkelte deler av B-forkastningen er det en reaktivering i forkastningsplanet med en reversbevegelse i det som tidligere var en stor normalforkastning. Kompresjonsstrukturen danner en domeliknende struktur. Domestrukturen er størst i syd og minker mot nord. Transpressjonsbevegelsen har hatt en opprinnelse fra syd og har derfor en sterkere påvirkning i den sydlige delen av forkastningsplanet (Oakman og Partington, 1998).

5.6 Utviklingen av kenozoikum

Det har vært et gradvis skifte i klima fra et varmt mesozoikum til et kjøligere kenozoikum. Kenozoikum i Nordsjøen består av mektige klastiske avsetninger. Disse lapper på chalk fra et depotsenter i Sentralgraben inn på Ringkøbing-Fynhøyden fra vest og har utbyggende klinoforme strukturer (Michelsen et al., 1994; 1998). I kenozoikum var det termal innsynkning av Nordsjøen samtidig som det har vært hevning av landområdene rundt. De hevete landområdene tilfører store mengder klastiske sedimenter fra nordøst (Huuse et al., 2001).

Ringkøbing-Fynhøyden har vært en grunne i tidlig kenozoikum og mangler klastiske avsetninger fra tidlig paleogen (Huuse et al., 2001). Høyden har i denne første avsetningsperioden i kenozoikum stått høyere enn bassenget nord for høyden (Michelsen, 1997). Det kan i de seismiske linjene på Ringkøbing-Fynhøyden observeres erosjon i overgangen chalk til de pålappende oligocen avsetningene (Michelsen et al., 1994). De kenozoiske avsetningene er mektige og er delt inn i 4 lagpakker på Ringkøbing-Fynhøyden (Figur 2.16; 4.2) der den eldste lagpakken er Sekvens 4 fra oligocen som bygger seg inn over høyden fra vest (Figur 4.3-4.13) (Michelsen et al., 1994). Den yngre del av krittlagpakken som de kenozoiske avsetningene lapper på har en helning mot vest på grunn av innsynkningen i vest og hevningen i øst. De pålappende kenozoiske reflektorene er mer horisontale.

Den oligocen sekvens 4 er en aggraderende oppbygging over kanten av Sentralgraben og inn over Ringkøbing-Fynhøyden. Avsetningene har klatret innover og nordover ettersom det relative havnivået har steget og nytt avsetningsrom er dannet inne på høyden (Figur 2.16). Sekvens 4 har en større utstrekning mot øst langs den nordlige flanken av høyden enn i syd. Sekvens 4 stopper på høyden inn mot Horngraben i øst (profilene, Figur 4.3-4.13).

De to midtre kenozoiske enhetene, enhet 5 og 6 fra overgangen oligocen-miocen til midtre miocen dekker jevnt hele Ringkøbing-Fynhøyden, men regionalt viser de en avsetningsøkning mot nordøst og mot sedimenttilførselen (Figur 2.16) (Michelsen et al., 1994; Huuse et al., 2001). Enhetene er basseng innfyllinger med et senter nord for høyden og kildeområde i nordøst (Michelsen et al., 1998). Enhet 5 og 6 er avsatt med en jevn tykkelse i øst-vest retning, men enhet 5 har en større utstrekning mot nord-øst. Det er en svak økning i tykkelse mot nord i begge enhetene. Den store sedimenttilførselen fra de hevede landområdene i nordøst gir en utbygging av avsetningene som vises med utvidet nedlapp (Figur 4.3-4.13) (Michelsen et al., 1994).

Den yngste delen av kenozoikum, enhet 7, som består av avsetninger fra midtre miocen og fram til i dag viser stor mektighet inn mot sentrale deler av Nordsjøbassenget. Sedimentene har et kildeområde i østnordøst (Figur 2.16) (Michelsen et al., 1994). Enhet 7 har en mektighet på omtrent en kilometer i vest som vist i de regionale profilene og avtar til en tykkelse på et par hundre meter mot øst (Figur 4.3-4.7). De klinoforme prograderende strukturene i den nedre delen av enhet 7 finnes over hele området. Mot slutten av miocen bygger de pliocen klinoforme strukturene seg ut i bassenger da bassenginnsynkningen ikke lenger holder følge med sedimenttilførselen. Akkomodasjonsrommet i forbindelse med avsetningen av enhet 7 har vært begrenset inn mot Danmark slik at de øvre tertiære lagene har begynt en utbygging inn i bassenget og er avtagende mot østnordøst (Figur 4.31) (Michelsen et al., 1998). De kvartære sedimentene i Nordsjøbassenget har en jevn utbredelse over hele området. Det akkomodasjonsrommet som er dannet og avsetningene fra denne perioden danner langstrakte klinoforme strukturer med flate horisontale lag opp til dagens havbunn (Huuse et al., 2001).

6 Konklusjon

Oppgaven har benyttet hovedsaklig seismiske data og brønninformasjon for å forstå den geologiske utviklingen av Ringkøbing-Fynhøyden. Det er særlig lagt vekt på en tolkning og forståelse av de dype strukturene på Ringkøbing-Fynhøyden mellom Sentralgraben og Horngraben. En av de viktigste observasjonene er at midt på høyden er det et tektonisk skille i forkastningsmønster som deler høyden i en østre og en vestre del. På begge sider av dette tektoniske skillet har forkastningsaktiviteten variert både i tid og strøk på forkastningene.

Ringkøbing-Fynhøyden avgrenses i nord og i syd av eldre tektoniske lineamenter dannet under lukkingen av Tornquisthavet i tidlig paleozoikum. Denne lukkingen medførte en transversal bevegelse i nordvest-sydøst retning på begge sider av høyden. De transversale lineamentene smalner sammen mot øst inn i Teiessyre-Tornquistsonen. Lineamentene avlaster tektonisk spenning rundt Ringkøbing-Fynhøyden ved transversale bevegelser. Ringkøbing-Fynhøyden har prekambrisk basement og danner den sydvestlige grensen av Balticaskjoldet. Fra sydvest mot Ringkøbing-Fynhøyden har det vært en subduksjon av Tornquisthavet. Denne subduksjonen har gitt høyden en hevning og lite potensial for bevaring av eldre paleozoiske avsetninger, men det allikevel en mulighet for bevaring av avsetninger fra tidlig paleozoikum på prekambrisk basement.

Hovedretningen til kaldonidene følger grensen mellom Baltica og Laurentia i nordvest. I syd følger kaldonidene Balticamarginen. Kaldonidene krysser i sydvest Ringkøbing-Fynhøyden og bøyer øst langs de tidlig paleozoiske lineamentene syd for høyden. Retningsskiftet på kaldonidene kan være styrt av kompresjon skapt av avrevne mikrokontinenter fra Gondwanaskjoldet som kommer inn fra sydvest og danner et trippelpunkt med Baltica og Laurentia. Den kaledonske deformasjonen følger svakhetssonene langs de tidlig paleozoiske transversale lineamentene syd for Ringkøbing-Fynhøyden og krysser den vestre delen av høyden i sydøstlig retning. Den vestre delen av høyden med kaledonsk deformasjon har ikke bevart sedimentære avsetninger som er eldre enn deformasjonen i silur og mest sannsynlig er de eldste sedimentene her av devon alder.

Den minste utstrekningen av kaldonidene på Ringkøbing-Fynhøyden er over den vestlige horsten som følger Sentralgraben i nordvest-sydøst retning begrenset av B- og C-forkastningen. Den maksimale utbredelsen av kaldonidene på Ringkøbing-Fynhøyden kan være fram til skifte i forkastningsmønster midt på høyden ved K-forkastningen.

Proto-Sentralgraben har en tektonisk aktivitet og begynnende grabendannelse i forbindelse med kollaps av kaldonidene i devon-karbon. Det er funnet avsetninger fra devon-karbon i riftstrukturer på Mid-North Seahøyden. Forkastningene vest på Ringkøbing-Fynhøyden i området med kaledonsk påvirkning følger samme retning som proto-Sentralgraben. Forkastninger med tektonisk aktivitet fra devon-karbon på vestre del av Ringkøbing-Fynhøyden har gitt opphav til mektige riftbassenger som er bevart. Sannsynligvis er de dannet i forbindelse med kollaps av kaldonidene og følger nordvest-sydøst svakhetssoner dannet under subduksjon av Tornquisthavet.

Den tektoniske aktiviteten i devon-karbon er ikke observert i området hvor prekambrisk basement er bevart øst på Ringkøbing-Fynhøyden. Den tektoniske rolige perioden øst på høyden fortsetter helt fram til den vulkanske aktiviteten og ekstensjonen i overgangen karbon-perm. Sutureringen av den varisiske fjellkjeden og dannelsen av det Hercynske fjellkjedekomplekset i sydøst har gitt en kompresjon i Teisseyre-Tornquistsonen. Dette har ført til en reaktivering av de tidlig paleozoiske transversale lineamentene med sidelengs bevegelse av lineamentene nord og syd for Ringkøbing-Fynhøyden. Den transversale bevegelsen har ført til at området nord for Ringkøbing-Fynhøyden har beveget seg relativt mot øst og området syd for høyden har beveget seg relativt mot vest i forhold til høyden. Bevegelsen i lineamentene langs Ringkøbing-Fynhøyden har i karbon-perm overgangen gitt opphav til et vulkansk senter i Teisseyre-Tornquistsonen. Den vulkanske aktiviteten har en stor regional utstreking rundt Ringkøbing-Fynhøyden i hele sydlige Nordsjøen. Det er avsatt vulkanitter på hele Ringkøbing-Fynhøyden. Reaktivering av de transversale lineamentene sammen med den vulkanske aktiviteten i overgangen karbon-perm og den senere ekstensjonen starter dannelsen av Horngraben. Riftaktiviteten i Horngraben og forkastningsmønsteret på den østre delen av høyden viser lite tegn til forkastningsaktivitet knyttet til subduksjon av Tornquisthavet og den kaledonske fasen, men kan derimot knyttes til transversal bevegelse av lineamenetene langs høyden.

Den vestre delen av Ringkøbing-Fynhøyden viser ikke tektonisk aktivitet under eller rett etter den vulkanske perioden i karbon-perm overgangen. Den østre delen av Ringkøbing-Fynhøyden viser derimot tektonisk aktivitet i øst-vest retning langs høyden og inn mot Horngraben. Riftaktiviteten med en hovedsakelig nord-syd retning øst på høyden har vært aktiv etter den vulkanske aktiviteten. Forkastningsmønsteret øst på høyden følger den samme retningen som Horngraben. Det kan i de seismiske data observeres forkastninger i de vulkanske lavaene avsatt på denne østlige delen av høyden slik at riftaktiviteten med en nord-syd retning er tolket til å være senere enn den vulkanske perioden i karbon-perm, sannsynligvis trias slik som i Horngraben.

Perm har vært en tørr og varm periode. Den vulkanske aktiviteten i overgangen karbon-perm etterfølges av sandige kontinentale avsetninger fra Rotliegende. Ringkøbing-Fynhøyden har i denne perioden hatt en mindre innsynkning enn både det nordlige og sydlige permbassenget. Innsynkningen av disse bassengene styres delvis av de transversale lineamentene sammen med den termale innsynkingen etter den vulkanske aktiviteten. Det sydlige permbassenget har spesielt stor innsynkning da det i syd har vært en transtensjonsbevegelse i tillegg til at området er en del av det varisiske forlandsbassenget. Langs den nordlige flanken av høyden har det i overgangen mellom den sydlige og nordlige Horngraben vært en transpresjonsbevegelse mot sydøst med en betydelig vulkansk aktivitet sentralt i grabenstrukturen.

I perm har en lengre erosjonsperiode dannet Saalian inkonformiteten. Tidligere avsetninger er blitt kraftig erodert. Vulkanittene fra Rotliegende er mektige og robuste slik at det er bevart rester av Rotliegende lavaer med en regional utstrekning. Mot slutten av perm avsettes mektige saline bassengavsetninger både i det sydlige og det nordlige permbassenget. Disse avsetningene har størst mektighet i det sydlige permbassenget. Ringkøbing-Fynhøyden har fortsatt vært høyere enn områdene rundt og mangler evaporitt avsetninger fra Zechstein. På Ringkøbing-Fynhøyden er det bare bevart tidlige perm avsetninger fra Rotliegende.

I trias fortsetter den tektoniske aktiviteten i Horngraben med dannelse av dype grabenstrukturer og store forkastningssprang. Trias sedimenter øker i mektighet mot syd og grabenstrukturen er dypest i den sydlige delen. Den asymmetriske halvgrabenstruktureringen som spesielt kan observeres i den nordlige del av Horngraben knyttes opp mot de transversale lineamentene. Riftaktivitet relatert til Horngraben kan følges vestover på Ringkøbing-Fynhøyden til Kforkastningen med en forkastningsretning som følger mønsteret til Horngraben med sprang ned mot øst og som er påvirket av de transversale lineamentene nord og syd for høyden. De transversale lineamentene som har aktivitet i overgangen karbon-perm har i trias ført til en påvirkning av den rigide høyden øst for K-forkastningen og dannelsen av Horngraben. Forkastningene øst for K-forkastningen som har nord-syd retning er tektonisk aktive i trias og i dette området er det en betydelig avsetningssekvens fra tidlig trias bevart over vulkanitter. Vest på høyden er det derimot ingen tegn til triasisk tektonisk aktivitet eller sedimenter.

Vest på Ringkøbing-Fynhøyden mangler avsetningene mellom karbon-perm vulkanittene og øvre jura. Forkastningsspranget som gir rom for øvre jura syn-rift kiler på den vestre delen av Ringkøbing-Fynhøyden har samme sprang som forkastningene observert i vulkanitter og sillintrusjoner. Det har på denne delen av høyden ikke vært forkastningsaktivitet etter kollaps av kaldonidene i devon-karbon og helt fram til den mindre tektoniske påvirkningen i øvre jura. Forkastningsaktiviteten i øvre jura følger de samme forkastningsplanene som i devon-karbon. Det har vært stor jurasisk tektonisk aktivitet i Sentralgraben som har sammen retning på forkastningene som vest på høyden.

Forkastningene i Sentralgraben har vært aktive i hele jura og har store forkastningssprang, betydelig større enn på høyden. Dette har medført at avsetninger fra eldre trias, nedre og midtre jura i tillegg til flere kilometer med øvre jura er bevart i Sentralgraben. I områdene rundt Sentralgraben har det fram til øvre jura vært kraftig erosjon som en funksjon av oppdomingen i nordvest i trippelpunktet mellom Sentralgraben, Vikinggraben og Moray Firth. Kollaps av domestrukturen i øvre jura har gitt muligheten for en regional transgresjon i området, også over Ringkøbing-Fynhøyden. Den vestre delen av høyden har fortsatt stått høyt i øvre jura, men har vært påvirket av noe tektonisk aktivitet og har dermed bevart kilestrukturer med syn-rift sedimenter.

Den østre delen av Ringkøbing-Fynhøyden og Horngraben har ikke vært utsatt for noe tektonisk aktivitet i jura. Fra skifte i forkastningsaktivitet midt på Ringkøbing-Fynhøyden og østover ut i Horngraben og mot Danmark er det en jevn inkonformitetsflate under en tynn øvre jura lagpakke. Det er i Horngraben og på Ringkøbing-Fynhøyden ikke bevart noen nedre eller midtre jura avsetninger. Yngre trias avsetninger er bare bevart i de dype delene av Horngraben og lengre mot øst.

Hele området har hatt en jevn termal innsynkning fra sen jura og gjennom kritt. Det er avsatt kalkholdige avsetninger i kritt som gir opphav til sterke seismiske reflektorer. Det er liten forkastningsaktivitet i krittperioden, men enkelte strukturer spesielt mot sydvest viser tegn til transpressjon. Transpresjonsbevegelsen dør ut nordover. Den termale innsynkningen av området begynte i jura etter kollaps av domen nordvest for studieområdet og en begynnende utvikling av Nord Atlanteren.

Kenozoikum består av en tykk lagpakke som er mektigst mot de sentrale områdene av dagens basseng og som tynner mot de omkringliggende landområdene. Bassenget har i kenozoikum fortsatt hatt en termal innsynkning og de tilførte sedimentene har vært fra omkringliggende hevede landområder. Hevning i nordøst og øst har gitt rikelig sedimenttilførsel til bassengområdet. Mot den siste delen av kenozoikum har sedimenttilførselen vært større enn akkomodasjonsrommet i bassenget og det har i pliocen vært en progradasjon over Ringkøbing-Fynhøyden.

Referanser:

Abramovitz, T., Berthelsen, A., Schjoth, F., Thybo, H., Balling, N., Nielsen L., Flueh, E.R., Huebinger, S., Reston, T., Pedersen, L.B., Schmidt, J., England, R.W., Hobbs, R.W. og Maguire P.K.H. 1997A. MONA LISA-Deep seismic investigations of the lithosphere in the southeastern North Sea. *Tectonophysics*, vol. 269, 1-19.

Abramovitz, T., Berthelsen, A. og Thybo, H. 1997B. Proterozoic sutures and terranes in the south-eastern Baltic Shield interpreted from BABEL deep seismic data. *Tectonophysics*, vol. 270, 259-277.

Badley, M.E., Price, J.D., Rambech Dahl, C. og Agdestein, T. 1988. The structural evolution of the northern Viking Graben and its bearing upon extensional modes of basin formation. *Journal of the Geological Society*, London, vol. 145, 455-472.

Berthelsen, A., For EUGENO-S Working Group, 1988. Crustal structure and tectonic evolution of the transition between the Baltic Shield and the North German Caledonides (the EUGENO-S Project). Fra: Freeman, R., Berthelsen, A. og Mueller, S. (Eds.), *European Geotraverse, EUGENO-S Working Group. Tectonophysics*, vol. 150, 253-348.

Berthelsen, A. 1992. Mobile Europe. Fra: Blundell, D.J., Freeman, R., and Mueller, S. (Eds.), *A Continent revealed: the European Geotraverse*, Cambridge, 11-32.

Berthelsen, A. 1998. The Tornquist Zone northwest of the Carpatians: an intraplate pseudosuture. *GFF*, Stockholm, vol. 120, 223-230.

Best, G., Kockel, F. og Schøneich, H. 1983. Geological history of the southern Horn Graben. Fra: Kaasschieter, J.P.H. og Reijers, T.J.A. (Eds.), *Petroleums Geology of the Southeastern North Sea and the Adjacent Onshore Areas. Geologie en Mijnbouw*, vol. 62, 25-33.

Blundell, D. og Freeman, R. 1992. Why a traverse through Europe? Fra: Blundell, D.J., Freeman,R. og Mueller, S. (Eds.), *A Continent revealed: the European Geotraverse.*, Cambridge, 1-9.

Bowman, M.B.J. 1998. Cenozoic. Fra: Glennie, K.W. (Ed.), *Petroleum Geology of the North Sea: basic consepts and recent advances*, Fourth edition, London, 350-375.

Cartwright, J. 1990. The Structural evolution of the Ringkøbing-Fyn High. Fra: Blundell, D.J. og Gibbs A.D. (Ed.), *Tectonic Evolution of the North Sea rifts*. Oxford Science Publications, 200-216.

Clausen, O.R. og Pedersen, P.K. 1999. Late Triassic structural evolution of the southern margin of the Ringkøbing-Fyn High, Denmark. *Marine and petroleum geology*, København, vol. 16, 653-665.

Cocks, L.R.M. og Fortey, R.A. 1982. Faunal evidence for oceanic separations in the Palaeozoic of Britain. *Journal of the Geological Society*, London, vol.139, 465-478.

Cowie, J.W., Rushton, A.W.A. og Stubblefield, C.J. 1972. *A correlation of Cambrian rocks in the British Isles*. Geological Society, Special Report Nr. 2, London, 42 pp.

Downie R.A. 1998. Devonian. Fra: Glennie K.W. (Ed.), *Petroleum geology of the North Sea*. Fourth edition, London, 85-103.

Drinkwater, R.A., Pickering, K.T. og Siedlecka, A. 1996. Deepwater fault-controlled sedimentation, Arctic Norway and Russia: Response to Late Proterozoic rifting and the opening of the Iapetus Ocean. *Journal of Geological Society*, London, vol. 153, 427-436.

England, R.W., Hobbs, R.W., Maguire, P.K.H., Abramovitz, T., Berthelsen, A., Schjoth, F., Thybo, H., Balling, N., Nielsen, L., Flueh, E.R., Huebinger, S., Reston, T., Pedersen, L.B. og Schmidt, J. 1997. Closure of the Tornquist Sea; constraints from MONA LISA deep seismic reflection data. *Geological Society of America*, vol. 25, nr. 12, 1071-1074.

Fisher, M.J. og Mudge, D.C. 1998. Triassic. Fra: Glennie, K.W. (Ed.), *Petroleum Geology of the North Sea: basic consepts and recent advances*, Fourth edition, London, 212-244.

Frost, R.T.C. 1977. Tectonic patterns in the Danish region (as deduced from a comparative analysis of magnetic, Landsat, bathymetric and gravity lineaments). *Geologie en Mijnbouw,* vol. 56, nr. 4, 351-362.

Frost, R.T.C., Fitch, F.J. og Miller, J.A. 1981. The Age and Nature of the Crystalline Basement of the North Sea Basin. Fra: Illing, L.V. og Hobson G.D. (Eds.), *Petroleum Geology of the Continental Shelf of North-West Europe*, London, vol. 1, 45-57.

Gabrielsen, R.H., Færseth, R.B., Steel. R.J., Idil, S. og Klovjan, O.S. 1990. Architectural styles of basin fill in the northern Viking Graben. Fra: Blundell, D.J. og Gibbs, A.D. (Eds.), *Tectonic Evolution of the North Sea rifts*. Publications International Lithossphere Program, Oxford University Press, New York, vol. 181, 158-179.

George, G.T. og Berry, J.K. 1997. Permian (Upper Rotliegende) synsedimentary tectonics, basin development and palaeogeography of the southern North Sea. Fra: Ziegler, K., Turner, P. og Daines, S.R.(Eds.), *Petroleum geology of the Southern North Sea: Future potential*, Geological Society Special Publication nr. 123, London, 31-61.

www.geus.dk Geological Survey of Denmark and Greenland. GEUS

Glennie, K.W. og Underhill, J.R. 1998. Origin, development and evolutin of structural styles. Fra: Glennie, K.W. (Ed.), *Petroleum Geology of the North Sea. Basic Concepts and Recent Advances. Forth edition*, 42-84.

Harland, W.D. og Gayer, R.A. 1972. The Arctic Caledonides and earlier oceans. *Geological Magazine*, vol. 109, 289-314.

Heeremans, M. og Faleide, J.I. 2004. Late Carboniferous-Permian tectonics and magmatic activity in the Skagerrak, Kattegat and the North Sea. Fra: Wilson, M., Neumann, E. –R., Davies, G.R., Timmerman, M. J., Heermans, M. og Larsen, B. T. (Eds.), *Permo-Carboniferous Magmatism and Rifting in Europe*. Geological Society, London, Special Publications, vol. 223, 157-176.

Heeremans, M., Faleide, J.I. og Larsen B.T. 2004A. Late Carboniferous-Permian of NW Europe: an introduction to a new regional map. Fra: Wilson, M., Neumann, E.–R., Davies, G.R., Timmerman, M.J., Heermans, M. og Larsen, B.T. (Eds.), *Permo-Carboniferous Magmatism and Rifting in Europe*. Geological Society, London, Special Publications, vol. 223, 75-88.

Heeremans, M. Timmerman, M.J., Kirstein, L.A. og Faleide, J.I. 2004B. New constrains on the timing of late Carboniferous-early Permian volcanism in the central North Sea. Fra: Wilson, M., Neumann, E.–R., Davies, G.R., Timmerman, M.J., Heermans, M. og Larsen, B.T. (Eds.), *Permo-Carboniferous Magmatism and Rifting in Europe*. Geological Society, London, Special Publications, vol. 223, 178-194.

Huuse, M., Lykke-Andersen, H. og Michelsen, O. 2001. Cenozoic evolution of the eastern Danish North Sea. *Marine Geology*, vol. 177, 243-269.

Japsen, P. 2000. Fra Kridthav til Vesterhav Nordsøbassinets udvikling vurderet ud fra seismiske hastigheder. *Dansk Geologisk Forenings Nyheds- og informationsskrift*. Hæfte 2, København, 1-36.

Keller, G.R. og Hatcher R.D.Jr. 1999. Some comparisons of the structure and evolution of the south Appalachian-Ouachita orogen and portions of the Trans-European Suture Zone region. *Tectonophysics*, vol. 314, Amsterdam, 43-68.

Larsen, O. 1971. K/Ar Age Determinations from the Precambrian of Denmark. *Danmarks geologiske undersøgelse*. Serie 2 nr. 97, 37 pp.

Larsen, O. 1972. K/Ar datering af prøver fra danske dybdeboringer. *Dansk Geologisk Forenings Årsskrift for 1971*, København, 91-94.

Maynard, J.R., Hofmann, W., Dunay, R.E., Bentham, P.N., Dean, K.P. og Watson, I. 1997. The Carboniferous of west Europe: the development of a petroleum system. *Petroleum Geoscience*, vol. 3, 97-115.

Michelsen, O., Mogensen T.E. og Korstgård J.A. 1992. Pre-Cretaceous structural development of the Danish Central Trough and its implications for the distributions of Jurassic sands. Fra: Larsen, R.M., Brekke, H., Larsen, B.T. og Talleraas, E. (Eds.), *Structural and tectonicmodelling and its application to petroleum geology*. Norsk Petroleum Forbund, Special publication, nr 1, 495-506.

Michelsen, O. og Nielsen, L.H. 1993. Structural development of Fennoscandia border zone, offshore Denmark. *Marine and Petroleum Geologi,* København, vol. 10, 124-134.

Michelsen, O., Danielsen, M., Heilmann-Clausen, C., Jordt, H., Laursen, G. og Thomsen, E. 1994. Occurence of major sequence stratigraphic boundaries in relation to basin development in Cenozoic deposits of the southeastern North Sea. Fra: Steel, R.J., Felt, V., Johannessen, E., Mathieu, C. (Eds.), Sequence stratigraphy of the North West Europe continental margin. Norwegian Petroleum Society Special Publication, nr. 5, 415-427.

Michelsen, O. 1997. Mesozoic and Cenozoic stratigraphy and structural development of the Sorgenfrei-Tornquist zone. Z. dt. Geol. Ges., vol 148, Stuttgart, 33-50.

Michelsen, O., Thomsen, E., Danielsen, M., Heilmann-Clausen, C., Jordt, H., Laursen, G.V.
1998. Cenozoic sequence stratigraphy in the eastern North Sea. Mesozoic-Cenozoic Sequence
Stratigraphy of Western European Basins. Fra: de Graciansky, P. C., Jacquin, T., Vail, P.R.
(Eds.), *SEPM Special Publications. Sedimentary Geological Society*, London, vol. 60, 91-118.

Michelsen, O. og Clausen, O.R. 2002. Detailed stratigraphic subdivision and correlation of the southern Danish Triassic succession. *Marine and Petroleum Geology*, vol. 19, 563-587.

Møller, J.J. 1986. Seismic structural mapping of the Middle and Upper Jurassic in the Danish Central Trough. Danmarks Geologiske Undersøgelse, Serie A, nr. 13, København, 37pp.

Mogensen, T.E. 1994. Palaeozoic structural development along the Tornquist zone, Kattegat area, Denmark. *Tectonophysics*, vol. 240, 191-214.

Nilsen, I.H. og Japsen, P. 1991. Deep wells in Denmark, 1935-1990. Lithostratigraphic subdivision. *Danmarks Geologiske Undersøgelser*, Serie A, 31, København, 177 pp.

Oakman, C.D. og Partington, M.A. 1998. Cretaceous. Fra: Glennie, K.W. (Ed.), *Petroleum Geology of the North Sea: basic consepts and recent advances*, Fourth edition, London, 294-349.

Olaussen, S., Larsen, B.T. og Steel, R. 1994. The Upper Carboniferous-Permian Oslo Rift; basin fill in relation to tectonic development. Fra: Embry, A.F., Beauchamp, B. og Glass, D.J. (Eds.), Pangaea; *Pangaea; Global Environments and Resources*. Canadian Society of Petroleum Geologists, Calgary, Memoir, vol. 17, 175-197.

Pharaoh, T.C. 1999. Palaeozoic terranes and their lithospheric boundaries within the Trans-European Suture Zone (TESZ): A review. *Tectonophysic*, vol. 314, 17-41.

Richards, P.C., Lott, G.K., Johnson, H., Knox, R.W. O'B. og Riding, J.B. 1993. Jurassic of the Central and Northern North Sea. Fra: Knox, R.W. O'B. og Cordey, W.G. (Eds.), *Lithostratigraphic Nomencature of the UK North Sea*.British Geological Survey on behalf of the UK Offshore Operators Association bind nr. 3, Nottingham, 219 pp.

Stemmerik, L., Ineson, J.R. og Mitchell, J.G. 2000. Stratigraphy of the Rotliegend Group in the Danish part of the Northern Permian Basin, North Sea. *Journal of the Geological Society*, London, vol. 157, 1127-1136.

Sørensen, K. 1986. Danish Basin subsidence by Triassic rifting on a lithosphere cooling background. *Nature*, vol. 319, 660-663.

Thybo, H. 1997. Geophysical characteristics of Tornquist Fan area, northwest Trans-European Suture Zone: indication of late Carboniferous to early Permian dextral transtension. *Geological Magazine*, vol. 134, 597-606.

Underhill, J.R. 1998. Jurassic. Fra: Glennie, K.W., (Ed.), *Petroleum Geology of the North Sea: basic consepts and recent advances*, Fourth edition, London, 245-293.

Vejbæk, O.V. 1990. The Horn Graben, and its relationship to the Oslo Graben and the Danish Basin. *Tectonophysic*, vol.178. 29-49.

Vejbæk, O.V. 1997. Dybe strukturer i danske sedimentære bassiner. *Geologisk Tidsskrift*, Dansk Geologisk Forening, København, vol. 4, 1-31.

Vejbæk, O.V. 1998. Effects of astenospheric heat flow in basin modelling exemplified with the Danish Basin. *Earth and Planetary Science letters*, Amsterdam, vol. 95, 97-114.

Viejo, G.F., Laigle, M. og Ranero, C.R. 2002. Pre-Permian sedimentary basin on the North Sea: images from reprocessed and pre-stack depth migrated MONA LISA data. *Marine and Petroleum Geology*, København, vol. 19, 519-526.

Zhou, S. og Thybo, H. 1997. Pre-Zechstein geology of the south-east North Sea, offshore Denmark-a geophysical perspective. Research Article, *First Break*, København, vol. 15, 387-395.

Ziegler, P.A. 1978. North-Western Europe: Tectonics and basin development. *Geologie en mijnbouw*, vol. 57, 589-626.

Ziegler, P.A. 1981. Evolution of Sedimentary Basin in North-West Europe. Fra: Illing, L. V. og Hobson G.D. (Eds.), *Petroleum Geology of the Continental Shelf of North-West Europe*, London, vol. 1, 3-39.

Ziegler, P.A. 1982. Faulting and graben formation in Western and Central Europe. *Phil. Trans. Roy. Soc.*, London, vol. A305, 113-143.

Ziegler, P.A. 1990. Geological Atlas of Western and Central Europe. 2nd edition, Shell Internationale Pertoleum Maatschppij B.V., Geological Society, Bath, Amsterdam, 239 pp.

Zwart, H.J. og Dornsiepen, U.F. 1978. The Tectonic framework of Central and Western Europe. Geologie en Mijnbouw, vol. 57, 627-654.

Appendiks I

Brønndata fra brønner fra Danmark hentet fra www.geus.dk. Verdiene i tabellene er ordnet fra yngste litostratigrafiske enhet og med kronostraigrafisk eldre enheter etterfølgende. I hver enhet er alle brønnene med funn av denne enheten listet opp i alfabetisk orden og med verdiene fra brønnlokasjonen til høyre.

	Post C	balk G	roup		
Well	Z_t	ΔZ	T_t	ΔT	V_i
	m	m	ms	ms	m/s
A-1	44	1717	-	-	-
A-2	44	1734	-	-	-
Adda-1	38	2020	51	1999	2021
Adda-2	37	2015	50	2001	2014
Adda-3	38	2033	51	2008	2025
Arnum-1	-39	398	-42	446	1784
B-1	41	2170	55	2156	2013
Bo-1	42	1982	56	1966	2017
Boie-1	41	1969	55	1957	2012
Borg-1	-12	707	-12	757	1868
Brane-1	-12	414	-12	452	1832
Brøns-1	10	115	-5	452	1052
C 1	-19	E 4 9	- 26	560	1026
Char 1	21	348	30	2697	2100
Cieo-1	03	2128	65	2587	1072
D-1	49	1120	00	2050	2041
D. Adda-1	30	2092	49	2050	2041
Diamant-1	62	2950	84	2870	2050
E-1	37	1978	50	1926	2054
E-2	41	1917	55	1899	2019
E-3	37	1947	50	1930	2017
E-4	36	1911	48	1906	2006
E. Rosa-1	34	1253	46	1248	2008
E. Rosa-2	37	1327	50	1277	2079
E. Rosa-3	34	1357	45	1318	2059
E Rosa FI	69	2490	69	2347	2121
Edna-1	34	2644	46	2584	2046
Elin-1	47	2632	64	2576	2043
Elly-1	39	2777	52	2705	2053
Elna-1	63	2375	85	2247	2114
Emma-1	47	1842	63	1805	2041
Erslev-1	-5	37	-	-	-
Erslev-2	-5	68	-	-	-
F-1	41	659	55	676	1950
Farsø-1	-18	33	-	-	-
Felicia-1	70	46	95	-	-
Fjerrsl1	-5	2	-	-	-
Fjerrsl2	-6	13	-	-	-
Flyvbjerg-1	-44	145	-	-	-
Frdh1	-9	203	-9	244	1666
Frdh2	-12	208	-	-	-
Frdh3	-7	287	-	-	-
G-1	49	1929	66	1903	2027
Gassum-1	-53	25	-	-	-
Gert-1	67	3049	91	2986	2042
Gert-2	55	3060	70	3011	2033
Glamshi -1	-68	165		-	
Grindstad_1	.32	280	-	-	· · · · -
H_1	-52	1053	62	1020	2024
	0	1955	02	1929	2024
Haldager-1	-2	18	-	-	1627
mans-1	30	72	41	89	1027
Harte-1	-29	244	-	-	-
Harte-2	-31	240	-	-	-
Hobro-1	1 -27	68	-	-	-

|--|

Post C	halk	Group	(cont	inued)	
Well	Z_t	ΔZ	T_t	ΔT	V_i
	m	m	ms	ms	m/s
Horsens-1	-54	217	-	-	-
Hyllebj1	-21	19	-	-	-
Hønning-1	-28	417	-	-	-
1-1	-57	2670	77	2606	2049
lbenholt-1	39	1408	53	1336	2108
Inez-1	35	798	47	804	1985
Iris-1	66	2800	89	2737	2046
J-1	44	36	59	44	1635
Jens-1	38	2306	51	2250	2050
John-1	45	573	61	575	1993
John Fl1	44	1480	59	1396	2121
K-1	56	382	76	414	1845
Karl-1	67	2956	90	2902	2037
Kegnæs-1	18	236	24	-	-
Kim-1	69	3050	92	2946	2071
Kvols-1	-12	246	-12	276	1783
Kværs-1	-46	412	-	-	-
L-1	55	1960	74	1900	2063
Lavø-1	-25	67	-	-	-
Linde-1	-24	564	-	-	-
Liva-1	55	2856	74	2802	2038
Lone-1	70	2879	93	2813	2047
Luiu-1	66	2656	89	2586	2054
Lulu-2	68	2704	92	2636	2051
Løgumkl1	-13	423	-	-	-
M-1	43	1725	58	1720	2006
M-8	43	1760	59	1726	2040
M-9	43	1879	58	1838	2045
Mejrup-1	-42	538	-42	567	1896
M. Rosa-1	34	1811	46	1766	2051
M Rosa FI	33	2506	44	2364	2120
Mona-1	66	2923	89	2878	2031
Mors-1	-11	136	-11	163	1672
N-1	39	2031	52	1976	2056
N-2	37	2063	50	1989	2074
N-3	37	1973	50	1941	2033
Nils-2	45	1646	61	1607	2048
N. Jens-1	40	2018	-	-	-
N. Jens-2	40	2013	-	-	-
Nora-1	48	2511	65	2488	2019
Nøvling-1	-62	236	-	-	-
Oddesund-1	-2	409	-2	464	1762
O-1	43	1787	58	1740	2054
Olaf-1	62	2910	84	2841	2049
Otto-1	28	2413	38	2433	1983
P-1	66	2817	89	2757	2043
Per-1	36	2033	49	1989	2044
Q-1	60	2972	81	2881	2063
R-1	37	855	50	908	1882
Ravn-1	45	2968	62	2818	2106
Ringe-1	-73	91	-	-	-
Roar-2	45	1943	60	1924	2020
Ruth-1	39	1512	53	1508	2006

Post (Chalk	Group	(cont	inued)			
Well	Z	ΔZ	Tt	ΔT	Vi		Well
	m	m	ms	ms	m/s		
Rødby-1	-2	29	-2	32	1810		Thisted-1
Rødby-2	-3	143	-	-			Thisted-3
Rødding-1	-24	261	24	200	2610		Thisted-4
Rødekro-1	-49	391			-		
Rønde-1	-35	122			-		
S-1	30	961	41	996	1930		A-1
Skagen-1	-2	219	-		-		A-2
Skagen-2	-2	214		S	-		Adda-1
Skive-1	-21	205		-			Adda-2
Skive-2	-30	140		1997 <u>-</u> 1	-		Adda-3
Slagelse-1	-38	262	-		-		Arnum-1
SE lgor-1	48	1944	65	1889	2058		B-1
Sten-1	68	2951	92	2902	2034		Bo-1
Stenlille-1	-37	187					Boie-1
Stenlille-2	-43	199				12.4	Borg-1
Stenlille-3	-43	199					Brøns-1
Stenlille-4	-33	229			-		Børglum-
Stenlille-5	-50	196		-	-		C-1
Stenlille-6	-28	168					Cleo-1
Sæby-1	-60	216		-			D-1
Sallested-1	3	72	3	80	1810	1	D. Adda-1
T-1	66	2129	89	2232	1908		Diamant-
T-3	65	2373	88	2343	2026		E-1
Terne-1	19	53	-				E-2
Thisted-2	-29	32			-		E-3
Tove-1	42	1529	56	1503	2035	1 1 1 1 1	E-4
Tønder-1	-8	417	-8	422	1976		E. Rosa-1
Tønder-2	-13	469	-13	533	1760		E. Rosa-2
Tønder-3	-7	419	-7	470	1781		E. Rosa-3
Tønder-4	-7	421	-	-	-		E Rosa Fl
Tønder-5	-6	424	-6	464	1828		E Rosa Fl
U-1	43	2153	58	2080	2070		Edna-1
Ugle-1	54	2064	73	2002	2062		Elin-1
Uglev-1	-32	3		-			Elly-1
Ullerslev-1	-22	47		-	-		Elna-1
V-1	49	2159	66	2101	2056		Emma-1
Vagn-1	43	1145			-		Erslev-1
Vagn-2	43	1456	58	1448	2011		Erslev-2
Varnæs-1	-22	317		-	-		F-1
Vedsted-1	-2	37		-			Farsø-1
Vemb-1	-12	659	-12	683	1930		Felicia-1
Vinding-1	-56	548			-		Fjerrsl1
Voldum-1	-30	22		-	-		Fjerrsl2
W-1	53	3002	72	2884	2082		Flyvbjerg-
W. Lulu-1	65	2771	88	2687	2062		Frdh1
W. Lulu-2	65	2814	88	2729	2062		Frdh2
W. Lulu-3	66	2775	90	2713	2046		Frdh3
Ørslev-1	-2	19			-		G-1
Åbenrå-1	-53	388			-		Gassum-1
Års-1	-39	122		· .	-		Gert-1
				-		1	Gert-2

Chalk	& Pos	t Chal	k Grou	р	
Well	7.	ΔZ	Т.		V
wen	m	m	ms	ms	m/s
Thissad 1	20	496			
Thisted-1	-29	900		-	-
Thisted-4	-20	506			
Thisted-4	-50				
	Chalk	Grou	р		
A-1	1761	40	-	•	-
A-2	1778	393	-	-	-
Adda-1	2058	198	2050	111	3559
Adda-2	2052	262	2051	140	3745
Adda-3	2071	232	2059	129	3591
Arnum-1	358	509	404	344	2958
B-1	2211	68	2211	42	3237
Bo-1	2024	220	2022	142	3104
Boje-1	2009	429	2012	265	3237
Borg-1	695	492	745	329	2991
Brøns-1	409	504	447	353	2856
Børglum-1	96	354	102	262	2704
C-1	5/5	554	005	352	3150
Cieo-1	1205	480	1020	116	4009
D-1	1205	257	1239	120	4425
D. Adda-1	2128	250	2099	139	3088
Diamant-1	3015	425	2954	270	2655
E-1	2010	435	1970	230	3035
E-2	1950	517	1954	294	2755
E-3	1905	312	1954	212	2047
E Para 1	1297	20	1204	7	5835
E. Rosa-1	1365	60	1327	43	3190
E. Rosa-2 E. Rosa-3	1305	89	1363	45	3956
E. Rosa-J	2558	474	2416		-
E Rosa Fl	2558	409	2416	158	5181
Edna-1	2678	288	2630	136	4231
Elin-1	2679	218	2640	108	4041
Fllv-1	2816	439	2757	194	4522
Elna-1	2438	284	2332	124	4587
Emma-1	1889	114	1868	69	3304
Erslev-1	33	529	-		
Erslev-2	63	643	-	-	-
F-1	700	583	731	333	3504
Farsø-1	15	1395	24	860	3244
Felicia-1	115	597		-	-
Fjerrsl1	-3	285	-1	203	2808
Fjerrsl2	7	287	7	203	2828
Flyvbjerg-1	101	375		-	-
Frdh1	194	127	235	89	2856
Frdh2	196	124	-	-	-
Frdh3	280	54	-		-
G-1	1977	240	1969	127	3773
Gassum-1	-28	972	-28	649	2996
Gert-1	3116	766	3077	348	4402
Gert-2	3116	781	3081	355	4399
Glamsbj1	97	670	94	498	2689
Grindsted-1	257	652	-	• -	-

Weil	7.												
	20	ΔZ	T_t	ΔT	V_i		Well		Zt	ΔZ	T_t	ΔT	
	m	m	ms	ms	m/s				m	m	ms	ms	
H-1	1999	128	1991	91	2813		Per-1		2069	662	2038	332	
Haldager-1	16	398	22	324	2455		Q-1		3033	892	2962	364	
Harte-1	214	547	-	-	-		R-1		891	289	958	177	
Harte-2	209	651	-	-	-		Ravn-1		3013	732	2880	309	
Hobro-1	41	1542	48	892	3457		Ringe-1		17	728	17	507	
Horsens-1	163	948	-	-			Roar-2		1988	487	1984	293	
Hyllebj1	-2	1372	-2	846	3243		Ruth-1		1551	117	1561	59	
Hønning-1	389	494		-	-		Rødby-1		27	430	30	348	
-1	2727	87	2683	57	3048		Rødby-2		140	295	-	-	
benholt-1	1447	194	1389	89	4349		Rødding-1		237	1200	224	728	
nez-1	833	417	851	219	3808		Rødekro-1		342	508	-	-	
ris-1	2867	304	2826	139	4377		Rønde-1		87	1854	105	1030	
J-1	80	134	103	113	2372		S-1		991	372	1037	242	
Jens-1	2344	273	2301	139	3925		Skive-1		184	1245	220	733	
John Fl1	1524	137	1455	74	3707		Skive-2		110	920	120	554	
K-1	438	728	490	457	3184		Slagelse-1		224	687	-	-	
Karl-1	3023	1125	2992	465	4837		SE Igor-1		1992	69	1954	39	
Kegnæs-1	254	457					Sten-1		3018	210	2994	102	
Kegnæs-1 el	418	293	372	199	2944		Stenlille-1		150	1008	143	607	
Kim-1	3119	752	3038	319	4714		Stenlille-2		156	994	-	-	
Kvols-1	234	1488	264	842	3534		Stenlille-3		156	993	-		
Kværs-1	366	501			-		Stenlille-3	el	320	829	279	472	
-1	2015	301	1974	134	4495		Stenlille-4		196	932			
avø-1	42	1873					Stenlille-4	el	502	626	408	348	
inde-1	540	486	-		-		Stenlille-5		146	1008	138	614	
iva-1	2910	883	2876	392	4503		Stenlille-6		140	1062	135	635	
one-1	2040	306	2906	142	4306		Sæby-1		157	219	-	-	
ulu-1	2722	492	2675	253	3801		Sallested-1		75	475	83	364	
ulu-2	2772	503	2073	233	4226		T-1		2105	123	2321	504	
daumkl 1	410	408	2/20	250	4220		T-3		2135	262	2321	130	
	1769	290	1779	170	3228		Thisted 2		2450	202	2451	597	
4-8	1903	209	1795	205	3500		Toye-1		1571	259	1550	147	
4.0	1003	122	1906	205	3465		Tander 1		400	480	414	359	
Acievo 1	1922	152	525	532	3333		Tonder-2		409	517	520	362	
M Rosa-1	1845	146	1812	74	3046		Tander-3		412	471	463	337	
A Rosa El	-2520	490	2409	166	5800		Tander-4		414	471	405	331	
Mona-1	2000	419	2067	200	4195		Tander 5		419	470	459	342	
More-1	125	1357	152	757	3594		IJ-1		2106	247	2139	124	
N_1	2070	393	2029	217	3534		ligie_1		2190	247	2075	104	
	2000	159	2020	195	1707		ligiev-1		-30	530	-30	410	
	2099	256	1001	105	1101		Ullerclev-1		-50	754	-30	576	
N_3	2010	230	1001	162	3074		V-1		2200	481	2167	228	
vile_2	1601	249	1669	269	2714		Vago-2		1409	261	1506	145	
lenc 1	2059	1004	1008	200	2/14		Vagn=2		205	507	1500	145	
L Jens-1	2050	122	· · ·	-	-		Variates-1		295	420	-	-	
lora 1	2053	130	2552	151	3007	୍	Versted-1		50	420	671	420	
Induling 1	2500	302	2000	151	2204		Vinding 1		400	744	0/1	429	
Jadaawad 1	4/4	185	498	573	2222	×	Voldure 1		492	1000	-	704	
Jadesund-1	407	955	402	5/3	3333	. S.			-8	1220	-8	180	
)-1)-1	1830	449	1/98	252	3503		VV-1		3054	610	2950	292	
	29/2	450	2925	204	4411		W. Lulu-1		2835	018	2115	280	
Jiat-1	3487	714	3179	290	4921		W. Lulu-2	2	28/9	701	2817	313	
Jtto-1	2441	248	2471	135	3071		W. Lulu-3		2841	648	2803	295	

С	halk Gr	oup (c	ontinued	i)		Lower C	retaceo	us un	its (cor	ntinued)
Well	Zt	ΔZ	Tt	ΔT	Vi	Well	Z,	ΔZ	T_t	ΔT
	m	m	ms	ms	m/s		m	m	ms	ms
Åbenrå-1	335	524	352	408	2567	Børglum-1	450	283	364	240
Års-1	83	1665	120	954	3491	C-1	1130	156	957	124
		14	0			D-1	1462	49	1355	36
	Cromer	Knoll	Group			Erslev-2	707	, 5	-	-
A-2	2171	46	-		-	F-1	1283	228	1064	181
Adda-1	2256	294	2161	247	2384	Farsø-1	1410	279	884	191
Adda-2	2314	393	2191	314	2504	Felicia-1	712	193	527	-
Adda-3	2303	137	2188	110	2483	Fjerrsl1	282	166	202	142
B-1	2279	255	2253	190	2679	Fjerrsl2	294	707	210	582
Bo-1	2245	266	2164	211	2525	Flyvbjerg-1	476	227	-	•
Boje-1	2438	287	2277	220	2605	Frdh1	321	173	324	-
D. Adda-1	2384	158	2238	105	3019	Frdh2	320	142	-	-
Diamant-1	3660	8	3232	4	3629	Frdh3	334	213	-	
E-1	2451	477	2214	358	2663	Gassum-1	944	77	621	57
E-3	2500	130	2264	104	2509	Glamsbj1	766	23	592	10
E. Rosa-1	1307	1	1301	1	2438	Grindsted-1	909	32	-	-
Edna-1	2966	59	2766	34	3496	Haldager-1	414	366	346	312
Elin-1	2897	603	2748	423	2849	Harte-2	860	55	-	-
Elna-1	2723	68	2456	40	3383	Hobro-1	1583	158	940	108
Emma-1	2002	18	1937	14	2525	Horsens-1	1111	57	-	
G-1	2217	142	2096	120	2372	Hyllebj1	1370	294	844	204
Gert-1	3882	94	3425	51	3681	Hønning-1	883	102	-	-
Gert-2	3896	74	3436	41	3613	Inez-1	1250	144	1070	114
I-1	2814	507	2730	338	2999	J-1	214	558	216	509
Ibenholt-1	1641	60	1478	42	2845	K-1	1166	74	947	62
Iris-1	3171	721	2965	490	2943	Kegnæs-1	711	11	571	-
Jens-1	2617	236	2440	167	2825	Kvols-1	1722	134	1106	84
Karl-1	4147	84	3457	32	5220	Kværs-1	867	85	-	-
Kim-1	3871	201	3357	110	3652	L-1	2316	61	2108	39
Liva-1	3793	393	3268	224	3505	Lavø-1	1915	130	-	-
Lone-1	3255	232	3048	141	3290	Linde-1	1026	70	-	-
M-1	2057	101	1957	75	2698	Løgumkl1	908	101	815	80
M-8	2162	99	1990	76	2599	Mejrup-1	1382	219	1057	152
M Rosa FI	3028	9	2574	-	•	Mors-1	1482	249	909	184
Mona-1	3407	550	3167	358	3075	Nøvling-1	1259	67	962	
N. Jens-1	2180	212	-		-	Oddesund-1	1362	124	1035	91
N. Jens-2	2183	168	-	•	-	R-1	1180	82	1135	67
Nora-1	2861	576	2704	409	2818	Ringe-1	746	21	524	
0-1	2279	76	2050	52	2931	Rødby-1	457	10	378	•
Olaf-1	4200	157	3469	91	3443	Rødby-2	435	10	-	-
Otto-1	2689	7	2606	4	3353	Rødding-1	1437	109	952	76
Q-1	3925	42	3326	21	4035	Rødekro-1	850	43	-	-
Ravn-1	3745	12	3189	5	4800	Rønde-1	1941	67	1135	44
Roar-2	2476	208	2277	151	2749	S-1	1363	156	1279	116
Sten-1	3228	780	3096	525	2972	Skagen-1	218	125		•
U-1	2443	25	2262	17	2940	Skive-1	1429	131	953	90
Ugle-1	2322	94	2179	52	3615	Skive-2	1030	65	674	50
V-1	2690	55	2395	29	3805	Slagelse-1	911	21	-	-
	-			-		SE Igor-1	2061	60	1993	50
L	ower Ci	retaceo	us unit	s	and the second	Stenlille-1	1158	47	750	32
Arnum-1	867	86	748	70	2447	Stenlille-2	1150	42	751	30
Borg-1	1187	149	1074	106	2811	Stenlille-3	1149	45	751	32
Brans-1	913	93	800	72	2583	Stenlille-4	1128	58	756	43

 V_i

m/s

2357

2517

2726

2519

2921

2338

2430

-

-

-

-

-

-

2684

4633

2347

2926

2882

2529

2193

2389

-

3190

-

3142

2522

2875

2707

2725

2447

-

-

•

•

-

-

2868

3045

2691

2900

2600

2390

2938 2780

2781

2712

-

--

-

-

-

-

Lower (Cretaced	ous un	its (co	ntinued)	Rødb	y Form	nation	(contin	ued)	
Well	Z	ΔZ	T_t	ΔT	Vi	Well	Z	ΔZ	T_t	ΔT	
	m	m	ms	ms	m/s		m	m	ms	ms	
Stenlille-5	1154	75	752	49	3049	Karl-1	4147	21	3457	9	
Stenlille-6	1202	58	770	42	2743	Kegnæs-1	711	5	571	-	
Sæby-1	376	166	369	147	2259	Kim-1	3871	37	3357	20	
Søllested-1	550	38	447	37	2054	Kværs-1	867	10			
T-3	2699	4	2570	3	2845	Linde-1	1026	14		۰.	
Terne-1	72	45				Løgumkl-1	908	3	815	2	
Thisted-1	457	82				M-1	2057	13	1957	7	
Thisted-2	806	131	590	110	2382	Meirup-1	1382	24	1057	16	
Thisted-3	802	96				Mona-1	3407	131	3167	77	
Thisted-4	476	79	345	66	2394	Nora-1	2861	41	2704	26	
Tove-1	1829	3	1706	1	6706	0-1	2270	3	2050	20	
Tander-1	880	73	772	62	2360	01561	4200	22	2050		
Tander-2	073	06	992	74	2500	Base 2	4200	25	3409	13	
Tander 2	915	90	002	60	2090	Roar-2	2470	09	2211	49	
Tander-4	995	70	000	00	2555	Ster-1	1150	31	3090	23	
Tander 5	005	74	-	-	-	Stenline-1	1158	5	750		
I ønder-5	697	270	801	59	2407	Stenlille-2	1150	5	751	3	
Ugiev-1	502	2/8	380	230	2358	Stenlille-3	1149	4	751	2	
Ullerslev-1	119	37	604	:	-	Stenlille-4	1128	7	756	-	
Vagn-2	1760	16	1651	6	5182	Stenlille-5	1154	6	752	3	
Varnæs-1	822	48	732	39	2443	Stenlille-6	1202	4	770	2	
Vedsted-1	455	381	-	•	-	Søllested-1	550	14	447	-	
Vemb-1	1374	181	1100	127	2850	Tove-1	1829	3	1706	1	
Vinding-1	1235	75	•	•		Tønder-2	973	10	882	-	
Voldum-1	1212	66	778	44	3000	Ugle-1	2322	4	2179	2	
W. Lulu-1	3454	7	3055	3	4877	Vagn-2	1760	16	1651	6	
W. Lulu-3	3490	5	3098	3	3658	Varnæs-1	822	10	732	7	
Ørslev-1	424	13	372	•	-	W. Lulu-1	3454	6	3055	-	
Åbenrå-1	859	32	760	-	-	Ørslev-1	424	13	372	-	
Års-1	1748	401	1074	253	3170	Åbenrå-1	859	9	760	-	
Lower G	retaceo	us un	differen	tiated	1	Års-1	1748	87	1074	54	
Grindsted-1	916	25				Sola	& Rød	by Fo	rmatio	ns	
Horsens-1	1111	5	-	-	-	M-8	2162	19	1990	15	
	Rødby	Form	ation			Q-1	3925	4	3326	1	
Adda-1	2256	5	2161	3	3048		Sola F	ormat	ion		
Adda-2	2314	16	2191	12	2692	Adda-1	2260	33	2164	30	
Adda-3	2303	11	2188	9	2506	Adda-2	2331	5	2203	5	
Bo-1	2245	44	2164	32	2743	Adda-3	2314	24	2197	20	
Boje-1	2438	35	2277	24	2896	B-1	2279	59	2253	49	
Borg-1	1187	11	1074	6	3667	Bo-1	2289	30	2196	28	
Edna-1	2966	12	2766	6	4064	Boje-1	2473	33	2301	25	
Elin-1	2897	61	2748	41	2988	D. Addarl	2384	26	2239	19	
Ina-1	2723	13	2456	5	5242	Diamant-1	3660	20	3222	10	
arsø-1	1410	55	2450	37	2072	E-1	2451	17	2214		
rdh -1	321	25	324	51	2913	5.3	2451	1/	2214	10	
Tart 1	321	25	324	-		C-3	2500	14	2204	10	
Sert-1	3882	10	3425	(4441	Elin-1	2959	120	2789	91	
sert-2	3896	6	3436	4	3200	1-1	2822	38	2736	28	
prindsted-1	909	7	-			Iris-1	3215	100	2992	66	
tobro-1	1583	5	940	4	2500	Jens-1	2622	38	2445	25	
-1	2814	8	2730	6	2642	Kim-1	3908	58	3377	36	
ris-1	3171	44	2965	27	3296	Liva-1	3793	93	3268	60	

Sola	Forma	tion	(continue	ed)	4
Well	Z_t	ΔZ	T_t	ΔT	V_i
	m	m	ms	ms	m/s
M-1	2070	4	1964	3	2845
Mona-1	3539	57	3244	42	2700
N. Jens-1	2180	48	-	-	-
N. Jens-2	2183	48	-	-	-
Nora-1	2902	128	2730	95	2695
Roar-2	2545	49	2326	40	2454
Sten-1	3259	24	3119	17	2833
Ugle-1	2326	8	2181	5	3160
W. Lulu-3	3490	2	3098	1	4267
	Tuxen	Form	ation		51
A-2	2171	12	-	-	
Adda-1	2293	20	2194	16	2438
Adda-2	2336	23	2208	17	2761
Adda-3	2338	25	2217	20	2530
B-1	2339	65	2302	44	2965
Bo-1	2319	54	2224	42	2583
Boje-1	2506	55	2326	40	2774
D. Adda-1	2410	3	2256	2	3048
Diamant-1	3663	5	-		-
E-1	2468	24	-	-	-
E-3	2514	45	2274	34	2671
Edna-1	2978	30	2772	16	3734
Elin-1	3078	115	2880	74	3097
Elna-1	2736	20	2461	12	3302
Gert-1	3897	35	3432	18	3928
1-1	2860	89	2764	56	3168
Iris-1	3315	81	3058	50	3255
Jens-1	2660	78	2470	52	3001
Karl-1	4169	62	3466	23	5407
Kim-1	3966	61	3413	30	4064
Liva-1	3886	91	3328	46	3976
Lone-1	3269	32	3057	19	3401
Mona-1	3595	187	3286	108	3454
N. Jens-1	2229	51	•	-	-
N. Jens-2	2231	53	-	-	-
Nora-1	3030	132	2825	93	2832
Q-1	3929	12	3327	0	3861
Roar-2	2594	3/	2300	24	3124
Sten-1	3283	104	3130	05	3198
0-1	2443	13	2202	1	5200
W/ 1	3460	3	2395	1	0090
W. Lulu-3 2	3400	3	3000	2	3353
Valh	all/Rac	by Fo	rmatic	ns	
E. Rosa-1	1307	1	1301	1	2438
	Valhall	Form	ation	-	
1.2	21.02	24			
A-2	2183	34	-	-	-
Adda-1	2313	237	2210	198	2395
Adda-2	2359	348	2225	280	2400
Adda-3	2303	/0	2231	01	2498

Valha	all Form	nation	(contin	ued)	
Well	Z	ΔZ	T_t	ΔT	V_i
	m	m	ms	ms	m/s
B-1	2404	130	2346	103	2521
Bo-1	2373	138	2266	109	2528
Boje-1	2562	163	2366	131	2490
D. Adda-1	2413	32	2258	23	2783
E-1	2491	436	-		-
E-3	2559	71	2308	60	2367
Edna-1	3008	17	2788	12	2896
Elin-1	3193	307	2954	217	2829
Elna-1	2756	35	2473	23	3021
Emma-1	2002	18	1937	14	2525
G-1	2217	142	2096	120	2372
Gert-1	3933	43	3450	26	3306
Gert-2	3903	68	3440	37	3658
I-1	2949	372	2820	248	2999
Iris-1	3396	496	3108	347	2856
Jens-1	2738	115	2522	85	2697
Kim-1	4027	45	3443	24	3734
Liva-1	3978	208	3374	118	3523
Lone-1	3302	185	3076	113	3280
M-1	2074	84	1967	65	2579
M-8	2181	80	2005	61	2608
Mona-1	3782	176	3394	131	2685
N. Jens-1	2280	112	-		
N. Jens-2	2284	67	-		
Nora-1	3162	276	2918	195	2829
Olaf-1	4224	133	3482	78	3415
Q-1	3940	27	3333	14	3875
Roar-2	2631	52	2390	38	2743
SE Igor-1	2061	60	1993	50	2390
Sten-1	3387	621	3201	420	2958
U-1	2456	12	2270	9	2709
Ugle-1	2334	21	2186	13	3200
V-1	2693	9	2396	4	4419
	Vyl F	ormat	ion		
D. Adda-1	2445	98	2281	62	3146
Ugle-1	2354	49	2199	26	3769
V-1	2702	43	2400	24	3607
	Mine	forma	tion		
Ugle-1 ?	2403	13	2225	6	4333
Vedst	ed & R	ødby l	Formati	ions	
Skive-1	1420	131	053	90	2900
Skive-2	1030	65	674	50	2600
Thisted 1	457	82	0/4	50	2000
Thisted-1	906	121	500	110	2392
Thisted 2	800	06	590	110	2302
Thisted 4	476	70	345	66	2304
i mateu-4	410	19	545	00	4334

	Vedsted	Forma	tion				Jur	assic u	nits (co	ontinued)	
Well	Zt	ΔZ	T_t	ΔT	V_i	Well		Zt	ΔZ	T_t	ΔT	
	m	m	ms	ms	m/s			m	m	ms	ms	r
Borg-1	1198	138	1080	100	2760	Elin-1		3500	1178	3171	895	2
Farsø-1	1465	224	921	154	2909	Elly-1		3255	195	2951	112	3
Felicia-1	712	193	527		-	Emma-1		2020	440	1951	295	2
Fjerrsl1	282	166	202	142	2338	F-1		1511	530	1245	365	2
Flyvbjerg-1	476	227	-		-	Farsø-1		1689	1029	1075	631	3
Frdh1	346	148	-	-	-	Felicia-1		905	600	-	-	
Frdh2	320	142	-			Fjerrsl1		448	462	344	378	2
Frdh3	334	213	-		-	Fjerrsl2		1001	1224	792	-	
Haldager-1	414	366	346	312	2347	Fjerrsl2	el	1001	1056	792	694	3
Hobro-1	1588	153	944	104	2942	Flyvbjerg-1		703	754		-	
Horsens-1	1116	52		-		Frdh1		494	477	-		
Hyllebi1	1370	294	844	204	2882	Frdh2		462	486	-		
nez-1	1250	144	1070	114	2529	Frdh3		548	376			
Kegnæs-1	716	6			-	G-1		2359	1421	2216	968	2
Kvols-1	1722	134	1106	84	3190	Gassum-1		1020	440	678	318	2
Kværs-1	877	75				Gert-1		3976	963	3476	679	2
Linde-1	1040	56		-	-	Gert-2		3971	869	3477	637	2
øgumkl1	911	98	817	78	2513	Haldager-1		780	739	658	528	2
Meirun-1	1407	194	1073	136	2855	Hans-1		103	537	130	367	2
Oddesund-1	1362	124	1035	91	2725	Hobro-1		1741	603	1048	377	3
Rødding-1	1437	109	952	76	2868	Horsens-1		1168	281	-	-	Ĩ
Stenlille-1	1163	42	-			Hyllebi -1		1664	890	1048	548	3
Stenlille-2	1155	37	754	27	2719	I-1		3321	558	3068	379	2
Stenlille-3	1153	41	753	30	2700	Ibenholt-1		1701	48	1520	39	2
Stenlille-4	1135	52	155	50	2100	loez-1		1304	230	1184	180	
Stenlille-5	1161	60	755	46	2078	Irie_1		3802	711	3455	556	-
Stenlille 6	1207	53	770	40	2560	1-1		772	025	725	631	2
Sanhy 1	376	166	112	40	2000	Jens-1		2853	1483	2607	1151	2
Sallested 1	564	24				John FL-1		1661	616	1529	438	2
Terne 1	72	45				K-1		1240	707	1009	504	2
Tander-2	083	86				Karl-1		4231	226	3489	130	3
l ønder-2	903	20	720	22	2246	Kamme 1		722	220	3409	133	5
Variated 1	052	201	139	52	2340	Kim 1		4072	522	3467	312	2
	455	22	-	-	-	Kuola 1		1956	540	1100	354	2
Abenra-1	808	23		100	2155	KVOIS-1		1050	349	2147	20	2
Ars-1	1835	314	1128	199	3150			23/1	39	2147	29	4
	Juras	sic uni	ts			Lavø-1		2045	290	-	-	
	1					Linde-1		1096	218	2402	26	2
A-2	2216	811	-	-	-	Liva-1		4180	40	3492	20	3
Adda-1	2550	465	2408	366	2543	Lone-1		348/	2/0	3189	210	2
8-1	2534	475	2449	352	2700	Lulu-1		3214	454	2928	300	3
80-1	2511	198	2375	182	2177	Lulu-2		32/5	307	2900	120	-
Boje-1	2725	18	2497	13	2814	Lulu-2	el	3275	195	2966	139	2
Børglum-1	733	771	604	532	2900	M-1		2158	117	2032	88	2
-1	1286	87	1081	70	2491	M-8		2261	993	2066	692	2
leo-1	3277	1392	2880	686	4058	Mejrup-1		1601	576	1209	399	2
D-1	1511	32	1391	25	2560	Mona-1		3958	247	3525	176	2
D. Adda-1	2543	649	2343	454	2860	Mors-1		1731	1019	1093	591	3
Diamant-1	3667	158	3236	101	3111	N. Jens-1		2392	1250		•	
E-1	2927	1122	2572	813	2761	Nora-1		3438	1863	3113	1421	2
E. Rosa-3	1480	10	1408	5	4145	Nøvling-1		1326	452	-	-	
E Rosa Fl	3032	17	-	-	-	Oddesund-1		1486	407	1126	292	2
Edna-1	3025	1102	2800	-	-	0-1		2355	770	2102	516	2
Edaa_1	3025	974	2800	626	3111	Q-1		3967	234	3347	-	

					, 						
Vell		Z _t	ΔZ m	T _t ms	ΔT ms	Vi m/s	Well	Z _t	ΔZ m	T_t ms	Δ) m
)-1	el	3967	89	3347	71	2507	R-1	1262	41	1202	2
2.1	·.	1262	41	1202	28	2917	S-1	1519	55	1395	3
Pave-1		3757	509	3194	347	2934	T-3	2704	3	2573	
adby-1		467	88	5150				. ,			
adby-2		445	80				F	arsund	Forma	ation	
adding-1		1546	370	1028	252	2937	Adda-1	2550	465	2408	36
ande-1		2008	563	1179	346	3254	8-1	2534	466	2449	34
-1	1.5	1519	55	1395	38	2888	Bo-1	2511	198	2375	18
kagen-1		343	115			-	Boie-1	2725	18	2497	1
kagen-2		212	350				Cleo-1	3307	522	2894	26
kive-1	10	1559	534	1043	350	3051	D. Adda-1	2543	649	2343	45
kive-2		1095	175	724	128	2727	Diamant-1	3667	124	3236	8
lagelse-1	31	932	177			-	E-1	2927	1122	2572	81
E Igor-1		2121	1140	2043	777	2934	E. Rosa-3	1480	10	1408	1
ten-1		4008	67	3621	52	2591	E Rosa FI	3032	17		208 5
tenlille-1		1205	260	782	183	2842	Edna-1	3025	618	2800	420
tenlille-2		1192	272	781	191	2846	Elin-1	3500	1178	3171	895
tenlille-3		1194	262	783	184	2848	Emma-1	2020	26	1951	2
tenlille-4		1187	289	799	199	2905	Emma-1	2081	379	1995	25
tenlille-5		1229	266	801	180	2952	G-1	2359	1421	2216	968
tenlille-6		1260	271	812	180	3007	Gert-1	3976	718	3476	542
æbv-1		542	505	516	399	2531	Gert-2	3971	771	3477	584
øllested-1		588	176	484	142	2479	1-1	3321	558	3068	379
-3		2704	3	2573	2	2743	Iris-1	3892	711	3455	556
Terne-1		117	1138	-		-	Jens-1	2853	785	2607	670
histed-1		539	171				John Fl1	1661	150	1529	108
Thisted-2		937	182	700	136	2676	Karl-1	4231	157	3489	107
Thisted-3		898	195			-	Kim-1	4072	500	3467	303
histed-4		555	185	411	157	2357	Liva-1	4186	40	3492	26
J-1	÷.	2468	920	2279	685	2688	Lone-1	3487	276	3189	210
lgle-1		2416	582	2231	287	4056	Lulu-1	3214	222	2928	153
glev-1		781	130	616	84	3085	Lulu-2	3275	130	2966	92
/-1		2745	901	2424	583	3090	M-1	2158	117	2032	88
/edsted-1		836	1196	-			M-8	2261	438	2066	302
/emb-1		1555	224	1227	163	2748	Mona-1	3987	218	3545	156
/inding-1		1310	229			-	N. Jens-1	2392	1250	-	
/oldum-1	16. Ì	1278	444	822	303	2931	Nora-1	3438	943	3113	783
V-1		3726	456	3248		-	0-1	2355	210	2102	144
V-1	el	3726	401	3248	290	2764	Q-1	3967	89	3347	71
V. Lulu-1		3461	340	3058	215	3161	Ravn-1	3757	269	3194	202
V. Lulu-2	91. B	3580	327	3130	200	3273	SE Igor-1	2198	1063	2100	720
V. Lulu-3		3495	301	3101	195	3089	Sten-1	4008	67	3621	52
Ørslev-1		437	120			-	U-1	2468	416	2279	308
rs-1		2149	1011	1327	559	3617	Ugle-1 eq	2591	407	2323	195
							V-1	2745	73	2424	47
	Jura	assic u	ndiffere	entiated	1		V-1	2851	550	2492	360
rdh3		548	312	-		-	W-1	3726	361	3248	268
/inding-1		1310	86			-	W. Lulu-1	3464	34	3060	24
Up	per	Jurassi	c undi	ferenti	ated		W. Lulu-2	3580	104	3130	69
-1		1286	87	1081	70	2491					
0-1		1511	32	1391	25	2560					
		0077	20	01.47	20	0670					

Hot Unit								
Well	Z,	ΔZ	Tt	ΔT	Vi			
	m	m	ms	ms	m/s			
B-1	2603	76	2500	62	2438			
Bo-1	2537	39	2400	36	2150			
E-1	2941	25	-	-				
Edna-1	3041	11	2813	9	2371			
1-1	3341	68	3082	54	2506			
Kim-1	4072	101	3467	75	2707			
	Poul	Forma	tion					
Emma-1	2046	35	1972	23	3048			
SE Igor-1	2121	77	2043	57	2716			
Ugle-1	2416	175	2231	92	3804			
V-1	2818	33	2471	21	3106			
1	Unname	ed san	dstone					
Cleo-1	3277	30	2880	14	4354			
Cleo-1	3740	13	3119	6	4326			
Cleo-1	3765	2	3131	1	5079			
Cleo-1	3777	7	3137	3	5158			
Iris-1	3914	5	3472	3	3048			
Iris-1	4115	9	3635	5	3779			
Kim-1	4572	17	3770	3	11582			
Lulu-2	3465	5	3102	3	3238			
Lulu-2	3482	4	-	-	-			
Mona-1	3958	29	3525	20	2896			
W. Lulu-1	3461	3	3058	2	3048			
W. Lulu-3	3495	3	3101	1	6706			
	Heno	Forma	ation					
Diamant-1	3792	14	3319	7	3758			
Elly-1	3255	38	2951	20	3810			
Gert-1	4694	70	4018	38	3690			
Karl-1	4388	13	3596	6	4470			
Q-1	4056	54	3418	-	-			
Ravn-1	4026	106	3396	61	3475			
W-1	4087	91	3516	-	-			
W-1 el	4087	40	3516	22	3602			
Lola	/ Fars	und F	ormatio	ons				
W. Lulu-3 ?	3498	48	3102	34	2851			
Lola	& Fars	und F	ormati	ons				
A-2	2216	771	-	•				
	Lola I	Forma	tion					
Cleo-1	3829	680	3162	326	4172			
Edna-1	3643	212	3220	128	3319			
Elly-1	3293	126	2971	74	3410			
Gert-1	4764	87	4056	54	3206			
Jens-1	3638	474	3277	355	2672			
John Fl1	1811	248	1637	192	2581			
Karl-1	4401	17	3602	8	4267			
Kim-1	4590	5	3773	6	1626			
Lulu-1	3437	103	3081	71	2911			

Well $Z_t \Delta Z T_t \Delta T$	
	V_i
m m ms ms	m/s
Lulu-2 3405 178 3058 -	
M-8 2699 363 2368 266	2732
Nora-1 4381 512 3896 356	2878
O-1 2565 166 2246 113	2929
Q-1 4110 91	-
Ravn-1 4132 110 3457 69	3188
U-1 2884 339 2587 270	2513
V-1 3401 245 2852 155	3162
W-1 4178 3	-
W. Lulu-2 3683 60 3199 41	2929
W. Lulu-3 3547 13 3136 10	2682
Basal sandstone unit	
B-1 eq 3000 9 2795 6	2946
Diamant-1 3805 20 3326 12	3392
Gert-1 4850 88 4110 45	3915
Gert-2 4742 98 4061 53	3692
Karl-1 4418 38 3610 18	4233
Bryne Formation	
Cleo-1 4509 160 3488 78	4103
Lulu-1 3540 129 3152 76	3385
Nora-1 4893 408 4252 282	2890
W. Lulu-1 3498 303 3084 189	3203
W. Lulu-2 3743 163 3240 90	3630
W. Lulu-3 3560 236 3146 150	3145
Central Graben Group/Lola Formatic	on
Ravn-1 4242 24 3526 15	3200
Central Graben Group	
A-2 2988 40	-
Edna-1 3855 9 3348 5	3536
Elly-1 ? 3419 31 3045 18	3454
Jens-1 4112 57 3632 35	3240
John Fl1 2059 155 1829 100	3091
M-8 3062 99 2634 -	-
O-1 2731 237 2359 156	3036
U-1 <u>3223</u> 119 2857 76	3136
Middle Graben Shale Formation	
A-2 2988 15	-
M-8 3062 36	-
U-1 3223 56 2857 41	2751
Lower Graben Sand Formation	14
A-2 3003 24	-
Edna-1 3855 9 3348 5	3536
M-8 3098 63	-
O-1 2731 237 2359 156	3036
U-1 3280 63 2898 35	3588

Fi	red	eriksha	vn Fo	rmatio	n	
Well		Zt	ΔZ	T_t	ΔT	Vi
		m	m	ms	ms	m/s
Børglum-1		733	224	604	156	2868
F-1		1511	120	1245	88	2722
Farsø-1		1689	150	1075	89	3371
Fjerrsl2		1001	142	792	102	2784
Flyvbjerg-1		703	171	-	-	-
Frdh1		494	135	-	-	-
Frdh2		462	132	-	-	-
Gassum-1		1020	101	678	-	-
Haldager-1		780	243	658	192	2534
Hobro-1		1741	65	1048	· .	-
Horsens-1		1168	62	-	-	-
Hyllebj1		1664	146	1048	90	3244
Inez-1		1394	83	1184	60	2774
J-1		772	182	725	148	2455
Kvols-1		1856	56	1190	32	3500
Linde-1		1096	49	-	-	-
Mejrup-1		1601	64	1209	42	3033
Mors-1		1731	137	1093	81	3383
Nøvling-1		1326	99	-	-	-
Oddesund-1		1486	70	1126	47	2979
Rødding-1		1546	50	1028	30	3333
Rønde-1		2008	50	1179	26	3846
Skagen-2		212	172	-	-	-
Skive-1		1559	70	1043	43	3256
Skive-2		1095	36	724	24	3000
Sæby-1		542	105	516	82	2561
Terne-1		117	258	-	-	-
Uglev-1		781	19	616	-	-
Vedsted-1		836	235	-	-	-
Voldum-1		1278	66	822	45	2933
Års-1	-	2149	180	1327	98	3673
	B	ørglum	Form	ation		
Børglum-1		957	34	760	28	2395
F-1		1631	82	1333	61	2688
Farsø-1		1839	61	1164	37	3297
Fjerrsl1		448	90	344	78	2308
Fjerrsl2		1143	113	894	88	2568
Flyvbjerg-1		874	29	-	-	-
Frdh1		629	7	-	-	-
Frdh2		594	9		-	-
Gassum-1		1121	19	-	-	-
Haldager-1		1023	45	850	30	2967
Hobro-1		1806	18	-	-	-
Horsens-1		1230	5	-	-	-
Hyllebj1		1810	50	1138	34	3294
Ibenholt-1	?	1701	48	1520	39	2470
Inez-1		1477	46	1244	38	2438
J-1	3	954	101	873	66	3076
K-1		1240	111	1009	92	2412
Kvols-1		1912	28	1222	22	2545
Linde-1		1145	31		-	-
Mejrup-1		1664	33	1251	23	2889

Børglum Formation		(continued)			
Well	Z	ΔZ	T_t	ΔT	V_i
	m	m	ms	ms	m/s
Mors-1	1868	123	1174	92	2064
Noving-1	1425	125	11/4	03	2904
Oddesund-1	1556	45	1173	22	-
Radding 1	1506	40	1059	22	2/2/
Rødding-1	2059	20	1006	25	34/8
Skages 2	2000	30	1205	20	2923
Skagen-2	1620	4	1096	-	-
Skive-1	1121	41	749	29	2828
Skive-2	647	19	748	14	2043
Sæby-1	047	20	298	24	2167
Terne-1	3/5	8	-	•	-
Thisted-1	539	30	-	-	
Thisted-2	937	37	700	30	2467
Thisted-3	898	18	-		-
Thisted-4	555	19	411	16	2375
Uglev-1	799	50			
Vedsted-1	1071	48			a 🗸
Voldum-1	1344	14	867	9	3111
Års-1	2329	65	1425	39	3333
Fl	yvbjerg	g Form	ation		
Børglum-1	990	34	788	-	-
Farsø-1	1900	34	1201	18	3778
Fjerrsl1	538	18	422		-
Fjerrsl2	1256	24	982		-
Flyvbjerg-1	903	40	-		-
Frdh1	636	53	-		-
Frdh2	603	47	-		-
Haldager-1	1068	52	880	40	2621
Hobro-1	1824	28	-		-
Hyllebj1	1866	19	1172	16	2375
K-1	1351	16	1101	13	2532
Mejrup-1	1698	3	1274	2	3353
Mors-1	1991	24	1257	13	3692
Oddesund-1	1601	3	1206	2	3000
Rødding-1	1636	11	1081	11	2000
Skagen-2	389	41			-
Skive-1	1670	20	1115	12	3333
Sæby-1	673	64	622	52	2462
Terne-1	383	37			
Thisted-2	974	20	730	14	2857
Thisted-3	916	28	-		
Thisted-4	574	30	427	25	2400
Uglev-1	849	23	664		
Vedsted-1	1110	25		_	
Vemb-1	1555	11	1227	9	2750
Års-1	2394	26	1464	14	3714
Hald	ager Sa	nd Fo	rmatio	'n	
Børglum-1	1024	29			-
F-1	1713	47	1394	30	3150
Farsø-1	1934	18	1219	12	3000
Felicia-1	905	57			-
Fjerrsl1	556	27	-		-

Haldager S	Sand Fo	ormati	on (co	ntinued)
Well	Z,	ΔZ	T_t	ΔT	V_i
	m	m	ms	ms	m/s
jerrsl2	1280	34	-		
lyvbierg-1	943	54	-	-	-
rdh1	689	35	-		
rdh2	650	46	-	-	-
aldager-1	1120	155	920	100	3091
lobro-1	1852	39	-		-
orsens-1	1235	4	-		-
vllebi -1	1885	9	1188	6	3000
1ez-1	1524	9	1282	6	2845
-1	1055	19	939	12	3150
.1	1367	16	1114	12	2591
vols-1	1940	15	1244	8	3750
leirun-1	1701	1	1276	1	2438
fors-1	2015	122	1270	61	4000
ddesund-1	1604	4	1208	3	2667
kagen_2	420	14	1200	J	2007
kive_1	1600	12	1127	7	3420
aby 1	727	20	674	15	2667
arna 1	131	173	074	13	2007
bisted 1	560	21	-	-	
histed-1	509	24	744	24	2022
histed-2	994	42	/44	24	2000
histed-3	604	43	450	14	2571
nisted-4	004	10	452	14	2571
glev-1	1144	37	-	-	
	1144	/5	1005		2571
emb-1	1300	30	1235	10	2011
oldum-1	1356	30	1479	10	2000
5-1	2420	35	14/0	10	3009
ĿĴ€	rritslev	v rorn	ation		
ørglum-1	1053	296	836	209	2829
dna-1 el	3864	135	3353	73	3691
dna-1	3864	263	3353		•
·1	1760	281	1424	186	3022
arsø-1	1952	766	1231	475	3225
elicia-1	962	543	732	390	2785
jerrsl1	583	327	464	258	2535
jerrsl2 el	1256	801	-		
errsl2	1314	911	-		-
lyvbjerg-1	997	264			-
rdh1	724	169	661	141	2399
rdh2	696	174	-	-	-
assum-1	1140	320	755	241	2653
laldager-1	1275	244	1020	166	2941
ans-1	103	171	130	133	2571
obro-1	1891	453	-	•	-
orsens-1	1239	210	-	1	•
yllebj1	1894	660	1194	402	3284
ez-1	1532	101	1288	76	2647
-1	1074	623	951	405	3075
ens-1	4169	167	3667	91	3678
	0010	~ •	1020	38	3353
ohn Fl1	2213	64	1929	50	3333

Fjerrits	lev For	mation	(conti	nued)	
Well	Z_t	ΔZ	T_t	ΔT	V_i
	m	m	ms	ms	m/s
Kegnæs-1	722	3	-	-	-
Kvols-1	1955	450	1252	292	3082
Lavø-1	2045	60	-		-
Linde-1	1176	138	-	-	-
M-8	3161	93			-
Mejrup-1	1702	475	1277	331	2867
Mors-1	2137	613	1331	353	3473
Nøvling-1	1443	335	-		~
Oddesund-1	1608	285	1211	207	2754
O-1	2968	158	2515	103	3060
Rødby-1 ?	467	88	-		
Rødby-2 ?	445	80	-		-
Rødding-1	1647	269	1092	188	2862
Rønde-1	2096	475	1231	294	3231
Skagen-2	443	109	-		-
Skive-1	1702	391	1134	259	3019
Skive-2	1149	120	762	90	2667
Slagelse-1	932	177	-	-	-
Stenlille-1	1205	260	782	183	2842
Stenlille-2	1192	212	702	191	2840
Stenlille 4	1194	202	700	104	2040
Stenlille 5	1220	209	801	199	2905
Stenlilla 6	1229	200	812	180	3007
Sæby-1	757	256	689	201	2547
Søllested-1 2	588	176	484	142	2479
Terne-1	593	336	544	250	2688
Thisted-1	600	110	-		-
Thisted-2	1028	91	768	68	2676
Thisted-3	987	106	-		-
Thisted-4	622	118	466	102	2314
U-1	3342	46	2933	31	2969
Vedsted-1	1219	674	-	-	-
Vemb-1	1575	204	1242	148	2757
Vinding-1	1396	143	-	-	•
Voldum-1	1388	334	894	231	2892
Ørslev-1 ?	437	120	-	-	-
Års-1	2455	705	1496	390	3615
	Trias	sic unit	s		14
A-2	3027	333	-	-	-
Arnum-1	953	755	818	498	3033
B-1	3009	59	2801	34	3442
Borg-1	1336	186	1180	127	2929
Brøns-1	1006	1041	872	653	3188
C-1	1373	1156	1151	712	3247
Cleo-1	4669	155	3566	64	4848
D-1	1543	144	1416	85	3385
Edna-1	4127	32	-	•	-
Elly-1	3450	63	3063	32	3924
Emma-1	2461	239	2246	127	3758
F-1	2041	343	1610	188	3648
Farsø-1	2718	209	1706	-	-

Triassic units (continued)								
Well		Z_t	ΔZ	T_t	ΔT	V_i		
		m	m	ms	ms	m/s		
Felicia-1		1505	3190	1122	1496	4265		
Fjerrsl2		2225	112	-	-			
Flyvbjerg-1		1457	194		-			
Frdh1		971	305	864	226	2697		
Frdh2		948	116		-			
Frdh3		924	74	-	-	-		
Gassum-1		1460	1923	996	-	-		
Gassum-1	el	1460	1640	996	862	3805		
Glamsbj1		789	45	602	-	-		
Grindsted-1		941	626	-	-	-		
Hans-1		640	1119	497	555	4032		
Harte-2		915	150		-	-		
Hobro-1		2344	234	1425	-	-		
Horsens-1		1449	223	-	-	-		
Hyllebj1		2554	301	1596	151	3987		
Hønning-1		985	978	-	-	-		
Ibenholt-1		1749	205	1559	137	2999		
Inez-1		1633	316	1365	201	3145		
J-1		1697	255	1356	137	3724		
Jens-1		4336	98	3758	-	-		
Jens-1	el	4336	27	3758	15	3576		
John Fl1		2277	140	1967	-	-		
John Fl1	el	2277	113	1967	69	3278		
K-1		1947	309	1513	172	3597		
Kegnæs-1		725	1400	582	855	3275		
Kvols-1		2405	217	1544	110	3945		
Kværs-1		952	989	-	-	-		
L-1		2416	39	2176	25	3121		
Lavø-1		2340	74	-	-	-		
Linde-1		1314	905	-	-	-		
Løgumkl1		1009	1150	895	692	3323		
M-8		3253	377	2758	-	-		
M-8	el	3253	240	2758	122	3937		
Mejrup-1		2177	308	1608	•	-		
Mejrup-1	el	2177	287	1608	166	3463		
Mors-1		2750	2553	1684	-	-		
Mors-1	el	2750	2455	1684	1045	4699		
Nøvling-1		1778	1576	1378	811	3886		
Oddesund-1		1893	1632	1418	-			
Oddesund-1	el	1893	1607	1418	895	3591		
0-1		3125	425	2618	-	-		
0-1	el	3125	258	2618	148	3485		
Q-1		4201	218	1000	-	-		
R-1		1303	095	1230	463	3003		
Ravn-1		4200	363	3541	174	4172		
Ringe-1		101	437		-	-		
Rødby-1		555	9/4	401	607	3210		
Rødby-2		525	1129	-		-		
Rødding-1		1910	247	1280	145	3407		
Rødekro-1		893	092	1505	-	-		
Kønde-1		25/1	2021	1525	900	4490		
Shares 2		15/4	2210	1433	1234	3281		
Skagen-2		563	55	-				

Triassic units (continued)							
Well	Z	ΔZ	T_t	ΔT	V_i		
1	m	m	ms	ms	m/s		
Skive-1	2093	197	1393	109	3615		
Skive-2	1269	146	852	92	3174		
Slagelse-1	1109	1107	-	-	-		
Stenlille-1	1465	157	965	84	3738		
Stenlille-2	1463	151	972	-	-		
Stenlille-4	1476	172	998	95	3621		
Stenlille-5	1495	167	981	98	3414		
Stenlille-6	1531	158	992	90	3520		
Sæby-1	1047	538	915	315	3415		
Søllested-1	764	1290	626	756	3412		
Terne-1	1255	972	992	510	3810		
Thisted-1	710	200	-	-	-		
Thisted-2	1119	2132	836	1152	3701		
Thisted-3	1093	115	-	-	-		
Thisted-4	740	2637	568	1413	3732		
Tønder-1	962	1178	834	742	3175		
Tønder-2	1069	1350	956	797	3388		
Tønder-3	959	868	860	558	3111		
Tønder-4	959	896	-	-	-		
Tønder-5	968	933	860	598	3120		
U-1	3388	1473	2964	-	-		
U-1 el	3388	982	2964	556	3534		
Ullerslev-1	817	221	-	-	-		
V-1	3646	178	3007	93	3821		
Varnæs-1	870	791	771	510	3105		
Vedsted-1	2032	36	-	-	-		
Vemb-1	1779	165	1390	106	3113		
Vinding-1	1539	833		-	-		
Voldum-1	1722	555	1125		-		
Voidum-1 el	2201	188	1125	113	3327		
W. Lulu-1	3007	110	32/3	204	3840		
W Lulu-3	3706	27	3206	16	4220		
Orelev-1	557	876	408	547	3203		
Åbanrå 1	801	907	490	541	5205		
Åre 1	3160	106	1996				
Åre-1 d	3160	180	1886	84	4286		
A13-1 et	1 5100	100	1000	04	4200		
V	Vinterto	on Form	nation				
Jens-1	4336	27	3758	15	3576		
John Fl1	2277	52	1967	35	2996		
M-8	3253	7	2758	4	3353		
0-1	3125	16	2618	12	2692		
0-1	3388	12	2964	9	2709		
Tr	iassic u	ndiffere	entiated	ł			
John Fl1	2329	87	2002		-		
John Fl1 el	2329	61	2002	34	3568		
Trito	n Anhy	dritic	Format	ion			
lage 1	1262	71	2772				
Jens-1	4303	222	3713	110	2057		
0.1	3140	233	2/02	126	3957		
0-1	5142	242	2030	130	3004		

Triton Anhydritic Formation (continued)							
Well	Z_t	ΔZ	T_t	ΔT	Vi		
	m	m	ms	ms	m/s		
U-1	3401	277	2973	154	3602		
Dudgeon Salife	erous &	Trito	n Anhy	dritic	Fms		
U-1	3844	112	3220	68	3299		
Dudgeo	on Salif	erous	Format	ion			
Edna-1	4127	32	-	-	-		
M-8	3494	137	2880	-	-		
0-1 el	3383	75	-	-	-		
0-1	3383	167	2766	-	-		
Dowsin	g Dolo	mitic	Format	ion			
U-1	3678	166	3127	93	3572		
U-1	3956	481	3288		-		
U-1 el	3956	415	3288	232	3573		
V-1	3646	178	3007	93	3821		
G	assum	Forma	ation				
Borg-1	1336	27	1180	19	2842		
Børglum-1	1349	156	1045	91	3423		
F-1	2041	76	1610	44	3450		
Farsø-1	2718	198	1706	-	-		
Farsø-1 el	2718	132	1706	66	4000		
Felicia-1	1505	230	1122	151	3046		
Fjerrsl2	2225	96	-	-	-		
Flyvbjerg-1	1261	22	÷	-	-		
Flyvbjerg-1	1301	156	-	-	-		
Frdh1	893	78	802	62	2517		
Frdh2	869	78	-	-	-		
Frdh3	860	64	-	-	-		
Gassum-1	1460	130	996	80	3246		
Hans-1	274	366	263	234	3128		
Hobro-1	2344	145	1425	-	-		
Horsens-1	1449	94	•	•	-		
Hyllebj1	2554	169	1596	88	3841		
Inez-1	1633	71	1365	48	2972		
J-1	1697	72	1356	40	3597		
K-1	1947	69	1513	38	3609		
Kegnæs-1	725	141	582	110	2504		
Kvois-1	2405	109	1544	55	3904		
rværs-1	952	18	-	-	-		
Lavg-1	2105	235	1609	62	3373		
Mors-1	2750	167	1684	86	3884		
Nøvling-1	1778	85	1378	-	-		
Oddesund-1	1893	97	1418	62	3129		
Rødby-1	555	128	461	101	2541		
Rødby-2	525	140			-		
Rødding-1	1916	96	1280	58	3310		
Rønde-1	2571	140	1525	72	3889		
Skagen-2	552	11		-			
Skive-1	2093	119	1393	68	3500		
Skive-2	1269	53	852	34	3118		

Gassun	n Form	ation	(continu	ued)	
Well	Zt	ΔZ	T_t	ΔT	V_i
	m	m	ms	ms	m/s
Slagelse-1	1109	137	-	-	
Stenlille-1	1465	144	965	77	3740
Stenlille-2	1463	147	972		-
Stenlille-4	1476	146	998	81	3605
Stenlille-5	1495	142	981	86	3295
Stenlille-6	1531	142	992	82	3461
Sæby-1	1013	34	890	25	2720
Søllested-1	764	109	626	77	2831
Terne-1	929	326	794	198	3293
Thisted-1	710	125	-		-
Thisted-2	1119	135	836	97	2784
Thisted-3	1093	115	-	-	-
Thisted-4	740	114	568	88	2591
Tønder-2	1069	33	956	26	2538
Ullerslev-1	817	99	-	-	-
Vedsted-1	1744	50	-	-	-
Vedsted-1	1813	5	-	-	-
Vedsted-1	1893	139	-	•	-
Vemb-1	1779	58	1390	38	3053
Vinding-1	1539	51	-	-	-
Voldum-1	1722	128	1125	77	3325
Ørslev-1	557	183	498	140	2614
Års-1	3160	180	1886	84	4286
v	inding	Form	ation		
Borg-1	1363	50	1199	34	2941
Farsø-1	2916	11	-	-	-
Felicia-1	1735	140	1273	77	3636
Gassum-1	1590	56	1076	34	3299
Harte-2	915	21	-	-	-
Hobro-1	2489	68	-	-	-
Horsens-1	1543	45	-	-	-
Hyllebj1	2723	92	1684	46	4000
K-1	2016	41	1551	24	3404
Kegnæs-1	866	89	692	66	2697
Kvols-1	2514	69	1599	36	3833
Kværs-1	970	121	-	-	-
Lavø-1	2340	74	-		-
Linde-1	1314	96	-	-	-
Løgumkl1	1009	75	895	57	2655
Mejrup-1	2281	204	1670	-	-
Mejrup-1 el	2281	183	1670	104	3517
Mors-1	2917	88	1770	45	3911
Nøvling-1	1863	66	-	-	2160
Oddesund-1	1990	79	1480	50	3100
Rødby-1	665	21	502	22	2494
Røddy-2	2012	25	1220	-	3264
Rødding-1	2012	74	1507	44	4057
Rønde-1 Skive 1	2/11	71	109/	35	3805
Skive-1	1222	10	1401	41	3005
Slagelse 1	1322	50	680	31	5220
Staplille 1	1240	12	1042	- 7	3714
Stenine-1	1003	13	1042	/	3/14

Vindi	(continued)				
Well	Zt	ΔZ	T_t	ΔT	V_{i}
	m	m	ms	ms	m/s
Stenlille-2	1610	4			-
Stenlille-4	1622	26	1079	14	3714
Stenlille-5	1637	26	1067	12	4267
Stenlille-6	1673	17	1074	8	4125
Søllested-1	873	91	703	67	2720
Thisted-1	835	64	-	-	-
Thisted-2	1254	66	933	35	3771
Thisted-4	854	62	656	48	2583
Tønder-2	1102	46	982	34	2706
Tønder-3	959	5	860	4	2500
Tønder-5	968	32	860	24	2667
Ullerslev-1	916	41	- 10 C	-	-
Varnæs-1	870	80	771	64	2488
Vemb-1	1837	41	1428	26	3154
Vinding-1	1590	58			-
Voldum-1	1850	60	1202	36	3333
Åbenrå-1	891	5	÷ .	-	-
Års-1	3340	16	1970	-	-
0	ddesun	d Forn	ation		
Borg 1	1412	100	1000	74	2046
Borg-1	1415	109	1233	69	2940
C-1	1373	176	1151	110	2056
Eelicia-1	1875	541	1350	270	4007
Gassum-1	1646	376	1110	220	3416
Grindsted-1	941	66			5410
Harte-2	936	129	-	-	-
Hobro-1	2557	21			-
Horsens-1	1588	84			-
Hyllebj1	2815	40	1730	17	4706
Hønning-1	985	118	-	-	-
Kegnæs-1	955	157	758	105	2990
Kvols-1	2583	39	1635	19	4105
Kværs-1	1091	191	973	135	2836
Linde-1	1410	809	-	-	-
Løgumki1	1084	167	952	111	3017
Mors-1	3005	475	1815	215	4419
Nøvling-1	1929	732	-		-
Oddesund-1	2069	1456	1530	-	-
Oddesund-1 el	2069	1431	1530	783	3655
Ringe-1	767	94	-	-	-
Rødby-1	711	71	584	48	2972
Rødby-2	690	76	-	-	-
Rødding-1	2086	77	1382	43	3581
Rødekro-1	893	132	•		-
Rønde-1	2782	633	1632	288	4396
S-1	1574	365	1433	261	2798
Skive-2	1372	43	917	27	3185
Slagelse-1	1297	293	-	-	-
Søllested-1	964	111	770	75	2944
Thisted-1	899	11	-	-	-
Thisted-2	1320	242	968	150	3227
Thisted-4	916	250	704	162	3086

Oddesu	nd Form	d Formation		(continued)	
Well	Z	ΔZ	T_t	ΔT	Vi
	m	m	ms	ms	m/s
Tander-1	962	103	834	76	2703
Tønder-2	1148	181	1016	124	2010
Tønder-3	964	96	864	70	2743
Tønder-4	959	91	-		
Tønder-5	1000	99	884	70	2829
Ullerslev-1	956	81	734	60	2713
Varnæs-1	950	127	836	94	2714
Vemb-1	1878	66	1454	42	3143
Vinding-1	1648	273	-	-	-
Voldum-1	1910	367	1238	-	-
Ørslev-1	740	63	638	46	2739
Åbenrå-1	896	148	788	106	2795
	Fønder	Format	tion		
Arnum-1	053	150	818	116	2585
Brøns-1	1098	183	940	150	2440
C-1	1549	196	1270	140	2804
Gassum-1	2022	241	1330	130	3704
Grindsted-1	1007	169			-
Hønning-1	1103	158			-
Kegnæs-1	1112	66	863	55	2400
Kværs-1	1282	15	1108	12	2586
Løgumkl1	1251	125	1063	91	2756
Mors-1	3480	239	2030	106	4509
Nøvling-1	2661	308	-		-
R-1	1303	156	1230	125	2502
Rødekro-1	1025	114	-	-	-
Rønde-1	3415	241	1920	109	4422
Søllested-1 eq	1075	40	845	27	2920
Tønder-1	1065	190	910	148	2566
Tønder-2	1329	243	1140	174	2793
Tønder-3	1060	191	934	144	2653
Tønder-4	1050	203	•	-	-
Tønder-5	1099	208	954	156	2667
Varnæs-1	1077	25	929	20	2564
Vinding-1	1921	184		-	-
Åbenrå-1	1044	127	894	104	2442
I	Falster 1	Format	ion		
Arnum-1	1103	154	934	104	2960
Brøns-1	1281	163	1090	90	3622
C-1	1745	94	1410	62	3048
Gassum-1	2262	112	1460	48	4661
Glamsbj1	789	26	602	-	•
Grindsted-1	1176	100	-	•	-
Hønning-1	1261	160	-	-	-
rtegnæs-1	11/8	215	918	122	3525
rværs-1	1297	172	1120	100	3447
Løgumki1	13/0	106	1153	90	3550
Nors-1	3/19	190	2130	64	400/
NØVIING-1	2909	295	1255	105	2020
Ringe 1	961	100	610	193	3427
Kinge-1	001	100	010	- 56	5451
Falster Formation			(continu	ued)	
-------------------	---------	------------	----------	------------	------
Well	Zı	ΔZ	T_t	ΔT	Vi
	m	m	ms	ms	m/s
Rødby-1	782	183	632	112	3271
Rødby-2	766	175			-
Rødekro-1	1139	125			-
Rønde-1	3656	122	2029	53	4604
S-1	1939	263	1694	151	3480
Slagelse-1	1590	132			
Søllested-1	1115	184	872	101	3647
Tønder-1	1255	169	1058	90	3746
Tønder-2	1572	176	1314	96	3667
Tønder-3	1251	168	1078	98	3429
Tander-4	1253	168	10.0	-	-
Tander-5	1307	171	1110	104	3288
Varnae, 1	1102	170	040	105	3226
Vinding-1	2105	267	343	105	5220
Ørslev-1	803	154	694	76	4053
Abort 1	1171	167	004	09	3408
Abenra-1		107	990	90	3400
	Orslev	Form	ation		
Arnum-1	1257	120	1038	72	3344
Brøns-1	1444	155	1180	100	3100
C-1	1840	115	1472	67	3439
Gassum-1	2374	315	1508	166	3793
Glamsbj1	816	19	-	-	-
Grindsted-1	1276	125	-	-	-
Hønning-1	1421	139	-	-	-
Kegnæs-1	1393	177	1040	106	3340
Kværs-1	1469	126	1219	73	3438
Løgumkl1	1546	154	1249	89	3445
Mors-1	3915	452	2220	178	5079
Nøvling-1	3043	83	-	-	-
Ringe-1	961	102	668	76	2695
Rødby-1	965	160	744	106	3019
Rødby-2	941	167	-	-	-
Rødekro-1	1264	67	-	-	-
Rønde-1	3778	235	2082	97	4845
S-1	2202	463	1845	284	3260
Slagelse-1	1722	102	-	-	-
Søllested-1	1299	159	973	98	3262
Tønder-1	1423	178	1148	102	3490
Tønder-2	1748	162	1410	84	3857
Tønder-3	1419	176	1176	107	3290
Tønder-4	1421	178		-	-
Tønder-5	1478	180	1214	106	3396
Varnæs-1	1272	95	1054	58	3253
Ørslev-1	957	115	760	77	2987
Åbenrä-1	1338	139	1096	84	3310
S	kagerra	k For	mation		
D-1	1543	91	1416	54	3364
F-1	2117	267	1654	144	3708
Felicia-1	2416	2067	1620	906	4563
Fjerrsl2	2321	16		-	-
		104		1	

Skag	Skagerrak Formation (continued)					
Well		Z_t	ΔZ	T_t	ΔT	V_i
		. m	m	ms	ms	m/s
Frdh1		971	305	864	226	2697
Frdh2		948	116	-		-
Frdh3		924	74			-
Hans-1		640,	1119	497	555	4032
Ibenholt-1		1749	205	1559	137	2999
Inez-1		1704	245	1413	153	3199
J-1		1769	183	1396	97	3777
K-1		2056	200	1575	110	3635
Skagen-2		563	55	-	-	
Sæby-1		1047	538	915	315	3415
Terne-1		1255	972	992	510	3810
Thisted-2		1562	1689	1118	870	3883
Thisted-4		1166	2211	866	1115	3966
Vedsted-1		2032	36	-		•
Bacton Gro	Bacton Group/Dowsing Dolomitic Formation					
Elly-1		3450	63	3063	32	3924
		Bacto	on Grou	ıp		
Arnum-1		1377	331	1110	206	3214
B-1		3009	59	2801	34	3442
Brøns-1		1599	448	1280	245	3657
C-1		1955	574	1539	324	3543
Felicia-1		4483	212	2526	92	4609
Gassum-1		2689	694	1674	-	-
Gassum-1	el	2689	411	1674	184	4466
Grindsted-1		1401	166	-	-	-
Hønning-1		1560	403	-	-	-
Kegnæs-1		1570	555	1146	291	3814
Kværs-1		1595	346	1293	184	3756
Løgumkl1		1700	459	1338	249	3682
Mors-1		4367	936	2398	-	-
Mors-1	el	4367	838	2398	331	5063
Nøvling-1		3126	228	-	-	•
R-1		1745	253	1550	143	3542
Ringe-1	1	1063	141	744	84	3345
Rødby-1		1125	404	850	218	3705
Rødby-2	3	1108	546	846	294	3/14
Rødekro-1		1331	254	-	-	
Rønde-1		4013	579	2179	246	4705
5-1		2005	1119	2129	538	4159
Slagelse-1	1	1824	392	1071	211	2020
Søllested-1	- 8	1450	590	1250	326	3306
Tønder-1		1010	500	1404	250	3031
Tander-2		1505	232	1283	135	3437
Tander-4		1500	256	1205		-
Tander-5		1658	243	1320	138	3522
U-1		4437	424			
Varnæs-1		1367	294	1113	168	3494
W. Lulu-1		3801	392	3273	204	3840
W. Lulu-2		3907	110	3330	52	4220
W. Lulu-3	- 3	3796	27	3296	16	3391
		0.00				

	Bac	ton Gr	oup (c	ontinued)	
Weil	Zt	ΔZ	T_t	ΔT	V_i	
		m	m	ms	ms	m/s
W. Lulu-3	el	3796	12	3296	8	3048
Ørslev-1		1072	361	837	208	3471
Åbenrå-1		1477	321	1180	176	3651
Bactor	n Gr	oup/Sr	nith Ba	ank For	matio	n
Q-1		4201	218	-	•	-
В	unte	r Sand	stone F	ormati	on	
Arnum-1		1377	125	1110	80	3117
Brøns-1		1599	141	1280	80	3525
C-1		1955	481	1539	275	3500
Felicia-1		4483	152	2526	67	4537
Gassum-1		2689	694	1674	-	-
Gassum-1	el	2689	411	1674	184	4466
Grindsted-1		1401	57	-		
Hønning-1		1560	183	•		
Kegnæs-1		1570	232	1146	122	3803
Kværs-1		1595	44	1293	25	3520
Løgumkl1	0.0	1700	166	1338	95	3487
Mors-1		4367	936	2398		-
Mors-1	el	4367	838	2398	331	5063
Nøvling-1		3126	45			-
R-1		1745	253	1550	143	3542
Ringe-1		1063	12	744	6	4064
Rødby-1		1125	256	850	146	3511
Rødby-2		1108	228	846	130	3508
Rødekro-1		1331	70	040	1.50	5500
Rønde-1		4013	579	2170	246	4705
S-1		2665	1110	2179	539	4150
Slagelse-1	1	1824	102	2129	220	4159
Sallested-1		1459	201	1071	161	2610
Tander 1		1601	291	1250	144	2970
Tonder-1		1010	196	1250	144	2019
Tonder-2		1910	100	1494	100	3/20
Tonder-3		1595	212	1285	122	3475
Tønder-4		1599	213	-	-	-
I ønder-5		1058	217	1320	124	3500
Varnæs-1		1307	8/	1113	52	3327
Ørslev-1		1072	115	837	70	3286
Abemaei	Bun	ton Sh	lo For	mation		
Aroum-1		1502	206	1100	126	3075
B-1		3000	200	2801	24	3440
Brans 1		1740	307	1360	165	3721
C 1		2426	307	1014	105	3721
C-1		2430	93	1814	49	3/82
Felicia-1		4035	60	2593	25	4800
Grindsted-1		1458	109	•	•	•
Hønning-1		1743	220		•	•
Kegnæs-1		1802	323	1268	169	3822
Kværs-1		1639	302	1318	159	3793
Løgumkl1		1866	293	1433	154	3803
Nøvling-1		3171	183	• •	•	•
Ringe-1		1075	128	750	78	3290

Bunter	Shale F	ormati	on (co	ntinued)
Well	Z	ΔZ	T_t	ΔT	V_i
	m	m	ms	ms	m/s
Rødby-1	1382	148	996	72	4098
Rødby-2	1336	318	976	164	3878
Rødekro-1	1410	175	-		-
Slagelse-1	2016	200	-	-	-
Søllested-1	1749	305	1232	150	4061
Tønder-1	1808	332	1394	182	3644
Tønder-2	2096	323	1594	159	4064
Tønder-3	1807	20	1405	13	3077
Tønder-4	1812	43	-	-	-
Tønder-5	1875	26	1444	14	3714
Varnæs-1	1454	207	1165	116	3571
Ørslev-1	1187	246	907	138	3565
Åbenrå-1	1613	185	00-	-	-
Si	nith Ba	ank For	mation	1	
D-1	1634	53	1470	31	3422
Permia	n/Trias	sic und	lifferen	tiated	
Lone-1	3762	126	3399	56	4507
Per	mian u	indiffer	entiate	d	
Ringe-1	1204	160	828	76	4211
	Zechs	tein Gr	oup		
Arnum-1	1708	87	1316	34	5128
B-1	3067	336	2835	132	5089
Borg-1	1522	1396	1307	592	4716
Brøns-1	2047	466	1525	169	5515
C-1	2529	632	1863	275	4597
D-1	1687	1634	1501	751	4352
Diamant-1	3825	16	3338	7	4318
E. Rosa-1	1308	174	1302	-	-
E. Rosa-2	1444	145	1374	59	4928
E. Rosa-3	1490	78	1413	29	5402
Elna-1	2790	7	2496	4	3657
Erslev-1	588	2877	· -	-	-
Erslev-2	732	2665	-	-	-
Felicia-1	4695	439	2618	189	4646
Gassum-1	3383	21	-		-
Hans-1	1759	121	1052	58	4172
Hønning-1	1963	480	-	-	-
Ibenholt-1	1954	536	1696	214	5013
John-1	618	161	636	52	6201
Kegnæs-1	2125	430	1437	•	· -
Kværs-1	1941	653	1477	267	4888
L-1	2455	98	2201	35	5591
Lulu-1	3669	22	3228	7	6270
Lulu-2	3582	20	-	-	-
Løgumkl1	2159	531	1588	192	5531
M. Rosa-1	1991	119	1886	40	5959
Nils-2	2055	20	1936	6	6807
Nøvling-1	3354	111	2189	38	5842
Otto-1	2696	50	2610	18	5554

	Zech	stein G	roup	(continue	ed)	20]	
Well		Z_t	ΔZ	T_t	ΔT	V_i	1	W
		m	m	ms	ms	m/s		
Ruth-1		1669	9	1620	4	4267	1	Se
Rødby-2		1654	1020	1140	442	4615		Se
Rønde-1		4592	239	2425	111	4306		T
Slagelse-1		2216	372		-	-		W
Søllested-1		2054	611	1382	255	4788		Ø
T-1		2319	312	2387	131	4760		
T-3		2706	73	2575	-	-	2	
Terne-1		2226	38	1502	16	4688		Bo
Thisted-4		3377	4	1981	-	-		Bo
Tove-1		1832	12	1707	4	6248		Fr
Tønder-1		2140	970	1576	•	-		Ge
Tønder-2		2419	651	1753	279	4669		GI
Uglev-1		910	298	700	136	4379		Gr
Vagn-2		1775	123	1657	41	6007		Ha
Varnæs-1		1661	495	1281	189	5238		ibe
Ørslev-1		1433	369	1045	140	5271		Lø
Abenrå-1		1798	482	1356	186	5178		Ng
P	re-Z	echstein	undif	ferentia	ted			Ng
							-	P-
Arnum-1		1795	10	1350	-			Pe
Brøns-1		2513	15	1694	5	6000		Rø
Hønning-1		2443	15	-		-		Sla
Rværs-1		2594	51	1744	26	3923		Te
Kødekro-1		1585	11	-	-			le
Abanes 1		2150	51	1470	22	4627		Ug Ø
Abenra-1		2280		1542			1.2	Ør
	1	Rotliege	nde G	roup				-
B-1		3403	214	2967	-	-	1.54	-
B-1	el	3403	133	2967	69	3861		Ha
Borg-1		2918	103	1899	47	4383		
C-1		3161	10	2138				-
D-1		3321	207	2252	104	3980		Bo
Diamant-1		3840	369	3345	193	3816		Ge
Eliy-1		3513	259	3095	116	4462		Ør
Eina-1		2798	302	2500	160	3/76		Ør
Felicia-1		5134	150	2807	5/	5474		
Gert-1		4938	34	4155	17	3944		-
Hans-1		1880	002	1010	281	4/12		P
Karl 1		2491	42	1910	21	4000		13.
Kim-1	2	4450	528	3028	145	4519		
1-1	:	4594	110	2226	23	4560		LØ
Liva-1		4225	256	2230	164	4500		P
P-1		3117	210	2052	111	3779		
0-1		4410	210	2952	111	5//0		Pa
R-1		1008	679	1603	340	3097		De
Rayn-1		4620	342	3715	140	4501		He
Rødby-2		2674	264	1582	149	4391		- Og
Rønde-1		4831	87	2536	40	4350		
Slagelse-1	12.54	2588	6	2000	40	-550		Ne
Sæby-1		1585	199	1230	-			Ra
Sæby-1	el	1585	195	1230	94	4153		
						.100		

R	otlie	gende	Group	(contin	ued)	
Well		Zt	ΔZ	T_t	ΔT	V_i
		m	m	ms	ms	m/s
Søllested-1		2665	26	1637		-
Søllested-1	el	2673	15	1637	7	4545
Tønder-2		3070	112	2032	60	3749
W-1		4181	166		-	-
Ørslev-1		1802	226	1185	117	3863
	I	Pre-Pe	rmian	units		
Borg-1		3021	41	1946		
Borg-1	el	3021	33	1946	14	4714
Frdh1		1276	28	1090	26	2157
Gert-2		4840	192	4114	98	3925
Glamsbj1		835	5	-	-	-
Grindsted-1		1567	48	-		-
Hans-1		2542	467	1391	182	5132
Ibenholt-1		2533	26	1931	9	5690
Løgumkl1		2690	15	1780	4	7500
Nøvling-1		3465	227	2227	-	-
Nøvling-1	el	3465	211	2227	75	5627
P-1		3327	130	3063	57	4577
Per-1		2730	16	2370	-	-
Rønde-1		4918	340	2576	137	4964
Slagelse-1		2594	340	-	-	-
Terne-1		2264	1062	1518	-	-
Terne-1	el	2264	1051	1518	454	4630
Ugle-1		2998	23	2518	9	5111
Ørslev-1		2028	523	1302	-	-
Ørslev-1	el	2028	509	1302	217	4691
Upper	Car	bonife	rous ur	ndiffere	ntiate	d
Hans-1		2542	467	1391	182	5132
Ca	rbon	iferou	s undiff	erentia	ted	
Borg-1		3021	33	1946	14	4714
Gert-2		4840	192	4114	98	3925
Ørslev-1		2028	523	1302		-
Ørslev-1	el	2028	509	1302	217	4691
		Ca	-1 Unit			
P-1		3327	67	3063	33	4082
	Ca	ledoni	an base	ement	1	
Løgumkl1		2690	15	1780	4	7500
P-1		3394	63	3096	24	5258
	Cal	edonia	n?bas	ement		
Borg-1		3054	8	1960		
Per-1		2730	16	2370	-	-
Ugle-1		2998	23	2518	9	5111
	N	øvling	Forma	tion		
Nøvling-1	1	3465	186	2227	-	
Rønde-1		4918	230	2576	92	5000

	R	ønde F	ormat	ion		
Well		Z_t	ΔZ	T _t	ΔT	V
		m	m	ms	ms	m/
Nøvling-1		3651	41			in star
Rønde-1		5148	110	2668	45	488
		Colon	us Sha	le		
Terne-1	eq	2264	444	1518	172	515
	C	yrtogra	ptus S	Shale		
Terne-1	eq	2707	112	1690	52	• 428
		Rastri	es Sh	ale		
Slagelse-1	eq	2594	285			
Terne-1	eq	2819	126	1742	54	466
	То	mmarp	Mud	stone		
Terne-1	eq	2945	8	1796		
-	Je	rrestad	Mud	stone		
Terne-1	eq	2953	31	•		
	Di	cellogra	aptus	Shale		
Terne-1	eq	2984	, ⁹⁸ ,	1814	46	426
	K	omstad	Lime	stone		
Terne-1	eq	3082	8	1860		
Low	er Pa	laeozoi	c und	ifferent	iated	
Terne-1		3090	46		-	
	D	ictyon	ema S	hale		
Terne-1	eq	3136	21			
		Alum	h Shal	e		
Slagelse-1	eq	2879	27			
Terne-1	eq	3157	92	1892	48	383
Low	er Ca	ambria	n undi	fferent	iated	
Slagelse-1		2906	22			
	1	Læså F	ormat	ion		
Terne-1	eq	3249	66	1940	32	412
	S	lagelse	Quart	zite		
Slagelse-1		2928	6			
	Har	deberg	a San	dstone		
Terne-1		3315	11	1972	•	
	Pre	cambri	an bas	ement		
Frdh1		1276	28	1090	26	215
Glamsbj1		835	5			
Grindsted-1		1567	48		-	
Ibenholt-1		2533	26	1931	9	569

Appendiks II

De regionale seismiske snittene som er tolket og digitalisert i de regionale profilene. Figurene er en avbildning av de seismiske snittene. Alle snittene har her øst opp.

Figur II-01: Til venstre linjene SP-82 43 og 47. b: Til høyre Sp-82 36 linjen.

Figur II-02: Til venstre SP-82 37 linjen. b: Til høyre Sp-82 35 linjen.

Figur II-03: Den seismiske linjen RTD-81 34.

Appendiks III

Figur III-01: Header til den seismisk undersøkelsen RTD-81.

Figur III-02: Header til den seismisk undersøkelsen DCS-81.

Figur III-03: Header til den seismisk undersøkelsen SP-82.