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Abstract

The spring flood is a multivariate event that can be characterized by the flood
characteristics peak discharge, duration and volume. Traditionally these
flood characteristics have been modelled separately, but by modelling the
spring flood as a multivariate event, information about the joint probabilistic
behaviour is obtained. In this thesis the bivariate logistic extreme value
distribution with GEV margins are used to model asymptotically dependent
flood characteristics, and the bivariate log normal distribution with log
normal margins are used for modelling asymptotically independent flood
characteristics. A new method is made for the assessment of the duration
of the spring flood. The bivariate models and the method for assessment
of duration are tested in the Glomma basin in the rivers Glomma and
Gudbrandsdalslagen at stations Elverum and Losna, respectively. At
Elverum the method for assessment of duration gave reasonable results,
whereas at Losna the method gave poor results. For the bivarate models
there were good agreement between the models and observations, and
the models were found appropriate for modelling the corresponding flood
characteristics. The bivarate joint distributions of the flood characteristics
were used for constructing bivariate return periods.
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Chapter 1

Introduction

1.1 Background

The river has always been important for the development of civilization.
Almost every large city in the world is located near a river, in fact the start
of civilization was situated between the rivers Eufrat and Tigris. But being
located near a river has both advantages and disadvantages, and a major
disadvantage is the risk of floods. Floods can cause severe damage and can
lead to loss of lives of both humans and livestock. In addition there are
limited posibilities for protection against extreme floods. Every year there
are several extreme floods in the world that lead to severe damage. One of
the last extreme floods in Europe took place in the river Elbe in the summer
of 2002. The economical loss for the countries Germany and the Czech-
Republic caused by this flood summed up to the amount of $12 billiones
(Riischlikon, 2004). On top of this comes the loss of irreplaceable cultural
inheritage. In the last decade there has been more focus on risk areas for
floods when spatial planning areas are located, and also on assessment of
flood risk damage in developed areas. Bakkehgi (2003) performed a flood
risk analysis for the cities Hamar and Lillestrgm in Norway.

A flood can be defined in many ways, e.g. U.S. Geological Survey uses the
following definition: ”An overflow or inundation that comes from a river or
other body of water and causes or threatens damage (USGS, 2004). Any
relatively high streamflow overtopping the natural or artificial banks in any
reach of a stream”. A norwegian definition of flood used by Otnes and Reestad
(1978) is given as “ a river has a flood if the discharge exceeds the mean-
discharge of the river”. This is a rather wide definiton of floods, and with
this definition most of the norwegian rivers will be in a flood situation on
average 1/3‘rd of the year. In this thesis the term spring-flood is used. A
spring flood is a flood that occurs in the spring or early summer, and is caused
by snowmelt or a combination of snowmelt and precipitation. Even though
the spring flood occurs every year in regions with stable winter conditions,
it does not nessecerily have to be associated with damage. Most years the
spring flood pass through without causing any damage, but occationally
damage occur. The largest known flood in Norway, the “storofsen” in 1789,
was for instance a spring flood. In Norway the spring-flood is typically
found in the mountain regime (H;L;) and in the inland regime (HyL;), but
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10 CHAPTER 1. INTRODUCTION

it can also be found in the transition regime (HzLg). Both the mountain
and the inland regimes are regions with stable winter conditions. For more
information on regimes, see Gottschalk et al. (1979).

The size of a flood is often given as a return period. A return period is
defined as how many years in average it takes before a certain discharge is
equalled or exceeded. The probability for a flood with a given return period
to occur each year is assumed to be constant, e.g. the probability of a 50
year flood to occur once every year is 0.05. This means that if a 50 year
flood occured one year, it is just as likely for a 50 year flood to occur the
next year.

A flood event is a multivariate event that can be characterized by the
flood characteristrics peak-discharge, duration and volume. These flood
characteristics have traditionally been modeled separately, e.g. in Norway
Seelthun et al. (1997) performed a regional flood frequency analysis of
norweigan basins using peak-discharge and Solberg (1998) modeled the
regional distribution of spring-flood volumes. The n-year return period of
flood characteristics is often used in hydrological design as a criterion for the
constructional requirements. Separate modeling of the flood characteristics
are sufficient in hydrological design if the constructional requirements only
depend on one flood characteristic. On the other hand if the constructional
requirements depends on several flood characteristics, multivariate modelling
of the flood characteristics is prefrable. For instance, for a reservoir spillway
the n-year return period of the peak-discharge is an important constructional
requirement. But if the inflow in the reservoir is large compared to the
storage capacity, the n-year return period of volume is also important.
Since the peak-discharge and volume are associated, a joint return period
constructed from the joint distribution of peak-discharge and volume would
be a better constructional requirement.

In hydrology there has been some attempts to model extreme events by
using bivariate distributions. Ashkar (1980) investigated floods and derived
a relationship between the peak discharge, the duration and the volume
by using a simplified bivariate model. Buishand (1984) was concerned
with the joint distribution of maxima at two different sites, which is
importnant for the application of the station year method. For modelling
Buishand applied the bivariate logistic distribution with standard Gumbel
distributions as marginal distributions. Goel et al. (1998) applied a bivariate
normal distribution for modeling flood peak discharge and flood volume, and
Yue et al. (1999) applied the Gumbel mixed model for a flood frequency
analysis. Yue (2000) applied a bivariate log normal distribution to model
a multivariate flood episode and Yue and Rasmussen (2002) discussed some
useful concepts of bivariate frequency analysis in hydrological applications.

During the last years there has been a thriving development in the branch
of multivariate extreme value analysis, especially the statistical group lead
by Jonathan Tawn has been active. This thesis will adapt some of the new
techniques that have been developed that are not yet applied in hydrology.
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Especially the paper written by Coles et al. (1999) is important for this
thesis.

1.2 Objectives

In Norwegian basins the largest flood each year is typically the spring flood.
Since the spring flood is a joint event that can be characterized by the flood
characteristics peak discharge, duration and volume, multivariate modeling
of the flood characteristics would lead to a gain in information of the spring
flood compared to a separate modeling of the flood characteristics. By
modeling the spring flood with a multivariate distribution, there is also
a potential for the different flood characteristics to inform inferences on
each other. This potential increases with increasing association between
the variables.

The main objective of this thesis is to evaluate the applicability of bivariate
frequency analysis on spring floods. By using a bivariate model for
modeling the spring flood, the following combinations of flood characteristics
are needed in order to characterize the spring flood; the peak discharge
and volume, the duration and volume and peak discharge and duration.
The bivariate analysis will especially focus on the selection of a bivariate
distribution for modeling the different pairs of flood characteristics, and on
bivariate return periods constructed for different design criteria.

In addtion to the main objective, a method to assess the duration from a
hydrograph is required.

1.3 Thesis outline

This thesis consist of five chapters. Chapter one is the introduction of the
thesis. Chapter two starts with a general background of the Glomma basin,
and then focus is put on the selected hydrological stations. Important
physiographic data of the seleced stations and a short discussion of the
criteria for the selection of the stations are given. Finally arguments are given
for performing a frequency analysis even though the series are regulated.
In chapter three the methods for the assessment of flood characeristics are
described. Then the theoretical background for modeling extremevalues are
given. The theory is first given for univariate modeling, and then generalised
to bivariate modeling. Both parts consist of a preliminary analysis for
checking the model assumptions, and a part where the data are modeled.
Chapter four consist of a presentation and a discusion of the results from
the analysis. In chapter five a conclusion of the results are given. The
appendix consist of the univariate theory that was not placed in chapter
3 and plots of the bivariate return periods for the flood characteristics at
Losna.
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Chapter 2

Data

2.1 General background of the Glomma basin
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Figure 2.1: The Glomma basin.
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14 CHAPTER 2. DATA

2.1.1 Physiography

The Glomma basin is the largest basin in Norway and covers an area
of 41922 km?. It is situated near Rgros in the North to Fredrikstad
in the South, and from Grotli in the West to just across the Swedish
border in the East. The basin consist of two main branches, the Glomma
river in Osterdalen and river Gudbrandsdalslagen(Lagen) in Gudbransdalen.
Downstream Funnefoss the two rivers join, and the name Glomma is kept
downstream the confluence. The elvation of the basin range between sea
level and 2469 m.a.s.]. (Galdhgpiggen). About 30 percent of the basin area
is located above 1000 m.a.s.l., and about 30 percent is located below 500
m.a.s.l. There are large differences in the area elevation distribution within
the basin, e.g. in the Oppland County 57 percent of the area is located above
900 m.a.s.l., whereas in Hedemark county only 21 percent is above.

Some fair-sized lakes are found in the basin. Lake Mjgsa is the largest lake
in Norway with and area of 362 km?. Other lakes are e.g. Storsjgen and
Osensjgen. The presence of lakes in a basin will have an influence on the
floods that occur in the basin, and will result in damped floods downstream
the lake.

The total mean runoff of the basin is 705 m®/s or 16.8 1/skm?. These
values have been determined from a runoff map that has been corrected with
discharge values from the basin. There are many hydropower regulations in
the basin, but the regulations only constitute 16 percent of the total mean
runoff, which is a low regulation percentage. Still, the regulations will to
some extent influence both floods and the low flow, and as a result the low
flow is higher during winter and floods are generally smaller.

2.1.2 Climate

There are large variations in the precipitation and temperature in the basin,
e.g. due to rain shadow from high mountains, the precipitation in the
areas located around Lom is as low as 250 mm. In the west of the basin
near the water divide to the Western part of Norway, the precipitation is
beyond 1500 mm. In winter, the temperature is generally low in areas
with continental climate, whereas in areas with a more maritime climate
the winter temperature is more moderate. There is also a large temperature
gradient between higher and lower parts of the basin.

In the Glomma basin several hydrological runoff regimes are found. The
area upstream the confluence of Glomma and Lagen mainly consist of
the mountain regime (HyLi) and inland regime (HjLsy). Downstream the
confluence the transition regime (HgLsg) is mainly found.

2.2 Hydrological data

The hydrological series used in this thesis are taken from the HYDRA
II database at NVE. This database consists of the series from all the
hydrometric stations in Norway. At the hydrometric stations it is usually the
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water level and not the discharge that is measured, and the water level has
to be converted to discharge. This is done by using the hydrograph of the
corresponding hydrometric station. The hydrograph is the relation between
water level and discharge, and is determined by a series of consecutive
measurements of water level and discharge. For high water levels the
hydrograph become increasingly uncertain due to changes in the profile and
few discharge measurements.

In this thesis series from the hydrometric stations Elverum and Losna are
chosen, and below some background information about these stations are
given.

Elverum

The measurements at Elverum started in 1871 and are the longest continuous
discharge series in Norway. It is located in the Glomma river, and has the
following physiographical data; the station is located and 177 m.a.s.l, the
maximum elevation difference is 2001. In figure 2.3 the hypsographic curve
of the station is given. The area coverage is 15426 km?, the glacier percentage
is 0.01

Losna

The hydrometric station is located in lake Losna in the river Gud-
brandsdalslagen. It is also a long series, and the measurements started in
1896. The station has the following physiographical data; the station is loc-
ated 180 m.a.s.l., the maximum elevation difference is 2290 m. In figure 2.3
the hypsographic curve of the station is given. The area coverage is 11087
km?, the glassier percentage is 2.98

The reasons for selecting these two stations for the bivariate analysis were,
in the first place to use series were the spring floods behave differently, and
secondly that uncertainty of the hydrograph is low at high levels. At Losna a
larger part of the area percentage is located at higher elevation than Elverum,
and the glacier percentage is larger at Losna compared to Elverum. As a
consequence, the spring flood starts later and lasts longer than the spring
flood at Glomma. Also, the quality of both data and the hydrograph at high
levels are approved by the hydrometric department at NVE (The Norwegian
Water Resources and Energy Directorate).

In this thesis the period 1961-2000 is chosen for both Elverum and Losna.
There do not exist naturalized series for these stations for this period, thus
the bivariate analysis is performed on the regulated series. Figure 2.2 shows
that, even if the regulation percentage is low, the AMS values are to some
extent influenced by the regulations. But since the regulation percentage is
low for both stations, the AMS values are only to some extent influenced by
the regulations (figure 2.2). And as long as the regulations lead to storage
in the reservoirs, a frequency analysis on regulated data gives a more real
picture of the expected discharge downstream the regulation compared to if
a naturalized series was used.
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Chapter 3

Methods and theory

3.1 Flood characteristics

A flood can be described by a set of flood characteristics defined from the
discharge of a river at a certain measuring site. Important characteristics
are the peak discharge, duration and volume. During a flood each of these
characteristics will have different practical implications on the surroundings,
the peak discharge, which is the maximum instantaneous discharge during
the flood, determines what will be flooded, the duration determines the time
effect on damage and the volume can be used for determining the volume
that needs to be retained or stored in order to avoid flood damages.

When analysing the flood characteristics, the maximum values (or extreme
values) of each characteristic are often of interest due to the application of
extreme value methods. If the flood characteristics are evaluated separately,
the largest value of each characteristic does not necessarily belong to the
same flood event, e.g. at station Elverum in Glomma river, the maximum
flood duration and volume usually appear in the spring mainly due to snow-
melt, but occasionally the maximum peak discharge appear in the autumn
due to precipitation (see chapter 2 for more information).

Previous works by different authors like Goel et al. (1998) and Yue et al.
(1999) have shown that the flood characteristics are associated. Yue found
that the peak discharge and volume, and the duration and volume were cor-
related, but argued that from a physical point of view, the peak discharge
and duration should not be correlated. The last argument requires that the
volume is random in each flood event. If, on the other hand, the volume
does not vary too much, the peak discharge and duration is expected to be
negatively correlated, which in fact is found in this thesis. Flood events
with associated flood characteristics can be regarded as multivariate events.
Then, instead of focusing on one flood characteristic, which has been done
traditionally, the flood event can now be modelled using a joint distribution
of several flood characteristics.
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18 CHAPTER 3. METHODS AND THEORY

3.1.1 Assessment of duration

The assessment of the duration of a flood can be a difficult task. A flood is
often a complex and diverse event, and no formal definition of the duration
can be found. By using an informal definition given by Yue et al. (1999) the
start of a flood is identified as an abrupt increase in the discharge from
the base flow, and the end of a flood by the flattening of the recession
curve of the discharge. The flood duration is then found as the difference
between the start date and the end date. Even though this definition
seems quite straight forward, it can be difficult to determine the end of
a flood, especially spring floods. The spring flood is often a combination of
different events like snowmelt, precipitation and discharge from glaciers (if
present), which can lead to rather complex hydrographs. In addition, if the
drainage basin analysed is large and there is a large altitude gradient, the
snow in the higher part of the drainage basin will melt later than the snow
in the lower part, and the hydrographs can become event more complex,
especially if the altitude gradient is not smooth. Another problem is that
summer rain is sometimes included in the spring flood. The recession is
often interrupted by precipitation events, and it can be difficult to determine
whether or not the event belong to the spring flood. Figure 3.1 shows a
hydrograph for the river Gudbrandsdalslagen at the station Losna affected
by the difficulties described above. The identification of the flattening of the
recession curve and separation of summer precipitation in this hydrograph
is almost impossible. Hence, in view of this example, an alternative method
for the determination of the end of a flood is required.

The method used in this thesis is a modified verson of Yue‘s method where
instead of identifying the end of the flood by using the natural recession
curve, a master recession curve constructed from a recession analysis is used.
A recession analysis is a way of modelling the stream outflow in a drainage
basin given a climatic input (see appendix A.l for more information). On
this master recession curve the end of the flood is chosen to be the value of
the 70-th percentile from the flow duration curve. By using a predestined
value for determining the end of the flood instead of using the flattening
of the reseccion curve, no subjective decisions needs to be made for the
determination of the end. The reason for choosing the 70-th percentile is
that in the hydrological regions in Norway where the spring flood occurs,
discharge below this level is often considered to be base flow. A difficulty
with this model is to determine when to initiate the use of the master
recession curve. Generally, this is when the discharge starts to rise again
due to summer precipitation after a general fall in the discharge values when
there is no snow left. More specifically, one possibility is to identify the
first precipitation event that belongs to the summer precipitation on the
hydrograph. This can be done by the help of meteorological data from the
drainage basin investigated. The initiation point for the master recession
curve is then the point where this precipitation event starts, given that the
discharge has not reached the 70-th percentile. If it is difficult to determine
whether or not the precipitation event belongs to the summer precipitation,
approximative methods can be used for determination of the initiation point.
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Figure 3.1: Discharge at Losna 1967.

These methods are subjective and to some extent individual for each station
and are therefore explained in section 4.1.1, where the assessment of flood
duration is undertaken. Finally, when all unknown factors for the assessment
of the duration is determined, the duration can be found by calculating the
difference between the dates of the initiation of the master recession and the
start of the flood, and the difference between the dates of the end of the flood
and the initiation of the master recession, and then add these differences.

3.1.2 Assessment of volume

The volume of a flood is defined as the volume of the discharge in the duration
period of the flood. For assessment of this volume the area under the graph
of the hydrograph in the duration period can be estimated. Due to the fact
that the unit of the discharge is given in CMS, the estimated area must be
multiplied with 86400 (the number of seconds in 24 hours) in order to obtain
the correct unit for the estimated volume. The area under the graph can be
estimated using the trapezoidal rule, and is given by

b Az f
[ t@den 5 (f($0)+f(xn)+22f(xi)>7 (3.1)
a =1

where f(xo) is the discharge at the start of the flood and f(x,) is the
discharge at the end of the flood. The trapezoidal rule can be found in
any calculus book, e.g. Linstrom (1995).

The assessment of the volume of a flood does not involve any subjective
considerations. Still, since the assessment of the volume depends on the
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duration, this must be evaluated before the volume is regarded as being
obtained subjective or objective.

3.2 Modeling of extreme values

Section 3.2 is based on Coles (2001).

When dealing with extreme events like floods, extreme values from the
processes that characterizes the flood are required in order to perform
a (flood) frequency analysis. If the distributions of these processes are
examined, the extreme values will appear in the tails of the distributions.
Since, by definition, the observations in the tail are scarce, and most of the
data are found around the centre of the distribution, estimation of the tail
is difficult. If standard statistical estimation procedures where applied to
estimate tail probabilities, it could lead to major discrepancies. Standard
models like the normal distribution uses central values (u and o) in both
assessing the model and estimating probabilities. This can be a good model
for estimating probabilities on the body of a distribution, but due to the
lack of model fit on the tails, estimating tail probabilities based on central
values is generally not a good method. This is especially the case when the
distribution is extrapolated beyond observed values. Thus an alternative
model, which is capable to model the tail of a distribution, is required.

A part of the extreme value analysis is concerned with how often extreme
events appear and how large those events are expected to be. These
concepts are termed return period and return level (see section A.2.3) and the
analysis is termed frequency analysis. Frequency analysis is very important
in hydrological design, both for preventing catastrophes and for optimal
construction. The result is obvious if the resistance of a construction is
to low, but on the other hand, it is very expensive if a construction can
resist much more than needed.

Frequency analysis is carried out by first selecting a method for the selection
of extremes. There are three methods available, namely block maxima,
partial duration series (pot) and the r largest order method. All methods
are defined is section A.2.2. A distribution is then fitted to the extremes,
preferably an extreme value distribution. The return period and the return
level can then be constructed from this distribution.

3.2.1 Selection of extremes

The most common approaches for selecting extremes are the block maxima
and the partial duration series (PDS). In the block maxima model the data
are partitioned into blocks of the same length, and the greatest value from
each block is put together in a new series. In Norwegian regions a block size
of one year is often selected when modelling floods due to bias and variance
considerations Coles (2001). The block maxima model is then called annual
maximum series (AMS). The GEV distribution is appropriate for modelling
block maxima. When using PDS;, all values over a predefined truncation level
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are used as extremes. For modelling PDS the generalized Pareto distribu-
tion is used. Both of these approaches are actually special cases of the point
process characterisation of extreme values. A definition of this approach can
be found in Coles (2001).

The choice of approach depends on the data available and the sort of analysis
to be undertaken. When the selected extremes are applied in a statistical
model, there are some assumptions that need to be fulfilled in order to obtain
satisfactory results. These assumptions are investigated in section A.4, and
the most important assumption is that the extremes are independent and
identically distributed (iid). In addition there must be a sufficient amount
of data to stabilize the limit distribution in the extremmal types theorem
(equation A.3). The choice of approach can influence both these issues. In
the AMS approach the iid assumption is automatically fulfilled, given that
the underlying distribution is stationary (see section A.4.1). For the PDS ap-
proach the choice of the truncation level is important for the iid assumption.
If the truncation level is chosen too low, too many extremes are selected and
the extremes become dependent. The selected extremes will then not follow
a Poisson process, which is a requirement for this approach. With the PDS
approach it is also likely that a larger amount of extreme values are selected
compared to the AMS approach due to the fact that this approach uses all
values over a predefined truncation level.

Both of these approaches have advantages and disadvantages that need to
be taken into consideration when choosing a selection method. Some of the
disadvantages by using AMS are that AMS uses only the largest value from
each year, thus with this definition the second largest value one year can
be greater than the largest value from another year. This can lead to the
fact that information can be lost. Another disadvantage is that there is no
mechanism verifying if the largest value in a year actually is extreme. Non
extreme data included in the analysis can lead to bias when an extreme value
distribution is fitted to data. The advantages with the AMS approach are
that it is quite easy to carry out compared to PSD, and given stationarity the
extremes are automatically iid. The PDS is an approach with greater analyt-
ical complexity. Two of the main difficulties are the selection of truncation
level and independence of the extremes (discussed above). If the extremes
are dependent, bias is expected in the consecutive extreme value analysis.
There are methods for both selecting a truncation level and for declustering
dependent extremes, see Lang et al. (1999) for more information. The ad-
vantaged with PDS is that more extreme values are usually selected during
the same time period compared to AMS, and the selected extreme values are
actually extreme since no values below the truncation level are used.

In this thesis the AMS approach is selected due to the nature of the spring
flood. Since there are only one spring flood event each year, there is no gain
in using PDS due to the fact that the amount of extreme values selected by
both selection methods are equal.
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3.2.2 Model requirements and preliminary analysis

Every statistical model has some assumptions that need to be fulfilled in
order to obtain satisfactory results. If these assumptions are violated,
an increased uncertainty in the results or a rejection of the model is
expected. The most important assumption in extreme value models is
that the underlying distribution of the extreme values must consist of a
sequence of independent random variables. This assumption is almost never
fulfilled in hydrological processes. But if stationarity is used instead of
the iid assumption, it turns out that the extreme values satisfy the iid
assumption. The preliminary analysis consist of different methods to reveal
non-stationarity, i.e temporal variation (trend, step change) and persistence.
These methods consist of exploratory data analysis (EDA) and statistical
tests. For more information about these methods, see appendix A.4.

3.2.3 The extreme value distributions

For modelling AMS values, the generalized extreme value distribution (GEV)
is appropriate. The GEV distribution was independently derived by von
Mises (1936) and Jenkinson (1955), and is given as

Gla) = eap{~[1+ (=)}, (3:2)

where -00 < € < 00, -00 < u < 0o and a > 0. The parameter ¢ determines
the distribution. If & > 0 it is the fréchet distribution, & < 0 the Weibull
distribution and if £ — 0 the Gumbel distribution. The parameters u and «
are the location and the scale parameters, respectively.

The GEV distribution arise as an asymptotic argument where sample
maxima are renormalized with sequences of renormalization constants. As
the number of sample maxima increases, the distribution of the renormalized
sample maxima converges to the GEV distribution. This is called the
extremal types theorem. See appendix A.2.1 for a proper deduction.

3.2.4 Return level, return period and reduced plot

The return level x, is connected to the return period, and is the quantile
function of the GEV distribution (equation 3.2) associated with the return
period 1/p. Thus, the return level is defined as the expected time before a
certain return(quantile)-level is exceeded. The quantile function of GEV and
a more thorough examination of the return period is found in appendix A.2.3.

The return level and the return periods are often graphically represented by
reduced plots. In these plots an appropriate plotting position is used for
the estimation of non-exceedance probability of an empirical distribution.
The estimated non-exceedance probabilities on a reduced form can then
be plotted against data. If also a theoretical distribution on a reduced
form is included, the discrepancy between the estimated non-exceedance
probabilities and the theoretical model can be obtained. See appendix A.2.3
for more information.
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3.3 Non EV-distributions used for modelling ex-
treme values

The extreme value distributions are not always used for modelling extreme
values. Extreme hydrological events like peak-discharge and flood volume
are generally positively skewed and skew distributions like the log normal
and the gamma distribution can give satisfactory results (Yue, 2000). These
distributions do not have the same theoretical background for modelling
extreme values as the extreme value distributions, and extreme value
distributions are often preferred over other distributions.

3.3.1 The log normal distribution

The log normal distribution is an asymmetric distribution with a pronounced
tail towards high values. It is derived from the normal distribution, and have
to parameters p and o. If X is a log normal distributed random variable,
then Y = log X is normally distributed. The probability density function
(PDF) of the log normal distribution is given by

fo) = — A exp [—% (Lx) . 4
zy\/2m0} 9y
where py and oy are the mean and standard deviation of Y, respectively
Yue (2000). For estimation of the parameters and calculation of the CDF,
see appendix A.3.

)2] (X >0), (3.3)

3.4 Selection of a theoretical distribution and
model validation

In extreme value analysis, the selection of a theoretical distribution is par-
ticularly important. Different distributions will model the tail of the dis-
tribution differently, and since the chosen distribution often is extrapolated
far beyond observed values, there can be substantial differences between the
models. An incorrect prediction can have dramatic consequences.

In a hydrological setting several distributions have been used to model
AMES;, including normal, lognormal, gamma and the GEC distribution. In
Australia and USA the gamma distribution is chosen as a standard distri-
bution for flood frequency analysis, in Great Britain the GEC distribution
is applied. In Norway the GEC distribution is often used, e.g. Selthun
et al. (1997) uses this distribution in regional flood frequency analysis of
Norwegian basins.

The distribution chosen should reflect the number of observations available.
A distribution with many parameters will fit the observations better, but
will have greater uncertainty in the parameters. If there are few observations
available, the uncertainty in estimating more parameters will exceed the gain
in model fit, and a simpler model is more appropriate (Veeringstad, 2001).
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When selecting a theoretical distribution, there are methods available helping
to decide which distribution is appropriate. These methods are termed
model validation methods. There are several different model validation
methods, including graphical methods, goodness of fit tests and maximum
likelihood methods, like the Akaikes Information Criterion (AIC). The
first two methods can be used to measure the discrepancy between the
theoretical distribution and an empirical estimated distribution. The
maximum likelihood method finds the best model among several candidate
models, but give no information about how good the chosen model fits data.
In this thesis graphical methods and the AIC is used. The AIC is found in
section A.5.2, and the graphical methods are given below.

One of the main objectives of this thesis is to model the spring flood by
using bivariate distributions. The selection of a theoretical distribution for
univariate models is therefore performed with a view to apply the univariate
distributions as marginal distributions in the bivariate distributions. Thus,
in addition to satisfying the model requirements of univariate extreme
value models (section A.4), the selected distribution must satisfy the model
requirements of bivariate extreme value models (section 3.8). As a result, the
bivariate preliminary analysis determines whether asymptotically dependent
or asymptotically independent bivariate distributions are appropriate, and
the univariate model validation methods determine which distribution
within the class of asymptotically dependent or asymptotically independent
distributions that are appropriate. For instance if AMS series are analysed
and the bivariate preliminary analysis indicate asymptotic independce, the
bivariate normal or the bivariate log normal distribution is appropriate.
The univariate model validation methods can then be used for finding
which of the marginal distributions of bivariate normal or bivariate log
normal distribution that is appropriate. If the bivariate preliminary analysis
indicates asymptotic dependence, the bivariate extreme value distributions is
appropriate. In this situation only one marginal distribution is appropriate,
namely the GEV distribution. This is due to the fact that in bivariate
extreme value distributions the GEV family gives rise to the complete class of
marginal limit distributions, and by generalizing the marginal distributions
the complete family of the bivariate extreme value distributions can be
obtained (see section 3.6.3).

3.4.1 Graphical methods

The graphical method is a subjective method where an appropriate plotting
position is used for estimation of non-exceedance probabilities. These
estimated values are then used together with theoretical distributions in
various plots like e.g. histograms, qqg-plots and reduced plots. In this way
a visual picture of the fit of the different distributions are obtained, and
the most appropriate distribution can be selected. This method can also be
used for model validation, since a visual picture of the discrepancy between
the theoretical distribution and the estimated non-exceedance probabilities
is obtained.
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3.5 Inference

In this thesis the following techniques for parameter estimation in statistical
models have been used, l-moments (see appendix A.5.1) for estimation in the
univariate extreme value models, methods of moments (see appendix A.3)
for estimation of the parameters in the log normal distribution and
maximum likelihood (see appendix A.5.2) for estimation in the bivariate
models. One of the reasons for choosing maximum likelihood for bivariate
parameter estimation is that routines for l-moment estimation has not
yvet been established. After the parameters are estimated with one of
the techniques above, every parameter is re-estimated using a bootstrap
routine for increased parameter accuracy. In addition, BCa bootstrap
confidence intervals for the parameters are constructed. The bootstrap
routine and the BCa confidence interval are given in appendix A.6. From
the maximum likelihood estimation the Akaikes information criteria (AIC)
can be calculated. This is a model validation method applied for selecting
the best model among several candidate models. The AIC is given is
appendix A.5.2.

3.6 Modelling of bivariate extreme values

3.6.1 The copula function

This thesis has focus one the joint distribution of different flood character-
istics. Since the flood characteristics have different marginal distributions,
it is difficult to make inferences about the dependence structure in the joint
distribution. By transforming the marginal distributions into standardized
marginals, the marginal structure is removed and the dependence structure
can be evaluated. A joint distribution function with standardized margins
is called a copula function. If Fx y(z,y) is any continuous bivariate distri-
bution function with marginal distributions Fx(z) and Fy(y), the copula
function can be expressed as

Fxy(2,y) = C{Fx(2), F,(y)} = C(u,v) , (3-4)
(Coles et al., 1999).

A bivariate distribution with marginal distributions F'x (x) and Fy (y) can be
transformed and standardised to have any continuous marginal distributions
Gx(x) and Gy (y) by using the probability integral transform

& =Gy {Fx(z)} and j = Gy {Fy (y)} (3.5)

where G)_(1 is the quantile function of Gx. The copula function can then be
written as

C(u,v) =F (G;(l(u), Gy' (v)) - (3.6)

When constructing a bivariate extreme value copula, the marginal distribu-
tions are often GEV distributed. But since the dependence structure in the
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copula remains constant if the marginal distributions are transformed, mar-
ginal distributions that give simple theoretical expressions can be chosen. In
this thesis the standard Frechet distribution, F(z) = exp(-1/z), z > 0, is used.
If X;...X,, are iid standard Fréchet variables, then M,, = maz(X;...X,,) sat-
isfies Pr(M,,/n < x) = exp (-1/x) , for all n. Hence if the variables are
standard Fréchet distributed, the extremes are also standard Fréchet dis-
tributed.

Componentwise maxima often belong to the bivariate extreme value logistic
family, F(x,y) = exp{-(z~ "/ +y~1/*)*} xy > 0 and a € (0,1]. The copula
function for the bivariate logistic extreme value distribution can be found
using equations 3.5 on the preceding page and 3.6 on the page before. If the
marginal distributions of a physical process originally are GEV distributed,
they are transformed to a standard Fréchet distribution. The quantile
functions of the standard Fréchet is z = —1/in(u) and § = —1/In(v), where
U and V are the cdf‘s of the respective GEV marginal distributions. By
inserting in equation 3.6 on the preceding page, one obtains the copula

C(u,v) = exp[—{(—log u)"/* + (—=log v)/*}°]. (3.7)

For more information about the copula function, see (Joe, 1997).

3.6.2 Extremal dependence and limiting dependence beha-
viour

When performing a multivariate analysis, the variables in the analysis are
regarded either dependent or independent of each other. If they are all
independent, the multivariate distribution is just the product of the marginal
distributions. If they are dependent, the dependence is modelled in the joint
distribution, e.g. in the bivariate normal distribution, correlation (p) is used
as a measure of the linear dependence between the variables. Since p is
constant in the distribution, the dependence is often assumed constant, but
a more thorough investigation of the dependence show that the dependence
varies with the level of data. For most purposes the approximation of
constant dependence is sufficient, but when reaching extreme levels the
variation of dependence needs to be taken into consideration. By continuing
with the bivariate normal distribution, variables in this distribution with
correlation < 1 will have independent independent extremes, given that the
extremes are sufficiently high. This is very important when fitting a model to
data. If this aspect is not considered, there is a possibility that the model will
overestimate the dependence when extrapolating, since the model assumes
that the extremes will happen simultaneously.

The dependence at extreme levels is termed extremal dependence, and is
found in the limiting dependence behaviour of the extremes. In view of the
preceding example there are two situations possible, asymptotic dependent
and asymptotic independent extreme values. If (X,Y) is a random pair with
an unknown joint distribution function F, unit Fréchet margins and unknown
dependence structure, X and Y are asymptotically independent if

Pr(Y >t/ X >t) — 0 as t — oo, (3.8)
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and asymptotically dependent if
Pr(Y >t X >t) -c>0ast— o0 (3.9)
(Heffernan and Tawn).

Several dependence measures are suggested by different authors for inference
and interpreation, and most of them are based on the limiting dependence
behaviour. For this thesis the measures x and X from Coles et al. (1999) and
the coefficient of tail dependence from Ledford and Tawn (1996) have been
chosen. The measures are defined in sections 3.8.1 and 3.9.1.

3.6.3 The bivariate extreme value distributions

The bivariate extreme value theory is an extension of the univariate results
in section A.2.1. The approach for modelling is also here by the use of sample
maxima, but in two dimensions there is one additional problem - there is no
natural maximum in a bivariate distribution. Authors like Gumbel and Tawn
have chosen componentwise maxima as a definition for maxima in bivariate
distributions, and this is also used here. If (X;,Y1), (X2,Y2)...(X,,Y,) is a
sequence of independent realizations of a random vector with distribution
function F(x,y), and M, = mazi=1__o{X;} and M, , = maz;=1__{Yi},
the vector of component maxima can be written

M,, = (Mg, My,). (3.10)

Observe that with this definition IM,, need not to be an observed vector in
the original series.

In analogy with the univariate theory, the distribution of M, can now
be found by investigating the asymptotic behaviour of M, as n — oo.
But instead of evaluating the joint distribution of M,,, the components
are evaluated separately. M, and M, , are univariate random variables,
thus standard univariate extreme value methods can be applied to find
the distributions of the variables (see sections A.2.1 and A.2.2). These
distributions are the marginal distributions in the joint distribution of M,,.

When the marginal distributions are known, the copula function is helpful
for finding the bivariate dependence structure. By transforming the marginal
distributions into standardized marginals using the probability integral
transform defined in equation 3.5, the marginal structure is removed and
the inference for the dependence structure is easier.

The marginal distributions of componentwise maxima are often GEV
distributed, but by using the probability integral transform any of the
extreme value distributions can be transformed into each other without any
loss of information. Thus any of the extreme value distributions can be
used for marginal distribution as long as it is standardized. In fact, any
standardized continuous distribution can be used for marginal distribution.
The choice of marginal distribution is more a question of which distribution
is easier to work with. Tawn (1988) uses standardized exponential
distributions as marginal distributions, Coles (2001) uses standardized
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Fréchet distribution. The reason why distribution different authors are
using is that different marginal distributions lies in the underlying marginal
distributions X; and Y;. In some cases, if the underlying distribution is
known, the extreme value distribution is also known, e.g. if the underlying
distribution is standard Frechet, the extremes are also standard Fréchet
distributed given that the extremes are rescaled. This means that if X;
and Y; are standard Fréchet distributed, then

-1
Pr{M,/n < z} = exp <7> , for all n, (3.11)

where n is the number of observations. By assuming that the underlying
marginal distributions are standard Fréchet, the vector of component
maxima can then be given as

M), = ( max X;/n, max Y;/n). (3.12)

i=1,....,n i=1,....n

It is now possible to define the bivariate analogy to the extremal types
theorem (see equation A.3 for the univariate case). If My, = (M ,, My ) is
defined as above, then

Pri{M;, <z, M;, <y} > G(z,y), (3.13)

where G is a non-degenerate distribution function and is termed the class of
bivariate extreme value distributions.

Different authors give the form of G differently. Pickands (1981) introduces
a dependence function A(.) in the expression for G (not to be confused with
the copula and other dependence functions given in this thesis). Pickands’
class of bivariate extreme value distribution is given as

G(z,y) = exp {—(m + y)A(x—j—y)} , x>0, y>0. (3.14)

Coles and Tawn (1991) uses a function V(x,y) termed the exponential
measure in G, and is on the form

G(z,y) = exp{—V(x,y)}, x>0, y>0. (3.15)

Coles notation is followed in this thesis. The reason for mentioning Pickands
definition is that it is often used in papers concerning bivariate extreme
value analysis, and it can cause great confusion if his dependence function
are mixed with other dependence functions. Fore more information about
Pickands dependence function and definition of the class of bivariate extreme
value distributions, see Pickands (1981).

The function V(x,y) in equation 3.15 is given as

V(z,y) = 2/01 mam(%, 1_Tw)dH(w) (3.16)
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H is a distribution function on [0,1] that satisfies the constraint

/1 wdH (w) = 1/2. (3.17)
0

The equations 3.16 and 3.17 are derived from a point process characterization
of componentwise block maxima. This model is outside the scope of this
thesis, but bellow a brief interpretation of the terms w and H introduced in
these equations is given.

In the point process model the variables are transformed from Cartesian
to pseudo polar coordinates, (x,y)—(r,w), where r = x+y and w = xLer
The transformed variable r is a measure of distance from the origin and
w measures angle on a [0,1] scale. If w = 0, it corresponds to the x axis
and if w = 1, the y axis. The distribution function H determines the
angular spread of points in the limit Poisson process of the point process
characterization. If H is a continuous distribution function with a density h
and w measures the relative size of the (x,y) pair, then h can be iterpretated
as the relative frequency of events of different relative size. If the extremes
are near independent, large values of x/n and small values of y/n or opposite
are expected. In this case h(w) is large close to w = 0 and w = 1, and small
elsewhere. On the other hand, if there is strong dependence, x/n and y/n
are likely to be similar in value and h(w) is large close to 1/2.

The last paragraph is based on Coles (2001).

3.6.4 Parametric families for modelling block maxima

In univariate extreme value theory the GEV family gives rise to the complete
class of extreme value distributions. By letting the marginal distributions in
the bivariate extreme value distribution be GEV distributed, the complete
class of bivariate extreme value distributions can be found. But in the
bivariate setting there is an additional problem. Any distribution H in
equation 3.16 that satisfies equation 3.17 is a valid bivariate extreme value
distribution. This is a problem because the class of distributions has no
finite parametrization, which again leads to estimation difficulties. One way
to overcome this problem is to restrict H by introducing parametric sub
families for the distributions of H. Normally this would only lead to a subset
of the class of bivariate extreme value distributions, since G is defined by H
in equation 3.16. But it is possible to obtain parametric families for H, and
hence G, such that every member of the limit class G can be approximated
by a member of the sub family generated by the family of H.

Gumbel (1960) was the first to introduce parametric families for modelling
bivariate extreme values. In recent years there has been great development
in this field, and now there exist several parametric families, including
the logistic family, the asymmetric logistic family, the Dirichlet model
and the bilogistic model. The logistic family is often used for modelling
componentwise block maxima. It is a very flexible family which covers all
levels of dependence from independence to perfect dependence. The logistic
family is given as

Gla,y) = exp{—(a™"/* +y ")}, xy > 0, (3.18)
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where « is the dependence parameter € (0,1). Independence correspond
to @« — 1 and dependence to @ — 0. A limitation in the model is that
the variables (x,y) in equation 3.18 are bound to be exchangeable due to
symmetry of the density function of H. If the density of H is given as
1

h(w) = 5(071 — Dfw(l —w)} Vw4 (1= w) T (319)
it is possible to show that equation 3.18 is obtained through equation 3.16,
but this is rather complex and is not dealt with here.

In some situations the assumption of exchangeability between the variables
is not appropriate and a model which allows for asymmetry is needed. Both
the asymmetric logistic family and the bilogistic family are models that can
be used. The asymmetric logistic family has three parameters «, t1 and to,
where « is the dependence parameter and ¢1,{s are asymmetric parameters.

G(z,y) =eap{—(1 —t1)y — (1 —ta)y — [(tax) /> + (tay)"V/*)]*} . (3.20)

When t; = t5 the model is equal to the logistic family.

The bilogistic distribution has two dependence parameters « and 3, and is
given as

Gla,y) = exp { —2g' @ = y(1 - g)" 7}, (3:21)

where ¢ = q(z,y; a, 3) is the root of the equation

(1—a)z(1-q)" = (1= p)yg* = 0. (3.22)

When o =  the bilogistic distribution is also equal to the logistic family.

3.7 The bivariate log normal distribution

If the assumptions for the bivariate extreme value models are violated,
another model with a different dependence structure is needed in order
to obtain satisfactory results (see section 3.8). A possible candidate
model is the bivariate log normal distribution. One of the main
difference between bivariate extreme value distributions and the bivariate
log normal distribution is that, while the extremes in bivariate extreme value
distributions are associated, the extremes in bivariate lognormal distribution
become independent for sufficiently high values (see section 3.6.2). If the
random variables X; and X5 are log normal distributed then Y; = log(X7)
and Y2 = log(X2) are normally distributed. The PDF of the bivariate log
normal distribution is given by

flz1,22) = 1 exp(—%)

2TT1T20Y, Oy, \/1—p2

1 log(w1)—py, \ 2 log(x1)—py, \ (log(za)—py; log(w2)—puy, | 2
w_l_P2 |:( vy 1) —2[)( vy 1)( 9Ys 2)+< 9Ys 2):|’

(3.23)
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where py; and oy, (i=1,2) are the parameters of the marginal log normal
distribution (see section A.3), and p is the correlation between the variables
Y1 and YQ.

If the random variables X; and X, are log normal distributed, then the
conditional log normal distribution can also be defined by

1
_ flzima) 1 1 (log(z1)—py; v, \ 2
f(l‘1|l‘2) - fl&‘lz'f; - $10'y1‘y2\/% eXp |:_§ ( UYI‘Y21 2) ) (324)

where
Oy,
Iy v, = Hy; + pU—Yl log(z2) — fiv,] (3.25)
2
and
UY1|Y2 =0y; 1-— p2. (326)

For the bivariate log normal distribution there exist no analytical form of
the CDF, thus a method is needed to estimate the CDF. Two possible
methods that gives satisfactory results are numerical integration of the PDF
and Monte Carlo simulation of the conditional probability density function
(CPDF). In this thesis the Monte Carlo simulation is chosen. This method
is similar to the bootstrap method found in section A.6, but instead of
resampling the observations, the data is drawn from a distribution. The
idea is that for each time a value is drawn from the chosen distribution,
this value is used for estimating/calculating the event of interest. By
drawing many values and performing many calculations, a distribution of
the result of the calculation is obtained. And as the number of calculations
increases the mean of this distribution will converge to the true value of
the estimation/calculation. This is equivalent to the bootstrap parameter
estimate given in equation A.34. When estimating the bivariate log normal
CDF, the different combinations of x; and xo values that are of interest
are selected. For each x7 value, one million values were drawn from the
CDF of X5. Then one million cumulative conditional log normal values were
estimated by using the predestined x; value and the one million drawn values
as conditional values. Each estimated cumulative value is then multiplied
with an indicator function that is 1 if the drawn value is smaller than the
predestined xo value and 0 if larger. The bivariate lognormal CDF value
of the predestined z; and z9 value can now be found by calculating the
mean of the one million cumulative conditional log normal values after the
multiplication of the indicator function. This procedure must be repeated
for each pair of 1 and x5 value. The entire estimation now can be given as

N

1
Fi, 5, (01, 72) = > P2 Xo = a) I(m; < 72) (3.27)
=1

where I(x; < x2) is the indicator function and x; are the values drawn from
FX2 (1‘2)
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3.8 Bivariate preliminary analysis

The preliminary analysis of bivariate models for extreme values is an
extension of the univariate analysis found in section A.4, and is concerned
with the assumptions a bivariate extreme value model needs to fulfil in order
to obtain satisfactory results. In bivariate models the model assumptions
focus on the dependence structure between the variables of the process
modelled. Different models have different dependence structures, thus by
obtaining an informal picture of the dependence structure, an indication
of the appropriateness of the models can be found. Due to the fact that
the model assumptions consist of different aspects regarding the dependence
structure, dependence measures defined from the copula function together
with an EDA are used for an informal assessment of the dependence
structure. The details are given below.

3.8.1 Dependent measures xy and Y

From section 3.6.2, multivariate extremes where divided into two classes, de-
pendent and independent extremes. For inference of multivariate dependence
the copula function can be used, but for easier inference and interpretation
Coles et al. (1999) constructed the two parametric measures x and Y. They
serve as extremal dependence measures for respectively dependent and in-
dependent extremes. The idea is that the two measures are complementary,
so that both measures are required for assessment of extremal dependence
of an arbitrary random vector.

x can be found by starting with equations 3.8 and 3.9. By a transform-
ation of the marginal distributions to uniform margins, the equations can be
expressed as

X = lim1 Pr(V >u|lU > u). (3.28)
u—
Now, by rewriting equation 3.28, one can obtain

Pr(V > ulU > u) = 25w (3.29)

_ 1-2u+C(u,u)
- 1—u

1-C(u,u)
1-u

—9_

~ 32— 710%0(”’“), asu — 1.
ogu
It is now possible to define an extremal dependence function

_logPr(U <u,V <w)
logP(U < u)

x(u) =2 for 0 <u <1, (3.30)

The function x(u) can be interpretated as a quantile dependent measure of
dependence. The sign of x(u) determines whether the variables are posit-
ively or negatively associated at the quantile level u.
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From equation 3.30, the dependence measure x can be defined as
x = lim x(u), (3.31)
u—1

which is an asymptotically equivalent function to equation 3.28. y is defined
beween 0 < x < 1, where x = 0 indicates asymptotic independence and
x > 0 indicates asymptotic dependence. Generally, an increase in the value
of x leads to an increase in the strength of extremal dependence in the class
of asymptotically dependent extremes.

If equation 3.28 indicates asymptotic independence, the example in sec-
tion 3.6.2 shows that there can exist dependence at sub-asymptotic levels.
Obviously x can not be used to assess information about the strength of
the dependence, since x = 0 by definition for asymptotically independ-
ent extremes. Thus an other measure is needed for assessment of ex-
tremal dependence in that class. By introducing the joint survivor function,
F(z,y) =1— Fx(z) — Fy(y) + F(x,y), the copula survivor function can be
defined as

Cu,v) =1—u—v+ C(u,v). (3.32)
Now, in the same way as x(u) is defined, a new function (u) can be defined

as
— _ 2logPr(U>u)
X = logPr(U>u,V>u) 1 (333)

_ 2log(1—u) _
= T0gClu) 1, for0 <u <1,

and a dependence measure Y analogous to equation 3.31, can be defined as
X = lim x(u). (3.34)
u—1

X is defined between —1 <y < 1, where Y = 1 indicates asymptotic depend-
ence, and Y < 1 indicates asymptotic independece.

With a complete pair of the complementary measures (y and X), a sum-
mary of the multivariate extremal dependence can be determined.

e (x =0,Y < 1) indicates asymptotic independence, and the value of ¥
determines the strength of the dependence in the respective class.

e (x > 0,X = 1) indicates asymptotic dependence, and the value of x
determines the strength of the dependence in the respective class.

3.8.2 Preliminary analysis of bivariate extremal dependence

The preliminary analysis of bivariate extremes is concerned with different
aspects regarding the dependence structure between the variables of a
process modelled. By performing an EDA, graphical representations of the
dependence structure give informal results that can be used as an indication
of the appropriateness of different extreme value models. The first plot in
the EDA is a plot of the copula function of the investigated process. In this
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plot the marginal distributions are estimated by the empirical distribution
function and then transformed to uniform distributions by the probability
integral transform (equation 3.5). In this way the marginal distributions
have the same distribution, and data can be regarded as realisations from the
associated copula. By plotting the estimated uniform marginals against each
other, an informal picture of the dependence at all levels is obtained. The
extremal dependence of the process can then be obtained by an examination
of the largest values of the marginal distributions. If there is an increased
density of points near the point (1,1) in the plot, the most extreme events
are likely to be associated. Association of the exteme events are one of the
assumptions of the bivariate extreme value models, thus the plot give an
indication of whether or not bivariate extreme value models are appropriate.
If the association between the extremes are low, it can be difficult to extract
information from the plot, and the next plot in the EDA is more appropriate.

The next step in the EDA 1is to calculate and plot the dependence measures
x(u) and X(u) using the estimated marginal distributions from the previous
plot. By analysing the limiting behaviour of the dependence measures
as the uniform marginal reach supremium (u—1), indications of whether
data are asymptotic dependent or independent can be found. The plots of
the dependent measures can also give informal results of model validation.
Extreme value models are asymptotically dependent models, and ¥ = 1
for these models. Also, x(u) is constant for the extreme value models. A
violation of these assumptions indicates that extreme value models are not
appropriate for modelling the process investigated.

3.9 Parametric inference for asymptotic depend-
ence

The parametric inference for the dependence measures x(u) and X(u) is
based on a model defined by Ledford and Tawn (1996) called the coefficient
of tail dependence. In this model there are two dependece measures that
resembles x(u) and X(u), in fact the next section will show that there is
a connection between y(u), X(u) and the dependence measures given by
Ledford and Tawn. Since the inference is easier for this model due to an
introduction of a structure variable (see section 3.9.2), x(u) and X (u) can be
found by first estimate the parameters in the coefficient of tail dependence
model, and then calculate x(u) and X (u) from the dependence measures in
this model.

3.9.1 Coefficient of tail dependence model

Ledford and Tawn‘s model is based on a joint survivor function of an
arbitrary random pair (X,Y) with unit Fréchet marginals that satisfies the
asymptotic condition

PriX > 2,Y > z} ~ L(2){Pr(X > 2)}/7, for large z. (3.35)

This notation is found in Coles (2001). Here the ¢(z) is a slowly varying
function as z— oo and 7 is the coefficient of tail dependence. A deduction
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of the model is outside the scope of this thesis, but an interpretation of
the model is given. In the model 7 is a coefficient defined on (0,1| that
characterizes the type of limiting dependence, and the function ¢(z) is a
measure of the strength of the dependence when a value of ) given. If n < 1
the variables are asymptotically independent, if n = 1 and ¢(z) — ¢ > 0, the
variables are asymptotically dependent with a degree c.

The resemblance between 7 and X and the resemblance between #(z) and x
is now clear, but it remains to show the connection between them. Also here
only the results will be given. If 7 is estimated, x is then given as Y = 2n—1.
If n =1, ¢(z) and x are equal for large z.

3.9.2 Inference

For the inference of the coefficient of tail dependence model the joint
survivor function is reduced to a univariate survivor function T defined by
T = min(X,Y). The function T is termed the structure variable, and by
inserting this into equation 3.35, it is possible to obtain

Pr(T>2)=Pr{X >2zY >z} ~ ()27 as 2 — cc. (3.36)

Ledford and Tawn then show that since T is a univariate variable, extreme
value threshold methods (PDS) can be used on T. These results can then be
used for inference for the tail of coefficient model. If T satisfy equation 3.36,
a threshold model of T using the GP distribution can be given as

Pr(T >u+t|T>u)~ (14¢&t)o) Ve, (3.37)

In this equation the shape parameter in the GPA distribution is equal to
7 in the coefficient of tail dependence model and #(z) is equal to the scale
parameter. The dependence parameters x(u) and X(u) can then be found
by the conversion equations given in the previous section.

3.10 Selection of a theoretical distribution and
model validation in bivariate EV-distributions

The selection of a distribution for modelling an extreme bivariate event
involve the same considerations as for the univariate case (see section 3.4). In
addition bivariate distributions must satisfy an important criterion, namely
that the selected distribution needs to reflect the extremal dependence of
the observations. This means that if the observations are asymptotically
dependent, an asymptotically dependent distribution must be applied for
modelling, or vice versa. When extrapolating in the bivariate setting there
will be large discrepancies between the predications from the model and the
“true” values if a distribution with incorrect exstremal dependence is applied.

There exist many different methods for selecting an appropriate distribution,
including the graphical method , gof tests and the AIC (section A.5.2). In
this thesis the AIC is used for the selection of bivarate distributions and the
graphical method is used for model validation.
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3.10.1 The graphical method for bivariate models

The graphical method for bivariate models is a generalization of the
univariate graphical method, where an appropriate plotting position is used
for estimation of non-exceedance joint probabilities. These estimates are
then plotted together with a theoretical distribution, and a visual picture of
the fit is obtained. The bivariate plotting positions are more complex than
the univariate, and it is time-consuming to estimate the non-exceedance
joint probabilities. For asymptotically dependent observations, the bivariate
Gringorten potting position is applied for the estimation of non-exceedance
joint probabilities. It is given by

an:l Z{:l Nl — 0.44
N +0.12 ’

where N is the number of observations (pairs) and n,, is the rank of the
combinations of p; and v;. The last term can be found in the following
way. A two dimensional table is constructed where the observation of the
first variable are arranged in ascending order, and the values of the second
variable correspond to the values of the first variable (see figure 4.13). The
observations can now be plotted in the order given in the table (order
number). When each pair is plotted, the order number of the plotted pair is
determined among the already plotted values. In this way two consecutive
pairs can have the same order.

F(p,v) = Pr(P <p;,V <wvj=

(3.38)

For asymptotically independent observations the bivariate Weibull plotting
position is applied for the estimation of non-exceedance joint probabilities,
and is given by

P Zg:1 Tl
N+1 ’

where N is the number of observations (pairs), and n,,; is the rank of the
combinations of p; and v;.

F(p,v) = Pr(P <p;,V <wj) = (3.39)

3.11 Bivariate frequency analysis

The bivariate frequency analysis is an extension of the univariate frequency
analysis, and is concerned with return levels and return period for bivariate
events. An increase in the dimension of an analysis generally raises new issues
that need to be considered. In the bivariate frequency analysis one of these
issues is that return periods in two dimensions are ambiguous. Another issue
is that bivariate analysis‘ are considerably more complex than univariate, and
more sophisticated mathematics are needed for calculation of the bivariate
return periods. This lead to difficulties in interpreting the bivariate return
periods. In the next section the bivariate return periods are defined and
some of the issues that arise due to dimensionality are discussed.

3.11.1 Bivariate return periods

In one dimension the return period of an event is defined as the average
time interval before a certain quantile level (return level) is exceeded
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(section A.2.3). This is a familiar concept in hydrology which is often used
in connection with hydrological design and frequency analysis. The concept
of return period can be generalised into two dimensions, but then it is no
longer unambiguous and several classes and subclasses of bivariate return
periods exist. This arise because there are no natural maxima in a bivariate
distribution. In section 3.6.3 this was solved by introducing componentwise
maxima, and since bivariate distributions are included in the definition of
bivariate return periods, the variables in bivariate return periods are also
defined componentwise. In view of this issue three classes of return periods
exist, these classes are

e Independent return periods
e Joint return periods
e Conditional exceedance probabilities

Independent return periods are used when the variables are independent or
the design criterion is only dependent of one variable. The return period is
then equal to the univariate return period of the variable of interest.

Joint return periods are used when the bivariate distribution is a joint
distribution. Within this class subclasses that depends of the design criterion
exist. The first sub-class is defined by a generalisation of the univariate
return period, and is given by

1

T Floa o)’ (3.40)

T(x’y) =

where T(x,y) is the joint return period. This return period is valid for events
where X >z orY > y.
The second sub-class of joint return periods is given by

1
1—F(x) = F(y) + F(x,y)’

T (x,y) = (3.41)
which is valid for events where X > x and Y > y. Be aware that with the
definitions of joint return periods that are used here, different combinations
of values of the variables can give the same return period. A comparison
of the joint return periods with the univariate return periods based on the
same variables show that the following inequalities apply

T(z,y) <min(Tx,Ty) < max(Tx,Ty) < T'(z,y) (3.42)

where T'x and Ty are the marginal return periods for the variables x and
y (Yue and Rasmussen, 2002). This means that by using univariate return
periods instead of joint return periods for the first subclass (equation 3.40),
the return period for the event of interest will be overestimated. On the other
hand by using univariate return periods instead of joint return periods for the
second subclass (equation 3.41), the return period for the event of interest
will be underestimated. If these result are used for hydrological design, the
planned construction is build weaker than intended by the constructional



38 CHAPTER 3. METHODS AND THEORY

requirement. As a consequence the construction might not withstand the
events it was designed for.

If the distributions of the different pairs of flood characteristics are given
conditionally, the conditional exceedance probabilities can be calculated.
The reason for using exceedance probabilities and not return periods is that
with the use of conditional distributions the concept of return period is no
longer meaningful. In joint distributions with componentwise block maxima
there is one observation of each variable in each block, whereas in conditional
distributions only the observations that satisfy the conditional condition
are used. Thus in conditional distributions the time interval between the
observations are not fixed. Since the time resolution of the return period
is defined from the time resolution of the block, the observations used for
determining the return period must satisfy the block condition, which is one
observation in each block. Clearly, conditional distributions will not satisfy
this condition. Also within this class there exist sub-classes depending on
the design criterion of the analysis. The first sub-class is defined for the
design criterion X > x given Y = y, and is given by
1

T (xly) = m7 (3.43)

where Fxy(zly) = Pr[X < z|[Y = y] is the conditional cumulative
distribution function, and is defined as

z ’ u,y)du
Fyy(zly) = / Ixy (uly)du = % : (3.44)

For the event Y > y given X = xz, the conditional return period is given
by an equation equivalent to equation 3.43, but with an exchange of the
variables x and y.

The second sub-class of conditional return periods are useful in hydrological
applications and is valid for the design criterion X > z given Y > y. The
exceedance probability for this event can be written as

1— Fx(z) — Fy(y) + F(z,y)
1 - Fy(y) ’

Sxjy(zly) = S(X > 2|y > y) = (3.45)

where S is the survival function. The return period for this event is then
given as

1 _ 1—Fy(y)
Sxiy(zly) 11— Fx(z)— Fy(y) + F(z,y)

T'(xly) = (3.46)

By defining the conditional return period in this way, the value of
the conditional variable can be given as an exceedance probability or
an n-year univariate return period. This is an advantage because
constructional requirements in hydrological design often are given as
exceedance probabilities or return periods of the variable or variables
of interest. For the event ¥ > y given X > =z, the conditional
return period is given by an equation equivalent to equation 3.46, but
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with an exchange of the wvariables x and y. A comparison of the
conditional exceedance probabilities in the second subclass (equation 3.46)
with univariate exceedance probabilities based on the same variables show
that by using univariate exceedance probabilities the event of interest is
overestimated.

For the classes joint return periods and conditional exceedance probabilities
there exist more than the two sub-classes in each class given in this theses.
Other sub-classes can be defined by changing the design criterion for the
analysis. For more information of bivariate return periods, see Yue and
Rasmussen (2002).
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Chapter 4

Results and discussion

4.1 Flood characteristics

4.1.1 Assessment of flood characteristics

Elverum

In sections 3.1.1 and 3.1.2 the objective methods for the assessment of the
flood characteristics duration and volume are given. At Elverum it was most
years possible to apply objective methods for the assessment of the duration.
Those years when objective methods failed, approximative methods were
used. These methods are adjustments on the objective methods made
individually for each station, and subjective considerations can sometimes
be necessary. The first approximate method was applied when the objective
methods failed due to difficulties in determining whether precipitation events
belonged to the summer rain or should be included in the spring-flood.
This led to difficulties in determining the initialisations point for the master
recession curve. The approximate method consist of initialising the master
recession curve just before the first undefined precipitation event, instead of
initialising the master recession curve just before the first precipitation event
that belongs to the summer rain. Since these precipitation events are often
small, the difference between the objective and the approximate method will
also be small. The second approximative method was applied if the objective
methods showed that the master recession curve should be initialised beyond
the end of July. In these cases the master recession curve was initialised on
the 31 of July.

Generally, it is difficult to evaluate the results of the assessment of the
duration and volume since the “true” values can not be obtained. Instead the
preliminary analysis (section A.4) can reveal if there are irregularities like
trends in the assessed values, and the graphical method (section 3.4.1) can be
used to investigate the distribution of the assessed values. If no irregularities
are found in the preliminary analysis and the distribution seems appropriate,
the probability that the results are reasonable increases. The results of
duration and volume for Elverum satisfied both of the conditions given
above, thus the results seems reasonable. Another issue is the objectivity of
the results. For the assessment of the duration approximate methods were
only applied a few times, and since the difference between the objective and

41
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approximative method are small, the duration values are considered obtained
objectively. The assessment of volume does not involve any approximate
methods. But since it is dependent of the duration, and the duration is
considered obtained objective, so is the volume.

Losna

For the assessment of the duration at Losna the objective methods failed.
The hydrograph is so complex that it is impossible to determine the
initialisations point for the master recession curve, and approximate methods
were needed. But it was also difficult to find an approximative method.
The chosen method consist of identifying the event that contains the peak
discharge, and to initialise the master recession curve just before the first
large event after the peak discharge event that leads to a rise in discharge.
With this method the flood duration of a sub basin upstream Losna is
found, and not the volume of the entire basin. Thus, the results of the
assessment cannot be used for hydrological design, since the assessment will
underestimate the duration. The bivariate frequency analysis is still carried
out for the sub basin.

For assessing the duration of the entire basin of Losna a totally different
approach is needed. In the future satellite pictures for determining the snow
coverage can be used. The duration of the spring flood can then be ended
when it is observed that all the snow has melted or the snow coverage is
below a certain predefined value. The results of the assessment of duration
will affect the assessment of volume at Losna in the same way as the duration
affected the volume at Elverum. Thus, only the volume of a sub basin
upstream Losna is found.

For the assessed duration and volume no irregularities were found in the
preliminary analysis, but the graphical method revealed that the duration
and volume was bimodal distributed (see figure 4.2.3 for the duration). Thus,
the chosen approximative method does not manage to separate the duration
of the chosen sub basin with other sub basins, and some of the flood durations
and volumes of the sub basin will be overestimated.

4.1.2 Association of flood characteristics

In order to regard a flood as a multivariate event, the flood characteristics
must be associated. For evaluation of the association between the flood
characteristics the correlation coefficient is used. In table 4.1 the results
of the estimated correlations is given. The results show that there exist a
positive correlation between the peak discharge and volume, and duration
and volume as expected. But a correlation of 0.23 between the peak discharge
and volume at Losna is a rather weak correlation. One possible reason for
obtaining the weak correlation can be the assessment methods applied for the
assessment of the duration at Losna (section 4.1.1). Since the assessment of
the volume is dependent of the duration, poor results from the assessment of
the duration will lead to poor results of the volume. It is also seen that there
is a negative correlation between peak discharge and duration. This opens for
the possibility to model a flood as a trivariate event, but a trivariate model is
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Correlation of flood characteristics

Elverum Losna

Peak vs. volume 0.48 0.23
Duration vs. volume 0.35 0.57
Peak vs. duration - 041 -0.25

Table 4.1: Correlation between the flood characteristics for stations Elverum
and Losna

considerably more complex than a bivariate, and both model validation and
computation will be more difficult. Another possibility is to model the peak-
discharge and duration as a bivariate event, but the bivariate families applied
in this thesis are not capable of modelling negatively associated variables.
Bivariate families that are appropriate for modelling these events are outside
the scope of this thesis. Thus it is chosen to model the spring flood as
univariate and bivariate events. In the latter case the flood characteristics
peak discharge and volume, and duration and volume are modelled.

4.2 Univariate preliminary analysis

In the preliminary analysis the test for revealing short term trends are
performed on data from the period 1872-2000. For the other tests data
from the period 1961-2000 are used. In the period 1921-1960 there were
many regulations in both Glomma and Losna, and the data from this period
are inhomogeneous (see section 2.2). After 1961 there have only been minor
regulations in the basin, and the influence of these regulations on the flood
characteristics are neglectable. Hence, the appropriateness of the period
1961-2000 is investigated. The results of the preliminary analysis are mainly
presented for the flood characteristics peak discharge and volume at Elverum.
For the other flood characteristics, the results are presented if important
aspects are revealed.

4.2.1 Trend

In a time series both short term and long term trends can exist, depending
on the mechanism that causes the trend. When using linear regression the
objective is to reveal a long term trend, thus the entire series should be
included in the analysis. The trend is modelled as the linear variation of
the mean value of a time series. A constant mean value implies that the
regression gradient is zero, and there is no trend. If a long term trend is
found, other time series in the same region should be analysed to confirm
the trend.

For finding short term trends, a moving average model (gauss filters) can be
used. A plot of peak discharge at Elverum in the period 1872-2003 with a 9
and a 27 year gauss filter is found in Figure 4.1. Short term trends are not
usually interesting when a series is investigated for stationary, but due to the
relatively short time period chosen in this thesis, the 27 year gauss filter is
of interest. An evaluation of the plot shows that for the 27 year gauss filter
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Figure 4.1: Peak discharge at Elverum with a 9 year (pink) and a 27 year
(yellow) gauss filter.

trend line, there is an apparent negative trend in the years between 1920
and 1950. This trend is caused by the regulations discussed above. After
1960 a small change is seen, but this must be further investigated before any
conclusions can be drawn.

The results from the trend tests with linear regression show that there is
no significant trend in any of the time series of the flood characteristics that
were investigated, when a 5 percent significance level was used. A plot of the
regression line fitted to peak discharge at Elverum is found in Figure 4.2.
Even though the regression gradient is negative in the plot, it is far from
significant with a t-value of -0.388.

Trend tests using linear regression in combination with bootstrapping is
also performed. The original series was resampled 10000 times and the
regression gradient was calculated for each sample. If there is a trend in
data the distribution of the calculated test statistics will be unsymmetrical,
and the mean of the calculated test statistics (the bootstrap result) will
differ from the test statistics of the original series. Non of the distributions
from the calculated test statistics where unsymmetrical, and there were good
accordance between the bootstrap results and the statistics of the original
series.

A conclusion of the trend tests is that non of the trend tests revealed any
inhomogenities in the time series of the flood characteristics at Elverum and
Losna in the period 1961-2000.
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Peak discharge versus order of data at Elverum

o o]
o _|
o
i3l
o
] )
g -
N
? 8
S -
L ]
[}
% e}
o
(%)
s 8 | o o o
3 o o © o
] o o
o o o
¢}
e} 5 OO
o
o o
2 I o] o o
o]
o o
o]
o ° [e]
S
o T T T T
0 10 20 30 40
order of data

Figure 4.2: Trendplot using linear regression. The black line is the regression
line. The red lines indicates the 95 percent confidence interval for the
regression line.

4.2.2 Independency

In a stationary time series block maxima are approximately independent
if they have a large lag in time and have sufficiently high values. To
see if this condition is fulfilled the auotcorrelation function can be used.
The autocorrelation function has been calculated for all series of flood
characteristics, and non of them showed any sign of autocorrelation. All
the values where inside the 95 percent confidence limits. A plot of the
autocorrelation function of flood volume at Losna is found in Figure 4.3.

The second test for independence applied in this thesis is the runtest. In
addition to independency of the fluctuation of data around a given threshold,
the test can also to some extent reveal trends. The result of the test indicated
that all series of flood characteristics where independent. With a 5 percent
significance level, the number of runs from each series where all inside the
confidence limits.

4.2.3 Selection of a theoretical distribution

In section 3.4 it was argued that both the results from the univaritate
and the bivariate preliminary analysis is needed for the selection of a
theoretical distribution. The result of the bivariate preliminary analysis
(section 4.4.1) show that the peak-discharge and volume at Elverum is
asymptotically dependent, and the rest of the pairs of flood characteristics
are asymptotically independent. For the peak discharge and volume at
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Figure 4.3: Plot of autocorrelation function of flood peak discharge at
Elverum with a simple 95 percent confidence interval.

Elverum, the GEV distribution satisfy the bivariate model requirements
and graphical methods are used to assess the fit of this distribution.
For the asymptotically independent pairs, both normal and lognormal
marginal distributions satisfy the bivariate model requirements. The normal
distribution is a symmetric distribution and is rarely used in extreme value
models due to the fact that the events that are modelled usually are skew
(see section 3.3). Thus, the log normal distribution is selected as a potential
distribution and the fit is investigated by using graphical methods.

In figure 4.4 a quantile plot, a probability plot and a density plot of the
peak discharge at Elverum is given, and in figure 4.6 the reduced Gumbel
plot of the same event is found. An evaluation of the plots show that
there is generally good agreement between the GEV distribution and the
observations. The model underestimates the three largest observations,
but these observations lies on the upper 95 percent confidence band in the
reduced Gumbel plot, and the discrepancy of the model is acceptable (see
section 4.3.1 for a more thorough investigation of the possible outliers). For
the volume at Elverum, the reduced Gumbel plot is given in figure 4.4. Also
here there is a good fit between the model and the observations. Hence,
the GEV distribution is selected as a theoretical distribution for the flood
characteristics peak discharge and volume at Elverum.

In figure 4.5 a quantile plot, a probability plot and a density plot of the
duration at Losna is given, and in figures 4.7 and 4.8 reduced plots of the
duration and volume at Elverum, and the peak discharge, duration and
volume at Losna are given. For the duration at Losna, the histogram in the
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Figure 4.4: Probability plot, quantile-plot and density plot of peak discharge
at Losna using the GEV distribution

density plot is bimodal and the log normal distribution will not manage to
model this situation in a good way. The bimodal distribution arise due to
poor assessment of the duration (see section 4.1.1), and since the duration
and volume are dependent, the bimodality will also apply for the volume at
Losna. Still, the model manage to some extent to model the largest values,
and since this is the best obtainable model, the log normal distribution is
selected as a theoretical distribution for the duration and volume at Losna.
The problems that arise due to the bimodality of the data are discussed
in section 4.3.2. For the duration and volume at Elverum and the peak
discharge at Losna, the log normal distribution is found to be appropriate
and is selected as a theoretical distribution.

4.3 Univariate frequency analysis

The frequency analysis is performed on spring block maxima from the
stations Elverum and Losna for peak discharge, duration and volume in
the period 1961-2000. But due to a comparison between different bivariate
extreme value models in section 4.5, the univariate frequency analysis is
performed by using both the GEV and the log normal distribution for all
the flood characteristics. Still, the analysis is evaluated in view of the
theoretical distributions selected in section 4.2.3. Upstream both stations
there are several hydro power plant regulations, but the regulations only
constitute of 10 and 13 percent of the mean runoff respectively. Thus, the
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Figure 4.5: Probability plot, quantile-plot and density plot of flood duration
at Losna using the log normal distribution.

regulations will to only a small extent influence the extremes (see section 2.2
for more information). The theoretical distributions applied for modelling
the flood characteristics are selected due to both univariate and bivariate
considerations. If the objective of this thesis was to perform an univariate
frequency analysis, the GEV distribution would have been selected for all the
flood characteristics instead of using the log normal distribution on some of
the flood characteristics. This would have given better results in the analysis.

4.3.1 Frequency analysis of flood characteristics at Elverum

For the peak discharge at Elverum the GEV distribution was selected as
a theoretical distribution, and in figure 4.6a) the reduced Gumbel plot is
given. The estimated theoretical distribution is Frechet distributed with a
&-value of -0.10. Generally, there is a good agreement between the model
and the observations, but there are three outliers that to some extent
influence the estimation. Block maxima from peak discharge is expected
to be Gumbel distributed, and by removing the largest outlier (the 1966
observation) the £-value become 0.058 and the Gumbel distribution would
also be an appropriate distribution. The tree outliers arise from the floods in
1966, 1967 and 1995, and an investigation of the meteorological conditions
during the 1995 flood show that a stationary front situated in the north-
south direction over the drainage basin lead to continuously large quantities
of precipitation in addition to rapid snow melt. In 1967 there was also large
quantities of precipitation during the flood, but the meteorological conditions
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are not known in detail. The meteorological conditions for the 1966 flood
has unfortunately not been established due to difficulties in getting hold
of data. In this thesis the outliers are included in the analysis despite the
possibility that they belong to a different population. There is not sufficient
data to model the outliers separately, and it is of interest to model all the
extreme observations. Since the outliers lies inside the limits of the 95 percent
confidence bands, the discrepancy from the model is acceptable. But one
must be aware that there is a possibility that the model will underestimate
floods that belong to the same population as the outliers, and to some extent
overestimate the population not consisting of outliers.

The log normal distribution was selected as a theoretical distribution for
the flood duration at Elverum, and the reduced plot is given in figure 4.7 b).
There is a generally good agreement between the model and the observations,
especially for the largest values. A factor that can influence the reduced
Gumbel plot is the assessment of the duration. In some situations when
objective methods failed, approximative methods have been applied (see
section 3.1.1 for more information). If the duration values determined by
these methods deviate from the “true” value, there is a possibility that the
model will overestimate the duration. Unfortunately, it is difficult to examine
whether or not deviations are present among the determined values, since
the “true” value is not known. If there are only few values that deviates,
and the deviations are rather large, there might be some indications of
strange observations that need to be investigated in the preliminary analysis
(section A.4), but generally, this is difficult to identify. In section 4.1.1 it
was shown that approximate methods where used only a few times, and that
the difference between approximate and objective methods was small. Thus,
the approximate duration values will to only a small extent influence the
reduced plot.

The flood volume at Elverum is used in both asymptotically dependent and
asymptotically independent bivariate models, and the volume is therefore
modelled with both the GEV and the log normal distribution. In the
figures 4.6 ¢) and 4.7 ¢), the reduced Gumbel plot and the reduced plot for
flood volume are given. For both plots all of the observations are inside the 95
percent confidence bands, and there is a good agreement between the models
and the observations. The volume can also be influenced by approximative
methods for the assessment of the duration due to the dependence between
the duration and volume, and the same considerations as discussed for the
duration applies for the volume.

The return periods that are given in the reduced plots and the reduced
Gumbel plots are estimated using an appropriate plotting position. When
the return period is estimated in this way, it is the number of observations
that determines the largest value of the return period, e.g. in this analysis
there are 39 observations of each flood characteristic. The largest observed
return period for each flood characteristic is thus 71.4 (years). A more
common way of estimating return periods is to use quantile values from
a theoretical distribution fitted to observations (see section 4.2.3) and
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Figure 4.6: a) Reduced Gumbel plot of peak discharge at Elverum, b)
Reduced Gumbel plot of flood duration at Elverum, and c¢) Reduced Gumbel
plot of flood volume at Elverum. Red lines are 95 percent confidence
intervals, the black line is theoretical distribution (GEV) and the points
are observed data.
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Return period (years) Peak-discharge(cms) Duration (days) Volume (m?)

2 1227 97 2.576€9
5 1652 114 3.296e9
10 1962 124 3.757€9
20 2283 133 4.187€9
50 2735 143 4.727e9
100 3104 151 5.120e9

Table 4.2: Univariate return periods for peak-discharge and volume at
station Elverum. The return periods for the peak discharge and volume
are estimated by using the GEV distribution, and the return periods for the
duration is estimated by using the log normal distribution.

figure 4.4. The largest observed return period for the peak-discharge at
station Elverum with this method is ~ 96 (years). When estimating return
periods in this thesis, it is the latter method that has been used. In table 4.2
estimated return periods for the peak-discharge, duration and volume at
Elverum are given. The return periods for the peak discharge and volume
are estimated by using the GEV distribution, and the return period for the
duration is estimated by using the log normal distribution.

4.3.2 Frequency analysis of flood characteristics at Losna

In section 4.2.3, the log normal distribution was selected as the theoretical
distribution for the flood characteristics at Losna, and in figure 4.8 the
reduced plot of the different flood characteristics is found. For the peak
discharge in figure a) there is good agreement between the model and the
observations, with the exception of one outlier. This outlier is due to
the same meteorological conditions that caused the 1995 outlier at station
Elverum. It is also interesting to notice that the 1966 and 1967 floods, that
are possible outliers at station Glomma, are not outliers at this station.
Hence, the 1966 and 1967 floods were more local than the 1995 flood.

Figure b) and c) show the reduced plots for the duration and volume. A
problem with these plots is that the duration values originate from two
different populations. This is the same problem as was seen in sections 4.2.3
and 4.1.1, and occur due to poor assessment of the duration. The hydrograph
of the discharge at Losna is so complex that it is hard to find a method that
can assess the duration without ending the flood duration far out in the
autumn. Other possibilities are to remove the largest population and model
with the remaining data, or to identify the values in the largest population
and try to find conditions for ending the duration events earlier. Corrections
on the data like this must be done with extreme care, so that the data is not
altered in view of increasing the fit of the model. Thus, it is chosen to use
all the duration values in the estimation of the return periods, and instead
take into consideration the increased uncertainty by using these values. The
increased uncertainty will also apply for the volume, due to the dependence
between the duration and volume. In table 4.3 estimated return periods
by using the log normal distribution for the peak-discharge, duration and
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Return period (years) Peak-discharge(cms) Duration (days) Volume (m?)

2 1159 93 1.987e9
5 1491 110 2.517e9
10 1702 120 2.849¢9
20 1898 130 3.155e9
50 2145 141 3.539¢9
100 2328 149 3.821e9

Table 4.3: Univariate return periods by using the log normal distribution for
the peak discharge, duration and volume at Losna.

Elverum Losna
S o p S o 1

Upper CI 0.092 409.9 1165.5 | 0.455 437.5 1133.7
Peak- Lower CI -0.293  241.9 955.4 | -0.135 2284 935.7
discharge| Boostrap-| -0.104  339.6 1100.7 | 0.135 338.7 1070.4

estimated

Upper CI 0.300 21.27 94.44 0.383 22.82 92.55
Flood- Lower CI -0.04 13.45 83.44 0.024 14.04 79.25
duration Boostrap- 0.098 18.09 90.16 0.200 19.76 86.95

estimated

Upper CI 0.234 8.155e8 2.460e9 | 0.265 6.427e8 1.945e9
Flood- Lower CI -0.137  4.646e8 2.071e9 | -0.058 4.223e8 1.597e9
volume Boostrap- 0.037 6.582e8 2.336e9 | 0.101 5.582e8 1.817€9

estimated

Table 4.4: Estimated parameters of the GEV distribution for all the flood
characteristic using the bootstrap, and estimated 90 percent confidence
intervals for these parameters using the BCa method.

volume at Losna are given.

4.3.3 Uncertainty

No analysis should be considered complete unless the uncertainty is
estimated. In this thesis non-parametric bootstrapping is used for estimation
of uncertainty. The advantage of using bootstrapping is that it is not
necessary to deduce a theoretical expression for the uncertainty, it is simply
estimated by resampling the estimator. In this way it is possible to estimate
the uncertainty no matter how complicated the estimator is. The theory of
bootstrapping is found is section A.6.

The uncertainty of the parameters in the GEV distribution are estimated by
using the bootstrap in combination with I-moment, and the parameters of the
log normal distribution are estimated by using the bootstrap in combination
with ordinary moments. In table 4.4 the the estimated parameters of
the GEV distribution, and in table 4.5 the estimated parameters of the
log normal distribution are given. For both figures 90 percent confidence
intervals by using the BCa method are made. In the reduced plots and the
reduced Gumbel plots in figures 4.6, 4.7 and 4.8, 95 percent local confidence
bands are made by using the percentile method.
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Figure 4.7: a) Reduced plot of peak discharge, b) Reduced Gumbel plot of
flood duration, and ¢) Reduced Gumbel plot of flood volume. Red lines are
95 percent confidence intervals, the black line is theoretical distribution (log
normal) and the points are observed data. The plots are valid for station
Elverum.
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Figure 4.8: a) Reduced plot of peak discharge, b) Reduced Gumbel plot of
flood duration, and ¢) Reduced Gumbel plot of flood volume. Red lines are
95 percent confidence intervals, the black line is theoretical distribution (log
normal) and the points are observed data. The plots are valid for station
Losna.
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Elverum Losna
Hy oy Ky oy

Upper CI 7.214 0461 | 7.129 0.401
Peak- Lower CI 7.034 0.293 | 6.948 0.228
discharge | Boostrap-| 7.123 0.357 | 7.055 0.300

estimated

Upper CI 4.627 0.223 | 4.582 0.232
Flood- Lower CI 4.526 0.170 | 4.473 0.179
duration Boostrap-| 4.577 0.190 | 4.529 0.204

estimated

Upper CI 21.75 0.346 | 21.49 0.319
Flood- Lower CI 21.60 0.242 | 21.33 0.242
volume Boostrap-| 21.67 0.276 | 21.41 0.281

estimated

Table 4.5: Estimated parameters of the log normal distribution for all the
flood characteristic using the bootstrap, and estimated 90 percent confidence
intervals for these parameters using the BCa method.

4.4 Bivariate extreme value analysis

4.4.1 Preliminary analysis of bivariate extremal dependence

The assumptions of the bivariate extreme value models are given in
section 3.8.2, and are concerned with different aspects regarding the
dependence structure between the variables of the process modelled. An
EDA is performed to give informal results and plots of the bivariate
dependence structure.

Figure 4.9 shows plots of the copula functions for the different flood
characteristics at the stations Elverum and Losna. An increased density
of points near the point (1,1) in the plots indicates that the most extreme
events are likely to be associated, and thus bivariate extreme value models
for modelling the process would be appropriate. For all the plots in figure 4.9,
the association between the flood characteristics appears to correspond to
the correlations in table 4.1. Peak discharge and volume, and duration
and volume are positively associated, and peak discharge and duration are
negatively associated. In the plots the association appears generally low,
also for the most extreme events. In two of the plots, plots (b) and (e),
there is a tendency of increased density near the point(1,1), but the results
are not conclusive. To substantiate the results from the plot of the copula
function and to gain more information about the dependence structure, the
dependence measures y and ¥ were calculated and plotted. In figure 4.10 the
dependence measures for peak discharge and volume at Elverum are given.
It can be seen on the plot that X (u) = 1 is a plausible value as u — 1, and
is consistent with asymptotic dependence. On the other hand the plot of
X(u) shows that the dependence structure to some extent varies with the
level of u, which is not consistent with extreme value models. But this
inconsistency is rather small, and the extreme value model is not rejected
due to this deviation. Hence, the bivariate extreme value model is found
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to be appropriate for modeling the peak discharge and volume at Elverum.
The sudden drop of X(u) at u ~ 0.9 is due to an error in the routine for the
estimation of X(u). Unfortunately this error cannot be corrected.

Figure 4.11 shows the plots of the dependence measures peak discharge and
volume at station Losna. Here Y ~ 0.2, which is consistent with asymptotic
independence. Hence, bivariate extreme value models are not appropriate for
modelling this event due to the fact that all bivariate extreme value models
are asymptotically dependent. For modelling asymptotically independent
events, a bivariate normal or bivariate lognormal distribution could be
appropriate. The results of the pairs of flood characteristics that have not
yet been investigated, the duration and volume at Elverum and the duration
and volume at Losna, show that both pairs have dependence structures that
resembles the dependence structure found in figure 4.11. Hence, all pairs of
flood characteristics that have been analysed are asymptotically independent
except for peak discharge and volume at station Elverum.

The exploratory analysis of extremal dependence has not been previously
used in hydrological applications. It could therefore be interesting to model
some the pairs of flood characteristics with both bivariate lognormal and
bivariate extreme value models. In this way the results from the two different
models can be compared to see if they model the extremes differently. Thus,
both bivariate models are used to model all the pairs of flood characteristics,
but the results will of course focus on the models that were found appropriate
by the preliminary analysis.

4.4.2 Assessment of asymptotic dependence using paramet-
ric inference

In section 3.9 it was shown that the inference of the dependence measures
x and Y goes through another dependence model called the coefficient of
tail dependence. By estimating the coefficients in the coefficient of tail
dependence model, the dependence measures y and Y can also be found. The
inference in the coefficient of tail dependence model consist of performing an
extreme value threshold analysis (PDS) on the structure variable defined
in the model. This can be done because the shape parameter in the GP
distribution is equal to the coefficient 7 in the model. A limiting factor of this
model is that estimates of 1 will be biased toward asymptotic independence
if the threshold is to low. This problem arise when there is little data
available, which is often the case when modelling with AMS. If the threshold
is chosen sufficiently high in a model with few data , the standard error of the
parameters in the model increases, and the parameters become uncertain.

The results of the estimation of ) for the different flood characteristics are
given in table 4.6. By setting the threshold probability to 0.05, none of
the pairs of flood characteristics are asymptotically dependent. But due
to the low threshold, bias in the results is expected. If the threshold
probability is set to 0.5, the estimated value of n for the peak discharge and
volume at Elverum is 0.814 with a standard error of 0.344, and asymptotic
dependence cannot be rejected. The other pairs of flood characteristics
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Figure 4.9: Plots of (a) and (d) Peak discharge and flood volume, (b) and
(e) flood duration and flood volume, (c) and (f) peak discharge and flood
duration. Figures (a)-(c) are from Elverum, figures (d)-(f) are from Losna.
The marginal distributions of the flood characteristics have been transformed
to uniform distributions before plotted.
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Chi Chi bar

Figure 4.10: The dependent measures y and X for the peak discharge and
flood volume at Elverum with 95 percent confidence intervals.
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Figure 4.11: The dependent measures xy and ¥ for the peak discharge and
flood volume at Losna with 95 percent confidence intervals.
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Thresholdprobability = 0.6

M Se
Elverum | Peak-discharge vs. volume | 1.145 0.563
Duration vs. volume 0.737  0.503
Losna Peak-discharge vs. volume | 0.316 0.333
Duration vs. volume -0.383  0.290
Thresholdprobability = 0.5
i Se
Elverum | Peak-discharge vs. volume | 0.814 0.344
Duration vs. volume 0.512  0.335
Losna Peak-discharge vs. volume | 0.439 0.330
Duration vs. volume -0.013 0.345
Thresholdprobability = 0.05
i Se
Elverum | Peak-discharge vs. volume | 0.742  0.200
Duration vs. volume 0.752  0.204
Losna Peak-discharge vs. volume | 0.709 0.213
Duration vs. volume 0.750 0.201

Table 4.6: Results of the estimation of the coefficient n with standard error
for different flood characteristics using different thresholdprobabilities.

have n values less than one with the standard error included, and are
still asymptotically independent. At threshold probability 0.6, no further
information is obtained. By comparing the standard errors between the
different threshold probabilities, there is a general increase in the values.
This is expected since the amount of data decreases when the threshold is
raised.

The conclusion of the evaluation of asymptotic dependence is as follows

e Only the peak-discharge and volume at Elverum is asymptotically
dependent, and thus bivariate extreme values models is appropriate.
Because the data are componentwise block maxima, and that the values
in figure 4.9 are relative symmetric around the line u = v (u and v
are the axes of the plots), a logistic bivariate extreme value models is
assumed appropriate (see section 3.6.4).

e The rest of the pairs of flood characteristics are asymptotically
independent, and thus the bivariate log normal distribution can be
appropriate for modelling these events.

A good agreement between the results of asymptotic dependence obtained
by the preliminary analysis and the results obtained by parametric inference
indicates good results in the preliminary analysis. In this thesis there
is a relatively good correspondence between the two different estimation
methods. If a more thorough comparison is to be made, the dependence
measure x can be calculated from 7 using the conversion equation found in
section 3.9.1.
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4.4.3 Modeling flood characteristics using bivariate extreme
value models

The bivariate logistic model is often an appropriate model for compnentwise
maxima, and is given in equation 3.18. It contains one dependence parameter
that needs to be estimated. For estimation of parameters in bivariate
distributions maximum likelihood is used (see section A.5.2). Due to the
complexity of bivariate models, numerical methods need to be applied. These
methods are found in Stephenson (2003) or Coles et al. (1999). The results
of the maximum likelihood estimation is given in table 4.7.

The Peak-discharge and volume at Elverum has an estimated dependence
parameter of & = 0.788, which is a relatively weak dependence. When the
« parameter is known, it is possible to estimate the dependence measure
Xx(u) by the equation x = 2 — 2% Coles et al. (1999). This value can then
be compared with the value of y estimated in the preliminary analysis, to
see if the values correspond. In figure 4.10, the x value estimated in the
preliminary analysis is x =~ 0.25, and the x value estimated from parametric
inference is x = 0.27. Hence, there is an agreement between the two
estimated x values, and thus the estimated « value is consistent with the
previous results.

The logistic model was also tried to be fitted to the asymptotically
independent pairs of flood characteristics due to the comparason of the
bivariate models, and here the agreement between the estimated y values
were more varying. All of the pairs have Y values around 0.25 when
estimated in the preliminary analysis, but from the parametric inference
the estimated x values are 0.25, 0.40 and 0.44 for duration and volume at
Elverum, peak discharge and volume at Losna, and duration and volume at
Losna, respectively. The discrepancies are probably due to the fact that
an asymptotically dependent model is used for modelling asymptotically
dependent data.

An assumption in the logistic model is that the variables in the model must
be exchangeable (section 3.6.4). In figure 4.9 the data appear relatively
symmetric around the line (U = V) in the plot, thus this condition seems
to be fulfilled. For a more thorough investigation of the exchangeability of
the variables, the asymmetry parameters 1 and to in the assymetric logistic
family (equation 3.20) can be estimated. If any of the asymmetric parameters
are # 1, asymmetry is present and a model which allows asymmetry could be
more appropriate. A possible limitation for these models is that they require
a lot of data due to the number of parameters that need to be estimated.
Thus, because the logistic distribution has less parameters, it can still be the
most appropriate model, although models which allows asymmetry fit the
observations better. For estimating the parameters in the asymmetric logistic
model, a maximum likelihood routine found in Stephenson(2003) is used.
The results are given in table 4.8, only the asymmetric and the dependence
parameters are given. An evaluation of the results of the estimation clearly
shows that there are not enough data available to use this model. The
standard error for some of the asymmetric parameters is larger than the
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Elverum

& Bootstrap & Cl up CI low AIC
Peak-discharge vs. volume 0.788 0.778 0.994 0.606  2293.20
Duration vs. volume 0.682 0.685 0.890  0.518  2052.59
Losna

Q Bootstrap @ CIup CI low AlIC
Peak-discharge vs. volume 0.810 0.798 1.000 0.705  2330.97
Duration vs.volume 0.645 0.639 0.799 0.540 2075.14

Table 4.7: Results of the maximun likelihood estimation for the dependence
parameter « of the bivariate logistic family with 90 percent confidence
intervals estimated by the BCa method and AIC scores

Elverum

t1 to Q Std.err t; Std.err to  Std.err &
Peak-discharge vs. volume 0.788 0.994 0.606 2.0e-6 1.159 0.566
Duration vs. volume 0.178 0.487 0.100 0.065 0.202 2.0e-6
Losna

t1 to Q Std.err t; Std.err to  Std.err &
Peak-discharge vs. volume 0.325 0.999 0.712 1.08 2.0e-6 0.482
Duration vs.volume 0.999 0.992 0.633 2.0e-6 0.488 0.127

Table 4.8: Results of the maximum likelihood estimation of the asymmetric
parameters t1, to and the dependence parameter a of the asymmetric
bivariate logistic family with standard errors.

domain of the asymmetric parameter, thus no conclusions can be drawn
from the results of this model, and hence the model is rejected.

A third candidate model is the bilogistic model given in equation 3.21. This
model has two dependence parameters, « and 3, and if & = 3 the model
is equivalent to the logisic model. The result of the estimation is given
in table 4.9 together with the AIC scores. For this model the standard
errors is considerably smaller than for the asymmetric logistic model, and
the model cannot be rejected due to large standard errors. An evaluation of
the results show that for the peak-discharge and volume at station Elverum,
«a # (3, indicating that asymmetry is present. But since this model has more
parameters than the logistic model, the logistic model can still be the most
appropriate model. Thus a method is needed to choose between the two
candidate models. The AIC (section A.5.2) is an effective model selection
tool. For each candidate model the AIC score is calculated, and the model
with the highest score is the preferred model. A comparason of the AIC
score for the bilogistic model with the logistic model for the peak discharge
and volume at station Elverum, show that the logistic model has the higest
score, and thus is the preferred model.

An evaluation of the parameters of the other pairs of flood characteristics
show that also here the logistic model is probably the most appropriate. The
duration and volume at Elverum have o and 3 parameters that are close in
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Elverum

& 3 Stderra Stderr 3 AIC
Peak-discharge vs. volume 0.101 0.913 2.0e-6 0.056 2291.95
Duration vs. volume 0.824 0.714 NA NA 2054.29
Losna

& 1) Std.err & Std.err 8 AIC
Peak-discharge vs. volume 0.966 0.101 0.024 2.0e-6 2331.00
Duration vs.volume 0.579 0.669 0.173 0.144 2077.03

Table 4.9: Results of the maximun likelihood estimation of the dependence
parameters « and [ of the bilogistic family with standard errors and AIC
scores.

value, indicating a logistic model. But it cannot be concluded due to the lack
of standard errors. On the other hand the AIC score for the bilogistic model
is the highest. For the peak-discharge and volume at Losna the AIC score
is almost identical for both candidate models. The duration and volume
at Losna also have parameters that are close in value. By including the
standard errors, there is no evidence to state that « # (3, and the bilogistic
model is equivalent to the logistic model. Hence, even though both models
seem appropriate for some of the pairs, it is chosen to use the model with
less parameters.

4.4.4 Modeling flood characteristics using bivariate lognor-
mal distribution

The bivariate log normal distribution is difficult to work with compared
to the bivariate extreme value models. As for the univaiate log normal
distribution, analytical solutions for the CDF of the bivariate distribution
are not available, and Monte Carlo simulation (section 3.7) is used for the
estimation of the CDF. The result of the estimation of peak discharge and
volume at Losna is found in figure 4.12. In the plot each CDF value is
estimated by using 100 000 simulations. This give good results when the
CDF values are plotted in figure 4.12, but when the CDF values are used to
estimate bivariate return periods, some noise arise when the return periods
are plotted. For reducing the notice, the number of simulations must be
increased to 1000 000. But this many simulations are time demanding,
and thus for most of the CDF estimations 100 000 simulations are used.
In table 4.10 the correlation coefficients for the different pairs of flood
characteristics are given. The correlation coefficient is used in the Monte
Carlo simulation.

4.5 Model validation

In section 4.4.2 the analysis of the extremal dependence showed that only
the flood characteristics peak-discharge and volume at station Elverum was
asymptotically dependent. The rest of the pairs of flood characteristics
were asymptotically independent. Among the possible bivariate extreme
value candidate models for modelling the asymptotically dependent flood
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Elverum

p  Bootstrap p Clup CI low
Peak-discharge vs. volume 0.48 0.453 0.704  0.202
Duration vs. volume 0.35 0.358 0.585  0.088
Losna

0 Bootstrap p Clup CI low
Peak-discharge vs. volume 0.23 0.240 0.461  0.033
Duration vs.volume 0.57 0.570 0.711  0.338

Table 4.10: Results of the estimation for the correlation coefficient p for
the bivariate log normal distribution with 90 percent confidence intervals
estimated by the BCa method
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Figure 4.12: .The cumulative bivariate lognormal distribution function for
the peak discharge and volume at Losna.
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Order nr. Year Peak-discharge  Volume  Joint non-exceedance probabilities 11,
(cms) (m3) Gringorten Theoretical

1 1996 553.8 9.06E4-08 0.014 5.73E-06 1
2 1974 597.5 1.90E+09 0.040 0.002 2
3 1964 752.7 2.27E409 0.065 0.027 3
4 1989 847.7 2.69E+-09 0.091 0.083 4
5 1999 882.8 3.48E+09 0.117 0.134 5
6 1972 908.5 3.29E+09 0.117 0.150 5
7 1976 978.7 1.96E+09 0.040 0.062 2
8 1980 985.6 2.33E4+09 0.117 0.122 5
9 1991 1022 2.14E+4-09 0.091 0.105 4
10 1970 1029 1.81E+09 0.040 0.050 2
11 1994 1065 2.77E+4-09 0.219 0.239 9
12 1961 1069 2.53E+09 0.193 0.202 8
13 1969 1084 2.12E4-09 0.117 0.121 5
14 1965 1129 3.85E+4-09 0.347 0.383 14
15 1968 1136 3.66E+4-09 0.347 0.383 14
16 1997 1137 3.30E+4-09 0.321 0.361 13
17 1962 1166 2.98E+-09 0.296 0.349 12
18 1998 1174 3.21E409 0.321 0.385 13
19 1984 1189 2.15E409 0.168 0.161 7
20 1992 1229 2.04E+09 0.117 0.138 5
21 1971 1245 2.46E+4-09 0.270 0.277 11
22 1981 1245 2.46E4-09 0.296 0.277 12
23 1990 1286 1.85E+09 0.065 0.091 3
24 1987 1357 4.47E+09 0.602 0.609 24
25 2000 1357 2.59E+-09 0.372 0.365 15
26 1977 1375 2.94E+4-09 0.449 0.478 18
27 1982 1450 2.56E+-09 0.372 0.385 15
28 1986 1456 2.22E409 0.244 0.245 10
29 1993 1456 2.56E+4-09 0.398 0.386 16
30 1988 1488 3.23E+409 0.602 0.599 24
31 1979 1545 2.04E+4-09 0.142 0.179 6
32 1983 1564 3.12E+4-09 0.602 0.609 24
33 1975 1577 2.41E+409 0.347 0.351 14
34 1978 1622 1.83E+09 0.065 0.105 3
35 1963 1768 2.30E+4-09 0.347 0.320 14
36 1985 1788 2.77E+409 0.602 0.547 24
37 1967 2533 4.45E+09 0.935 0.947 37
38 1966 2600 3.14E4-09 0.730 0.742 29
39 1995 3081 4.25E+09 0.935 0.950 37

Figure 4.13: Empirical joint non-exceedance probabilities obtained from
the Gringorten plotting position and theoretical joint non-exceedance
probabilities obtained from the bivariate logistic extreme value distribution.
The figure also includes the number of occurrences (n,,;) of the corresponding
combination (order number) of peak-discharge and volume. All values are

valid for station Elverum.
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characteristics, the bivariate logistic extreme value distribution was in
section 4.4.3 found to be the best model among the candidate models by using
AIC. For the asymptotically independent flood characteristics, the bivariate
log normal distribution was selected before the bivariate normal distribution
since the bivariate normal distribution rarely is used to model extreme events.
For validation of both for the asymptotically dependent and independent
flood characteristics, the graphical method was used (section 3.10). The
estimations from the bivariate Gringorten plotting position for the peak
discharge and volume at Elverum are given in table 4.13 together with
the theoretical values obtained from the bivariate logistic extreme value
distribution, and in figure 4.14 the joint non-exceedance probabilities and the
theoretical values are plotted. There is generally good agreement between the
estimated joint non-exceedance probabilities and the theoretical distribution,
especially for the most extreme values. Hence, it can be concluded that the
bivariate logistic extreme value distribution is an appropriate model for the
peak discharge and volume at Elverum.

In figure 4.16 the joint non-exceedence probabilities estimated with the
bivariate Weibull plotting position for the duration and volume at Elverum
is plotted together with theoretical values obtained from the bivariate log
normal distribution. Also here there is good agreement between the joint
non-exceedance probabilities and the theoretical values. For the peak
discharge and volume, and the duration and volume at Losna, there were
good agreement between the joint non-exceedance probabilities and the
theoretical values. Hence, it can be concluded that the bivariate log normal
distribution is an appropriate model for all the asymptotically independent
pairs of flood characteristics.

4.5.1 A comparison of the selected bivariate models

In section 4.4.1 it was decided to model the flood characteristics by using
both the bivariate logistic extreme value distribution and the bivariate log
normal distribution. In this way a comparison between the two different
models can be obtained, and it can be investigated if the models model
the extremes differently. The estimated joint non-exceedance probabilities
and theoretical values from the bivariate log normal distribution is given for
the peak discharge and volume at Elverum are found in figure 4.15, and in
figure 4.17 the estimated joint non-exceedance probabilities and theoretical
values from the bivariate log normal distribution is given for the duration
and volume at Elverum. By comparing these plots with the plots given in
figures 4.14 and 4.16, a comparison between the two models is obtained. An
evaluation of the plots shows that there are surprisingly small differences
between the two models when the same event is modelled. But for the
extremes, the bivariate logistic extreme value model is more appropriate
for the peak discharge at Elverum, and the logistic distribution is more
appropriate for the duration and volume at Elverum, as expected. The
differences between the models will be more apparent if the distributions are
extrapolated.
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Figure 4.14: Comparison of estimated and theoretical non-exceedence
probability of peak-discharge and volume at Elverum. The Theoretical joint
non-exceedance probabilities is calculated from the bivariate logistic extreme
value distribution.
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Figure 4.15: Comparison of estimated and theoretical non-exceedence
probability of peak-discharge and volume at Elverum. The Theoretical
joint non-exceedance probabilities is calculated from the bivariate log normal
distribution.
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4.5.2 Bivariate return periods constructed from the bivari-
ate logistic distribution

When constructing bivariate return periods the design criterion is determin-
ant for the type of return period to use. There is a large difference in value
between different types of bivariate return periods for the same event, and
choosing the wrong type might have dramatic consequences. In this thesis
the bivariate flood frequency analysis is not made for a specific event or
design criterion. Instead different bivariate return periods are estimated so
that the results can be compared. For this reason all of the bivariate return
periods given in this section are estimated for the peak-discharge and volume
at station Elverum.

In figures 4.18 and 4.19 the joint return periods are given. Insted of a three-
dimensional plot, the joint return periods are plotted as contour lines. By
using this type of plot it is easier to both extract information from the plot
and to compare the different return periods. The contour lines in the plots
represent the different combinations of values of the variables that lead to
the associated joint retutn period. A comparison of the two sub classes of
the joint return periods shows that the difference between the subclasses
is apparent. For the second subclass (Figure 4.19) the contour lines are
restricted by the axes in the plot, whereas for the first subclass (figure 4.18)
the contour lines are not restricted. Another aspect is that for the same
event, the joint return periods are different for the two subclasses, e.g. for
the event x — 2000 cms and y — 4.0e9 m3, the joint return periods found in
figures 4.18 and 4.19 are approximately 8 years and 40 years, respectively.

In figure 4.20 a plot of the conditional exceedance probability of peak
discharge given volume with the design criterion X>x given Y >y is found
(equation 3.46). The volumes that are used as conditional values in the plot
correspond to the univariate exceedance probabilities for the volumes. This
is appropriate for hydrological design because constructional requirements
often are given as exceedance probabilities of the variable or variables of
interest. In the plot the marginal exceedance probability is also given
for comparison. The conditional exceedance probability plot can be used
to find one of the three variables (peak discharge, condition exceedance
probability and exceedance probability of volume) if the two other variables
are given, e.g. if the conditional excedance probability is set to 0.01 and the
exeedance probability of the volume is 0.2, the peak-discharge is found to be
approximately 4000 cms. A univariate frequency analysis of the same event
shows that the peak-discharge is approximately 3100 cms for an exceedance
probability of 0.01. Hence, there is a large difference between the conditional
and the marginal distribution. An evaluation of the plot shows that for a
constant conditional exceedance probability the peak-disharge increases for
decreasing exceedance probability of volume, which is expected.
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Figure 4.18: Joint return periods for peak-discharge and volume at station
Elverum for the event X>x or Y>y constructed from the bivariate logistic
distribution

Figure 4.19: Joint return periods for peak-discharge and volume at station
Elverum for the event X>>x and Y >y constructed from the bivariate logistic
distribution.
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Figure 4.20: Conditional exceedance probabilities for peak discharge given
volume at Elverum for the event X>x given Y >y. The marginal exceedance
probability for the peak discharge is also included.

4.5.3 Bivariate return periods constructed from bivariate log
normal distribution

The bivariate return periods constructed from the bivariate log normal
distribution are found in figures 4.21 and 4.22. Both of the bivariate
return periods are constructed using a Monte Carlo simulation with 100
000 simulations for each value in the plots. In figure 4.22 the values that are
larger than the 100 years return period are noise. This noice occur because
not enough simulations have been used in the Monte Carlo simulation. By
increasing the number of simulations to 1 000 000, the noice is removed,
but this is very time-consuming. The bivariate return periods for the flood
characteristics at Losna are given in the appendix.
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Figure 4.21: Joint return periods for the duration and volume at station
Elverum for the event X>x or Y>>y, or X>x and Y>y constructed from the
bivariate log normal distribution.

Figure 4.22: Joint return periods for the duration and volume at station
Elverum for the event X>x and Y>y constructed from the bivariate log
normal distribution.
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Chapter 5

Conclusion

In this thesis the main objective was to evaluate the applicability of
bivariate frequency analysis on spring floods. For modelling spring floods
bivariate extreme value methods were applied on the flood characteristics
that characterises a spring flood, the peak discharge, duration and volume.
In this way the spring flood was modelled by using different pairs of flood
characteristics in bivariate models, and joint distributions of the pairs peak
discharge and volume, and duration and volume were obtained. The last
pair, the peak discharge and duration was not modelled due to a negative
association between the flood characteristics, and bivariate extreme value
models for negatively associated values are outside the scope of this thesis.

The analysis were undertaken in the Glomma basin for the rivers Glomma
and Gudbransdalslagen at the stations Elverum and Losna, respectively.
An analysis of the exstremal dependence on the different pairs of flood
characteristics showed that only one pair, the peak discharge and volume
at Elverum was asymptotically dependent. The other pairs of flood
characteristics, the duration and volume at Elverum and Losna, and the
peak discharge and volume at Losna were asymptotically independent.
For the asymptotic dependent pair, the bivariate logistic extreme value
distribution with GEV-distributed marginals was found appropriate. In the
case of asymptotic independence, the bivariate log normal distribution with
lognormal margins was found appropriate. The model validation showed
that for both models there were good agreements between the theoretical
bivariate distributions and the observations.

From the obtained bivariate joint distributions different bivariate return
periods were constructed and plotted, and it was emphasised that the event
or the design criterion is determinant for which of the joint return period
to apply in order to obtain correct results. These bivariate return periods
can for example be applied for hydrological design and management. Hence,
a bivariate frequency analysis provides information about the spring flood
that is not obtainable by a univariate analysis of the flood characteristics.

A new method to assess the duration from a hydrograph is found, and when
the method was applied on the hydrograph at Elverum the results seemed
reasonable. On the other hand the complexity of the hydrograph at Losna
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lead to difficulties in applying the new method, and an approximative method
was used. This approximaive method only assessed the duration of a sub
basin of Losna, and not the entire basin. Thus, the duration values cannot
be used for hydrological design. The results of the assessment of duration
lead to a bimodal distribution of the results, indicating that some of the
flood durations of the sub basin of Losna were overestimated.
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Appendix A

Univariate theory

A.1 Streamflow recession

“A drainage basin may be considered as a dynamic system which transforms
a specified climatic input into an output function of stream outflow”
(Gottschalk et al., 1997). The outflow is a combination of surface,
unsaturated subsurface and groundwater flow, and is is therefore quite
complex to model. One possibility is to use the black box approach. By
assuming that the contributions from the different types of outflow originate
from each storage, the outflow can be modelled as a compound system of
several reservoirs. If there is no input to the system and the output is
assumed linear, the outflow can be given as

@ = qoe F, —00 <t < (A1)

where qq is the outflow at time ¢ = 0 and k is a time constant.

The constant k can be found by performing a recession analysis. If suitable
recession segments from the discharge series analysed are identified, equation
A.1 can be fitted to each segment using the least square method, in order
to find the recession constant k for each segment. An estimate of k is then
the average of the set of recession constants. With this information a master
recession curve can be drawn.

A.2 Modelling extreme values

A.2.1 The extreme value distributions

One approach for modelling the tail of a distribution is by the use of sample
maxima. If X7,...X,, is a sequence of iid random variables with distribution
function F, and M,, = max(Xy,..., X,), the exact distribution of M,, can
then be written

Pr(M, <z) =Pr(X; <z,..X, <) (A.2)
= Pr(X; <z)..(X, <x)

= {F(x)}",

79



80 APPENDIX A. UNIVARIATE THEORY

But since F wusually is unknown, the distribution of M, must be
approximated. This can be done using an asymptotic argument. If the
distribution of M, is investigated as n — oo, it converges in probability to
sup{x : F(z) < 1}, the upper endpoint of F. This means that the distribution
collapses into a point and is degenerate. The same problem is seen in the
central limit theorem. It is overcome by introducing a linear renormalization
of M,

Pr (M < x) — G(x) (A.3)
Qn

This is called the extremal types theorem, and is based on the theorem

of Fisher and Tippet (1928). If a,, and b, exist, they are sequences of

renormalization constants and G is one of the following non degenerate

distribution families

GUMBEL: G(z) = exp{—exp[—(%_b)]}, —00 <z < oo (A.4)

) 0 ,r <0
FRECHET: G(z) = { erp{—(22)7) x> b a>0
exp{—[—(?)]a < b

WEIBULL: G(z) = { . 20

These distributions are termed the extreme value distributions. For more
information about this topic and a proof for the extreme value distributions,
see Coles (2001).

A.2.2 The generalized extreme value distribution (GEV)

When modelling extreme values, it is necessary to choose one of the extreme
value distributions before parameter estimation can be accomplished.
Alternatively all three distributions can be fitted to data, and the most
appropriate distribution can be chosen. Still, a method for choosing a
distribution is required. If we instead adapt a parameterisation that is
combining the extreme value distributions into one single family, it is not
necessary to choose a distribution. The data themselves will decide the
distribution, and the inference is simplified.

The GEV distribution was independently derived by von Mises (1936) and
Jenkinson (1955), and is given as

Gla) = eap{—[1+ (=)}, (A.5)

where -o0 < € < 00, -00 < u < 00 and « > 0. The parameter £ determines
the distribution. If & > 0 it is the fréchet distribution, & < 0 the Weibull
distribution and if £ — 0 the Gumbel distribution. The parameters u and «
are respectively the location and the scale parameters.

A.2.3 Return level, return period and reduced plot

The return level z, can be found by finding the quantile function for the
GEYV distribution. If the GEV distribution is inverted, the quantile function
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is given as

_ [ nt gl = (=In(P)f, for & #0,
Ea { w— (i In[—In(F)], for £ = 0. (4.6)

The return period is defined as the expected time before a certain
return(quantile)-level is exceeded. It is derived from the geometric
distribution, and the expected value for this distribution is given as

B(Y) =", (A7)

where p is the probability that an event occurs, and y is the number of
trials before success. If the event is defined as exceeding a discharge level
x, and the distribution of x is given as G(xz) = Pr(X < z), the probability
of exceeding x is Pr(X > z) = 1 — G(z). The expected value can then be

written
1 1

E(y)==—=——"___ T A8

W) =3 = 1=y = 7@ (A%)
which in fact is the return period. If X correspond to componentwise block
maxima with a block size of one year, and the GEV distribution is used for

modelling, T(x) has the resolution years.

One way to graphically represent the return level or return period is by the
use of a reduced plot. Here an appropriate plotting position is used for
the estimation of non-exceedance probability of an empirical distribution.
A plotting possition with a sound theoretical background, and which is
appropriate for the GEV distribution is the Gringorten formula

r—0,44

_— A.
PENINTE (A9)

Py = F(x) -

where n is the number and r is the order of the observations. These plots are
called reduced Gumbel plot. For more information about about this topic,
see Gottschalk and Krasovskaia (2001). The reduced Gumbel plot is now
made by plotting E[X(,)] = —In(=In(p))) against x(, (data). It will be
a straight diagonal line if the data is Gumbel distributed, a concave curve
if Weibull distributed and a convex curve if Fréchet distributed. Hence the
Gumbel plot represents both a model presentation and a model validation.

In this thesis the lognormal distribution is also being used to model AMS
values. An appropriate plotting possition for this distribution is the Weibull
plotting position, given as

Elp] = — (A.10)

p(r) — n+ 17 .

also here r is the order and n is the number of observations. The reduced
plot is made by plotting E[X(,)| = q)_l(p(r)) against z(,y (data), where o1
is the quantile function of the standard normal distribution.
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There is possible to obtain even more information of the reduced plot if the
return period is included. The connection between E[X(,)| and the return
period (T) for the reduced Gumbel plot is given as

1

et (A.11)

—In(=In(p())) = log(T) —
For the reduced plot with log normal distribution the connection between
E[X (] and the return period (T) is given as

> (pyy) =711 - 1/7), (A.12)

where T is the return period.

A.3 The log normal distribution

The parameters in the log normal distribution can be estimated by using the
method of moments. By a rearrangement of the moments of the distribution,
the parameters are given by

oy = [log <1 + %)] . (A.13)

py =log(ux) — 302

(Yue, 2000).

Since the log normal distribution is derived from the normal distribution,
there exist no analytical form of the CDF. Calculation of the CDF can be
done by a transformation of the lognormal values to normal values, and then
estimate the CDF using the normal distribution

l _
F(z) = Pr(X < z) = Pr(Y < log(z) = ® [M} . (A14)
Oy
where X7 > 0 and @ is the CDF of the standard normal distribution. The
CDF of the normal distribution is implemented in almost any statistical
programme, or can be found in statistical tables.

A.4 Preliminary analysis

EDA or visual analysis consists of making different graphs to explore and
understand data. It is easier to identify and interpret patterns in a graph
than from tables of different statistics. In this way characteristics in data
that are not consistent with a model can be revealed in an early stage of
the analysis. Other aspects possible to reveal with EDA are e.g. temporal
variation (trend, step change), seasonal variation, independence, persistence
and data error (Robson, 2000).

The statistical tests are a separate part of the preliminary analysis that
investigate the same aspects as the EDA, but in a formal way. If the EDA
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has revealed some possible aspects, the statistical analysis is easier and can
be used to test if the revealed aspects are significant. On the other hand, if
the EDA fails to reveal an aspect, it is likely to be found in the statistical tests
anyhow. This lead to the fact that EDA is not necessary in the preliminary
analysis, but it is a helpful tool.

A.4.1 Stationary conditions

In extreme value models there is an assumption that the underlying
process of the extreme values consist of a sequence of independent random
variables, (see section A.2.1). When dealing with hydrological processes this
assumption is almost never fulfilled, e.g. in river runoff knowledge of the
discharge one day influence what the discharge will be the next. This is also
the case with extreme values. By following the same example, the discharge
level in a flood is often extreme during several consecutive observations.
To overcome this problem, the assumptions of the extreme value model is
generalised. Instead of independence, stationarity of the underlying process
is chosen. Stationarity is a condition where the variables of the process
investigated have the same distribution, and that the distributions remain
the same in time. So, for example if X; and Xg are variables in a stationary
series, then X7 and Xg are bound to have the same distribution.

Dependence between the variables is a more realistic assumption than
independence and will better reflect the stochastic properties of the process,
but most important, many of the stationary series satisfy a condition that
will limit the dependence for extremes, given that the extremes actually are
extreme and that they have a large separation in time. This limitation of
dependence is sufficient for not affecting the extremal types theorem given
in section A.2.1. Hence maxima of stationary series and independent series
follow the same limit laws. A thorough investigation of this topic is given
by Leadbetter et al (1983).

A.4.2 Non-stationary conditions

Even though stationarity is a more general assumption than independence,
there are processes that do not satisfy this assumption. For different reasons,
some processes tend to vary in time. In a hydrological setting river runoff
is often a process investigated. If there are non-stationary conditions in a
time series of river runoff, usually changes at the measuring site or in the
catchment area has taken place. The changes can be abrupt (step change),
gradually variating trends or more complex changes. Some changes are

e Error in the hydrograph. The error is often due to erodation in the
profile related to large floods or (slow) mass deposits.

e Hydropower regulation and/or human interference in the river. A
regulation often leads to a redistribution of the water during a year.
If there have been physical changes in the catcment like urbanizing,
drainage of bogs and wet land, deforesting and building of dikes, the
discharge distribution could change.
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e Long term changes in the climatic conditions.

(Roald, 1999)

If a change is discovered in a time series, there are different methods available
to remove the effect of the change in order to regain stationarity. These
methods depend on the type of change, e.g. if there is a trend in a time
series, the trend can be identified and removed from the the time series.
In the presence of a step change, naturalised series can be constructed and
used instead of the original time series. A thorough investigation of the
topic “change in hydrological data” can be found in Kundzewicz and Robson

(2000).

It is also possible in some situations to model non-stationary time series.
If a change in a time series is discovered, the affected parameter in the
appropriate distribution can be modelled as time dependent , e.g. if Z; is the
value in year t in a given AM series, the GEV distribution with parameters

GEV(u, o, &) can be modelled by
Zy ~ GEV (u(t), o, €) . (A.15)

In this example the location parameter is time dependent and must be
modelled in accordance to the type of change. If a linear change is assumed,
the location parameter can be modelled by

u(t) = o +nt. (A.16)

Here g is the start value for the location parameter and =1 is the annual
change. Other types of change is also possible e.g. a step change can be
modelled as

uyp for t <ty
t) = ’ Al

u(t) { uo  for t > to, (A-17)
where ty is the point where the change occurs, and u; and wus are the
respective location parameters before and after the change.

The scale parameter a can be modelled in the same way as the location
parameter, but the shape parameter £ is difficult to model as a smooth
function of time or with an abrupt change. Instead a model with different
parameters in each season can be adapted. This type of modelling is usually
performed using the PDS approach.

A.4.3 Trendtests

One of the most common trendtest is the linear regression, where a regression
line is fitted to data. In the analysis data is the response variable and the
order of the data with respect to time is the explanatory variable. The
regression gradient is a measure of an possible trend, and a t-test is then
used to decide if the trend is significant. Care should be taken when using
linear regression. The test assumes that the data is normally distributed, or
at least that the residuals are. If these condition are violated, an increased
uncertainty in the parameters is expected.
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An other test is to use the regression gradient in combination with
bootstrapping Robson (2000). The idea is that if there is no trend in the
data, the order of the data is not relevant. Hence the regression gradient
calculated from the resampeled data should not differ much from the original
test statistic.

A.4.4 Independency tests

Two tests for independency are used in this theses. The first test is the
autocorrelation coefficient based on the autocorrelation function (acf). Acf
measures the linear correlation of the process itself, with the process being
displayed in time. The displacement in time is called lag and often has the
same unit as the resolution of the time series. In order to use this test, the
time series has to be recorded with constant time spacing.

Formally the autocorrelation is the autocovariance standardized by the
variance, and is given as

covr Y Y —(n—7)Y Y] /(n—7—1)
vary 2, (Y =Y)?]/(n—1)

r, =

(A.18)

In the equation Y is the time series. Each position in the time series is recog-
nised as Y;, and Y;,, is a lag with length 7. The autocorrelation coefficient
r, is a number between -1 and 1, where 1 indicates that the time series are
exactly identical and -1 exactly opposite. If autocorrelation is present in the
time series, data is not independent.

In the equation Y is the time series. Each position in the time series is recog-
nised as Y;, and Y;y, is a lag with length 7. The autocorrelation coefficient
r, is a number between -1 and 1, where 1 indicates that the time series are
exactly identical and -1 exactly opposite. If autocorrelation is present in the
time series, the data is not independent.

Runtest is the second independency test. The test examine whether the
values in the time series is above or under the a given treshold, e.g. the
median. Values above the median are assigned a plus sign, values under a
minus. This gives a sequence of plus and minus signs. By defining a run as
a sequence of equal signs, it is possible to count the number of runs in the
sequence. If the time series is independent, the number of runs is normal
distributed. The parameters in the distribution can then be estimated using

2711712
=—+1 A.19
= (A.19)

2 2n1n2(2n1n2 —Nnip—ny
(n1 +mn2)?(n1 +ng — 1)

(A.20)

where nq is the number of plus signs and no is the number of minus signs.
By a simple hypotheses testing it is easy to determine if the time series is
independent and to calculate approximate Cl-intervals.

The theory of this section is based on Davis (2002)
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A.5 Inference

A.5.1 Ordered statistic and l-moments

One way of defining a distribution function is by its moments. The moments
are functions of the respective function parameters, thus by estimating
the moments of a distribution, its parameters can be found. This is the
well-known method termed the method of moments. Unfortunately sample
estimation of ordinary moments is subjected to bias in small samples due to
the fact that estimation of moments > 1 involves squaring or cubing of the
sample data. In this way large values (outliers) are given too much weight.
This was one of the reasons for J.R.M. Hosking to develop l-moments in the
middle of the 1980th. L-moments are expectations of linear combinations of
ordered statistic, and thus do not involve squaring or cubing of sample data.
Hence the bias is considerably reduced.

Order statistic is concerned with statistic and statistical methods that
depend on the order of the observations and has applications such as
empirical estimation of distribution functions, empirical estimation of
probability density functions and graphical representations of empirical
distributions (plotting positions). The deduction of the order statistic
methods start by assuming a sample of n observations of a stochastic
variable X. These observations are arranged in increasing order so that
zrq)y < Ty < ... The empirical distribution can now be found by
using the well known empirical distribution function given as

Fyy(z) = r/n, where 1=0,1,2,...,n, (A.21)

where r is the range number. A limitation with this distribution is that it is
impossible for values greater that the largest observed value or lower than
the lowest observed value to exist. A more general distribution function is
the distribution function of the r-th order statistic of totally n, which in a
discrete form is given as

" /n

Fiy(@)=> <i>F’(az)[1 — F(2)]" (A.22)

i=1
The distribution is derived from the binomial distribution where any
sequence of i successes occurs with probability F*(z)[1 — F(x)]"~*, and (7))
gives the total number of sequences. For the r-th order statistic (as above)
i=r.

By using the Beta distribution, the previous distribution also exist in a
continuous form given by

F, ! e F=l1(1—-F)""dF A2
(r)(x)—m/o (1-F) : (A.23)

By rewriting the Beta distribution as n!/(r — 1)!(n — r)! and derive
equation A.23, the density function is obtained, and is given as

e L 05 L) (A.24)

0@ = i =
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It is also possible to define moments for order statistic. By keeping the
expression for ordinary moments in mind, the k-th moment for the r-th
ordered value of n is given by

E[xk,,] = / (FUEF 11— FPrdF,  (A.25)

B(r, n—r+1

where F~! is the quantile function of F. For more information about order
statistic, see Gottschalk and Krasovskaia (2001).

After defining the order statistic, focus can now be attended to the L-
moments. Hosking (1990) defined the L-moment of order r of a stochastic

variable X by
—12 M) B (A.26)

By combining equatinon A.26 and A.25 the r-th order L-moment can be
rewritten as

1
A = / F~lpP* [(F)dF, (A.27)
0
where .
= pipF" (A.28)
k=0
and

= () () (A.29)

In the equations above PJ(F') is the r-th shifted Legendre polynomal, see
Hosking, 1990 for more information. The first three L-moments is now given

below, but also higher moments and L-moment ratios (e.g. L-CV) exist.

A= E[X] = [} F'dF
Ao = L E[Xo — X1.0] fo Y2F - 1)dF (A.30)
Az = %E[XB:?) —2Xo3+ Xy3] = fol F~Y6F? — 6F + 1)dF.

The L-moments are clearly expectations of linear combinations of order
statistic.

A comparison of ordinary moments and L-moments show that they are
analog measures of location, scale, skewness etc. The first L-moment are
identical with the ordinary moment, thus no explanation is needed for this
measure. The second L-moment, the L-scale measures the difference between
the observations in a random sample of size two (X2.0 — X7.9) drawn from a
distribution. If the values in the distribution are close to the centre of the
distribution, the difference between the two sample observations will tend
to be small. If the values in the distribution are further dispersed from the
centre, the difference will be larger. In the third L-moment random samples
of size three are used for determining the skewness. If a distribution is
symmetric, then X3.3 — Xo9.3 &~ Xo9.3 — X7.3. This is the same as writing
X33 — 2X9.3 + X153 =~ 0. If the distribution is right-skewed the latter
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expression is positive, and if the distribution is left-skewed the expression
is negative.

The previous definition of L-moments is defined for a probability distribu-
tion, but when applied on a finite sample with an unknown distribution,
estimation is needed. The estimation can be carried out using either order
statistic or probability weighted moments (PWM), and the estimation can
be found in Gottschalk and Krasovskaia (2001) or Hosking (1990)

A.5.2 Maximum likelihood estimation and AIC

Maximum likelihood is a method that can be applied for estimation of a set
of unknown 61,65...6,, in a given family Fof distributions. The likelihood
function is defined as the probability of observing data as a function of the
parameters 61, 05...0,,. Different values of the parameters define different
candidate distributions within the given family, and parameters with a high
likelihood have a high probability of observing the data. The maximum
likelihood estimate (mle) are those parameters that makes the observed data
“most probable” or “most likely”. These parameters are called the maximum
likelihood estimates of the parameters and can be estimated by maximizing
the likelihood function (Rice, 1995). In this thesis numerical estimation of
the maximum likelihood estimates is required. These routines are found
in the EVD package Stephenson (2003) or in Coles (2001). The likelihood
function is given as

n

L(01,02..0,) = [ | £ (il 61, 02...60), (A.31)

i=1

where f(x;| 61,605...0,) is the probability density function and zq,...,x,
are independent realizations of this PDF. If instead the logarithm of
equation A.31 is used, the maximazing of the likelihood function become
easier due to the convenience of working with sums instead of products;

logL(0y,02..0,) = > _log f(xi] 01,05...0,). (A.32)
i=1

The maximum likelihood estimation can also be used for model validation.
The Akaikes information criterion (AIC) applies the logL value and subtracts
the number of parameters for each different candidate model. Since the logL
value is the most likely model in a family, different candidate models from
different families can be compared. The model with the highest AIC score
is the preferred model. The subtraction of the number of parameters is a
penalty for the number of parameters fitted.

A.6 Bootstrapping

The bootstrap is a computer intensive method developed by Ebson and
Tibshirani that uses a data based simulation method for statistical inference
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on the sampling distribution of a parameter. This inference is used for
producing different inferences including bootstrap parameter estimates,
bootstrap standard errors and bootstrap confidence intervals. The advantage
of using the bootstrap is that the method is available no mather how
complicated the estimator is. When the bootstrap is applied there are
two main techniques, namely parametric bootstraping and non-parametric
bootstraping. The difference between these techniques is that the parametric
bootstrap samples from a population, while the non-parametric bootstrap
resamples from a sample of the population. Parameters estimated using
parametric bootstrapping are more accurate and show less variation than
parameters estimated with non-parameric bootstraping, but it requires that
the deviation between the empirical distribution of the investigated data-
sample and the distribution of the population is sufficiently small. If
this condition is not fulfilled, the non-parametric bootstrap gives better
results. In hydrology this deviation is usually to large, and non-parametric
bootstrapping is commonly applied.

A.6.1 Non-parametric bootstrap estimation of standard
error

In many situations the accuracy of an estimated parameter is of interest.
Traditionally theoretical expressions for the standard deviation of the
parameter have been made, but when the estimator become complicated
it can be hard to derive the expression for the standard error. If instead
the bootstrap standard error is estimated, only the parameter estimator
is needed for the estimation. The method for estimating the bootstrap
standard error starts with a random sample x = (z1,22...,2,) from an
unknown probability distribution F. From this probability distribution the
parameter § = t(F') estimated from x is the parameter of interest. An
estimate of this parameter is 6 = s(x). It is now possible to use bootstrapping
to estimate the standard error of . In the non-parametric bootstrap
the empirical distribution F is used as an estimation of the probability
distribution F. From this empirical distribution the bootstrap samples are
made. Each bootstrap sample consist of n observations resampled from F
with replacement, F' — (x7, 23, ..., 2% ), where the star notation indicates that
the observations are resampled. The number of bootstrap samples needed
depends on the parameter of interest, but lies usually between 1000 and
10000 replications. If B bootstrap samples is drawn, they can be represented
as (x*1,x*2 ..., x*B). The next step in to estimate the parameter in each
bootstrap sample,

0*(b) = s(x*®), b=1,2,..., B. (A.33)

This result in B different estimates of the parameter 6*(b). The distribution
of 6** is the sampling distribution of the parameter estimator given in
equation A.33. Finally the bootstrap parameter estimate 0*(-) is given by

B
0*()=>_0°(b)/B . (A.34)
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When the bootstrap parameter estimate is calculated, the standard error of
the parameter can be estimated by

B 2
sep = {Z[é*(b) —6*()?/(B — 1)} , (A.35)
b=1

where sep is the approximation of sez(f). This last term is called the

ideal bootstrap estimate of standard error of é, and the approximation Sepg
converges asymptotically to the ideal bootstrap estimate as B goes to infinity

lim sep = sep = seﬁ(é*). (A.36)

B—o0

A.6.2 The BCa confidence interval

When the standard error of a parameter is estimated, the accuracy of a
parameter can be represented by a confidence interval. There exist a number
of different confidence intervals with different correctness’ and accuracies.
The type of confidence intervals that are used the most are the normal
approximated confidence intervals with coverage 1-2a, given as

A~ ~

[9 — 217 L ge, 0 — 2. sAe] , (A.37)

where 2% is the 100-« percentile in a standard normal distribution. The
reason for using the standard normal distribution is that if the size of
the sample that the parameter is estimated from increases, the sampling
distribution of the parameter becomes more and more normally distributed
with mean near 6 (the true value of the parameter) and variance near se?,

6 ~ N (6, se?). Equivalently this can be written

D>

—0

se

(Efron and Tibshirani, 1997).

~ N(0,1) (A.38)

A problem with these confidence intervals is that the approximation does
not always hold. If the size of the sample the parameter is estimated from is
small, the sampling distribution of the parameter can be sqew. The result is
that there is a bias in the coverage of the confidence interval. A confidence
interval that has better coverage performance is the percentile interval, given
by

G a), G711 - a)] , (A.39)
where G~! is the quantile function of the empirical distribution. But also
with this confidence interval there are some limitations (which also applies for

normal approximated confidence intervals). Bias in the estimated parameter
lead to a biased normal estimate

0 ~ N(0+ bias, ge?). (A.40)

The only confidence interval that corrects for both skew sampling distri-
butions and bias in the estimated parameter is an improved version of the
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percentile interval termed the BCa confidence interval. BCa stands for bias
corrected and accelerated, where the term acceleration refers to the correc-
tion of bias in the coverage of the confidence interval. The BCa confidence
interval is far more complicated than the confidence intervals given previ-
ously, but quite easy to use in practice. A 1-2a coverage BCa interval is
given by

10, 8] = [61, 670e)] (A1)
where
ar =9 (20 + #ﬁ,a))) (A.42)

_ 5 2+21-)
az = o (ZO T G0 ) -

In equation A.42 ®(") is the standard cumulative distribution function, z® is
the 100-« percentile in a standard normal distribution and Zy and a are the
correction terms for the bias correction and the acceleration, respectively. If
Zo and a are zero, the BCa interval is equal to the percentile interval. For
calculation of Zj the following equation can be used

%::¢—1<ﬁﬂ€%?iié>. (A.43)

This equation calculates the difference between the median of 6* and 6
in normal units. If this difference is zero, the sampling distribution is
symmetrical (29 = 0), and exactly half of the (b) values are less than or
equal to 6. The acceleration a is calculated by

i (00 = 0p))?
6{30" 1 (0¢) — 0y)2y3/2

d:

(A.44)

where HA(A) is the jackknife estimate of the parameter 6 and é(i) is the
parameter estimated from the data sample with the i‘th value left out. The
acceleration correction is needed due to, as previously stated, bias in the
coverage of the confidence interval. This bias arise in normal approximated
confidence intervals because the normal approximation assumes that the
standard error of # is constant for all §. For correction of this bias, the
rate of the standard error of § with respect to the true parameter value
f, measured on a normal scale can be calculated. This correction is the
acceleration given in equation A.44.

The theory of section A.6 is based on Efron and Tibshirani (1997).



92

APPENDIX A. UNIVARIATE THEORY



Appendix B

Results

In this chapter the different bivariate return periods for the peak discharge
and volume, and the duration and volume at Losna are given.

93
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Figure B.1: Joint return periods for peak discharge and volume at Losna for
the event X>x or Y>y constructed from the bivariate logistic distribution

Figure B.2: Joint return periods for the peak discharge and volume at Losna
for the event X>x and Y>>y, constructed from the bivariate log normal
distribution.
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Figure B.3: Joint return periods for duration and volume at Losna for the
event X>x or Y>y constructed from the bivariate logistic distribution

Figure B.4: Joint return periods for the duration and volume at Losna for the
event X>x and Y >y, constructed from the bivariate log normal distribution.



