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Abstract: A re-description and a re-classification is made for the plesiosaur specimen 

PMO A 27745 previously identified in 1962 as Tricleidus svalbardensis Persson.  

In all probability the fossil is from the Slottsmøya Member of the Agardhfjellet 

Formation and was collected at the entrance to Sassenfjorden, Svalbard. Its age is 

Volgian. Study of the material, in reference to the current taxonomy of the Plesiosauria 

which acknowledges the Polycotylidae as part of the Plesiosauria, suggests that it may 

belong to the Tricleidia of the Superfamily Cryptocleidoidea. A cladistic analysis of 

related taxa places Tricleidus svalbardensis in a close relationship with Polycotylus, 

Dolichorhynchops and Tricleidus.  The distal part of the fossil is preserved, from the 

pelvic girdle backwards with dorsal, sacral, and caudal vertebrae present, along with two 

ischia, two pubes and two flippers of which the right is almost complete. Some rib 

fragments are also preserved.  

A catalogue has been made of all available Jurassic and Cretaceous marine vertebrate 

material from Svalbard containing three plesiosaur propodials and epipodials, a 

plesiosaur ilium, a large ichthyosaurian humerus and a few plesiosaur teeth.  
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Introduction 

 

This master thesis describes a Tricleidian plesiosaur collected from the Agardhfjellet Formation on 

Svalbard in 1931. In 1962 the specimen, comprising the distal half, from the pelvis and back, was 

briefly described by Per Ove Persson then of the University of Lund in Sweden and designated the 

holotype of a new species, Tricleidus svalbardensis.  

Persson (1962) assigned the specimen to this genus based mainly on features of the proximal bones 

in its hind limbs. However, much has changed since regarding plesiosaur classification and a new 

thorough examination and description of the material was necessary.  

In addition to a re-description and re-interpretation of the plesiosaur specimen mentioned above a 

quick look will be taken on other miscellaneous material from Svalbard, in the collection at the 

Geological Museum of Oslo. Most of this latter material, with the exception of many solitary 

vertebrae and phalanges, is beyond recognition. However, a few interesting pieces have been found 

such as plesiosaur teeth, an almost complete plesiosaur ilium, a plesiosaur propodial with a more or 

less complete autopodium, and lastly what appears to be a very large ichthyosaurian humerus.  

I will also discuss aspects of the taxonomic chaos surrounding the Plesiosauria and also look at the 

functional anatomy of the plesiosaurs. In the latter, features of the plesiosaur body structure, 

especially those of the flippers, associated with aquatic life will be compared with today’s aquatic 

air-breathers, the Cetaceans, as well as the ichthyosaurs.  

 

 

The fossil history of the Plesiosauria 

 

The order Plesiosauria, meaning “near-lizard”, are not dinosaurs but contemporary sea-reptiles or 

tetrapods that dominated the Mesozoic seas, especially in the Jurassic and the Cretaceous. 

The earliest remains of the group are of isolated bones from the Middle Triassic (Anisian) of 

Germany, but the first complete and articulated specimens comes from the Lower Jurassic of Lyme 

Regis, Dorset, and the Bristol region of England. 

De la Beche & Conybeare (1821), created the genus Plesiosauria on the basis of miscellaneous and 

unidentified material from the Lyme Regis region in England. This reconstruction was criticised at 

the time because it was based on isolated and disarticulated material. However, in December 1823 

in the Lower Lias (Sinemurian) near Lyme Regis, an 18 year old girl Mary Anning (1799-1847), 

found the first ever complete skeleton of this new reptile group, which confirmed Conybeare’s 

conclusion about a new species (Torrens 1995; Taylor & Torrens 1987).  
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One year later in 1824, this skeleton provided Conybeare with the material with which he made the 

first specific description of a plesiosaur, the type species Plesiosaurus dolichodeirus (Conybeare 

1824) (Fig. 1). This specimen is housed at the Natural History Museum in London (NHM) and is 

now recognised as the type species for the genus. 

 

Fig. 1: Dorsal view of the holotype Plesiosaurus dolichodeirus, BMNH 22656, from the Lower Jurassic of Dorset, 

England (from Storrs 1997). 

 

 

 

Even though the limestones in Lyme Regis in Dorset have produced many of the most important 

plesiosaur specimens known, it is not the only place where these fossil reptiles are found. Fossil 

plesiosaurs, both long and short-necked, have been found on virtually every continent, from 

geographically separated countries and areas such as Europe, Japan, Australia, USA, South-

America, Africa and the South-pole. Because of this worldwide distribution plesiosaurs are 

regarded as a cosmopolitan group of which some members lived, at least parts of their life, in the 

open ocean.  

An interesting point regarding the geographical distribution of plesiosaurs is that the Jurassic forms 

are found mainly in the Northern Hemisphere, and it is not until the Late Jurassic - Early Cretaceous 

that we find these animals in the southern hemisphere (Persson 1963; Bartholomai 1966; Gasparini 

& Spalleti 1993; Gasparini 1997).  

Whether this north - south trend has any specific evolutionary meaning is not possible to say. It 

could also be the result of early Mesozoic strata lacking in these parts of the world, or that the 

fossils are there but, as yet, simply have not been found. 
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Plesiosaurs evolved from being small, relatively inconspicuous marine reptiles in the Triassic and 

early Jurassic, to become feared predators of enormous size in the late Jurassic and the Cretaceous. 

Some large fossil specimens formerly described as Liopleurodon ferox (Sauvage 1873), now 

considered spec. indet., was as much as 25 meters in length and weighing over 20 tons, making it 

one of the largest and most colossal marine predators ever to have existed (Fig.2). 

 

 

Fig. 2: Probably one of the largest marine reptiles ever to exist, Liopleurodon ferox (Haines 2000). 

 

 

 

Taxonomical history of the Plesiosauria  

Since the time of Conybeare’s description in (1824) and later Owen (1840, 1865), relatively little 

has been done regarding classification and clarifying of the anatomy of the group Plesiosauria and 

other marine reptiles, at least compared to the work done on dinosaurs.  

The marine reptiles as a group have long suffered from being overshadowed by the dinosaurs. This 

is a little strange as it was one of the first reptile-groups to be found, and long before the first 

dinosaur fossil was recognized. This has, as Glenn Storrs (1997) puts it, reduced the taxon to a 

wastebasket for problematic material dating from the Rhaetian to the Maastrichtian.  

However, one important thing to keep in mind is that the discovery of the marine reptiles during the 

late eighteenth century and the early nineteenth century was a major contribution to the 

development of vertebrate palaeontology as a science (Taylor 1997). 

Even though there is still a great lack in understanding the phylogeny of the order Plesiosauria, 

attempts have been made in recent years, and work is currently being done by several researchers to 

place the group, with all its families and genera, into a systematic relationship. Plesiosaur 

relationships have been studied recently by Brown & Cruickshank (1994), Carpenter (1997) and 

O’Keefe (2001) among others.  

 

The traditional view was, and still is although a few changes have been made, to divide the order 

Plesiosauria into two superfamilies, the short-necked Pliosauroidea and the long-necked 
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Plesiosauroidea (Andrews 1910, 1913; Welles 1943, 1952; Tarlo 1960; Persson 1963; Brown 

1981).  

In the early attempts of classification, plesiosaur taxonomy was mainly based on morphometric 

characters relating to body proportions, such as relative skull length, neck length, lengths of the 

ischium/pubis, scapula/coracoid, and the relative length of the humerus and femur, etc. These 

characters are very homoplastic in the Plesiosauria, meaning that they are subject to a high level of 

convergence, and have in the past inevitably led to genera and species being placed in wrong clades.  

A good example of this is the traditional placing of the short-necked Polycotylidae within the 

Pliosauroidea.  

Based on morphometric characters polycotylids look very similar to plesiosaurs with a 

“pliosauromorph” body plan. However when comparing characters from the skull between animals 

within these two groups marked differences are found and it is obvious that the Polycotylidae 

should be part of the Plesiosauroidea. 

 The close kinship found between some short and long-necked plesiosaurs is the latest in a line of 

discoveries in plesiosaur taxonomy. This has led to the idea that the long-necked plesiosaurs of the 

Cretaceous, such as elasmosaurs, perhaps are more related to Jurassic short-necked taxa than they 

are to long-necked taxa from the same period. This will inevitably mean that the pliosauromorph 

and plesiosauromorph body plan has evolved more than once. 

The early taxonomic work done by Andrews (1910, 1913), Welles (1943, 1952), and Tarlo 1960) is 

now under drastic modification because of this new theory which states that there is a link between 

the Cretaceous long-necked plesiosaurs (elasmosaurs) and the short-necked pliosaurs.  

One of the first to break with the traditional morphometric classification scheme was Carpenter 

(1997) and later also Bardet (1998) who challenged the monophyly of the superfamily 

Pliosauroidea. However credit must also be given to Williston, who as early as 1907 suggested that 

the short neck in pliosaurs might have evolved at least twice.  

 

An obvious reason why there is such a difficulty in establishing a solid taxonomic scheme for 

plesiosaurs and other fossils is that you cannot rely on sophisticated DNA analysis for an accurate 

species or genera specification. The next best thing has been shown to be the use of the posterior 

parts of the animals` skull. The area around the temporal fenestra and the posterior palate are 

especially important in plesiosaurs. 

The reason for this is that the skull, as an anatomical structure, is much less susceptible to complete 

convergence as a result of being less affected by stimuli from the environment than morphometric 

characters (Carpenter 1997; Bakker 1993; O’Keefe 2001).  
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Plesiosaur flippers as an example are so devoid of complexity that very minor convergent selection 

between different species could in theory produce nearly identical patterns and thus be of no use in 

taxonomical classification.   

Just consider such evolutionary separated and unrelated animal groups as the dolphins, whales, 

plesiosaurs, and the ichthyosaurs which still share a very similar limb structure as a result of 

adaptation to a similar habitat. Their skulls on the other hand are very different and possess several 

individual synapomorphic features. 

 

Structural differences between specimens now known to be of purely ontogenetic character were in 

the past used in taxonomy to produce new lineages and groups. This led to an overabundance of 

now rejected generic and specific names, which again led to many alternative schemes of 

classification. 

Brown (1981), and later Cruickshank (1994) and O’Keefe (2001) went from only using 

morphometric characters to also include the more stable characters of the skull in their phylogenetic 

work. In doing so they greatly diminished the problem related to ontogenetic features.  

 

In his review of Upper Jurassic plesiosaurs, Brown (1981) discussed the use of thirty-eight 

plesiosaur characters used by taxonomists in classification. Fifteen of these, seven being skull 

characters, were regarded as important in distinguishing phyletic lineages. 

Recently, O'Keefe (2001, 2002) has made a cladistic analysis of the Plesiosauria where the 

superfamily Pliosauroidea was found to be polyphyletic due to the inclusion of the Polycotylidae. 

To test the result he conducted parsimony analysis on his data set with the constraint of Pliosauridae 

and Polycotylidae being a monophyletic clade. This resulted in two most parsimonious trees with 

tree lengths of 447, which were fifteen steps longer than the result from his original analysis (see 

Fig. 3). The large increase in tree length indicates the polyphyly of the traditional Pliosauroidea.  

The Polycotylidae were formerly thought to be Cretaceous pliosaurs but is now, based on 

synapomorphies in the skull, found to be more closely related to the long-necked elasmosaurs and 

should therefore be placed within the Plesiosauroidea and not the Pliosauroidea.  

 

Within the superfamily Plesiosauroidea there are several families of which three or sometimes four 

are of higher importance. How many families one operates with usually depends on the author, and 

the numbers vary. In this thesis I will follow the latest work done by Carpenter (1997) and 

especially O’Keefe (2001) where four main families are identified within the Plesiosauroidea. 

These are the Cryptoclididae, Polycotylidae, Cimoliasauridae, and the Elasmosauridae.  
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The single genus Plesiosaurus is here made the sister-group and out-group to all other 

“plesiosauromorphs” – any plesiosaur with a short head and a long neck.  

For a full overview of the phylogenetic relationship of the Plesiosauria see Fig.3 which shows the 

strict consensus tree, the unique tree that contains only those groups that occur in all rival 

cladograms (Kitching et al. 2000), computed from the twelve most parsimonious trees. 

 

 

Fig. 3: Phylogenetic relationships of the Plesiosauria. Shown is the strict consensus of twelve most parsimonious 

trees with a length of 432. Numbers to the left of nodes are bootstrap values; those to the right are decay indices. 

Numbers in parentheses are the support for a given node after morphometric characters were removed. Stars 

mark nodes with less than 50 % bootstrap support and a decay indice of one (Taken from O’Keefe 2001). 

 

 

 

The above tree was the result of 34 taxa being scored for 166 morphological characters using 

Simosaurus, Cymatosaurus, and Pistosauridae as outgroup taxa. According to O’Keefe (2001) there 

are two large groups within the Plesiosauroidea consisting of the well-supported Elasmosauridae, 

and the Cryptocleidoidea. The latter clade is a larger group consisting of two subclades, the 

Cryptoclididae and the Tricleidia.  
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Tricleidia is a new taxon defined by O’Keefe (2001) to include the Polycotylidae, the 

Cimoliasauridae, and Tricleidus while the Cryptoclididae comprises Muraenosaurus and 

Cryptoclidus.  

The placing of Muraenosaurus in this clade and not within the traditional Elasmosauridae as done 

by Andrews (1910) and Brown (1981), suggests that the long neck and small head evolved 

independently in Muraenosaurus (O’Keefe 2001). 

Bakker (1993) argued that the Cretaceous long-necked elasmosaurs along with the short-necked 

pliosaurs both were derived from an Upper Jurassic short-necked plesiosaur and not as traditionally 

believed from one of the dominant long-necked clades. Bakker based this on the sharing of a 

specialised palate (covering of the basicranium by the pterygoids) by Cretaceous pliosaurids, 

elasmosaurids, and Jurassic pliosaurs.  

He also argued that the Jurassic long-necked plesiosaurs died out at the Jurassic-Cretaceous 

extinction, leaving only the short-necked pliosaurs as probable ancestors of the Cretaceous 

elasmosaurs (Bakker 1993). This view degrades the long and short-necked clades to mere 

ecological configurations attained independently by several waves of iterative evolution.  

However, O’Keefe (2001) found support for a division of the Plesiosauria into the Plesiosauroidea 

and Pliosauroidea, although with a reorganisation of some of the families and the recognition of a 

new clade, the Tricleidia, as well as a new taxon, the Euplesiosauria. 

It is important to note however that this division is solely based on shared synapomorphic 

characters and has nothing to do with neck length or head size. 

 

Carpenter (1997) came to a similar conclusion as Bakker (1993) when he compared the skulls of 

two Cretaceous plesiosaurs from the Western Interior basin, USA.  

By examining synapomorphies of the skull he found that the long-necked Libonectes morgani and 

the short-necked Dolichorhynchops osborni, both from the Upper Cretaceous, shared a common 

ancestor. However, Carpenter (1997) argued that Bakker (1993) had been wrong about the palatal 

condition in L. morgani and D. osborni, which obviously was more similar to that found in Jurassic 

long-necked plesiosaurs and not short necked as stated by Bakker (1993). The essential 

synapomorphic features in these taxa included the presence of a vomeronasal fenestra, expansion of 

the pterygoids into plates beneath the braincase, and loss of both pineal foramen and stapes.  

Carpenter (1997) therefore operates with an alternative phylogenetic scheme similar to that of 

O’Keefe (2001), where the short-necked Cretaceous polycotylids are the sister-group to long-

necked elasmosaurids (see Fig.4).  
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Fig. 4: An alternative cladogram with the placing of the Polycotylidae within the Family Plesiosauroidea (from 

Carpenter 1997). 

 

 

 

Summarising the statements from above one can in short conclude with the following. The large 

headed and short-necked polycotylids have not descended from the short-necked pliosaurs of the 

Jurassic as previously believed. Instead synapomorphic characters of the skull have shown the 

group to be more related to the long-necked groups of the Upper Jurassic such as Cryptclidus, 

Muraenosaurus, Microcleidus, and Tricleidus (Carpenter 1997; O’Keefe 2001). The short neck has 

appeared independently at least twice in the Plesiosauria and the term pliosaur referring to any 

short-necked plesiosaur should be abandoned to avoid any phyletic implications (Carpenter 1997). 

The long neck or large head in plesiosaurs should be seen as mere ecological adaptations within a 

clade rather than evolutionary related features to be used in taxonomic classification. 

 

Most researchers today operate with six main families within the order Plesiosauria, of which four 

are of the long-necked type and two, the Pliosauridae and Rhomaleosauridae, has a short neck and a 

relatively big skull (Carroll 1988; O’Keefe 2001). Some believe that pliosaurs are much more 

diverse than this and that it should be split into several families. 

Within these six groups there are of course many genera and species, none of which are mentioned 

here since the systematic relationship between many of these groups is still under revision.  

 

 

Origin of the Plesiosaurs 

The origin of the group Plesiosauria, and from what type of land reptile the plesiosaurs are 

descended, is somewhat blurred as they seem to have both primitive and advanced features. 

Moreover, the plesiosaurs do not fit into any of the three basic amniotic groups – the Anapsida, the 

Synapsida, or the Diapsida, defined on the number of temporal openings or fenestrae in the side of 

the skull of amniotes.  
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The Anapsida has no opening and includes the earliest reptiles, Hylomonus and Paleothyris, as well 

as the modern day turtles, whilst the Synapsida has one temporal opening in the lower part of the 

skull, surrounded by the squamosum, jugal and postorbital dermal bones. This group comprises the 

early mammal-like reptiles, such as the pelycosaurs and the therapsids, and the true mammals. 

The Diapsida has two openings in the skull. The lower opening is the same as in the Synapsids, and 

the second lies dorsally, surrounded by the squamosum, postorbital and the parietale. This group 

includes the dinosaurs, crocodiles and the birds (see Fig.5 for a view of dermal bones and temporal 

openings in the skull of reptiles). 

 

 

Fig. 5: Dermal bones in reptiles.  A: anapsida (stem reptile);  B: synapsida (mammal stock); C: diapsida (bird 

stock) and D: euryapsida (ichthyosaur and plesiosaur stock) (from Kent & Millor 1997). 

 

 

 

The plesiosaurs and their relatives, the pistosaurs and nothosaurs alongside the placodonts, 

collectively called the Sauropterygia (Rieppel 2000) all have one opening in the skull like the 
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Synapsids. The only problem is that it is located dorsally and not ventrally making it difficult to 

ascertain the exact taxonomic position of these animals. 

However, most researchers view the sea-reptiles as part of the diapsid stock, only modified later to 

only have one upper opening. This relationship with the diapsids is demonstrated by similarities 

seen in the skulls of early diapsids such as Claudiosaurus with that of nothosaurs (Carroll 1985).  

Members of this modified version of the Diapsida was first grouped together by Williston (1925) on 

the basis of a single upper temporal fenestra, under the name “Synaptosauria” which correctly 

included the Sauropterygia and the Placodonts. This was however later changed to Euryapsida by 

Colbert (1955), a term supported by Romer (1956) which also included the Permian diapsid 

Araeoscelis. Due to lack of certainty regarding its monophyly the term "Euryapsida" has fallen into 

disuse although Merck (1997), after performing a cladistic analysis on all "euryapsids", believes the 

group to be a monophyletic clade. 

 

Today the close relationship between placodonts and other sauropterygians are no longer in doubt 

thanks to work done by Carroll & Gaskill (1985) and later by Rieppel, who made an exhaustive 

phylogenetic revision of stem-group sauropterygians (Rieppel 1989, 1994, 1998, 1999, 2000; 

Rieppel & Wild 1996). The Sauropterygia is now classified as crown-group diapsids (Rieppel 

2000).  

The Diapsida has been divided into two major clades termed the Lepidosauromorpha and the 

Archosauromorpha. The first group comprises the modern lizards, snakes, and sphenodonts, while 

the second group includes the dinosaurs, crocodiles and the birds.  

Rieppel (1993) argues that lepidosauromorpha also includes the Sauropterygia and Ichthyopterygia, 

both of which independently lost their lower temporal opening. He also concludes that the 

Sauropterygia share some lepidosauromorphian characters, such as a thyroid fenestra in the pelvis 

and absence of the supratemporal bone in the skull (Benton 2000). 

Carroll (1985) places the ichthyosaurs within the archosauria, and refers to some specimens found 

in China from the Lower Triassic which are described as having two temporal openings and 

therefore more related to the dinosaurs and other diapsids (Carroll 1985, p.146).  

Contrary to Rieppel (1993, 2000) Merck (1997) found the Sauropterygia to be positioned at the base 

of the archosauromorph lineage. 

Although the phylogenetic relationship of the Sauropterygia among crown-group diapsids still 

remains debatable, its status as a subclade of either the Lepidosauromorpha or Archosauromorpha 

seems no longer in doubt (Rieppel 2000).  
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The following taxonomic relationship of the major diapsid groups and the plesiosaurs is based upon 

the work of several researchers, including Evans (1988), Laurin (1991), Carpenter (1997), Rieppel 

(1993, 1997, 1998, 2000), Rieppel & Hagdorn (1997), Benton (2000), O’Keefe (2001) and Rieppel, 

Sander & Storrs (2002).   

 

Systematics: 

 

Class Reptilia  

      Subclass Diapsida (Osborn 1903) 

Infraclass Archosauromorpha 

Infraclass Lepidosauromorpha 

     (Division Euryapsida) 

Superorder Ichthyopterygia 

Superorder Sauropterygia (Owen 1860) 

   Order Placodontia (Cope 1871) 

   Order Eosauropterygia (Rieppel 1994) 

   Suborder Eusauropterygia (Tschanz 1989) 

    Infraorder Nothosauroidea (Baur 1889) 

    Infraorder Pistosauroidea (Baur 1887) 

        Superfamily Pistosauria (Baur 1887) 

     (Family) Plesiosauria (de Blainville 1835) 

              (Subfamily) Plesiosauroidea (Welles 1943) 

(Infrafamily) Plesiosauridae (Gray 1825) 

(Infrafamily) Elasmosauridae (Cope 1871) 

(Infrafamily) Cryptoclididae (Williston 1925) 

(Infrafamily) Polycotylidae (Williston 1908) 

(Infrafamily) Cimoliasauridae (Delair 1959) 

              (Subfamily) Pliosauroidea (Welles 1943) 

(Infrafamily) Pliosauridae (Seeley 1874) 

(Infrafamily) Rhomaleosauridae (Kuhn 1961) 
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In Rieppel’s view the placodonts are found to be the sister-group of the Eosauropterygia, a 

monophyletic group including the Pachypleurosauria, Nothosauria, and the Pistosauroidea (Rieppel 

1994a). Pachypleurosaurus is also the sister-taxon, or out-group of the Eusauropterygia (Tschanz 

1989), a monophyletic taxon including the Nothosauroidea and the Pistosauroidea. The latter group 

includes the Plesiosauria (O'Keefe 2001; Rieppel 1997, 2000) (see Fig. 6). 

 

 

Fig. 6: Cladogram showing the phylogenetic interrelationships within Triassic stem-group Sauropterygia. Note 

that plesiosaurs are placed within the sauropterygia, and have close affinities with the pistosaurs. (from Rieppel 

2000).  

 

 

 

For a more detailed study on the diagnosis and definitions within stem-group Sauropterygia, see 

Rieppel (2000). 

Today it is generally accepted that the plesiosaurs at least are closely related to the pistosaurs, 

which have a similar bodyoutline, but with less functionally developed limbs for a life in water (see 

Fig.7).   
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Fig. 7: The anatomical structure of a pistosaur. Note the very plesiosaur-like body outline but primitive limb 

structure, as seen in the longer epipodials (from von Huene 1948) http://www.grinpach.cl/pistosaurus.gif 

 

 

 

Pachypleurosauria, a generally small eosauropterygian from the Middle Triassic (Carroll 1988), 

also resemble the plesiosaurs in that their limbs, especially the epipodials, are reduced relative to 

primitive terrestrial reptiles. The limbs are however not highly modified for aquatic propulsion, and 

their skull still remains plesiomorphic. Ossification of the girdles and the mesopodials 

(carpals/tarsals) are greatly reduced making movement on land difficult for these animals.  

The external nostrils are also placed back away from the tip of the snout in Pachypleurosaurs 

although the head is still relatively short (Fig.8). As we will see later, this points toward an 

intermediate condition of aquatic adaptaion.  

 

 

Fig. 8: Pachypleurosaurus showing its key features; relatively short head, long epipodials, and short phalanges 

(from Carroll 1988). 

 

 

 

There is some controversy as to the taxonomic position of the Pachypleurosauria as some see it as 

part of the nothosauria and others see it as a separate clade. 

The nothosauria as a group has long been seen as a one of the closest relatives to the plesiosaurs. 

This relationship however seems to be contradicted by the structure of the palate in these two 

groups. The palate of plesiosaurs is less specialised than that of nothosaurs in the retention of 
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interpterygoid vacuities. Within nothosaurs the palate is greatly modified relative to more primitive 

diapsids as well as plesiosaurs with the complete closure of palatal vacuities (Fig. 9). This suggests 

that the plesiosaurs may have evolved from a more primitive diapsid rather than from any of the 

well-known nothosaurs (Carroll 1988).  

a) b)  

Fig. 9: Palate of (a)  pachypleurosaurus (from Carroll 1988), and (b) Dolichorynchops osborni (plesiosaur) (from 

Carpenter 1997). Note the interpterygoid fenestra marked ”aipf” and ”pipf” on D. osborni, which are lacking in 

pachypleurosaurus (from Carpenter 1997). 

 

 

 

Pistosaurus from the Middle Triassic was originally described as a nothosaur but is now placed 

within the infraorder Pistosauroidea (Rieppel 2000). Pistosauroidea retains a more primitive pattern 

of the palate, and might be a good candidate for the link between the nothosaurs and plesiosaurs 

(see Fig. 6 for a view of the relationship between plesiosaurs and pistosaurs).  

In all Sauropterygians the pterygoids extend backwards to the posterior margin of the basicranium, 

concealing the para-basisphenoid and basioccipital, except in Pistosaurus, Augustasaurus 

(Pistosauridae), and the Plesiosauria which secondarily developed interpterygoid vacuities (Rieppel 

2000) (see Fig.10).  

This reappearance of anterior and posterior interpterygoid vacuities in plesiosaurs is correlated with 

a general trend of reduced ossification in the skeleton, a feature common to many aquatic tetrapods 

(Storrs 1991; Romer 1956).  

Other features connecting plesiosaurs with the Pistosauroidea are loss of the quadratojugal, which is 

present in all other basal sauropterygians, and the possession of a suture between the maxilla and 

squamosum, a suture that excludes the jugal from the ventral skull roof. In Simosaurus and other 

nothosaur-grade sauropterygians the jugal enters the ventral skull margin (O’Keefe 2001).  
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All sauropterygians including the plesiosaurs have a large thyroid fenstra in the pelvis, the obturator 

foramen however which primitively is present in the pubis of sauropterygians is lost in plesiosaurs, 

Cymatosaurus (pistosaur), and Lariosaurus (nothosaur).  

 

Fig. 10: The palate of Pistosaurus. Note the interpterygoid vacuity indicating affinities with the plesiosaurs (from 

Carroll 1988). 

 

 

 

As mentioned earlier there is still some debate as to whether the Sauropterygia belongs to the 

Archosauromorpha or the Lepidosauromorpha, however the majority of researchers seem to prefer a 

Lepidosaurian heritage.  

The Lepidosauromorpha retained the primitive sinusoidal mode of locomotion and lateral 

movement of the trunk, a walking mode like that seen in modern lepidosaurs such as snakes and 

crocodiles.  

Leoidosauromorphs stand in marked contrast to the archosauromorphs which developed a stiff trunk 

and eventually upright posture.  

Advanced members of the lepidosaurs, like the plesiosaurs and pliosaurs who relied on their 

flippers for propulsion, also developed a stiff trunk like the dinosaurs. This stiffening was a result of 

the plesiosaurs mode of locomotion, which did not rely on the primitive lateral undulation of the 

trunk, as this would have had a negative effect on oxygen storage in their lungs. Every animal with 

a sprawling gait and thus a sideways undulation of the trunk has problems running and breathing at 

the same time. This is what Cowen (2001) has called ”Carriers Constraint”, after Carrier (1987) 

who connected styles of terrestrial locomotion with air breathing and metabolic level.  

I will briefly return to this topic when discussing the functionality of the limbs in plesiosaurs as it 

has greatly affected their way of locomotion. 
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The order Plesiosauria existed from the Late Early Triassic (Olenekian) to the end of the Cretaceous 

where they suffered the same fate as the dinosaurs, as casualties of the end-Cretaceous mass 

extinction (Romer 1966). They were most likely shallow water dwellers although the pliosaurs 

might have had the body-structure to venture further into deep-ocean to hunt. 

During their time-span of approximately 243 million years, they became one of the dominant 

predators, alongside the Ichthyosauria, the Cretaceous Mosasauria and the sharks of the Mesozoic 

seas. 

 

 

About adaptation to the sea 

 

Every species will strive to adapt itself to its surroundings, or if possible, escape hostile 

environments. They will do this consciously or by instinct to survive and transfer their genes to the 

next generation. This is to ensure, as Darwin (1859) stated in his book ”On the origin of species”, 

that favoured races or traits are preserved and passed on to the next generation.  

 

Among living and extinct aquatic air-breathers there are certain features that are very characteristic 

for marine life. Some of these features such as an elongated skull with long and slender jaws and 

external nostrils situated far back on the skull to facilitate breathing are seen in the Cetaceans.  

However, some researchers argue that the external nostrils in plesiosaurs were used for smelling 

and had nothing to do with breathing. One of the reasons for this is because their secondary palate 

was not fully developed. The position of the external nostrils in plesiosaurs therefore had nothing to 

do with simplifying breathing at the surface (Cruickshank et al. 1991). 

Most marine animals also have a relatively short neck, an advantage for swift movements under 

water. A long neck found in many Upper Jurassic and especially Cretaceous plesiosaurs would 

actually have a negative effect on movement (McGowan 1999). 

Animals well adapted for a life in the sea seem to have a short neck and a well-developed tail fin for 

locomotion. The latter has developed at the expense of the hind limbs. This obviously is not the 

case with plesiosaurs such as the long-necked elasmosaurs that have very long necks, a small 

inconspicuous tail and large flippers for propulsion. In this regard plesiosaurs seem to go against 

every rule for aquatic adaptation. The short-necked types like Euryclidus, Pliosaurs and 

Rhomaleosaurs on the other hand seem to be better suited for an aquatic life with their longer heads 

and more streamlined body. 
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All of the above modifications are significant with regards to aquatic adaptation, but the major 

changes in marine air-breathers are still seen in the limbs. No other part of the body has so different 

functions on land and in the sea. 

The femur and the humerus are always very short in those animals that have a well-developed 

propelling tail (Halstead 1989). This is clearly seen in whales and dolphins, but also in the 

Mesozoic ichthyosaurs which are all good swimmers.  

Sea lions and walruses, which to a lesser degree are adapted to a life in the sea, have retained their 

hind limbs as well as their front-limbs, though these are all modified as flippers. In addition their 

heads are shorter with more anteriorly situated nostrils. This is a bodyplan similar to that seen in the 

plesiosaurs, with longer femurs and humeri (Fig. 11) to make up for the power-loss these animals 

experience for not having an effective tail for propulsion. Larger propodials increase the surface 

area of the flippers, and hence the power in each retraction gets higher. 

a) b)  

Fig. 11: Plesiosaurs (a) need longer propodials to compensate for the lack of tailpropulsion. Ichthyosaurs (b) who 

have well developed tail fins have shorter propodials (Carroll 1985). 

 

 

 

When the plesiosaurs returned to the sea sometime in the late Permian or early Triassic they had to 

change their way of life drastically. They had to change to compete with the already existing 
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animals in the sea, who over millions of years had adapted themselves nearly to perfection for a life 

in the ocean.  

The plesiosaurs had two possibilities of modifying their limbs, they could either loose them (at least 

the hind ones) and replace them with a tailfin-equivalent as the Cetaceans did, or modify them into 

some sort of propulsive organ. The plesiosaurs obviously did the latter. 

A gradual change in limb bones is clearly seen from early semi-aquatic diapsids such as placodonts 

and nothosaurs up to the plesiosaurs (Williston 1914). 

Plesiosaurs, together with the marine turtles and placodonts, are the only reptiles that did not use 

lateral undulation of the trunk and tail for their primary means of aquatic locomotion.  

As mentioned earlier the trunk became very stiff in plesiosaurs making the primitive lepidosaurian 

type of propulsion impossible (Cowen 2001). Instead they developed a limb-dominated swimming 

mode. No other animal, living or extinct has the same system of movement or body-plan as the 

plesiosaurs, with four highly specialised flippers, a rigid trunk and a short tail.  

If the propodials are long and powerful in these animals the opposite can be said about the next pair 

of bones in the limb, the radius/ulna in the front limb and tibia/fibula in the hind limb (Fig. 12). 

As mentioned earlier, these bones (called epipodials) are in most other animals long and slender, 

especially in running or jumping forms, but in aquatic animals they tend to shorten in length. 

a) b)  

Fig. 12: Notice the length- difference between the long tibia and fibula of Tyrannosaurus rex (a)  (from Benton 

2000), with those of Plesiosaurus dolichodeirus (b) (from Storrs 1997). This shortening  of the epipodials in 

plesiosaurs is a result of perichondral bone loss from the shafts of these, once so long bones. This shortening 

allows a more powerful propulsive force for each retraction of the sculls.  Scale bar = 10 cm. 
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This shortening of the epipodials is a result of changes in, or rather loss of perichondral bone from 

the shafts of long bones (Caldwell 1997). Bone development starts with the formation of cartilage, 

which in turn starts off with the ossification of a bounding membrane (perichondrium). 

Perichondrium is the first step in cartilage formation and forms the outer layer of the cartilage 

element. The inner layer, which ossifies at a later stage, is called endochondrium (Kent & Miller 

1997) and is differentiated from perchondrium by the nature of its alignment relative to various axes 

of the cartilage element (Wolpert & Tickle 1993).   

In the development of long bones there is a certain pattern of orientation between perichondrium 

and endochondrium where the cells are oriented at right angles to each other.  

In contrast, the cartilage cells in short bones such as carpals and tarsals fail to form symmetrical 

patterns and there is no differentiation between perichondral and endochondral tissue 

Rooney et al. (1984) found that perichondrium, which initiates cartilage formation imposes a 

mechanical and physical constraint on growth of the endochondrium by being the first to emerge 

and also the outermost element. In other words the perichondrium controls the growth and hence the 

form of the epipodials.  Any change in the development of perichondral bone will therefore 

influence the morphology of the whole cartilage and eventually the bone itself.  

In carpals and tarsals (mesopodials), which are much shorter elements with irregular to polygonal 

shapes, a differentiated perichondrium is not observed during chondrogenesis. It is likely that the 

forms of these smaller bones are related to the absence of perichondrial tissue (Caldwell 1997).  

Caldwell (1997) argues that if the perichondrium is important in determining the shape of an 

element, alterations to its development will affect the shape of a bone and thus in time its function 

(Fig. 13).  
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Fig. 13: Diagram showing a dorsal view of the left front sculls of different plesiosaurs. Those on the left side are 

early Jurassic in age, and show the more elongate radius and ulna. The three on the right which are much 

shorter and compact are Cretaceous in age. The shortening of the epipodials is due to alterations or loss of 

perichondrium from long bone elements (from Bakker 1993). 

 

 

 

Loss of perichondral bone from the shafts of epipodial elements in plesiosaurs, is probably a major 

reason why the plesiosaurs in time developed flippers.  

Comparing epipodial elements in plesiosaurs with that of early terrestrial diapsids such as the 

Younginiformes, Caldwell (1997) found that perichondral bone loss in plesiosaurs is first observed 

on the proximal and distal margins of the ulna and fibula in Lower Jurassic taxa.  

In geologically later species the loss is confined to all margins of the ulna/radius, and fibula/tibia. 

This shortening of the forearm/leg bones is seen as an adaptation to life in the sea, and the degree of 

shortening can tell us something about the degree of adaptation.  
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Material & Methods 

 

Historical information regarding the fossil specimen A 27745 

In the spring of 2001 the plesiosaur material, PMO A 27745 from the Agardhfjellet Formation, was 

removed from its mounted display at the Palaentological museum, University of Oslo, and the 

surrounding matrix in the display-cabinet was thoroughly examined for other possible pieces of the 

fossil (Fig. 14).  

Many broken and indefinable pieces were found along with a few more complete elements, such as 

small pieces belonging to the phalanges and what looks like part of a rib.  

Before the fossil was removed from its display cabinet pictures were taken and a grid pattern of 

simple thread and some nails was made to ensure that the original position of the material was 

preserved. All of the pieces were checked to see if any were in need of repairing and glued 

accordingly. In this process a few modifications regarding the position and articulation of a few 

pieces was conducted. Details on the latter are mentioned below. 

All of the pieces were given a separate collection number from 0 to 231.  Exceptions are 6 

unnumbered bags of miscellaneous material collected from the matrix after the specimen was 

removed. These bags are labelled according to where in the cabinet grid pattern the material was 

found. 

a)  

b)  

Fig. 14: Picture of the plesiosaur specimen in its mounted display at the Palaeontological museum in Oslo (a) 

(PMO: A 27745). Below is a drawing of the specimen with an explanation on what is seen (b).  
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A few minor changes have been made to the order of reconstructing the skeleton including 

repositioning of some of the pieces in the left epipodial region and articulation of a few new pieces 

also in the left limb and pelvis region. Among the most important changes is the unification of the 

two pieces making up the acetabulum for the left femur (pieces 150 & 153), and the assembly of a 

nearly complete intermedium and fifth metatarsal also from the left limb (Figs. 29 and 30).  

 

Very little information was previously available regarding the age of the fossil and where it was 

found other than a label stating "Jurassic? The mouth of Sassenfjorden, West-spitsbergen" (Persson 

1962). The specimen was apparently found by accident embedded in a dark grey shaly matrix by 

three American physicians, Dr. Freeze, Dr. Maller, and Dr. Paul who were on Svalbard in 1931 

studying the Spanish influenza (Persson 1962; Heintz 1964) (Fig. 15).  

 

Fig. 15: Picture of the three American physicians together with two locals over the partly buried fossil (Photo 

taken by Aasgaard 1931). 

 

 

 

The remains of the skeleton were found partly covered by matrix in a dark shale representing anoxic 

conditions (Dypvik 1980; 1985) and grouped together in such a way that leaves no doubt that they 

represent one individual plesiosaur.  

After excavating the fossil the remains were shipped to the mainland and arrived at the 

Palaeontological museum in Oslo to be mounted as originally found by Professor L. Størmer. 
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Persson (1962) argued that the age of the specimen must have been somewhere between the 

Oxfordian and the Neocomian and Heintz (1964) without providing evidence, states that it was 

found on Diabasodden, on the south side of Isfjorden. However, I have been able to extrapolate the 

age; geological horizon and geographical area in which the fossil was found based mainly on 

information obtained from Persson (1962), Heintz (1964) and Dallmann (1999). Thus I conclude 

that the fossil must have been found in the Agardhfjellet Formation (Parker 1967) and most likely in 

the Slottsmøya Member (Dypvik et. al 1991) north-west of Janusfjellet and hence be of Volgian age 

(Fig. 16). 

 

Fig. 16: Stratigraphic sectoion of the Agardhfjellet Formation. The "bone" symbol in the Slottsmøya Member (in 

blue) represents plesiosaurian fossil remains (from Dallmann 1999). 
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The reason for this is the fact that the specimen is from the Jurassic and that it was found 

somewhere in the area around the entrance to Sassenfjorden. A geological map of this area (see Fig. 

17) indicates that it must have been found somewhere in the Agardhfjellet Formation on the south 

side of the northwest-southeast trending fault, as this is the only Jurassic strata in this area.  

The Slottsmøya Member of the Agardhfjellet Formation is also known to have produced many 

plesiosaur remains throughout the years.  

According to Dallmann (1999) the Member is of a depositional age dating Late Jurassic (Volgian) 

in age. 

a)  b)  

Fig. 17: A: Picture of Svalbard with the locality where the specimen was found marked as a red dot. B: Close up 

geological view showing Isfjorden and the entrance to Sassenfjorden. The darker blue colour below the fault-line 

represents the Agardhfjellet Formation (Dallmann 1999). 

 

 

 

In contrast to mainland Norway, Svalbard, situated between 74º and 81º north and 10º and 34º east, 

has large areas of exposed Mesozoic rocks. Plesiosaurian remains from these rocks have been 

recorded as early as 1914 when Wiman published a description of a vertebral centrum found south 

of Deltaneset on Janusfjellet (Wiman 1914).  

Discoveries and descriptions of marine reptiles however, date back as early as 1864 when 

Nordenskiold discovered a number of fragmentary ichthyosaurian specimens from the Triassic 

(Merriam 1911). In 1873 E. Hulke provived the first description of two species of ichthyosaurs 

from Svalbard (Heintz 1964) and since then more fossils of marine reptiles, mainly of ichthyosaurs 

and plesiosaurs have been discovered along with tracks from dinosaurs. This makes Svalbard an 

exiting area for future palaeontological discoveries.  
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Description of the specimen PMO A 27745 

 

PMO. A 27745: The material constitutes the distal half of a plesiosaur from the pelvis and back, 

(see Fig. 18) containing these preserved parts: 38 vertebrae, some rib fragments, a relatively large 

part of the pelvic girdle, and both hind limbs, the right being the best preserved. For a complete list 

of the material refer to Table 1.  

There are a total of 231 numbered pieces along with a few unnumbered fragmentary pieces from the 

partly crushed left epipodial and autopodial-region. Some of the pieces from the autopodial-region 

have been partly put together after numbering, such as the intermedium, the fifth metatarsal, and 

part of the second distal tarsal. The bones in this area have been compared to those of the right limb 

and repositioned in the best way possible as to resemble the true morphology of the region. 

However, so many of the bones are missing and the material is in such a badly preserved state that 

error is bound to occur.  

After removing the specimen, the display cabinet was divided into 29 rows which all were 

thoroughly examined for additional material. This material was put in six separate bags and labelled 

as miscellaneous material. 

The length of the preserved fossil material is about 2.25 meters. The length of the entire animal is 

difficult to ascertain as much depends on the length of the neck, which varies greatly among 

different species. Using Cryptocleidus as a reference frame, Persson (1962) came up with an 

estimated guess on somewhere around 6.2 meters for the whole animal.  

The way in which the fossil specimen PMO. A 27745 was found and the arrangement of the bones 

more than suggests that the described material from Sassenfjorden belong to a single individual. 

The white coating found on the left femur, the pubis and other smaller parts like the phalanges, a 

few vertebrae and rib-fragments are also indicative of this (see Figs. 24a & 26a). 

 

Due to the cold climate in which the fossil was found much of the material have inevitably suffered 

from frost action (congelifraction) causing the material to crack and split. Aside from this the fossil 

is in a relatively good state of preservation.  
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Systematic Paleontology 

 

Class Reptilia 

Infraclass Lepidosauromorpha  

Superorder Sauropterygia (Owen 1860) 

Suborder Eusauropterygia (Tschanz 1989) 

Infraorder Pistosauroidea (Baur 1887) 

Superfamily Pistosauria (Baur 1887) 

                           Plesiosauria (de Blainville 1835) 

                             Plesiosauroidea (Welles 1943) 

                                Cryptocleidoidea (Williston 1925) 

                                   Gen. et sp. indet. 

 

After the fairly recent inclusion of the Plesiosauria within the Superfamily Pistosauria a problem 

has arisen concerning the taxonomic level of the clades within the Pistosauria. Should we for 

example still think of the Plesiosauroidea and the Cryptocleidoidea as two separate Superfamilies 

within the Superfamily Pistosauria? As a result of these problems I have decided not to specify the 

taxonomic level of the clades within the Pistosauria. 

The above taxonomy is based on the work done by Rieppel (2000) and O’Keefe (2001). In his work 

on Sauropterygians Rieppel (2000) only goes as far as saying that the Plesiosauria is a part of the 

monophyletic Superfamily Pistosauria (Baur 1887-90). The most reliable and comprehensive 

taxonomy of the plesiosauria comes from O’Keefe (2001, 2002) who made a cladistic analysis of 

the Plesiosauria scoring 34 taxa against 166 characters. The result of his work can be seen in Fig. 3.  

 

 

List of material 

 

Table 1: material comprising the fossil specimen A 27745. 

Specimen number Anatomical part 

   

1.   

2.  

3.   

4.   

5.   

6.   

 

Last caudal vertebrae 

               ↓ 

               . 

               . 

               . 

               . 
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7.   

8.   

9.   

10.   

11.   

12.   

13.   

14.   

15.   

16.   

17.   

18.   

19.   

20.   

21.   

22.   

23.   

24.   

25.   

26.   

27.   

28.   

29.   

30.   

31.   

32.   

33.   

34.   

35.   

36.   

37.   

38.   

39.   

40.   

41.   

42.   

43.   

44.   

45.   

46.   

47.   

48.   

               . 

               . 

               . 

               . 

               . 

               . 

               . 

              ↓ 

              ↓ 

               . 

               . 

               . 

               . 

               . 

               . 

               . 

               . 

               . 

               . 

               . 

               . 

              ↓ 

First caudal vertebrae 

Last sacral vertebrae 

Dorsal neural-spine, vertebrae 1 

Dorsal neural-spine, vertebrae 2              

↓ 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 
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49.   

50.   

51.   

52.   

53.   

54.   

55.   

56.   

57.   

58.   

59.   

60.   

61.   

62.   

63.   

64.   

65.   

66.   

67.   

68.   

69.   

70.   

71.   

72.   

73.   

74.   

75.   

76.   

77.   

78.   

79.   

80.   

81.   

82.   

83.   

84.   

85.   

86.   

87.   

88.   

89.   

90.   

. 

. 

. 

. 

. 

. 

. 

              ↓ 

Dorsal neural-spine, vertebrae 27 

Ventral chevron bones, vertebrae 1 

               ↓ 

   . 

   . 

   . 

   . 

   . 

   . 

   . 

   . 

   . 

   . 

   . 

   . 

   .  

   . 

   . 

   . 

   . 

   . 

   . 

   . 

   . 

   . 

   . 

   ↓ 

Ventral chevron bones, vertebrae 29/30 

Right limb: Fifth digit-first phalang, starting distally. 

   ↓ 

   . 

   . 

   . 

   . 
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91.   

92.   

93.   

94.   

95.   

96.   

97.   

98.   

99.   

100.   

101.   

102.   

103.   

104.   

105.   

106.   

107.   

108.   

109.   

110.   

111.   

112.   

113.   

114.   

115.   

116.   

117.   

118.   

119.   

120.   

121.   

122.   

123.   

124.   

125.   

126.   

127.   

128.   

129.   

130.   

131.   

132.   

   ↓ 

              Last phalang on the fifth digit 

              Fifth metatarsal 

              Fibulare 

              Fourth digit-first phalang, starting distally 

              ↓ 

              . 

              .  

              ↓ 

              . 

              . 

              .  

              . 

              . 

              ↓ 

              Last phalang on the fourth digit 

              Fourth metatarsal 

              Third distal tarsal  

              Intermedium 

              Third digit-first phalang, starting distally 

↓ 

. 

. 

. 

. 

. 

. 

. 

. 

↓ 

Last phalang on the third digit 

Third metatarsal 

Second distal tarsal 

Second digit-first phalang, starting distally 

↓ 

. 

. 

. 

. 

. 

              ↓ 

Last phalang on the second digit 
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133.   

134.   

135.   

136.   

137.   

138.   

139.   

140.   

141.   

142.   

143.   

144.   

145.   

146.   

147.   

148.   

149.   

150.   

151.   

152.   

153.   

154.   

155.   

156.   

157.   

158.   

159.   

160.   

161.   

162.   

163.   

164.   

165.   

166.   

167.   

168.   

169.   

170.   

171.   

172.   

173.   

174.   

Second metatarsal 

First digit-first phalang, starting distally 

↓ 

. 

Last phalang on the first digit 

First metatarsal 

First distal tarsal 

Tibiale 

Tibia 

Fibula 

Right femur 

Left ischim 

↓ 

. 

. 

. 

. 

. 

. 

. 

. 

. 

Right ischium 

↓ 

. 

. 

. 

. 

. 

. 

Right ilium 

. 

Left pubis 

↓ 

. 

. 

. 

Sacral vertebrae 

              ↓ 

First sacral vertebrae 

Right pubis 

↓ 
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175.   

176.   

177.   

178.   

179.   

180.   

181.   

182.   

183.   

184.   

185.   

186.   

187.   

188.   

189.   

190.   

191.   

192.   

193.   

194.   

195.   

196.   

197.   

198.   

199.   

200.   

201.   

202.   

203.   

204.   

205.   

206.   

207.   

208.   

209.   

210.   

211.   

212.   

213.   

214.   

215.   

216.   

. 

. 

. 

. 

Miscellaneous material from the right pubis 

Last dorsal vertebrae 

Neural spine 

Dorsal vertebrae 

Dorsal vertebrae 

Neural spine 

Dorsal vertebrae 

Neural spine attached to vertebrae 187 

Dorsal vertebrae 

Rib fragment above the dorsals  

↓ 

. 

. 

. 

. 

. 

. 

. 

. 

Rib fragment below the dorsals 

↓ 

. 

. 

. 

. 

. 

Left femur 

Part of the left femur 

Fifth digit first phalang 

Fourth metatarsal 

Part of the second metatarsal 

Fourth digit fourth phalang? 

Fourth digit, fifth phalang? 

Fourth digit, sixth phalang? 

Fourth digit, part of the first phalang? 

Third digit, part of the fourth phalang? 

Third digit, first or second  phalang 

Second digit, part of the third phalang? 
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217.   

218.   

219.   

220.   

221.   

222.   

223.   

224.   

225.   

226.   

227.   

228.   

229.   

230.   

231.   

Fourth digit, eight phalang?  

Second digit, part of the sixth phalang? 

Third digit, part of the eight phalang? 

Fourth digit, seventh phalang? 

Third digit, part of the fifth phalang? 

Second digit, part of the fifth phalang? 

First digit, part of the first phalang? 

Second digit, part of the third phalang? 

Part of the fist metatarsal 

Second digit, part of the second phalang? 

Fifth digit, part of the fourth phalang? 

Fifth digit, second phalang 

Fourth digit, last part of the first phalang?  (229+213) 

Third metatarsal 

Miscellaneous material from the left limb epipodial region 

 

 

 

 

In the following section a general description is provided for the vertebrae, ribs, pelvic girdle, and 

limbs of specimen P.M.O. A 27445. This is followed by a more detailed discussion of some of the 

more important bones from these regions. 
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Vertebrae 

One change has been made from the original material on the foremost vertebra. The single 

process which was thought to be a transverse process belonging to the second foremost 

vertebra (Collection number 185) was found to be the missing transverse process on the 

foremost vertebra (Collection number 187).  

A total of 38 centra are preserved which can be divided into the following groups: dorsals, 

sacrals, and caudals (Fig. 18).  

 
Fig. 18: The preserved material of the fossil specimen. The first dorsal, last sacral and one middle and one 

posterior caudal vertebrae are highlighted and will be studied in detail below.  Other pieces to be 

examined are also shown.  

 

 

 

The first five centra are dorsals, where the transverse process is located on the neural arch.  

The first dorsal centrum is the only one with articulated transverse processes. Two other 

solitary unarticulated processes are found in this region. 

The number of sacral vertebrae is harder to estimate as the material in this region is more 

weathered. However, four centra show signs of the transverse process originating from what 
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looks like the centrum and neural arch area.  

The next two centra are almost impossible to place, but as the usual number of sacrals in 

plesiosaurs are three or four (Williston, 1914) it is most likely that they are the first caudals. 

The number of sacral vertebrae in today’s reptiles, birds and opossums are two, so it would be 

relatively safe to say that the remaining 29 vertebrae are caudals. The last 27 at least show 

clear signs of being caudals, having the facets for rib articulation on the centrum only.  

The centra become smaller posteriorly through successive dorsal, sacral and caudal vertebrae. 

Likewise their shape changes from nearly circular in outline to a more oval shape. This trend 

can also be manifested in height to width ratio, which changes from nearly 1 (circular) to less 

than 1 (oval).  

However, this trend seems to diminish towards the last few caudals where the height and 

width-ratio of the centra becomes closer to 1, or even larger than 1, meaning that height 

exceeds width. This trend starts at vertebrae number 8 and continues throughout the last 

caudals, reaching positive height to width ratios at number 4. 

All of the vertebrae lack fused ribs and neural spines and only the three foremost have 

residues of the neural arch attached to the centrum. However, all vertebrae have smaller parts 

of the lower neural arch fused to the centrum.  

The best-preserved vertebra is the first dorsal which has a nearly complete neural arch and 

two transverse processes for articulation with the ribs (see Fig. 20).  

 

For future references material found above and below the vertebral column was after study 

stored in plastic bags which was then numbered according to their respective vertebrae. This 

means that there are two bag sets for each vertebra, one containing the dorsal material and one 

the ventral material.  

Most of this material is fragmentary and beyond identification other than it represents dorsal 

neural-spine and ventral chevron-bone pieces as well as a few transverse processes.   

In some of the material found dorsal to the trunk such as bag number 053 (vertebra 023) and 

bag 055 (vertebra 025) part of the posterior zygapophysis seems to be preserved on the 

neural-spine (Fig. 19).  
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Fig 19: From left to right, neural spines belonging to (a) the 5th  and (b) 7th caudal vertebrae respectively. 

Note the posterior zygapophysis marked in blue (PMO: A 27745- Collection number 23 & 25 

respectively). Scale bar = 1 cm 
 

 

Most vertebrae are in a fairly good condition, except the sacrals and the first three or four 

caudals. The following description is selective and restricted to the best preserved from each 

region of the preserved trunk. 

 

 

The first dorsal vertebra (Collection Number. 187) (Fig. 20): This is almost complete, lacking 

only the neural spine and smaller parts of the centrum. The articular surface of the centrum is 

nearly circular in outline and biconcave/amphicelous. The centrum also displays concavity 

when seen from the sides and from below, giving it a sharp and well-defined edge.  

The length, width, and height of the centrum, is 6.2 cm, 8.2 cm, and 8.6 cm respectively, 

measured from the anterior end at its centre. In posterior view the width of the centrum is a 

little larger, measuring 8.6 cm, making the centrum widen from front to back like a wedge.  

The neural canal measures 4 cm. in height and 1.5 cm in width, being a little broader at the 

bottom. The inner surface of the neural canal is very smooth but with a prominent ridge on  

the left inner wall. 
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a)  b)  

Fig. 20: First dorsal vertebra shown in (a) lateral and (b) anterior view. The ridge inside the neural canal 

can be seen in the picture on the right as a bulb in the middle of the canal on the right hand side  (PMO: A 

27745-Collection number 187). Scale bar = 5 cm. 

 

 

 

There are no clear signs of the zygapophysis on the vertebra, except maybe some relics on the 

posterior side just above the neural canal. 

The lengths of the transverse processes are approximately 10.5 cm, the distal part being the 

thickest, measuring 4.5 cm in width. 

What looks like a nutritive foramen is located on the right side of the centra, a little ventrad in 

an area with small grooves. The foramen on the other side is missing because of the lack of 

the left-ventral side of the centra.  
 

 

4th sacral vertbra (Collection number. 30) (Fig. 21): Only half the centrum remains, of what 

looks to be the right side, and the articular surfaces are both weathered with the outer surface 

missing.   
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As with the first dorsal, the articular surfaces as well as the lateral and ventral sides are all 

biconcave giving the centrum a well-defined edge. However, this is not as prominent as that 

seen in the first dorsal because of more weathering on the edges. 

A small part of the neural canal floor is present along with the facet for the right transverse 

process. This facet, which is oval in outline and situated in a nearly vertical manner, is 

relatively deep with two conspicuous concavities at its centre. The size of the facet for the 

transverse process is 3.7 cm and 1.6 cm respectively. 

 

a) b)    

Fig. 21: The last sacral vertebra shown in (a) anterior and (b) lateral view. The drawing (c) below shows 

the vertebrae in anterior view with the preserved piece in grey (PMO: A27745-Collection number 30). 

Scale bar = 5 cm. 

 

 

 

A few irregularities are also seen just below the facet, which most likely are some sort of 

nutritive foramina or perhaps markings from articulation with the pelvic girdle and the ilium.  

Reconstruction of the bone allowed for the length, width, and height to be measured which 

was 5.0 cm, 8.0 cm, and 7.2 cm respectively.  

 

From the caudal region I will describe two vertebrae, one from the middle region (number 17) 

and one from the posterior region (number 6).  
 

13th caudal vertebra (Collection number 17) (Fig. 22): The centrum is a little broader than 

high, 7.1 cm to 6.0 cm respectively, and has a length of approximately 4.2 cm. As with the 
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dorsal vertebrae these measurements are taken from the anterior end where the width of the 

articulation surface is a little smaller than on the posterior end, where the width is 7.7 cm. 

This is a feature seen in most of the caudals except the posterior ones and causes the centra to 

be a little more elliptical in outline in posterior view. Other than this the anterior and posterior 

surfaces are similar in appearance and are both biconcave.  

The facet for the left transverse process measures 3.0 and 2.4 cm, taking the long and short 

axis respectively. The facet is easily recognisable and is tilted somewhat downwards at the 

posterior end. The facet on the right side is more weathered and therefore not as pronounced. 

From below, the centrum has a sub-rectangular concavity with two laterally placed, low 

longitudinal ridges, one on each side of the foramina for nutritive vessels. These ridges are 

mentioned by Welles (1943) as one of the distinctive characters of dolichodiran plesiosaurs.  

One of the nutritive foramina is clearly visible towards the centre of the vertebra, while the 

second one is lacking because of a crack passing through the centrum. 

The four sub-triangular chevron facets are preserved and easily recognisable. They are 

situated one on each end of the ventral transverse ridges.  

Why there are four facets and not two is because the chevron bone articulates with a facet 

which is shared between this centrum and the one in front and behind. This is a feature that 

starts in the seventeenth vertebra and continues throughout the rest of the caudals. In the 

caudals anterior to number 17 there are only two chevron facets situated on the posterior end 

of the centrum.  

Only a small part of the neural canal floor is preserved due a crack going through the centrum. 

A small part of the left neural-arch wall no more than 1 cm high is also preserved.  

 

a)      b)  

Fig. 22: The 13th caudal vertebra from the middle caudal region shown in (a) anterior and (b) lateral view 

(PMO: A 27745-Collection number 17). Scale bar = 5 cm. 
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24th caudal vertebrae (Collection number 6) (Fig. 23): The width, height, and length of the 

vertebrae is 5.0 cm, 4.5 cm, and 3.3 cm, respectively. The centrum is biconcave but not as 

much as in the dorsals and anterior caudals.  

The anterior side of the centrum is best preserved with few cracks. Seen in antero-posterior 

view the centrum widens in the dorsal direction, giving it a shape somewhat like an inverted 

triangle. The reason for this is that the ventral part of the centrum seems to be a little 

compressed laterally.  

The facets for the small caudal ribs, or rather the facets for the transverse processes, are 

prominent and situated a little more anteriorly on the centrum compared to the dorsals and 

anterior caudals. The long-axis of the facet measures 2.0 cm in length and the width 

perpendicular to the long axis is about 1.2 cm. 

Below the rib facets there is a marked semicircular concavity on both sides with a well-

developed rim. Ventrally the centrum is also concave with the same longitudinal crests on its 

lateral sides as mentioned in number 016, although much more pronounced.  

Situated on the end of these crests are the four chevron-facets, the two posterior being the 

largest.  

The nutritive foramina have most likely coalesced to form one hole situated a little towards 

the anterior end of the centrum.  

Dorsally the neural canal floor is missing and only two tiny longitudinal ridges are left of the 

neural arch. 

  

a) b) 

Fig. 23: The 21 caudal vertebra shown in (a) anterior and (b) lateral view (PMO: A 27745- Collection 

number 6). Scale bar = 5 cm. 
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Ribs (Fig. 24) 

Only five incomplete ribs were originally preserved, all found in the anterior region of the 

fossil above and below the first five dorsals. They are slender and dorso-ventrally flattened or 

rod-shaped and most of them show clear muscle-scar lineations especially towards the 

articulation facets.  

The three ribs above the dorsal vertebrae are in a relatively good state of preservation 

although not complete. The two posterior ribs have parts of their articulation site with the 

transverse processes intact.  

In the first of these, number 192, the actual articulation facet for connection with the 

transverse process is present. 

 

 

Fig. 24: A total of five fragmented ribs are preserved. The two white (a + b) were located below the dorsal 

centra while the three grey ribs (c + d + e) were located above (PMO: A 27745- Collection number 188-

204). Scale bar = 5 cm. 
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The thickness and width is the same throughout the rib and features from below a lunar-

shaped concavity extending up the rib. In the second rib, number 188, the articulation area is a 

much larger element, almost twice the size to that seen in number 192, which also has a 

lateral bend to it at the proximal end. The actual articulation facet with the transverse process 

in this latter rib element is missing. 

The two ventral ribs are very fragmentary but show the same overall features as those found 

in the dorsal ribs. Rib number 201 from the anterior ventral rib contains part of the 

articulation facet with the transverse process which is somewhat square-shaped. The overall 

shape of this rib-element is a little different from that seen in the other ribs, it is not dorso-

ventrally flattened but rather has a more stocky shape to it. The two ventral ribs are also 

covered with a white coating containing Carbonate-fluorapatite [Ca5(PO4,CO3)3F], Braunite 

[Mn2+Mn6
3+Sio12], and Fluorapatite [Ca5(PO4)3F]. This is the same coating mentioned earlier 

also covering part of the right pelvis, left limb and some vertebrae (Fig. 25).  

A small unnumbered fragment of what looks like part of a rib-fragment was found lying 

beside vertebrae number 23. 

 

Fig. 25: Graphical illustration showing the constituents of the white coating found on different pieces of 

the specimen. The different minerals are colour coded; blue-Carbonate-fluorapatite, green-Braunite, and 

red-Fluorapatite.   
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Pelvic girdle (Fig. 26) 

The left and right pubis and ischia, as well as the right ilium constitute the preserved parts of 

the pelvic girdle. The left side is severely weathered and much of the material is missing. The 

right side however is in a relatively good state of preservation and is described in detail 

below.  

Although not complete, the right pubis is the largest single piece of the pelvic girdle.  

a) b)  
 

c)                              d) 

Fig. 26: The right pubis of PMO A 27745 exposed in (a) ventral and (b) dorsal view, the scale is 10 cm. A 

drawing of the pubis in ventral view (c) with the preserved pieces in grey and a sketch of the areas with 

the most pronounced muscle scars (in ventral view) (d) is shown below (PMO: A 27745- Collection 

number 173-178). Scale bar = 5 cm. 
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The anterior part is partly broken and the exact shape is difficult to ascertain as the entire 

outer rim of the bone is missing. This is probably due to the rim having been capped in 

cartilage.  

The length and width of the remaining pubis measures 28 cm and 31.5 cm respectively. It 

thickens posteriorly and to some extent also towards the acetabulum where it articulates with 

the femur. In dorsal view the pubis is slightly concave from front to back and displays several 

rugosities and striations especially towards the posterior end where the markings seem to 

follow the outer rim of the bone. These markings are most likely muscle scars. 

In a depression, situated anteriorly and to the left towards the left pubis, another accumulation 

of muscle scars is seen.  

The ventral side is a little more worn but clear markings after muscle attachment is 

nonetheless visible at much the same places as those seen in dorsal view. 

The articulation facet with the femur is almost complete save for the missing outermost rim. It 

has a width of 9.8 cm and a height of 5.6 cm. This concave facet is continuous with the 

smaller symphysial border with the right ischium, which measures 6.0 cm in width and 4.4 cm 

in height. The height of this latter facet diminishes towards the obturator fenestrae and was 

measured close to the acetabulum.  

The facet for articulation with the left pubis is also preserved although a small dorsal part is 

missing. This facet measures 7.3 cm in width and 4.5 cm in height. 

The right ischium is partly crushed and composed of several separate pieces. However some, 

such as the articulation sites with the femur and the left ischium together with the posterior 

part, are in a relatively good state of preservation. The length and width of the ischium is 32.8 

and 30.6 cm respectively (Fig. 27). 
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   a)                                               
b)   

 

 

 

 

 

 

 

 
    c)                                                                                                 d)             

Fig. 27: The right ischium exposed in both (a) ventral and (b) dorsal view. A drawing of the ischium in 

ventral view with the preserved pieces in grey (c) and a sketch of the areas with the most pronounced 

muscle scars (d) is shown below (PMO: A 27745- Collection number 155-162). Scale bar = 5 cm. 

 

 

 

The articulation sites with the right pubis, right femur, and right ilium are present and 

relatively well-preserved. The heights and widths for these respective facets are 6.0 & 6.7 cm, 

7.3 & 8.2 cm, and 6.1 & 7.4 cm. 

An almost complete facet for the articulation with the left ischium is also preserved with a 

height and width of 7.0 and 11.4 cm respectively. 

The posterior edge of the ischium is almost completely straight and has a peculiar downward 

bend to it when seen in ventral view. 

Muscle scars are clearly visible especially in two regions, around the area of the femur/ilium 

attachment and around the attachment site with the left ischium.  
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The right ilium is a rod like element preserved in two pieces. The largest is a flat and broad 

element that attaches to the sacral vertebrae of the trunk. The other is the head of the ilium 

and articulates with the ischium and pelvis. A piece of the ilium, which should have made up 

the intermediate part, is missing. The exact length is therefore difficult to estimate, but 

approximately 20 cm is reasonable (Fig. 28). 

 

a)     b) 

Fig. 28: The right ilium (a). The drawing of the ilium (b) shows the preserved parts highlighted (PMO: A 

27745- Collection number 163 & 164). Scale bar = 5 cm. 

 

 

 

Both pieces show clear muscle scar markings although they perhaps are a little more 

prominent on the head than on the distal end. Scars on the distal end of the ilium imply that a 

connection of some sort indeed was present between the pelvic girdle and the trunk. Whether 

this was sufficient to support the weight of the animal on land is difficult to say. 

 

 

Limbs 

Both hind limbs are preserved, the right being the best preserved and most complete, while 

the left is badly weathered and lacking a few elements of the epipodial and autopodial-region 

(ankle and digits).  

It has been possible to partly restore some of the disarticulated material of the left limb such 

as the fifth metatarsal and the intermedium as well as what could be part of the second 

metatarsal. The remaining pieces making up the left epipodial and autopodial region are too 

fragmentary to be restored fully.  

A few changes have been made with regards to the position of the bones in the autopodium of 

the left limb by comparing the left and right limbs.  
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In addition to the femur, the left limb comprises thirty-two numbered pieces and seven 

unnumbered clusters of bone-fragments. The latter have been placed within the epipodial and 

autopodial region as part of the tibia, fibula, tibiale, fibulare, and the first, second, and third 

distal tarsal. This grouping was mainly done on the basis of bone-thickness and general 

morphology of the fragmented material. One bone-cluster in particular, placed as the tibiale, 

is also a good candidate for either the tibia or ulna.  

 

Three previously undescribed elements of the left limb, the intermedium, fifth metatarsal, and 

what is most likely the top part of the second metatarsal are here described.  

The intermedium measures 6.5 cm in width, 5.5 cm in height, and approximately 1.5 cm in 

thickness. It is almost complete save for a few missing elements in the centre and towards the 

articulation with the tibiale. The bone is very similar, both in size and general morphology, to 

that of the right-limb intermedium (Fig. 29). 

 

a)             b) 

Fig. 29: The partly restored intermedium of the left limb (a). The drawing (b) on the right shows the 

complete intermedium with the preserved parts highlighted (PMO: A 27745- Collection number 231).  

Scale bar = 5 cm. 

 

 

 

The fifth metatarsal has a height, width, and thickness of approximately 6 cm, 3 cm, and 2.2 

cm respectively. It was made by combining the proximal part of what was originally thought 

to be the fifth metatarsal with a new part found among the digits of the left limb (Fig. 30). 
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Fig. 30: The new fifth metatarsal of the left limb. The distal part is new with regards to how the specimen 

first was laid out (PMO: A 27745- Collection number 232). Scale bar = 1 cm. 

 

 

 

The second metatarsal of the left limb came to light when fitting the distal residual part of the 

original fifth metatarsal with an inconspicuous fragment found in the epipodial region of the 

left limb (Fig. 31). The bone has the characteristic square-shaped head such as seen on the 

equivalent element of the right limb.  

 

Fig. 31: The new second metatarsal of the left limb(PMO: A 27745- Collection number 209). Scale bar = 1 

cm. 

 

 

 

With the exception of a few missing phalanges the right limb is almost complete.  

The femur articulates distally with only two elements, the tibia and fibula (Fig. 32), which in 

turn articulates with three elements, the tibiale, intermedium, and fibulare.  

The tibia articulates distally with the tibiale and intermedium while the fibula articulates with 

the intermedium and fibulare.  
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Fig. 32: The tibia and fibula of the right limb seen in ventral view (PMO: A 27745- Collection number 141 

& 142). Scale bar = 5 cm. 

 

 

 

In the third row there are four elements, the distal tarsals d1, d2, and d3 as well as the fifth 

metatarsal, m5. The tibiale articulates distally mainly with the first distal tarsal (d1) but also 

touches the corner of the second distal tarsal (d2). The intermedium has articulation facets for 

both d2 and d3 but not d1. The fifth metatarsal (m5) articulates with the fibulare only (Fig. 33). 

a) b  

Fig. 33: The right femur seen in (a) ventral and (b) distal view (PMO: A 27745-Collection number 143). 

Scale bar = 10 cm.  

 

 

 

In the fourth row, the remaining four metatarsals are located as well as the first bone of the 

fifth digit. The first distal tarsal (d1) articulates distally with two elements, the first and second 

metatarsal (m1 & m2). The second distal tarsal (d2) also articulates distally with two elements, 
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the second and third metatarsal (m2 & m3). The third distal tarsal (d3) and the fifth metatarsal 

(m5) however articulate with only one element distally, the fourth metatarsal (m4) and the 

phalang from the fifth digit respectively.  

The number of preserved phalanges in the digits I - IV are 4-9-12-12 and 8 respectively.  
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Discussion and systematics 

 

Due to the incomplete skeleton available and especially the lack of the skull plus the chaotic 

taxonomic history of the order Plesiosauria, it is very difficult to assign the specimen to a 

known genus or species. However certain morphological features present allow for some 

conclusions to be drawn.  

Before comparing the fossil material with that of other contemporary specimens I will briefly 

mention some of the general misconceptions in plesiosaur taxonomy and also refer to the 

interpretations and conclusions presented by Persson (1962). 

 

Since its inception the Order Plesiosauria has suffered from taxonomic chaos because 

assigned genera and species have been erected on the basis of insufficient material or because 

ontogenetic variations have been misinterpreted as synapomorphies.  Strong ontogenetic 

variability of the plesiosaur skeleton is seen in the proportions and forms of the vertebrae, 

especially the centra, and in the girdle bones, commonly found as fossils (Godefroit 1995; 

Bardet & Godefroit 1995; Carpenter 1996, 1999).  

In the early nineteenth century little was known of the now well established taxonomic 

concept which identifies the skull as one of the most important regions exhibiting apomorphic 

characters. The regions around the temporal fenestra and the palate are especially important in 

plesiosaurs.  

The reason why the skull is a more reliable feature of use in taxonomy is because cranial 

features and the atlas-axis complex are much more evolutionary stable than postcranial 

features, and hence are much less susceptible to convergence (Carpenter 1997).  

Many of the characters used in early classifications are very homoplastic within the 

Plesiosauria, meaning that they are very susceptible to convergence and hence of no real 

taxonomic value.  

However, of late extensive revisions of the Sauropterygia (e.g. Storrs 1991, 1993; Rieppel 

1999, 2000; Rieppel & Wild 1996) and the order Plesiosauria (Brown 1981, 1993; Brown & 

Cruickshank 1994; Bardet 1998; Storrs 1997; O’Keefe, 2001, 2002) have significantly 

improved our knowledge of the phylogeny of the marine reptiles. 

 

In describing Tricleidus svalbardensis, Persson (1962) based most of his work on the 

characteristic shape of the ischia and the epipodials of the right hind limb, from where he 

argued that the fossil showed close affinities with in particular two genera, Tricleidus 
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Andrews 1909 and Apractocleidus Smellie 1915. The latter has since been recognised as a 

synonym of Cryptoclidus Phillips 1871 by Brown (1981).  

Based on features of the ischia, Persson (1962) compared the present material with that of the 

type specimen Cryptoclidus eurymerus. However there were some minor differences between 

the two, regarding the posterior border of the ischia, which is almost straight in the Svalbard-

specimen and curved in C. eurymerus. Other differences can be seen in the hind limbs where 

in C. eurymerus the femur has a more concave anterior end and also a more expanded distal 

end.  

Following the work by Smellie (1915, 1916) on Apractocleidus teretipes (= Cryptoclidus 

eurymerus), Persson (1962) identified yet another difference based on the number of elements 

associated with the distal articulation of the femur. According to Smellie (1916, p.625) the 

femur of his A. teretipes (= C. eurymerus) articulated with four elements distally whereas the 

present specimen articulates with the tibia and fibula only. For this reason Persson (1962) 

compared the Svalbard material with Tricleidus seeleyi as this was the only form with a 

similar hind limb. Persson (1962) used the above information to eliminate Cryptoclidus as a 

possible name for the present specimen.  

It is now known however, that C. eurymerus only has two epipodial elements and therefore 

can not be excluded as a taxonomically related clade on the terms set by Smellie (1916). 

 

Tricleidus seeleyi is the type species of the genus and was described in detail by Andrews 

(1909) and later by Brown (1981). It is part of the Leeds collection (R 3539) consisting of 

disarticulated material of most of the skull together with half the postcranial skeleton.  

Other material includes one pectoral girdle and humerus of an adult (NMW. 19.96.G7) and 

the right humerus of an adult (H.M.G. V.1800), both from the Oxford Clay in the area around 

Peterborough.  

The diagnosis for the genus is largely based on features of the skull, teeth and some elements 

of the pectoral girdle. This makes the process of comparing it with the Svalbard-specimen, 

where only the distal parts from the pelvis and back are preserved, difficult. 

In the following section the Svalbard material is compared with three of the following five 

known contemporary genera, Cryptoclidus, Muraenosaurus, Tricleidus, Colymbosaurus, and 

Kimmerosaurus. 

Material of Kimmerosaurus only consists of an incomplete skull and 11 teeth, while 

Colymbosaurus has articular facets for three epipodials on the distal end of the femur and 

therefore clearly is not related to the Svalbard-specimen.  
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Persson’s (1962) attempts of classifying the Svalbard material is fairly accurate, but  it has 

simply been surpassed as the result of more thorough analysis of early plesiosaur material 

leading to the recognition of new clades and to the establishment of previously unknown 

relationships between taxa within the Plesiosauria. 

 

Especially data based on the postcranial characters as used by O’Keefe (2001), Rieppel 

(1997), and Brown (1981) are particularly relevant here. 

Data for Jurassic plesiosaurs found in the cladistic analysis by Bardet, Godefroit & Sciau 

(1999) and especially that of O’Keefe (2001) has been important in helping to provide the 

cladistic scheme shown here (Fig. 34).  

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 34: Tentative phylogenetic relationship between the Svalbard specimen and 10 other well known 

Upper Jurassic taxa. The fossil was scored against 166 characters taken from O’Keefe’s cladistic analysis 

of plesiosaurs (O’Keefe 2001). The matrix yielded 7 most parsimonious trees with a tree-length of 192 

steps. All clades have a Bremer support of 1 (Bremer 1994). From left to right the taxa above are: 

Pistosaurus, Hauffiosaurus, Liopleurodon, Macroplata, Cryptoclidus, Dolichorhynchops, Polycotylus, 

Tricleidus, the current specimen, Muraenosaurus, and Libonectes. 

 

 

 

O’Keefe (2001) has provided the most recent cladistic analysis of the Plesiosauria in which he 

scored 34 taxa against 166 morphological characters where the primitive state was set to zero 
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and polarity was determined using outgroup comparison. Of these 166 characters, 107 

concerned the skull whereas only 59 were postcranial. Only 21 of the postcranial characters 

were applicable to the Svalbard specimen, which has been compared with 10 taxa taken from 

O’Keffe (2001).  

In the resulting matrix only 4 of the postcranial characters were informative, the 17 residuary 

were either found in all or only one taxa thus being of no taxonomical importance. The 4 

informative characters (3, 130, 146, and 161) concern relative length of ischium/pubis, lateral 

compression of neural spines, presence/absence of median pelvic bar, and epipodial 

morphology (O’Keefe 2001).  

Parsimony analysis of the data matrix using Fitch-optimisation (Fitch 1971) and branch-and- 

bound search yielded 7 most parsimonious trees, each with a tree length of 192.  

The strict consensus tree computed from these trees is shown in Fig. 34. For a look at the 

seven most parsimonious trees along with a 50 % majority rule consensus tree, refer to the 

appendix 1 page 99.  

 

The Svalbard-specimen is located in a clade comprising Muraenosaurus, Cryptoclidus, 

Tricleidus,  Polycotylus, Dolichorhynchops and Libonectes. All of these taxa except 

Libonectes, which is an elasmosaur, are part of the group Cryptocleidoidea as defined by 

O’Keefe (2001) (see Fig.3).  

That the specimen was found to be part of the Cryptocleidoidea is not surprising and rather 

expected as it also displays very similar morphological features to taxa within this group. 

However, with only 4 of the characters being informative this taxonomical position is rather 

tentative. 

 

Based on the three ontogenetic stages defined by Brown (1981) “juveniles, “adults, and “old 

adults” it appears that the present specimen is an adult or at least a young adult. This is based 

on the general size of the bones as well as the observation that the neural arches, where well 

enough preserved, are fused to the centra, and to the shape of the pelvic bones. The pubis and 

ischia of juvenile plesiosaurs lack a continuous symphysial border and are usually only 

connected medially. This often results in the characteristic hatchet-shaped ischia typical of 

juvenile plesiosaurs, a feature absent on the present material. 

Establishing an approximate age to the fossil is important with regards to classification 

because it enables us to use some features, such as those of the limbs and pelvis, in  

classification if the animal is fully-grown.  
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Taxonomical comparison 
Although diagnostic characters confirming assignment to the superfamily Cryptocleidoidea 

are lacking there are certain morphological features that link the present material to 

contemporary specimens within that group. These are: Muraenosaurus, Cryptoclidus and 

Tricleidus.  

 

Femur: This is very similar to that of contemporary genera, such as Muraenosaurus, 

Cryptoclidus, and Tricleidus. It shows some similarities to M. leedsii (holotype: R. 2421) seen 

in the small convex bulb on the distal end of the femur separating a right and left facet for the 

articulation with the tibia and fibula. This convexity however is perhaps a little more 

pronounced in both T.seeleyi (holotype: R 3539) and C.eurymerus (neotype: R 2860). The 

Svalbard-specimen also has a much more inwardly curved anterior distal end of the femur as 

well as a sharper bend on the posterior distal end than does M.leedsii. 

As far as overall size goes the Svalbard-specimen has a much larger femur, almost double the 

size, compared to the holotypes of the three taxa mentioned above. With regards to the 

general appearance of the femur the specimen would have to be placed closest to Tricleidus.  

Some differences worth mentioning are first of all the already mentioned difference in size, 

the Svalbard-specimen having an almost twice as large femur (41cm compared to 21cm in T. 

seeleyii (R. 3539)). Because both specimen most likely are a fully-grown animals, judging by 

the vertebrae and the pelvic/pectoral girdle, this big size difference undoubtedly point toward 

a more distant relationship between the two species.  

When this is said it is important to note that the specimen has a large femur when compared to 

most taxa. Of the plesiosaur fossils described by Andrews (1910) where the femur is 

preserved the range in length goes from approximately 16 cm up to a maximum length of 35.7 

cm measured in M. leedsii (R.2861).  

The only contemporary taxa I have come across to have approximately the same length as the 

Svalbard-specimen is Colymbosaurus trochanterius (41 cm) (Owen 1840) described by 

Brown (1981). Besides the similar length of the femur however these taxa are rather different. 

The second thing is a minor difference on the anterior distal end of the femur where 

Tricleidus seeleyii seem to be a little more convex just before the articulation with the tibia.  
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An example of how difficult it is to use the femur in plesiosaur classification is understood 

when you see that the form and shape of the bone actually can be quite different between 

specimens referred to the same species. This is easily seen when comparing the femur of two 

Muraenosaurus of the species leedsii, R. 2678 and R. 2421 from the Leeds collection 

Andrews (1910: fig. 10 plate 4 & fig.12 plate 5) which clearly look rather different.  

This obviously makes it difficult to classify the specimen based on the shape of the femur.  

 

Epipodials: As with the femur these elements are similar to those of contemporary taxa.  

The tibia is virtually identical to that found in Cryptoclidus, and to a lesser degree that in 

Tricleidus and Muraenosaurus. The tibia of Cryptoclidus shares a similar sharp edge on the 

anterior side close to the femur. If you look at Tricleidus and Muraenosaurus you see that the 

tibia lacks this edge and actually is much more concave leaving a small wedge on the anterior 

side of the limb between the femur and the tibia. 

With regards to the fibula Tricleidus and Cryptoclidus are the ones that stand out in terms of 

similarity. They both share the triangular-shape seen in the Svalbard-specimen, with one end 

being relatively squeezed together and the other more pulled apart in a proximal-distally point 

of view. In terms of general appearance the fibula of Tricleidus is perhaps the most similar. 

However, taking into account the huge difference in size between the fibula of Tricleidus and 

the Svalbard-specimen, the latter being almost double the size, Tricleidus looses a point to 

Cryptoclidus, which is a little larger.  

 

Pelvis: As in all plesiosaurs the pelvic girdle is composed of the three usual bones, ilium, 

pubis, and ischium. Although similar to that of other plesiosaurs the pelvis of the Svalbard-

specimen displays a few characteristic features most of which are found in the ischium.  

The ischium is maybe the single one piece of bone that separates the specimen from other 

well-known taxa of the Upper Jurassic. What makes this piece so special is its symmetrical 

display when seen in antero-posterior view, its relatively straight posterior border, and its 

length.  

The ischium can in an anterior-posterior view be divided into a right and left part that are 

extraordinary similar when compared to the ischia of other plesiosaurs. Typical for most other 

taxa is that the posterior plate of the ischial bone is somewhat shifted towards the symphysial 

border (left when looking at a right ischium and right when looking at a left ischium). This is 

clearly seen in the ischia of the type specimen R. 2421 and the younger R. 2428, both of 

which belong to the Muraenosaurus leedsii. 
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Going from the acetabulum and backwards in the Svalbard-specimen the ischia almost 

immediately begins to bend, making a gently concave continuous outer border. In contrast the 

two specimens mentioned above has a much more laterally progressing border before it bends 

off towards the posterior end. This results in the latter species having a much more 

pronounced head on their acetabular side of the ischium than is the case with the Svalbard-

specimen. The other conspicuous features seen in the ischium are the almost straight posterior 

border and its relatively long length.  

For reasons mentioned above most other plesiosaurs tend to have a more pointy posterior end 

to the ischium. In plesiosaurs belonging to the long-necked small-headed guild the ischium is 

usually also a much shorter and smaller element than the pubis. A long ischium is a 

conspicuous feature found in the pliosaurian body-type together with the large head and short 

neck. This body type evolved in three plesiosaur clades: the Rhomaleosauridae, Pliosauridae 

and Polycotylidae 

The Cretaceous Polycotylidae is, as mentioned before, found to be in a closer relationship 

with the long-necked plesiosaurs of the Upper Jurassic and therefore placed within the 

Tricleidia.  

Based on these similarities with the polycotylids with regards to the ischium and the fact that 

the Svalbard-specimen was found to be in a close evolutionary relationship to taxa within the 

Cryptocleidoidea (refer to Fig. 3 and 34) I would tentatively refer the specimen to the family 

Tricleidia within the Cryptocleidoidea.  

Remember that Persson (1962) defined the specimen as Tricleidus svalbardensis and that 

Tricleidus at that time was part of the Family Elasmosauridae. However, according to 

O’Keefe (2001) the Tricleidia is a separate clade comprising the Polycotylidae and the 

Cimoliasauridae as well as the genus Tricleidus. 

 

O’Keefe (2001, 2002) argues that the placing of the Polycotylidae within the Tricleidia shows 

that the pliosauromorph body type of the polycotylids is derived from a Tricleidus-like 

ancestor. Further he says that Tricleidus possesses several synapomorphies linking it with the 

short-necked plesiosaurids, which explains the close relationship it has with the Polycotylidae. 

These synapomorphies include the presence of posterior medial processes of the pterygoids, 

reduced basioccipital tubers, a median contact between the basioccipital and parasphenoid, 

and the presence of a third distinct articulation on the propodials for a supernumery 

ossification in the epipodial row. Traits shared by all short-necked plesiosauroids.   
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That Tricleidus as defined by O’Keefe (2001) share synapomorphies with the short-necked 

plesiosaurs is quite interesting as the Svalbard-specimen also shows a feature typical for 

short-necked types, seen in its relatively long ischium.  

However, the third articulation facet on the propodials as mentioned by O’Keefe (2001) is not 

present in the hind limb of the Svalbard-specimen and everything suggests that it only had 

two elements in the epipodial row. 

A hypothetical suggestion is then whether the Svalbard-specimen maybe is an intermediate 

specimen between Upper Jurassic long-necked plesiosaurs and short-necked plesiosaurs of the 

Cretaceous. But without synapomorphies of the skull it is impossible to conclude whether or 

not this specimen is in fact closely related to the short-necked plesiosaurs. 
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On how plesiosaurs used their flippers in propulsion  
 

How plesiosaurs used their flippers in locomotion has long puzzled palaeontologists and a 

number of theories have been proposed.  

Watson (1924) believed the two pairs of flippers were used as oars, moved back and forth in 

the water. This view was later replaced with a new theory in which the limbs were said to be 

used more like a birds wing, beating up and down in the water (Tarlo 1958; Robinson 1975). 

In this scenario the four limbs were treated as identical structures. But this new theory of a 

four-winged plesiosaur did not last, and the reason was the clearly inadequate musculature for 

the upward recovery stroke in the hind flippers (Lingham-Soliar 2000).  

Robinson (1975) has received a lot of criticism for her theory about the upstroke propulsive 

force in the plesiosaur flippers. Especially Tarsitano & Riess (1982) and Frey & Riess (1991) 

have stressed that the power-stroke was on the downbeat, and that the recovery stroke was 

passive. This is also consistent with the nature of the elements of the girdles (Halstead 1989; 

Godfrey 1984).  

Today it is commonly agreed that the anterior flippers, which have a more crescent shape, as 

in a swallows wings, are dynamically more efficient for propulsion than the posterior sculls 

which are more straight. Lingham-Soliar (2000) sees the plesiosaurs as with a front-wheeled 

drive engine, the front flippers producing thrust and lift, whereas the hind flippers are more 

passive, serving as steering and manoeuvring organs.  

But in order for the anterior sculls to function effectively they must be used symmetrically 

rather than alternatively (Carroll 1985, p. 153).  This has to do with not loosing oxygen due to 

sideways undulation of the thorax. Asymmetrical movement of the flippers would bend the 

thorax sideways and compress the lungs, depleting them of oxygen. As mentioned earlier this 

problem is also seen in modern lizards and amphibians, where the backbone bends to the right 

and left respectively for each stride, compressing the lungs as it does so. Running and 

breathing at the same time is therefore impossible in these animals (Cowen 2001).  

This problem called ”Carrier’s constraint”, after Carrier (1987), has been solved in most land 

vertebrates by evolving erect stance. Plesiosaurs solved the problem by stiffening their 

backbone and synchronising the front and hind flippers, the front ones going up while the 

hind ones go down, and vice versa. This also causes a dorso-ventral undulation of the body, 

actually reducing the drag of the water (Halstead 1989 & McGowan 1999). 
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An interesting point regarding the front and hind flippers in plesiosaurs is the size difference 

seen between short-necked and long-necked morphotypes. The relatively better adapted short-

necked plesiosaurs actually have slightly larger hind limbs whereas the long-necked 

plesiosaurs have longer front limbs (Bakker 1993). This is most likely a result of the different 

life-modes and hunting tactics these two groups displayed, the short-necked being active 

predatory hunters for other marine animals whereas the long-necked plesiosaur used ambush 

tactics on schools of fish. This view is supported by O’Keefe (2001) who studied the aspect 

ratios (ARs) of plesiosaur flippers and compared the results with the AR found in birds, bats 

and aircrafts. He concluded that short-necked taxa were specialized for manoeuvrability and 

pursuit, whereas long-necked taxa were specialized for efficiency and cruising. This 

difference in hunting and prey preferences is also supported by their different tooth 

morphology, where the long-necked plesiosaurs have slender cone shaped teeth used 

primarily for piercing fish and the short-necked have more curved and robust teeth with 

coarse longitudinal ridges used for cutting (Massare 1987). 

 

In the current specimen there is of course no way to establish the size difference between the 

front and hind limbs as only the latter is preserved. With a femur measuring 42 cm in length 

however the specimen is found within a group comprising such taxa as Attenborosaurus 

(BMNH R.1339-femur: 38 cm), Peloneustes (BMNH R.3318-femur: 40 cm), 

Rhomaleosaurus megacephalus (LEICS G221.1851-femur: 40 cm) and Trinacromerum (SM 

3025- femur: 43 cm). All of these taxa except Trinacromerum which is part of the 

Polycotylidae, are found within the short-necked Pliosauroidea. As reference contemporary 

long-necked taxa such as Muraenosaurua (BMNH R.2863), Tricleidus (BMNH R.3539) and 

Cryptoclidus (BMNH R.2860) have femur lengths of 29.5 cm, 21cm and 25.5 cm 

respectively. This strengthens the suggestion that the current specimen could be related to the 

short-necked pliosauromorphs or the Polycotylidae. 
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Jurassic and Cretaceous marine vertebrate fossils from Svalbard in the collection of the 

Geological Museum, Oslo 

 

 

This material consists of fragmentary specimens collected in the past by various people from 

different parts of Svalbard. For the most part the location and stratigraphical age is not known 

except for a few boxes labelled “Sassenfjorden, Jurassic ?”.  

Where possible the age and location is provided in the following list. If not otherwise stated 

the material belongs to the Plesiosauria. 

 

One previously unnumbered specimen listed as a plesiosaur femur probably belongs to an 

ichthyosaur (Fig. 35). 

a)  b) 

Fig. 35: A: an almost complete ichthyosaurian humerus seen in dorsal view. B: drawing showing the 

complete humerus with the preserved piece in grey (PMO: 203.512). Scale bar = 5 cm. 

 

 

 

76-ME 10: Location: Helvetiafjellet Fm. Svalbard. Age: Early Cretaceous (Barremian).  

This material was found in 1976 and constitutes a propodial, most likely a femur, with some 

of its epipodial and autopodial elements. In addition there is also one vertebrae, several 

fragmented rib pieces, 145 in all, and 8 phalanges. A diagram showing the limb material and 

the relative position of the constituent pieces is seen below Fig. 36).  

A note found together with the material states that it was found in the “Ginkgo”, presumably 

this is the Ginkgo-Schichten. Ginkgo-Schichten is now an abandoned lithostratigraphic unit 

name which correlates with the upper part of the Helvetiafjellet Formation (M-89) (Dallmann 
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1999). The material was also stated to be of Jurassic age, the real age is instead Early 

Cretaceous (Barremian). 

 

Fig. 36: The material comprising ME 10.  This sketch was found with the material and shows the original 

posture of the bones.  

 

 

 

 Number 1: 8 pieces that when fitted together made up a complete plesiosaur propodial,           

            possibly a femur (Fig. 37). 

Number 2: Contains two pieces, 2a and 2b, the first of which most likely is an 

intermedium, whereas the latter probably is a fibula. 

Number 3: Four pieces, 3a-3d, which most likely constitutes the tarsals/carpals.   

Number 4: 4a is most likely the fifth metatarsal whereas the other four pieces (4b-4e) 

are distal tarsals/carpals.    

Number 5: These are the remaining four metatarsals/carpals in addition to a somewhat 

crescent-moon shaped tarsal/carpal element. 

Number 6: Three phalanges, a, b, and c. 

Number 7: Three phalanges, a, b, and c which is stated to have been taken from the 

spine area. 
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Number 8: This is the single vertebrae of which only the centrum is preserved. The rib 

facets are on the centrum only and the nutritive foramina are situated fairly close 

together on its ventral side, both features of cervical vertebrae. Based on overall shape 

and the closeness of the nutritive foramina it is probably one of the mid or last 

cervicals. 

a)  b)  
Fig. 37: Possibly a right femur belonging to a Leptocleidus Andrews 1922 seen in (a) ventral and (b) distal 

view (ME 10-1). Scale bar = 10 cm. 

 

 

 

76-ME 12: Location: Agardhfjellet Fm. Svalbard. Age: Jurassic. 

This material was found and collected at the same time as ME 10 and comprises material of 

the autopodial region together with two partially complete propodials.  

There are five large bags labelled A, B, C, D, and E each of which contain all the pieces 

within a vertical line of its digit. “A” comprises digit one, “B” digit two and so forth until 

digit five. Several other pieces were found, amongst them three epipodials of which one looks 

to be a fibula, one bone looks very similar to a metatarsal bone perhaps the second.  

Of the two propodials, which both seem to be humeri and possibly cryptoclidian in origin, one 

is larger and also more complete (see Fig. 38). 
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a) b)  

 

 

 

 

 

c) 

Fig. 38: The two humeri of a possible Crytoclidid plesiosaur (a + b). Below (c) is a drawing of the humerus 

on the left showing the preserved pieces in grey (76-ME 12). Scale bar = 10 cm. 

 

 

 

 A few other miscellaneous pieces making out parts of a third propodial, some rib fragments 

and some epipodial elements were also found.  

A diagram showing the material and their relative positions is seen below (Fig. 39). 
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Fig. 39: The material comprising ME 12.  The sketch shows the original posture of the bones.  

 

 

 

A: a1: epipodial element, possibly a tibiale. 

 a2: first distal tarsal/carpal. 

 a3: first metatarsal/carpal. 

 a4-a12: phalanges of the first digit. 

 

B: b1: epipodial element. 

 b2: second distal tarsal/carpal. 

            b3: second metatarsal/carpal. 

 b4-b18: phalanges of the second digit. 

 

C: c1: Most likely the third metatarsal/carpal. 

 c2-c19: phalanges of the third digit. 

D: d1: third distal tarsal/carpal. 

 d2: fourth metatarsal/carpal. 
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 d3-d15: phalanges of the fourth digit. 

 

E: e1: Fifth metatarsal/carpal. 

 e2:-e19: phalanges of the fifth digit. 

 e20: maybe part of a transverse process. This piece is not marked on the diagram. 

 

G: g1: This was originally 6 fragments found in the area marked G1 on the diagram (see 

fig. 39). After some effort these pieces have been arranged and interpreted as being a 

flattened dorsal vertebra (Fig. 40). Much of the outline is preserved and a depression 

on the ventral side looks like a nutritive foramina. The two jagged peaks on the dorsal 

side are the beginnings of the outer walls of the neural arch.  

 g2: Three pieces fit together to give a similar appearance to g1. However, it is not 

clear whether this is a vertebra. 

 

Fig. 40: The flattened vertebra in anterior view (ME 12-G1). 

 

 

 

Nr.132.126: Location: Svalbard. Age: unknown. 

   Rod shaped element collected by Ø. Lauritsen in 1992 and stated to be a 

plesiosaur fragment. My belief is that this is an ichthyosaurian bone possibly part 

of a dentary. 

Nr.132.127: Location: Svalbard. Age: unknown. 

   Part of the same rod shaped element as mentioned above. 

Nr.132.128: Location: Svalbard, Sticky Creep Formation. Age: Triassic. 
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One half of a large ichthyosaurian humerus. Collected by Ø. Lauritsen in 1992 on 

the “Kongressfjellet” north of Longyearbyen. 

Nr.132.129: Location: Svalbard. Age: unknown. 

Bone fragment collected by Lauritsen. If this is a plesiosaurian bone it would 

have to be some sort of epipodial element. Most plesiosaurian epipodials 

however are more polygonal in shape and not oval as is the case here. An 

alternative guess is thus that this is an ichthyosaurian epipodial.  

Nr.132.130: Location: Svalbard, Sticky Creep Formation. Age: Triassic. 

 Second half of the ichthyosaurian humerus mentioned above in Nr. 132.128. (see    

 Fig. 49). 

Nr. 132.131: Location: Svalbard. Age: unknown. 

Part of a plesiosaurian or ichthyosaurian epipodial element. Collected by 

Lauritsen. 

Nr. 132.132: Location: Svalbard. Age: unknown. 

Plesiosaurian or ichthyosaurian epipodial element collected by Lauritsen. 

Nr. 132.133: Location: Svalbard. Age: unknown.            

Part of a rod shaped bone stated to be from a plesiosaur. As with the other rod 

shaped elements mentioned above I believe this to be part of an ichthyosaurian 

jaw (dentale). 

Nr. 132.135: Location: Svalbard. Age: unknown. 

Same rod shaped element as above possibly from an ichthyosaur jaw    

Nr. A 27333: Location & Age unknown.  

                      Part of a propodial shaft. 

Nr. A 27348: Location & Age unknown. 

                      The head of the propodial shaft mentioned above (A 27333).   

Nr. A 27415: Location: Spitsbergen. Age: unknown. 

                       117 rib fragments. 

Nr. A 27424: Location: Spitsbergen. Age: unknown. 

                      74 bone fragments. 

Nr. A 27435: Location: Section 6, Spitsbergen. Age: unknown. 

                      6 bone fragments of which one looks like the distal part of an ilium. 

Nr. A 27464: Location: Spitsbergen. Age: unknown. 

                       27 rib fragments. 

Nr. A 27468: Location: Spitsbergen. Age: unknown. 
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                      28 rib fragments in addition to one complete phalang and a small      

                      part of a vertebrae centrum. 

Nr. A 27468: Location: Spitsbergen. Age: unknown. 

                      One anterior cervical vertebra in addition to 11 bone  

                      fragments. This material has been given the same number as another collection   

                      of  plesiosaur rib pieces.              

Nr. A 27471: Location: Spitsbergen. Age: unknown. 

                      98 bone fragments, mostly of ribs and transverse processes. 

Nr. A 27479: Location: Spitsbergen. Age: unknown. 

                      Approximately 45 bone fragments possibly of a propodial together       

                      with several smaller bone fragments.                    

Nr. A 27488: Location: Spitsbergen. Age: unknown. 

                       261 bone fragments. 

Nr. A 27492: Location: Spitsbergen. Age: unknown. 

                      Part of a propodial shaft. 

Nr. A 27499: Location: Spitsbergen. Age: unknown. 

                      Part of a propodial head, my guess is that of a femur although this is        

                      difficult to say for certain. 

Nr. A 27522: Location: Svalbard. Age: unknown 

                      9 bone fragments of unknown origin. 

Nr. A 27526: Location: Spitsbergen. Age: unknown. 

                      Most likely part of a plesiosaur propodial. 

Nr. A 27531: Location: Spitsbergen. Age: unknown. 

                      Bone fragment, most likely part of a propodial or girdle. 

Nr. A 27533: Location: Spitsbergen. Age: unknown. 

                      Most likely part of a plesiosaur propodial. 

Nr. A 27535: Location: Spitsbergen. Age: unknown. 

                      10 bone pieces therein one transverse process and one neural spine. 

Nr. A 27543: Age and location unknown. 

                       6 bone fragments of uncertain origin. 

Nr. A 27543: [A 27549- 551] Location: Spitsbergen, section 6. Age: unknown. 

                      Same number as the box above containing three separately numbered      

                      pieces. A 27549: Most likely part of a girdle, perhaps a pubis; A    

                      27550: posterior part of a pubis; A 27551: anterior part of a    
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                      pubis, could be part of A 27550. 

Nr. A 32222: Location: Spitsbergen. Age: unknown. 

                      20 bone fragments of which 4 can be identified as phalanges. The    

                      remaining pieces are impossible to diagnose. 

Nr. A 32291: Location: Spitsbergen. Age: unknown. 

                      11 bone fragments of uncertain origin. A label with the number 5 was   

                      also present. 

Nr. A 32343: Location: Spitsbergen. Age: unknown. 

                      100 bone fragments. 

Nr. A 32363: Location: Spitsbergen. Age: unknown. 

                      34 rib fragments. 

Nr. A 32364: Location: Spitsbergen. Age: unknown. 

                      18 bone fragments of uncertain origin. A label with the number 5 was  

                      found within the box. 

Nr. A 32373: Age and location unknown. 

                      40 bone-fragments, most likely of vertebrae.  

Nr. A 32577: Location: Spitsbergen. Age: unknown. 

                      11 bone fragments of which 7 can be identified as ribs.  

                      The single largest piece is perhaps part of a propodial head or part of a facet      

                      either from the shoulder or pelvic girdle. A label with the number 1 was found    

                      in the box. 

Nr. A 35680: Location: Spitsbergen. Age: unknown. 

                      32 bone fragments, possibly of vertebrae. A brownish rod-like     

                      structure was found in one of the pieces which may be filled nutritive foramina. 

                      A chemical analysis was conducted on the mineral filling of the nutritive       

                      foramina and which turned out to be ferriferous (Fig. 41).      
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Fig. 41: Graphical representation of the iron filling found in the nutritive foramina of a plesiosaur 

centrum. The different minerals are colour coded; red- Quarts, green- Anorthite,  pink- Goethite, and 

blue- Chlorapatite.  

 

 

 

Nr. A 35681: Location: Spitsbergen. Age: unknown. 

                      33 bone fragments together with a note with the number 6. 

Nr. A 35682: Location: Spitsbergen. Age: unknown. 

                      20 bone fragments of uncertain origin. 

Nr. A 35683: Location: Spitsbergen. Age: unknown. 

                      113 bone fragments of different origin. Most of the material is sedimentary rock     

                      containing fossilised brachiopods possibly of Thecidea and are thus not bone    

                      material. A few smaller pieces however contain the porous structure typical of     

                      bone but whether they are plesiosaurian or not is impossible to tell.                  

Nr. A 35684: Location: Spitsbergen. Age: unknown. 

                      250 rib fragments. 

Nr. A 35685: Location: Spitsbergen. Age: unknown. 
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                      85 bone fragments some of which are possibly from a plesiosaur. However,    

                      some of the pieces are lacking the porous structure typical for plesiosaur bone  

                      and seem to be containing pieces of smaller fossils. 

Nr. A 35686: Location: Spitsbergen. Age: unknown.  

                      34 bone fragments possibly of vertebrae. Two of the pieces contain       

                      brown/red rod like structures which lie at right angles to the vertebrae tissue.    

                      As mentioned above this could be filled nutritive foramina. 

Nr. A 35687: Location: Spitsbergen. Age: unknown.   

                      72 bone fragments, possibly of vertebrae. More pieces containing   

                      the reddish brown rods. In one of the smaller pieces there are     

                      two vertical rods (in ref. to tissue growth) situated close together that penetrate 

                      the outer edge of the bone which adds to the probability that these indeed are       

                      casts of nutritive foramina.       

Nr. A 35688: Location: Spitsbergen. Age: unknown. 

                      255 bone fragments of uncertain origin. 

Nr. A 35689: Location: Spitsbergen. Age: unknown. 

                      20 bone fragments possibly from the epipodial region. One piece     

                      seems to be part of a rib. A label with the number 6 was found among the   

                      material. 

Nr. A 35690: Location: Spitsbergen. Age: unknown. 

                      27 bone fragments, most of which possibly are pieces of vertebrae. One of    

                      the pieces can easily be identified as being either a posterior pectoral vertebrae     

                      or a sacral vertebrae due to the positioning of the nutritive foramina and the  

                      diapophysis (Fig. 42). Two labels each with the number 5 written on it was         

                      found together with the material. 

               

Fig. 42: Pectoral or sacral vertebrae from Svalbard. Age and locality unknown (PMO: A 35690). Scale bar 

= 5 cm. 
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Nr. A 35691: Location: Spitsbergen. Age: unknown. 

                      30 bone fragments, most of which are identifiable as vertebrae.     

                      One piece is a possible girdle fragment. 

Nr. A 35692: Location: Spitsbergen. Age: unknown.  

                      51 rib fragments. 

Nr. A 35693: Location Sassenfjorden Section 2, Spitsbergen. Age Jurassic? 

                       11 plesiosaur bone pieces which seem to be of the girdle and epipodial  

                       region. Three pieces can be identified; one is part of an ilium head, the two     

                       others are epipodial elements one of which is a possible fibula (Fig. 43). 

 

Fig. 43: Three plesiosaur pieces found in box A 35693 identified as being an a) ilium head, b) a possible 

fibula and c) one epipodial element (PMO: A 35693). Scale bar = 5 cm. 

 

 

 

Nr. A 35694: Location: Sassenfjorden Section 6, Spitsbergen. Age: Jurassic? 

                      13 bone pieces of articulated and interlocking phalanges. The  

                      longest piece measures about 20 cm in length and consists of two whole   

                      phalanges together with two halves (Fig. 44). 
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Fig. 44: Interlocking plesiosaurian phalanges (PMO: A 35694). Scale bar = 5 cm.           

 

 

Nr. A 35696: Location: Sassenfjorden. Age: Jurassic? 

                      199 bone fragments most of which are impossible to identify. A  

                      few pieces however can be identified as vertebrae and ribs.  

                      One piece deserves extra attention as it contains plesiosaur teeth most likely        

                      from a small-headed plesiosaur. There are four teeth physically present, the       

                      most complete measuring 3 cm in length with easily recognisable ridges running    

                      along the tooth. Of the others only the broken end is showing as the rest is   

                      concealed in matrix. In addition there is also an easily recognisable imprint of a   

                      tooth lying right next to the largest tooth (see Fig. 48). 

Nr. A 35697: Location: Sassenfjorden Section 9, Spitsbergen. Age: Jurassic? 

                      53 bone fragments of mostly transverse processes but also a few pieces     

                      of the vertebrae centrum as well. One of the larger pieces looks like a possible  

                      part of an ilium. 

Nr. A 35698: Location: Sassenfjorden, Spitsbergen. Age: Jurassic? 

                      16 vertebrae bone fragments. 

Nr. A 35699: Location: Sassenfjorden, Spitsbergen. Age: Jurassic? 

                      110 bone fragments, where four or five pieces   

                      can be identified as possible ribs. 

Nr. A 35700: Location: Sassenfjorden section 6, Spitsbergen. Age: Jurassic? 

                       42 rib fragments. 
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Nr. A 35701: Location: Sassenfjorden, Spitsbergen. Age: Jurassic? 

                      161 bone fragments of uncertain origin. 

Nr. A 35702: Location: Sassenfjorden, Spitsbergen. Age: Jurassic? 

                      24 bone fragments possibly of ribs and/or the head of a transverse process. The          

                      latter could as well be the top of a neural spine. 

Nr. A 35703: Location: Sassenfjorden Section 9, Spitsbergen. Age: Jurassic? 

                      46 bone fragments of plesiosaurian diapophysis. 

Nr. A 35704: Location: Sassenfjorden Spitsbergen. Age: Jurassic? 

                      53 bone fragments. Most can be identified as rib pieces while one or  

                      two possibly are part of vertebrae diapophysis. 

Nr. A 35705: Location Sassenfjorden Spitsbergen. Age Jurassic? 

                      51 bone fragments. Two notes saying “Tale part one” and “Tale        

                      part two” was found in the box. Whether the pieces indeed are caudal   

                      vertebrae is difficult to say. 

Nr. A 35706: Location: Sassenfjorden Section 7, Spitsbergen. Age: Jurassic? 

                      186 bone fragments.  

Nr. A 35707: Location: Sassenfjorden Section 9, Spitsbergen. Age: Jurassic? 

                      65 bone fragments of mostly plesiosaurian origin. Some of the pieces  

                      however can be identified as containing brachiopods and are not plesiosaur  

                      material. This particular material was collected during the Norwegian  

                      Spitsbergen-expedition from 1909-1910 under Isachsen.                                 

Nr. A 35708: Location: Sassenfjorden, Spitsbergen. Age: Jurassic? 

                      37 rib fragments. 

Nr. A 35709: Location: Sassenfjorden, Spitsbergen. Age: Jurassic? 

                      48 bone fragments. One piece can be identified as a possible   

                      neural spine or maybe a transverse process. A second piece is possibly part of a  

                      propodial head.   

Nr. A 35710: Location: Sassenfjorden, Spitsbergen. Age: Jurassic? 

                       9 bone fragments of uncertain origin. Collected during the       

                       norwegian Spitsbergen expedition led by Isachsen in 1909-1910.                  

Nr. A 35711: Location: Sassenfjorden Spitsbergen. Age: Jurassic? 

                      23 bone fragments. The three largest pieces are most likely part of      

                      a girdle, possibly a pubis. The remaining pieces are rib fragments.    
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Nr. A 35712: Location: Sassenfjorden, Section 6 Spitsbergen. Age: Jurassic? 

                      28 bone fragments in which two can be identified as vertebrae,  

                      possibly caudals. 

Nr. A 35713: Location: Sassenfjorden Spitsbergen. Age: Jurassic? 

                      17 rib fragments. 

Nr. A 35714: Location: Sassenfjorden, Spitsbergen. Age: Jurassic? 

                      39 fragments of  phalanges and epipodials. 

Nr. A 35715: Location: Sassenfjorden, Spitsbergen. Age: Jurassic? 

                      19 vertebrae fragments. A series of three ossified vertebrae   

                      can be identified as caudals due to the nutritive foramina present on the ventral    

                      side of the centrum and the location of the diapophysis on the lateral side of the  

                      centrum. Two other vertebrae are most likely caudals based on the position of  

                      the diapophysial facets. One vertebrae is probably a cervical due to the nutritive       

                      foramina on the ventral side being relatively close (Fig. 45). 

 

 

Fig. 45: Some of the vertebrae belonging to A 35715. From top to bottom:  (a) the three ossified caudals 

and (b + c) two possible caudal vertebrae together with (c) one  cervical vertebra all seen in dorsal view 

(PMO: A 35715). 

 

 

 

Nr. A 35716: Location: Sassenfjorden Spitsbergen. Age: Jurassic. 

                      8 vertebrae bone fragments. 
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Nr. A 35717: Location: Sassenfjorden, Section 4 Spitsbergen. Age: Jurassic? 

                       130 bone fragments of uncertain origin. 

Nr. A 35718: Location: Sassenfjorden, Spitsbergen. Age: Jurassic? 

                      31 bone fragments of what looks to be mostly vertebrae. 

Nr. A 35719: Location: Sassenfjorden, Spitsbergen. Age: Jurassic? 

                      19 bone fragments, most of which are transverse processes. 

Nr. A 35720: Location: Sassenfjorden, Spitsbergen. Age: Jurassic? 

                      28 bone fragments most likely of vertebrae. 

Nr. A 35721: Location: Sassenfjorden, Spitsbergen. Age: Jurassic? 

                      11 bone fragments. One piece seems to be part of a rib. 

Nr. A 35722: Location: Sassenfjorden, Spitsbergen. Age: Jurassic? 

                      19 bone fragments which is a mixture of transverse processes and rib  

                      pieces.  

Nr. A 35723: Location: Sassenfjorden, Spitsbergen. Age: Jurassic? 

                      26 bone fragments of unknown origin. 

Nr. A 35724: Location: Sassenfjorden, Spitsbergen. Age: Jurassic? 

                      39 vertebrae fragments. 

Nr. A 35725: Location: Sassenfjorden, Spitsbergen. Age: Jurassic? 

                      Most likely a weathered transverse process from a plesiosaur. 

Nr. A 35726: Location: Sassenfjorden, Section 6 Spitsbergen. Age: Jurassic? 

                      32 bone fragments where a few rib pieces, possibly some girdle   

                      pieces and a peculiar piece that could be a girdle element or maybe part of a jaw   

                      (Fig. 46). 

 

 

Fig. 46: An 11 cm long bone which is either part of a plesiosaur jaw or a weathered part of a girdle 

element (PMO: A 35726). 
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Nr. A 35727: Location: Sassenfjorden, Spitsbergen. Age: Jurassic? 

                       150 rib fragments. 

Nr. A 35728: Location: Sassenfjorden, Spitsbergen. Age: Jurassic? 

                      13 plesiosaur bone fragments of what looks to be vertebrae. 

Nr. A 35729 - 31: Location: Sassenfjorden, Section 8 Spitsbergen. Age: Jurassic? 

                       3 dorsal vertebrae. 

Nr. A 35732 – 37: Location: Sassenfjorden, Spitsbergen. Age: Jurassic? 

                       6 vertebrae pieces, three of which seem to be dorsals. 

Nr. A 35738: Location: Sassenfjorden, Spitsbergen Age: Jurassic? 

                       15 pieces of which four can be identified as being part of a caudal  

                       vertebra. The residual eleven pieces are difficult to diagnose and contain   

                       different sized fossil impressions of mostly molluscs. 

Nr. A 35739: Location: Spitsbergen, Section 6 & 8? Age: unknown. 

                      33 bone fragments of uncertain origin. One epipodial element, some   

                      phalanges, and a girdle piece can be distinguished.  

Nr. A 35740: Location: Sassenfjorden, Svalbard. Age: Jurassic? 

                      56 bone fragments of which most are beyond recognition. One piece looks to be     

                      a chevron bone and a larger element has a possible chevron fragment attached to   

                      it. 

Nr. A 35741: Location: Sassenfjorden, Section 8 Svalbard. Age: Jurassic. 

                      124 bone fragments both large and small. All except maybe one or two        

                      pieces, which look like part of a propodium, are impossible to diagnose. 

Nr. A 35743: Location: Sassenfjorden, Svalbard. Age: Jurassic.  

           20 bone fragments most of which are beyond recognition. Two pieces are  

                      possible to diagnose, one being the distal part of a transverse process, the  

                      other a small part of a rib. 

Nr. A 35744: Location: Sassenfjorden, Svalbard. Age: Jurassic? 

                      23 bone fragments of mostly vertebrae. 

Nr. A 35745: Location: Sassenfjorden, Svalbard. Age: Jurassic? 

                      28 bone fragments of uncertain origin. 

Nr. A 35746: Location: Sassenfjorden, Section 9 Spitsbergen. Age: Jurassic? 

                      24 bone fragments a few of which can be distinguished as possible    

                      rib elements.  
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Nr. A 35747: Location: Sassenfjorden, Spitsbergen. Age: Jurassic? 

                       70 bone fragments of unknown origin. 

Nr. A 35748: Location: Sassenfjorden, Svalbard. Age: Jurassic. 

                      Three pieces of what could be part of ribs or chevrons. 

Nr. A 35749: Location: Sassenfjorden, Spitsbergen. Age: Jurassic? 

                      15 bone fragments in addition to a note saying “box nr. 4” was  

                      present. Bone tissue is clearly seen in all pieces. 

Nr. A 35750: Location: Sassenfjorden, Spitsbergen. Age: Jurassic? 

                      8 bone fragments. Two seem to be part of transverse processes from a   

                      vertebra. 

Nr. A 35751: Location: Sassenfjorden, Svalbard. Age: Jurassic. 

                      32 fragments including parts of a transverse process and possibly part of a     

                      neural spine. 

Nr. A 35752: Location: Sassenfjorden, Spitsbergen. Age: Jurassic? 

                       Part of a girdle, most likely a pubis with the femur articulation facet             

                       intact.  

Nr. A 35753: Location: Sassenfjorden, Svalbard. Age: Jurassic. 

                      28 bone fragments possibly part of a propodial or girdle. Some of the       

                      pieces are water worn and are smooth + polished. 

Nr. A 35753: Location: Sassenfjorden, Svalbard. Age: Jurassic. 

                      20 bone fragments mostly of phalanges. 

Nr. A 35755: Location: Sassenfjorden, Section 1. South & north, Svalbard. Age: Jurassic. 

                      24 pieces of what seems to be chevron bones. 

Nr. A 35756: Location: Sassenfjorden, Svalbard. Age: Jurassic.  

                      Ten bone fragments, three of which are beyond recognition. The two         

                      largest pieces are most likely part of an acetabulum or glenoid fossa. Compared    

                      to the acetabulum of A 27745, which was found in the same area, they could be     

                      part of the acetabulum of a pubis.  

          The remaining material consists of part of an epipodial, the proximal end of a       

          rib, a small caudal vertebrae and part of a propodial. Based on  

          age, location, colour and the glue used in reconstruction I believe this latter      

          piece to be part of the left femur of A 27745 (Fig. 47). 
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Fig. 47: A possible acetabulum or glenoid fossa from a plesiosaur (a), together with (b) a small caudal 

vertebra and (c) what looks like a piece of the left femur of A 27745 (PMO: A 35756). 

 

 

 

Nr. A 35757: Location: Sassenfjorden, Spitsbergen. Age: Jurassic? 

                       54 rib fragments. 

Nr. A 35758: Location: Sassenfjorden, Spitsbergen. Age: Jurassic. 

                      29 bone fragments, possibly chevron bones or pieces from the  

                      autopodial region. 

Nr. A 35759: Location: Sassenfjorden, Spitsbergen. Age: Jurassic? 

                      14 bone fragments of unknown origin.  

Nr. A 35760: Location Sassenfjorden Spitsbergen. Age: Jurassic? 

                      14 bone fragments of unknown origin. 

Nr. A 35761: Location: Sassenfjorden Spitsbergen. Age: Jurassic? 

                      Stated to be a posterior cervical vertebra, which is partly confirmed by the   

                      distance between the ventral nutritive foramina and the position of the rib facets   

                      on the centrum. However, nutritive foramina are also similarly separated in  

                      caudals but since the ventral side is partly destroyed it is difficult to confirm any  

                      possible chevron facets. Based on the position of the rib facets which are  

                      relatively high on the centrum I would ascribe this vertebrae to be an anterior  

                      caudal. On cervicals the rib facets are usually quite low or ventrally situated. 

Nr. A 35762 – 773: Location: Spitsbergen, Sassenfjorden. Age: Jurassic? 

                      Caudal vertebrae. Vertebra 35770 was missing from the material. 

Nr. A 35774: Location: Sassenfjorden, Spitsbergen. Age: Jurassic? 
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                       24 vertebrae bone fragments.  

Nr. A 35775: Location: Sassenfjorden, Section 6 Spitsbergen. Age: Jurassic? 

                      13 bone fragments of which three can be identified as being ribs 

Nr. A 35776: Location: Sassenfjorden, Section 6 Spitsbergen. Age: Jurassic? 

                      An almost complete ilium measuring 18.5 cm in length. The head is  

                      scarred as a result of muscle attachment (see Fig. 50). 

Nr. A 35777: Location: Sassenfjorden Spitsbergen. Age: Jurassic? 

                      25 fragments of mostly phalanges and possibly a few pieces of small      

                      epipodial elements. 

Nr. A 35778: Location: Sassenfjorden, Spitsbergen. Age: Jurassic? 

                      35 bone fragments of unknown origin. 

Nr. A 35779: Location: Sassenfjorden, Spitsbergen. Age: Jurassic? 

                      52 bone fragments. Two of the pieces can be identified as being a   

                      neural spine and a possible chevron bone. 

Nr. A 35780: Location: Sassenfjorden, Spitsbergen. Age: Jurassic? 

                      25 bone fragments possibly from the autopodial region. 

                      A note with the number 1 was also found in the box. 

Nr. A 35777-35780: Very fragmentary pieces of unknown origin. Location and age not   

                      mentioned. 

Nr. A 35781: Location: Sassenfjorden, Spitsbergen. Age: Jurassic? 

                      22 bone fragments. Most likely plesiosaur ribs. 

Nr. A 35782: Location; Sassenfjorden, Spitsbergen. Age: Jurassic? 

                      24 bone fragments of uncertain origin. 

 

 

In addition to the many centra, ribs and phalanges that were found, a few pieces of some 

significance are worth mentioning. These are plesiosaurian teeth, a large ichthyosaurian 

humerus, an almost complete ilium, and a propodial together with a more or less complete 

mesopodium. 
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Teeth (Fig. 48) 

There are a total of 5 teeth, all situated in a relatively small piece of rock. One is clearly 

visible and displays a 3.4 cm ridged and slender tooth most likely belonging to a longnecked 

plesiosaur.  The other teeth are partially covered by matrix, but it seems that only a small part 

of the tooth tip is present. A tooth imprint measuring 3 cm, is also preserved.  

A bone fragment is also present in the rock matrix, which could be part of the animals’ jaw or 

some other indefinable skull piece.  

 

 

Fig. 48: The first teeth from a plesiosaur found on Svalbard. Only one of a total of six teeth is visible in 

addition to an imprint seen just below. The other teeth are covered by matrix. The remains of the largest 

tooth measures 3 cm in length (PMO: A 35696).  Diameter of the coin is 1.8 cm. Scale bar = 1 cm. 

 

 

 

Humerus (Fig. 49) 

The ichthyosaurian humerus was first thought to be a very large plesiosaur epipodial element, 

possibly a primitive ulna. However, having had the age of the specimen confirmed as being 

early Triassic by the collector Ø. Lauritzen (Lauritzen, pers. comm. 2003) R. Forrest and 

Ryosuke Motani (pers. comm. 2003) were able to confirm that it is in fact a humerus of a 

large ichthyosaur, possibly Shastosaurus. 

The bone measures 18 cm in length and 17 cm in width, indicating that the animal was large 

and at least 10 m long. 
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Fig. 49: Large ichthyosaurian humerus found together with the plesiosaurian material (PMO: 132.128 & 

132.130). Scale bar = 10 cm. 

 

 

 

Ilium (Fig. 50) 

A wel- preserved ilium with only a small part in the middle missing. It measures 18.5 cm in 

length and probably belonged to a primitive plesiosaur. Compared to the ilium of the 

specimen under revision it is a much smaller and delicate bone with a less developed distal 

end.                   

 

Fig. 50: Almost complete plesiosaur ilium (PMO: A 35776). Scale bar = 5 cm. 
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Summary and conclusions 

 

The plesiosaur specimen PMO A 27745 previously assigned to the genus Tricleidus and 

given the specific name svalbardensis is found to be part of the clade Cryptocleidoidea 

and is tentatively assigned to the Tricleidia as defined by O’Keefe in 2001. Within this 

latter group the specimen seems to fall somewhere in between the genus Tricleidus and 

the short necked Polycotylids and could therefore be an intermediate between long-

necked and short-necked plesiosaurs. Bear in mind however that the Polycotylidae, with 

secondarily derived short necks, are a part of the Plesiosauroidea.  

The specimen was found partly embedded in a dark grey shale-stone at the entrance to 

Sassenfjorden north of Longyearbyen. Stratigraphically this is in the Agardhfjellet 

Formation and most likely in the Slottsmøya Member.  

The fossil was found to be Upper Jurassic in age, more precisely from the Volgian. 

Its most salient features are: 

 

- A relatively long ischium. 

 

- The straight posterior ischial border. 

 

- A triangular shaped fibula. 

 

- A small convex area on the anterior distal end of the femur.  

 

 

Most of the material comprising the miscellaneous marine material from Svalbard is very 

fragmentary and consists mostly of vertebrae, phalanges and smaller pieces from the 

girdles. Some interesting pieces however are worth mentioning:  

 

• The first ever teeth from a plesiosaur found on Svalbard. 

 

• One complete femur possibly belonging to a Leptocleidus. 
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• Two humeri of which only the distal parts are preserved. They most likely belong 

to a Cryptoclidus. 

 

• An almost complete plesiosaur ilium. 

 

• One large humerus belonging to an ichthyosaur. 
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Appendix 1 

 

Parsimony analysis of Table 2-data matrix with PAST version 1.20 

 

11 taxa, 166 characters. 

 

 

Analysis settings: 

 

Fitch (unordered) characters, branch-and-bound search. 

1000 bootstrap replicates. 

 

 

Results: 

 

7 most parsimonious trees (length 192), with bootstrap values, consistency index (CI ) 

and retention index (RI): 

 

 

 

 

 

 

 

 

 

 

 

 

CI=0.76, RI=0.96 
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Strict consensus tree: 
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50% majority rule consensus tree: 
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All clades retained in strict consensus tree have Bremer support of 1 (low support). 
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Distribution of tree lengths: 
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 Appendix 2
 

 

Character matrix for the cladistic analysis of the current specimen 
   
   
   
   
   
Character Character description  States/coding 

1 Relative skull length  Primitive (0), large (1), small (2) 

2 Relative neck length Primitive (0), long (1), short (2) 

3* Relative length of ischium/pubis Subequal (0), ischium longer (1), pubis longer (2) 

4 Relative length of ischium/pubis Subequal (0), coracoid longer (1) 

5 Relative length of humerus/femur Subequal (0), humerus longer (1), femur longer (2) 
6 Preorbital and postorbital skull length Subequal (0), preorbital longer (1), shorter (2) 

7 Fin aspect ratio High (0), low (1) 

8 Elongate rostrum Absent (0), premaxilla only (1), very long incl. Maxilla (2), 
elongate and hoop-like/unconstr. (3) 

9 Constricted snout Unconstricted (0), constr. at maxilla/premaxilla suture (1), 
second constriction in maxilla (3)  

10 Temporal emargination Present (0), absent (1) 

11 Dorso-medial process of premaxilla Contacts frontal (0), cont. parietal at pineal foramen (1), 
cont. anterior extens. of parietale (2) 

12 Premaxilla/external naris contact Present (0), absent (1) 

13 Dorsal median foramen Absent (0), present (1) 

14 Frontals paired/fused in adults Paired (0), fused (1) 
15 Parietals paired/fused in adult Paired (0), fused posteriorly (1), fused (2) 

16 Frontal with/without distinct postero-lateral process Without process (0), with proc. (1) 

17 Postorbital bar Both po and pof have orbital contact (0), frontal/po suture 
excludes pof from orbit margin (1)  

18 Frontal enters margin of temporal fenestra Does not (0), does narrowly (1)  

19 Frontal contacts external naris Does contact (0), does not contact (1) 
20 Pineal foramen location Middle of parietal (0), anterior (1) 

21 Pineal foramen bordered anteriorly by frontals on dorsal 
skull surface Not bordered by frontal (0), bordered (1) 

22 Prefrontal present/absent Present (0), absent (1) 

23 Accessory fenestra above orbits  Absent (0), present (1) 

24 Frontal process projects into orbit Absent (0), present (1) 

25 Parietal skull table Relatively broad (0), constricted (1), sagittal crest (2) 

26 Squamosal produces long, thin process covering 
quadrate laterally 

No medial process (0), medial process and socket-like 
squamosal (1) 

27 Squamosal dorsal process No suture (0), meet in arch at midline (1) 
28 Squamosal/postorbital contact Contact (0), no contact (1) 

29 Jugal/squamosal contact No contact (0), contact (1) 

30 Jugal extends anteriorly along ventral orbit margin Anterior margin (0), middle of orbit (1), restricyed to 
posterior margin (2) 

31 Jugal contacts orbit margin Contacts orbit (0), excluded by po/m contact (1) 

32 Jugal/prefrontal suture anterior to orbit Absent (0), present (1) 

33 Jugal forms narrow bar between orbit and temporal 
emargination Does not (0), does(1) 
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34 Quadratojugal Present (0), absent (1) 

35 Nasal Not reduced (0), reduced (1), absent (2) 

36 Location of nasal relative to external naris Behind external naris (0), in front of external naris (1) 

37 Distinct grooves anterior to external naris Absent (0), present (1) 
38 Nasal enters margin of external naris Do enter (0), do not enter (1) 

39 Prefrontal contacts margin of external naris No contact (0), contact (1) 

40 Prefrontal and postfrontal exclude frontal from dorsal 
orbit margin Frontal excluded (0), frontal enters margin (1) 

41 Maxilla/squamosal contact No contact (0), contact (1), expanded posterior flange (2) 

42 Exoccipital participates in formation of occipital condyle  Do not participate (0), do participate (1) 

43 Occipital condyle morpholgy Hemispherical with groove (0), short with no groove (1) 

44 Paraoccipital process/formation of posttemporal fossa 
margin No process/occiput plate-like (0), rod-shaped process (1) 

45 Distinct squamosal notch for articulation of paraoccipital 
process Without notch (0), with notch (1) 

46 Paraoccipital process morphology Gracile (0), robust (1) 

47 Paraoccipita process articulation Squamosal exclusively (0), quadrate excl. (1), both 
squamosal and quadrate (2) 

48 Ventral extent of paraoccipital process Does not extend ventral to occipital condyle (0), extends 
past condyle (1) 

49 Nature of paraoccipital process/quadrate pterygoid 
flange contact 

No contact (0), contact at lateral articul. only (1), long 
contact along bodies of process (2) 

50 Quadrate flange of pterygoid/quadrate articulation Quadrate only (0), quadrate and squamosal (1) 

51 Quadrate produces distinct process for articulation with 
pterygoid flange Process absent (0), present (1) 

52 Dorsal wing of epipterygoid  Broad/columnar (0), reduced (1) 

53 Epipterygoid dorsal process contacts parietal Contact (0), no contact (1) 

54 Quadrate embayed/dished-shaped anteriorly Massive quadrate (0), dished anteriorly (1) 

55 Posterior bulb formed by squamosals Absent (0), present (1) 
56 Supraoccipital morpholgy Round (0), median process (1) 

57 Shape of the quadrate pterygoid flange Curved with raised lat. margin (0), straight and narrowing 
(1), sigmoid with rolled lat. marg. (2) 

58 Squared lappet of pterygoid underlies quadrate 
pterygoid flange No squared lappet (0), squared lappet (1) 

59 Supraoccipital depth/ sigmoid suture Shallow (0), deep antero-posteriorly/sigmoid suture with 
exoccipital and prootic (1) 

60 Anterior interpterygoid vacuity Absent (0), slit-like (1), broad with round ends (2) 

61 Posterior interpterygoid vacuity Absent (0), present (1) 

62 Pterygoids meet posterior to posterior interpterygoid 
vacuity 

Pterugoids do not meet (0), pterygoids meet (1), meet but 
are covered by parasphen. proc. (2) 

63 Pterygoids meet beteween anterior and posterior 
interpterygoid vacuities Do not meet between vacuities (0), do meet (1) 

64 Basioccipital exposed posteroir to posterior pterygoid 
suture Exposed (0), not exposed (1) 

65 Ectopte. reaches medially to lateral margin of posterior 
interpt. vacuities Does not (0), does (1) 

66 Columnar ectoptrygoid contacts postorbital bar No contact (0), contact (1)  

67 Dished pterygoids Absent (0), present (1) 
68 Posterior pterygoid/parasphenoid contact Absent (0), present (1) 

69 Ectopter. and pter. form lateral flanges ventro-lateral to 
post. ptery. vacuity 

Not form flanges (0), flanges (1), meet in short dished 
contact at midline (2), broad cont. (3) 

70 Parasphenoid morpholgy Long, tapering anteriorly (0), short and blunt (1) 
71 Parasphenoid keel Not keeled (0), sharp keel (1), keeled anteriorly (2) 
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72 Parasphenoid exposure anterior to posterior 
interptrygoid vacuities 

Anterior parasphenoid not exposed on palate surface (0), 
exposed via extension of posterior interpterygoid vacuities 
(1), exposed with lateral pterygoid sutures (2)     

73 Psession of cristae  ventrolaterales Present (0), absent (1) 

74 Parasphenoid/basioccipital contact on midline Absent (0), present (1) 

75 Possession of basal articulation  Present (0), absent (1) 

76 Basioccipital tubers reduced Not reduced (0), reduced /tuber facets confluent with 
basisphenoid articulation (1) 

77 Jugal has small exposure on palate surface No exposure (0), exposure (1) 

78 Lateral palatal fenestration bordered by palatine and 
pterygoid Absent (0), present (1) 

79 Palatine/internal naris Palatine enters internal naris border (0), excluded by 
vomer/maxilla contact (1) 

80 Palatines approachclosely or meet at midline Do not meet (0), close approach or meet at midline (1) 

81 Premaxilla/anteriorborder of internal naris Premaxilla enters anterior border (0), is excluded by 
vomer/maxilla contact (1) 

82 Sub-orbital fenestration Absent (0), present (1) 

83 Vomers extend far posterior to internal nares on midline Do not (0), extend posterior and meet pterygoids in wide 
interdigitating suture (1) 

84 Prominent pterygoid flange/ectopterygoid boss Absent (0), present (1) 

85 Ectopterygoid boss has wide contact with 
jugal/squamosal Contact absent (0), contacts jugal (1) 

86 Bowed maxilla Absent (0), present (1) 

87 Meckelian canal open anteriorly Not open (0), open (1) 

88 Vental mandibular ridge/pedestal-like symphysis No ridge (0), ridge (1) 
89 Mandibular symphysis Short (0), somewhat enforced (1), scooplike (2), long (3) 

90 Splenial participates in symphysis Does not participate (0), does participate (1), angulars 
extend past symphysis (2) 

91 Lingual mandibular fenestra Absent (0), present (1) 

92 Morphology of dentary/angular-surangular suture Angular projects forward of surangular in lateral view (0), 
surangularanterior process (1) 

93 Coronoid  Present (0), absent (1) 

94 Long lingual coronoid process Absent (0), present (1) 
95 Coronoid exposed on lateral jaw surface No exposure (0), exposure (1) 

96 Prearticular Present (0), absent (1) 

97 Prearticular shelf/groove Absent (0), present (1) 

98 Jaw articulation in relation to tooth row Above or at colinnear with tooth row (0), lower that tooth 
row (1) 

99 Diastema at maxilla/premaxilla suture Absent (0), present (1) 

100 First tooth after diastema Large (0), reduced (1) 

101 Premaxilla and dentary fangs Absent (0), present (1) 
102 One or two caniniform teeth on maxilla  Present (1), absent (0) 

103 Tooth form Gracile, small root, narrow, no wear (0), robust, large root, 
wear (1), very small/needle-like (2) 

104 Teeth round or with reinforced planar face Round (0), planar face (1) 
105 Longitudinal striations on teeth Striations all around (0), lingual only (1), none (2) 

106 Number of premaxillary teeth 5 (0), 6 (1), 7(2), greater than 7 (3) 

107 Maxillary teeth Less than twenty (0), twenty to thirty (1), many more than 
thirty (2)  

108 Number of axis rib heads 2 (0), 1(1) 

109 Articulation of axis rib Broad articulation with atlas centrum and/or other 
elements (0), head confined to axis centrum (1) 
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110 Atlas/axis morphology 
No lateral exposure of atlas centrum on cup face (0), lat. 
exp. (1), no lat. exp. but atlas & axis intercentra exclude 
atlas centrum ventrally (2) 

111 Number of cervical vertebrae Primitive (0), increased (1), reduced (2), greater than 50 
(3) 

112 Proportions of cervical centra Length equal to height (0), length greater than height (1), 
length less than height (2) 

113 Distinct change in zygapophyseal angle along cervical 
column  No change in angle (0), change (1) 

114 Ventral keel on cervical vertebrae Absent (0), present (1) 

115 Lateral ridge on anterior cervical vertebrae in adults Absent (0), present (1) 

116 Binocular shaped anterior cervical centra Absent (0), present (1) 

117 Number of cervical rib heads 2 (0), 1 (1) 
118 Ventral foramina in cervical vertebrae Absent (0), present (1) 

119 Foramina subcentralia reduced and lateral Medial and large (0), lateral and reduced (1) 

120 Width of cervical zygapophysis Wider than centrum (0), subequal with centrum (1), more 
narrow than centrum (2) 

121 Posterior articulation for succeeding neural spine, 
cervical vertebrae Absent (0), present (1) 

122 Cervical rib articu.  greatly elongate/cervical ribs 
expanded and blade-like Circular/subcircular (0), elongate (1) 

123 Anterior process of cervical ribs Present (0), absent (1) 

124 Anterior neural flange on cervical neural spines Absent (0), present (1) 
125 Neural spines, cervical vertebrae Angled backward (0), not angled (1) 

126* Distal end of transverse processes, dorsal vertebrae No diameter increase (0), thickened (1) 

127* Dorsal neural arch height Subequal to centrum height (0), shorter than centrum 
height (1) 

128 Zygosphene/zygantrum articulation Present (0), absent (1) 

129* Height of neural spines, dorsal vertebrae Low (0), low and rugose (1), high (2) 

130* Lateral compr. of neural spines, dorsal and cervical 
vertebrae Not compressed (0), compressed and blade-like (1)  

131 Interclavicle posterior process Present (0), absent (1) 
132 Dorsal process of scapula Tapers to blunt tip (0), ventrally expanded posteriorly 

133 Presence of clavicles and interclavicles Present (0), interclavicle absent (1), both absent (2) 

134 Clavicle median symphysis Symphysis (0), seperated by interclavicle (1) meet only 
behind notch (2) 

135 Scapulae meet in anterior median symphysis 
Separated by clav./interclav. (0), meet medially but leave 
notch for dermal elements (1), meet in long symphysis 
with no notch (2) 

136 Anterior intrascapular fenestra Absent (0), present (1) 

137 Longitudinal pectoral bar Absent (0), formed by clavicle & coracoid (1), formed by 
scapulae & coracoid (2) 

138 Supracoracoid foramen/notch Present (0), absent (1) 

139 Coracoid shape Rounded contours/not plate-like (0), expanded median 
symphysis (1) 

140 Median coracoid perforations Absent (0), present (1) 

141 Posterior coracoid extension with deep median 
embayment Absent (0), present (1) 

142 Postero-lateral coracoid wings Absent (0), present (1) 

143* Contact between ilium and pubis Present (0), absent (1) 

144* Pubis ventral (medial) margin Conve? (1), concave (0)  

145* Large ventral pubo-ischiatic plate Absent (0), present (1) 

146* Median pelvic bar Absent (0), present (1) 
147* Thyroid fenestra closed or open i nadult Closed (0), open (1) 

148* Obturator foramen Absent (0), present (1) 

149* Iliac blade Well-developed (0), reduced (1) 
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150 Angled humerus Absent (1), present (0) 

151* Expanded distal propodials with dorsal 
trochanter/tuberosity Absent (0), present (1) 

152 Distal end of humerus has two distinct planes in adult Absent (0), present (1) 

153 Distinct facet on distal humerus for supernumery 
ossification Absent (0), present (1) 

154* Gracile or massive propodials Gracile/constricted (0), massive (1) 
155* Relative elongation of propodials Not elongate (0), elongate with narrow distal head (1) 

156 Deltopectoral crest Present (0), absent (1) 

157 Ulnar shape narrow (0), or broad distally (1) 

158 Distinctly lunate ulna Absent (0), present (1) 

159* Internal trochanter Well-developed (0), reduced (1) 

160* Inter-trochanteric fossa Deep (0), distinct but reduced (1), rudimentary or absent 
(2) 

161* Epipodial morphology Longer than broad (0), equal or broader than long (1) 
162 Supernumery ossifications, forelimb None (0), epipodial row/pisiform (1), propodial (2), both (3) 

163* Fifth metapodial In line with rest of metapodial row (0), shifted into distal 
mesopodial row (1) 

164* Hyperphalangy No increase (2-3-4-5-3) (0), hyperphalangy present (1) 

165* Interlocking distal phalanges anterior to fifth phalangeal 
row Absent (0), present (1) 

166 Median gastral rib element Always one lateral process (0), may have two lateral 
processes (1)  
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Matrix of character scoring  

            
The first taxa is the outgroup. Inapplicable/unknown characters are coded ? Ancestral 

condition is generally coded "0" 
 

 Taxon 
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1 0 2 1 1 2 1 1 2 ? 2 ? 
2 0 0 2 1 2 1 1 2 ? 2 ? 

3* ? 0 1 2 ? 1 2 0 1 ? 1 

4 1 1 1 1 0 1 1 1 1 1 ? 

5 ? 2 0 0 ? 1 0 2 0 0 ? 

6 0 0 1 1 0 1 1 0 ? 2 ? 

7 ? 1 1 0 0 1 0 1 1 1 ? 
8 1 0 2 2 0 2 2 0 ? 0 ? 

9 0 0 0 1 0 2 0 0 ? 0 ? 

10 0 0 0 0 0 0 0 0 ? 0 ? 
11 0 0 1 ? 2 1 ? 0 ? 0 ? 

12 ? 0 0 ? 0 1 1 0 ? 0 ? 

13 0 0 0 ? 0 0 0 0 ? 0 ? 
14 0 0 ? ? ? ? ? 0 ? 0 ? 

15 1 ? ? ? ? ? 0 ? ? ? ? 

16 1 0 0 ? ? 0 0 0 ? ? ? 
17 0 0 0 ? 1 0 ? 0 ? ? ? 

18 1 0 0 ? ? 0 ? 0 ? 0 ? 

19 ? 1 ? ? ? 1 0 0 ? ? ? 
20 1 1 1 ? 1 1 1 1 ? 1 ? 

21 0 1 0 ? 1 0 0 1 ? 0 ? 

22 0 0 0 ? 0 0 0 ? ? 0 ? 

23 0 0 0 ? 0 0 0 0 ? 0 ? 

24 0 0 1 ? ? 0 0 0 ? 0 ? 

25 2 2 2 ? 2 2 2 2 ? 2 ? 
26 0 1 1 ? 1 0 0 1 ? 1 ? 

27 1 1 1 ? ? 1 1 1 ? 1 ? 

28 0 0 0 ? 1 0 ? 0 ? ? ? 

29 1 1 1 1 1 1 1 1 ? 1 ? 

30 1 2 2 ? 2 0 0 2 ? 2 ? 

31 0 0 0 ? 0 0 0 0 ? 0 ? 
32 0 0 0 ? 0 1 1 0 ? 0 ? 

33 0 1 0 0 0 0 0 ? ? 1 ? 

34 ? 1 1 1 1 1 1 ? ? 1 ? 

35 1 2 2 ? 2 1 1 ? ? 2 ? 
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36 0 ? ? ? ? 0 0 ? ? ? ? 

37 0 0 0 ? 0 0 1 0 ? 0 ? 

38 1 ? ? ? ? 0 0 ? ? ? ? 

39 0 1 1 ? 1 0 0 ? ? ? ? 
40 1 1 1 ? 1 0 ? 1 ? 1 ? 

41 0 0 2 0 ? 0 ? ? ? 0 ? 

42 ? 1 0 ? 0 0 0 0 ? 0 ? 

43 ? 1 0 1 0 1 1 1 ? 0 ? 

44 1 1 1 ? 1 1 1 1 ? 1 ? 

45 ? ? 1 ? 1 0 1 ? ? 1 ? 
46 ? 0 0 ? 0 1 0 0 ? 0 ? 

47 ? 1 1 ? 2 0 0 ? ? 1 ? 

48 ? 0 1 ? 0 0 0 0 ? 1 ? 

49 ? 0 1 ? 1 1 0 ? ? 0 ? 

50 ? ? 0 0 1 1 0 ? ? 0 ? 

51 ? 0 0 0 1 0 0 ? ? 0 ? 
52 1 ? 0 ? 1 0 ? ? ? ? ? 

53 ? ? 0 ? ? 1 0 ? ? ? ? 

54 0 1 1 1 0 1 ? 1 ? 1 ? 

55 0 0 0 ? 0 1 1 0 ? 0 ? 

56 ? 1 1 ? 1 ? ? ? ? ? ? 
57 ? 1 1 ? 1 0 ? 1 ? ? ? 

58 ? 1 1 2 1 2 1 1 ? 1 ? 

59 0 0 0 0 1 0 0 0 ? 0 ? 

60 0 2 2 0 0 1 0 2 ? 2 ? 

61 1 1 1 1 1 1 1 1 ? 1 ? 
62 0 0 2 1 2 1 0 0 ? 0 ? 

63 ? 0 0 1 0 1 1 0 ? 0 ? 
64 ? ? 0 0 0 0 ? ? 0 ? ? 

65 0 0 0 1 0 0 ? 0 ? 0 ? 

66 ? 1 1 0 1 0 ? 1 ? 1 ? 

67 0 0 1 0 0 0 0 0 ? 0 ? 

68 0 0 1 0 0 0 0 0 ? 1 ? 

69 0 0 0 2 0 3 0 0 ? 0 ? 
70 ? 1 1 0 0 0 0 1 ? 1 ? 

71 1 0 0 2 1 2 2 0 ? 0 ? 
72 0 2 2 2 2 2 2 1 ? 2 ? 

73 ? 1 1 ? 1 ? 0 1 1 1 ? 

74 0 0 1 0 ? 0 0 0 1 1 ? 

75 ? 0 0 ? 0 ? ? 0 ? 0 ? 
76 ? 0 1 0 0 0 0 0 ? 1 ? 

77 0 0 0 0 0 0 ? 0 ? ? ? 

78 0 0 0 0 ? 1 ? 0 ? ? ? 

79 0 0 0 0 0 1 0 1 ? ? ? 

80 0 0 0 0 0 1 0 0 ? 0 ? 

81 0 ? 1 1 1 1 1 0 ? 0 ? 
82 0 0 0 0 0 1 ? 0 ? ? ? 

83 0 0 0 1 1 1 1 1 ? 0 ? 
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84 1 0 0 1 0 1 0 0 ? 0 ? 

85 ? ? ? 1 ? 1 ? ? ? ? ? 

86 0 0 0 0 ? 0 0 0 ? 0 ? 

87 ? 1 ? ? 1 1 0 1 ? 1 ? 
88 ? 0 0 0 0 0 0 0 0 0 ? 

89 1 0 3 3 1 2 3 0 ? 0 ? 

90 ? 0 2 1 0 1 1 0 ? 0 ? 

91 ? 0 0 0 1 0 ? 0 0 0 ? 

92 ? 0 0 ? 0 1 1 0 ? 0 ? 

93 ? 0 0 ? `0 0 ? 0 0 0 ? 
94 ? 0 0 ? 0 1 ? 0 0 0 ? 

95 ? 1 1 ? 0 0 ? 1 1 ? ? 

96 ? 0 0 ? 0 0 0 0 0 0 ? 

97 ? 1 1 0 0 0 0 1 1 1 ? 

98 ? 0 1 0 1 0 0 0 1 1 ? 

99 0 0 0 1 0 1 ? 0 ? 0 ? 
100 ? ? ? 1 ? 1 ? ? ? ? ? 

101 1 0 0 0 0 0 0 0 ? 0 ? 

102 0 0 0 0 1 0 0 0 ? 0 ? 
103 ? 0 0 0 0 1 0 0 1 0 ? 

104 0 0 0 0 0 0 0 0 0 0 ? 

105 ? 0 ? ? ? 1 0 0 ? 0 ? 
106 0 1 0 2 0 0 ? 0 ? 0 ? 

107 0 0 0 1 0 1 1 0 ? ? ? 

108 ? 1 1 ? 1 ? 0 1 1 1 ? 
109 ? 0 1 ? ? ? ? 0 1 ? ? 

110 ? 1 2 ? 0 ? 0 1 2 1 ? 

111 0 0 2 0 3 2 0 1 2 0 ? 
112 0 0 2 0 1 2 0 1 2 0 ? 

113 0 1 1 0 1 0 ? 0 0 1 ? 

114 0 0 ? ? ? 0 1 0 ? 0 ? 

115 0 0 0 0 1 0 0 0 0 0 ? 

116 0 0 0 0 1 0 0 ? 0 0 ? 

117 0 1 1 0 1 0 0 1 1 1 ? 
118 1 1 1 ? 1 1 1 1 1 1 ? 

119 0 0 0 0 0 1 0 0 0 0 ? 

120 1 2 2 2 2 2 2 2 1 2 ? 

121 1 0 1 ? 1 1 0 1 1 1 ? 

122 0 1 0 0 1 0 0 1 0 0 ? 

123 0 1 ? ? ? 1 ? 1 ? 1 ? 
124 0 1 1 ? 0 0 0 1 1 1 ? 

125 0,1 1 1 ? 1 0 0 1 1 1 ? 

126* 1 1 1 ? ? 1 ? 1 1 1 1 

127* 0 1 1 1 1 1 1 1 1 1 1 

128 0 1 1 1 1 1 1 1 1 1 1 

129* 1 2 2 ? ? 2 0 2 2 2 2 
130* 0 1 0 0 1 0 0 1 0 0 1 

131 ? ? ? ? ? ? ? ? ? 0 ? 
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132 1 0 0 0 0 0 ? 0 0 0 ? 

133 0 0 0 ? 0 ? ? 0 0 0 ? 

134 ? 0 2 ? 0 ? ? 1 2 2 ? 
135 0 1 0 0 2 0 ? 1 0 1 ? 

136 0 1 1 0 0 ? ? 1 1 0 ? 

137 0 2 1 ? 2 ? ? 2 1 2 ? 

138 1 1 1 1 1 1 ? 1 1 1 ? 

139 1 1 1 1 1 1 1 1 1 1 ? 

140 ? 0 1 0 ? 0 ? 0 1 0 ? 

141 0 0 0 0 1 0 ? 0 ? 0 ? 
142 0 1 1 1 1 1 ? 1 ? 1 ? 

143* 0 1 1 1 ? 1 1 1 1 1 1 

144* ? 1 1 1 ? 1 1 1 1 1 1 

145* 1 1 1 1 ? 1 1 1 1 1 1 

146* ? 0 0 ? ? 1 1 0 0 0 ? 

147* ? 1 1 1 ? 1 1 1 1 1 1 
148* 1 1 1 1 ? 1 1 1 1 1 1 

149* 1 1 1 ? ? 1 ? 1 1 ? 1 

150 0 1 1 1 ? 1 1 1 1 1 ? 

151* 0 1 1 1 ? 1 1 1 1 1 1 

152 ? 1 1 0 ? 0 0 1 1 1 ? 

153 0 0 0 0 ? 0 0 1 1 1 ? 
154* ? 0 0 0 ? 0 0 0 0 0 0 

155* ? 0 0 0 ? 0 0 0 0 0 0 

156 1 1 1 1 ? 1 1 1 1 1 ? 

157 1 1 1 1 ? 1 1 1 1 1 ? 

158 0 0 0 1 ? 0 ? 0 0 0 ? 

159* 1 1 1 1 ? 1 1 1 1 1 1 
160* ? 2 2 2 ? 2 2 2 2 2 2 

161* 0 1 1 0 ? 1 0 1 1 1 1 

162 0 1 3 2 ? 0 ? 1 3 2 ? 

163* 0 1 1 1 ? 1 ? 1 1 1 1 

164* ? 1 1 1 ? 1 1 1 1 1 1 

165* ? 0 1 0 ? 0 ? 0 ? ? ? 
166 0 0 ? 0 ? 0 ? 0 0 0 ? 

            
Modified from O'Keefe (2001). * Characters that are applicable to the Svalbard-specimen.    

 




