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1. Summary 

Sutherlandia frutescens (syn. Lessertia frutescens)has been used as traditional medicine in 

South Africa for numerous ailments. In this study, plant material was extracted with 

dichloromethane (DCM), methanol (MeOH) in a Soxhlet apparatus. And then the methanol 

extract was partitioned into ethyl acetate (EtOAc), 1-butanol (BuOH) and water. The 

dichloromethane extract, the ethyl acetate extract  and the butanol extracts were subjected to 

further separation; several compounds were isolated by Versaflash normal phase column and 

reverse phase column, low pressure column chromatography with Sephadex LH20, 

Toyopearl and MCI CHP20P, and preparative high pressure liquid chromatography (HPLC). 

1H- and 13C-NMR-spectroscopy were used to elucidate the structure of these isolated 

compounds.  Antioxidant activity was measured by 1,1- diphenyl-2-picrylhydrazyl radical 

(DPPH)-radical scavenging, and inhibition of 15-lipoxygenase enzyme (15-LO) from 

soybeans.  

Flavonoids and triterpenoids were suggested to be present by our South African 

collaborators, some of these substances have been isolated and identified from the EtOAc- 

and BuOH-extracts. A series of flavonoid glycosides with a hydroxymethylglutaryl moiety 

and a kaempferol or quercetin aglycone and the known triterpene glucoside sutherlandioside 

C were isolated. In addition, a substance which appears to be a C-24-epimer or a regioisomer 

of sutherlandioside C with the glucose moiety bound to C-24 instead of C-25) has been 

isolated. This is not reported in Sutherlandia frutescens before, and appears to be a new 

natural product. From preliminary data, the known sutherlandiosides B and D and their 24-

epimers / regioiomers appear to be present, as well.  In the DCM extract we found 4-

hydroxybenzaldehyde. This is not an uncommon natural product, but it has not been reported 

previously from the genus Lessertia or Sutherlandia. And also in the DCM extract there was 

found an unknown compound, which might be 6- or 7-methoxylated chromanone, 

isocoumarin or dihydrobenzofuran.    Calculated NMR spectra for these compounds are, 

however, not in accord with observed data. 

The DCM extract and the EtOAc extracts showed higher 15-LO activity than other extracts. 

In the DPPH-test all extracts had low radical scavenging activity.  
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2. Acronyms  

Arconyms Meaning 

Aceton-d6 Deuteroacetone 

ACN  Acetonitrile 

CD3OD Deuteromethanol 

CDCl3  Deuterochloroform 

CHCl3  Chloroform 

COSY  Correlated spectroscopy 

COX  Cyclooksygenase 

D2O  Deuteriumoxide 

DAG  Diacylglycerol 

DFR  Dihydroflavonol reductase 

DMSO  Dimethylsulfoxide 

DNA  Deoxyribonucleic acid 

DPPH  1,1-Diphenyl-2-picrylhydrazyl 

EDRF  Endothelium-derived relaxation factor 

EtOAc  Ethyl acetate 

EtOH Ethanol  

GSH  Glutathion (reduced form) 

GSSG  Glutathion (oxidized form) 

13-HPODE  13-hydroperoxy-(9Z,11E)-octadecadienoic acid 

H2O2  Hydrogen peroxide  

HCl  Hydrogen chloride 

HETE  Hydroeicosatetraenoic acid 

HPETE  Hydroperoxyeicosatetraenoic acid 

HPLC  High performance liquid chromatography 

ICD50  

The concentration which shows 50 % inhibition of 15-lipoxygenase 

enzyme  

LDL  Low density lipoprotein 

LO  Lipoxygenase 

MeOH  Methanol 

N2-gas Nitrogen gas 

NADPH  Nicotinamide adenine dinucleotide phosphate 

NMR  Nuclear magnetic resonance 
1
O2  Singlet oxygen 

O2
.-
  Superoxide 

OH·  Hydroxy radical 

ppm  Parts per million 

ROS  Reactive oxygen species 

SD50 The concentration which shows 50% radical scavenging activity 

SD  Standard deviation 

SOD  Superoxide dismutase 

TLC  Thin layer chromatography 

TMS  Tetramethylsilane 
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UV  Ultra violet 

δ  Chemical shift 

 



 11 

3. Aim 

The aim of this study was to isolate and identify compounds in Sutherlandia frutescens, and 

to study the biological activity of the extracts and also isolated compounds of this plant.  

Free radicals and reactive oxygen species (ROS) are involved in several pathological states 

and 15-lipoxygenase enzyme (15-LO) is believed to be involved in the development of 

atherosclerosis. These are reasons why it is of interest to find compounds with antioxidant 

character and inhibition of 15-LO which may influence these pathological states.   
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4. Introduction 

4.1 Sutherlandia frutescens (syn. Lessertia frutescens) 

Sutherlandia frutescens belongs to the Fabaceae (Leguminosa) family which is the third 

largest family of flowering plants. It is a small lax spreading shrub, which can be about 1.2 

meters in height. The branches are hanging down, and the leaflets are from slightly to 

densely hairy. The plant has red flowers, and blooms between July and December. The 

species is found in areas of the South Western and Northern Cape Provinces and can also be 

found in Botswana, Zimbabwe and Namibia (Mncwangi and Viljoen 2007). 

 

4.2 Traditional uses of Sutherlandia frutescens 

In 1918, the plant was use to treat pandemic flu in South Africa. The root and particularly 

the leaves of Sutherlandia frutescens are widely use in traditional medicine in southern 

Africa. It has been used by several cultural groups like Zulu, Cape Dutch, San, Khoi, Sotho 

and Nguni-speaking people. S.frutescens can also calls ”cancer bush” in Afrikaans 

”kankerbos”. After large scale cultivation by a company called Phyto Nova since 2000, S. 

frutescens became popular as an adaptogenic tonic, and is as said to have an appetite 

stimulant effect (Mncwangi and Viljoen 2007; Van Wyk and Albrecht 2008). 

 

S.frutescens is used for a wide diversity of ailments like diabetes mellitus, internal cancer, 

stress, lack of appetite, indigestion, heart burn, reflux esophagi, stomach ulcer, wounds, 

antithrombotic, kidney and liver problems and many more. More recently the plant is used in 

therapy for anorexia, HIV/AIDS, tuberculosis and cancer (Munk 1997; Duggan et al. 2001; 

Colebunders, Dreezen et al. 2003; Dalvi 2003; Fernandes et al. 2004; Chinkwo 2005; 

Katerere 2005; Harnett et al. 2005; Mills, Cooper et al. 2005; Mills, Foster et al. 2005; 

Chadwick et al. 2007; Van Wyk and Albrecht 2008) 
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4.3 Chemistry 

Van Wyk (1997) has found that S. frutescens contains bioactive compounds including 

GABA (γ-aminobutyric acid), L-canavanine and pinitol. Tai et al. (2004) used GC-MS and 

LC-MS methods, and have confirmed the appearance of canavanine, but also found other 

compounds such as L-arginine, pinitol, γ-aminobutyric acid (GABA), asparagine and 

secondary plant metabolites like saponins (triterpene glycosides).  Flavonol glycosides were 

reported by Moshe et al. (1998).  

 

4.3.1 Potential effects of the compounds found in S. frutescens 

 Canavanine (a non-protein amino acid) and L-arginine: L-canavanine is a 

guanidinooxy structure analog of L-arginine. The anticancer effect and anti-

metabolite effect of L-canavanine has been confirmed in several studies (Rosenthal 

1977; Rosenthal 1997). It has been shown that L-canavanine is a selective inhibitor 

of inducible nitric oxide synthase, during rodent endotoxaemia (Liaudet et al. 1996). 

Canavanine is a growth inhibitor in some bacteria cultures (Volcani and Snell 1948), 

has antiviral activity and antitumor effect (Green et al. 1980; Green 1988).   

 

 γ-Aminobutyric acid (GABA):  GABA is the main  inhibitory transmitter in the brain 

(Rang et al. 2003). GABA may have an inhibitory effect of tumor cell migration 

(Ortega 2003). 

 

 Pinitol: D-pinitol, the 3-methoxy analogue of D-chiroinositol, known as an 

antidiabetic agent, exerts an acute and chronic insulin-like anti-hyperglycemic effect 

in STZ-diabetic mice, and might be involved in an interaction with a part of cellular 

signal pathway that links insulin to glucose transport (Bates et al. 2000). It is also 

found that (+)-pinitol has anti-inflammatory effect (Singh et al. 2001).  

 

 

 Saponins: see section 5.8, p. 23 Saponins (triterpene glycosides). 

 Flavonoids: see section 5.7, p. 22 Flavonoids. 
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5. Antioxidants and free radicals  

5.1 Antioxidants  

Antioxidants are substances which are capable of slowing or preventing the oxidation of 

other molecules, e.g. inhibition of  lipid peroxidation (Gutteridge and Halliwell 1994). The 

human body contains substrates for peroxidation like proteins, lipids, nucleic acids and 

carbohydrates. Antioxidants are important, because of reactive oxygen species (ROS) are 

formed as a result of pathological processes as well as normal cellular metabolic reactions. 

Ions from metals can catalyze redox reaction of a reactive oxidant. Antioxidants may prevent 

oxidative damage by removing catalysts, a process in which they are used up as the reaction 

proceeds, repair damage to the target, and destroying badly damage target and replace with a 

new one (Gutteridge and Halliwell 1994; Halliwell 2007).   

5.2 Free radicals 

A free radical is a molecule with one or more unpaired electron in outer orbit, which has 

ability to exist as an independent molecule. There are many types of free radicals and theirs 

chemical reactivity varies, but in general free radicals are more reactive than normal 

molecules. Examples of oxygen free radicals are superoxide (O2 
.-
 ) and hydroxyl radical 

(OH˙). ROS are oxygen radicals and also non-radical derivatives of oxygen, such as singlet 

oxygen (
1
O2) and hydrogen peroxide (H2O2). ROS are important because they may be as 

highly reactive as free radicals. ROS may be involved in process generating free radicals 

(Halliwell 2007).  

5.2.1 Formation of free radicals and reactive oxygen species 

In aerobe metabolism, oxygen reacts with many different molecules and makes oxygen-

centered radicals. Oxygen is a major constituent of the human body, and hemoglobin in the 

red blood cells, a transport protein, is evolved to carry oxygen round in the human body. 

Oxygen free radicals are constantly generated in the human body in process like in making 

energy, decomposition of lipids and proteins, catecholamine response and in inflammation 

process. Superoxide (O2
-
) and hydroxyl radical (OH˙) are formed when oxygen attracts one 
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or three electrons. Mitochondria are cell organelles that consume oxygen during energy 

production (Gutteridge and Halliwell 1994; Kerr et al. 1996) .  

 

 Some reactive free radicals are made by „accidents of chemistry‟; for example, leakage of 

electrons directly onto oxygen from the intermediate electron carriers of the mitochondrial 

electron transport chain generates a steady stream of O2
.- 

. Exposure of living organisms to 

ionizing radiation splits the O – H bond in water (an important constituent of living cells) 

homolytically to generate  OH˙and H˙. OH˙ will damage whatever it is generated next to, 

and the harmful effects can be seen is when OH˙ attacks proteins, DNA and lipids (Stogner 

and Payne 1992; Halliwell 2007).  

 

Other free radicals, except OH˙, may be useful in vivo. For example superoxide (O2
.-
)  is 

produced by phagocytic cells and helps them to kill bacteria. NO˙ is involves in many 

process such as killing of parasites by macrophages and helps to regulate blood pressure 

(NO
.
 is identical to EDRF; endothelium derived relaxation factor). And NO˙ is synthesized 

from the amino acid L-arginine by vascular endothelial cells, phagocytes and many other cell 

types.  H2O2 can be produced by the action of several oxidase enzymes in cells, and is used 

by the enzyme to help make thyroid hormones, and sometimes H2O2 can act like a second 

messenger (Kerr et al. 1996; Halliwell 2007).    

 

5.2.1 Antioxidant defences 

The human body has formidable antioxidant defence systems which can  scavenge and 

minimize the formation of ROS, but they aren‟t 100 % effective. Therefore there are repair 

systems which exist to heal or manage molecules which have been oxidatively damaged 

(Halliwell 2005). The defence system consists of several enzymes and low-molecular-mass 

free radical compounds. Many enzymes are able to repair or remove the unwanted products 

involved in oxidative damage, like superoxide dismutase enzymes (SODs) which removes 

O2
-
 by convert it to H2O2. These enzymes are found in mitochondria and cytosol (Halliwell 

1994; Halliwell 2007). 
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5.2.2 Enzyme defence:  

 Superoxide dismutase (SOD) 

SOD is one of the most effective intracellular antioxidant enzymes, and catalyzes 

converting of superoxide to hydrogen peroxide (Halliwell 2005). 

Conversion of superoxide to hydrogen peroxide: 

 

2O
•
2

 -
 + 2 H

+ 
 → H2O + O2  

 

The three major classes of antioxidant enzymes are the superoxide dismutase 

enzymes (SOD), the catalases, and glutathione (GSH) peroxidases. These specialized 

antioxidant enzymes react with and, in general, detoxify oxidants. For example, 

glutathione peroxidases (GSHPX) remove H2O2 by using it to oxidize reduced 

glutathione (GSH) to the oxidized form, glutathione disulphide (GSSG). Glutathione  

reductase (GSSH), a flavoprotein enzyme, regenerates GSH from GSSG, using 

NADPH (reduced nicotinamide-adenine dinucleotide phosphate) as a source of 

reducing power (Halliwell 2005).  

 

 Catalase enzymes 

They convert hydrogen peroxide to water and oxygen (Halliwell 2005). 

Reduction of hydrogen peroxide to water: 

 

2 H2O2 → 2 H2O + O2  

 

 Glutathione peroxidases 

These enzymes are selenoenzymes, since they require selenium for their action and remove 

hydrogen peroxide by oxidizing reduced glutathione (GSH) to oxidized glutathione (GSSG). 

Glutathione reductase regenerates GSSG to GSH by using NADPH as source of reducing 

power (Halliwell 2005). 

  

2 GSH +  H2O2 → GSSG + 2 H2O  

  GSSH + NADPH
 
+ H

+ 
→ 2 GSH + NADP

+ 
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5.2.3 Low-molecular-mass free radical scavengers:  

In addition to enzymes, many low-molecular-mass free radical scavengers exist. α-

Tocopherol (derived from diet, as vitamin E) occurs in membranes and lipoproteins. It 

blocks the chain reaction of lipid peroxidation by scavenging intermediate peroxyl radicals. 

From the diet, the body gets several other antioxidants, including vitamin C and flavonoids 

(Halliwell 2005). 

 

5.3 Oxidative stress 

In the body there is always a balance between antioxidants and generation of free radicals. 

Oxidative stress occurs when this balance is disturbed in favor of free radicals and ROS, and 

the body has not enough antioxidant to defend itself (Halliwell 2005). The term is referred 

by (Halliwell 2005) as “the situation of serious imbalance between production of reactive 

species and antioxidant defence”. Most cells can tolerate mild oxidative stress, since the cells 

have repairing mechanisms which recognize and remove free radical-damaged molecules 

and replace them. Severe oxidative stress can lead to disturbed cell metabolism leading to 

increasing of intracellular Ca
2+

, DNA fragmentation, lipid peroxidation and protein damage.  

All of these processes can induce cell damage or cell death as necrosis or apoptosis 

(Gutteridge and Halliwell 1994; Sies 1997; Halliwell 2007).  

 

Oxidative stress can result from diminished antioxidants e.g. mutation affecting antioxidant 

defence enzymes, or from increasing production of reactive species e.g. by exposure of 

toxins that are themselves reactive species (Halliwell 2005).  

 

5.4 Lipid peroxidation 

Lipid peroxidation is oxidative attacks on cholesterol and phospholipids containing 

unsaturated fatty acyl moieties. Biological membrane structures contain lipid bilayers of 

phospholipids. The polyunsaturated fatty acids are vulnerable to radical-attack leading to 

lipid peroxidation. Peroxidation may cause damage on membrane lipids and proteins, and 

releasing of antioxidant storage in membranes (Gutterigde and Halliwell 1994). 
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There are two types of lipid peroxidation, enzymatic and non-enzymatic lipid peroxidation. 

Enzymatic lipid peroxidation is controlled peroxidation of fatty acids and gives hydro-

peroxides and endo-peroxides as its outcome. The enzymes cyclooxygenase and 

lipoxygenases catalyze these reactions. Non-enzymatic peroxidation may be caused by ROS, 

metal ions and hydrogen peroxides (Halliwell 1995; Sies 1997).     

 

Non-enzymatic peroxidation starts when a radical which is reactive enough removes one 

hydrogen atom from a methylene group between two double bonds in a fatty acid. It will 

generate a fatty acid radical which is unstable, and the molecule is then stabilized by 

rearrangement to a conjugated diene.  The fatty acid radical reacts with oxygen and 

generates peroxide radical. A peroxide radical can attack another fatty acid, starting a chain 

reaction by a formation of a new fatty acid radical and a lipid hydroperoxide. Lipid 

hydroperoxides can generate cyclic peroxides and cyclic endo-peroxides, these molecules 

can continue fragmentation and give rise to different aldehydes like malondialdehyde 

(Halliwell 2007). 

 

5.5 Pathological importance 

The damage on the body tissues can lead to further free radicals and ROS generation. 

Oxidative damage can play an essential role in several diseases. In most cases, increased 

oxidative activity is a consequence of, and not a cause of the disease. Oxidative damage can 

contribute to exacerbate the state of the disease (Halliwell 2005; Halliwell 2007).   

 

5.5.1 Atherosclerosis 

It is suspected that atherosclerosis starts with damage on endothelial walls in blood vessels, 

which may involve oxygen free radicals (Kerr et al. 1996). Monocytes are attracted to the 

injury and move from blood into the endothelial tissue, where they transform to 

macrophages. Macrophages secrete O2, H2O2 and cause a local oxidative stress, leading to 

peroxidation of LDL (low density lipoprotein). Oxidized LDL is recognized by macrophage 

scavenger receptors, and internalized to form “foam cells”. Foam cells are a pre-state of 
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atherosclerosis in the arterial wall. The oxidized LDL has direct chemotactic activity for 

monocytes and stimulates the binding of monocytes to the endothelium. It also stimulates 

macrophages to excrete growth factors which again stimulate smooth-muscle cell formation 

at the injury spot. Accretion of smooth muscle cells and lesions in arterial walls lead to 

constricting of arteries, and reduces blood supply to organs like heart and brain. Stroke or 

heart failure occurs when a blood vessel is completely blocked, usually by thrombosis 

formation around lesions (Halliwell 2005; Thomson et al. 2007).      

 

5.5.2 Rheumatoid arthritis 

Rheumatoid arthritis is a chronic inflammation in joints, which causes a painful swelling and 

loss of functioning and mobility. The rheumatoid joint is a center for intense oxidative stress. 

Macrophages and neutrophiles are present and generate O2, H2O2, HOCl, NO· and other 

potential prooxidants. Bleeding in joints can increase iron concentration, and lead to 

formation of OH· (Gutteridge and Halliwell 1994).    

  

5.5.3 Cancer 

The first step in the development of cancer is a reaction between evoking substances and 

DNA, which induces injury to the genome. The damage on DNA in regions which regulate 

cell formation and cell growth can lead to uncontrolled cell proliferation and formation of 

cancerous tumors. ROS can react with DNA and make different modified purine- og 

pyrimidine bases. ROS do not initiate cell formation, but cancer can develop if these injuries 

are not repaired and cells are exposed to stimuli which start cell formation (Halliwell 2007).  

 

5.5.4 Alzheimer 

Alzheimer´s disease is a major dementing disorder among elderly patients. An important 

element of the pathology is decrease of cholinergic transmission. It is known that formation 

of neurofibrillary tangles, containing polymerized and hyperphosphorylated tau protein, and 

senile plaques containing β-amyloid peptide are involved in Alzheimer. It is suspected that 

reactive oxygen species might be involved in Alzheimer´s disease, since oxidative stress in 

Alzheimer is manifested by for example lipid peroxidation which has been detected with 
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various indices, advanced glycation end products and free radical formation (Casetta, 

Govoni et al. 2005).  

 

5.6 Eicosanoid biosynthesis and 15-lipoxygenase 

 

Eicosanoids is a term for physiologically active derivatives which are made by metabolism 

of arachidonic acid, a C20-unsaturated fatty acid which contains four double bonds. They are 

prostaglandins, leukotrienes, tromboxanes, hydroperoxyeicosatetraenoic acids (HPETE), and 

hydroxyeicosatetraenoic acids (HETE) (Smith 1989; Rang, Dale et al. 2003; Samuelson 

2004). Eicosanoids are produced de novo from phospholipids in the human body, and are 

involved in many physiological processes. Eicosanoids are some of the most important 

mediators and modulators in inflammation processes (Rang, Dale et al. 2003).  

 

 

 

Releasing of arachidonic acid from phospholipids is the initial and rate determining step in 

eicosanoid synthesis. This can happen in three ways: (1) by the action of phospholipase A2 
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directly, (2) by the action of phospholipase C followed by diacylglycerol lipase or (3) by the 

action of phospholipase D following by phospholipase A2. This release of arachidonic acid 

may be caused by different stimuli for example proteolytic or hormonal stimuli. The kind of 

stimulus depends on cell type, since prostanoids are stored by cells. Thrombin in 

bloodplates, bradykinin in fibroblasts, antigen-antibody reactions in mast-cells and cell 

damage may initiate arachidonic acid release (Smith 1989; Fonteh et al. 1994; Rang et al. 

2003) 

 

 Arachidonic acid will be transformed by several enzymes into different eicosanoids. 

Cyclooxygenase-1 and -2 (COX) catalyze the formation of prostaglandins, prostacyclin and 

thromboxanes, while lipoxygenases (5-, 12- og 15-LO) act on arachidonic acid to form 

hydroperoxy fatty acid, which will give leukotrienes and lipoxins.   

 

Eicosanoids have many different effects; depending on which tissue types and receptors they 

react with. Prostaglandins have effects like vasodilation (PGI2, PGD2), inhibition of platelet 

aggregation (PGI2, PGD2), contraction or relaxation of smooth muscles (PGE2), inhibiting 

of  acid secretion in the stomach (PGE2) and increasing segregation of mucus in the stomach 

(PGE2). Thromboxane (TXA2) gives platelet aggregation and vasoconstriction. 

Leukotrienes trigger contraction of bronchial muscles, vasodilation in most vessels, coronary 

vasoconstriction, activating of monocytes, and they stimulate proliferation and cytokine 

production from macrophages and lymphocytes. Lipoxins are involved in inflammation 

responses (Rang et al. 2003)     

 

Research has showed that 15-LO has an important role in the progression of human diseases 

like cancer, psoriasis and atherosclerosis (Steinberg 1999; Schneider and Bucar 2005). 15-

LO has the ability to oxidize esterified fatty acids in biological membranes and in LDL, 

which is an important step in the formation of atherosclerotic lesions. Furthermore, 

inhibition of 15-HPETE, an intermediate in production of lipoxins, leads to increased 

synthesis of prostacyclin which promotes vasodilation and counteracts platelets aggregation 

(Schneider and Bucar 2005). 15-LO inhibors without antioxidant effect have been shown to 

inhibit atherosclerosis progression in research animals (Sendobry 1997). 



 22 

5.7 Flavonoids 

Flavonoids constitute a large, natural group of phenolic compounds. They are widely 

distributed in Nature and are found in almost all higher plants (Malterud 1998). Their main 

structure contains two aromatic rings, bound together by a 3-carbon chain, which is usually 

cyclized to a pyrane ring. Flavonoids usually contain several phenolic hydroxyl groups, and 

are classified in several subgroups, depending on structure variation. The most common 

subgroups are flavones, flavonols, flavandiols, anthocyanins and isoflavonoids.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Structure of some flavonoids. 

 

Flavonoids are known as antioxidants, and that is why they are an important part of diet, 

with a potential to prevent diseases. They have the ability to scavenge free radicals like 

superoxide and hydroxyl, and inhibit any damage caused by them (Havsteen 1983). 

Flavonoids have many other valuable effects, like decreasing leakage through capillary 

vessel walls, counteraction of aggregation of blood platelets and inhibition of 15-LO which 

is suspected to play a major role in progression of atherosclerosis. Other interesting 

biological activities of flavonoids are anti-inflammatory, anti-hepatotoxicity, antitumor, 

antimicrobial, antiviral and estrogen effects (Malterud 1998; Pietta 2000; Samuelson 2004).  
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The most important relationships between structure and antioxidant / radical scavenging 

activity for flavonoids have been defined as follows (Rice-Evans, Miller et al. 1996): 

 Ortho 3‟,4‟-dihydroxy substitution on B-ring (give the most stable phenoxyl radical 

due to electron dislocation). 

 Meta 5,7-dihydroxy substitution in A-ring. 

 2,3-double bound in combination with both 4-keto group og 3-hydroxyl group in the 

C-ring (for electron dislocation) as long as there is an ortho dihydroxy structure in 

the B-ring 

 Changes in substitution position of hydroxyl groups and substitution of hydroxyl 

groups by glycosylation usually will lead to reduced antioxidant activity.  

 

 

5.8 Saponins - Triterpenes 

Saponins are complex compounds in plants and animals, which are composed of a 

saccharide attached to a steroid or triterpene. The name saponin is derived from a latin name 

meaning “soap”, since they were used to make soap for hundreds of years. They are 

characterized by their surfactant and cholesterol binding properties, and give stable foam 

when shaken with water (Osbourn 1996; Lacaille-Dubois 1999). They have many biological 

and pharmaceutical activities like anti-allergic, cytotoxic, anticancer, antimicrobial, immune 

modulating, anti-hepatotoxic, antifungal properties. 

 

Fig. 2. Structure of a typical saponin 
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They have been used as adjuvant in vaccines, since they can increase the specific immune 

response for antigen and induce immune defense. Saponins are used as adjuvants in vaccines 

for animals. Saponins as adjuvants in human vaccines are currently not available, because of 

their hemolytic effect and their propensity to give skin reactions (Lacaille-Dubois 1999).  

 

 

 



 25 

6. Methods 

6.1 Separation and identification methods 

6.1.1 Liquid-liquid extraction (LLE) 

Liquid-liquid extraction is a classic method which is often a part of processing of plant 

extracts of unknown composition.  LLE is easy to perform, and its significant savings in 

operating costs can be achieved by fine-tuning extraction systems. The separations of two or 

more components are due to their unequal solubility in two immiscible liquid phases. A feed 

solution containing one or more solutes is thoroughly mixed with an immiscible solvent 

having a different density. Two phases will then be formed – the continuous phase (usually 

water) and the dispersed phase (usually organic solvent). The assumption is that the wanted 

analyte(s) has high affinity in the dispersed phase, so that it can be removed from the 

continuous phase. Therefore the choice of solvent for dispersed phase is essential in liquid – 

liquid extraction. And also, the solvent in dispersed phase shall have high selectivity and 

high affinity so that unwanted components remain in the continuous phase. The solvent 

should have low toxicity and preferably not be flammable, since a large amount of solvent is 

usually used in LLE. Bases are extracted into the dispersed phase with pH 2-3 units higher 

than their pKa-value, from the continuous phase, while acids in continuous phase are 

extracted into the dispersed with pH 2-3 units lower than their pKa-value (Greibrokk et al. 

1998; Pedersen-Bjergaard and Rasmussen 2004).    

6.1.2 Low-pressure column chromatography (LPCC) and 
Versaflash. 

Chromatography is a separation method that relies on differences in partitioning behavior 

between a mobile phase and a stationary phase to separate the components in a mixture. 

Liquid chromatography (LC) is an analytical chromatographic technique that is useful for 

separating ions or molecules that are dissolved in a solvent. The separation is achieved on 

the basis of different speeds of transportation or difference in retention for different 

molecules (Greibrokk et al. 1998).  If the sample solution is in contact with a second solid or 

liquid phase, the different solutes will interact with the other phase to differing degrees due 

to differences in adsorption, ion-exchange, partitioning, or size. These differences allow the 

http://www.chemistry.adelaide.edu.au/external/soc-rel/content/sepintro.htm
http://www.chemistry.adelaide.edu.au/external/soc-rel/content/partitn.htm
http://www.chemistry.adelaide.edu.au/external/soc-rel/content/chromato.htm
http://www.chemistry.adelaide.edu.au/external/soc-rel/content/sepintro.htm
http://www.chemistry.adelaide.edu.au/external/soc-rel/content/partitn.htm
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mixture components to be separated from each other by using these differences to determine 

the transit time of the solutes through a column.  LPCC involves two phases (a stationary 

and a mobile phase), the mobile phase which is transported through the column and the 

stationary phase which remains in the column. When a mixture of solutes is applied in the 

apparatus and pumped into the column, it will be transported along the column with different 

speeds for different constituents, depending on their interactions with the stationary phase. 

The two phase system is necessary, since differences in speed of migration are caused by 

chemical interactions between the molecules of the two chromatographic phases. The 

applied solutes will distribute over the two phases. A solute with a high affinity towards the 

stationary phase will be transported slower through the column, and a solute which has low 

affinity towards the stationary phase or does not enter stationary phase at all will be 

transported fast or at the same speed at which the mobile phase is transported through the 

column. The choice of mobile phase depends on which components are  to be separated. 

Often, the mobile phase is a mixture of two or more solvents, and elution can be undertaken 

as isocratic or gradient elution.. Depending on the choice of packing material of the 

stationary phase, several separation mechanisms are available (Heftmann 1975; Cannell 

1998; Greibrokk et al. 1998; Pedersen-Bjergaard and Rasmussen 2004).         

 

 

 

Schematic of a simple liquid chromatographic separation 
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In VersaFlash column separation basic principles are the same as in LPLC, and a prepacked 

VersaPak column with polar or nonpolar stationary phase is employed.    

 

VersaFlash apparatus (Sigma-Aldrich, 2009) 

Here are some of the packing materials for the column: 

 Silica (VersaFlash) 

 

In normal phase chromatography, silica is the most used stationary phase. Silica has a very 

large surface area, since it is a porous material. Silica consist of silanol groups (Si-OH), 

which are the active groups, and give the surface polar and weak acidic character (Pedersen-

Bjergaard and Rasmussen 2004). The chemical interaction with substances is through 

hydrogen bonds, in which the surface hydroxyl groups are the proton donor. The acidic 

character makes amines and other bases strongly adsorb, and they are eluted slowly 

(Greibrokk et al. 1998; Pedersen-Bjergaard and Rasmussen 2004).  

 

 Reverse phase C18-bonded silica (VersaFlash)  

Reverse phase chromatography uses a nonpolar stationary phase and a polar mobile 

phase. The most common chemical interaction in reverse phase chromatography is 

van der Waals type bonding between stationary material and solute(s) (Van der 
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Waals type interaction is a weak interaction, which increases with increasing 

molecules size). The degree of adsorption to reverse phase silica gel is proportional 

to the lipophilicity of the compounds being chromatographed, and mobile phase used 

are usually aqueous. The polar interaction is not significant here, because of the 

aqueous mobile phase, which counteracts this type of interaction. Substances will be 

eluted in order of decreasing polarity. Modified silica with C18H37-groups bonded is 

often used in this case (Greibrokk et al. 1998; Pedersen-Bjergaard and Rasmussen 

2004).    

 

6.1.3 Size-exclusion chromatography (SEC) 

Size-exclusion chromatography (SEC), also called gel-filtration or gel-permeation 

chromatography (GPC), uses porous particles to separate molecules of different sizes. It is 

generally used to separate biological molecules, and to determine molecular weights and 

molecular weight distributions of polymers. Molecules that are smaller than the pore size can 

enter the particles and therefore have a longer path and longer transit time than larger 

molecules that cannot enter the particles (Cannell 1998; Pedersen-Bjergaard and Rasmussen 

2004). 

Schematic of a size-exclusion chromatography column 

 

Molecules larger than the pore size can‟t enter the pores and elute together as the first peak 

in the chromatogram. This condition is called total exclusion. Molecules that can enter the 

pores will have an average residence time in the particles that depends on the molecules size 

and shape. Different molecules therefore have different total transit times through the 

column. This portion of a chromatogram is called the selective permeation region. Molecules 

http://www.chemistry.adelaide.edu.au/external/soc-rel/content/chromato.htm
http://www.chemistry.adelaide.edu.au/external/soc-rel/content/chromato.htm
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that are smaller than the pore size can enter all pores, and have the longest residence time on 

the column and elute together as the last peak in the chromatogram. This last peak in the 

chromatogram determines the total permeation limit (Pedersen-Bjergaard and Rasmussen 

2004). 

Following are some of the gel materials use in SEC or GPC: 

 

 Sephadex LH-20 

Sephadex LH-20 is made by hydroxypropylation of Sephadex G-25, and it is a 

dextran gel which is made of cross-linked dextran chains to give a three dimensional 

polysaccharide network. The hydroxypropyl groups are attached by ether linkages to 

glucose units of the dextran chains. This gel has dual lipophilic and hydrophilic 

properties. Sephadex LH-20 swells well and is also stable in solvents with different 

polarity. The degree of swelling increases with increasing polarity of the solvent (= 

mobile phase). Sephadex LH- 20 is used in gel filtration, which separates molecules 

according to their size. Substances are eluted from columns of Sephadex in order of 

decreasing molecular size. An additional advantage with Sephadex is adsorption 

separation, because Sephadex LH-20 has an affinity for aromatic and cyclic 

compounds. These characters of Sephadex LH-20 vary due to different mobile phases 

(Henke 1995; Hostettmann al. 1998).    

 Toyopearl HW40 

Toyopearl is a semi rigid, porous, hydrophilic gel for medium pressure LC. The gel 

consists of a matrix from oligoethyleneglycol, glycidylmethacrylate and 

pentaerythrodimethacrylate. Toyopearl HW40 separates substances with molecular 

weight in a range from 100 to 10 000 Da. It is a size exclusion separation 

chromatography, i.e. separates molecules by their size. The stationary phase is a 

porous packed material with specific pore size, this means that molecules which are 

too big to fit in the pores will be eluted first since they will migrate with the mobile 

phase front through the column. Molecules will be eluted in order of decreasing 

molecular size. Toyopearl HW40 has high chemical stability and is compatible with 

organic solvents (Greibrokk et al. 1998; Hostettmann et al. 1998). 

 MCI gel CHP20P 
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A gel consisting of a polyaromatic (styrene – divinylbenzene) adsorbent resin. MCI 

gel CHP20P is designed for separations of aromatic compounds, peptides, steroids, 

desalting ect. The separation principle is like reverse phase chromatography. The 

potential problems caused by exposed silanols in silica-based materials is avoided 

(Cannell 1998; Supelco 2007).  

 

6.1.4 Centrifugal Thin-Layer Chromatography – Chromatotron  

 

 

 

 

 

 

 

 

Chromatotron separation follows the same principles as analytic thin-layer chromatography. 

In chromatotron separation (centrifugally accelerated thin-layer chromatography; CA-TLC), 

an adsorbent layer (1, 2 or 4 mm sorbent thickness) is used to coat a circular glass plate.  In 

order to prevent breaking up of the thin layer, the sorbent is mixed with a binder, usually 

calcium sulphate hemihydrates (dried gypsum), and also a fluorescence in short wave UV-

light compound added to sorbent. Silica gel 60 F254 for TLC is often used as sorbent in 

chromatotron (Hostettmann et al. 1998). 

 

The prepared glass plate is screwed onto the hub of the electric motor and rotated at 800 

rpm. When the sorbent has been washed several times with eluent (mobile phase), the 
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sample is introduced onto the sorbent-free centre of the plate. Thereafter, eluent is applied at 

the center of the plate and passes across the thin layer under the influence of the centrifugal 

force.  At the periphery, the bands are spun off and collected through an exit tube in the 

chamber. The chamber is covered with a UV-transparent plastic lid; this enables the 

observation of colorless but UV-active substances zones with a UV lamp. A steady flow of 

nitrogen is passed through the chamber to prevent condensation of the eluent and to avoid 

oxidation of the sample (Hostettmann et al. 1998).  

 

6.1.5 High performance liquid chromatography (HPLC) 

High-performance liquid chromatography (HPLC) is a form of liquid chromatography to 

separate compounds in solution. HPLC instruments consist of a reservoir of mobile phase, a 

pump, an injector, a separation column, and a detector. Compounds are separated by 

injecting the sample mixture onto the column. The different components in the mixture pass 

through the column at different rates due to differences in their partitioning behavior 

between the mobile liquid phase and the stationary phase (Pedersen-Bjergaard and 

Rasmussen 2004). 

Schematic of an HPLC instrument 

 

http://www.chemistry.adelaide.edu.au/external/soc-rel/content/lc.htm
http://www.chemistry.adelaide.edu.au/external/soc-rel/content/partitn.htm
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Picture of an HPLC instrument 

 

 

HPLC is a versatile, robust, and widely used technique for the isolation of natural products. 

The main difference between HPLC and common column chromatography is that the 

diameter of stationary phase particles is comparatively low (3-10µm), and these particles are 

tightly packed to give a very uniform column bed structure. The small particle diameter 

means that a high pressure is needed to drive the chromatographic solvent (or “eluent”) 

through the bed. It is very important that mobile phase is clear, empty of air and also that the 

temperature of mobile phase should be in equilibrium with the whole system. The most 

common stationary phases consist of modified silica in which the surface is bonded with 

long chain alkyl-groups, substituted alkyl-groups or other hydrocarbons, and the mobile 

phase often consist of a mixture with water and an organic solvent which is miscible with 

water. HPLC can be used as adsorption, normal phase, reverse phase, ion-exchange, ion-pair 

and as size exclusion chromatography (Greibrokk et al. 1998; Pedersen-Bjergaard and 

Rasmussen 2004).  
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6.1.6  Analytical TLC 

This method is used to identify substances and to check the purity of products. Thin-layer 

chromatography consists of a stationary phase immobilized on a metal, glass or plastic plate, 

and an organic solvent. The sample, either liquid or dissolved in a volatile solvent, is 

deposited as a spot on the stationary phase. Many spots can be applied on the stationary 

phase and be separated in a single run. The constituents of a sample can be provisionally 

identified by simultaneously running standards with the unknown. The stationary phase is 

often silica based, reverse phase materials (ex. C18), ion exchange media (cellulose or silica 

as matrix), or normal phase. Gypsum or an inert organic binder material is usually added to 

the stationary phase to increase mechanical strength (Greibrokk et al. 1998; Pedersen-

Bjergaard and Rasmussen 2004).  

The bottom edge of the plate is placed in a solvent reservoir, and the solvent moves up the 

plate by capillary action. When the solvent front has moved sufficiently upward, the plate is 

removed from the solvent reservoir. The separated spots are visualized with ultraviolet light 

or by spraying with visualization reagents, often followed by heating. The different 

components in the mixture move up the plate at different rates due to differences in their 

partitioning behavior between the mobile liquid phase and the stationary phase (Greibrokk et 

al. 1998; Pedersen-Bjergaard and Rasmussen 2004). 

 

Schematic of a TLC setup.  
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Rf = d2/d1 = 1/ 1+k  

d1 = start to mobile phase front 

d2 = start to center of spot 

↑  k: ↑ retention                

↓ Rf – value (short distance).  

6.1.7 Preparative  TLC 

 Preparative  TLC is used to collect one or more substances on a preparative scale. 

Preparative  TLC is in principle the same method as analytical TLC. But the difference is 

that the sample is deposited as a line, and that a concentrating zone consisting of inactivated 

silica may be used for concentrating the applied material into a narrow line (Pedersen-

Bjergaard and Rasmussen 2004). 

 

6.1.8 Visualization by DPPH  spraying     

 

d2 

d1 
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This is described in section 1.2.1, DPPH – test.  The DPPH reagent in this case was used to 

detect the presence of antioxidants. DPPH (diphenylpicrylhydrazyl) reacts with radical 

quenching groups present in the crude extract. Examples of such compounds are flavonoids, 

hydroxycinnamic acids, tannins etc. Thus DPPH on forming these complexes show the 

observed loss of coloration (from violet to yellow) on the TLC plate. 

 

6.1.9 Ceric spraying 

 

Ceric reagent (CAS) consist of sulfuric acid (10%) and cerium(IV)sulphate (1%) in water. 

When sprayed with CAS reagent, a pale yellow coloration is observed immediately after 

CAS spraying, turning to brown, violet or red after heating at ca 105
o
 for five minutes. CAS 

reagent will form a colored complex by reaction with organic compounds (Greibrokk, 

Lundanes et al. 1998). This method is used to decide which fractions should be combined 

after fractioning by column chromatography.  

 
 

6.1.10 NMR – (nuclear magnetic resonance)  

In chemistry, NMR-spectroscopy (nuclear magnetic resonance) is often used to elucidate the 

structure of a compound by identifying 1H- and 13C-atoms. This method is fast and without 

loss of substance.  
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The magnetic moment vectors of nuclei of hydrogen (1H), carbon (13C) and other isotopes 

which are NMR active (have spin quantum number > 0) behave like small magnets and spin 

around the direction of an external magnetic field. The absence of outer magnetic field gives 

the magnetic nuclear randomly directions. 1H and 13C have a spin quantum number of ½ 

and can orient  their own magnetic field parallel or anti-parallel with the outer magnetic 

field. The parallel orientation demands less energy than anti-parallel, that is the reason why 

the most nuclei are oriented parallel to the external field. When the parallel oriented nuclei 

are irradiated with electro-magnetic radiation with correct frequency (“radio frequency 

field”), they will absorb the energy and flip over from a lower energy level to a higher 

energy level.  The magnetic moment vector is in resonance with the radio frequency field 

when this happens, that‟s why the name nuclear magnetic resonance is used for this method. 

(McMurry, 2000) 

The correct frequency which is necessary for resonance is dependent on the strength of 

magnetic field and nuclear identity. Absorbing frequency is not the same for all 1H or 13C-

nuclei. All nuclei in molecules is surrounded by electrons. When a molecule is subjected to 

an outer magnetic field, the electrons form small local magnetic fields in which counteract 

the outer magnetic field. Then the magnetic field will affect nuclei less. The effective 

magnetic field on each nucleus is following: 

Be = Bo – Bl  

(Be: Effective magnetic field; Bo: External magnetic field; Bl: Local magnetic field). 

This effect is called nuclear shielding, and reduces the magnetic field at the nucleus. Each 

specific nucleus in a molecule is in different electron environment, and this will lead to 

different local magnetic fields. The NMR-instrument will detect signal positions for all 

nuclei. 

In a NMR-spectrum,  applied field strength increases from left to right. The position in 

spectra where a nucleus resonates is called chemical shift (), and has unit “parts per million 

(ppm). The signal at  0 correspond to a standard which is called tetramethylsilane (TMS), 

and this is used to calibrate the chemical shift scale. The nuclei which give signals to the left 

in the spectra are less shielded (deshielding) than signals to the right and give higher ppm (-

value). Nuclei which are deshielded get influence of electronegative substituents, like olefins 
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and aromatic carbons and protons. Aliphatic carbons and protons are shielded (Solomons 

and Fryhle 2004).              

A 1H-spektrum has signals in the interval 0-15 ppm and they give different types of 

information which is useful for interpreting of spectra. The following parameters are used in 

interpreting a 1H-spectrum: 

 Integration curve 

The area of a signal in a spectrum is proportional to the amount of protons giving rise to the 

signal.  This can give information to determine how many protons in each signal.  

 Signal splitting 

A signal from a specific proton can be split by the interaction with the neighbour protons, 

which may have magnetic moment vectors parallel or antiparallel to the external magnetic 

field. Signal splitting happen only when there two sets of protons have different chemical 

shifts. Characteristic patterns like singlets, doublets, triplets etc. appear when splitting 

happen. The multiplicity of a signal is related to the number of protons on the neighbour 

carbon. A signal from one proton which has n identic neighbour protons is split into a 

multiplet with n+1 peaks. Chemically and magnetically equivalent protons do not give 

splitting.  

 Coupling constant (J) 

The distance between peaks in a multiplet is called the coupling constant (J). It is measured 

in Hz and in the interval 0-18. The coupling constant gives information about which protons 

are coupled to each other. Coupled signals show identical coupling constants.  

A 13C-spectrum gives signals in the interval = 0-220 ppm, and it consists of one signal for 

each carbon atom. 13C – 1H coupling is usually eliminated by “proton noise decoupling”. 

Integration of signals is usually not done, since signal area does not exactly reflect the 

number of carbons giving rise to that signal.  

There are different types of NMR-spectra, like 1-dimensional (1-D) and 2-dimensional (2D). 

1-D NMR spectroscopy methods are, e.g., 1H, 13C and APT (Attached Proton Test). 2-D 

NMR spectroscopy methods are, among others, COSY (Correlated Spectroscopy), NOESY 

(Nuclear Overhauser Effect Spectroscopy), HMBC (Heteronuclear Multiple Bond 

Correlation) and HSQC (Heteronuclear Single Quantum Coherence). 
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6.2 Methods for measuring biological activity  

6.2.1  Radical scavenging (DPPH – test)  

 

The DPPH test provides information on the reactivity of test compounds with a stable free 

radical. Because of its odd electron, 1,1- diphenyl-2-picrylhydrazyl radical (DPPH) gives a 

strong absorption band at 517 nm in visible spectroscopy, observed as a deep violet colour 

(Blois 1958; Malterud et al. 1993). As the electron becomes paired off in the presence of a 

free radical scavenger, the absorption vanishes, resulting in decolorization (from violet to 

yellow colour) (Glavind 1963; Malterud et al. 1993). Reduction of absorption is usually 

caused by formation of  1,1- diphenyl-2-picrylhydrazine (DPPH-H) which has low 

absorbance at 517 nm (Glavind 1963). This method of screening also allows for a bio-assay 

guided study of natural products. 

 

The reduction in absorbance is due both to the amount and the activity of radical scavengers. 

Because of the strong absorption of the DPPH radical at 517 nm, solutions with low 

concentration can be measured, and so Beer-Lamberts law applies for the whole 

concentration interval. The free radical DPPH • scavenging (usually by reduction) activity 

was calculated from the equation: Activity [% of DPPH reduction] = [(A-Ax) / A] x 100%, 

where A – initial absorbance of DPPH • solution with methanol, Ax - absorbance of a DPPH 

solution at the end of the measurement period with a tested fraction solution (test) or BHA or 

quercetin (positive control) solution. The antiradical activity SC50, defined as the 

concentration of a sample showing 50% DPPH radical scavenging activity, can be 

determined from a graph in which concentration and reduction activity is plotted against 

each other, or by a computer program (Malterud et al. 1993). 

 

6.2.2 Inhibition of 15-lipoxygenase (15-LO test)  

15-lipoxygenase (15-LO) enzyme peroxidates arachidonic acid to 15-HPETE (15-

hydroperoxyeicosatetraenoic acid), which can be transformed in vivo into other eicosanoids. 

In our assay, 15-LO from soya beans is used. It is not exactly identical to mammalian 15-

LO, but there is a good correlation between inhibition of the two enzymes. Therefore soya 

beans lipoxygenase can use as a testing enzyme to identify inhibitor of mammalian 15-LO 
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(Lyckander and Malterud 1992; Gleason et al. 1995). Another reason is that soya beans 15-

LO is cheap, easily assessable and quite stable (Lyckander and Malterud 1992). Enzyme 

solutions are kept cold during the whole experiment, so that loss of activity by oxidative 

denaturation is delayed. Enzyme activity is reduced linearly as a function of solution storage 

time. This can be adjusted for by measurement of blanks periodically through the 

experiment.  

Linoleic acid is used as substrate for 15-LO, instead of arachidonic acid which is more 

expensive and less stable. Inhibition of peroxidation of linoleic acid gives comparable values 

to those obtained for peroxidation by arachidonic acid (Lyckander and Malterud 1990).    

Linoleic acid has a 1,4-diene-type structure, and forms 13-hydroperoxy-(9Z,11E) 

octadecadienoic acid (13-HPODE) (Gleason et al. 1995; Lyckander and Malterud 1996). 

 

CH3-...-CH=CH-CH2-CH=CH-...-COOH  + O2  -->    

CH3-...CH(OOH)-CH=CH-CH=CH-...-COOH 

13-HPODE has two conjugated double bonds, this makes the compound absorb UV-light at 

230-235 nm. Linoleic acid has no conjugated double bonds and that is why it doesn‟t have 

this character. Peroxidation of linoleic acid will increase absorbance at 234 nm proportional 

with concentration of conjugated diene. Inhibition of 15-LO enzyme will lead to a slower 

rate for increase in absorbance (Gutteridge and Halliwell 1990). The increase in absorbance 

for samples with and without inhibitor in 30-90 seconds period after enzyme is added, is 

measured. Calculation is performed by the following formula (Lyckander and Malterud 

1992):  

100*(A2-A1)/A2 

A1: Absorbance increase (AU/min) of samples with inhibitor 

A2: Absorbance increase of samples without inhibitor 

Linoleic acid is dissolved in borate buffer with pH 9,00. Linoleic acid has a pKa-value = 

4,77 and at pH 9,00 is nearly completely ionized. And to increase solubility, linoleic acid is 
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first dissolved in 150 l ethanol before buffer is added. This will give a clear solution, which 

is important to measure correct absorbance (Haining and Axelrod 1958). 

A small amount of lipid peroxide must be present for 15-LO to perform peroxidation of 

linoleic acid. This can be achieved by opening the ampoule with linoleic acid and keep it at 

room temperature for about 1 day before experiment starts. Also, slightly peroxidised 

linoleic acid makes it easier to get a clear solution (Haining and Axelrod 1958).   
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7. General experimental methods  

7.1 Low pressure column chromatography 

Procedure 

Before separation, the column‟s packing material is mixed with start eluent. After swelling 

of packing material, the slurry is poured into a suitable column and eluted with 1-2 column 

volumes of start eluent.  

The sample to be separated is dissolved in a small volume of start eluent and applied to the 

column. Different components will be eluted via gradient – or isocratic elution, and fractions 

of suitable volume are collected. At last the column is washed with 70% acetone and/or 

100% acetone to elute any remaining material from the sample.  

Solvents and reagents  

A solvent with good dissolving properties is used to dissolve samples. In this work, mixtures 

of water and methanol were used for elution.       

7.2 HPLC 

Procedure 

Before applying a sample solution, the column is conditioned with mobile phase for about 30 

minutes. Thereafter the solution to be separated is injected into the loop. Gradient elution 

was chosen in our experiments. In analytic HPLC a chromatogram will be printed out, and in 

preparative HPLC, the effluent is collected into fractions. 

Solvents and reagents 

Mixtures of acetonitrile and water or MeOH and water in different concentrations of these.  
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7.3 Analytical thin-layer chromatography 

Procedure 

Mobile phase was made and poured into the TLC tank, and the tank was closed for 15 

minutes before start to make the atmosphere in the tank saturated. Samples were applied as  

dots on the TLC-plate with a capillary tube. The volume applied of each sample was from 

10-20 µl. After applied samples are dried, the TLC-plate was placed in the tank. The TLC-

plate was taken out when the mobile phase had moved a sufficient distance, and the front 

was marked. When the plate is dried, components are detected in UV-light at 254 nm 

(shortwave) and 366 nm (long wave). At last the plate can be sprayed with DPPH – or ceric 

reagents.  

Solvents and reagents 

Mixed solvents which were used contained MeOH, water, acetone, chloroform, acetonitrile 

and EtOAc.  

7.4 DPPH – spraying 

Procedure 

After the solutes have been applied on TLC-plate and the plate has been developed and 

dried, the plate is sprayed with DPPH reagent. The results (radical scavengers showing as 

yellow spots on a violet background) will appear after a short time.  

Solutes and reagents 

DPPH-reagent is dissolved in methanol until the concentration is so strong that the TLC 

plate is covered with an even violet colour. 

7.5 Ceric – spraying 

Procedure 

 Similarly as above,, the plate is sprayed with ceric reagent and dried in the oven at 100ºC 

for 5-10 minutes. Dark spots formed are observed and marked.  
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Solutes and reagents 

Cerium(IV)sulfate 1%, dissolved in 10% aqueous sulfuric acid. 

7.6 NMR – spectroscopy 

Procedure 

Samples (amount varying from 1-100 mg) were dissolved in ca. 1 ml solvent, adding 1 drop 

of TMS. The mixture was poured into an NMR-tube and analysed in the NMR-spectrometer.  

Solutes and reagents 

TMS was used as reference and deuterated chloroform, acetone, MeOH, or pyridine were 

used to dissolve the samples.  

7.7 Radical scavenging (DPPH-test) 

Procedure 

The spectrophotometer is reset with a blank sample which is methanol before measurements 

are started. DPPH-solution was made by solving 1,1- diphenyl-2-picrylhydrazyl (DPPH) in 

methanol with a concentration which gives an absorbance of ca. 1 at 517 nm. Absorbance 

was measured in 2,95 ml DPPH-solution before adding samples. 50 µl of samples was 

added, and the mixture stirred with a plastic spatula. Absorbance at 517 nm was measured 

over a 5-min period.  Three parallels of each sample were measured.  

 

7.8 Inhibition of 15-lipoxygenase (15-LO test) 

 

Procedure 

 

All solutions are at room temperature during measurements, except solution C which is kept 

on ice. Samples are dissolved in DMSO. Quartz cuvettes are used in the test, because quartz 
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doesn‟t absorb UV-light at 234 nm. A blank sample containing 0.95 ml of solution A (see 

below), 2.00 ml of solution B and 0.05 ml DMSO is placed in the blank compartment of the 

spectrophotometer throughout the experiment period. Uninhibited samples (without test 

substance) are measured at the start, after each three measurements and at the end of the 

experiment. These samples contain 0.90 ml of solution A, 2.00 ml of solution B and 0.05 ml 

DMSO. After stirring the sample with a plastic spatula, 0.05 ml of solution C (enzyme 

solution) is added to start the reaction, the mixture is stirred again, and the increase in 

absorbance at 234 nm is measured from 30 to 90 s after enzyme addition. Test samples are 

made with DMSO solutions of test substance instead of pure DMSO and are measured 

similarly. Both uninhibited samples and test samples are measured as three parallels. 

 

Solutes and reagents 

 

DMSO is used to dissolve all substances and dilutions made from the initial DMSO solution. 

 

A: Borate buffer, 0.2 M, pH 9.00. Made from boric acid and sodium hydroxide. 

B: Substrate solution: Mix 50 µl linoleic acid and 150 µl ethanol. Add 50 ml of solution A.  

15 ml of this is mixed with 225 ml A. This solution should be used the same day it is made.  

C: Enzyme solution: dissolve 15-LO («Lipoxidase», Sigma) in A to a concentration of about 

10 000 U/ml (this will give an increase in absorbance at 234 nm of ca 0.4 AU/min) An 

absorbance increase of 0,3-0,5 AU/min is acceptable. The enzyme solution should be kept on 

ice throughout the experimental period. The final concentration of enzyme will be 167 U/ml. 

D: Inhibitors: The substance to be tested is dissolved in dimethyl sulfoxide (DMSO). If  

recovery of the sample is critical (or if the sample itself has a strong absorbance at 234 nm, 

making the sum of sample absorbance and DMSO absorbance too high for accurate 

measurements, methanol may be used instead. The concentration range to be measured for 

the test substance will depend on its inhibitory activity. This must be tested in each case, 

starting with a fairly strong solution (e.g. 10 mg/ml) and then making a dilution series.  
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8. Experimental procedure 

8.1 Materials 

8.1.1 Chemicals 

 

Acetone, for HPLC  

Prolab 

Fontenay S/Bois, France 

Acetone-d6 

Sigma-Aldrich  

St.Louis, USA 

Acetonitrile for HPLC 

Fluka Chemie  

Buchs, Switzerland 

Acetonitrile, gradient grade 

Merck  

Darmstadt, Germany 

Butanol 

Fluka Chemie  

Buchs, Switzerland 

Cerium(IV)sulfat, p.a. 

Merck  

Darmstadt, Germany 

Dichloromethane 

Fluka Chemie  

Buchs, Switzerland 

DMSO, dried 

Merck  

Darmstadt, Germany 

DPPH 

Sigma-Aldrich  

St.Louis, USA 

Acetic acid, (>90%) 

VWR International  

Oslo, Norway 

Ethanol 

Arcus  

Oslo, Norway 

Ethyl acetate, p.a. 

Fluka Chemie  

Buchs, Switzerland 

Chloroform, p.a. 

Merck  

Darmstadt, Germany 

d-Chloroform (CDCl3) 

Sigma-Aldrich  

St.Louis, USA 

Linoleic acid 

Sigma  

St.Louis, USA 

Lipoxidase; 15-Lipoxygenase 

Sigma  

St.Louis, USA 

MCI CHP20P Supelco, Bellefonte, USA 

Methanol, p.a. 

Chemi-Teknik  

Oslo, Norway 

Methanol purum 

Chemi-Teknik  

Oslo, Norway 

d-Methanol (CD3OD)  Sigma-Aldrich  
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St.Louis, USA 

N2-gas 

AGA  

Oslo, Norway 

Pyridine 

Sigma-Aldrich  

Steinheim, Germany 

Sephadex LH20 

Pharmacia Biotech  

Uppsala, Sweden 

Silica gel Merck, Darmstadt, Germany 

TMS (tetramethylsilane) 

Sigma-Aldrich  

Steinheim, Germany 

Toyopearl HW40 

Tosoh Bioscience  

Tokyo, Japan 

Purified warer 

School of Pharmacy 

Oslo, Norway 

Deuterium oxide (D2O) 

Aldrich 

Milwaukee, USA 

 

 

8.1.2 Apparatus 

Analytical TLC  

Kiselgel 60 F254, aluminium plates 

Merck 

Darmstadt, Germany 

RP-18 F254S, aluminium plates 

Cellulose F, DC Plastikfolien  

Filterpaper  

Whatman, in different sizes 

Whatman 

Maidstone, England 

Phase separation paper 

Whatman phase separators,  

silicone treated 

HPLC  

Varian Prostar 

Varian 

Walnut Creek, CA, USA 

Pump model 210 

Analytical: 

Detector Analytic 9x0mm 

Analytic column 

Varian 250x4,6 mm  

microsorb mv 100-5 C18 

Hamilton 705SN 50μl syringe  

Preparative:  

Detector Prep 9x1mm  

Preparative column  

Varian dynamax 250x21,4 mm  

microsorb 60-8 C18  

Varian 1002 TLL 2,5ml syringe  
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Low pressure column chromatography  

FMI Lab pump  Fluid Metering inc   

New York, USA modell RP-G150  

VersaFlash Büchi 

Flawil, Switzerland Büchi 681 Chrom pump  

Curvettes  

Quartz cuvettes  

Starna 

Essex, England 

Magnet stirring machine  

RCT basic  

Janke & Kunkel 

Staufen, Germany 

Chromatotron apparatus:  

Chromatotron Model 7924  

Pressure meter  

Glass plate 

Harrison Research 

USA 

NMR  

Varian Gemini 200  

Varian 

Palo Alto, CA, USA 

DPX 300  

Biospin GmbH 

Rheinstetten, Germany 

Oil pump  

Edwards E-Lab 2  

Edwards High Vacuum International 

Sussex, England 

Shaking machine  

IKA-VIBRAK-VXR  

Janke & Kunkel 

Staufen, Germany 

Rotary evaporator   

Büchi Rotavapor-R  

Büchi 

Flawil, Switzerland 

Spray apparatus  

TLC sprayer  

Camag 

Muttenz, Switzerland 

UV-apparatus  

UV-spectrophotometer:  

Shimadzu UV 160A  

Temperature regulator:  Shimadzu 

Kyoto, Japan Shimadzu CPS-controller  

Cuvette holder:  

Shimadzu CPS-240A  

UV-lamp:  

Model UVSL-58 (254 og 366 nm)  

Ultra Violet Products 

San Gabriel, CA, USA 

Scale  

Sartorius model BP221S  

Sartorius 

Göttingen, Germany 
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8.2 Plant material and extraction 

Plant material was pulverized from the leaves from Lessertia frutescens. It was provided by 

drs. W. Mabusela and Q. Johnson, University of Cape Town, where a herbarium voucher 

sample is deposited.  

The pulverized leaves (543 g) were extracted in a Soxhlet apparatus, first with 

dichloromethane (DCM) (4 litres), followed by methanol (MeOH) (4 litres). Both extracts 

were dried in a rotary evaporator, weighed and subjected to NMR spectroscopy. (Flowchart 

12.1, p. 84)     

8.2.1 Primary DCM-extract  

DCM-extract, 5 g or 10 g, was dissolved in chloroform, and then applied to a VersaFlash 

normal phase column. The column was washed with 200 ml chloroform before the samples 

were applied. First 100 % chloroform, thereafter 10, 20, 40 and 100 % ethyl acetate, and 

finally 100 % acetone were used as mobile phase and fractions of ca. 50 ml were collected. 

The column was washed with chloroform to get rid of the rest of the acetone. There were 

collected totally 51 fractions (5 g-sample) and 65 fractions (10 g-sample) (Tables 13.1 and 

13.2, p. 93-96).  

Analytical TLC   

The fractions 1-51 and 1-65 were investigated by normal phase TLC (silica gel 60 F254) 

Mobile phase for fractions 1-51: Chl-EtOAc (3:1) for fractions 1-17, Chl-EtOAc (1:1) for 

fractions 18-33, EtOAc-acetone (1:1) for fraction 34-45, and 100 % acetone for fractions 46-

51. 

Mobile phase for fractions 1-65: 100 % Chl for fractions 1-10, Chl-EtOAc (3:1) for fractions 

11-25, Chl-EtOAc (1:1) for fractions 26-40, 100 % EtOAc for fractions 41-54, and EtOAc: 

acetone (2:1) for fractions 55-65. 

The plates were viewed in UV-light with short- and long wave irradiation before and after 

developing. Spots which absorbed UV-light were marked. The plates were sprayed with 

Ceric reagent and the fractions which seemed to contain the same components were 

combined, evaporated to dryness on a rotary evaporator and on an oil pump, and weighed. 

These gave fractions D1-D16, and D2.1-D2.17 (Tables 13.1 and 13.2, p. 93-96). 
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NMR-spectroscopy 

1H-NMR-spectra of all fractions and 13C-NMR-spectra of fractions D6 and D7 were 

recorded (spectrum 14.4-14.6, p. 127-128).   

8.2.2 Further work on Chromatotron of fraction D2.7, D2.8, D2.9 
and D2.10  

Based on their 1H NMR spectra, these fractions were chosen for purification on a 

Chromatotron. 

8.2.2.1 Fractionation of D2.7 

Fraction D2.7 was dissolved in a small amount of dichloromethane (DCM). The 

Chromatotron plate was wetted with DCM before application of the samples. Mobile phase 

D2.7: first 80, 67 and 50 % chloroform (Chl) and ethyl acetate (EtOAc), and then 100 % 

EtOAc, 100 % acetone, 10 and 20 % methanol (MeOH) in acetone. At last 100 % MeOH. 36 

fractions were collected (Table 13.3, p. 96-97).  

8.2.2.2 Fractionation of D2.8 

Fraction D2.8 was dissolved in small amount of Chl. The Chromatotron plate was wetted 

with Chl before application of the samples. Mobile phase D2.8: first 80, 67 and 50 % Chl 

and EtOAc, and then 100 % EtOAc, 100 % acetone. At last 100 % MeOH. 20 fractions were 

collected (Table 13.4, p. 98). 

8.2.2.3 Fractionation of D2.9 

This was done as described for D2.8.  Mobile phase were 10, 20, 30, 40, 50, 70 and 100 % 

EtOAc and Chl, followed by 5, 10 and 100 % acetone and EtOAc, at last 20 % MeOH in 

acetone. 24 fractions were collected (Table 13.5, p. 98-99). 

8.2.2.4 Fractionation of D2.10 

This was done as described for D2.8.  Mobile phase D2.10: first 50 % Chl and EtOAc, 

followed by 100 % EtOAc, 100 % acetone, 20 % MeOH in acetone. At last 100 % MeOH. 

20 fractions were collected (Table 13.6, p. 99-100). 

Analytical TLC   

The fractions collected after Chromatotron fractioning were investigated by normal phase 

TLC (silica gel 60 F254) 
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Mobile phase for D2.7: Chl-EtOAc (1:1) for all fractions.  

Mobile phase for D2.8: Chl-EtOAc (1:1) for all fractions. 

Mobile phase for D2.9: Chl-EtOAc (1:1) for all fractions.  

Mobile phase for D2.10: Chl-EtOAc (1:1) for all fractions.  

The plates were studied in UV-light with short- and long waves before and after developing. 

The spots which absorbed UV-light were marked. The plates were the sprayed with Ceric 

reagent and the fractions which seems to contain the same components were combined, 

evaporated to dryness on a rotary evaporator and on an oil pump, and weighed. These gave 

fractions D2.7.1-D2.7.10, D2.8.1-D2.8.11, D2.9.1-D2.9.10, D2.10.1-D2.10.8 (Tables 13.3-

13.6, p. 96-100). 

NMR-spectroscopy 

1H-NMR-spectra of all fractions and 13C-NMR-spectra of fractions D2.7.2, D2.8.10, 

D2.9.4, D2.10.8 were recorded (spectrum 14.7-14.16, p. 129-133).  

8.2.2.5 Further work with D2.7.6, D2.7.7, D2.7.8, D2.7.9, D2.8.1, 
D2.8.2, D2.8.5 and D2.8.6 

Analytical HPLC 

Analytical HPLC was used to find the right method for preparative HPLC, and also to give 

information about how many compounds were present in the samples. 200 µl of each sample 

(with concentration 200 µg/ml) were dissolved in mobile phase and injected in a reverse 

phase (C18) column.  

Mobile phase: H2O: MeOH  

Gradient elution was used, starting with (75H2O:25MeOH) and increased to (50:50) in 15 

minutes, and then to (30:70) in 20 minutes, (10:90) in 5 minutes, then kept at the same 

concentration in 5 minutes before reducing to (75:25). UV absorbance was measured at 234 

nm, 254 nm and 210 nm (chromatogram 15.1-15.8, p. 196-199). Flow 1 ml/min.   
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8.2.2.6 Further work with D2.9.7 and D2.9.8  

Since 1H-NMR spectra indicated that these fractions might contain the same substances, and 

both fractions were small, they were combined for continuation of the purification process. 

Analytic HPLC/Preparative HPLC 

UV-spectroscopy was used to screen and to find which wave length had the highest 

absorption before going on with analytic HPLC. 200 µl of D2.9.7-8 (with concentration 200 

µg/ml) was dissolved in mobile phase and injected in a reverse phase (C18) column.  

In preparative HPLC, D2.10.8 was dissolved in about 2 ml mobile phase before it was 

injected into the column. Fractions were collected as indicated by their UV absorption. 

Mobile phase: H2O:MeOH  

The gradient used was the same as described above. UV absorbance was measured at 280 

nm (chromatogram 15.9, p. 200). Flow 1 ml/min.   

8.2.2.7 Further work with D2.8.10 

Analytic HPLC/Preparative HPLC 

200 µl of D2.10.8 (with concentration 200 µg/ml) was dissolved in mobile phase and 

injected in a reverse phase (C18) column.  

Preparative HPLC was carried out as described for D2.10.7, but the sample was dissolved in 

3 ml mobile phase. 

Mobile phase: H2O:MeOH  

The gradient used was the same as described above. UV absorbance was measured at 280 

nm (chromatogram 15.10, p. 200). Flow 1 ml/min.   

8.2.3 Primary MeOH-extract 

The dried methanol extract was dissolved in about 1 l water and  extracted in a separatory 

funnel with ethyl acetate (EtOAc) (5x0,5 litre), followed by 1-butanol (BuOH) (5x0,5 litre). 

The organic phases were collected and taken to dryness on a rotary evaporator followed by 

oil pump vacuum. When the last extraction with butanol was finished, the rest of the water 
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extract was evaporated to dryness like the other extracts. After all extracts were dry, they 

were weighed. 

NMR-spectroscopy 

1H-NMR-spectra and 13C-NMR-spectra of the extracts were recorded.  

Bioassay 

Assay for radical scavenging (DPPH-test) and inhibition of 15-lipoxygenase (15-LO test) 

were carried out for all extracts, in concentration 166,7 µg/ml, 83,3 µg/ml, 41,7 µg/ml, 20,8 

µg/ml and 10,4 µg/ml. 

 

8.2.4 Fractioning of EtOAc-extract 

EtOAc phase, ca.10 g, was solved in 5:1 EtOAc / MeOH, and then applied to a VersaFlash 

normal phase column. First pure EtOAc followed by 10, 20, 50 and 100 % acetone, second 

100 % EtOAc, third 1:1 EtOAc / MeOH were used as mobile phase and fractions of ca. 50 

ml were collected. The column was washed with EtOAc to get rid of the rest of the EtOAc / 

MeOH eluent. A total of 53 fractions were collected.  

Analytical TLC   

Fractions 1-53 were investigated by normal phase TLC (silica gel 60 F254) 

Mobile phase: EtOAc: acetone (1:1) for fractions 1-32, EtOAc: acetone (3:7) fractions 33-

42, acetone for fractions 43-53. 

The plates were studied in UV-light with short- and long waves before and after developing. 

The spots which absorbed UV-light were marked. The plates were then sprayed with Ceric 

reagent and the fractions which seemed to contain the same components were combined, 

evaporated to dryness on a rotary evaporator and an oil pump, and weighed. These gave 

fractions E1-E12 (Table 13.12, p. 100-102). 

NMR-spectroscopy 

1H-NMR-spectra of all fractions and 13C-NMR-spectra of some were recorded.   
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Bioassay 

Assay for radical scavenging (DPPH-test) was done for fractions E2, E5, E6, E7, E8, E9 

(Table 13.15, p. 102-103). The fractions were tested in concentration 166,7 µg/ml, 83,3 

µg/ml, 41,7 µg/ml.  

8.2.5 BuOH phase 

BuOH-extract, 10 g, was dissolved in 50 ml MeOH:H2O (1:1), and then applied to a 

VersaFlash reverse phase column. The column was conditioned with 200 ml MeOH:H2O 

(1:1) before the samples were applied. 50, 70 and 100 % MeOH were used as mobile phase 

and fractions of ca. 50 ml were collected. The column was washed with MeOH to resolute 

any remaining material from the sample. Totally 41 fractions were collected (Table 13.16, p. 

103-105).  

Analytic TLC   

The fractions were investigated by reverse phase TLC (silica gel 60 F254). 

Mobile phase: EtOAc-acetone (3:1) for fractions 1-25, EtOAc-acetone (1:1) for fractions 26-

41.  

The plates were irradiated with UV-light with short and long wavelength before and after 

developing. The fractions which absorbed UV-light or fluoresced were marked. The plates 

were then sprayed with Ceric reagent and the fractions which seemed to contain the same 

components were combined, evaporated to dryness on a rotary evaporator and on an oil 

pump, and weighed. These gave fractions B1-B9 (Table 13.16, p. 103-105). 

NMR-spectroscopy 

1H-NMR-spectra were taken of all fractions, and for some fractions 13C-NMR-spectra were 

recorded, as well (spectrum 14.42-14.55, p. 146-153).   

8.2.5.1 LPCC with Sephadex LH20 of fraction B1-2   

Since 1H-NMR spectra for both these fractions were similar; they were combined for 

continuing of purification. 
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Fractioning of B1-2 

At the bottom of the column a bit of glass wool was placed to prevent Sephadex LH20 

leaking from the column. Sephadex LH20 was swelled with start eluent (10 % MeOH and 

H2O), until the mixture was a slurry, and then poured into the column. The column was left 

until Sephadex LH20 sank to the bottom. Fraction B1-2, dissolved in small amount of 10 % 

MeOH and H2O, was poured into the column. 10, 20, 50 and 100 % MeOH and H2O were 

used as mobile phase. 30 fractions of 50 ml were collected.  

Analytical TLC 

All fractions were applied on a reverse phase TLC plate. 

Mobile phase:  (1:1) MeOH and H2O. 

The fractions were subjected to TLC, combined and taken to dryness as described above, 

giving fractions B1-2 S.1-B1-2 S.5. (Table 13.17, p. 105-106) 

NMR-spectroscopy 

1H-NMR-spectra of all fractions and 13C-NMR-spectra of fractions B1-2 S.3 and B1-2 S.5 

were recorded (spectrum 14.56-14.61, p. 153-156).  

8.2.5.2 Further work with fraction B1-2 S.4 in reverse phase VersaFlash 
column 

B1-2 S.4 was dissolved in ca. 3 ml MeOH and H2O (1:1) and applied to a reverse phase 

VersaFlash column. Elution with the following gradient (mobile phase): 50, 70 and 100 % 

MeOH and H2O. 33 fractions of 15 ml were collected. 

All fractions were applied on a TLC plate, and then sprayed with DPPH reagent to determine 

how they should be combined. These gave fractions B1-2 S.4 VRP.1 – B1-2 S.4 VRP.6. 

(Table 13.18, p. 106-108). 

NMR-spectroscopy 

1H-NMR-spectra were recorded for all fractions. 13C-NMR-spectra were taken for all 

fractions except fraction B1-2 S.4 VRP.1 and B1-2 S.4 VRP.2 (spectrum 14.62-14.73, p. 

156-162).  
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8.2.5.3 Further work with fraction B1-2 S.5 in reverse phase VersaFlash 
column 

B1-2 S.5 was dissolved in ca. 3 ml MeOH and H2O (1:1) and applied to a reverse phase 

VersaFlash column. Elution with following gradient (mobile phase): 50, 70 and 100 % 

MeOH and H2O. 41 fractions of 15 ml were collected. 

DPPH treatment as above led to combination of fractions into B1-2 S.5 VRP.1 – B1-2 S.5 

VRP.9. (Table 13.19, p. 108-109). 

NMR-spectroscopy 

1H-NMR-spectra were recorded for all fractions and 13C-NMR-spectra were taken for 

fractions B1-2 S.5 VRP.3, B1-2 S.5 VRP.4 and B1-2 S.5 VRP.6 (spectrum 14.74-14.80, p. 

162-165 ).  

 

8.2.5.4 Further work with fraction B1-2 S.4-5 VRP in LPCC with 
Toyopearl  

NMR spectra of fractions from B1-2 S.4 VRP and B1-2 S.5 VRP indicated two types of 

substances (called as type A and type B). Fractions were combined based on their NMR 

spectra and then applied to a Toyopearl column (2,5x15 cm) (Flowchart 12.8, p. 91).   

B1-2 S.4-5 VRP type A: B1-2 S.4 VRP.1, B1-2 S.4 VRP.2 and B1-2 S.5 VRP.3. 

B1-2 S-4.5 VRP type B: B1-2 S.4 VRP.3, B1-2 S.4 VRP.4, B1-2 S.5 VRP.4 and B1-2 S.5 

VRP.5.  

B1-2 S.4 VRP type A and B were dissolved in small amounts of MeOH, applied to a 

Toyopearl column and eluted isocratically with MeOH as mobile phase.  

13 fractions from type A with fraction 1: 30 ml, fraction 2: 12 ml, fractions 3-12: 8 ml and 

fraction 13: ca.50 ml were collected.  

10 fractions from type B with fraction 1: 15 ml, fractions 2-10: 8 ml. 

Analytical TLC 
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All fractions were applied on reverse phase TLC plates. Mobile phase:  (1:1) MeOH and 

H2O. 

The procedure described above gave fractions B1-2 S.4-5 VRP. T1 – B1-2 S.4-5 VRP. T4. 

(Flowchart 12.9, p. 92).  

NMR-spectroscopy 

1H-NMR-spectra were recorded of all fractions.  

8.2.5.5 Further work with fraction B1-2 S.4-5 VRP. T2 on LPCC with 
MCI CHP20P gel 

The same procedure was followed as for Sephadex LH20, but with MCI gel instead. The 

column was moistened with start eluent. B1-2 S.4-5 VRP. T2, dissolved in 30 % MeOH and 

H2O, was applied to the column. Gradient elution with following gradients; 30, 50, 70 and 

100 % MeOH and H2O. 29 fractions were collected of 15 ml each.  

Analytical TLC 

All fractions were applied on a reverse phase TLC plate. 

Mobile phase:  (1:1) MeOH and H2O. 

Using the procedure described above, fractions B1-2 S.4-5 VRP. T2 M.1 – B1-2 S.4-5 VRP. 

T2 M.8 were obtained. (Table 13.20, p. 109-111).  

NMR-spectroscopy 

1H-NMR-spectra were taken of all fractions. 13C-NMR spectra were taken of fraction  B1-2 

S.4-5 VRP. T2 M.3 and B1-2 S.4-5 VRP. T2 M.5 (spectrum 14.88-14.95, p. 169-173).  

8.2.5.6 Further work with fraction B1-2 S.4-5 VRP. T3 on LPCC with 
MCI CHP20P gel 

Same procedure as with Sephadex LH20, but with MCI gel instead. B1-2 S.4-5 VRP. T2 

dissolved in 30 % MeOH and H2O, was applied to the column. Gradient elution with 

following gradients; 30, 50, 70 and 100 % MeOH and H2O. 21 fractions were collected of 15 

ml each.  

Analytical TLC 
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All fractions were applied on reverse phase TLC plate. 

Mobile phase:  (1:1) MeOH and H2O. 

Similarly to the above, fractions B1-2 S.4-5 VRP. T3 M.1 – B1-2 S.4-5 VRP. T3 M.7 were 

obtained. (Table 13.21, p. 111-112).  

NMR-spectroscopy 

1H-NMR-spectra were taken of all fractions. 13C-NMR spectra were taken of fractions  B1-

2 S.4-5 VRP. T3 M.4 and B1-2 S.4-5 VRP. T3 M.5 (spectrum 14.96-14.105, p. 173-178). 

 

8.2.5.7 Further work with fractions B1-2 S.4-5 VRP. T2 M.1 – B1-2 S.4-
5 VRP. T2 M.5 on HPLC 

Analytical HPLC/Preparative HPLC 

UV-spectroscopy was used to find which wave length had the highest absorption for the 

samples before going on with analytical HPLC. 200 µl of each fraction (with concentration 

200 µg/ml), dissolved in mobile phase, was injected in a reverse phase C18 column.  

In preparative HPLC, all fractions were dissolved in about 3 ml mobile phase, were injected 

separately into the column. Fractions were collected based on their absorbance. 

Mobile phase: H20:MeOH  

Gradient elution was used, starting with (70:30), increased to (50:50) in 15 minutes, and then 

to (30:70) in 20 minutes, (10:90) in 5 minutes, keeping the same concentration in 5 minutes 

before reduction to (75:25) in 2 minutes. UV absorbance was measured at 265 nm 

(chromatogram 15.11-15-15, p. 201-203). Flow 1 ml/min.   

NMR-spectroscopy 

1H-NMR-spectra were taken of all fractions which weigh over 1 mg, and for some 

interesting fractions 13C-NMR-spectra were registered, as well.  
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8.2.5.8 Further work with B1-2 S.4-5 VRP. T3 M.1 – B1-2 S.4-5 VRP. 
T3 M.6 on HPLC 

The optimal detection wavelength was determined as above. 200 µl of fractions B1-2 S.4-5 

VRP. T3 M.1 – B1-2 S.4-5 VRP. T3 M.6 (with concentration 200 µg/ml), dissolved in 

mobile phase, was injected in a reverse phase C18 column.  

In preparative HPLC B1-2 S.4-5 VRP. T3 M.1 – B1-2 S.4-5 VRP. T3 M.6 dissolved in 

about 3 ml mobile phase, was injected into the column. Fractions were collected based on 

their absorbance. 

Mobile phase: H20:MeOH  

The same gradient as described above was employed. UV absorbance was measured at 265 

nm (chromatogram 15.16-15.21, p. 203-206). Flow 1 ml/min. 

NMR-spectroscopy 

1H-NMR-spectra were taken of all fractions which weigh over 1 mg, and for some 

interesting fractions 13C-NMR-spectra were registered, as well.  

 

8.2.5.9 Further work with fraction B5-6 on LCCP with SephadexLH20 

The procedure described in section 8.1.5.1 “LPCC with Sephadex LH20 of fraction B1-2” 

was followed. Fraction B5-6 dissolved in a small amount of 20 % MeOH and H2O was 

applied to the column. 20, 50, 70 and 100 % MeOH and H2O were used as mobile phase. 30 

fractions of 50 ml were collected.  

Analytical TLC 

All fractions were applied on reverse phase TLC plates. 

Mobile phase:  hypophase of MeOH, chloroform and H2O (65:35:10).  

Using the methods described above, fractions B5-6 S.1 – B5-6 S.6 were obtained. (Table 

13.34, p. 118-119) (Flowchart 12.7, p. 90).  

NMR-spectroscopy 
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1H-NMR spectra were taken for all fractions. 13C-NMR spectra were taken for fraction B5-

6 S.3 – B5-6 S.5 (spectrum 14.115-120, p. 183-186).  

8.2.5.10 Further work with B5-6 S.3 on VersaFlash normal phase 
column 

B5-6 S.3 was dissolved in hypophase of MeOH, chloroform and H2O (65:35:10), and then 

applied to a VersaFlash normal phase column. The column was conditioned with 

chloroform, MeOH and hypophase of MeOH, chloroform and H2O (65:35:10), before the 

samples were applied. Isocratic elution with hypophase of MeOH, chloroform and H2O 

(65:35:10) as mobile phase was used. Fractions of ca. 17 ml were collected. There was 

collected totally 22 fractions (Table 13.35, p. 119-121). 

Analytic TLC  

All fractions were applied on reverse phase TLC plate. 

Mobile phase:  hypophase of MeOH, chloroform and H2O (65:35:10).  

Using the methods described above, fractions B5-6 S.3 VNP.1 – B5-6 S.3 VNP.8 were 

obtained (Table 13.35, p. 119-121).  

NMR-spectroscopy 

1H-NMR spectra were taken for all fractions. 13C-NMR spectra were taken for fraction B5-

6 S.3 VNP.2 – B5-6 S.3 VNP.4 (spectra 14.121-14.126, p. 186-189).  

8.2.5.11 Further work with fraction B5-6 S.3 VNP.2 on Chromatotron 

Fraction B5-6 S.3 VNP.2 was dissolved in a small amount of DCM. The Chromatotron plate 

was moistened with DCM before the sample was applied. Mobile phase: hypophase of 

MeOH, chloroform and H2O (65:35:10). 9 fractions of 7 ml were collected.  

8.2.5.12 Further work with fraction B5-6 S.3 VNP.2 CHR 1-3 on HPLC 

200 µl of each fraction (with concentration 200 µg/ml), dissolved in mobile phase, was 

injected into a reverse phase C18 column. Wavelength 215 nm, flow 1 ml/min. 

Mobile phase: 0-10 minutes 30-40 % CH3CN-H2O, 10-15 minutes 40 % CH3CN-H2O, 15-20 

minutes 40-70 % CH3CN-H2O, 20-30 minutes 70 % CH3CN-H2O, 30-31 minutes 70-30 % 

CH3CN-H2O.  
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In preparative HPLC, each fraction was dissolved with about 3 ml mobile phase and injected 

into the column. Flow 20 ml/min. Fractions were obtained as indicated by their UV 

absorption, taken to dryness on a rotary evaporator, and weighed. This gave 14 fractions in 

total (Tables 13.37-13.39, p. 122-123). According to their retention times, column fractions 

were combined to 6 main ones (called fractions A-F) which were subjected to further work. 

8.2.5.13 Further purification of fractions A-B and E-F 

The same method as described in the preceding section for preparative HPLC was used. 

Each peak was collected, and brought to dryness on a rotary evaporator, and weighed 

(chromatogram 15.22-15.25, p. 206-208).   

The same gradient as described above was used. 

NMR-spectroscopy 

1H-NMR-spectra were taken of all fractions which weigh over 1 mg, and some fractions 

13C-NMR-spectra were registered, as well (spectrum 14.127-14.130, p. 189-191).  
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9. Results and discussion  

9.1 Primary DCM-extract 

1H-NMR-spectra of DCM-extract (spectra 14.1, p. 126) showed mostly signals in the 

aliphatic region. 13C-NMR-spectra of this extract (spectra 14.2, p. 126) confirmed the 

findings from the proton spectrum and showed signals the aliphatic region, as well. 

Bioassay 

The extract didn‟t have radical scavenger activity, but in 15-LO test the DCM-extract had 

activity with ICD50: 70 ± 2  µg/ml.   

9.2 Fractioning of DCM-extract  

5 g of DCM-extract was fractionated on a VersaFlash normal phase column, 51 fractions 

were collected, combined into fractions D1-D16 based on analytic TLC followed by 

irradiation with UV-light with short and long wave, and ceric spraying. The total yield was 

3,575 g (Table 13.1, p. 93-94). From the NMR-spectra of the fractions, separation seemed 

incomplete. And the fractions which gave interesting signals were too small to continue with 

purification. Therefore, 10 g of DCM-extract was fractionated with the same method, and 65 

fractions were collected. Fractions D2.1-D2.17 were subjected to analytic TLC followed by 

irradiation with UV-light with short and long wave, and ceric spraying. the total yield was 

10,73 g (Table 13.2, p. 94-96) (Flowchart 12.2, p. 85).  

 

NMR-spectroscopy 

1H-NMR-spectra of D1 and D2 contains signals from aliphatic protons. D1 showed only 

CH2 and CH3 signals and was assumed to be a straight-chain hydrocarbon. From integration, 

an average chain length of 27 carbon atoms was calculated (spectra 14.3, p. 127).  Fraction 

D2 showed triplets indicative of a CH2O group (ppm) and a CH2C=O group (2.29 ppm) 

in addition to shielded CH2 and CH3 signals (spectra 14.4, p. 127). This might indicate a wax 

ester (a long-chain alcohol esterified with a long-chain fatty acid). Both long-chain 
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hydrocarbons and wax esters are commonly found constituents on plant surfaces.  The 13C-

NMR-spectra of D2 indicated a oxygen-substituted carbon at 64.4 ppm. D3-D4 did not 

contain any signals of interest, and fraction D5 appeared from its 1H-NMR-spectrum to 

contain mostly fatty acids. Fractions D6 and D7 had signals in the aromatic  and olefinic 

region, which is 5-8 ppm in 1H-NMR-spectra. In addition, aromatic methoxyl groups could 

be present (singlets at 3.5 – 4 ppm) (Spectrum 14.5-14.6, p. 128). 

As mentioned above, we decided to conduct a second separation with 10 g DCM-extract 

which was separated with the same method. A better separation was achieved, but only 

fractions  D2.7-D2.10 appeared to be of interest from their NMR spectra (Flowchart 12.3, p. 

86).  

The 1H-NMR-spectrum of D2.7 had two aromatic doublet signals which later on was 

showed to be derived from 4-hydroxybenzaldehyde. D2.8 contained methoxy signals at 3.92 

and 4.01ppm. D2.9 contained a lot of interesting signals which were in the methoxy-, 

aliphatic-, olefin- and aromatic regions. These findings for D2.7-D2.9 were deciding for our 

decision to continue with investigation on a Chromatotron. D2.10 was included for 

Chromatotron separation, because it might contain some substances from fraction D2.9. 

  

9.2.1 Further work with D2.7-D2.10 

Chromatotron 

D2.7 was separated on the Chromatotron. Totally 36 fractions were collected and combined 

into fractions D2.7.1-D2.7.10 based on analytical TLC followed by screening in UV-light 

with short and long wave, and ceric spraying. It yielded 111,2 mg (Table 13.3, p. 96-97) 

D2.8 was separated on the Chromatotron. Totally 20 fractions were collected and combined 

into fractions D2.8.1-D2.8.11 as above. It yielded 170,8 mg (Table 13.4, p. 98) 

D2.9 was separated on the Chromatotron. Totally 24 fractions were collected and combined 

into fractions D2.9.1-D2.9.10 as above. It yielded 42,9 mg (Table 13.5, p. 98-99) 

D2.10 was separated on the Chromatotron. Totally 20 fractions were collected and combined 

into fractions D2.10.1-D2.10.8 as above. It yielded 36,6 mg (Table 13.6, p. 99-100) 
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NMR-Spectroscopy 

1H-NMR-spectra all D2.7 fractions are not of interest, except D2.7.2 and D2.7.3. In the 

NMR spectra of these fractions, a 1-H singlet at 9.9 ppm and two 2-H doublets at 7.81 and 

6.96 ppm (both with J=8.6 cps) were indicative of an aromatic aldehyde. The aldehyde 

carbon signal at 190.7 ppm in the 13C-spectrum and a hydroxylated aromatic carbon signal 

at 161.6 ppm pointed towards 4-hydroxybenzaldehyde as a possible structure, although the 

substance was impure. This structure was confirmed by direct comparison with authentic 

substance (NMR, TLC).  4-Hydroxybenzaldehyde is not an uncommon natural product, but 

it has not been reported previously from the genus Lessertia or Sutherlandia (spectrum 14.7-

14.8, p. 129)(Flowchart 12.4, p. 87). 

1H-NMR-spectra of the D2.8 fractions were not of interest, except D2.8.2, D2.8.6 and 

D2.8.10. 4-Hydroxybenzaldehyde was found in fraction D2.8.2. The spectrum of fraction 

D2.8.6 contained aromatic proton signals. D2.8.10 contained 2 O-methoxy groups. These 

fractions were subjected to further work (spectrum 14.9-14.11, p. 130-131).  

1H-NMR-spectra of the D2.9 fractions were not of interest, except D2.9.7 and D2.9.8. With 

deuterochlorofom as solvent, a 3-H singlet at 3.97 ppm could be due to an aromatic 

methoxyl group. Two coupled triplets (2H each) at 4.02 and 3.19 ppm (J=5.3 cps) could be 

taken as an –O-CH2-CH2-R system in which R might be an aromatic or a carbonyl 

substituent. In addition, the aromatic region appears to contain an AMX pattern (6.96, 7.54 

and 7.81 ppm) which could indicate an aromatic ring with 1,2,4-substitution. This is, 

however, speculative, since other signals interfere (spectrum 14.12-14.16, p. 131-133). Since 

these fractions are too small it was decided to combine these two fractions into one fraction 

D2.9.7-8. But it seems that D2.9.7-8 may be volatile, since the mass decreased during 

separation process. From this, no definite structure can be suggested, although 6- or 7-

methoxylated chromanons, isocoumarins or dihydrobenzofurans would appear possible. 

Calculated 1H NMR shift values given in the SciFinder database do not accord very well 

with the observed values, however. 
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Structures of the suggested compounds: 

                            

6-methoxy-dihydrofuran       6-methoxyisocoumarin      7-methoxychromanone 

1H-NMR-spectra of D2.10 fractions are not of interest, except D2.10.8. It contains the same 

substance as D2.9.7-8, but in a very small amount (spectra 14.17, p. 134). 

9.2.2 Further work with fraction D2.7.6, D2.7.7, D2.7.8, D2.7.9, 
D2.8.1, D2.8.2, D2.8.5, D2.8.6, D2.9.7-8 and D2.8.10 

Analytical HPLC  

All fractions were studied by analytical HPLC (C18-column) and chromatograms were taken 

with UV-detector at 210nm, 234 nm, 254 nm, 280nm, because UV-scanning showed best 

absorption at these wavelengths (chromatograms 15.1-15.8, p. 192-195). Chromatogram of 

D2.9.7-8 contains one peak (chromatogram 15.9 p. 196, Table 13.7 p. 100), these could 

mean that there is one UV-absorbing substance.  D2.8.10 has two peaks (chromatogram 

15.10 p. 196, Table 11.8 p. 100). These two fractions were then decided to go on with by 

preparative HPLC. As the rest were poorly separated, we decided not to go on with these.   

9.2.2.1 Further work with D2.9.7-8 

Preparative HPLC 

The substances in D2.9.7-8 were separated with preparative HPLC, and a chromatogram was 

taken with UV-detector at 280 nm, since this fraction appears to contain aromatic compound 

based on its NMR spectra and aromatic compound absorb UV-light at 280 nm. Fraction 

D2.9.7-8 HPLC5 was collected, dried in a rotary evaporator and weighed. 

NMR-spectroscopy 

After preparative HPLC, enough substance was available for 1H-NMR spectroscopy, but not 

for 13C-NMR. In deuterated methanol, a 2H multiplet at 7.53-7.58 ppm, a 1H doublet at 

6.83 ppm, two 2H triplets at 3.93 and 3.16 ppm, and one 3H singlet at 3.90 ppm was 

observed, in good correlation with the above spectrum (spectrum 14.18-14.9, p. 134-135). 

This, however, does not yield further structural information. 
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9.2.2.2 Further work with D2.8.10 

Preparative HPLC 

The substances in D2.10.8 were separated with preparative HPLC, and a chromatogram was 

taken with UV-detector at 280 nm. Fractions D2.10.8 HPLC2 and D2.8.10 HPLC5 were 

collected, dried in a rotary evaporator and weighed (Table 11.8, p. 100). 

NMR-spectroscopy 

This fraction contains 1H NMR signals which probably can be ascribed to aromatic protons 

(apparently five singlets) and two aromatic methoxyl groups. We are unable to suggest a 

structure from the data available (spectrum 14.20-14.21, p. 135-136). 

 

9.3 MeOH-extract 

Extraction of the MeOH crude extract suspended in water with EtOAc and BuOH gave three 

extracts including “the aqueous rest”, which was left after the other extractions. 

These extractions from plant materials led to substances distributed in solutions with 

different polarity. The semi-polar compounds were extracted into EtOAc, the more polar in 

BuOH, while the most polar compounds remained in the aqueous solution. This gave a 

rough separation of the semipolar and polar compounds in the plant material (flowchart 12.1, 

p. 84). 

Table 13.9. Extraction yield: 

Fraction/extract Yield 

Primary MeOH-extract from Sutherlandia frutescens Ca.98 g 

EtOAc-extract 10 g 

BuOH-extract 22 g 

The aqueous phase 1 g 
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NMR-spectroscopy 

1H-NMR-spectra of the MeOH-extract (spectra 14.22, p. 136) showed signals indicative of 

aliphatic protons and carbohydrate protons, and minor signals in the aromatic and olefinic 

regions. The MeOH-extract therefore seems to contain a mixture of aromatic and aliphatic 

substances, but mostly carbohydrates. The 13C-NMR-spectrum (spectra 14.23, p. 137) 

confirms the findings from the proton spectrum.  

The 1H-NMR-spectrum of the BuOH-extract (spectra 14.24, p. 137) showed small peaks in 

aromatic- and olefin areas, aliphatic protons and carbohydrates. These findings are also 

confirmed by the 13C-NMR-spectrum (spectra 14.25, p. 138).    

The 1H-NMR-spectrum of the EtOAc-extract (spectra 14.26, p. 138) showed signals in the 

aliphatic region and 2 doublets in the olefin region (5.85 and 6.77 ppm) with coupling 

constant 9,8 cps which probably means a cis-olefin compound. The 13C-NMR-spectrum of 

the EtOAc-extract (spectra 14.27, p. 139) confirmed the findings from proton spectra and 

also showed carbonyl signals.  

Bioassay 

The extracts showed low radical scavenger activity with SC50 of more than 166,7 µg/ml. 15-

LO test for BuOH extract and the aqueous rest showed quite low activity with ICD50 close 

to 166,7 µg/ml (the highest concentration measured), but the EtOAc-extract had a 

significantly higher activity than the other extracts (ICD50: 57 ± 3  µg/ml) (Tables 13.10-

13.11). 

   

Table 13.10. Radical scavenging activity of extracts.  

Extract SC50 (µg/ml) SD 

EtOAc-extract >166,7 - 

BuOH-extract >166,7 - 

Aqueous rest Not measured - 
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Table 13.11. 15-LO inhibition of extracts. 

Extract ICD50 (µg/ml) SD 

EtOAc-extract 57 3 

BuOH-extract 167 - 

Aqueous rest Not measured - 

 

Since EtOAc-extract showed quite good activity in inhibition of 15-LO, and both the EtOAc 

extract and the BuOH extract also had interesting signals in proton and carbon NMR, these 

two extracts were chosen for further investigation. 

 

9.4 Fractionating of the EtOAc-extract 

EtOAc-extract, 10 g, was fractionated on a VersaFlash normal phase column. 53 fractions 

were collected, gathered together to fractions E1-E12 based on analytical TLC followed by 

screening in UV-light with short and long wave, and ceric spraying. Total yield was 9,89 g 

(Table 13.12, p. 100-102) (Flowchart 12.5, p. 88).  

 

NMR-spectroscopy 

From the 1H and 13C NMR spectra of the fractions from the EtOAc extract, it seemed that 

glycosylated terpenoids were present in most of the fractions. A series of triterpenoid 

glycosides, sutherlandioside A-D, has recently been reported from Sutherlandia by Fu et al 

(2007). By comparing our NMR data with those published, we were able to identify 

sutherlandiosides B, C and D as well as two unidentified compounds in our column 

fractions.  

Table 13.13. Approximate composition of Versaflash fractions of Sutherlandia ethyl 

acetate fraction 
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Versaflash 

fraction 

Weight 

(mg) 

% Suth 

B 

% 

Suth C 

% Suth 

D 

% 

unknown 

1 ( 

206.3 

ppm) 

% 

unknown 

2 ( 

200.2 

ppm) 

% Suth 

D ( 

99.1 

ppm) 

% epi-

Suth ( 

98.0 

ppm) 

3 449 11 19 53 0 17 42 58 

4 465 10 15 45 14 23 45 55 

5 730 19 17 66 0 20 49 51 

6 3696 66 0 34 0 0 66 34 

7 766 Much 0 Little 0 0 63 37 

8 273 Much 0 Little 0 0 56 44 

9 723 Much 0 Little 0 0 55 45 

 

Assuming that carbonyls in the different sutherlandiosides have similar response factors in 

13C NMR and that the carbonyl signals have a similar height: area ratio, an approximate 

ratio for the content of the sutherlandiosides can be estimated from the 13C NMR spectra. 

The shift positions observed in our fractions are in full agreement with published data (Fu, Li 

et al. 2007). 

In the sutherlandiosides, the anomer carbon of the glucose moiety resonates at 99.0-99.1 

ppm. A signal at 98.0 ppm will later be shown (by preparative HPLC) to be related to 

another substance which may be a stereo- or regioisomer of the sutherlandiosides. The ratio 

of the signals from sutherlandioside-type and putative epi-sutherlandioside is tabulated in the 

last two columns of the table. 

It can be seen from the table that sutherlandioside B is the major compound, followed by 

sutherlandioside D. Sutherlandioside C and two unknown compounds appear to co-elute 

with sutherlandioside D in the first fractions. There seems to be a tendency for epi-

compounds to elute slightly faster than the sutherlandiosides.  
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From the above data, a rather crude estimate can be made of the amount of the 

sutherlandiosides. 

Table 13.14. Amount of substances in VersaFlash fractions form the EtOAc extract. 

Fraction Weightmg Suth B Suth C Suth D Unknown 1 Unknown 2 

3 449 49 85 238 0 76 

4 465 47 70 209 65 107 

5 730 139 124 482 0 146 

6 3696 2439 0 1257 0 0 

7 766 766 0 0 0 0 

8 273 273 0 0 0 0 

9 723 723 0 0 0 0 

Sum 7102 4436 279 2186 65 329 

% of total 100 61 4 30 1 5 

 

Bioassay 

 DPPH-test was performed with fractions E2, E5, E6, E7, E8 and E9. All fractions have 

SC50 >167 µg/ml (Table 11.15, p. 102-103).  

10 mg of E6 was sent to our collaborators at the University of Western Cape, Cape Town, 

outh Africa for studies on antiapoptotic activity. Results from their work on this fraction 

were not available for inclusion in this dissertation. 
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Sutherlandioside A     Sutherlandioside B 

  

 

 

Sutherlandioside C                                                 Sutherlandioside D 

Figure… Formulas of sutherlandioside A-D. 

   

9.5 Fractionation of the BuOH-extract  

10 g BuOH-extract was fractionated on a VersaFlash reverse phase column. 41 fractions 

were collected, combined into 9 fractions, fractions B1-B9, based on analytical TLC 

followed by screened in UV-light with short and long wave, and ceric spraying. Total yield 

was 9,52 g (Table 11.16, p. 103-105) (Flowchart 12.6, p. 89).  

NMR-spectroscopy 

The 1H-NMR-spectrum of fraction B1 mostly contained signals from carbohydrates (3-5,5 

ppm), with minor signals in the aromatic and olefinic region (6-8 ppm), and in the aliphatic 

(terpenoid?) region (0,8-3ppm). Fraction B2 and B3 looked like fraction B1, but had more of 

terpenoid signals. Fractions B1 and B2 were combined into one fraction for further 

separation with LPCC on Sephadex LH20.  

Fraction B4 had signals of carbohydrates and terpenoids, but aromatic and olefinic signals 

were gone.  
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The 1H-NMR-spectrum from fraction B5 had signals which were assumed to be from the 

sutherlandiosides which were mentioned under the EtOAc fraction, section 9.4, p. 67. The 

13C-NMR-spectrum of the same fraction had 4 carbonyl signals and one set of olefinic 

carbons which may be from sutherlandioside D. Fraction B6 was similar to fraction B5, but 

in its 13C-NMR-spectra it contained only 3 carbonyl signals. These two fractions were 

combined into one fraction for further separation with LPCC on Sephadex LH20 (spectrum 

14.42-14.55, p. 146-153).  

The spectrum of fraction B7 looked quite similar to fraction B6. Fraction B7 was small and 

was therefore omitted from further work.    

Fractions B8 and B9 had terpenoid and carbohydrate signals, but these fractions were poorly 

soluble. 

 

9.5.1 LPCC with Sephadex LH20 of fraction B1-2  

Fraction B1-2 weight was 5631 mg. This fraction was separated by LPCC with Sephadex 

LH20. 30 fractions were collected, and combined into 5 fractions based on analytical TLC 

followed by screening in UV-light with short and long wave, and ceric spraying. Total yield 

was 4,379 g (Table 11.17, p. 105-106) (Flowchart 12.7, p. 90). 

NMR-spectroscopy 

The 1H-NMR-spectra of fractions B1-2 S.1 and B1-2 S.2 contained signals in the 

carbohydrate and aliphatic / terpenoid regions. The proton spectrum from fraction B1-2 S.3 

had mostly terpenoid signals, and less in the carbohydrate region.  

The 1H-NMR-spectrum of fraction B1-2 S.4 had higher peaks in the aromatic and olefin 

region with signals that could be from H-atoms in position 6 and 8 in the A-ring of flavonols 

at 6,2 ppm and 6,4 ppm. Signals at 6,8-7,8 ppm, 7,5-7,8 ppm and 8,0-8,2 ppm could be from 

B-ring protons in quercetin- and kaempferol-type flavonols. This fraction was chosen for 

further separation with VersaFlash reverse phase column.  
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The 1H-NMR-spectrum of fraction B1-2 S.5 looked similar to fraction B1-2 S.4, but had 

smaller peaks in the terpenoid region. It was also chosen for further investigation. (spectrum 

14.56-14.61, p. 153-156)   

 

9.5.1.1 Fraction B1-2 S.4 separation with reverse phase VersaFlash 
column (443 mg) 

Fraction B1-2 weighed 443 mg and was separated with VersaFlash reverse phase column. 33 

fractions were collected and combined into 6 fractions based on DPPH-spraying. Total yield 

was 369 mg (Table 11.18, p. 106-108). 

NMR-spectroscopy 

1H-NMR-spectra of fractions B1-2 S.4 VRP.1 and B1-2 S.4 VRP.2 had signals assumed to 

be from kaempferol and quercetin glycosides. Two singlets at 1,15 ppm and 2,36 ppm 

appeared in almost all spectra in this series. These are likely to be from a 

hydroxymethylglutaric acid moiety (Mabusela, pers.comm.).  

1H-NMR-spectra of fraction B1-2 S.4 VRP.3 contained more kaempferol glycosides than 

quercetin glycosides. From the integral it could be seen that the fraction contained twice as 

much kaempferol glycosides as quercetin glycosides. The 13-C-NMR-spectrum confirmed 

the findings in the proton spectrum, with small signals in the 140-150 ppm region which 

were assumed to be from C-3´and C-4´ in quercetin-type flavonoids. The 1-H-NMR-

spectrum of fraction B1-2 S.4 VRP.4 was fairly similar to that of fraction B1-2 S.4 VRP.3.  

The 1H-NMR-spectrum of fraction B1-2 S.4 VRP.5 had only minor signals from flavonoids, 

but had signals from terpenoids. This was a small fraction.  

The 1H-NMR-spectrum  of fraction B1-2 S.4 VRP.6 had mostly signals from triterpene 

glycosides. Two doublets which could be from sutherlandioside D were observed in the 

olefinic region. The 13-C-NMR-spectrum had one carbonyl signal, as would be expected for 

sutherlandioside D, but also a signal from an anomeric carbohydrate carbon which may be a 

stereo- or regioisomer of the sutherlandiosides as mentioned in section 9.4 “Fractioning of 

EtOAc-extract”. (spectrum 14.62-14.73, p. 156-162). 
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9.5.1.2 Fraction B1-2 S.5 separation with reverse phase VersaFlash 
column (303 mg)     

 Fraction B1-2 weighed 303 mg and was separated with VersaFlash reverse phase column. 

41 fractions were collected and combined into 9 fractions based on DPPH-spraying. Total 

yield was 317,8 mg (Table 11.19, p. 108-109). 

NMR spectroscopy 

The 1H-NMR-spectrum of fraction B1-2 S.5 VRP.1 contained mostly carbohydrate signals. 

The 1H-NMR-spectrum of fraction B1-2 S.5 VRP.2 had signals which may be derived from 

flavonoids (kaempferol and quercetin glycosides), but also large carbohydrate signals.  

1H-NMR-spectra of fractions B1-2 S.5 VRP.3 and B1-2 S.5 VRP.4 contained about equal 

amounts of kaempferol and quercetin glycosides. 13C-NMR-spectra of these two fractions 

confirmed the findings in the 1H-NMR-spectra.  

The 1H-NMR-spectrum of fraction B1-2 S.5 VRP.5 contained more kaempferol than 

quercetin glycoside signals, but was otherwise quite like fraction B1-2 S.5 VRP.4.  

Fraction B1-2 S.6 VRP.6 contained a substance which from comparison of spectral data with 

literature(Zhang, DeWitt et al. 2004) was identified as shikimic acid. Shikimic acid is 

ubiquous in higher plants, but is rarely found in high concentrations. It has not been reported 

previously from the genus Sutherlandia / Lessertia. 

The last three fractions (B1-2 S.5 VRP.7-B1-2 S.5 VRP.9) appeared to contain a complex 

mixture of terpenoids. (spectrum 14.74-14.80, p. 162-165). 

9.5.1.3 Determine combination of fraction B1-2 S.4 VRP. And B1-2 S.5 
VRP. 

 All flavonoid-containing fractions from B1-2 S.4 and B1-2. S.5 contained different amounts 

of kaempferol and quercetin glycosides, and our aim was to separate these two glycosides 

with LPCC on Toyopearl HW40. After investigation with 1H-NMR-spectroscopy of all 

fractions, we decided to combine these fractions into two groups; B1-2 S4-5 VRP. Type A 

and B1-2 S4-5 VRP. Type B (Flowchart 12.8, p. 91). 

Fractions which contained equal amount of kaempferol- and quercetin glycosides were 

combined into B1-2 S4-5 VRP. Type A 
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Fractions which contained kaempferol glycosides more than quercetin glycosides were 

combined into B1-2 S4-5 VRP. Type B 

B1-2 S4-5 VRP. Type A contained the following fractions:   

- B1-2 S.4 VRP.1  

- B1-2 S.4 VRP.2   

- B1-2 S.5 VRP.3 

 

B1-2 S4-5 VRP. Type B contained the following fractions:  

- B1-2 S.4 VRP.3 

- B1-2 S.4 VRP.4  

- B1-2 S.5 VRP.4 

- B1-2 S.5 VRP.5 

 

 

9.5.1.4 Fraction B1-2 S.4-5 VRP in LPCC with Toyopearl type A and 
type B 

Ten fractions from type A and 13 fractions from type B were collected. All fractions from 

type A and type B were combined into 4 fractions (T1-T4) (flowchart 12.9, p. 92) based on 

analytical TLC and NMR spectroscopy.  

 

NMR-spectroscopy 

The 1H-NMR-spectrum of fraction B1-2 S.4-5 VRP. T1 contained mostly kaempferol 

glycosides, but had a small amount of quercetin glycosides. Two singlets from 

hydroxymethylglutaric acid and several signals which were assumed to be anomer signals 

from disaccharides were observed.  

The 1H-NMR-spectrum of fraction B1-2 S.4-5 VRP. T2 was of a poorer quality than fraction 

B1-2 S.4-5 T1. It contained some signals similar to fraction B1-2 S.4-5 T1, but the region 

from 5 to 5.5 ppm of this spectrum (assumed to be the region of anomeric protons in 



 75 

carbohydrates) showed two set of overlapping signals, which could be from disaccharides, 

although mixtures of monosaccharides cannot be excluded.  

The 1H-NMR-spectrum of fraction B1-2 S.4-5 T3 appears to contain disaccharides of 

kaempferol and quercetin. 

Fraction B1-2 S.4-5 T4 appears from its 1H-NMR-spectrum to contain mostly quercetin 

glycosides. IThis was confirmed by its 13-C-NMR-spectrum, which was similar to that of  

fraction B1-2 S.4-5 T3.  

Fractions B1-2 S.4-5 T2 and B1-2 S.4-5 T3 contained mixtures of  quercetin- and 

kaempferol glycosides, and these were therefore chosen  for further separation on MCI 

CHP20P. (spectrum 14.81-14.87, p. 166-169) 

 

9.5.1.5 Separation of fraction T2 with LPCC on MCI CHP20H 

8 fractions were collected. These fractions were brought separately to dryness on a rotary 

evaporator and weighed. (Table 11.20, p. 109-111)   

NMR-spectroscopy 

Fraction B1-2 S.4-5 T2 M1 was quite small, and the 1H-NMR-spectrum showed that there 

were mixtures of quercetin- and kaempferol glycosides.  

From the 1H-NMR-spectrum of fraction B1-2 S.4-5 T2 M2 we could see that it contained 

almost only kaempferol glycosides, and an anomer proton integrating for only 1 H-atom.  

The 1H-NMR-spectrum of fraction B1-2 S.4-5 T2 M3 was similar to that of the previous 

fraction. 

1H-NMR-spectra of fractions B1-2 S.4-5 T2 M4, B1-2 S.4-5 T2 M5 and B1-2 S.4-5 T2 M6 

were not very different from fraction B1-2 S.4-5 T2 M3, but obviously these fractions 

contain a complex mixture of many substances.     

B1-2 S.4-5 T2 M7 and B1-2 S.4-5 T2 M8 were small, and 1H-NMR-spectra of these two 

fractions was indicative of impure fractions and a poor signal to noise ratio.  
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Fractions B1-2 S.4-5 T2 M1 - B1-2 S.4-5 T2 M5 were chosen for further separation with 

HPLC, since these fractions were big enough for further work and also had better quality 

than the rest. (spectrum 14.88-14.95, p. 169-173) 

 

9.5.1.6 Separation of fraction T3 with LPCC with MCI CHP20H 

7 fractions were collected. These fractions were brought separately to dryness on a rotary 

evaporator and weighed. (Table 11.21, p. 111-112)   

NMR-spectroscopy 

In the 1H-NMR-spectrum of the first fraction, B1-2 S.4-5 T3 M1, we could see signals from 

quercetin glycosides and also a mixture of two substances. 13C-NMR-spectra had signals 

from two carbonyl carbons (probably from C4) at ca 178 ppm. 

The second fraction B1-2 S.4-5 T3 M2 appeared to contain mostly quercetin glycosides, but 

a small amount of kaempferol glycosides. Fraction B1-2 S.4-5 T3 M3 may contain an equal 

amount of quercetin- and kaempferol glycosides. In both fractions there is a complex signals 

in the anomer proton region, which could be due to a mixture of many substances.  

The 1H-NMR-spectrum of fraction B1-2 S.4-5 T3 M4 had larger peaks of kaempferol- than 

quercetin glycosides.  

Fraction B1-2 S.4-5 T3 M5 was an interesting fraction which seemed to contain only 

kaempferol glycosides (H- at position 6 and 8 at 6,2-6,4 ppm in 1H-NMR-spectra, and B-

ring protons as two doublets at 6.9 and 8.1 ppm). There were two sets signals superposed 

upon each other, indicated a mixture of two substances, these could be kaempferol with 

disaccharides (glucose-glucose and glucose-apiose) which have been isolated previously 

from this plant (Mabusela, pers. comm.).  

Fraction B1-2 S.4-5 T3 M6 in its 1H-NMR-spectrum looked similar to the previous fraction, 

but not as clear as fraction B1-2 S.4-5 T3 M4. And fraction B1-2 S.4-5 T3 M7 was a small 

and complex fraction. (spectrum 14.96-14.105, p. 173-178)       

From this series, fraction B1-2 S.4-5 T3 M1 - B1-2 S.4-5 T3 M6 were chosen for separation 

with HPLC. The last fraction was too small and complex for further work.  
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9.5.1.7 Preparative HPLC of fractions from B1-2 S.4-5 T2 M1 - B1-2 
S.4-5 T2 M5 and B1-2 S.4-5 T3 M1 - B1-2 S.4-5 T3 M6 

From fractions B1-2 S.4-5 T2 M1 - B1-2 S.4-5 T2 M5 and B1-2 S.4-5 T3 M1 - B1-2 S.4-5 

T3 M6, 56 subfractions were obtained, based on their retention times and chromatographic 

patterns. Most of these subfractions weighed less than 1 mg. These small subfractions were 

not studied further. Larger subfractions were studied by 1H-NMR and 13C-NMR 

spectroscopy (Tables 13.22-13.33, p. 112-118).  

NMR spectroscopy 

From a tabulation of NMR data of the larger subfractions (Tables 13.45, p. 125), it appears 

that at least three and possibly four different kaempferol glycosides are present. The 

quercetin glycosides were less pure and were present in smaller amounts, so these were not 

given priority for further studies. All of the kaempferol glycoside-containing subfractions 

show signals which can be ascribed to a hydroxymethylglutaryl moiety, in accordance with 

what has been found elsewhere (Mabusela, pers. comm.). We do not have any NMR data 

available for previously isolated compounds. However, since only two kaempferol 

glycosides have been found previously in the plant, at least one of our compounds must be 

different from the ones known. From a search in the SciFinder database, it appears that no 

hydroxymethylglutaryl derivatives of kaempferol glycosides have been reported earlier, so it 

would seem possible that at least one of our substances is a new natural product. Analytical 

HPLC shows that although our fractions are not pure compounds, all of them contain one 

major substance and only small amounts of contaminants. Further work is needed to 

elucidate the definitive structure of these flavonoids and also to carry out studies on their 

biological activity. (spectrum 14.106-14.114, p. 178-183) 

 

 

 

    

 

Quercetin with glucose-glucose                               Quercetin with glucose-apiose 
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Kaempferol with glucose-glucose                          Kaempferol with glucose-apiose 

Figure xxx. Suggested formulas for flavonoids previously isolated from Sutherlandia 

frutescens (Mabusela, pers. comm.) 

 

9.5.2 Separation of fraction B5-6 on LPCC with SephadexLH20 

A quite big fraction with 1605,4 mg, this was chosen for separation with Sephadex LH20. 

There was collected 30 fractions, which were combined into 6 fractions based on analytic 

TLC followed by observation in UV-light with short and long wave, and ceric spraying. This 

yielded 1166,1 mg (Table 11.34, p. 118-119)(Flowchart 12.7,p. 90). 

NMR-spectroscopy 

1H-NMR-spectra of these first fractions B5-6 S.1 and B5-6 S.2 appeared to contain signals 

of sutherlandiosides(Fu et al. 2007).  

The third fraction was similar to the two first fractions, but in addition, it had olefin signals 

in its 1H-NMR-spectrum. The 13C-NMR-spectrum contained 2 anomer signals from 

carbohydrate and 1 carbonyl signal. It was regarded as an interesting fraction for further 

separation.  
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The 1H-NMR-spectrum of fraction B5-6 S.4 was similar to that of the previous fraction, but 

this fraction was smaller. And the 1 H-NMR-spectrum of fraction B5-6 S.5 looked similar to 

fraction B5-6 S.4. (spectrum 14.115-14.120, p. 183-186) 

 

9.5.2.1 Separation of fraction B5-6 S.3 with VersaFlash normal phase 
column 

Total weight of this fraction was 511 mg. The fraction was applied on VersaFlash normal 

phase column, and 22 fractions were collected, followed by analytical TLC and screening in 

UV-light with short and long wavelength and ceric spraying for determination of 

combination into fractions. It yielded 456,6 mg (Table 13.35, p. 119-121). 

NMR-spectroscopy 

Fraction B5-6 S.3 VNP.1 was assumed to contain sutherlandiosides due to its 1H-NMR-

spectrum.  

In the next five fractions it was assumed that they contained one substance which may be 

sutherlandioside D (fraction B5-6 S.3 VNP.2- B5-6 S.3 VNP.6) based on comparison with 

literature data (Fu et al. 2007) for spectra of sutherlandioside D.   

The 1H-NMR-spectrum of fraction B5-6 S.3 VNP.7 contained signals of other 

sutherlandiosides, probably one of them was sutherlandioside B.  

 

9.5.2.2 Fraction B5-6 S.3 VNP.2 separation with chromatotron 

This fraction (78,9 mg) was dissolved in starting eluent and then applied on the prepared 

glass plate. 9 fractions totally were obtained. Three fractions (fraction 5-7) were chosen for 

further work, because these fractions gave dark dots on analytic TLC reverse phase plate 

after being sprayed with ceric reagent and dried in the oven. (Table 13.36, p. 121-122)    

NMR-spectroscopy 

1H-NMR-spectra of all three fractions showed signals which probably were sutherlandioside 

D. In fraction B5-6 S.3 VNP.2 CHR 2, sutherlandioside D appeared to constitute about half 

of the fraction, while other triterpenoid glycosides were present in much smaller amounts. 
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The presence of sutherlandioside D was also confirmed by the 13C-NMR-spectrum of 

fraction B5-6 S.3 VNP.2 CHR.1. (spectrum 14.131-14.139,p. 192-195) 

 

9.5.2.3 Further work of fractions B5-6 S.3 VNP.2 CHR 1- B5-6 S.3 
VNP.2 CHR 3 with HPLC 

All three fractions were first tested on analytical HPLC to find the optimal method for 

detection and preparative HPLC separation.  This took some time, since the analytical HPLC 

column initially used was very old, did not work well, and had to be exchanged with a new 

one. This gave considerably better results.  

Technical problems with the preparative HPLC column and a faulty injector also led to 

delay. It took quite long time to fix all these problems. But it was worth waiting, because we 

have got good separation with all three fractions. 

From fraction B5-6 S.3 VNP.2 CHR 1 there were collected four fractions i.e. four peaks 

(Table 11.37, p. 122). Fraction B5-6 S.3 VNP.2 CHR 2 yielded 5 fractions (Table 11.38, p. 

122) and the last fraction B5-6 S.3 VNP.2 CHR 3 were collected into 5 fractions (Table 

11.39, p. 122-123).  

These fourteen fractions were combined to major fractions A-F. And fractions A-B and E-F 

separated on preparative HPLC. From fraction A there were collected 2 fractions, 2 fractions 

collected from fraction B, 3 fractions collected from fraction E and 4 fractions collected 

from fraction F. (Tables 13.41-13.44, p. 189-191) 

NMR-spectroscopy 

Preparative HPLC of fraction A-B and E-F yielded four major fractions. Two of them were 

small (ca. 2 mg each) and appeared from their NMR spectra to be impure. The two largest 

ones, E HPLC 5 (6,7 mg) and B HPLC 6 (4,2 mg) seemed to contain one substance each. 

The 13C-NMR spectrum of B HPLC 6 was virtually identical to the published spectrum for 

sutherlandioside C (Table 13.40, p. 125-126). Since all signals seemed to be displaced 0,4 

ppm relative to the literature data, a correction was made for this. This displacement has 

been observed previously in spectra recorded on our instrument (Malterud, pers. comm.). 
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Most of the signals from fraction E HPLC 5 also fit well with those from sutherlandioside C. 

Discrepancies were, however, observed from signals in the outer region of the side chain and 

in the signal from the anomeric carbon atom in the glucose moiety. Two possible 

explanations for this might be that the glucose is bound to C-24 instead of C-25, or that this 

substance is a C-24 epimer of sutherlandioside C. Conceivably, this could be decided from 

Heteronuclear Multiple Bond Correlation (HMBC) spectra, but amount of substance and 

lack of time precluded this. (spectrum 14.127-14.130, p. 189-191)  
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10. Conclusion 

Plant material of Sutherlandia frutescens seems to contain many interesting compounds. 

Sutherlandioside C, and an epimer or regioisomer of sutherlandioside C have been identified 

in the BuOH extract. It appears that at least three and possibly four different kaempferol 

glycosides are present in the BuOH extract. Since only two kaempferol glycosides have been 

found previously in the plant, at least one of our compounds must be different from the ones 

known. From a search in the SciFinder database, it appears that no hydroxymethylglutaryl 

derivatives of kaempferol glycosides have been reported earlier, so it would seem possible 

that at least one of our substances is a new natural product. All of the kaempferol glycoside-

containing subfractions show signals which can be ascribed to a hydroxymethylglutaryl 

moiety, in accordance with what has been found elsewhere (Mabusela, pers. comm.). The 

quercetin glycosides were also found in several fractions, but they were less pure and were 

present in smaller amounts, so these were not given priority for further studies. 

In the fractions from the EtOAc extract, it seemed that glycosylated terpenoids based on 

kaempferol or quercetin and containing a hydroxymetylglutaryl moiety were present in most 

of the fractions. These appear to be hitherto undescribed products. A series of triterpenoid 

glycosides, sutherlandioside A-D, has recently been reported from Sutherlandia by Fu et al 

(2007). In our EtOAc extract, sutherlandiosides B, C and D and their epimers / regioiomers 

have been provisionally identified. The epimers/ regioisomers seem to be new natural 

products. In addition to these compounds, it appears from NMR data that two further 

unidentified compounds are present in our column fractions. 

The DCM extract (ICD50: 70 ± 2 µg/ml) and the EtOAc extracts (ICD50: 57 ± 3  µg/ml) 

showed higher 15-LO activity than other extracts. In the DPPH-test, all extracts had low 

radical scavenging activity (SD50 >166,7 µg/ml). This can be explained by the high 

concentration of saponins or triterpenoids and the low amount of phenolic compounds in S. 

frutescens.  

Plant extracts of S. frutescens contain many active substances which can contribute to the 

plant´s medicinal activity. Further work is needed to elucidate the definitive structure of 

several compounds and also to carry out studies on their biological activity. Due to the small 

amount of substances and lack of time, this was not possible within the framework of the 

present study. 
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11. Suggestions for further work 

Substances of interest for further work on isolation, structure elucidation and 

bioactivity studies appear to be present in all extracts. It would be of interest to carry 

out further studies on these. 

Since the EtOAc extract showed highest activity in 15-LO test, it could be a high 

priority to separate this extract further.  
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12. Flowcharts 

Flowchart 12.1 
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Flowchart 12.2
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Flowchart 12.3 
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Flowchart 12.4 
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Flowchart 12.5 
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Flowchart 12.6 
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Flowchart 12.7 
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Flowchart 12.8. Combination of fractions B1-2 S.4 VRP ad B1-2 S.5 VRP into Toyopearl 

type A and B.  
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Flowchart 12.9 
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13. Tables 

Table 13.1. VersaFlash chromatography of DCM extract (5 g) 

Fraction 

Amount 

(ml) Eluent Fraction 

Amount 

(ml) 

Mass 

(mg) 

1 50 Chl + 25 % EtOAc 1 50 1022,3 

2 50 Chl + 25 % EtOAc 

2 300 364,4 

3 50 Chl + 25 % EtOAc 

4 50 Chl + 25 % EtOAc 

5 50 Chl + 25 % EtOAc 

6 50 Chl + 25 % EtOAc 

7 50 Chl + 25 % EtOAc 

8 50 Chl + 25 % EtOAc 

3 100 617,2 9 50 Chl + 25 % EtOAc 

10 50 Chl + 25 % EtOAc 

4 100 369,7 11 50 Chl + 25 % EtOAc 

12 50 Chl + 25 % EtOAc 

5 200 69 

13 50 Chl + 25 % EtOAc 

14 50 Chl + 25 % EtOAc 

15 50 Chl + 25 % EtOAc 

16 50 Chl + 25 % EtOAc 

6 100 14,6 17 50 Chl + 25 % EtOAc 

18 50 Chl + 50 % EtOAc 

7 350 43,5 

19 50 Chl + 50 % EtOAc 

20 50 Chl + 50 % EtOAc 

21 50 Chl + 50 % EtOAc 

22 50 Chl + 50 % EtOAc 

23 50 Chl + 50 % EtOAc 

24 50 Chl + 50 % EtOAc 

25 50 Chl + 50 % EtOAc 

8 200 58,8 

26 50 Chl + 50 % EtOAc 

27 50 Chl + 50 % EtOAc 

28 50 Chl + 50 % EtOAc 

29 50 Chl + 50 % EtOAc 

9 100 20,6 30 50 Chl + 50 % EtOAc 

31 50 Chl + 50 % EtOAc 

10 100 15,3 32 50 Chl + 50 % EtOAc 

33 50 Chl + 50 % EtOAc 

11 150 136,4 

34 50 

Acetone + 50 % 

EtOAc 

35 50 Acetone + 50 % 
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EtOAc 

36 50 

Acetone + 50 % 

EtOAc 

12 250 46,8 

37 50 

Acetone + 50 % 

EtOAc 

38 50 

Acetone + 50 % 

EtOAc 

39 50 

Acetone + 50 % 

EtOAc 

40 50 

Acetone + 50 % 

EtOAc 

41 50 

Acetone + 50 % 

EtOAc 

13 150 280,8 

42 50 

Acetone + 50 % 

EtOAc 

43 50 

Acetone + 50 % 

EtOAc 

44 50 

Acetone + 50 % 

EtOAc 

14 100 209,2 45 50 

Acetone + 50 % 

EtOAc 

46 50 Acetone 

15 150 221,5 

47 50 Acetone 

48 50 Acetone 

49 50 Acetone 

16 150 85,4 

50 50 Acetone 

51 50 Acetone 

SUM         3575,5 

 

Table 13.2. VersaFlash chromatography of DCM extract (10 g) 

Fraction 

Amount 

(ml) Eluent Fraction 

Amount 

(ml) 

Mass 

(mg) 

1 50 Chl 

1 100 4026,5 2 50 Chl 

3 50 Chl 

2 100 645,4 4 50 Chl 

5 50 Chl 

3 150 60,8 

6 50 Chl 

7 50 Chl 

8 50 Chl 

4 200 48,2 

9 50 Chl 

10 50 Chl 
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11 50 Chl 

12 50 Chl 

5 100 909,4 13 50 Chl 

14 50 Chl 

6 100 1322,2 15 50 Chl 

16 50 Chl 

7 150 110,9 

17 50 Chl 

18 50 Chl 

19 50 Chl 

8 350 125 

20 50 Chl 

21 50 Chl 

22 50 Chl 

23 50 Chl 

24 50 Chl 

25 50 Chl 

26 50 Chl 

9 350 122 

27 50 Chl 

28 50 Chl 

29 50 Chl 

30 50 Chl 

31 50 Chl 

32 50 Chl 

33 50 Chl 

10 350 110,7 

34 50 Chl 

35 50 Chl 

36 50 Chl 

37 50 Chl 

38 50 

Chl + 10 % 

EtOAc 

39 50 

Chl + 10 % 

EtOAc 

11 150 162,7 

40 50 

Chl + 10 % 

EtOAc 

41 50 

Chl + 10 % 

EtOAc 

42 50 

Chl + 10 % 

EtOAc 

43 50 

Chl + 10 % 

EtOAc 

12 150 25,7 

44 50 

Chl + 10 % 

EtOAc 

45 50 

Chl + 10 % 

EtOAc 

46 50 Chl + 20 % 13 250 6,5 
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EtOAc 

47 50 

Chl + 20 % 

EtOAc 

48 50 

Chl + 20 % 

EtOAc 

49 50 

Chl + 20 % 

EtOAc 

50 50 

Chl + 20 % 

EtOAc 

51 50 

Chl + 20 % 

EtOAc 

14 450 238,7 

52 50 

Chl + 20 % 

EtOAc 

53 50 

Chl + 20 % 

EtOAc 

54 50 

Chl + 40 % 

EtOAc 

55 50 

Chl + 40 % 

EtOAc 

56 50 

Chl + 40 % 

EtOAc 

57 50 

Chl + 40 % 

EtOAc 

58 50 

Chl + 40 % 

EtOAc 

59 50 

Chl + 40 % 

EtOAc 

60 50 EtOAc 

15 150 430,5 

61 50 EtOAc 

62 50 EtOAc 

63 50 EtOAc 

16 100 100,8 64 50 Acetone 

65 250 Acetone 17 250 2267,7 

SUM       10713,7 ~ 9 g 

 

Table 13.3. Chromatotron of fraction D2.7 (110,9 mg) 

Fraction 

Amount 

(ml) Eluent Fraction 

Amount 

(ml) 

Mass 

(mg) 

1 15 Chl + 20 % EtOAc 

1 30 7 2 15 Chl + 20 % EtOAc 

3 15 Chl + 20 % EtOAc 

2 60 27 4 15 Chl + 20 % EtOAc 
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5 15 

Chl + 33,34 % 

EtOAc 

6 15 

Chl + 33,34 % 

EtOAc 

7 15 

Chl + 33,34 % 

EtOAc 

3 60 22 

8 15 

Chl + 33,34 % 

EtOAc 

9 15 Chl + 50 % EtOAc 

10 15 Chl + 50 % EtOAc 

11 15 Chl + 50 % EtOAc 

4 30 3,4 12 15 Chl + 50 % EtOAc 

13 15 Chl + 50 % EtOAc 

5 45 6,4 

14 15 Chl + 50 % EtOAc 

15 15 EtOAc 

16 15 EtOAc 

6 45 19,1 

17 15 EtOAc 

18 15 EtOAc 

19 15 EtOAc 

7 45 2,3 

20 15 EtOAc 

21 15 Acetone 

22 15 Acetone 

8 45 2,6 

23 15 Acetone 

24 15 Acetone 

25 15 Acetone 

9 90 5,1 

26 15 Acetone 

27 15 

Acetone + 10 % 

MeOH 

28 15 

Acetone + 10 % 

MeOH 

29 15 

Acetone + 10 % 

MeOH 

30 15 

Acetone + 20 % 

MeOH 

31 15 

Acetone + 20 % 

MeOH 

10 90 16,3 

32 15 

Acetone + 20 % 

MeOH 

33 15 MeOH 

34 15 MeOH 

35 15 MeOH 

36 15 MeOH 

SUM         111,2 
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Table 13.4. Chromatotron of D2.8 (125 mg) 

Fraction 

Amount 

(ml) Eluent Fraction 

Amount 

(ml) 

Mass 

(mg) 

1 25 

Chl + 20 % 

EtOAc 

1 50 10,1 2 25 

Chl + 20 % 

EtOAc 

3 25 

Chl + 33,34 % 

EtOAc 

2 50 24,8 4 25 

Chl + 33,34 % 

EtOAc 

5 25 

Chl + 50 % 

EtOAc 

3 50 12,5 6 25 

Chl + 50 % 

EtOAc 

7 25 

Chl + 50 % 

EtOAc 

4 50 36,6 8 25 EtOAc 

9 25 EtOAc 

5 50 10,5 10 25 EtOAc 

11 25 EtOAc 

6 50 21,1 12 25 Acetone 

13 25 Acetone 

7 50 24,9 14 25 Acetone 

15 20 Acetone 

8 40 7,3 16 20 Acetone 

17 20 Acetone 

9 40 1,7 18 20 Acetone 

19 40 MeOH 10 40 12,8 

20 15 MeOH 11 15 8,5 

SUM         170,8 

 

Table 13.5. Chromatotron of D2.9 (122 mg) 

Fraction 

Amount 

(ml) Eluent Fraction 

Amount 

(ml) 

Mass 

(mg) 

1 25 Chl + 10 % EtOAc 

1 50 2,4 2 25 Chl + 10 % EtOAc 

3 25 Chl + 20 % EtOAc 

2 50 2,9 4 25 Chl + 20 % EtOAc 

5 25 Chl + 20 % EtOAc 3 50 8,6 
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6 25 Chl + 30 % EtOAc 

7 25 Chl + 30 % EtOAc 

4 50 10,8 8 25 Chl + 40 % EtOAc 

9 25 Chl + 40 % EtOAc 

5 75 6,5 

10 25 Chl + 50 % EtOAc 

11 25 Chl + 50 % EtOAc 

12 25 Chl + 70 % EtOAc 

6 50 1,5 13 25 Chl + 70 % EtOAc 

14 25 EtOAc 

7 75 3,1 

15 25 EtOAc 

16 25 

EtOAc + 5 % 

Acetone 

17 25 

EtOAc + 5 % 

Acetone 

8 100 3,3 

18 25 

EtOAc + 10 % 

Acetone 

19 25 

EtOAc + 10 % 

Acetone 

20 25 

EtOAc + 10 % 

Acetone 

21 25 

EtOAc + 10 % 

Acetone 

9 37,5 1,1 22 12,5 Acetone 

23 25 Acetone 

10 50 2,9 24 25 

Acetone + 20 % 

MeOH 

SUM         42,9 

 

Table 13.6. Chromatotron of fraction D2.10 (110,7 mg) 

Fraction 

Amount 

(ml) Eluent Fraction 

Amount 

(ml) 

Mass 

(mg) 

1 15 Chl + 50 % EtOAc 

1 30 4,1 2 15 Chl + 50 % EtOAc 

3 15 Chl + 50 % EtOAc 

2 60 9,9 

4 15 Chl + 50 % EtOAc 

5 15 EtOAc 

6 15 EtOAc 

7 15 EtOAc 

3 30 5,3 8 15 EtOAc 

9 15 EtOAc 

4 30 4 10 15 EtOAc 
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11 15 Acetone 

5 30 3,1 12 15 Acetone 

13 15 Acetone 

6 30 2,1 14 15 

Acetone + 20 % 

MeOH 

15 15 

Acetone + 20 % 

MeOH 

7 30 4 16 15 

Acetone + 20 % 

MeOH 

17 15 

Acetone + 20 % 

MeOH 

8 60 4,1 

18 15 

Acetone + 20 % 

MeOH 

19 15 

Acetone + 20 % 

MeOH 

20 15 MeOH 

SUM         36,6 

 

Table 13.7. HPLC of fraction D2.CHR.9.7-8  

Peak Fraction 

Mass 

(mg) 

1 

D2.9CHR.7-8 

HPLC 5 1,4 

SUM   1,4 

 

Table 13.8. HPLC of fraction D2.CHR.8.10  

Peak Fraction 

Mass 

(mg) 

1 

D2.8CHR.10 

HPLC 2 0,9 

2 

D2.8CHR.10 

HPLC 5 3 

SUM   3,9 

Table 13.12. VersaFlash normal phase column fractioning of EtOAc extract 

from primary MeOH extract 

Fraction 

Amount 

(ml) Eluent Fraction 

Amount 

(ml) 

Mass 

(mg) 

1 50 EtOAc 1 50 120,1 
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2 50 EtOAc 

2 100 1705,5 3 50 EtOAc 

4 50 EtOAc 

3 100 449,4 5 50 EtOAc 

6 50 EtOAc 

4 400 464,6 

7 50 EtOAc 

8 50 EtOAc 

9 50 EtOAc 

10 50 EtOAc 

11 50 

EtOAc + 10 % 

Acetone 

12 50 

EtOAc + 10 % 

Acetone 

13 50 

EtOAc + 10 % 

Acetone 

14 50 

EtOAc + 10 % 

Acetone 

5 250 729,6 

15 50 

EtOAc + 20 % 

Acetone 

16 50 

EtOAc + 20 % 

Acetone 

17 50 

EtOAc + 20 % 

Acetone 

18 50 

EtOAc + 20 % 

Acetone 

19 50 

EtOAc + 50 % 

Acetone 

20 50 

EtOAc + 50 % 

Acetone 

6 450 3696,5 

21 50 

EtOAc + 50 % 

Acetone 

22 50 

EtOAc + 50 % 

Acetone 

23 50 

EtOAc + 50 % 

Acetone 

24 50 

EtOAc + 50 % 

Acetone 

25 50 

EtOAc + 50 % 

Acetone 

26 50 

EtOAc + 50 % 

Acetone 

27 50 

EtOAc + 50 % 

Acetone 

28 50 EtOAc + 50 % 
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Acetone 

29 50 

EtOAc + 50 % 

Acetone 

7 200 765,8 

30 50 

EtOAc + 50 % 

Acetone 

31 50 

EtOAc + 50 % 

Acetone 

32 50 

EtOAc + 50 % 

Acetone 

33 50 

EtOAc + 50 % 

Acetone 

8 150 272,4 

34 50 Acetone 

35 50 Acetone 

36 50 Acetone 

9 300 723,2 

37 50 Acetone 

38 50 Acetone 

39 50 Acetone 

40 50 Acetone 

41 50 Acetone 

42 50 Acetone 

10 200 151,3 

43 50 Acetone 

44 50 Acetone 

45 50 Acetone 

46 50 Acetone 

11 200 81,9 

47 50 Acetone 

48 50 EtOAc 

49 50 EtOAc 

50 50 EtOAc 

12 650 731,2 

51 500 

EtOAc + 50 % 

MeOH 

52 50 EtOAc 

53 50 EtOAc 

SUM         9891,5 

 

Table 13.15. DPPH-test of EtOAC fractions 

Fraction 

Concentration 

(µg/ml) 

% Radical 

scavenger SD 

SC50 

(µg/ml) 

E1 Do not measure       

E2 41,7 14,1 1,8 

>167  

  83,3 20,8 0,8 

  166,7 35,9 0,8 
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E3 Do not measure       

E4 Do not measure       

E5 41,7 3,5 0,5 

>167 

  83,3 5,8 0,4 

  166,7 10,2 0,9 

E6 166,7 8,3 0,2 >167 

E7 166,7 5,8 1,1 >167 

E8 166,7 8,5 0,6 >167 

E9 166,7 14,5 0,6 >167 

E10 Do not measure       

E11 Do not measure       

E12 Do not measure       

 

Table 13.16. VersaFlash chromatography with reverse phase column of BuOH 

extract 

Fraction 

Amount 

(ml) Eluent Fraction 

Amount 

(ml) 

Mass 

(mg) 

1 50 

Water + 50 % 

MeOH B1 50 558,6 

2 25 

Water + 50 % 

MeOH 

B2 75 5072,4 

3 25 

Water + 50 % 

MeOH 

4 25 

Water + 50 % 

MeOH 

5 50 

Water + 50 % 

MeOH 

B3 300 899,7 

6 50 

Water + 50 % 

MeOH 

7 50 

Water + 50 % 

MeOH 

8 50 

Water + 50 % 

MeOH 

9 50 

Water + 50 % 

MeOH 

10 50 

Water + 50 % 

MeOH 

11 50 

Water + 50 % 

MeOH 

B4 350 317,9 12 50 

Water + 50 % 

MeOH 
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13 50 

Water + 50 % 

MeOH 

14 50 

Water + 50 % 

MeOH 

15 50 

Water + 50 % 

MeOH 

16 50 

Water + 50 % 

MeOH 

17 50 

Water + 50 % 

MeOH 

18 50 

Water + 50 % 

MeOH 

B5 100 774,9 19 50 

Water + 70 % 

MeOH 

20 50 

Water + 70 % 

MeOH 

B6 250 830,5 

21 50 

Water + 70 % 

MeOH 

22 50 

Water + 70 % 

MeOH 

23 50 

Water + 70 % 

MeOH 

24 50 

Water + 70 % 

MeOH 

25 50 

Water + 70 % 

MeOH 

B7 250 171,6 

26 50 

Water + 70 % 

MeOH 

27 50 

Water + 70 % 

MeOH 

28 50 

Water + 70 % 

MeOH 

29 50 

Water + 70 % 

MeOH 

30 50 MeOH 

B8 250 631,3 

31 50 MeOH 

32 50 MeOH 

33 50 MeOH 

34 50 MeOH 

35 50 MeOH 

B9 350 265,2 

36 50 MeOH 

37 50 MeOH 

38 50 MeOH 

39 50 MeOH 
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40 50 MeOH 

41 50 MeOH 

SUM         9522,1 

 

Table 13.17. LPCC with Sephadex LH20 of fraction B1-2 (5631 mg) 

Fraction 

Amount 

(ml) Eluent Fraction 

Amount 

(ml) 

Mass 

(mg) 

1 60 

Water + 10 % 

MeOH 

1 120 38 2 60 

Water + 10 % 

MeOH 

3 60 

Water + 10 % 

MeOH 

2 240 2924 

4 60 

Water + 10 % 

MeOH 

5 60 

Water + 10 % 

MeOH 

6 60 

Water + 10 % 

MeOH 

7 60 

Water + 10 % 

MeOH 

3 600 671 

8 60 

Water + 10 % 

MeOH 

9 60 

Water + 10 % 

MeOH 

10 60 

Water + 10 % 

MeOH 

11 60 

Water + 10 % 

MeOH 

12 60 

Water + 10 % 

MeOH 

13 60 

Water + 10 % 

MeOH 

14 60 

Water + 10 % 

MeOH 

15 60 

Water + 10 % 

MeOH 

16 60 

Water + 10 % 

MeOH 

17 60 

Water + 20 % 

MeOH 

4 720 443 18 60 Water + 20 % 
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MeOH 

19 60 

Water + 20 % 

MeOH 

20 60 

Water + 20 % 

MeOH 

21 60 

Water + 20 % 

MeOH 

22 60 

Water + 50 % 

MeOH 

23 60 

Water + 50 % 

MeOH 

24 60 

Water + 50 % 

MeOH 

25 60 

Water + 50 % 

MeOH 

26 60 

Water + 50 % 

MeOH 

27 60 MeOH 

28 60 MeOH 

29 60 MeOH 

5 120 303 30 60 MeOH 

SUM         4379 

 

 

Table 13.18. Fraction B1-2 S.4 in reverse phase VersaFlash column (443 mg) 

Fraction 

Amount 

(ml) Eluent Fraction 

Amount 

(ml) 

Mass 

(mg) 

1 15 

Water + 50 % 

MeOH 1 15 6,9 

2 15 

Water + 50 % 

MeOH 

2 30 57,9 3 15 

Water + 50 % 

MeOH 

4 15 

Water + 50 % 

MeOH 

3 45 87,9 

5 15 

Water + 50 % 

MeOH 

6 15 

Water + 50 % 

MeOH 

7 15 

Water + 50 % 

MeOH 4 90 42,4 
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8 15 

Water + 50 % 

MeOH 

9 15 

Water + 50 % 

MeOH 

10 15 

Water + 50 % 

MeOH 

11 15 

Water + 50 % 

MeOH 

12 15 

Water + 70 % 

MeOH 

13 15 

Water + 70 % 

MeOH 

5 165 60,6 

14 15 

Water + 70 % 

MeOH 

15 15 

Water + 70 % 

MeOH 

16 15 

Water + 70 % 

MeOH 

17 15 

Water + 70 % 

MeOH 

18 15 

Water + 70 % 

MeOH 

19 15 

Water + 70 % 

MeOH 

20 15 

Water + 70 % 

MeOH 

21 15 

Water + 70 % 

MeOH 

22 15 

Water + 70 % 

MeOH 

23 15 

Water + 70 % 

MeOH 

24 15 

Water + 70 % 

MeOH 

6 150 113,8 

25 15 

Water + 70 % 

MeOH 

26 15 

Water + 70 % 

MeOH 

27 15 MeOH 

28 15 MeOH 

29 15 MeOH 

30 15 MeOH 

31 15 MeOH 

32 15 MeOH 
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33 15 MeOH 

SUM         369,5 

 

Table 13.19. Fraction B1-2 S.5 in reverse phase VersaFlash column (303 mg) 

Fraction 

Amount 

(ml) Eluent Fraction 

Amount 

(ml) 

Mass 

(mg) 

1 15 

Water + 50 % 

MeOH 1 15 5,4 

2 15 

Water + 50 % 

MeOH 

2 30 47,1 3 15 

Water + 50 % 

MeOH 

4 15 

Water + 50 % 

MeOH 

3 45 94,3 

5 15 

Water + 50 % 

MeOH 

6 15 

Water + 50 % 

MeOH 

7 15 

Water + 50 % 

MeOH 

4 45 57,9 

8 15 

Water + 50 % 

MeOH 

9 15 

Water + 50 % 

MeOH 

10 15 

Water + 50 % 

MeOH 

5 45 24,9 

11 15 

Water + 50 % 

MeOH 

12 15 

Water + 50 % 

MeOH 

13 15 

Water + 50 % 

MeOH 

6 135 41,5 

14 15 

Water + 50 % 

MeOH 

15 15 

Water + 50 % 

MeOH 

16 15 

Water + 50 % 

MeOH 

17 15 

Water + 70 % 

MeOH 

18 15 

Water + 70 % 

MeOH 
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19 15 

Water + 70 % 

MeOH 

20 15 

Water + 70 % 

MeOH 

21 15 

Water + 70 % 

MeOH 

22 15 

Water + 70 % 

MeOH 

7 75 16,1 

23 15 

Water + 70 % 

MeOH 

24 15 

Water + 70 % 

MeOH 

25 15 

Water + 70 % 

MeOH 

26 15 

Water + 70 % 

MeOH 

27 15 

Water + 70 % 

MeOH 

8 105 10 

28 15 

Water + 70 % 

MeOH 

29 15 

Water + 70 % 

MeOH 

30 15 

Water + 70 % 

MeOH 

31 15 

Water + 70 % 

MeOH 

32 15 MeOH 

33 15 MeOH 

34 15 MeOH 

35 15 MeOH 

9 120 20,6 

36 15 MeOH 

37 15 MeOH 

38 15 MeOH 

39 15 MeOH 

40 15 MeOH 

41 30 MeOH 

SUM         317,8 

 

Table 13.20. Fraction B1-2 S.4-5 VRP. T2 on LPCC with MCI CHP20P gel (61,8 mg) 

Fraction 

Amount 

(ml) Eluent Fraction 

Amount 

(ml) 

Mass 

(mg) 

1 15 Water + 30 %       
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MeOH 

2 15 

Water + 30 % 

MeOH       

3 15 

Water + 30 % 

MeOH       

4 15 

Water + 30 % 

MeOH       

5 15 

Water + 30 % 

MeOH       

6 15 

Water + 30 % 

MeOH       

7 15 

Water + 50 % 

MeOH       

8 15 

Water + 50 % 

MeOH       

9 15 

Water + 50 % 

MeOH       

10 15 

Water + 50 % 

MeOH       

11 15 

Water + 50 % 

MeOH       

12 15 

Water + 50 % 

MeOH       

13 15 

Water + 50 % 

MeOH       

14 15 

Water + 70 % 

MeOH 

1 60 6,6 

15 15 

Water + 70 % 

MeOH 

16 15 

Water + 70 % 

MeOH 

17 15 

Water + 70 % 

MeOH 

18 15 

Water + 70 % 

MeOH 2 15 7,4 

19 15 

Water + 70 % 

MeOH 3 15 15 

20 15 

Water + 70 % 

MeOH 4 15 16,4 

21 15 

Water + 70 % 

MeOH 5 15 12,4 

22 15 

Water + 70 % 

MeOH 6 15 4,8 

23 15 

Water + 70 % 

MeOH 7 30 2,6 
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24 15 MeOH 

25 15 MeOH 

8 30 1,4 26 15 MeOH 

27 15         

28 15         

29 50         

SUM         66,6 

 

Table 13.21. Fraction B1-2 S.4-5 VRP. T3 on LPCC with MCI CHP20P gel (154 mg) 

Fraction 

Amount 

(ml) Eluent Fraction 

Amount 

(ml) 

Mass 

(mg) 

1 7 

Water + 30 % 

MeOH       

2 7 

Water + 30 % 

MeOH       

3 7 

Water + 50 % 

MeOH       

4 7 

Water + 50 % 

MeOH       

5 7 

Water + 50 % 

MeOH       

6 7 

Water + 50 % 

MeOH       

7 7 

Water + 50 % 

MeOH       

8 7 

Water + 70 % 

MeOH       

9 7 

Water + 70 % 

MeOH 

1 28 10,3 

10 7 

Water + 70 % 

MeOH 

11 7 

Water + 70 % 

MeOH 

12 7 

Water + 70 % 

MeOH 

13 7 

Water + 70 % 

MeOH 2 7 5,5 

14 7 MeOH 3 7 27,3 

15 7 MeOH 4 7 38,6 

16 7 MeOH 5 7 31,4 

17 7 MeOH 

6 14 20,7 18 7 MeOH 



 112 

19 7 MeOH 

7 21 10,2 

20 7 MeOH 

21 7 MeOH 

22 7 MeOH       

23 60 MeOH       

SUM         144 

 

Table 13.22. Fraction B1-2 S.4-5 VRP. T2 M.1 with HPLC (6,6 mg) 

Peak Fraction 

Mass 

(mg) 

1 

B1-2 S.4-5 

VRP.T2M1HPLC 5 3,1 

2 

B1-2 S.4-5 

VRP.T2M1HPLC 6-7 4,9 

3 

B1-2 S.4-5 

VRP.T2M1HPLC rest 1,2 

SUM   9,2 

 

Table 13.23. Fraction B1-2 S.4-5 VRP. T2 M.2 with HPLC (7,4 mg) 

Peak Fraction 

Mass 

(mg) 

1 

B1-2 S.4-5 VRP.T2M2 

HPLC 5 0,5 

2 

B1-2 S.4-5 VRP.T2M2 

HPLC 6 2 

3 

B1-2 S.4-5 VRP.T2M2 

HPLC 7 0,7 

4 

B1-2 S.4-5 VRP.T2M2 

HPLC 8 0,6 

5 

B1-2 S.4-5 VRP.T2M2 

HPLC 10 1,1 

SUM   4,9 

 

Table 13.24. Fraction B1-2 S.4-5 VRP. T2 M.3 with HPLC (15 mg) 

Peak Fraction 

Mass 

(mg) 

1 

B1-2 S.4-5 VRP.T2M3 

HPLC 6-7 2 
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2 

B1-2 S.4-5 VRP.T2M3 

HPLC 8 0,4 

3 

B1-2 S.4-5 VRP.T2M3 

HPLC 9 2,5 

4 

B1-2 S.4-5 VRP.T2M3 

HPLC 10 0,1 

5 

B1-2 S.4-5 VRP.T2M3 

HPLC 11 0,4 

SUM   6,4 

 

Table 13.25. Fraction B1-2 S.4-5 VRP. T2 M.4 with HPLC (16,4 mg) 

Peak Fraction 

Mass 

(mg) 

1 

B1-2 S.4-5 VRP.T2M4 

HPLC 5 1,5 

2 

B1-2 S.4-5 VRP.T2M4 

HPLC 7 3 

3 

B1-2 S.4-5 VRP.T2M4 

HPLC 8 2,6 

4 

B1-2 S.4-5 VRP.T2M4 

HPLC 9 6,5 

SUM   13,6 

 

Table 13.26. Fraction B1-2 S.4-5 VRP. T2 M.5 with HPLC (12,4 mg) 

Peak Fraction 

Mass 

(mg) 

1 

B1-2 S.4-5 VRP.T2M5 

HPLC 5 1,5 

2 

B1-2 S.4-5 VRP.T2M5 

HPLC 6 1,4 

3 

B1-2 S.4-5 VRP.T2M5 

HPLC 7 0,7 

4 

B1-2 S.4-5 VRP.T2M5 

HPLC 8-9 7,1 

SUM   10,7 

 

Table 13.27. Fraction B1-2 S.4-5 VRP. T3 M.1 with HPLC (10,3 mg) 

Peak Fraction Mass 
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(mg) 

1 

B1-2 S.4-5 VRP.T3M1 

HPLC 3 3,5 

2 

B1-2 S.4-5 VRP.T3M1 

HPLC 4 3,6 

3 

B1-2 S.4-5 VRP.T3M1 

HPLC 5 4 

4 

B1-2 S.4-5 VRP.T3M1 

HPLC 6 0,8 

5 

B1-2 S.4-5 VRP.T3M1 

HPLC 7 0,7 

SUM   12,6 

 

Table 13.28. Fraction B1-2 S.4-5 VRP. T3 M.2 with HPLC (5,5 mg) 

Peak Fraction 

Mass 

(mg) 

1 

B1-2 S.4-5 VRP.T3M2 

HPLC 2 1,6 

2 

B1-2 S.4-5 VRP.T3M2 

HPLC 3 2,8 

3 

B1-2 S.4-5 VRP.T3M2 

HPLC 4 1 

4 

B1-2 S.4-5 VRP.T3M2 

HPLC 6 1,4 

5 

B1-2 S.4-5 VRP.T3M2 

HPLC 7 0,5 

SUM   7,3 

 

Table 13.29. Fraction B1-2 S.4-5 VRP. T3 M.3 with HPLC (27,3 mg) 

Peak Fraction 

Mass 

(mg) 

1 

B1-2 S.4-5 VRP.T3M3 

HPLC 4 1,9 

2 

B1-2 S.4-5 VRP.T3M3 

HPLC 5 1,9 

3 

B1-2 S.4-5 VRP.T3M3 

HPLC 6 1,1 

4 

B1-2 S.4-5 VRP.T3M3 

HPLC 7 0,4 

5 B1-2 S.4-5 VRP.T3M3 1,3 
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HPLC 8 

SUM   6,6 
 

Table 13.30. Fraction B1-2 S.4-5 VRP. T3 M.4 with HPLC (38,6 mg) 

Peak Fraction Mass (mg) 

1 

B1-2 S.4-5 VRP.T3M4 

HPLC 2 3,3 

2 

B1-2 S.4-5 VRP.T3M4 

HPLC 4 1,0 

3 

B1-2 S.4-5 VRP.T3M4 

HPLC 5-6 2,5 

4 

B1-2 S.4-5 VRP.T3M4 

HPLC 7 1,0 

5 

B1-2 S.4-5 VRP.T3M4 

HPLC 8 3,6 

6 

B1-2 S.4-5 VRP.T3M4 

HPLC 9-10 12,1  

7 

B1-2 S.4-5 VRP.T3M4 

HPLC 11 5,7  

8 

B1-2 S.4-5 VRP.T3M4 

HPLC 12 3,6  

SUM   31,3 

 

Table 13.31. Fraction B1-2 S.4-5 VRP. T3 M.5 with HPLC (31,4 mg) 

Peak Fraction 

Mass 

(mg) 

1 

B1-2 S.4-5 VRP.T3M5 

HPLC 3 0,5 

2 

B1-2 S.4-5 VRP.T3M5 

HPLC 5 0,8 

3 

B1-2 S.4-5 VRP.T3M5 

HPLC 6 1,3 

4 

B1-2 S.4-5 VRP.T3M5 

HPLC 7 1,2 

5 

B1-2 S.4-5 VRP.T3M5 

HPLC 8 1,2 

6 

B1-2 S.4-5 VRP.T3M5 

HPLC 9-10 7,4 

7 

B1-2 S.4-5 VRP.T3M5 

HPLC 11 11,9 

8 

B1-2 S.4-5 VRP.T3M5 

HPLC 12 7,1 
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9 

B1-2 S.4-5 VRP.T3M5 

HPLC 13 1,5 

SUM   32,9 

 

Table 13.32. Fraction B1-2 S.4-5 VRP. T3 M.6 with HPLC (20,7 mg) 

Peak Fraction 

Mass 

(mg) 

1 

B1-2 S.4-5 VRP.T3M6 

HPLC 3 14,1 

2 

B1-2 S.4-5 VRP.T3M6 

HPLC 5-6 6,5 

3 

B1-2 S.4-5 VRP.T3M6 

HPLC 7 1,8 

4 

B1-2 S.4-5 VRP.T3M6 

HPLC 8-12 0,4 

5 

B1-2 S.4-5 VRP.T3M6 

HPLC 13-14 1,6 

6 

B1-2 S.4-5 VRP.T3M6 

HPLC 15 0,2 

SUM   24,6 

   

 

Table 13.33. Fractions from  fra Sutherlandia - prep. HPLC 

Fractions from  fra Sutherlandia - prep. HPLC  

Fractions from  T2     

      

Fraction 

Weight 

mg RT (min) 

1H 

NMR aglycon 

13C 

NMR 

      

T2M1HPLC5 3,1 5.93 - 7.42 x que x 

T2M1HPLC6-

7 4,9 7.42 - 13.10 x kae x 

T2M1HPLC 

rest 1,2 xxx x   

      

T2M2HPLC5 0,5 5.98 - 7.06    

T2M2HPLC6 2,0 7.06 - 9.88 x kae x 

T2M2HPLC7 0,7 9.88 - 12.61    

T2M2HPLC8 0,6 12.61 - 14.10   

T2M2HPLC10 1,1 15.44 - 17.47 x kae?  

T2M2HPLC 

rest 2,0 xxx x   
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T2M3HPLC6-

7 2,0 8.06 - 11.33    

T2M3HPLC8 0,4 11.33 - 13.43   

T2M3HPLC9 2,5 13.43 - 17.04 x kae x 

T2M3HPLC10 0,1 17.04 - 18.23   

T2M3HPLC11 0,4 18.23 - 21.24   

T2M3HPLC 

rest 1,4 xxx x   

      

T2M4HPLC5 1,5 7.82 - 10.23 x kae  

T2M4HPLC7 3,0 13.19 - 15.02 x kae x 

T2M4HPLC8 2,6 15.92 - 16.96 x kae  

T2M4HPLC9 6,5 16.96 - 19.10 x kae x 

T2M4HPLC 

rest 4,9 xxx x kae  

      

T2M5HPLC5 1,5 10.93 - 13.33 x kae  

T2M5HPLC6 1,4 13.33 - 16.46 x kae  

T2M5HPLC7 0,7 16.46 - 18.10   

T2M5HPLC8-

9 7,1 18.10 - 24.50 x kae x 

 

Fractions from  fra Sutherlandia - prep. HPLC  

Fractions from  T3     

      

Fraction 

Weight 

mg RT (min) 

1H 

NMR aglycon 

13C 

NMR 

      

T3M1HPLC3 3,5 3.89 - 5.05 x que  

T3M1HPLC4 3,6 5.05 - 9.23 x que  

T3M1HPLC5 4,0 9.23 - 12.10 x que++  

T3M1HPLC6 0,8 12.10 - 13.19   

T3M1HPLC7 0,7 13.19 - 13.83   

      

T3M2HPLC2 1,6 1.96 - 3.16 x que x 

T3M2HPLC3 2,8 4.15 - 7.10 x que x 

T3M2HPLC4 1,0 7.10 - 9.13 x que?  

T3M2HPLC6 1,4 10.79 - 13.63 x que+kae  

T3M2HPLC7 0,5 13.79 - 15.93   

      

T3M3HPLC4 1,9 5.40 - 7.25 x 

que + 

kae?  

T3M3HPLC5 1,9 7.25 - 8.80 x 

que + 

kae?  

T3M3HPLC6 1,1 8.80 - 11.26 x 

que + 

kae?  
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T3M3HPLC7 0,4 11.26 - 13.49   

T3M3HPLC8 1,3 13.49 - 15.93 x que + kae  

      

T3M4HPLC2 3,3 3.00 - 5.38 x que + kae  

T3M4HPLC4 1,0 6.84 - 8.79 x que + kae  

T3M4HPLC5-6 2,5 8.79 - 11.42 x que + kae  

T3M4HPLC7 1,0 11.42 - 12.05 x que + kae  

T3M4HPLC8 2,1 12.05 - 13-29 x que + kae  

T3M4HPLC9-

10 12,1 13.29 - 15.78 x que + kae  

T3M4HPLC11 5,7 15.78 - 16.94 x kae x 

T3M4HPLC12 3,6 16.94 - 19.21 x kae  

      

T3M5HPLC3 0,5 3.73 - 5.13    

T3M5HPLC5 0,8 8.11 - 9.41    

T3M5HPLC6 1,3 9.41 - 11.21 x que + kae  

T3M5HPLC7 1,2 11.21 - 12.80 x que + kae  

T3M5HPLC8 1,2 12.80 - 13.83 x que + kae  

T3M5HPLC9-

10 7,4 13.83 - 16.71 x kae x 

T3M5HPLC11 11,9 16.71 - 17.65 x kae x 

T3M5HPLC12 7,1 17.65 - 18.86 x kae x 

T3M5HPLC13 1,5 18.86 - 20.60 x kae  

      

T3M6HPLC3 0,4 3.73 - 5.46    

T3M6HPLC5-6 1,6 8.11 - 11.38 x kae  

T3M6HPLC7 0,2 11.38 - 12.38   

T3M6HPLC8-

12 14,0 12.38 - 17.61 x 

kae + 

que? x 

T3M6HPLC13-

14 6,5 17.61 - 19.34 x kae x 

T3M6HPLC15 1,8 19.34 - 20.98 x kae  

      

 

Table 13.34. LPCC with Sephadex LH20 of fraction B5-6 (1605,4 mg) 

Fraction 

Amount 

(ml) Eluent Fraction 

Amount 

(ml) 

Mass 

(mg) 

1 60 

Water + 20 % 

MeOH       

2 60 

Water + 20 % 

MeOH       

3 60 

Water + 20 % 

MeOH 

1 240 189,5 4 60 

Water + 20 % 

MeOH 
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5 60 

Water + 20 % 

MeOH 

6 60 

Water + 20 % 

MeOH 

7 60 

Water + 50 % 

MeOH 2 60 152,6 

8 60 

Water + 50 % 

MeOH 

3 120 511 9 60 

Water + 50 % 

MeOH 

10 60 

Water + 50 % 

MeOH 

4 120 119,4 11 60 

Water + 70 % 

MeOH 

12 60 

Water + 70 % 

MeOH 

5 180 57,5 

13 60 

Water + 70 % 

MeOH 

14 60 

Water + 70 % 

MeOH 

15 60 MeOH 

6 1360 136,1 

16 60 MeOH 

17 60 MeOH 

18 60 MeOH 

19 60 MeOH 

20 60 MeOH 

21 60 MeOH 

22 60 MeOH 

23 60 MeOH 

24 60 MeOH 

25 60 MeOH 

26 60 MeOH 

27 60 MeOH 

28 60 MeOH 

29 60 MeOH 

30 60 MeOH 

SUM         1166,1 

 

Table 13.35. Fractioning of fraction B5-6 S.3 with VersaFlash normal phase column 

(511 mg) 

Fraction 

Amount 

(ml) Eluent Fraction 

Amount 

(ml) 

Mass 

(mg) 
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1 50 
hypophase of MeOH, 

Chloroform and H2O (65:35:10) 

1 100 11,9 2 50 
hypophase of MeOH, 

Chloroform and H2O (65:35:10) 

3 50 
hypophase of MeOH, 

Chloroform and H2O (65:35:10) 

2 100 78,9 4 50 
hypophase of MeOH, 

Chloroform and H2O (65:35:10) 

5 50 
hypophase of MeOH, 

Chloroform and H2O (65:35:10) 

3 100 131 6 50 
hypophase of MeOH, 

Chloroform and H2O (65:35:10) 

7 50 

hypophase of MeOH, 

Chloroform and H2O (65:35:10) 

4 200 165,1 

8 50 

hypophase of MeOH, 

Chloroform and H2O (65:35:10) 

9 50 

hypophase of MeOH, 

Chloroform and H2O (65:35:10) 

10 50 

hypophase of MeOH, 

Chloroform and H2O (65:35:10) 

11 50 

hypophase of MeOH, 

Chloroform and H2O (65:35:10) 

5 100 28,5 12 50 

hypophase of MeOH, 

Chloroform and H2O (65:35:10) 

13 50 

hypophase of MeOH, 

Chloroform and H2O (65:35:10) 

6 100 11,7 14 50 

hypophase of MeOH, 

Chloroform and H2O (65:35:10) 

15 50 

hypophase of MeOH, 

Chloroform and H2O (65:35:10) 

7 200 16,2 16 50 
hypophase of MeOH, 
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Chloroform and H2O (65:35:10) 

17 50 

hypophase of MeOH, 

Chloroform and H2O (65:35:10) 

18 50 

hypophase of MeOH, 

Chloroform and H2O (65:35:10) 

19 50 

hypophase of MeOH, 

Chloroform and H2O (65:35:10) 

8 350 13,3 

20 50 

hypophase of MeOH, 

Chloroform and H2O (65:35:10) 

21 50 

hypophase of MeOH, 

Chloroform and H2O (65:35:10) 

22 200 

hypophase of MeOH, 

Chloroform and H2O (65:35:10) 

SUM         456,6 

Table 13.36. Fraction B5-6 S.3 VNP.2 on chromatotron 

Fraction 

Amount 

(ml) Eluent Fraction 

Amount 

(ml) 

Mass 

(mg) 

1 7 
hypophase of MeOH, 

Chloroform and H2O (65:35:10)       

2 7 
hypophase of MeOH, 

Chloroform and H2O (65:35:10)       

3 7 
hypophase of MeOH, 

Chloroform and H2O (65:35:10)       

4 7 
hypophase of MeOH, 

Chloroform and H2O (65:35:10)       

5 7 
hypophase of MeOH, 

Chloroform and H2O (65:35:10) 1 7   

6 7 
hypophase of MeOH, 

Chloroform and H2O (65:35:10) 2 7   

7 7 
hypophase of MeOH, 

Chloroform and H2O (65:35:10) 3 7   

8 7 
hypophase of MeOH, 

Chloroform and H2O (65:35:10)       

9 15 
hypophase of MeOH, 

Chloroform and H2O (65:35:10)       
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SUM           

 

Table 13.37. Fraction B5-6 S.3 VNP.2 CHR 1 on HPLC 

Peak Fraction 

Mass 

(mg) 

1 

B5-6 S.3 VNP.2 CHR.1 

HPLC 1 2,8 

2 

B5-6 S.3 VNP.2 CHR.1 

HPLC 2 1,9 

3 

B5-6 S.3 VNP.2 CHR.1 

HPLC 3 1,1 

4 

B5-6 S.3 VNP.2 CHR.1 

HPLC 4 0,8 

SUM   6,6 

 

Table 13.38. Fraction B5-6 S.3 VNP.2 CHR 2 on HPLC 

Peak Fraction 

Mass 

(mg) 

1 

B5-6 S.3 VNP.2 CHR.2 

HPLC 1 2,9 

2 

B5-6 S.3 VNP.2 CHR.2 

HPLC 2 5,6 

3 

B5-6 S.3 VNP.2 CHR.2 

HPLC 3 7,7 

4 

B5-6 S.3 VNP.2 CHR.2 

HPLC 4 3 

5 

B5-6 S.3 VNP.2 CHR.2 

HPLC 5 2,6 

SUM   21,8 

Table 13.39. Fraction B5-6 S.3 VNP.2 CHR 3 on HPLC 

Peak Fraction 

Mass 

(mg) 

1 

B5-6 S.3 VNP.2 CHR.3 

HPLC 1 5,3 

2 

B5-6 S.3 VNP.2 CHR.3 

HPLC 2 4,5 

3 

B5-6 S.3 VNP.2 CHR.3 

HPLC 3 5,1 

4 B5-6 S.3 VNP.2 CHR.3 1,2 
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HPLC 4 

5 

B5-6 S.3 VNP.2 CHR.3 

HPLC 5 1,5 

SUM   17,6 

Table 13.40. Comparison of 13C NMR data for our HPLC fractions and literature 

values. 

Comparison of 13C NMR data for our HPLC fractions and literature 

values  

(Fu et al 2007)        

All spectra recorded in d5-pyridine     

         

E HPLC5 E HPLC5   B HPLC6 B HPLC6  Suth C Carbon 

6.7 mg corrected   4.2 mg corrected   number 

 values    values    

         

208,6 209,0   208,6 209,0  209,3 11 

205,0 205,4   205,0 205,4  205,6 1 

135.7?    135.6?     

123.7?    123.7?     

122.3?         

97,5 97,9   98,6 99,0  99,1 1´ 

80,5 80,9   80,9 81,3  81,3 25 

80,1 80,5   80,1 80,5  80,5 3 

78,9 79,3   78,7 79,1  79,1 3´ 

78,4 78,8   78,2 78,6  78,7 5´ 

75,7 76,1   78,2 78,6  78,6 24 

75,5 75,9   75,3 75,7  75,7 2´ 

71,7 72,1   71,7 72,1  72,1 4´ 

62,8 63,2   62,7 63,1  63,1 6´ 

52,2 52,6   52,2 52,6  52,6 12 

51,2 51,6   51,3 51,7  51,7 17 

49,0 49,4   48,9 49,3  49,3 14 

48,3 48,7   48,2 48,6  48,6 10 

46,9 47,0   46,9 47,3  47,3 2 

46,4 46,8   46,3 46,7  46,7 13 

43,4 43,8   43,4 43,8  43,8 5 

40,4 40,9   40,4 40,8  40,8 4 

39,3 39,7   39,3 39,7  39,6 8 

36,3 46,7   36,8 37,2  37,2 20 

34,4 34,8   34,3 34,7  34,7 22 

33,9 34,3   33,8 34,2  34,2 15 

33,2 33,6   33,2 33,6  33,5 9 

       30,8 6 

28,8 29,2   29,2 29,6  29,6 23 

28,1 28,5   28,0 28,4  28,4 16 

25,6 26,0   25,6 26,0  26,0 28 
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25,2 25,6   25,2 25,6  25,6 19 

    24,2 24,6  24,6 27 

23,5 23,9   23,4 23,8  23,8 7 

22,9 23,3       27? 

22,6 23,0   21,3 21,7  21,7 26 

21,2 21,6   21,2 21,6  21,5 29 

19,0 19,4   19,0 19,4  19,3 21 

18,8 19,2   18,7 19,1  19,1 30 

18,5 18,9        

16,7 17,1   16,6 17,0  17,0 18 

         

         

Conclusion:  B HPLC6 is probably Suth C    

 E HPLC5 is not Suth C     

Table 13.41. Fraction A on HPLC 

Peak Fraction Mass (mg) 

1 

A HPLC 

6 2,6 

2 

A HPLC 

11 0,7 

SUM   3,3 

Table 13.42. Fraction B on HPLC 

Peak Fraction Mass (mg) 

1 B HPLC 6 4,2 

2 B HPLC 7 0,1 

SUM   4,3 

Table 13.43. Fraction E on HPLC 

Peak Fraction Mass (mg) 

1 E HPLC 4 0,5 

2 E HPLC 5 6,7 

3 E HPLC 6 0,7 

SUM   7,9 

Table 13.44. Fraction F on HPLC 

Peak Fraction Mass (mg) 

1 F HPLC 5 0,4 

2 F HPLC 6 2,1 

3 F HPLC 7 0,9 

4 F HPLC 8 0,9 

SUM   4,3 
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Table 13.45. 13C-NMR data – Sutherlandia flavonoids from HPLC 
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14. NMR spectrum 

 

 

NMR spectra 14.1: 1H-NMR-spectra of DCM extract 

 

NMR spectra 14.2: 13C-NMR spectra of DCM extract 
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NMR spectra 14.3: 1H-NMR spectra of fraction D2. 

 

NMR spectra 14.4: 13C-NMR spectra of fraction D2 
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NMR spectra 14.5: 1H-NMR spectra of fraction D6. 

 

NMR spectra 14.6: 13C-NMR of fraction D6 
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NMR spectra 14.7: 1H-NMR spectra of fraction D2.7.2. 

 

NMR spectra 14.8: 13C-NMR spectra of fraction D2.7.2 
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NMR spectra14.9: 1H-NMR spectra of fraction D2.8.10 

 

NMR spectra 14.10: “et utsnitt” from 1H-NMR spectra of fraction D2.8.10 
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NMR spectra 14.11: 13C-NMR spectra of fraction D2.8.10 

 

NMR spectra 14.12: 1H-NMR spectra of fraction D2.9.7 
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NMR spectra 14.13: partly from 1H-NMR spectra of fraction D2.9.7. 

 

NMR spectra 14.14: partly from 1H-NMR spectra of fraction D2.9.7 
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NMR spectra 14.15: 1H-NMR spectra of fraction D2.9.8 

 

NMR spectra 14.16: partly from 1H-NMR spectra of fraction 2.9.8 
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NMR spectra 14.17: 1H-NMR spectra of fraction D2.10.8 

 

NMR spectra 14.18: 1H-NMR spectra of fraction D2.9.7-8 HPLC 5 
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NMR spectra 14.19: partly from 1H-NMR spectra of fraction D2.9.7-8 HPLC 5 

 

NMR spectra 14.20: 1H-NMR spectra of fraction D2.8.10 HPLC 5 
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NMR spectra 14.21: 1H-NMR spectra of fraction D2.8.10 HPLC 5 

 

NMR spectra 14.22: 1H-NMR spectra of MeOH extract 
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NMR spectra 14.23: 13C-NMR spectra of MeOH extract 

 

NMR spectra 14.24: 1H-NMR spectra of BuOH extract 
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NMR spectra 14.25: 13C-NMR spectra of BuOH extract 

 

NMR spectra 14.26: 1H-NMR spectra of EtOAc extract 
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NMR spectra 14.27: 13C-NMR spectra of EtOAc extract 

 

NMR spectra14.28: 1H-NMR spectra of fraction E3.  
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NMR spectra 14.29: 13C-NMR spectra of fraction E3.  

 

NMR spectra 14.30: 1H-NMR spectra of fraction E4 
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NMR spectra 14.31: 13C-NMR spectra of fraction E4. 

 

NMR spectra 14.32: 1H-NMR spectra of fraction E5 
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NMR spectra 14.33: 13C-NMR spectra of fraction E5. 

 

NMR spectra 14.34: 1H-NMR spectra of fraction E6. 
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NMR spectra 14.35: 13C-NMR spectra of fraction E6. 

 

NMR spectra 14.36: 1H-NMR spectra of fraction E7. 
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NMR spectra 14.37: 13C-NMR spectra of fraction E7. 

 

NMR spectra 14.38: 1H-NMR spectra of fraction E8. 
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NMR spectra 14.39: 13C-NMR spectra of fraction E8. 

 

NMR spectra 14.40: 1H-NMR spectra of fraction E9. 
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NMR spectra 14.41: 13C-NMR spectra of fraction E9. 

 

NMR spectra 14.42: 1H-NMR spectra of fraction B1 
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NMR spectra 14.43: 1H-NMR spectra of fraction B2 

 

NMR spectra 14.44: partly from 1H-MNR spectra of fraction B2 
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NMR spectra 14.45: 13C-NMR spectra of fraction B2. 

 

NMR spectra 14.46: 1H-NMR spectra of fraction B3. 
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NMR spectra 14.47: 13C-NMR of fraction B3. 

 

NMR spectra 14.48: 1H-NMR spectra of fraction B4. 
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NMR spectra 14.49: 13C-NMR spectra of fraction B4. 

 

NMR spectra 14.50: 1H-NMR spectra of fraction B5. 
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NMR spectra 14.51: 13C-NMR spectra of fraction B5. 

 

NMR spectra 14.52: 1H-NMR spectra of fraction B6. 
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NMR spectra 14.53: 13C-NMR spectra of fraction B6. 

 

NMR spectra 14.54: 1H-NMR spectra of fraction B7. 
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NMR spectra 14.55: 13C-NMR spectra of fraction B7. 

 

NMR spectra 14.56: 1H-NMR spectra of fraction B1-2 S.3 
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NMR spectra 14.57: 13C-NMR spectra of fraction B1-2 S.3. 

 

NMR spectra 14-58: 1H-NMR spectra of fraction B1-2 S.4. 
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NMR spectra 14.59: 1H-NMR spectra of fraction B1-2 S.5 

 

NMR spectra 14.60: partly from 1H-NMR spectra of fraction B1-2 S.5. 
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NMR spectra 14.61: 13C-NMR spectra of fraction B1-2 S.5.  

 

NMR spectra 14.62: 1H-NMR spectra of fraction B1-2 S.4 VRP.1. 
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NMR spectra 14.63: 1H-NMR spectra of fraction B1-2 S.4 VRP.2. 

NMR spectra 14.64: 1H-NMR spectra of fraction B1-2 S.4 VRP.2. 
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NMR spectra 16.65: partly from 1H-NMR spectra of fraction B1-2 S.4 VRP.3. 

 

NMR spectra 16.66: 13C-NMR spectra of fraction B1-2 S.4 VRP.3. 
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NMR spectra 16.67: 1H-NMR spectra of fraction B1-2 S.4 VRP.4.  

 

NMR spectra 16.68: partly from 1H-NMR spectra of fraction B1-2 S.4 VRP.4. 
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NMR spectra 14.69: 13C-NMR spectra of fraction B1-2 S.4 VRP.4. 

 

NMR spectra 14.70: 1H-NMR spectra of fraction B1-2 S.4 VRP.5. 
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NMR spectra 14.71: 13C-NMR spectra of fraction B1-2 S.4 VRP.5. 

 

NMR spectra 14.72: 1H-NMR spectra of fraction B1-2 S.4 VRP.6. 
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NMR spectra 14.73: 13C-NMR spectra of fraction B1-2 S.4 VRP.5. 

 

NMR spectra 14.74: 1H-NMR spectra of fraction B1-2 S.5 VRP.3. 



 164 

 

NMR spectra 14.75: 13C-NMR spectra of fraction B1-2 S.5 VRP.3. 

 

NMR spectra 14.76: 1H-NMR spectra of fraction B1-2 S.5 VRP.4. 
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NMR spectra 14.77: 13C-NMR spectra of fraction B1-2 S.5 VRP.4. 

 

NMR spectra 14.78: 1H-NMR spectra of fraction B1-2 S.5 VRP.5. 
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NMR spectra 14.79: 1H-NMR spectra of fraction B1-2 S.5 VRP.6. 

 

NMR spectra 14.80: 13C-NMR spectra of fraction B1-2 S.5 VRP.6. 
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NMR spectra 14.81: 1H-NMR spectra of fraction B1-2 S.4-5 VRP T1. 

 

NMR spectra 14.82: partly from 1H-NMR spectra of fraction B1-2 S.4-5 VRP. T1. 
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NMR spectra 14.83: 1H-NMR spectra of fraction B1-2 S.4-5 VRP. T2. 

 

NMR spectra 14.84: 1H-NMR spectra of fraction B1-2 S.4-5 VRP. T3. 
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NMR spectra 14.85: 13C-NMR spectra of fraction B1-2 S.4-5 VRP. T3. 

 

NMR spectra 14.86: 1H-NMR spectra of fraction B1-2 S.4-5 VRP. T4. 
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NMR spectra 14.87: 13C-NMR spectra of fraction B1-2 S.4-5 VRP T4. 

 

NMR spectra 14.88: 13C-NMR spectra of fraction B1-2 S.4-5 VRP. T2 M1. 
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NMR spectra 14.89: 13C-NMR spectra of fraction B1-2 S.4-5 VRP. T2 M2. 

 

NMR spectra 14.90: 1H-NMR spectra of fraction B1-2 S.4-5 VRP.  T2 M3. 
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NMR spectra 14.91: 13C-NMR spectra of fraction B1-2 S.4-5 VRP.  T2 M3. 

 

NMR spectra 14.92: 1H-NMR spectra of fraction B1-2 S.4-5 VRP. T2 M4. 
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NMR spectra 14.93: 1H-NMR spectra of fraction B1-2 S.4-5 VRP. T2 M5. 

 

NMR spectra 14.94: 13C-NMR spectra of fraction B1-2 S.4-5 VRP. T2 M5. 
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NMR spectra 14.95: partly from 13C-NMR spectra of fraction B1-2 S.4-5 VRP. T2 M5. 

 

NMR spectra 14.96: 1H-NMR spectra of fraction B1-2 S.4-5 VRP. T3 M1. 
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NMR spectra 14.97: partly from 13C-NMR spectra of fraction B1-2 S.4-5 VRP. T3 M1. 

 

NMR spectra 14.98: 1H-NMR spectra of fraction B1-2 S.4-5 VRP. T3 M2. 
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NMR spectra 14.99: 1H-NMR spectra of fraction B1-2 S.4-5 VRP. T3 M3. 

 

NMR spectra 14.100: 1H-NMR spectra of fraction B1-2 S.4-5 VRP.  T3 M4. 
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NMR spectra 14.101: partly from 1H-NMR spectra of fraction B1-2 S.4-5 VRP.  T3 M4. 

 

NMR spectra 14.102: 13C-NMR spectra of fraction B1-2 S.4-5 VRP. T3 M4. 
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NMR spectra 14.103: 1H-NMR spectra of fraction B1-2 S.4-5 VRP. T3 M5. 

 

NMR spectra 14.104: partly from 1H-NMR spectra of fraction B1-2 S.4-5 VRP.  T3 M5. 
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NMR spectra 14.105: 13C-NMR spectra of fraction B1-2 S.4-5 VRP. T3 M5. 

 

NMR spectra 14.106: 1H-NMR spectra of fraction B1-2 S.4-5 VRP. T3 M5 HPLC 11 
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NMR spectra 14.107: partly from 1H-NMR spectra of fraction B1-2 S.4-5 VRP. T3 M5 

HPLC 11. 
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NMR spectra 14.108: 13C-NMR spectra of fraction B1-2 S.4-5 VRP.  T3 M5 HPLC 11. 

 

NMR spectra 14.109: 1H-NMR spectra of fraction B1-2 S.4-5 VRP. T3 M5 HPLC 12. 

 

NMR spectra 14.110:partly from 1H-NMR spectra of fraction B1-2 S.4-5 VRP. T3 M5 

HPLC 12. 
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NMR spectra 14.111: 13C-NMR spectra of fraction B1-2 S.4-5 VRP. T3 M5 HPLC 12. 

 

NMR spectra 14.111: 1H-NMR spectra of fraction B1-2 S.4-5 VRP. T3 M4 HPLC 11. 
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NMR spectra 14.112: 13C-NMR spectra of fraction B1-2 S.4-5 VRP. T3 M4 HPLC 11 

 

NMR spectra 14.113: 1H-NMR spectra of fraction B1-2 S.4-5 VRP. T2 M1 HPLC 6-7 
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NMR spectra 14.114: 13C-NMR spectra of fraction B1-2 S.4-5 VRP. T2 M1 HPLC 6-7. 

 

NMR spectra 14.115: 1H-NMR spectra of fraction B5-6 S.3. 
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NMR spectra 14.116: 13C-NMR spectra of fraction B5-6 S.3. 

 

NMR spectra 14.117: 1H-NMR spectra of fraction B5-6 S.4. 
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NMR spectra 14.118: 13C-NMR spectra of fraction B5-6 S.4. 

 

NMR spectra 14.119: 1H-NMR spectra of fraction B5-6 S.5. 
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NMR spectra 14.120: 13C-NMR spectra of fraction B5-6 S.5. 

 

NMR spectra 14.121: 1H-NMR spectra of fraction B5-6 S.3 VNP 2. 
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NMR spectra 14.122: 13C-NMR spectra of fraction B5-6 S.3 VNP 2. 

 

NMR spectra 14.123: 1H-NMR spectra of fraction B5-6 S.3 VNP 3. 
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NMR spectra 14.124: 13C-NMR spectra of fraction B5-6 S.3 VNP 3. 

 

NMR spectra 14.125: 1H-NMR spectra of fraction B5-6 S.3 VNP 4. 
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NMR spectra 14.126: 13C-NMR spectra of fraction B5-6 S.3 VNP 4. 

 

NMR spectra 14.127: 1H-NMR spectra of fraction B HPLC 6. 



 191 

 

NMR spectra 14.128: 13C-NMR spectra of fraction B HPLC 6. 

 

NMR spectra 14.129: 1H-NMR spectra of fraction E HPLC 5. 
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NMR spectra 14.130: 13C-NMR spectra of fraction E HPLC 5. 

 

NMR spectra 14.131: 1H-NMR spectra of fraction B5-6 S.3 VNP 2 CHR 1. 
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NMR spectra 14.132: partly from 1H-NMR spectra of fraction B5-6 S.3 VNP 2 CHR 1. 

 

NMR spectra 14.133: 13C-NMR spectra of fraction B5-6 S.3 VNP 2 CHR 1. 



 194 

 

NMR spectra 14.134: 1H-NMR spectra of fraction B5-6 S.3 VNP 2 CHR 2. 

 

NMR spectra 14.135: partly from 1H-NMR spectra of fraction B5-6 S.3 VNP 2 CHR 2. 
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NMR spectra 14.136: 13C-NMR spectra of fraction B5-6 S.3 VNP 2 CHR 2. 

 

NMR spectra 14.137: 1H-NMR spectra of fraction B5-6 S.3 VNP 2 CHR 3. 
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NMR spectra 14.138: partly from 1H-NMR spectra of fraction B5-6 S.3 VNP 2 CHR 3. 

 

NMR spectra 14.139: 13C-NMR spectra of fraction B5-6 S.3 VNP 2 CHR 3. 
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15. Chromatograms 

 

Chromatogram 15.1. Preparative HPLC chromatogram of fraction D2.7.6. 

 

Chromatogram 15.2. Preparative HPLC chromatogram of fraction D2.7.7. 
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Chromatogram 15.3. Preparative HPLC chromatogram of fraction D2.7.8. 

 

Chromatogram 15.4. Preparative HPLC chromatogram of fraction D2.7.9. 
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Chromatogram 15.5. Preparative HPLC chromatogram of fraction D2.8.1. 

 

 

Chromatogram 15.6. Preparative HPLC chromatogram of fraction D2.8.2. 
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Chromatogram 15.7. Preparative HPLC chromatogram of fraction D2.8.5. 

 

 

Chromatogram 15.8. Preparative HPLC chromatogram of fraction D2.8.6. 
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Chromatogram 15.9. Preparative HPLC chromatogram of fraction D2.9.7-8. 

 

Chromatogram 15.10. Preparative HPLC chromatogram of fraction D2.8.10. 
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Chromatogram 15.11. Preparative HPLC chromatogram of fraction B1-2 S.4-5 VRP. 

T2 M1. 

 

Chromatogram 15.12. Preparative HPLC chromatogram of fraction B1-2 S.4-5 VRP. 

T2 M2. 
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Chromatogram 15.13. Preparative HPLC chromatogram of fraction B1-2 S.4-5 VRP. 

T2 M3. 

 

Chromatogram 15.14. Preparative HPLC chromatogram of fraction B1-2 S.4-5 VRP. 

T2 M4. 
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Chromatogram 15.15. Preparative HPLC chromatogram of fraction B1-2 S.4-5 VRP. 

T2 M5. 

 

Chromatogram 15.16. Preparative HPLC chromatogram of fraction B1-2 S.4-5 VRP. 

T3 M1. 
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Chromatogram 15.17. Preparative HPLC chromatogram of fraction B1-2 S.4-5 VRP. 

T3 M2. 

Chromatogram 15.18. Preparative HPLC chromatogram of fraction B1-2 S.4-5 VRP. 

T3 M3. 
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Chromatogram 15.19. Preparative HPLC chromatogram of fraction B1-2 S.4-5 VRP. 

T3 M4. 

 



 207 

Chromatogram 15.20. Preparative HPLC chromatogram of fraction B1-2 S.4-5 VRP. 

T3 M5. 

 

Chromatogram 15.21. Preparative HPLC chromatogram of fraction B1-2 S.4-5 VRP. 

T3 M6. 

 

Chromatogram 15.22. Preparative HPLC chromatogram of fraction A. 
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Chromatogram 15.23. Preparative HPLC chromatogram of fraction B. 

 

Chromatogram 15.24. Preparative HPLC chromatogram of fraction E. 
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Chromatogram 15.25. Preparative HPLC chromatogram of fraction F. 
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