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ABSTRACT 

Background: Cyclosporine A (CsA) has since its introduction in the 1980’s played a 

substantial part of the success in solid organ transplantation. Like many other 

immunosuppressive drugs, CsA has a narrow therapeutic window and a large inter-

individual variability. Drug exposure above the therapeutic window is associated with 

adverse events like nephrotoxicity, infection and cancer while drug exposure below 

will yield a lack of effect and increased risk for acute rejection episodes. Obtaining an 

optimal drug concentration will prevent acute organ rejections and optimize survival 

of the grafts and ultimately the patients. 

The primary aim of this study is to implement a T-cell compartment to an already 

existing whole blood model. Another goal was to further develop the basic whole 

blood model after the inclusion of 20 new patients followed for at least 8 weeks, by 

re-evaluating for relevant covariates and include estimation of interoccasional 

variation in the model. 

Methods: Data was gathered from four separate clinical trials, performed by the 

department of Pharmaceutical Biosciences at the University of Oslo in co-operation 

with the Medical Department at Rikshospitalet, Oslo University Hospital, for the 

whole blood model. In all 70 patients and a total of 1276 whole blood samples were 

included in the whole blood model. 

Of the 70 patients, 20 patients also had intracellular concentrations measured. These 

430 intracellular samples were included in the development of the extended model.  

By using the nonlinear mixed-effect modelling program NONMEM two population 

pharmacokinetic models were developed. 

Results: When re-analyzing for significant covariates, many similar results as earlier 

tested for the whole blood model was found. Age was a significant co-factor on the 

parameters: clearance (CL), absorption (Ka) and compartmental volumes (V1), while 

cytochrom P450 3A5 (CYP3A5) genotype had a significant impact on clearance. The 
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steroid dose and weight influenced the inter-compartmental clearance (Q), while BMI 

had an effect on volume (V1) and absorption (Ka). Interoccasional variability was 

found significant on the parameter V2, and included in the final model. 

An intracellular population pharmacokinetic kinetic (PPK) model was developed for 

CsA. The concentrations were homogenized to the same unit (ng/ml), by estimating 

the T-lymphocyte volume, and LN-transformed because of the large concentration 

range difference. The developed model predicts whole blood and intracellular 

concentrations, but does not predict accurately or stable enough in its current state. 

Conclusion: Two models were developed, one for whole blood concentrations and 

one extended model also including intracellular concentrations of CsA. There is no 

unambiguous answer if the whole blood model gave a significant improvement on the 

already existing model, but the model showed somewhat improvement in the visual 

plots and also included prednisolone and CYP3A5 as a covariate. Interoccasional 

variability was found significant and further included for the whole blood model. The 

whole blood and intracellular model is still in an early stage and needs to be further 

developed, tested for covariates and interoccasional variability, and finally validated.
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1. INTRODUCTION 

1.1 Pharmacokinetics 

1.1.1 Introduction 

Pharmacokinetics (PK) describes the relationship between drug concentrations 

attained in different body compartments with time, during and after drug input. The 

drug level-time relationship is related to adjustable elements such as route of 

administration, dose, dosage form, frequency etc. Pharmacokinetics is simply put 

how the body affects the drug. It differs from pharmacodynamic (PD) which says 

something about the relationship between the drug concentrations effect on the body 

with time. Simply put, PD is how the drug affects the body. [1] 

In order to develop a PK/PD evaluation it would be ideally to take samples from the 

site of action, but because of practical difficulties samples are normally acquired from 

more accessible sites like blood and urine who are two of the most commonly 

sampled fluids.  [1] 

All drugs have a therapeutic window where the drug has optimal effect and 

acceptable side effects. (Figure 1) Below this range the drug exposure is too low to 

give the desired effect, and above the concentration range the drug will result in 

undesired adverse effects. This therapeutic window differs from drug to drug and is 

individual from patient to patient. For drugs with a large therapeutic window it is 

easy to stay in this window, but for drugs with a narrow therapeutic window it can be 

difficult to obtain the ideal concentration where the wanted effect is achieved. [1] 
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Figure 1. A representation of an optimal dose input so that steady state lies between the minimum 

and maximum levels of the therapeutic window 

1.1.2 Variability 

It is often seen a difference between the expected outcome and true values in PK/PD 

evaluations. This can be attributed to inter-individual variability and residual 

variability. [1] 

Inter-individual variability is the true biological variability that exists between 

subjects. When calculating parameter values based on past experience and research, 

the parameter value for a specific individual will differ from the expected value 

because of true biological differences between individuals. Covariates can account 

for some of this variability, and searching for these factors is an important feature of 

population pharmacokinetics.   

Residual variability is a common name for several variations including intra-

individual variability (variability in between the same patient), interoccasion 
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variability (IOV) (day-to-day or week-to-week) and errors in measurement, dosage 

and modeling. Because the mathematical calculations made are an oversimplification 

of the reality, residual variability can arise. An increase of unexplained random 

variability can cause insecurity when predicting and controlling the drug 

concentrations and this can further lead to a decrease of drug safety and efficacy. It is 

however important to remember that the drug response variability also applies to side 

effects. [2-6] 

Other variabilities in pharmacokinetics that may influence the dose concentration 

relationship are: 

 environmental factors: smoking, diet, exposure to pollutants etc. 

 interactions with other drugs, co-medication 

 physiological factors: pregnancy 

 demographics: gender, age, weight etc. 

 genetic phenotype of polymorphism in cytochrom P450 isoforms that can 

effect both metabolism and clearance of drugs 

 pathophysiological factors: renal- and hepatic impairment, CHD 

 other factors: circadian rhytm, adherence, food effect, timing of meals, 

physical activity, posture and stress 

 

We differ between two different variabilities, fixed- and random effects. Fixed effects 

are properties of each individual that causes them to be different from the average, 

while random effects can not be predicted. Random effect consists of inter-

individuality and residual variability. [3, 7] 

It is well known that individual pharmacokinetic may vary over time. Some of the 

variations can be attributed to physiological processes by means of surrogate 

variables, e.g. serum creatinine, co-medications with known enzyme inhibitors etc. 

Most variability in pharmacokinetic parameters within individuals are however not 

predictable. It could be that the governing processes are not understood or appropriate 

surrogate variables are lacking. Such apparently random intra-individual variability 
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can be arbitrary, but practically, divided into variations interoccasion variability 

(IOV) or sometimes called between-occasions variability (BOV). [8] 

Neglecting IOV may result in a high incidence of statistically significant spurious 

period effects and most importantly, ignoring IOV can lead to a falsely optimistic 

impression of the potential value of therapeutic drug monitoring. [8] 

1.1.3 Compartmental theory 

Human anatomy and physiology is very complex, making it very challenging to 

model how the body uses the drug. It is however possible to simplify the body into 

few compartments in regards of PK modeling. [1] 

A compartment is not a real physiologic or anatomic region. It represents unspecific 

tissue or group of tissues that have similar blood flow and drug affinity. Within each 

compartment the drug is presumed to be uniformly distributed and to reach 

distribution equilibrium simultaneously. [1] 

The simplest model consist of one compartment, which assumes that changes in 

plasma levels of a drug reflect proportional fast changes in tissue drug level. In more 

advanced multi compartment models the drug distributes into the central 

compartment and one or several more tissue/peripheral compartments. The central 

compartment often represents the blood, extracellular fluid and highly perfused 

tissues that rapidly equilibrate with the drug. The tissue/peripheral compartment 

represents tissues where the drug equilibrates to. [1] 

1.1.4 Population pharmacokinetics 

The main goals of population pharmacokinetic (PPK) are to quantitatively assess the 

pharmacokinetic parameters, the inter-individual- and residual variability in drug 

absorption, distribution, metabolism and elimination (ADME). It can be defined as 

the study of variability in plasma drug concentrations between individual 

representatives for the target population group receiving the drug. PPK highly 

contrasts with traditional pharmacokinetics. With PPK the goal is not to homogenize 
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and standardize the patients, whom the data was gathered from, but rather to seek as 

much relevant information as possible and tailor individual dosages based on this.  [3-

5] 

While traditional pharmacokinetic studies rarely account for the random effects, but 

rather PK-averages, population pharmacokinetics has that important feature of 

quantitatively estimating the residual variability in the patient population. This may 

give important information regarding drug efficacy and safety. PPK is therefore often 

used in both drug development and individual dosing regimens. In drug development, 

population pharmacokinetics can help designing dose guidelines. The approach is 

recommended in the US Food and Drug Administration (FDA) guidance for Industry 

as part of the development process. [3, 4, 9] 

PPK makes it possible to collect integrated information on relatively sparse data, 

dense data or from a combination of both. Data can be divided into two groups:  

- Experimental data: Data collected from traditional studies, with a controlled 

design and blood samples i.e. dens data. 

- Observational data: Data gathered through routine clinical care or as a 

supplement for traditional studies. These data are often limited, collected at 

various times and unbalanced. 

 

PPK is most valuable in situations where the drugs have a narrow therapeutic window 

and shows a complex pharmacokinetic relationship. [4, 5]
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2. PHARMACOKINETIC POPULATION MODELING 

2.1 Introduction 

The requirement for population modeling has roots in the need for a system to predict 

pharmacokinetic and/or pharmacodynamic parameters in new patients based on 

patient-characteristics and often limited sampling. Individual predictions of drug 

exposure will increase the chances of successful therapy and reduce the chances for 

dose dependent side effects. [2, 10-12] 

In PPK there are several parametric and nonparametric methods for estimating the 

different parameters. Parametric models have a continuous parameter distribution, 

and the distribution is assumed to be either normal or lognormal. It obtains means and 

standard deviations (SD) of the parameters, and correlations between them. 

Parametric models are able to distinguish inter- and intra-individual and assay error. 

One weakness of this method is that it lacks mathematical consistency, and it makes 

assumptions about the shape of the parameter distribution. [11] 

Nonparametric methods makes no assumptions about the shape of the parameter 

distribution, meaning that no specific parameters such as means and standard 

deviations are used to describe the distribution of the parameters within a population 

a priori. The shape of the distribution is instead exclusively determined from the 

population raw data and can therefore detect any possible subpopulation with other 

distributions. It is mathematical consistent, but it lacks a feature to distinguish the 

various sources of variability. [11] 

Of the most common methods for doing population pharmacokinetic analyses are the 

standard 2-stage (STS) method and the nonlinear mixed-effect model approach, 

which both are parametric, and the naïve pool data approach. [11, 13] 
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2.1.1 Standard 2-stage approach  

The standard 2-stage approach is traditionally used in data rich situations. It consists 

of two stages where the first phase is to estimate each individual’s PK and/or PD 

parameters from that individual’s dense concentration time data, using a method of 

weighted nonlinear least squares. 

During the second stage the populations mean and variance are derived from 

individual measurements and the relationship between covariates, and the parameters 

explored. 

STS is easy to implement and quick to run, but gives poor prediction of parameters in 

data poor situations. [4, 5, 10, 11, 14] 

2.1.2 Naïve pooled data approach 

In the naïve pooled data (NPD) approach, all data gathered from every individual are 

considered coming from one unique individual. NPD is a general approach and can 

easily deal with experimental data, non-standard data and routine pharmacokinetic 

data. Parameter estimates are obtainable after a unique fitting of all data at 

concurrently. [4, 10] 

NPD may be a good method when inter-individual variability is small. However, 

since the data is recognized as coming from one individual, imbalance and 

confounding correlations may occur. Only mean parameters are given in this 

approach so the inter-individual variability is lost and an imbalance in data per 

individual could lead to biased estimates. [4, 10] 

2.1.3 Nonlinear mixed-effect model approach 

The nonlinear mixed-effect modeling considers the population sample instead of the 

individual. They make foundation to estimate the distribution of parameters, the 

covariates and correlation between them. Similar to the NPD approach, nonlinear 

mixed-effect modeling analyzes data from all individuals simultaneously. The 
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difference is that the variability within and between patients is kept. An advantage 

compared to STS is that the nonlinear mixed-effect modeling finds the best set of 

parameters and one can perform formal testing of covariates. However, the method is 

slower to run and more advanced to implement compared to STS. [2, 4, 10, 11, 15, 

16] 

NOMEM was the first true nonlinear mixed-effect modeling program and is currently 

the most used program in the pharmaceutical industry for this purpose. 

2.2 NONMEM 

2.2.1 Background 

Shreiner et al. suggested as early as the 1970’s to use nonlinear mixed-effect 

regression models to quantify inter- and intra-individual variability. The concept 

further developed into a computer program, NONMEM, which was released in the 

early 1980’s by Lewis Shreiner and Stuart Beal. [2] 

NONMEM is a computer program written in FORTRAN77, used together with two 

programs, PRED for population pharmacokinetics (PREDPP) and NONMEM 

translator (NM-TRAN). Besides being the oldest, NONMEM is probably the most 

widely used population analyze program today. NONMEM is validated and a well 

accepted program for PK/PD analysis and allows large flexibility in the building of 

models as well as in the data input.  

NONMEM was the first modeling program designed to analyze large amounts of PK 

data using nonlinear mixed-effect modeling.  

In the NONMEM program, linearization of the model in the random effects is 

effected by using the first-order (FO) Taylor series expansion with respect to the 

random effect variables ηi and εij. NONMEM implements two alternative estimation 

methods; the Laplacian method which uses second-order expansions about 

conditional estimates of random effects, and the first-order conditional estimation 
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(FOCE) which uses Taylor series expansion method. FOCE uses an expansion about 

conditional estimates (empirical Bayesian estimates) of the inter-individual random 

effects rather than about zero. [17, 18]  

FOCE is the most widely used approach in PPK, and is also applied in this thesis.  

2.2.2 Modelling population PK using NONMEM 

NONMEM requires two specific files for modelling. Both are created by the user and 

they are called the input- and control file. The input file is where the data are stored. 

They are often arranged as follows: the first column is the patient ID e.g. 1, 2, 3 etc, 

and in the next correlating columns are other PK data such as when the drug was 

delivered (time), drug amount given, concentrations measured etc. This is also where 

information about other variables (covariates) that might be relevant are included, for 

example creatinine clearance, weight, height, sex etc. [7] 

The other file used by NONMEM is the control file. This file describes the structural 

model and states what NONMEM shall do with the input data. If it is to believe that 

the model has one or several compartments, zero, first or multiple order absorption or 

elimination etc. It contains the model and parameter specifications. [7] 

Population modeling with NONMEM means that besides describing the PK 

parameters for the population, inter-individual and residual variability also needs to 

be described. The inter-individual variability () in the PK-parameters i is described 

exponentially shown in equation 1 where  is the individual j pharmacokinetic 

parameter. 

Equation 1:  Pij = j * exp(ij) 

Residual variability can be described by a number of different models: additive 

models, proportional (CCV; Constant Coefficient of Variation) models, exponential 

models, power function model, and combined additive and proportional model 

(slope-intercept model).  

The additive error model is described with the following equation: 
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Equation 2: 1ˆ YY  

The proportional error model is described with the following equation: 

Equation 3:  11ˆ YY  

The combined model describes the residual variability with the following equation: 

Equation 4:   211ˆ  YY  

Where Ŷ  is the predicted concentration, and the randomly distributed terms 1  and 

2  have zero mean and variances 1  and 2 . 

Testing for covariates can be carried out using several methods. [7] Covariates are 

often divided into two groups; continuous- (weight, creatinine clearance, height, age 

etc.) and categorical variables (gender, diabetes, CYP-genotype etc.). 

In this thesis the following methods were used: proportional, linear, power function, 

mean-centered model and if/else model: 

Equation 5: Linear model: valueariatevcoTV ppop  1  

Equation 6: Proportional model: valueariatevcoTV ppop  /  

Equation 7: Power function: valueariatevcoTV ppop  /2

1  

Equation 8: Mean centered model: 

 valueariatevcomeanvalueariatevcoTV ppop  1  
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Equation 9: IF/ELSE model: 

 IF (OBSERVATION.EQ.X) THEN 

TVpop = p + 1 

ELSE 

TVpop = p + 2 

ENDIF 

2.2.3 How to find the best model using maximum likelihood 

approach 

Parameter estimation in a model is often done with the maximum likelihood approach 

by minimizing the -2log likelihood (-2LL)-function:  

Equation 10:    















 


n

i i

ii

i

YY
nL

1
2

2

2
ˆ

log)2log()log(2


  

Where Y is the measured observation, Ŷ  is the prediction of that observation by the 

model, and 2  is the variance of the model. The second part of the equation: 

   















 


n

i i

ii

i

YY

1
2

2

2
ˆ

log


  is sometimes called the “extended least squares” objective 

function, and from this equation the objective function value (OFV) can be obtained. 

To maximize the likelihood -2LL has to be minimized. Since the first part nlog(2π) is 

a constant focus has to be set on the last part of the equation.  

The likelihood ratio test is a common test for statistical significance. It allows a 

possibility to compare two models that are nested with each other and one can test the 

significance of the parameter which differs between the two models. The difference 

between -2LL values follows a chi-square distribution, with the degrees of freedom 

being the difference in the number of parameters. With a probability of 0.05 and 1 
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degree of freedom the value of the chi-distribution is 3.84. Accordingly, if the 

difference in -2LL values (OFV) for two models that differ with 1 parameter exceeds 

3.84, then the parameter is significant at p<0.05. [7] 

It is important to remember that the model with the lowest OFV is not necessarily the 

best model. OFV differs from model to model and a comparison can not be justified 

when more than one/two parameters are changed at a time. Depending on the purpose 

of the model, several factors should be involved in deciding which model is better; 

run-time vs. visual plots vs. OFV etc.
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3. CYCLOSPORIN A 

3.1 History 

Cyclosporin A is a small hydrophobic cyclic polypeptide of 11 amino acids, among 

them a characteristic unsaturated C-9 amino acid, with a molecular weight of 1202.6 

dalton. CsA was first discovered through screening of lower fungus extracts. Active 

metabolites from the fungus Cylindrocarpon lucidum showed both mild antifungal 

activity and antibody depression in mice. [19, 20] 

Oral administration in mice and rats showed a strong depression of the appearance of 

both direct and indirect plaque-forming cells and produced an obvious dose-

dependent, yet reversible inhibition of haemagglutinin. Skin graft rejection in mice 

and graf-versus-host disease in mice and rats was considerably delayed by CsA. Soil 

samples collected in Norway in March of 1970 showed that the fungus 

Tolypocladium inflatum also contained CsA. This fungus was originally classified as 

Trichoderma polysporurn. In 1972 CsA proved to have powerful immunosuppressive 

properties. Since then much research has been performed on this drug. [19, 21]  

3.2 Application and mechanism of action 

Cyclosporin A was introduced to the market in the early 1980’s and has since then 

been a cornerstone of solid organ transplant procedures. CsA led to for example an 

improvement in transplant kidney graft outcome, and made it possible to transplant 

hearts. [22-24] It has played a major part in the success of immunosuppression in the 

clinical setting since its introduction. [24] 

CsA acts by forming a complex with the intracellular protein cyclophilin A, a protein 

localized in the cytoplasm of lymphocytes. This complex binds to and inhibits 

calcineurin that will ultimately lead to interference with activation of T-cells and 

production of interleukin-2. [20, 25-28] 
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CsA gives a better response to infection compared to other immunosuppressive 

agents because it suppresses T-cells partially, while it to some extent spares B-

lymphocyte activity. [25, 26, 28] 

3.3 Known problems with Cyclosporin A 

When administrating immunosuppressive agents to patients it is important to obtain 

an optimal exposure of the drug.  The most important reason for this is to prevent 

acute rejection, which secondarily will prolong the survival of the grafts and 

ultimately, the patients. Since CsA has a narrow therapeutic window it is challenging 

to keep the concentration levels within the therapeutic window. 

Besides having a narrow therapeutic window CsA has a large inter-individual 

variability. This is especially visible after oral administration where observations 

show great variability. Below the therapeutic window there is a high risk of acute 

rejection, while concentrations above the therapeutic window are associated with 

minor and severe side effects such as anorexia, gastrointestinal disturbances, 

nephrotoxicity, infection, hepatotoxicity, dyslipidemia, hypertension and 

development of diabetes and cancer. [29-31] 

There are also a wide range of drugs and other agents that interact with CsA 

pharmacokinetic which can cause a decrease or increase in concentration levels. All 

of these factors make it important to make a representative PPK-model to obtain an 

optimal treatment. [25, 26] 

3.4 ADME OF CsA 

3.4.1 Administration 

CsA exists in two administration forms, infusion or orally. Oral administration can 

further be divided into capsules and mixture. [32] 
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The plasma peak concentration is obtained after 1-2 hours. The absorption profile is 

often characterized by a lag phase followed by rapid absorption. The site of 

absorption is predominately in the small intestine and due to its lipophility the 

absorption is dependent of bile flow, gut motility, food and time after transplantation. 

[33, 34] 

Bioavailability of CsA normally ranges from 30-60 %. [32] 

3.4.2 Distribution 

Because CsA is highly lipophilic the distribution will to a large degree bind outside 

the blood circulation. Within whole blood CsA will distribute highly to erythrocytes 

41-58%, plasma proteins 33-47%, granulocytes 5-12% lymphocytes 4-9%. In plasma 

approximately 90% is bound to plasma proteins, mainly lipo proteins. [32] 

3.4.3 Metabolism 

CsA has an extensive metabolism. It is metabolized in liver, small intestine and 

kidney to approximately 30 metabolites. The reactions involved in phase 1 

metabolism are oxidation, hydroxylation and demethylation. [35, 36] 

Cytochrome P450 system, in particular CYP3A4 and CYP3A5 are responsible for the 

Phase 1 biotransformation. CsA is also a substrate and inhibitor for the ATP-binding 

cassette transporter protein, P-glycoprotein (P-gp, mdr-1/ABCB1). [37, 38] CYP-

enzymes and P-gp work together in hindering CsA to access the systemic blood 

circulation. Since both systems are present in a large degree in both intestines and 

liver CsA is subject to a large first pass metabolism and accordingly shows a low oral 

bioavailability. 

Patients with geno typical differences in CYP3A protein expression will therefore 

have large variations in CsA PK. [35, 38-40] 
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3.4.4 Elimination 

CsA is mainly eliminated through the biliary system. 6% of the oral dose is 

eliminated renally while less than 1% excretes unchanged through the urine. [32] 

Depending on the population and method used, half life varies to a great extent. Half 

life varies from 6 hours for healthy volunteers to 20 hours for patients with severe 

liver complications. [32] 

3.5 Therapeutic drug monitoring 

Due to the complex reasons for variability of CsA it is subject for therapeutic drug 

monitoring (TDM) to maximize the effect of the immunosuppressive therapy.  

The parameter most closely linked to the therapeutic effect and the toxic effect is 

thought to be the area under the whole blood versus time curve from 0 to 12 hours 

(AUC0-12). This way of measuring drug exposure is both time consuming and 

expensive and is rarely done. An often used method is measuring concentrations at 

trough level (C0), and/or 2 hours after dosing (C2) which is considered a better marker 

for toxic effects. [41, 42] 

Studies have shown that there are valid arguments for monitoring intra-lymphocytic 

CsA trough levels (C0-intracellular). Since CsA’s effect is initiated by its binding to its 

lymphocyte receptor, a measurement here would be “at the site of action” and a more 

advantageous way to monitor. [29, 30, 43, 44] 

The super CsA-study showed that by measuring the intracellular concentration, one 

may potential to detect acute rejection several days earlier than possible with 

traditional methods, [45] making it an attractive option to monitor CsA-

concentrations inside the T-lymphocytes as well as in whole blood concentrations. 

The intracellular concentration appears to provide information about processes 

important to rejection which whole blood concentrations do not provide. CsA whole 

blood concentrations actually tend to be slightly higher for the rejection patients 



CYCLOSPORIN A 

 26 

during that study and did not correlate with the intracellular concentrations that were 

declining days before rejection. [45] 

Developing a successful PPK-model for CsA can prove useful. General dosing 

regiments today is based on the physicians experience and knowledge. With a PPK-

model it will hopefully be possible to give more correct doses to each individual at an 

earlier time. 

3.6 Population kinetic models of CsA in literature 

Through the history there have been many attempts to model the PK of CsA. 

Different attempts have resulted in different conclusions. Both 1- and 2- and 3-

compartments have been used and different Erlang distribution and absorption lag-

time have given a good fit. This also applies to covariates where a wide range has 

been found significant. [38, 46-51] 

3.7 Goals of the thesis 

The objective of this thesis is to include a T-lymphocyte compartment to the whole 

blood model and continue develop the previous CsA model made by Truc van Le 

[48] and Live Storhagen [49] by including 20 more patients, followed for at least 8 

weeks, re-evaluate for covariates and test the model for interoccasional variation 

which has not yet been tested. 
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4. METHODS AND MATERIALS 

4.1 Materials for the whole blood model 

The whole blood model consists of totally 70 patients from 4 different studies. [45, 

52-54] 

There are differences in the amount of information gathered from each study. The 

medical records included information about date, time, CsA dosage, CsA 

concentration, gender, weight, serum creatinine, urea, current co-medication and 

transplantation date. A full PK population design was used to allow blood samples to 

be drawn at different times. [5] A total number of 1276 measured drug concentrations 

were used in the model development. 

All patients received renal transplantation at Rikshospitalet University hospital HF, 

Oslo, Norway. CsA (Sandimmun Neoral®, Novartis Pharmaceuticals Corporation, 

Switzerland) was administered orally twice daily in soft gelatin capsule formulation, 

along side other routine protocol medication. 

Patients 1-5, 8-11, 16-18, 20-22, 24-25, 31, 34 and 38 were from the POPDOC study. 

[54] 

Patient 101-120 were from the super-CsA study. [45] This was a single prospective 

pilot study following patients from 0-17 weeks after transplantation, with 

measurements made sporadically at trough level C0 and C2 (2 hours after CsA 

administration). Nine of these 20 patients had a 12-hours pharmacokinetic profile 

done once in this period. [45] 

Patient 130-137 originated from the MIMPARA-study [53] which was an interaction 

study between Cinacalcet and immunosuppressive drugs. Only CsA data from before 

Cinacalcet was administrated was used in this model. [53] 
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The remaining 21 patients (151-165, 167-172) were from a CsA study performed to 

screen for possible age effect on PK of CsA. [52] 

Whole blood samples drawn specifically for the clinical trials were analyzed for CsA 

concentrations using a validated LC-MS/MS method [55], while routine clinical 

follow up samples were analyzed using Cedia Cyclosporine PLUS Assay (CEDIA+) 

(Cloned Enzyme Donor ImmunoAssay; Microgenetic Corporation, Fremont, CA) 

method at the clinical chemistry department at Rikshospitalet. All blood 

concentrations used in the development of the model were transformed to CEDIA+ 

equivalent concentrations. [55] 

Whole blood samples for the 12-hours PK-profiling were analyzed at both the study 

center, Rikshospitalet University Hospital HF and by the Department of 

Pharmaceutical Biosciences, University in Oslo, while whole blood samples taken 

sporadically were analyzed by Rikshospitalet University Hospital HF. Analysis 

results showed that there was significant inter-laboratory variability. This may be the 

result of the different analysis methods. All CsA concentrations analyzed by the 

Department of Pharmaceutical Biosciences were therefore adjusted to the correct 

concentration, as defined by Rikshospitalet University Hospital HF, with the 

following equation: 

Equation 11: RH=DPB × 0.88 

Where RH is the adjusted concentration according to Rikshospitalet University 

Hospital HF, and DPB is the concentration obtained from analysis performed by the 

Department of Pharmaceutical Biosciences. This equation was obtained from 

correlation of concentrations measured at both laboratories in the three studies. [48] 

As data was gathered at various times, it was no missing data points so to speak. In 

the NONMEM input file C0 levels was computed for morning doses at 06.00 hours 

and at 20.00 hours for evening doses while C2 levels was coded at 08.00 hours and at 

22.00 hours for evening doses. 
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Table 1. Patient demographics whole blood 

    Range 

Number of patients 70   

Number of male/female patients 47/23     

Age (years) 56.4 21-78.6 

Weight (kg) 79.7 49-124 

Height (m) 1.77 1.53-1.92 

Body mass index (kg/m
2
) *

1
 25.3 16.7-34.3 

Lean body mass (kg) **
2
 53.8 75.6 

Gender male 47   

Gender female 23   

CYP 3A5 genotype;     

*1/*3 9   

*3/*3 61   

Time after transplantation (weeks) 5.6 1.0-17.0 

Estimated creatinine clearance (ml/min) ***
3
 70.8 18.3-162.5 

Cyclosporine A     

Observed whole blood concentrations (ng/mL) 937.1 30-3240 

Total number of samples 1276   

Average number of samples per patients 18   
*1

 Estimated using BMI-formula, **
2 
estimated using LBM-formula, ***

3
estimated using Cockgroft-

Gault equation (Formulas found in Appendix 9.1) 

4.2 Materials for the whole blood model and intracellular 

concentrations 

Data for the combined whole blood and intracellular concentration was based on the 

patients from the super-CsA study. [45] From the same patients 20 patients there was 

also obtained intracellular concentrations. From these 20 patients, nine patients had a 

12-hour PK-profile done once in the study period. 

The intracellular samples were measured in T-lymphocytes. T-lymphocytes were 

isolated from 7 ml whole blood using Prepacyte (BioE, St. Paul, MN). CsA 

concentrations were measured in freshly isolated T-lymphocytes using a validated 

liquid chromatography (LC) double mass spectrometry (MS/MS) method. The 

intracellular levels of CsA were then related to the number of T-lymphocytes (ng/10
6
 

cells). [45] 
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The data was computed similar to the whole blood model where C0-levels was coded 

at 06.00 hours for morning doses, and at 20.00 hours for evening doses, while C2-

doses was coded at 08.00 hours for morning doses and at 22.00 hours for evening 

doses. 

Table 2. Patient demographics whole blood and intracellular model 

    Range 

Number of patients 20   

Number of male/female patients 13/7     

Age (years) 53.6 21-74 

Weight (kg) 77.9 58.5-100.5 

Height (m) 1.78 1.65-1.88 

Body mass index (kg/m
2
) *

1
 24.7 19.3-32.9 

Lean body mass (kg) **
2
 55.5 46.3-66.6 

Gender male 13   

Gender female 7   

CYP 3A5 genotype;     

*1/*3 2   

*3/*3 18   

Time after transplantation (weeks) 6 1.0-17.0 

Estimated creatinine clearance (ml/min) ***
3
 76 18.3-162.5 

Cyclosporine A     

Observed whole blood concentrations LN (ng/mL) 6.76 3.4-8.1 

Observed intracellular concentrations LN (ng/mL) 10 6.5-13.6 

Total number of whole blood samples 510   

Total number of intracellular samples 420   

Average number of samples per patients 52   
*1

 Estimated using BMI-formula, **
2
estimated using LBM-formula, ***

3
estimated using Cockgroft-

Gault equation. (Formulas found in Appendix 9.1) 

4.3 Developing and building the models 

All computations were done using NONMEM (version VI; GloboMax LLC, 

Hanover, MD, USA). Graphical diagnostics plots were obtained from the program R 

(http://www.r-project.org) and in some situations drawn using Microsoft® Office 

Excel 2003 (USA) and Minitab® Statistical Software version 15.1.20.0 (State 

College, Pennsylvania, USA). 

http://www.r-project.org/
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4.3.1 The whole blood model 

For the whole blood model, there was no model development process. The model had 

already been developed and undergoing clinical testing in the POPDOC-study when 

this thesis was begun. The model was tested and validated to being a 2-compartment 

model with lagtime. Significant covariates had already been identified, but these were 

now re-validated with more patients using forward inclusion and backwards deletion 

process. 

Testing for interoccasional variability required a new column to be added to the data 

set. This column identifies the different visits each patient had when samples were 

taken. IOV was later coded in the control file by using the separate visits to equal 

different etas. The BLOCK(1) option was also included. (Appendix 9.3) 

It was made several attempts of modeling IOV into the model. The first attempt was 

made by marking each date with a measured sample as different visits and tested on 

one parameter at the time. The number of visits ranged from 22-46 for the different 

patients.  

NONMEM had problems with too many etas and NM-TRAN gave an error statement 

when too many visits were tried estimated, accordingly it was only possible to code 

the first 11 visits. 

To avoid this problem every second dates (with measurements) was marked as a 

different visit. For example, the first two dates with samples were marked “visit 1” 

and the third and fourth samples marked “visit 2” and so on. This was done to keep 

the time perspective of the samples. IOV was then tested at one parameter at the time. 

4.3.2 The whole blood and intracellular model 

Developing a model with both whole blood and intracellular concentrations was a 

time consuming and demanding task. 
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The first process step was to include the intracellular concentrations to the data set 

including the whole blood. Then the different concentrations had to be separated 

using dependent variable identification (DVID). The data are divided by 

EVID/DVID, where DVID = 1 is whole blood concentrations, DVID = 2 is 

intracellular concentrations. EVID = 0 is no observation, EVID = 1 is whole blood 

observation and EVID = 2 is intracellular observations. Corresponding IPRED = 1 is 

whole blood individual prediction and IPRED = 2 is individual intracellular 

concentration predictions. 

Building on the previous model the idea was to add another compartment which was 

the intracellular compartment (Figure 2). Clearance (CL) and volume (V) was 

parameterized and inter-compartmental rate constants were estimated by CL and V. 

(Appendix 9.6) 

A $DES code was added to the control file to describe the absorption and elimination 

profiles for the different compartments. Previous studies on the same subjects 

indicated that the absorption process in the intracellular compartment was following a 

1.order reaction. 
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Figure 2: Compartment theory for the model including whole blood and intracellular concentrations. 

A 4-compartment model where the drug absorbs from the absorption compartment (1) into the central 

compartment (2) and from there, it is distributed into the peripheral compartment (4) and eliminated. 

The intracellular concentrations are represented in the intracellular compartment (3) where there is 

equilibrium with the central compartment (2). 

 

The whole blood concentrations were measured in ng/ml while the intracellular 

concentrations were measured in ng/10
6
 cells.  

In an attempt to convert the intracellular concentrations to the same unit, an estimate 

of a T-cell volume had to be made. The T-cell’s diameter was estimated to 8*10
-6

 m 

in diameter and the volume was estimated to have a spherical shape. 

Diameter: 8 μm 

Equation 11: Volume = (4/3) * π * r
3 
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Similar approaches were tested to the converted concentrations without significant 

luck. There were signs that NONMEM was able to predict that the observations was 

independent, but because of the very large concentration differences (intracellular ≈ 

80000ng/ml vs. whole blood ≈ 3000ng/ml) NONMEM was not capable of reaching 

concentrations that were high enough. 

As a result of this the data were LN-transformed and a necessary new residual error-

code was included in the model. It was checked against both only proportional error 

and additive error, and the combined proportional and additive error. 
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5. RESULTS 

5.1 Re-analyzing for covariates for the whole blood model 

The fixed effects parameters estimated for the final 2-compartment model were CL/F 

(Θ1), V1/F (Θ2), Q/F (Θ3), V2/F (Θ4), Ka (Θ5), and ALAG (Θ6).  

In the screening process all covariates (table 3) were tested individually on each 

parameter. All the positive covariates were then double checked for significance in 

the second screening (table 4). All the covariates found significant were further 

included in the model (table 4) before the backwards deletion process (table 5). 

Table 3. Covariates tested 

Lean body mass (LBM) CYP P450 3A5 (3A5) Steroid dose (STER) 

Body mass index (BMI) Height (HGT) Gender 

Post transplantation TXT) Age (AGE) Diabetes 

Creatinine Clearance (CRCL) Weight (WT)   

 

Table 4. Covariates found significant during forward inclusion for the whole blood 

model 

Parameter Covariate Model OFV ΔOFV P 

CL/F CRCL Θ1-Θ7*CRCL 14723.41 -10.7 >0.01 

  LBM Θ1-Θ7*(LBM-53.8) 14702.31 -31.8 >0.01 

  

C3A5 IF (C3A5.EQ.1) THEN Θ1*Θ7 

ELSE Θ1*Θ8 ENDIF 14722.24 -11.9 >0.01 

  BMI Θ1-Θ7*BMI 14724.21 -9.88 >0.01 

  AGE Θ1-Θ7*AGE/56 14722.79 -11.3 >0.01 

V1/F AGE Θ2/Θ7*AGE 14712.37 -21.7 >0.01 

  TXT Θ2*Θ7*(TXT/5) 14702.99 -31.1 >0.01 

  BMI Θ2*Θ7*BMI 14699.29 -34.8 >0.01 

Q AGE Θ3-Θ7*AGE 14721.85 -12.2 >0.01 

  WT Θ3*Θ7*WT 14710.95 -23.1 >0.01 

  CRCL Θ3+Θ7*CRCL 14709.53 -24.6 >0.01 

  STER Θ3-Θ7*(1+STER/100) 14718.7 -15.4 >0.01 

V2 AGE Θ4+Θ7*(AGE-56) 14719.72 -14.4 >0.01 

  CRCL Θ4-Θ7*CRCL 14721.24 -12.9 >0.01 

  LBM Θ4+Θ7*(LBM-53.8) 14723.34 -10.8 >0.01 

  STER Θ4-Θ7*(1+STER/100) 14729.07 -5.02 >0.01 
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Ka AGE Θ5-Θ7*AGE 14710.01 -24.1 >0.01 

  CRCL Θ5*Θ7*CRCL 14711.12 -23 >0.01 

  STER Θ5-Θ7*(1+STER/100) 14724.99 -9.1 >0.01 

  BMI Θ5-Θ7*BMI 14700.16 -33.9 >0.01 

  WT Θ5-Θ7*(WT-78.5) 14717.26 -16.8 >0.01 

  TXT Θ5*Θ7**TXT/5 14686.4 -42.8 >0.01 

ALAG AGE Θ6+Θ7*AGE 14719.06 -15 >0.01 

 

From the early screening process many of the same covariates were found as 

expected.  

When all covariates from the forward-inclusion were added the OFV was 14597.34. 

After the backwards deletion step, the following covariates were left in the model 

(table 5). 

Table 5. Covariates found significant after backwards deletion for whole blood model 

Parameter Covariate Model OFV ΔOFV P 

CL CRCL Θ1-Θ7*CRCL 14642.19 44.85 >0.01 

  

C3A5 IF (C3A5.EQ.1) THEN 

Θ1*Θ7 ELSE Θ1*Θ8 ENDIF 14852.22 254.88 >0.01 

  AGE Θ1-Θ7*AGE/56 14614.15 16.81 >0.01 

V1/F AGE Θ2/Θ7*AGE 14712.37 14.97 >0.01 

  BMI Θ2*Θ7*BMI NA NA NA 

Q WT Θ3*Θ7*WT 14710.95 18.24 >0.01 

  STER Θ3-Θ7*(1+STER/100) NA NA NA 

Ka TXT/5 Θ5*Θ7*TXT**5 14624.7 27.36 >0.01 

  BMI Θ5-Θ7*BMI NA NA NA 

  AGE Θ5+Θ7*AGE NA NA NA 

 

OFV in the start model was 14734.09 and dropped to 14597.34 when all the 

significant covariates were added. After the backwards deletion the final model had 

an OFV of 14643.28 which is a significant improvement. 

When comparing the final model to the first model several similarities of significant 

covariates were found. Both Truc’s model and the model used in the POPDOC-study 

found these covariates to be significant in their models. 
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5.2 Testing for interoccacional variability 

By looking at the data there is reason to suspect interoccasional variability (IOV). 

After the alteration of visits (every other visits where coded as different visits) there 

was a change in OFV for V2. 

Table 6. OFV change after inclusion of interoccacional variability 

on the different parameters 

  OFV ΔOFV 

CL 14696.27 52.99 

V1 14665.4 22.12 

Q 14687.8 44.52 

V2 14612.72 -30.56 

Ka 14723.22 79.94 

ALAG NA NA 

 

Inclusion of OFV on the parameter V2 gave a significant reduction of OFV. 

Remembering the OFV with covariates to be 14643.28, there was an OFV-change of 

30.56 which makes the model with IOV significant better than the model with 

covariates and the model without covariates. 
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5.3 Covariate analysis based on visual prediction 
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Figure 3. Scatterplot for whole blood model without covariates - IPRED versus Concentration 
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Figure 4. Scatterplot for whole blood model with significant covariates - IPRED versus 

Concentration 
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Figure 5. Scatterplot for whole blood model with significant covariates and interoccasional 

variability - IPRED versus Concentration 

The first three scatterplots (figure 3-5) show the development from the model without 

covariates to the inclusion of significant covariates and finally with significant 

covariates and interoccasional variability. There is a gradually improvement as seen 

earlier by the decrease of OFV. The increasing R
2
 together with the decrease of S 

show that there is a better fit and the regression line shows an improving description 

of the data. 
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Figure 6. Whole blood model with significant covariates and IOV. Scatterplot of Wres vs. time. 
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Figure 7. Whole blood model with significant covariates and IOV. Scatterplot of Wres vs. ID. 
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Figure 8. Whole blood model with covariates and IOV. Scatterplot Wres vs. ipred. 

Figure 6-8 shows the final model with significant covariates and IOV, WRES versus 

time, ID and population prediction (PRED). The weighted residuals (WRES) are 

evenly distributed with time and identification (ID). WRES versus population 

prediction (PRED) shows that the weighted residuals are tending towards the 

negative side for the large concentration predictions implying that there is a small 

over-prediction for the large concentrations. 
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Figure 9. Quality of fit plot, whole blood model with all significant covariates and IOV 

 

Figure 10. Goodness of fit, whole blood model with all covariates and IOV 

The remaining figures (9-10) are parts of the diagnostics plots drawn by R-script of 

the final model. The figures show that POSTHOC gives an overall good prediction 
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for the final model. It also shows that NONMEM has small problems fitting the 

concentrations on the highest and lowest end of the scale. Overall there is a good 

prediction with an even spread around the regression line. 

5.5 Comparing the old versus the new model 

Table 7. Comparison of significant covariates from old model versus new model 

Previous covariates* Current covariates 

Parameter Covariates Parameter Covariates 

CL Age CL Age 

    CRCL 

    Cyp3A5 

V1 
Age 

V1 
Age 

Weight BMI 

KA 

TXT 

KA 

TXT 

Age Age 

Weight BMI 

   Q Weight 

      Steroid dose 

*The last version of the model, the model used in the POPDOC-study. 

Comparing the new model with the old model shows several similarities. Both 

models are pretty accurate for the low to normal levels of CsA, but have some 

difficulties predicting concentrations on the higher level of the scale. The covariates 

found significant are majorly the same (table 7). Furthermore the scatter-plot of 

weighted residuals are evenly distributed which is acceptable. The new model has 

IOV included, which is expected, and this factor may be decisive of small, but 

significant improvement of the model.  
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5.6 The whole blood and intracellular concentrations 

5.6.1 Model building results 

The data were LN-transformed and the necessary new error code was included in the 

model. Using a proportional and an additive error code for the inter-individual 

variability gave the best fit and lowest OFV.  
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Figure 11. Patient 7, concentration vs. time. LNDV = 1 for whole blood concentrations, LNDV = 2 

for intracellular concentrations and the corresponding IPRED = 1 for individual whole blood 

predictions and IPRED = 2 for individual intracellular predictions. The y-scale (concentrations) is 

presented on LN-scale while the x-scale is time (h). The time units are not homogenous, but rather 

time measured when the different samples were taken. The graph is showing C0, C2 and 12-hours 

profile data. The marked area represents the 12-hour profiles and enlarged in the figure below is the 

12-hours profile for the same patient 
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Figure 12. Patient 7 – 12-hours PK-profile. For detailed description see Figure 11 
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Figure 13. Patient 10 – concentrations vs. time. For detailed description see Figure 11 
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Figure 14. Patient 10 – 12-hours PK profile. For detailed description see Figure 11 
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Figure 15. Patient 19 – concentrations vs. time. For detailed description see Figure 11. 
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Figure 16. Patient 19 – 12-hours PK profile. For detailed description see Figure 11. 

According to the graphical comparisons the whole blood and intracellular model is 

able to tell the difference between the different observations. It seems as if it predicts 

C2-levels better the trough concentrations. The model is to some degree able to 

predict the large fluctuations of the observed concentrations. (Figure 11, 13 and 15) 

The 12-hours profile is however rather inaccurate. (Figure 12, 14 and 16)  

The absorption phase is wrongly estimated both for the whole blood and the 

intracellular concentrations (Figure 12, 14, 16-19). The elimination phase is a little 

over-predicted for the whole blood concentrations, and it does not match the 

intracellular concentrations too well either. 
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Figure 17. Mean intracellular 12-hours profile, 12-hour profile for the mean observed and predicted 

intracellular concentrations shown on a normal-scale versus a normal time-scale (h). The SEM-

interval is represented at each measurement. 
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Figure 18. Mean whole blood concentrations 12-hours profile. 12-hour profile for the mean observed 

and predicted whole blood concentrations shown on a normal-scale versus a normal time-scale (h). 

The variations on the predicted concentrations are represented by the SEM-interval. 
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Figure 19. Mean whole blood concentrations 12-hours, DVID = 1 = Whole blood. 12-hour profile for 

the mean observed and predicted whole blood concentrations shown on a reduced normal-scale 

versus a normal time-scale (h). The variations on the observed concentrations are represented by the 

SEM-interval. 

Figure 17-19 are mean whole blood- and intracellular 12-hours PK profiles for the 9 

patients. The figures confirm the earlier findings that the absorption phase is wrongly 

estimated for both whole blood and intracellular measurements. The absorption phase 

for whole blood predictions is too fast with a lower Tmax and a very increased Cmax, 

but the elimination phase for the predicted is in the same ballpark-area as the 

observed. For the intracellular 12-hours PK the absorption phase is very similar for 

both the predicted and observed concentrations, with the predicted Cmax a little lower 

than the observed and the Tmax a little earlier. The elimination phase is unfortunately 

not similar for the predicted and observed concentrations.  

The standard error of the mean (SEM) is represented as the interval for both the 

observed (SEM = 3448.31) and the predicted concentrations (SEM = 2543.99) for 

intracellular concentrations (figure 17). Regarding the whole blood measurements 

SEMpredicted is very large (SEM = 11749.34) because of Cmax. Therefore SEM for 

predicted whole blood concentrations are presented in figure 18 with a full Y-scale, 
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while SEM for the observed concentrations (SEM = 132.14) are presented in figure 

19 with a reduced Y-scale. 
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Figure 20. Scatterplot of LNDV vs. IPRED. DVID = 1 is whole blood predictions, DVID = 2 is 

intracellular predictions. 
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Figure 21. Scatterplot of WRES vs. time. DVID = 1 is whole blood predictions, DVID = 2 is 

intracellular predictions. 
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Figure 22. Scatterplot of WRES vs. ID. DVID = 1 is whole blood predictions, DVID = 2 is 

intracellular predictions. 

 

The scatterplot of LNDV versus IPRED (Figure 20) shows that the predictions are 

still rather inaccurate. Figure 21 shows that the weighted residuals are stable over a 

period of time, but the scatterplot of WRES versus ID (figure 22) shows for all 

patients that the weighted residuals are negative for whole blood concentrations 

which give an indication that the predictions are over-predicted.
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6. DISCUSSIONS 

6.1 Re-analyzing for covariates for CsA 

plasmaconcentrations 

As expected there were many covariates influencing different PK-parameters. During 

forward inclusion several covariates showed statistical significant, but most proved 

not to be significant after the backwards deletion process.  

During backwards deletion (table 5) the model would not run without some 

covariates. Due to the recommendation that only one or two parameters should be 

changed in order to compare with the previous OFV, those covariates were kept and 

marked “not applicable” (NA).  [7] 

Storehagen [49] and Le [48] used some of the same data for their thesis and it was 

expected to find similar significant covariates. The covariate screening for their 

theses included: age (years), gender (FLAG = 1 male, FLAG 2 = female), diabetes 

(FLAG = 1 diabetic, FLAG 2 = non-diabetic), weight (kilos), height (centimeters), 

post-transplantation (weeks), steroid dose at the pharmacokinetic day (mg), CYP3A5-

enzyme genotype (*1/x vs. *3/*3) and estimated creatinine clearance (ml/min). 

The surgery performed in renal transplantation patients will most likely affect the 

intestinal motility and hence absorption and bioavailability of CsA in the early post-

transplant phase. Therefore the post-transplantation time will presumably influence 

the absorption constant Ka which also is found. 

Patients gain up to 10% more bodyweight after transplantation and it is not surprising 

that parameters like weight, lean-body-mass and body-mass-index can influence PK-

parameters like Ka, Q and distribution volume. After transplantation, patients are less 

catabolic and they are able to eat more which might increase the body-fat. This is 

supported by the findings of weight and weight-related (BMI) covariates influence on 

Ka, Q and distribution volume. 
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Storehagen [49], Le [48], Falck [56] and Wu [57] have shown earlier that age has a 

significant covariate for CL/F. With increasing age pharmacological changes such as 

loss of liver-mass and the blood flow to liver is reduced, which influences the 

metabolism and clearance of CsA. Physiological changes can also explain the 

significance of age on parameters like volume and absorption. These factors 

strengthen the findings in this thesis that age has a real effect on CL, V1 and Ka. 

Cyclosporin A is metabolized by the cytochrom P450-system as mentioned earlier. 

CYP 3A5 genotypes will most likely affect the clearance of CsA. In earlier studies 

Storehagen [49] did not test this covariate because of various reasons, Le found this 

covariate to be significant in a later study, but it was not included in the final model 

because of clinical relevance.[48] It is therefore no surprise that this was shown to be 

a significant covariate on clearance in this present version of the model.  

Diabetes was tested and found non-significant in this thesis. It has been shown in 

literature that diabetes may affect the absorption rate of CsA. [58] One reason why it 

was not found significant in the present model may be due to the lack of detailed 

description of diabetes in patients. It was only marked as FLAG = 1 diabetes and 

FLAG = 2 non-diabetes. Some patients had diabetes before undergoing 

transplantation and some patients developed diabetes after transplantation thus a more 

detailed coding could have given a different result. This should be tested in the future 

development of the model. 

The covariates found to be statistical significant were mostly the same as previously 

discovered by Storehagen, Le and Falck (table 7). This further supports the theory 

that those covariates are statistical significant for this drug and drug model. 

Overall the OFV decreased significantly during the development of the model, which 

gives a strong indication that the inclusion of covariates improves the model. 

However, the graphs showing concentration vs. individual predictions do not give an 

unambiguous answer. There might be a slightly better population prediction with the 

inclusion of covariates but this is very difficult to see from the figures. There are 

minor signs indicating that the model with covariates has less spread and that the 
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divergence starts a little later. A more secure way of determining this is by looking at 

the decrease of OFV. Along with the R
2
 value and S-value for the regression line for 

the observation versus predictions (Figure 3-4) shows that there is an improvement of 

the model. 

6.2 Testing for interoccasional variability for the whole 

blood model 

Based on the results from the POPDOC-study there is reason to suspect significant 

inter-occasional variability. [54] Due to many visits per patients the chances 

increased to detect if there is something “unexplainable” that happens between 

different visits. There are patients that have a variation that cannot be explained with 

covariates and intra- and inter-individual variability. This gives a strong indication 

that there is something more that influences patients PK-parameters. 

NONMEM has a limit of etas before there is an error statement from FORTRAN. 

There are ways to avoid this problem, but it requires a degree of competence in 

NONMEM coding that is beyond the scope of this research group. Because of this 

limitation it was only possible to code 11 visits per patients which could be a reason 

why the visits were not shown more significant than when coding each measurement-

date as one separate visit. The maximum number of visits one patient had was 34 

visits, thus that way of coding accounted for roughly 40% of the visits.  

When coding every other date as separate visits there was an improvement (decrease) 

in OFV. There was a decrease of 30.56 when including IOV to the parameter V2 

(table 6), making the model significant better with IOV than without. Another 

advantage of coding every other visit as one visit comparing to coding every visit as 

its own, is that about 65% of the visits are included, and the time perspective is kept. 

Still there are some visits that are not accounted for. A hypothesis is that coding every 

visit as “its own visit” will enhance the model further. Another way to do this is by 



DISCUSSIONS 

 55 

looking at the data and picking the data where there is suspicion of IOV and code 

only these visits.  

Moreover there are also some covariates that are believed to influence the different 

parameters e.g. diabetes. [58] Including all of these factors may improve the model 

and make it even better than it is today. 

From a graphical inspection it is hard to determine which model gives the best fit. 

Due to a large data set there are too many observations to give an unambiguous 

answer. Still, by looking again at the R
2
- and S-value for the regression line an 

improvement is visible from the starting model without covariates to the model 

including covariates and finally the model including covariates and IOV. Similarly, 

by looking at the OFV the value is decreased by first including covariates and then 

including IOV. 

Another way to determine the best model would be a visual prediction check. [59] 

One way to do this is to program R-script. There also exist different add-on programs 

to NONMEM for example xPose, Wings, PsN, which gives a possibility to draw 

more complex graphs. To do this it is necessary to have to have a stand-alone 

NONMEM installation, which was not available. More detailed graphs would provide 

an even better foundation to determine which model that had the best data fit. 

6.3 Whole blood and intracellular model 

The first step to overcome was to make NONMEM to differ between the whole blood 

observations from the intracellular observations. This was an extremely challenging 

task and was more difficult than first imagined. An unexpected hinder was the run 

time the model had. In the beginning most runs used approximately 1 day. After the 

transformation of intracellular concentrations from ng/10
6
 cells to the same unit 

(ng/ml), as the whole blood concentrations were measured in, there was an enormous 

range from whole blood concentrations to intracellular concentrations. This large 

range made data fitting nearly impossible. Finally after LN transforming the 
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concentrations there were difficulties finding the correct error code to include in the 

model. In the end when the data fittings at last seemed promising, time was running 

out. 

The final model seems capable of predicting the concentrations at two different sites. 

The WRES vs. time/ID shows an overall over-prediction for the intracellular 

concentrations and an under-prediction for the whole blood values. The over-

prediction of whole blood concentration is largely due to the Cmax in the 12-hours PK. 

The difference between predicted value and observed concentration is so high that it 

will affect the mean prediction power. It seems as though the model fits the C2-levels 

slightly better than the C0-concentrations, but it still has trouble fitting the large 

variety of concentrations.  

For the 12-hours whole blood profile it is visible that the model has large problems in 

the absorption phase, which indicates that the Ka is over estimated. The elimination 

however seems to be rather accurate compared to the absorption phase. It is obvious 

that Ka is estimated wrongly when NONMEM predicts it to be 55 on a LN-scale. The 

high Ka is the reason for the high predicted Cmax for whole blood (140000 ng/ml – 

1600 ng/ml – figure 18-19). The high Cmax increases the SEM which makes the 

predictive power worse as mentioned earlier.   

An attempt to force/lock Ka to a lower value resulted in a more correct Cmax for 

whole blood. Cmax went from 140000 ng/ml to 22000 ng/ml compared to 1600 ng/ml, 

but resulted in a more identical whole blood and intracellular prediction with a lack of 

concentration-variety. (Appendix 9.8) The absorption-phase is also delayed with Tmax 

estimated to be approximately 1 hour later than the true value. (Figure 17-19) 

The intracellular 12-hours profile has predictions in the same range as the measured 

observations. The absorption phase is however slightly delayed. The absorption into 

the intracellular compartment is estimated to be a 1.order reaction. This is a 

reasonable assumption by looking at the measured concentrations and considering 

there is a passive diffusion of CsA into T-lymphocytes and not an active transport. It 

could be an idea to test other absorption-profiles to find a more fitting description. 
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The concentrations/LNDV vs. Ipred did not attain the desired degree of consistent 

prediction. (Figure 20) The “inclusion” of the whole blood model has not been 

optimal. One way to possibly improve this model is the inclusion of covariates. 

However, before the covariates are tested the basic model needs to be improved, 

especially the absorption rate constant, and the absorption and elimination processes. 

The model is still in an early stage and needs to be further developed. 

Since the model is still in a development phase it is premature to validate the model. 

After further development with the inclusion of covariates and IOV the model should 

be validated following FDA’s guidelines. [5] The validation process consists of 

external validation (including new patients) or internal (using the existing data set). A 

useful and common validation method for this data set could be cross-validation, 

bootstrapping and Jackknife. 

In a retrospective view it should be possible to develop a model based on the original 

intracellular data. NONMEM does not understand units, meaning it only reads 

numbers. Accordingly it should be possible to develop a model based on the original 

data and unit (ng/10
6
 cells). Doing this has many benefits i.e. there is no need to 

transform data, future data can be measured the same way and included directly into 

the model. Because the range is similar, plotting graphs will also be easier. When 

both whole blood and intracellular concentrations are in the same graphs it will be 

easier to interpret the plots as well.
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7. CONCLUSIONS 

Re-analyzing for covariates in the whole blood model was performed using the 

traditional forward-inclusion criteria and the backwards-deletion process. The result 

cohered with similar finding in earlier results. This substantiates earlier findings that 

these covariates are relevant for this drug/model.  

Interoccasional variability was included and found significant for V2. With both 

covariates and IOV included, the model for whole blood has improved. The model is 

accurate for low and normal concentrations, but has a tendency to over-predict 

concentrations at the higher end of the scale. The predictions are however stable and 

show little spread.  

A model for whole blood- and intracellular concentration was initially developed 

from the previous model. The model seems capable of predicting different 

concentrations at different sites of measurements. There is generally a better 

prediction of C2-levels compared to C0-levels. The model has however its weaknesses 

however that is quite visible in the 12-hours PK. The absorption phase for both whole 

blood and intracellular concentrations are not optimal and the elimination phase is 

wrongly predicted. There is a need to continue working on the basic model before 

covariates are to be included, IOV have to be checked and finally the model has to be 

validated. 

There are several reasons to continue working on this model. In theory a PPK-model 

will predict concentrations more accurately and stable than in the current clinical 

setting and a prediction of intracellular concentrations may prevent more rejections 

from kidney transplants.
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9. APPENDIX 

9.1 Formulas used in demographics model 

Equation 12: BMI-formula:  

BMI = weight (kg) / (height (m))
2 

 

Equation 13: Hume LBM-formula [60]: 

(Male): L.B.M = 0.32810 W (Weight/kg) + 0.33929 H (Height/cm) – 29.5336  

(Female): L.B.M = 0.29569 W (Weight/kg) + 0.41813 H (Height/cm) – 43.2933 

 

Equation 14: Cockgroft-Gault Equation: 

GFR  =  (140-age(years) x weight (kg)) x (0.85 for women) 

72 x Serum creatinine (mg/dl) 
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9.2 Partial input file for whole blood model 
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9.3 Control file for final model whole blood 

$PROBLEM IOV. 

 

$DATA valider-iov.txt 

 

$INPUT ID AMT RATE=DROP DAT1=DROP TIME C=DV VIST WT UREA=DROP SCR=DROP 

CRCL MDV SS II CMT FLAG=DROP AGE GEN HGHT TXT STER BMI C3A5 LBM 

 

$SUBROUTINE ADVAN4 

 

$PK 

   IF(C3A5.EQ.1) THEN 

   TVCL=THETA(1)-(THETA(8)*CRCL)-(THETA(9)*AGE/56) 

   ELSE 

   TVCL=THETA(7)-(THETA(8)*CRCL)-(THETA(9)*AGE/56) 

   ENDIF 

 

   TVV1=THETA(2)*THETA(10)*BMI/THETA(11)*(AGE/56) 

 

   TVQ=THETA(3)-THETA(12)*(1+STER/100)+THETA(13)*WT 

 

   TVV2=THETA(4) 

 

   TVKA=THETA(5)*THETA(14)**TXT/5*(THETA(15)*BMI)+THETA(16)*AGE/56 

 

   TVALAG=THETA(6) 

 

IOV = ETA(1) 

IF (VIST.EQ.2) IOV = ETA(2) 

IF (VIST.EQ.3) IOV = ETA(3) 

IF (VIST.EQ.4) IOV = ETA(4) 

IF (VIST.EQ.5) IOV = ETA(5) 

IF (VIST.EQ.6) IOV = ETA(6) 

IF (VIST.EQ.7) IOV = ETA(7) 

IF (VIST.EQ.8) IOV = ETA(8) 

IF (VIST.EQ.9) IOV = ETA(9) 

IF (VIST.EQ.10) IOV = ETA(10) 

IF (VIST.EQ.11) IOV = ETA(11) 

 

   CL=TVCL*EXP(ETA(12))             ;Clearance (CL/F) L/hr 

   V1=TVV1*EXP(ETA(13))             ;Central volume (V1/F), L 

   Q=TVQ*EXP(ETA(14))               ;Intercompartmental clearance (Q/F) 

   V2=TVV2*EXP(ETA(15)+IOV)         ;Peripheral volume (V2/F), L 

   KA=TVKA*EXP(ETA(16))             ;Absorption rate constant, 1/hr 

   ALAG1=TVALAG*EXP(ETA(17))        ;Absorption lag time, hr 

 

   S2=V1 

 

   K=CL/V1 

   K23=Q/V1 

   K32=Q/V2 

 

$ERROR 

   IPRED=F 

   Y=F+F*ERR(1)+ERR(2) 

 

$THETA (1,36.6)         ;THETA(1) is POPCL/F on C3A5 

$THETA (15, 21.9, 40)   ;THETA(2) is POPV1/F 
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$THETA (1,18.6)         ;THETA(3) is POPQ/F 

$THETA (1,1200)         ;THETA(4) is POPV2/ 

$THETA (0,0.821,1)      ;THETA(5) is POPKA 

$THETA (0.1,0.452)      ;THETA(6) is POPLAGTIME 

$THETA (1, 38)          ;THETA(7) is POPCL/F on C3A5 

$THETA (0, 0.0047)      ;THETA(8) is CRCL on CL 

$THETA (0, 10.6)        ;THETA(9) is AGE on CL 

$THETA (0, 0.0001)      ;THETA(10)is BMI on V1 

$THETA (0, 0.0012)      ;THETA(11)is AGE on V1 

$THETA (0, 0.0001)      ;THETA(12)is STER on Q 

$THETA (0, 0.001)       ;THETA(13)is WT on Q 

$THETA (0, 0.006)       ;THETA(14)is TXT on ka 

$THETA (0, 265)         ;THETA(15)is BMI on ka 

$THETA (0, 2.1)         ;THETA(16)is AGE on ka 

 

$OMEGA BLOCK(1) 0.1 

$OMEGA BLOCK SAME 

$OMEGA BLOCK SAME 

$OMEGA BLOCK SAME 

$OMEGA BLOCK SAME 

$OMEGA BLOCK SAME 

$OMEGA BLOCK SAME 

$OMEGA BLOCK SAME 

$OMEGA BLOCK SAME 

$OMEGA BLOCK SAME 

$OMEGA BLOCK SAME 

$OMEGA 0.04        ;IIV CL 

$OMEGA 0.01        ;BSVV1/F 

$OMEGA 0.01        ;BSVQ/F 

$OMEGA 2.77        ;BSVV2/F 

$OMEGA 0.563       ;BSVKA 

$OMEGA 0.006       ;BSVALAG1 

 

$SIGMA 0.041     ;ERRCV, Proportional error (%) 

$SIGMA 388       ;ERRSD, Additive error (ug/ml) 

 

$ESTIMATION SIG=3 METHOD=1 INTER MAXEVAL=9999 PRINT=1 POSTHOC NOABORT 

 

$TABLE ID TIME DV IPRED MDV 

NOPRINT ONEHEADER FILE=table.txt 

 

$TABLE ID CL V1 Q V2 KA ALAG1 WT CRCL AGE GEN HGHT TXT STER BMI C3A5 LBM 

FIRSTONLY NOPRINT ONEHEADER NOAPPEND FILE=etatable.txt 
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9.4 Individual fitting made by R for final whole blood model 

Circles: Observed concentrations; Red: Individual post hoc predicted concentrations; 

Blue: Population predicted concentrations. 
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9.5 Partial input file for whole blood and intracellular model 
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9.6 Control file for final model whole blood and intracellular 

concentrations 

$PROBLEM EXAMPLE OF A THREE COMPARTMENT MODEL ABSORPTION INCLUDING 

INTRACELLULAR VALUES AS METABOLITES 

 

$INPUT ID AMT RATE=DROP DAT1=DROP TIME LNDV=DV EVID WT=DROP UREA=DROP 

SCR=DROP CRCL=DROP SS=DROP II=DROP CMT DVID FLAG=DROP AGE=DROP GEN=DROP 

HGHT=DROP TXT=DROP STER=DROP BMI=DROP C3A5=DROP LBM=DROP 

 

$DATA ic.txt 

 

$SUBROUTINES ADVAN6 TOL=4 

 

$MODEL 

 

COMP=(ABSORB) 

COMP=(CENTRAL) 

COMP=(INTRAC) 

COMP=(PERIPH) 

 

$PK 

KA=THETA(1)*EXP(ETA(1)) 

CL2=THETA(2) 

CL3=THETA(3) 

CL4=THETA(4)*EXP(ETA(2)) 

V2=THETA(5) 

V3=THETA(6) 

V4=THETA(7) 

 

K12=KA ; for matrix exponential solution 

K20=CL2/V2 

K23=CL3/V2 

K32=CL3/V3 

K24=CL4/V2 

K42=CL4/V4 

 

S2=V2 

S3=V3 

S4=V4 

 

A_0(2)=0 

A_0(3)=0 

A_0(4)=0 

 

 

$DES 

DADT(1)= -KA*A(1) 

DADT(2)= KA*A(1)-(A(2)*(K20+K23+K24))+A(3)*K32+A(4)*K42 

DADT(3)= A(2)*K23-A(3)*K32 

DADT(4)= A(2)*K24-A(4)*K42 

 

$ERROR 

PLASMA=A(2)/V2 

INTRAC=A(3)/V3 

 

IPRED=A(2)/V2 

IF (DVID.EQ.2) INTRAC=A(3)/V3 
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IPRED=0.001 

IF(F.GT.0) IPRED=LOG(F) 

W=SQRT(THETA(7)**2+THETA(8)**2/(F+0.001)**2) 

IRES=DV-IPRED 

IWRES = IRES/W 

Y=IPRED+W*ERR(1) 

 

$THETA  

(0, 55) 

(0, 3) 

(0, 0.002) 

(0, 0.9) 

(0, 1.5) 

(0, 0.006) 

(0, 17.3) 

(0.3) 

 

$OMEGA 

0.00136 

1 

 

$SIGMA  

0.008 

 

$ESTIMATION SIG=3 METHOD=1 INTER MAXEVAL=9999 PRINT=1 POSTHOC NOABORT 

 

$TABLE ID TIME DV DVID IPRED MDV 

NOPRINT ONEHEADER FILE=table.txt 

 

$TABLE ID CL V1 V2 V3 KA ETA1 ETA2 ETA3 ETA4 ETA5 ETA6 ETA7 WT CRCL FLAG 

AGE GEN HGHT TXT STER BMI C3A5 LBM FIRSTONLY NOPRINT ONEHEADER NOAPPEND 

FILE=etatable.txt 
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9.7 Diagnostic plot made by R for whole blood and 

intracellular model 

Circles: Observed concentrations; Red: Individual post hoc predicted concentrations; 

Blue: Population predicted concentrations. 
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9.8 Diverse figures for whole blood and intracellular model 

with a lower Ka and OFV comparing with the final 

model 
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