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AA   - arachidonic acid 

AIF   - apoptosis inducing factor 

AMPA   - -amino-3-hydroxy-5-methylisoxazole-4-propionate 

APAF-1  - apoptotic protease-activating factor 1 

APF   - 2-[6-(4’-amino)phenoxy-3H-xanthen-3-on-9-yl]benzoic acid  

Bad   -Bcl-associated death promoter 

Bax   - Bcl-2-associated X-protein  

Bcl-2   - B-cell lymphoma-2 

CGN   - cerebellar granule neurons 

Cyt c   - cytochrome c 

Cys   - cysteine 

DHR   - dihydrorhodamine 123 

GCS   - -glutamyl-cysteine synthetase 

Glu   - glutamate 

Gly   - glycine 

GSH   - reduced form of glutathione 

GSSG   - oxidized form of glutathione 

HE   - dihydroethidium  

H2O2   - hydrogen peroxide 

HPF   - 2-[6-(4’-hydroxy)phenoxy-3H-xanthen-3-on-9-yl]benzoic acid 

MT Red  - MitoTracker Red CM-H2XROS

NGF   - nerve growth factor 

NGFI-B  - NGF-inducible clone B  

NMDA  - N-methyl-D-aspartate 

MOMP  - mitochondrial outer membrane permeabilization 
.NO   - nitric oxide radical 
.NO2   - nitrogen dioxide radical 

Nor1   - neuron derived orphan receptor-1 

NOS   - nitric oxide synthase 

Nurr1   - Nur-related factor-1   
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O2
.-   - superoxide anion radical 

.OH   - hydroxyl radical 

ONOO-  - peroxynitrite  

PARP-1  - poly(ADP-ribose) polymerase 

PLA2   - phospholipase A2

RNS   - reactive nitrogen species 

ROS   - reactive oxygen species  

RXR   - retinoid X receptor 

sPLA2-IIA  - secretory phospholipase A2 type IIA 
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Aims of the present study 

The excitatory neurotransmitter glutamate may act as an excitotoxin when glutamate 

receptors are overstimulated, e.g. during stroke. This results in increased intracellular 

calcium, a situation that can be mimicked by treatment with calcium ionophore. The rise 

in intracellular calcium may activate phopholipases capable of breaking down the cell 

membrane and liberating arachidonic acid. Reactive oxygen species are generated from 

calcium-activated enzymes. NGFI-B has been shown to play a key role in regulating 

apoptosis by translocating to the mitochondria, and glutamate is capable to induce this 

translocation. The focus of this work has been on the above mentioned factors, with 

emphasis on cell death and protection. More specific, the aims have been to:   

1) Investigate the role of ROS generation in glutamate-induced cell death; with 

emphasis on identifying toxic ROS, and pinpoint the location of this ROS and the 

enzymes involved in the ROS generation (papers I, II, III, and IV).

2) Investigate if different neuroprotector molecules show different long-term 

efficiency as neuroprotectors against glutamate-induced toxicity due to 

interference with endogenous production of glutathione, the main endogenous 

antioxidant (paper II).

3) Establish chicken neurons as a supplementary model to study cell death 

mechanisms involved in excitotoxicity (paper III). 

4) Investigate the role of NGFI-B in glutamate-, calcium ionophore-, and 

arachidonic acid-induced cell death in rat and chicken neurons (paper IV).
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1.  Introduction 

1.1 Cell death types 

Apoptosis is an essential mechanism for the selective elimination of cells during 

development, homeostasis of tissues with cell turnover, and removal of aging and 

abnormal cells (Steller 1995). Morphological changes that occur during apoptosis 

includes cell shrinkage, membrane blebbing, chromatin condensation, and DNA 

fragmentation (Kerr et al. 1972). Apoptosis may affect scattered individual cells and the 

apoptotic bodies formed are phagocytosed by macrophages and adjacent cells (Leist and 

Nicotera 1998). The apoptotic process depends on the ability of the dying cell to produce 

ATP. Therefore, it has been regarded as an active form of cell death. Apoptosis is also 

called programmed cell death (the cell commits suicide through a built-in program) 

(McConkey and Orrenius 1995), however, programmed cell death generally denotes all 

forms of cell death mediated by a cell death program and is not linked to a specific 

morphology (Leist and Nicotera 1998). Dead cells may also be characterized by other 

morphological changes. Cells characterized by swelling of organelles, breakdown of 

cellular membranes and cell disintegration are said to be necrotic (Kerr et al. 1972; 

Wyllie 1997). Whereas apoptotic cells are phagocytosed by macrophages and adjacent 

cells, necrotic cells lyse and may therefore cause an inflammatory reaction (Leist and 

Nicotera 1998). Necrosis may be induced experimentally by impairing the ability to 

produce ATP; therefore, necrosis has been considered an uncontrolled form of cell death. 

Evidence suggests that cell death with necrotic morphological characteristics also can 

occur as a programmed event (Jagtap and Szabo 2005). Thus, cell death is not only 

apoptosis or necrosis. Cell death has been divided into four different groups (Leist and 

Jaattela 2001): 

“Apoptosis is defined by stereotypic morphological changes, especially evident in the 

nucleus where the chromatin condenses to compact and apparently simple geometric 

(globular, crescent-shaped) figures… In its most classic form, apoptosis is observed 

almost exclusively when caspases, in particular caspase-3, are activated… 
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Apoptosis-like PCD is used here to describe forms of PCD with chromatin condensation 

that is less compact/complete than in apoptosis (geometrically more complex and lumpier 

shapes), and with the display of phagocytosis-recognition molecules before lysis of the 

plasma membrane. Any degree and combination of other apoptotic features can be found. 

Most published forms of ‘caspase-independent apoptosis’ fall into this class… 

Necrosis-like PCD is used here to define PCD in the absence of chromatin condensation, 

or at best with chromatin clustering to speckles. Varying degrees of other apoptosis-like 

features — including externalization of phosphatidylserine — might occur before the 

lysis. Necrotic PCD usually involves specialized caspase-independent signaling 

pathways…

Accidental necrosis/cell lysis is the conceptual counterpart to PCD, as is prevented only 

by removal of the stimulus. It occurs after exposure to high concentrations of detergents, 

oxidants, ionophores or high intensities of pathologic insult. Necrosis is often associated 

with cellular OEDEMA (organelle swelling)… The necrotic tissue morphology is, in 

large part, due to postmortem events (occurring after lysis of the plasma membrane).” 

 Autophagy, or cellular self-digestion, is a process where parts of the cytoplasm 

and intracellular organelles are sequestered within characteristic double- or multi-

membrane autophagic vacuoles (named autophagosomes) which are delivered to 

lysosomes for degradation. Autophagy is cytoprotective in response to most forms of 

cellular stress; however, autophagy can lead to cell death, possibly through activation of 

apoptosis or as a result of the degradation of large amount of cytoplasm contents 

[reviewed in (Maiuri et al. 2007; Scott et al. 2007)]. Thus, autophagy represents an 

additional form of cell death. 

1.2 Molecular mechanisms of cell death 

Apoptosis triggers include overactivation of glutamate receptors (Ankarcrona et al. 

1995), increased oxidative stress (Mattson 1998; Sastry and Rao 2000), and deprivation 

of neurotrophic factors (Cheng and Mattson 1991). Most apoptotic pathways converge on 
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a restricted number of effectors (Sastry and Rao 2000). Important groups of apoptosis-

related proteins include:

the caspase (cysteine aspartate proteases) family (Thornberry and Lazebnik 1998) 

AIF (apoptosis inducing factor) (Susin et al. 1999) 

smac/DIABLO (Verhagen et al. 2000) 

cytochrome c (Liu et al. 1996) 

the Bcl-2 (B-cell lymphoma-2) protein family (Chao and Korsmeyer 1998) 

Caspases are central to apoptosis of many cell types (Chan and Mattson 1999). Caspases 

require processing at specific cleavage sites to generate the active enzyme (Stennicke and 

Salvesen 1999), and the first caspase to be activated (initiator caspase) triggers 

downstream caspases (effector caspases) giving rise to a cascade of caspase activation. 

AIF translocates from the mitochondrial intermembrane space to the nucleus where it 

binds to DNA and induces chromatin condensation and DNA fragmentation and therefore 

induces caspase-independent apoptosis (Daugas et al. 2000). Smac/DIABLO inhibits a 

family of proteins that function as inhibitors of apoptosis (IAPs) (Du et al. 2000; 

Verhagen et al. 2000) by inhibiting caspase activation (Liston et al. 1996; Deveraux et al. 

1997), and it is released from the mitochondria together with cytochrome c. Cytosolic 

cytochrome c is one of the components of the apoptosome (caspase 9-activating 

complexes) (Hengartner 2000). The Bcl-2 family of proteins includes both pro- apoptotic 

[e.g. Bax (Bcl-2-assoociated X-protein) and Bad (Bcl-associated death promoter)] and 

anti-apoptotic (Bcl-2 and Bcl-xL) members (Pellegrini and Strasser 1999) which regulates 

mitochondrial permeability. 

 Two major apoptosis pathways can be differentiated by the relative timing of 

caspase activation and mitochondrial release of cytochrome c. In the first (the 

mitochondrial pathway/the intrinsic pathway), cytochrome c is released from the 

mitochondrial intermembrane space prior to caspase activation. In the second (the 

extrinsic pathway), effector caspases are activated prior to mitochondrial alterations by 

activation of death receptors (Lossi and Gambino 2008). The mitochondrial pathway 

includes up-regulation and/or translocation of proapoptotic proteins, e.g. Bax and p53, to 

the mitochondria, the release of cytochrome c and/or AIF from the mitochondria through 

permeability transition pores (PTP) formed in the mitochondrial membrane, and 
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activation of caspase 9 which activates effector caspase 3, resulting in cleavage of 

numerous protein substrates. The anti-apoptotic Bcl-2 protein prevents the release of 

cytochrome c from the mitochondria, and Bcl-xL also inhibits activation of caspase 9 by 

interacting with APAF-1. The extrinsic pathway includes ligands activating death 

receptors in the cell membrane which recruits and activates caspase 8, which then 

activates caspase 3. Caspase 3 plays a major role in executing the apoptotic cell death 

process. Apoptosis in most mammalian cells proceeds via the mitochondrial/intrinsic 

pathway (figure 1) (Green and Kroemer 2005), and the mitochondrial outer membrane 

permeabilization (MOMP) is characteristic (Green and Kroemer 2004). Two classes of 

mechanisms for MOMP have been described; one involving the inner membrane and the 

other only involving the outer membrane. The first class of mechanism involves the 

opening of a pore in the inner membrane, and most models of this pore postulates a role 

for the adenosine nucleotide transporter (ANT) in the inner membrane and the voltage 

dependent anion channel (VDAC) in the outer membrane (Green and Kroemer 2004). 

The second class of mechanism for MOMP appears to be mediated by members of the 

Bcl-2 family of apoptosis-regulating proteins acting directly on the outer mitochondrial 

membrane (Green and Kroemer 2004). Both mechanisms involve release of proteins 

located to the mitochondrial intermembrane space (IMS).   

1.3 Excitotoxicity 

Excitotoxicity refers to the ability of glutamate and structurally related excitatory amino 

acids to destroy neurons (Olney 1986), and this pathological condition may occur in acute 

neurodegenerative conditions such as e.g. stroke and trauma, as well as in Alzheimer’s 

disease and motor system disorders (Choi 1988; Mattson 2000). During stroke, neurons 

die of hypoxia following blood vessel occlusion or hemorrhage. Most of the neuronal 

death following a stroke occurs over a period of days following the initial insult and 

reflects excitotoxicity elicited by glutamate, the major excitatory neurotransmitter in the 

brain (Olney et al. 1973; Hara and Snyder 2007). Glutamate is present in millimolar 

tissue concentrations in the brain; however, glutamate is cleared from the synaptic and 
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Figure 1. “Checkpoints for apoptosis in the mitochondrial pathway. Most mammalian cell death 
proceeds via the mitochondrial pathway, as illustrated. Stimuli for the induction of apoptosis predominantly 
act by engaging proapoptotic members of the Bcl-2 family, which work to cause MOMP, and this is 
countered by the antiapoptotic Bcl-2 family members. Other cell death stimuli can cause MOMP by the 
induction of a mitochondrial permeability transition. In either case, release of proteins from the 
intermembrane space triggers the activation of caspases via the formation of an Apaf-1 apoptosome, which 
recruits and activates caspase-9. This, in turn, cleaves and activates the executioner caspases. The 
activation of caspase-3, -7, and -9 is antagonized by XIAP, which in turn can be inhibited by Smac, Omi, 
and other proteins released upon MOMP. .. ANT, adenosine nuclear transporter; VDAC, voltage-dependent 
anion channel; IMS, intermembrane space; m, mitochondrial transmembrane potential; MOMP, 
mitochondrial outer membrane permeabilization”. Figure and legend are from Green, D.R., and 
Kroemer, G. (2005). The journal of clinical investigation 115: 2610-17. XIAP = X-
chromosome-linked inhibitor of apoptosis, one of the IAPs.  
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extracellular environment by glutamate transporters leaving micromolar extracellular 

concentrations (Rothstein 1996). During ischemia there is an increase in the extracellular 

glutamate concentration, and this is largely due to reversed operation of neuronal 

glutamate transporters (Rossi et al. 2000). Abnormally intense exposure to glutamate can 

be lethal to neurons both in vivo and in vitro (Olney 1986). Many factors, including 

increased intracellular calcium concentration [a result of activation of the N-methyl –D-

aspartate (NMDA) subtype of glutamate receptors (Choi 1988; Tymianski et al. 1993)],

activation of caspases, Bcl-2, activation of NOS and PLA2, and activation of poly(ADP-

ribose) polymerase (PARP-1) (genetically knocking out PARP-1 protects neurons from 

excitotoxic death) (Yu et al. 2002), have been reported to contribute to the development 

of glutamate-induced excitotoxicity (Dawson et al. 1991; Frandsen and Schousboe 1993; 

Martinou et al. 1994; Dugan et al. 1995; Reynolds and Hastings 1995; Ciani et al. 1996; 

Tenneti et al. 1998; Mandir et al. 2000) (paper I). Effects observed at the mitochondria 

include mitochondrial calcium overload (Peng et al. 1998), mitochondrial depolarization 

(White and Reynolds 1996), opening of mitochondrial permeability transition pore (PTP) 

(Alano et al. 2002), and release of AIF and cytochrome c (Wang et al. 2004). The 

mitochondria possess an enormous capacity to sequester Ca2+ driven by the 180 mV 

mitochondrial membrane potential ( m) (Budd and Nicholls 1996). Mitochondrial Ca2+

uptake is required for NMDA-induced ROS generation, and ROS generation during the 

early stage of acute glutamate excitotoxicity is mainly localized to the mitochondria 

(Duan et al. 2007). Depolarizing mitochondria, and thereby eliminating the driving force 

for mitochondrial Ca2+ uptake (Stout et al. 1998), protects neurons from excitotoxic 

death. In mitochondria of cortical neurons treated with high levels of glutamate (100 μM 

for 15 min), significant Ca2+ injury to the oxidative phosphorylation is detected prior to 

any commitment to cell death (Kushnareva et al. 2005). Glutamate causes little acute 

elevation in cytoplasmic free Ca2+ or total cellular Ca2+ content when the mitochondrial 

Ca2+ accumulation is inhibited, and it is not able to induce acute excitotoxicity in cells 

with previously depolarized mitochondria (Budd and Nicholls 1996). Duan et al. have 

demonstrated that mitochondrial ROS generation serve as a signal to activate PARP-1, 

thus linking mitochondrial Ca2+ uptake and PARP-1 activation (figure 2).
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Figure 2. “Diagram of the excitotoxic cascade showing mitochondrial ROS generation as 
the link between mitochondrial Ca2+ uptake and PARP-1 activation in excitotoxicity. Under
pathological conditions, the massively activated NMDA receptors cause a strong increase in the 
cytosolic Ca2+ level, which is then taken up by mitochondria. The mitochondrial Ca2+ overload 
leads to a loss of m and an explosion of O2

·– generation, probably through the opening of PTP 
and the subsequent release of cytochrome c. The elevated cytosolic Ca2+ also activates nNOS 
and increases NO production. ONOO– is formed from the reaction of O2

·– with NO, and then 
diffuses into the nucleus to cause DNA damage. In response to this DNA damage, PARP-1 is 
activated, which results in excessive production of PAR polymers and depletion of NAD+. The 
activation of PARP-1 further induces AIF translocation from the mitochondria to the nucleus, 
which causes DNA fragmentation. The mechanism for the PARP-1 activation-dependent AIF 
translocation is still not fully understood, both the depletion of NAD+ and the accumulation of PAR 
polymer could be the hypothetic signal. Finally, the profound DNA damage in combination with 
the energy failure caused by mitochondrial dysfunction and NAD+ depletion leads to cell death. 
NAD+, nicotinamide adenine dinucleotide”. Figure and legend are from Duan Y., Gross R. A., 
and Sheu S. S. (2007). Journal of Physiology 585: 741-58.

To be able to interfere with the cell death process initiated by excitotoxicity, it is 

important that mechanisms essential for the mediation of the cell death is fully 

characterized. The localization of toxicity mediating ROS to peripheral mitochondria 
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(paper I), the role of secretory PLA2-IIA (paper I), and the role of NGFI-B in neuronal 

excitotoxic cell death (paper IV) are novel findings.

1.4 Glutamate and glutamate receptors 

Glutamate is the major excitatory neurotransmitter in the mammalian nervous system. 

The postsynaptic effects of glutamate are mediated by two subfamilies of glutamate 

receptors, the ionotropic receptors and the metabotropic receptors (Ozawa et al. 1998). 

The ionotropic receptors may be pharmacologically divided into NMDA, -amino-3-

hydroxy-5-methylisoxazole-4-propionate (AMPA) and kainate (KA) receptors. The 

NMDA receptors are composed of assemblies of four subunits derived from three distinct 

gene families (NR1, NR2A-D and NR3A-B). The stoichiometry of NMDARs has not 

been established definitely, but the consensus is that NMDA receptors are tetramers that 

most often incorporate two NR1 and two NR2 subunits of the same or different subtypes 

(Dingledine et al. 1999; Paoletti and Neyton 2007). The extracellular portion of NR1 and 

NR2 consists of two different types of domains, N-terminal domains and agonist binding 

domains (figure 3). Glycine and D-serine are both agonists for NR1 (Johnson and Ascher 

1987; Panatier et al. 2006). Glutamate and NMDA are agonists for NR2. To activate the 

receptor both glutamate and glycine must be bound to their respective agonist domains. 

The NMDA receptors are ion channels permeable to Ca2+, Na+ and K+ in a voltage-

dependent manner. Under basal conditions Mg2+ binds inside the ionic channels and 

prevents ionic flow even when the receptor is activated. When the membrane is 

depolarized, the affinity of Mg2+ for its binding site is reduced, allowing ionic flow 

through the channel if the receptor is activated by ligand. Zn2+ is a ligand for the 

modulatory domain of NR2, and binding of Zn2+ elicits a voltage-independent block 

(Peters et al. 1987; Westbrook and Mayer 1987). Due to disruption of the energy 

metabolism (the driving force for the Na+ pump that maintains the resting membrane 

potential) during neurotoxic insults, neurons are depolarized relieving the Mg2+ block of 

the NMDA receptor, and the reversed operation of neuronal glutamate transporters results 
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in increased extracellular glutamate. Glutamate-induced overactivation of NMDA 

receptors then results in increased intracellular calcium, activating cell death processes. 

Figure 3. “Potential sites for ligand binding at NMDA receptors. Most NMDAR are believed to 
assemble as tetramers, associating two NR1 and two NR2 subunits in a ‘dimer of dimers’ quaternary 
architecture. For clarity, only one of the two NR1/NR2 heterodimers is shown… The NR2 ABD binds 
glutamate, whereas the NR1 ABD binds the co-agonist glycine (or D-serine). White arrows indicate 
binding sites for competitive agonists and antagonists. Thick orange arrows indicate sites known to bind 
allosteric modulators such as endogenous zinc (NR2A and NR2B NTDs) or ifenprodil-like compounds 
(NR2B NTDs), both acting as non-competitive antagonists. The ion-channel domain also forms binding 
sites for pore blockers such as endogenous Mg2+ and MK-801…, acting as uncompetitive antagonists. Thin 
orange arrows indicate putative modulatory sites, which can bind either positive or negative allosteric 
modulators. The only known NMDAR antagonists that display strong subunit selectivity are the NR2 NTD 
ligands Zn2+, which selectively inhibits NR2A-containing receptors at nanomolar concentrations, and 
ifenprodil-like compounds, which selectively inhibit NR2B-containing receptors”. Figure and legend 
are from Pierre Paoletti P. and Neyton J. (2007). Current Opinion in Pharmacology 47: 
39-47.
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1.5 Reactive oxygen and nitrogen species 

A free radical is defined as any molecular species capable of independent existence that 

contains one or more unpaired electrons (Halliwell and Gutteridge 1999). Reactive 

oxygen species (ROS) and reactive nitrogen species (RNS) are collective terms, ROS 

includes both oxygen radicals and some non-radicals that are oxidizing agents and/or 

easily converted into radicals (examples are peroxynitrite and hydrogen peroxide), and 

RNS includes nitrogen radicals and non-radicals (Halliwell 2006). The toxicity of 

ROS/RNS is directly related to their reactivity. In healthy aerobic organisms, production 

of ROS and RNS are approximately balanced by antioxidant defense systems. Oxidative 

stress, situations of serious imbalance between production of ROS/RNS and the 

antioxidant defense, may result in oxidative damage of molecules (Halliwell and 

Gutteridge 1999).

If a single electron is supplied to oxygen the superoxide anion radical (O2
.-) is formed. 

The two-electron reduction product of oxygen is hydrogen peroxide (H2O2), and the 

four-electron product is water. 

O2   one-electron reduction                         O2
.-

O2   two-electron reduction (plus 2H+)
        H2O2

 O2   four-electron reduction (plus 4H+)    2H2O

The hydroxyl radical (.OH) is generated from decomposition of hydrogen peroxide, and 

this process is accelerated in the presence of iron or copper in a reaction called the Fenton 

reaction (Halliwell and Gutteridge 1999). 

Fenton reaction: H2O2 + Fe2+/ Cu+ .OH + -OH + Fe3+ / Cu2+

Nitric oxide (.NO) reacts very fast with superoxide anion radical to form peroxynitrite 

(ONOO -), a non-radical product.
.NO + O2

.-  ONOO -
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Peroxynitrite rapidly protonates to peroxynitrous acid (ONOOH), a very reactive non-

radical, at a physiological pH. Peroxynitrous acid can cause damage by undergoing 

homolytic fission to hydroxyl radical and nitrogen dioxide.

ONOOH .NO2 + .OH

Superoxide anion radical and hydrogen peroxide are highly selective in their reactions 

with biological molecules, whereas hydroxyl radical attacks everything around it 

(Halliwell 2006). 

 In cerebellar granule neurons it has been shown that the calcium-activated 

enzymes NOS and PLA2 (including secretory PLA2 type IIA) are involved in glutamate-

induced generation of toxicity-mediating ROS (Ciani et al. 1996) (Paper I). PLA2 releases 

arachidonic acid which yields superoxide anion radical through its subsequent 

metabolism by lipoxygenases and cyclo-oxygenases, and NOS generates nitric oxide. 

 Oxidative stress may cause damage to e.g. DNA, lipid membranes, and proteins. 

In DNA ROS may cause modification of DNA-bases, single and double strand DNA 

breaks, loss of purines, damage to deoxyribose sugars, DNA-protein cross-linkage, and 

damage to the DNA repair system (Kohen and Nyska 2002). Lipid peroxidation has been 

implicated in modification of membrane structure, and modification of DNA and proteins 

(Porter et al. 1995). ROS-induced damage on proteins includes damage to specific amino 

acid residues, changes in structure, and fragmentation (Halliwell and Gutteridge 1999).

 Reactive oxygen species generated during apoptosis have been recognized as 

mediators of intracellular apoptotic signaling cascades (Greenlund et al. 1995; Cai and 

Jones 1998; Esteve et al. 1999; Valencia and Moran 2001). Some intracellular sources of 

ROS and their interaction with the apoptotic pathway, e.g. release of cytochrome c and 

activation of caspase 3 are shown in figure 4. 

1.6 Antioxidant defenses 

From the biological aspect, an antioxidant is defined as a compound which, in low 

concentrations, after reaction with a free radical, is relatively stable either in a radical or 
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non-radical form, and does not trigger successive radical reactions during which other 

new free radicals and oxidized substrates would be produced (Bergendi et al. 1999). 

Figure 4. “Intracellular sources of ROS and their interaction with the apoptotic pathway.
Mitochondria are the most notorious producers of ROS (O2

• , H2O2). One model proposed for H2O2
induction of apoptosis is upregulation of the Fas-FasL system, leading to activation of caspase-8 and 
downstream caspases... H2O2 can cause the release of cytochrome c from mitochondria into the cytosol. In 
the cytosol, cytochrome c binding to Apaf-1 is a critical step in formation of the apoptosome. The 
apoptosome complex activates caspase-9, which then activates caspase-3. H2O2 may also activate nuclear 
transcription factors, like NF B, AP-1, and p53, which may upregulate death proteins or produce inhibitors 
of survival proteins. Cellular defenses against ROS include GSH, which is synthesized in the cytosol but is 
transported into nuclei and mitochondria. The SOD enzymes are also important antioxidants. Mn SOD is 
localized to mitochondria while Cu, Zn SOD exists in the cytosol”. Figure and legend are from 
Chandra J., Samali A., Orrenius S. (2000). Free Radical Biology and Medicine 29: 323-
333.

1.6.1 Endogenous antioxidant defense and protection 

All parts of the nervous system contain superoxide dismutase (SOD), an enzyme that 

catalyzes dismutation of superoxide to hydrogen peroxide and molecular oxygen. 

2 O2
. - + 2H+  H2O2 + O2
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Animals have MnSOD in the mitochondrial matrix and CuZnSOD in the mitochondrial 

intermembrane space and in the rest of the cell (Liochev and Fridovich 2005).  

To remove hydrogen peroxide, the most important enzymes in the brain are glutathione 

peroxidases (GPx) (Brigelius-Flohe 1999) and peroxiredoxins (Rhee et al. 2005), whereas 

catalases are not very important in the brain. Peroxidases use H2O2 to oxidize a substrate. 

For GPx the substrate is glutathione (GSH), which may exist in a reduced form (GSH) or 

an oxidized from (GSSG). GPx can also reduce other peroxides (Brigelius-Flohe 1999). 

H2O2 + 2 GSH  2GSSG + 2 H2O

GSH is present in all mammalian cells at millimolar intracellular concentrations (1-11 

mM) (Meister and Anderson 1983) and is an important part of the antioxidant defense of 

cells. In addition to protect cells against oxidative stress as a cofactor for enzymes (e.g. 

GPx), glutathione may scavenge hydroxyl radical and singlet oxygen directly, and it may 

regenerate vitamin C and vitamin E back to their active forms (Masella et al. 2005; Valko 

et al. 2007). Glutathione is a tripeptide that consists of glutamate, cysteine and glycine. 

GSH is synthesized in the cytosol of all mammalian cells via two ATP-requiring 

enzymatic steps: the formation of -glutamylcysteine from glutamate and cysteine, and 

formation of GSH from -glutamylcysteine and glycine. The first and rate-limiting step is 

catalyzed by -glutamyl-cysteine synthetase (GCS), and the second step is catalyzed by 

glutathione synthetase (Anderson 1998). The GCS expression level is regulated by 3 

different redox-sensitive response elements (Lu 1999), and may therefore be 

regulated/influenced by antioxidant stroke therapy (paper II). 

1.6.2 Exogenous antioxidant protection

Several dietary constituents, including vitamin C and vitamin E, have been suggested to 

exert antioxidant effects in vivo. At physiologically pH the favored form of vitamin C 

(ascorbic acid) is ascorbate (Beyer 1994). Ascorbate has been shown to have a 

multiplicity of antioxidant properties, including scavenging of superoxide and hydroxyl 

radical (Beyer 1994). In this process a much less reactive ascorbyl radical is generated. 

Vitamin E is a nutritional term; it does not refer to a particular chemical structure. Eight 

naturally occurring substances with vitamin E activity have been found (d- -, d- -, d- -,
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d- -tocopherols and - -, d- -, d- -, d- -tocotrienols) (Traber 1994). The most effective 

form in animals is -tocopherol, and the term -tocopherol and vitamin E are now used 

almost interchangeably. Vitamin E reacts at an almost diffusion-controlled rate with the 

hydroxyl radical, but slowly with superoxide. Vitamin E is fat-soluble and resident in 

membranes and in lipoproteins (Traber 1994). Vitamin E scavenges peroxyl radicals 

faster than these radicals can react with adjacent fatty acid side-chains or with membrane 

proteins, and is probably the most important inhibitor of the free-radical chain reaction of 

lipid peroxidation in animals (Halliwell and Gutteridge 1999). During this process -

tocopherol is converted to the radical -tocopheryl, and it has been shown, e.g. in 

cultured cells, that ascorbate can reduce -tocopheryl back to -tocopherol (Beyer 1994). 

Thus, the two are often used together in cell culture systems. Dietary sources of 

antioxidants have been associated with lower stroke risk, however, antioxidant 

supplementation has not reduced stroke risk in clinical trials (Ding and Mozaffarian 

2006).

1.7 The NGFI-B subfamily of nuclear receptors 

NGFI-B (nerve-growth-factor-induced clone B) was originally identified because of its 

rapid induction by nerve growth factor (NGF) in rat PC12 (pheocromocytoma) cells 

(Milbrandt 1988). The mouse NGFI-B homologue is Nur77 (Hazel et al. 1988), and the 

human homologue is TR3 (Chang et al. 1989). NGFI-B, Nurr1 (Nur-related factor 1) and 

Nor1 (neuron derived orphan receptor-1) constitute the NR4A subfamily of nuclear 

receptors (Maruyama et al. 1998). As other nuclear receptors, NGFI-B consists of three 

major domains; a variable amino-terminal region, a highly conserved DNA binding 

domain (DBD), and a relatively well conserved carboxyl-terminal domain (Evans 1988; 

Milbrandt 1988). DNA binding is mediated by two zinc fingers (folded loops of protein 

stabilized by Zn2+ ions) located in the DBD. The ligand binding domain is localized to 

the carboxyl-terminal domain. NGFI-B has been classed as an orphan receptor because  it 

does not have any known ligand (O'Malley and Conneely 1992; Mangelsdorf and Evans 

1995), and the ligand binding domains of NGFI-B do not contain a pocket large enough 
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to support the binding of a small molecule (Baker et al. 2003; Wang et al. 2003). 

Evidence supports that NGFI-B does not require ligand binding for physiological 

function.  Therefore, to allow control of NGFI-B in vivo, other mechanisms such as 

protein expression, nuclear accumulation, and post-translational modifications are likely 

to exist (Wingate and Arthur 2006). The transcription of NGFI-B is controlled by external 

stimuli, and it has been shown to be up-regulated by glutamate-induced activation of 

NMDA receptors and increased intracellular calcium (Bading et al. 1995). We show that 

buffer (activation of voltage dependent calcium channels), glutamate and calcium 

ionophore induced NGFI-B expression (paper IV). 

 NGFI-B has been implicated in the regulation of cell survival and apoptosis. 

During apoptosis, NGFI-B translocates to the mitochondria to initiate the apoptotic 

process (Li et al. 2000) as a NGFI-B/RXR heterodimer (Cao et al. 2004). Bcl-2, localized 

in the outer membrane of the mitochondria, functions as a receptor for NGFI-B, and 

NGFI-B converts Bcl-2 from a protector to an apoptosis inducer and cytochrome c is 

released (Li et al. 2000; Lin et al. 2004). 9-cis retinoic acid (9cRA), a high affinity ligand 

for RXRs (Heyman et al. 1992), suppresses a nuclear export sequence (NES) activity 

present in the carboxyl terminus of RXR  by inducing RXR  homodimerization or 

altering RXR /NGFI-B heterodimerization (Cao et al. 2004). Consequently, RXR ligands 

were shown to inhibit mitochondrial targeting of RXR /NGFI-B heterodimers as well as 

their ability to induce apoptosis (Cao et al. 2004). Similar results were obtained in paper 

IV. It has been shown that overexpression of a dominant negative Nur77 protein or 

inhibition of Nur77 expression by antisense Nur77 inhibited apoptosis, whereas 

constitutive expression of Nur77 resulted in massive apoptosis (Liu et al. 1994; Woronicz 

et al. 1994; Woronicz et al. 1995; Uemura and Chang 1998; Li et al. 2000). In paper IV 

we report that in neurons treated with glutamate or calcium ionophore new synthesis of 

NGFI-B is important for maintenance of the death mechanism, and that this allows late 

protection by 9cRA. 
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2.  Discussion of methods 

2.1 Primary cultures of cerebellar granule neurons from rat, chicken, and 

transgenic mouse

In primary cultures the cells are more similar to cells in their natural environment in vivo

compared to cell lines. Primary cultures of cerebellar granule cells have the advantages of 

a cell line without the drawbacks of transformed tumor cells (Vaudry et al. 2003). It has 

been reported that this neuronal model is well suited to identify factors that control 

neuronal differentiation and apoptosis (Vaudry et al. 2003), although excitotoxicity 

seldom occurs in the human cerebellum. It has been described that rat cerebellar granule 

neurons are 95% pure neuronal cultures (Gallo et al. 1987; Ciani and Paulsen 1995), and 

that they express glutamate receptors (Gallo et al. 1987) and NGFI-B (Jacobs et al. 2004). 

The cultures were used to investigate mechanisms involved in cell death induced by 

glutamate, calcium-ionophore, or arachidonic acid, including ROS generation and the 

effect of scavengers and enzyme inhibitors, the effect of glutamate and different 

antioxidant treatment on the level of glutathione, and expression and localization of 

NGFI-B. The chicken neurons were used as a supplement to the rat neurons. Advantages 

with chicken neurons are that there is no need for animal facilities, and that they can be 

cultivated at a physiological potassium level (paper III). Also, the transfection efficiency 

is higher than in rat neurons, which makes it possible to measure luciferase generated 

from reporter genes (paper IV). Mouse cerebellar granule neurons were made from 

transgenic mice with a luciferase reporter coupled to the GCS promoter (the rate-limiting 

enzyme in the glutathione synthesis). The cultivation of these neurons made it possible to 

investigate the effect of both glutamate and different antioxidant treatments on the 

transcription of GCS, and thus determine if changes in the level of reduced glutathione 

were due to an increased oxidation of GSH or reduced synthesis of glutathione (paper II).  
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2.2 Cell death

2.2.1 Models 

Cell death mechanisms following three different stimuli that increase the intracellular 

calcium concentration have been investigated. The cell death stimuli included treatment 

with i) glutamate (100 μM for 15 minutes), ii) calcium ionophore (0.1 μM directly in the 

medium), and iii) arachidonic acid (10 μM directly in the medium). Overstimulation of 

glutamate receptors may induce cell death, e.g. following a stroke, and it results in 

excessive calcium influx and disturbance of the postsynaptic calcium homeostasis (Choi 

1992). This is reported to induce both apoptotic and necrotic cell death depending on the 

dosage and time of exposure (Ankarcrona et al. 1995). It has been reported that a low 

concentration of calcium ionophore (0.1 μM) induces apoptosis whereas 10-fold higher 

concentration induces caspase 3 independent cell death in cerebellar granule neurons 

(Takadera and Ohyashiki 1997; Slagsvold et al. 2003). Arachidonic acid is released 

during traumatic brain injury, ischemia, or convulsion (Katsuki and Okuda 1995), and 

has been suggested to be involved in ischemia-induced cell death (Dhillon et al. 1997). 

Arachidonic acid induces increased intracellular Ca2+ and Na+, and the mitochondrial Na+

overload is important for caspase 3-dependent apoptosis (Fang et al. 2008).

2.2.2 Cell death measurement 

Cell death was measured by trypan blue exclusion assay. Intact cell membranes are 

impermeable for trypan blue, whereas cells with ruptured membranes are stained blue. 

Blue neurons were scored as dead, whereas non-stained neurons were scored as live. 

Since the cultures contains other cells than cerebellar granule neurons, this method was 

used to be able to visually verify that only granule neurons were scored as live or dead 

during the evaluation of cell death. We have also tested the MTT assay (shows the 

mitochondrial activity) to be able to evaluate the viability of the neurons at an earlier time 

point. However, these results did not correlate with the results from the trypan blue 

exclusion assay, probably due to the influence of the mitochondria in the astrocytes. 

Although the number of astrocytes in the cultures was very low compared to the number 

of granule neurons, they have a larger cytosolic volume, and contain more mitochondria 
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(as observed with the microscope). Therefore, the MTT assay was unsuitable for the 

detection of viability of the cerebellar granule neurons. Cell death may also be measured 

by other methods, e.g. flow cytometri. However, this method can not be used on these 

neurons since they are adherent, and can not be trypsinized.

2.3 ROS

While ROS predominantly are implicated in causing cell damage, they also play a major 

physiological role in several aspects of intracellular signaling and regulation (Droge 

2002). Thus, it is important to be able pinpoint the role of different ROS in the cell when 

ROS generated in response to different stimuli is characterized, and in doing so, which 

processes a specific scavenger may interfere with. The ideal chemical ROS probe would 

be highly reactive at low concentrations, specific, sensitive, nontoxic, well-characterized 

chemically, and easy to load into cells/organelles without unwanted diffusion, excretion, 

or metabolism (Wardman 2007).  

2.3.1 ROS detection 

Several probes have been developed to detect the generation of ROS in living cells. Some 

probes are easier to oxidize than others, and these probes may be used as more general 

ROS detectors than probes that only may be oxidized by a few ROS (Setsukinai et al. 

2003). To detect reactive species two different probes were used, DHR 

(dihydrorhodamine 123) and Mt Red (MitoTracker Red CM-H2XROS), and this made it 

possible to characterize the localization of buffer- and glutamate-induced ROS. DHR has 

been reported to be a sensitive and efficient trap for peroxynitrite and may therefore be 

used to detect peroxynitrite generation (Kooy et al. 1994). Oxidation of DHR results in 

the formation of the fluorescent product rhodamine 123, which preferentially 

accumulates in mitochondria according to the trans-mitochondrial potential although 

DHR can be oxidized in different compartments throughout the cell (Pias et al. 2003). 

MT Red is oxidized inside the mitochondria and can therefore be used to investigate 

mitochondrial ROS generation. The absolute increase in the neuronal ROS level induced 

by buffer or glutamate treatment was similar. The oxidation of DHR and the cell death 
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were reduced by inhibition of enzymes generating nitric oxide or superoxide (the 

combination product is peroxynitrite) in glutamate treated neurons (paper I). Buffer 

induced oxidation of DHR was also reduced by inhibition of NOS and PLA2. Buffer 

induced the ROS level in somal mitochondria whereas glutamate induced the ROS level 

in peripheral mitochondria. This indicates that both buffer and glutamate induces the 

production of peroxynitrite in the neurons, but that the localization is different. 

2.3.2 ROS scavenging 

The effect of -estradiol, -estradiol, or vitamin C combined with vitamin E, as 

scavengers for glutamate-induced ROS, were evaluated (paper II). These scavengers all 

reduced glutamate-induced cell death, showing that ROS is involved in cell death. 

Five different probes usable for detection of ROS were also used as scavengers: DHR, 

MT Red, HE (dihydroethidium), HPF (2-[6-(4’-hydroxy)phenoxy-3H-xanthen-3-on-9-

yl]benzoic acid), and APF (2-[6-(4’-amino)phenoxy-3H-xanthen-3-on-9-yl]benzoic acid). 

The specificity of DHR and MT Red is described in 2.3.1. HE is frequently used as a 

probe for superoxide, and the oxidation of HE is reported to be selective for superoxide in 

rat hippocampal pyramidal neurons in culture and in brain slices (Bindokas et al. 1996). 

HPF is reported to detect hydroxyl radical and peroxynitrite, whereas APF detects 

hydroxyl radical, peroxynitrite and hypochlorite (Setsukinai et al. 2003). Since oxidation 

of the probe reduces the ROS level, ROS probes may be used as scavengers. We showed 

that DHR, HPF and APF all scavenged glutamate-induced toxic ROS, whereas HE did 

not scavenge the toxic ROS (paper I). Thus, it is likely that glutamate induces the 

generation of peroxynitrite, and that this peroxynitrite is toxic to the neurons.

2.4 Pharmacological inhibitors 

MK 801 [(+)-5-Methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate]

is a non-competitive NMDA receptor antagonist (Wong et al. 1986). It blocked cell 

death, and completely reduced glutamate-induced ROS generation and expression of 

NGFI-B (paper 1 and IV). MK 801 (10 μM) has also been reported to be an antagonist on 
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the nicotinic acetylcholine receptor (Galligan and North 1990). However, since the 

protection mediated by MK 801 (1 μM) in cerebellar granule neurons is similar as the 

protection mediated by a competitive NMDA receptor antagonist (CGP 39551), it is 

likely that the observed effects of MK 801 is due to interference with the NMDA receptor 

(Jacobs et al. 2006). Verapamil is an inhibitor of voltage-dependent calcium channels 

(Ferrari 1997), and it significantly reduced buffer-induced ROS generation and 

expression of NGFI-B (paper I and IV), showing that other channels than the NMDA 

receptor contribute to the increased ROS and NGFI-B mRNA observed. It has been 

reported that addition of verapamil to cultured cerebellar granule neurons before, during, 

and after glutamate treatment reduced glutamate-induced cell death (Pizzi et al. 1991). 

 Activated PLA2 may generate superoxide anion radical, and their activity can be 

inhibited by OBAA (a general inhibitor of PLA2). Secretory PLA2-IIA inhibitor 1 has 

been shown to selectively inhibit sPLA2 type IIA (Church et al. 2001). The specificity of 

this inhibitor can be evaluated by measuring the activity of sPLA2-IIA or by 

immunostaining (active and inactive sPLA2-IIA has different locations). However, there 

was no specific assay for the detection of the sPLA2-IIA activity available at the time 

when paper I was prepared. The synthesis of nitric oxide was inhibited by nitro-arginine 

(inhibitor of nNOS and iNOS). Inhibition of PLA2 and NOS significantly reduced 

glutamate-induced cell death. It also reduced glutamate-induced ROS generation, but 

only OBAA and nitro-arginine reduced buffer-induced ROS generation (paper I). Nitric 

oxide and superoxide combine to generate peroxynitrite, and this process is only limited 

by the diffusion rate (Murphy et al. 1998). Peroxynitrite induces the generation of 3-

nitrotyrosine on proteins. It is likely that peroxynitrite is generated in glutamate treated 

neurons since the level of 3-nitrotyrosine was significantly increased (paper I). 

 Vitamin C combined with vitamin E are ROS scavengers (section1.6.2), and they 

reduced glutamate-induced ROS generation and cell death, but had no effect on the 

expression of NGFI-B or the transcription of GCS (paper I, II, and IV). Both -estradiol

and -estradiol may scavenge ROS and therefore protect the neurons against glutamate-

induced toxicity (paper II), however, it did not affect the expression of NGFI-B (paper 

IV). Preincubation of the neurons with estradiol for 24 h before glutamate treatment 

abolished the acute protection (paper II). Thus, although vitamins and estradiol scavenge 
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ROS and reduce neuronal death, they may have different effects on other ROS regulated 

processes.

 Caspase 3 activation was detected in chicken neurons using Ac-DEVD-amc, a 

fluorometric caspase 3 substrate. The caspase 3 activity was significantly increased in 

glutamate-treated neurons, and the addition of a caspase 3 inhibitor significantly reduced 

the cell death. This is consistent with previous results in rat cerebellar granule neurons 

(Slagsvold et al. 2003).

 Addition of 9cRA, a high-affinity RXR ligand, reduced cell death induced by 

glutamate and calcium ionophore both when 9cRA was added before and when it was 

added 1 or 2 hrs after treatment. 9cRA arrests RXR in the nucleus (Cao et al. 2004) and 

therefore inhibits translocation of the NGFI-B/RXR heterodimer to the nucleus. Since 

RXR may dimerize with other transcription factors, addition of 9cRA may also have an 

effect on these processes (Szanto et al. 2004).

 In total, this supports that critical actors in glutamate-induced neuronal death 

includes activation of NMDA receptors which increase intracellular calcium resulting in 

ROS generation by NOS and PLA2, and activation of caspase 3 and NGFI-B.

2.5 Expression 

Models used in this thesis to express reporter genes or to overexpress proteins, includes 

transgenic mice with firefly luciferase coupled to the GCS promoter, chicken cerebellar 

granule neurons transfected with an experimental reporter containing 8 NGFI-B response 

elements in front of a basal prolactin promoter driving the expression of the firefly 

luciferase reporter gene (NBRE-luc), and rat cerebellar granule neurons transfected with 

NGFI-Bgfp. In transiently transfected cells, the number of cells containing the transfected 

plasmid depends on the transfection efficiency, and the cells only express the gene for a 

limited period. The transfection procedure may also have an effect on the cells and may 

affect the results. Therefore, Renilla luciferase was used as an internal control for the 

transfection efficiency. NGFI-Bgfp was overexpressed and this may have an effect on the 

localization of the protein. However, the localization of NGFI-Bgfp in untreated neurons 
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was similar to the localization of wild type NGFI-B shown by immunostaining (Jacobs et 

al. 2004). It has also been shown by immunostaining that wild type NGFI-B translocates 

to the mitochondria in glutamate treated neurons (Jacobs et al. 2004). The localization of 

the wild type protein was not shown by immunostaining in paper IV. This is because it 

was not longer possible to find an antibody lot that could be used in immunostaining (the 

efficiency varies between different lots).

 In transgenic animals, the reporter gene is expressed in all cells. This eliminates 

the problem with delivery of the plasmid to the cells. However, making transgenic 

animals is expensive and demands more resources than transient transfection.  The 

transgenic animals may also be used to image in vivo bioluminescence. This would make 

it possible to evaluate if the estradiol preconditioning is a general phenomenon in the 

brain. The preconditioning phenomenon correlated with the amount of GSH detected by a 

glutathione assay. This assay can be used to quantify the amount of GSH (the reduced 

form of glutathione), but not GSSG (the oxidized form of glutathione) or tissue-linked 

glutathione.
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3.  Discussion of the results 

The results obtained in the present thesis are discussed in 3.1-3.4, and are illustrated in 

figure 5. 

Figure 5. Pathways involved in glutamate-induced cell death and survival. Activation 
of the NMDA receptor results in increased intracellular Ca2+. MK 801 is a non-competitive NMDA 
receptor antagonist. PLA2, sPLA2-IIA and NOS are Ca2+ -dependent enzymes, generating O2

.- or .NO, 
respectively, and the combination product is ONOO-. OBAA (PLA2 inhibitor), sPLA2-IIA inhibitor I, and 
n-arg (NOS inhibitor) reduce ROS generation. GSH, an important part of the cellular antioxidant defense, 
is synthesized via two steps catalyzed by GCS and GSH synthetase, respectively, and GSH is also located 
inside the mitochondria. Estradiol reduces the synthesis of GCS and therefore the level of GSH. Vitamin E 
targets to membranes whereas estradiol exerts its function inside cells. Ca2+ induces the expression of 
NGFI-B. In response to an apoptosis signal (unknown signal) NGFI-B/RXR translocates from the nucleus 
to the mitochondria and converts Bcl-2 from an apoptosis protector to an apoptosis inducer releasing cyt c 
through MOMP. Cytosolic cyt c is required for the initiation of the apoptosome and the activation of 
caspase 3. 9cRA arrests RXR in the nucleus preventing the translocation of NGFI-B/RXR out of the 
nucleus. Abbreviations are shown on page 2 and 3. The mitochondrion is taken from figure 1and the 
membrane is taken from figure 2.   
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3.1 Glutamate-induced ROS  

In paper I we show that glutamate induces ROS generation in peripheral mitochondria, 

whereas buffer treatment induces ROS generation in somal mitochondria. However, only 

increased ROS in the peripheral mitochondria were involved in the mediation of the 

toxicity. This may be due to differences in the mitochondrial populations. It is well 

known that the mitochondrial population is heterogeneous with regard to its enzymatic 

activities, chemical makeup, and sedimentation characteristics (Kuff and Schneider 

1954). For instance, it has been shown in serotonergic neurons that mitochondria in the 

cell body contains monoamine oxidase type B, whereas mitochondria in axon terminals 

lacks this enzyme (Arai et al. 2002). Comparing brain and liver mitochondria isolated 

from 12-month-old rats showed a difference in the susceptibility to oxidative damage due 

to a difference in the antioxidant mechanisms (Santos et al. 2001). It has been found that 

the susceptibility to oxidative stress depends on mitochondrial contents of both 

antioxidants and cytochromes, and a study of three mitochondrial fractions from rat liver 

showed that the heavy fraction containing more mature mitochondria, was characterized 

by the lowest antioxidant level, the highest cytochrome content, and the lowest capacity 

to oppose an oxidative challenge (Di Meo et al. 1996; Venditti et al. 2002). Mitochondria 

are synthesized in the cell bodies of neurons  and are then transported down the axon 

(Hollenbeck 1996). Analysis of mitochondrial potential during transport in neurons 

derived from the dorsal root ganglia of chicken embryos has shown that ~90% of 

mitochondria with high potential move towards the growth cone and ~80% of 

mitochondria with low potential move towards the cell body (Miller and Sheetz 2004). 

Thus, somal and peripheral mitochondria represent different mitochondrial populations. It 

is not known if NGFI-B preferentially interacts with any of these.

 Both DHR and HE were used to detect glutamate-induced ROS generation (paper 

I), and the results showed that the level of oxidation was similar, however, only ROS 

detected by DHR were involved in the mediation of toxicity. DHR and HE were also 

used to detect ROS generation induced by an other cell death stimuli, potassium and 

serum deprivation (Miller and Johnson 1996), in the neurons (results not shown). The 

ROS generation in potassium and serum deprived neurons were approximately similar as 
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in glutamate treated neurons, however, only ROS detected by HE was involved in the 

mediation of toxicity. This shows that these two probes detect different ROS, and that 

they may be used as scavengers for specific ROS. To obtain increased selectivity of ROS 

probes they may be linked to a specific location in the cell, e.g. by targeting antioxidants 

to mitochondria (Murphy and Smith 2007). Such probes were not commercially available 

when paper I was made. 

3.2 Long-term effect of antioxidants 

It has been reported that estrogen treatment can protect against a wide range of 

neurotoxic insults, including free radical generation, excitotoxicity, and ischemia (Dubal 

et al. 1998; Green and Simpkins 2000; Behl 2002). Pretreatment for 15 minutes with -

estradiol or its non-estrogenic stereoisomer -estradiol, or vitamin C combined with 

vitamin E, reduced neuronal death in glutamate treated neurons (paper II). Since -

estradiol and -estradiol offered similar protection, it is likely that the protection is due to 

a non-genomic mechanism. Several potential mechanisms have been reported to be 

involved in the neuroprotective effect of estrogens, including its antioxidant properties 

(Kelly and Wagner 1999). In the presence of -estradiol, -estradiol, or vitamin C 

combined with vitamin E, the oxidation of DHR in glutamate treated neurons was 

reduced, showing that they reduce the ROS level in the cells, and supporting that the 

protection is due to an antioxidant mechanism. Preconditioning with estradiol for 24 h 

before glutamate treatment reduced its subsequent acute neuroprotection, whereas the 

neuroprotection by vitamin C combined with vitamin E offered full neuroprotection 

following a similar preconditioning period. These results show that combined treatment 

with vitamin C and vitamin E offers more effective long-term neuroprotection than 

estrogens. The reduced protection by long-term treatment with estradiol may be due to an 

effect on the synthesis of glutathione, the main endogenous antioxidant. In a PC12 model 

where the preconditioning phenomenon is mimicked the effect of estradiol on the GCS 

promoter is abolished when estradiol is linked to the membrane by a fatty acid tail 

(eicosaestradiol) (unpublished results by master student G.R. Øverby). Thus, the different 
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effects of vitamins versus estradiol on the GCS transcription may be due to the 

localization of the antioxidants; vitamin E targets to membranes (Monroe et al. 2005) 

whereas estradiol exerts its function inside cells. ROS that is involved in the mediation of 

toxicity must be different than ROS responsible for down-regulation of the GCS 

promoter.   

3.3 Preconditioning 

Preconditioning is the phenomenon that pretreatment of cells, tissues or organisms with a 

stimulus promote a transient response altering the result of a subsequent treatment. 

Preconditioning is described in different cell types, and the results of preconditioning 

may be e.g. increased or reduced toxicity of the subsequent treatment. In paper II we 

show that sustained (24 h) preconditioning with estradiol reduced the synthesis of the 

rate-limiting enzyme in glutathione synthesis resulting in a lower level of GSH, and the 

neurons were therefore more sensitive to excitotoxicity. This is a simple preconditioning 

mechanism. On the other hand, preconditioning may also be regulated by complex 

mechanisms. It is well established that preconditioning of cardiac and brain tissue with 

sublethal insults prepares cells to better withstand subsequent injury, e.g. ischemia (Chen 

and Simon 1997; Dekker 1998; Ferdinandy et al. 1998). A brief exposure to 

ischemia/reperfusion before sustained ischemia enhances the ability of the heart to 

withstand a subsequent ischemic insult (Ferdinandy et al. 2007). Similar, neurons may be 

protected against ischemia by sublethal ischemic insults via oxygen and glucose 

deprivation, and cultured rat cerebellar granule neurons may be protected against the 

excitotoxic effects of glutamate by subtoxic agonist-mediated stimulation of NMDA 

receptors (Marini and Paul 1992). The genomic expression pattern in response to 

ischemia is unique in a preconditioned animal, and differs considerably from the pattern 

activated by ischemia in a non-preconditioned animal (Stenzel-Poore et al. 2003). 

Preconditioning has been reported to e.g. induce the synthesis of the antiapoptotic 

proteins Bcl-2 and Bcl-xL (Shimizu et al. 2001; Wu et al. 2003).  In general, 

preconditioning agents/conditions appear to act by inflicting sublethal stresses on neurons 
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that cause a responsive upregulation of intrinsic neuroprotective survival mechanisms 

(Chen and Simon 1997). 

3.4 NGFI-B and cell death 

NGFI-B has been recognized to be involved in apoptosis in different cell types. In several 

cancer cells NGFI-B is overexpressed (Zhang 2007), and apoptosis-inducing cancer 

therapy by AHPN has been reported to result in the translocation of NGFI-B/RXR to the 

mitochondria, initiating the apoptotic process (Zhang et al. 2002). It has also been 

reported that NGFI-B may be involved in neuronal cell death (paper IV) (Jacobs et al. 

2004). NGFI-B translocates as a heterodimer with RXR to the mitochondria where it 

induces apoptosis by converting Bcl-2 from an antiapoptotic protein to a proapoptotic 

protein which induces cytochrome c release (Li et al. 2000), and the release of 

cytochrome c is critical for the activation of caspase 3 (Hengartner 2000). The protection 

induced by 9cRA (arresting NGFI-B/RXR in the nucleus) reduces cell death, but to a 

lesser degree than inhibition of caspase 3 (paper III) (Slagsvold et al. 2003). This 

indicates that other mechanisms than mitochondrial translocation of NGFI-B/RXR also is 

involved in the release of cytochrome c. We have shown that treatment with glutamate or 

calcium ionophore increased the expression of NGFI-B and the NGFI-B protein level (by 

transfecting chicken cerebellar granule neurons with NBRE-luc). To directly measure the 

protein level of NGFI-B, NGFI-B Western analysis should be done. However, since there 

was no antibody lot that could be used for Western available, this was not done. To 

further investigate the translocation of NGFI-B to the mitochondria, NGFI-B Western 

should be done on mitochondrial fractions. It would also be interesting to investigate if 

the glutamate induced ROS generation is involved in the mitochondrial translocation of 

NGFI-B. Therapy preventing the translocation of NGFI-B/RXR to the mitochondria may 

be reducing neuronal death. Thus, cancer therapy and neurodegeneration therapy may 

have the opposite effect on the localization of NGFI-B. This implicates that the side 

effect of such therapies must be thoroughly evaluated.
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4. Concluding remarks 

Overactivation of glutamate receptors induces ROS, which is critical for neuronal 

death, due to secretory PLA2-IIA associated with peripheral mitochondria. Buffer 

treatment induced generation of non-toxic ROS predominantly in somal 

mitochondria, whereas glutamate treatment led to ROS production predominantly 

in peripheral mitochondria. Inhibition of secretory PLA2-IIA in glutamate treated 

neurons blocked the cell death and reduced ROS generation in peripheral 

mitochondria, whereas it did not reduce ROS production in buffer treated cells. 

Preincubation of cultured cerebellar granule neurons with -estradiol, -estradiol, 

vitamin C combined with vitamin E, or progesterone, for 15 min before glutamate 

treatment, reduced the neuronal death. Preconditioning with -estradiol or -

estradiol for 24 h before glutamate treatment strongly reduced its subsequent 

acute neuroprotection, whereas vitamin C combined with vitamin E, or 

progesterone, offered full neuroprotection following a similar preconditioning 

period. The reduction was accompanied by an inhibition of the -glutamylcysteine 

synthetase promoter and a reduced level of GSH when preconditioning was 

combined with subsequent glutamate treatment. 

Cerebellar granule neurons from chicken may be used as a method to study 

excitotoxicity. These neurons respond to glutamate excitotoxicity similar to rat 

neurons (shown by ROS production and caspase 3 activation), they may be grown 

in a physiologically potassium concentration (5 mM), and have a larger 

transfection efficiency.

Neuronal death is induced in neurons treated with glutamate, calcium ionophore, 

or arachidonic, and they trigger translocation of NGFI-B out of the nucleus. The 

NGFI-B expression is induced by glutamate and calcium ionophore, and this 

induction is important for maintenance of the death mechanism. NGFI-B 
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translocates out of the nucleus as a heterodimer with RXR, and RXR is arrested in 

the nucleus in the presence of the RXR ligand 9-cis retinoic acid. Therefore, the 

need for new production of NGFI-B to maintain the cell death pathway allows 

late protection by 9-cis retinoic acid from glutamate- and calcium ionophore- 

induced death.
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