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ABSTRACT 
 

The present work concerns the development of liposomal formulations that can 

adsorb to the human dental enamel. The overall aim of this pharmaceutical approach is to 

physically protect the teeth against detrimental processes, such as tooth wear, acidic 

challenges and dental caries. Adsorption experiments of different liposomal formulations 

to hydroxyapatite (HA), a model substance for the dental hard tissue, and the human dental 

enamel were performed.  

To find which liposomal formulations are promising for the adsorption to teeth, 

formulation factors important for the interaction were initially mapped by the use of 

experimental design and multivariate analysis (Paper I). The type of surface charge became 

the most significant factor for the adsorption process. Positively charged liposomes 

adsorbed better than the negatively charged liposomes to HA in phosphate buffer, pH 6.8-7. 

However, the adsorption of positively charged liposomes to HA in a salivary environment 

was interfered as they were found to aggregate with components of saliva (Paper II). 

To overcome problems related to the positively charged liposomes, the surface of 

the liposomes was modified with the polymer pectin. Three types of pectin were 

investigated for the surface coating of liposomes: LM-, HM- and amidated pectin (Paper 

III). Pectin coating of positively charged liposomes was successfully prepared, and a 

reproducible method was established. Pectin coated liposomes did not seem to interact 

with salivary components (Paper IV), and were therefore promising for use in the oral 

cavity. 

Pectin coated liposomes adsorbed to HA in saliva, and liposomes coated with LM-

and HM-pectin were selected for further investigation with the dental enamel (Paper IV). 

Both uncoated negatively charged liposomes and pectin coated liposomes adsorbed onto 

enamel specimens in a salivary environment (Paper IV), indicating their potential use in 

the protection of the teeth. The adsorption was examined by exposing a flow on the enamel 

surfaces for certain time intervals. Pectin coated liposomes seemed to retain better than 

uncoated negatively charged liposomes at longer time intervals. It was hypothesized that 

pectin may help to prolong the adhesion of liposomes on the tooth surfaces. 
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1. INTRODUCTION 

The most common public health problems worldwide are dental ailments 1. Dental 

problems can greatly impair an individual’s well-being and thereby have a major impact on 

the individual’s quality of life. Evidently, there is a need to implement preventive measures 

that can protect the teeth against detrimental processes such as tooth wear, acidic effects 

and dental caries. This thesis presents the development of pharmaceutical formulations, i.e. 

liposomes that can adsorb onto tooth surfaces, as a possible means for the physical 

protection of the dental enamel. The possibility of formulating liposomes of nanosize with 

the appropriate surface characteristics enables them to mimic the natural protective layer of 

the teeth; the acquired enamel pellicle. The concept of using liposomal formulations for 

their physical properties per se instead of their drug carrying capacity, as will be 

demonstrated here, has been scarcely investigated.  

 

1.1. Dental problems – prevention and treatment options 

Identification of the most common tooth related problems defines the background 

and the rationale for developing systems that can protect teeth and reduce the subsequent 

dental ailments. Knowledge of the available prevention and/or treatment procedures for 

these problems may also reveal the inadequacies related to the present methods. In this 

regard, present treatment options that require professional intervention will not be 

considered here. 

Dental enamel is the outmost mineralized tissue that covers the crown of the tooth. 

It is this surface of the teeth that is in constant interactions with components of the oral 

cavity in normal in vivo conditions. In order to understand the behavior of the dental 

enamel in the oral environment, important surface characteristics must be known. 

 

1.1.1. Human dental enamel – physicochemical parameters 

Approximately 96% (by weight) of the human dental enamel is composed of 

inorganic substance, the remainder being organic material and water. Because the enamel 

is highly mineralized, it is the hardest substance in the human body and, consequently, has 
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high resistance to both shearing and impact forces. This enable the teeth to withstand the 

mechanical forces applied during normal tooth functioning. This hardness also makes the 

enamel brittle. However, the enamel can withstand fracture due to high modulus of 

elasticity in combination with the resilient support of the underlying tissue, i.e. the dentine 
2.  

The inorganic content of enamel consists of crystalline calcium phosphate, also 

known as hydroxyapatite (Ca10(PO4)6(OH)2; HA). Ionic exchange can occur between the 

enamel and the environment of the oral cavity. Hydroxyl ions may be substituted by 

fluoride in the crystalline lattice, leading to a more stable and resistant structure against 

acidic dissolution. This ability is important considering the beneficial effects of fluoride in 

the remineralization of the dental enamel 3. 

The enamel surface is subjected to changes depending on the pH and ionic content 

of the surrounding medium. For instance, the pH affects the solubility of the enamel 

surface. At low pH (acidic conditions), the surrounding environment is unsaturated with 

respect to HA, and the mineral will tend to dissolve to reestablish the saturated condition 4. 

This makes pH the driving force for the de- and remineralization processes at the enamel 

surface. However, the presence of fluorides in the surrounding medium strongly influences 

the pH at which the surrounding medium is unsaturated. The presence of fluorides lowers 

the critical pH for unsaturation and is, thus, probably one of the most successful factors in 

caries prevention. 

At neutral pH, the enamel exhibits about 90% phosphate and about 10% calcium 

ions at the surface 5, 6. This means that the enamel expose both cations and anions at the 

solid surface. In the salivary environment of the oral cavity, a hydration layer is formed at 

the enamel surface. Since the enamel exhibits mainly negative phosphate groups at the 

surface, the hydration layer comprises mostly of attached calcium ions, acting as 

counterions to the phosphate ions of the enamel. Thus, possessing both phosphate and 

calcium sites at the enamel surface, the enamel has affinity to both acidic and basic 

substances. The zeta potential of human enamel has been estimated to be about -9 mV at 

neutral pH 7. Apart from pH, the presence of calcium and phosphate in the surrounding 

environment also influences the zeta potential 8.  
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1.1.2. Dental caries 

The most prevalent and widespread dental problem today is caries. Although it has 

been observed a decline in dental caries in industrialized countries in the last two decades 

due to the effective use of fluoride and improved self-care practices, dental caries still 

remain a major oral health problem 9-12. Additionally, there is an increased tendency of 

caries-related problems in developing countries. A growing consumption of sugars 

together with an inadequate exposure to fluorides are thought to be the main causes 1.  

Dental caries is characterized by the loss of enamel substance due to the 

demineralizing effects of organic acids (e.g. lactic acid) produced by bacteria in dental 

plaque. Acid production stem from the metabolism of simple dietary sugars, most notably 

glucose and sucrose, by cariogenic bacteria such as streptococci, lactobacilli and 

actinomycetes 13. Since caries develops slowly in most cases, and restorative treatment has 

a tendency of short durability due to recurrent caries, more emphasis has been laid on the 

prevention of caries management 14. For self-administered care, fluoride toothpaste has 

proven to be the most effective caries preventive approach. Fluoride can also be delivered 

in other forms such as gels, lozenges, varnishes or mouth rinses. To maintain a constant 

level of fluoride in the oral cavity, new formulations for sustained release of fluoride have 

been developed, e.g. new intra-oral devices such as bioadhesive tablets 15, 16. Other 

common self-care preventive measures of dental caries are mechanical plaque removal (e.g. 

tooth brushing) and antimicrobial therapy (e.g. chlorhexidine mouth rinses).  

It should be emphasized that although with improved oral hygiene, synchronously 

well-functioning saliva secretion is of major importance for an optimal prophylactic effect, 

especially in the early phase of caries lesion development. Saliva secretion offers 

continuous protection in its ability to clear cariogenic food substances, neutralize and 

dilute organic acids produced by plaque bacteria and detoxify or kill bacteria by its 

antibacterial components 17, 18. Moreover, the ability to regulate demineralization and 

remineralization processes by virtue helps to prevent further hard tissue loss by means of 

caries processes and tooth wear. This should be borne in mind for patients with salivary 

hypofunction. Many patients suffer from xerostomia, also known as dry mouth, due to e.g. 

the side-effects of medical treatment, radiotherapy for cancer treatment in the head and 

neck region, and certain systemic diseases such as Sjøgren’s syndrome 19-21. Although 

xerostomia does not directly influence the teeth, the lack of salivary protective functions 

may lead to adverse oral implications that affect the health of teeth 22. 
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1.1.3. Tooth wear 

Tooth wear is a general term used to describe the process of non-carious enamel 

and dentin loss, i.e. not involving bacteria 23. There are two distinct mechanisms of tooth 

wear; those of chemical origin (erosion) and those of physical origin (abrasion and 

attrition). The mechanical removal of dental hard tissue by abrasion is defined by a foreign 

material in repeated contact with the teeth, whereas attrition is caused by the direct contact 

between teeth without any foreign substance intervening 24. Typical causes of abrasion are 

the ingestion of abrasive foods or excessive use of oral hygiene products (e.g. tooth 

brushing and dentifrices with abrasives), whereas the action of mastication or bruxism 

(pathologically intensified chewing) itself can be a cause of attrition. Tooth erosion is the 

loss of dental hard tissue following chemical dissolution by acid where the acid source is 

not derived from oral bacteria. Erosion may be caused by either intrinsic (e.g. gastric acid 

in medical conditions such as gastro esophageal reflux disease or eating disorders) or 

extrinsic (e.g. dietary such as acidic beverages) factors 25. Erosive demineralization softens 

the enamel so that the tooth surface is more vulnerable to mechanical impacts, thereby able 

to enhance physical wear 26.  

The prevention and control of tooth erosion rely on the early recognition of enamel 

loss in combination with other signs associated with the aetiological factors 25. Decreased 

salivary flow, excessive oral hygiene, behavioral factors such as eating and drinking habits, 

especially the frequent ingestion of acidic foods and beverages, are predisposing factors for 

erosive tooth wear 27. Saliva hypofunction and/or the absence of dental pellicle can make 

individuals more susceptible to erosion or aggravate erosive lesions 27. Methods to enhance 

salivary flow (e.g. chewing sugar-free gum, saliva substitutes) and strengthen the enamel 

by the delivery of fluoride have proven useful in the prevention and control of tooth 

erosion as well as in dental caries 28.  

In the clinics, tooth wear mostly is observed as combined results of erosive effects 

(acid softening the hard tissues) and mechanical forces (abrasion) easily removing the 

softened enamel. Tooth wear, therefore, presents a multifactorial process and often occurs 

as a result of the simultaneous and/or synergistic action of the wear mechanisms. 

Compared to dental caries, the concern of tooth wear is relatively recent. For the past 

twenty years, there has been an increased attention in tooth wear, in particular erosion, due 

to changes in life style, often associated with increased consumption of acidic foods and 

drinks 29. Several studies on the prevalence of tooth wear show that there is a tendency to 
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develop more wear with age 30-32. Along with the increased human longevity and that tooth 

wear is a cumulative life time process, there is clearly a need to protect the dentition 

against the progression of wear in the management of long-term oral health care.  

 

1.2. The oral environment – from a pharmaceutical viewpoint 

The local treatment of tissues in the oral cavity (Fig. 1), e.g. of teeth, is challenging 

due to the complex and dynamic intraoral environment.  

 

  
 
Fig. 1: The oral cavity consists of various structures; lips, buccal mucosa, tongue, teeth, gingiva and palate, 

representing both soft and hard tissues. 
 

The oral surfaces are continuously bathed in a fluid, an intricate mixture of oral bacteria, 

leukocytes, desquamated epithelial cells, food debris, salivary secretions and crevicular 

fluid. This oral fluid is often termed whole saliva or mixed saliva. Because saliva is the 

main transporting vehicle within the oral environment, the salivary interaction of 

exogenous materials is unavoidable. This is an important aspect for the delivery of 

pharmaceuticals into the oral cavity as they will be influenced by saliva. Salivary clearance 

is beneficial for oral health since it can rapidly remove or reduce the concentration of both 

oral (e.g. desquamated cells) and exogenous, often harmful, substances (e.g. pathogenic 

bacteria/viruses, sugars and acids) 33. Despite the advantages, the flushing action of saliva 

also clears away protective substances that are externally introduced, such as fluoride and 

other drugs. From a therapeutically point of view in the oral cavity, a slow or delayed 

clearance of the drug agents is highly preferable. 

The healthy oral cavity is normally colonized by microorganisms like fungi, viruses 

and a tremendous high number of bacteria 34. It has been estimated that over 700 bacterial 
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species reside in the oral cavity; some may be pathogenic, other may be beneficial for the 

host 35. The oral bacteria can co-exist in complex populations in biofilms, rendering the 

microbial community increased protection and resistance. Formation of a biofilm on the 

tooth surface is known as dental plaque and is the primary cause of caries and other oral 

diseases 36. Beside from adhering to the oral surfaces, oral bacteria may potentially attach 

to other substrates, e.g. therapeutic components, and interfere with their purpose in the oral 

cavity.  

Anyway, foods and drinks, the salivary action and the diverse microbial flora all 

lead to a very harsh and hostile oral environment to foreign materials such as 

pharmaceutical formulations for dental applications. Furthermore, the environment in the 

oral cavity undergoes substantial changes due to fluctuations in the salivary secretions; the 

individual’s eating and drinking behavior in combination with the overall state of health, 

time of day and physical activity. One way to endure and persist in the oral environment is 

to avoid the cleansing action of saliva by the development of bioadhesive formulations. 

Knowledge of saliva’s role to maintain oral homeostasis can help to design an appropriate 

formulation that can overcome the obstacles present in the oral cavity.   

 

1.2.1. Salivary variables 

Saliva represents the immediate environment of the teeth, thus, influencing the 

properties of the solid surface of the teeth. Human saliva is mainly produced from three 

major paired glands; the parotid, the sublingual and the submandibular glands. Secretions 

from these glands differ in composition and their relative contributions in whole saliva 

may vary according to the degree or nature of stimulation. The secretion of saliva is 

exclusively under the control of the autonomic nervous system, in particular 

parasympathetic stimulation. The parotid and submandibular glands do not secrete saliva 

spontaneously, their secretion is entirely nerve-mediated and stimulation dependent 37. 

A precise account of the composition of saliva is difficult, because it is highly 

variable depending on a number of factors, including the type of gland, time of the day, the 

flow rate, the nature and duration of stimulation. Variation of the composition of saliva 

occurs also between different sites in the mouth as well as between individuals. Secretions 

from the parotid gland are more serous in nature, whereas those from submandibular and 

sublingual glands are viscous due to their glycoprotein content 17. The continuous secretion 

of saliva exhibits a circadian rhythm with flow rate peaking in the afternoon and very low 
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levels during sleep 38. The normal unstimulated flow rate of whole saliva is estimated to be 

0.2-0.4 ml/min (resting saliva), whereas in a stimulated state the flow rate may increase to 

2-5 ml/min 39. It should be emphasized that these averaged values have a wide range within 

normality. Because of saliva’s many variables, the total volume of saliva secreted per day 

has been much disputed; however, the range of 0.5-1.5 l/day covers the most values that 

have been reported in the literature. 

Saliva contains over 99% water, the remaining small quantity is divided into 

organic (carbohydrates, lipids and proteins) and inorganic constituents (sodium, potassium, 

calcium, magnesium, hydrogen carbonate, phosphate, chloride and fluoride) 37. Of the 

inorganic fraction in saliva, calcium and phosphate are of particular importance to teeth 

because they are supersaturated with respect to the dental enamel 40. Although the range 

may vary widely, typical concentrations of calcium and phosphate in whole saliva are 1.4 

mmol/l and 6 mmol/l, respectively, in unstimulated saliva, and 1.7 mmol/l and 4 mmol/l, 

respectively, in stimulated saliva 17, 37. The supersaturation of these electrolytes helps to 

prevent the dissolution of the enamel surface and facilitates the remineralization of dental 

enamel after acidic challenges. By providing a reparative and stabilizing environment at 

the enamel surface, saliva is of major importance to maintain the integrity of the dental 

enamel. 

Another important electrolyte involved in saliva’s functions is hydrogen carbonate. 

The resting pH of whole saliva is in the range 6.7-7.4 17. After consumption of foods or 

drinks containing fermentable carbohydrates, acid is produced by bacteria and the pH of 

the local environment within the oral cavity decrease. When the pH drops below the 

critical pH of the enamel (pH ~ 4.5-5.5), demineralization of the teeth may take place 4. 

The rate of recovery to normal pH values is largely dependent on the increase of the 

hydrogen carbonate concentration, thus contributing to the buffering capacity of saliva, 

especially at high salivary flow rates 41.  

The large array of proteins constitutes the most important organic fraction of saliva 

as they are responsible for saliva’s many physiological roles. The total protein content of 

stimulated whole saliva has been reported to be in the range 2.4-3 g/l 17, 42. The functions of 

saliva can be regarded as three-sided; directed towards teeth (tissue coating and protection), 

food (alimentation) and microbes (regulation of the oral flora) 43. Proline-rich proteins 

(PRPs) and statherin exert the protective role of saliva by binding to calcium and inhibiting 

spontaneous precipitation of calcium phosphate salts on teeth 44. They can also selectively 

promote adhesion of some bacteria to tooth surfaces 45. Lubrication of oral surfaces by 



INTRODUCTION 

12 
 

saliva is thought to be attributed to the viscoelastic nature of mucins. The digestive 

function is accomplished by the enzymes amylase, lipase and protease, while the 

antibacterial activity of saliva is ascribed to immunoglobulins, lactoferrin, and the 

antimicrobial enzymes lysozyme and lactoperoxidase 43. Many of these proteins are 

multifunctional 46. Mucins have antibacterial effects in concert with other factors in saliva. 

Together with PRPs and statherin, they have high affinity to enamel hydroxyapatite and 

can inhibit demineralization of the enamel by selective adsorption to tooth surfaces 

contributing to the formation of the acquired enamel pellicle 47. Thus, the protection of the 

oral cavity by saliva is established in several ways (Fig. 2). 

 
Fig. 2: Some of the protective mechanisms of saliva. 

 

1.2.2. The acquired enamel pellicle 

Saliva is rarely in direct contact with the teeth because of a thin layer of salivary 

origin, the acquired enamel pellicle, covering the tooth enamel surfaces. The term was first 

used by Dawes et al. in 1963 48. Since then, numerous papers have given evidence for its 

formation by selective adsorption of salivary proteins on the enamel surface 49-52. More 

recently, owing to advances in proteomics, the peptides and proteins components of the 

pellicle have been identified 53-56. The acquired enamel pellicle is formed quickly after 

tooth eruption into the oral cavity or on tooth surfaces exposed to saliva after a thorough 



INTRODUCTION 

13 
 

cleansing procedure. The formation of the pellicle has been described to proceed in two 

stages 57. The first stage constitutes the initial formation of an organic covering by the 

adsorption of discrete proteins. This occurs within minutes. The pellicle maturates into the 

second stage when the proteins are assembled into globular micelle-like structures, and as 

such adsorbed to the enamel surfaces increasing the pellicle thickness. The growth of the 

pellicle reaches a maximum after 30 minutes and can be up to 1.0 µm thick 58. The 

previously mentioned selective adsorption of salivary proteins to enamel surfaces are now 

merely interpreted as adsorption of salivary structures selectively aggregated into micelle-

like globules. 

 The proteins involved in the micelle-like globules are generally phosphoproteins 

with amphiphilic character, thus having the ability to associate into micellar structures with 

high affinity to the dental enamel 59-61. Rykke et al. 59, 62 determined the mean particle size 

of these protein globules and demonstrated an overall net negative charge at the surface of 

the globules. The particle size was in the size range 100-500 nm with zeta potential of 

about -9 mV at physiological pH (pH ~ 7.8). The negative surface charge of these particles 

enabled electrostatic interactions with the enamel surface. It was also demonstrated that 

calcium was important to maintain the integrity of these structures. 

The pellicle layer on the teeth has been thought to have protective functions by 

several mechanisms. The pellicle serves as a lubricant between teeth and other oral 

structures, thus preventing tooth wear 63, 64. The influence of the salivary pellicle on 

erosion, i.e. direct acid attack, has been demonstrated by Hannig and Balz 65, 66 and more 

recent by Hara et al 67. The pellicle was shown to be protective against mild erosive 

challenges, thus, limiting the damaging effects of erosion in the mouth. The pellicle also 

acts as a barrier, modifying acid diffusion and the exchange of calcium and phosphate at 

the enamel surface. This can prevent demineralization and facilitate remineralization 68.  

Pellicle components can mediate non-specific and selective bacterial adhesion and 

initial plaque formation, and also affect the attachment of cariogenic microorganisms to the 

enamel 69-71. A recent study reported that adherent bacteria were present in the initial 

pellicle and suggested that the pellicle should be classified mainly as a proteinaceous layer 

with a considerable number of adherent bacteria, instead of a proteinaceous film free of 

bacteria as previously thought 72. Thus, the pellicle layer may provide a base for the 

subsequent development of dental plaque (Fig. 3).  
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Fig. 3: A schematic illustration of the in vivo layers on the enamel surface. 

 

As a second layer on the tooth surface, dental plaque can further separate the enamel 

surface from bulk saliva and may limit the ability of saliva to exert its protective effect. 

Thus, the fate of the enamel is driven by the interactions between saliva, salivary pellicle, 

dental plaque (oral biofilm) and the enamel surface 73.  

It appears that the salivary pellicle participates in all interfacial actions taking place 

in the oral cavity, including adsorption phenomena onto enamel surface. This means that 

adsorption by a pharmaceutical formulation for a protective function on the tooth surface is 

strictly not on the enamel, but on a pellicle-covered enamel in normal in vivo conditions. 

However, in situations where saliva secretion is greatly reduced, there may be insufficient 

or even incomplete or totally absent pellicle coating on the tooth surfaces. Following the 

tooth protection by the pellicle, developing formulations that can mimic and substitute, or 

be a part of the pellicle layer may offer advantages in cases where this protective coating is 

lost.  

 

1.3. The potential of liposomes for protection of the dental enamel 

Recently, nanotechnology and the use of biomimetic nanomaterials have been 

proposed as new strategies for the prevention and treatment in dentistry 74, 75. Liposomes 

are biocompatible nanoparticles that offer innumerable possibilities in that they can be 

easily designed and tailored to suit a specific application. The use of liposomes for the 

delivery of drugs to the oral mucosa to treat oral ulcers, has been studied 76-79. The 

adsorption of various liposomal formulations to oral bacteria and biofilms has been 

reported by Jones and coworkers 80-82. They investigated the concept of using liposomes 

for the delivery of antimicrobial agents, such as Triclosan and chlorhexidine, and found 

that liposomes could be used to target oral bacteria. These studies demonstrate the potential 

use of liposomes in the intraoral environment. 
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Liposomes can be formulated in an attempt to overcome common problems 

associated with drug therapy in the oral cavity, such as salivary clearance and the non-

uniform distribution within the oral cavity 83-85. Liposomes can be formulated to have high 

affinity to the dental enamel to obtain direct targeting to teeth. To minimize salivary 

clearance, the liposomes should also be able to retain on the dental enamel (bioadhesive 

liposomes). This may reduce the frequency of administration. Liposomal preparations are 

easy to self-administer into the oral cavity and most likely impose little discomfort. All 

these factors may lead to increased patient compliance. 

 

1.3.1. Liposomes -  formulation aspects  

In the simplest form, liposomes are nanosize vesicles comprising of phospholipid 

bilayers of natural or synthetic origin. The lipid molecules, each of which typically consists 

of a hydrophilic headgroup and two hydrophobic hydrocarbon tails, spontaneously self-

assemble in the presence of aqueous environment (Fig. 4). Hence, hydrophilic molecules 

can be entrapped in the aqueous core, while lipophilic molecules can be incorporated in the 

lipid bilayer. The amphipathic nature enables liposomes to carry drug molecules of 

different properties to the site of action as well as to protect them against degradation 

mechanisms, e.g. metabolism or inactivation, in the human body. The physicochemical 

properties of liposomes i.e. surface charge, hydrophobicity, particle size, bilayer rigidity 

and the packing of the lipid bilayers are important factors for their stability in vivo as well 

as in vitro. For example, the alkyl-chain length and degree of saturation play a major role 

in the rigidity and permeability of the bilayer as well as the chemical stability of the 

liposomes 86. In vivo toxic effects of positively charged liposomes have been reported; the 

toxicity dependent on the concentration and charge density of the cationic lipid 87. 

Therefore, to develop liposomes for a specific application, formulation factors should be 

studied initially, to find which factors are important and suitable for the intended purpose. 
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Fig. 4: The formation of liposomes. 

 

Physical stability is one of the major hurdles encountered with liposomal 

preparations. Processes such as aggregation and precipitation, fusion and drug leakage may 

hamper the pharmaceutical development of liposomes 86. Coating liposomes with natural 

polymers may improve the liposomal stability. Polysaccharides are attractive polymers for 

surface coating because of their availability and low cost, biodegradability, low toxicity, 

preventing binding of plasma proteins, and interaction in biological recognition processes 

through specific entities 88. Many polysaccharides have been studied such as amylopectin, 

chitosan, dextran, mannan and pullulan 89-91. These investigations show that the polymers 

are able to interact and strongly adhere to the liposomal membrane thereby execute their 

intended function. Furthermore, most natural polysaccharides have hydrophilic groups, 

such as hydroxyl and carboxyl groups, which can form non-covalent bonds with biological 

surfaces. The attachment of a macromolecule onto biological tissues is called bioadhesion. 

Bioadhesion onto mucosal membranes, i.e. mucoadhesion, has been extensively 

investigated to prolong the retention time of drug delivery systems and thereby improve 

drug bioavailability 92. Liposomes coupled with bioadhesive polysaccharides can function 

as bioadhesive drug delivery systems. Pectin, which is a mucoadhesive polysaccharide 93, 94, 

has recently been investigated for coating onto liposomes to improve drug delivery through 

the gastrointestinal tract 95. Bioadhesive liposomes may also be popular for local use in the 

oral cavity 84. This is due to the rapid elimination of drugs owing to the flushing action of 

saliva. In this regard, liposomes that are bioadhesive against enamel surfaces of the teeth 

may offer potential in dental applications.  
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1.3.2. Physical protection of the dental enamel 

The protection of the dental enamel against detrimental processes, such as dental 

caries and tooth wear, can occur by two principles: chemical and/or physical protection. 

The use of liposomes can potentially contribute to both types of protection. Liposomes 

may chemically protect the teeth by functioning as carriers for a variety of 

pharmacologically active substances (dental drug delivery systems). Depending on which 

type of drug is delivered, liposomal formulations may be used for prophylaxis (e.g. 

fluoride) or for therapeutic treatment (e.g. chlorhexidine). Targeting the delivery systems 

directly to the enamel for treatment of dental problems may increase the pharmacological 

effect of the encapsulated drug and reduce unfavorable side effects. However, in order to 

target and improve liposomal performance, the liposomes need to be physically adsorbed 

onto teeth prior to action. The adsorption of liposomes onto teeth per se may function as a 

protective layer for the enamel. 

In normal in vivo conditions, salivary proteins, by forming the acquired enamel 

pellicle on the enamel surfaces, provide the natural protection from both chemical and 

mechanical challenges to the tooth surface. In conditions where there is a lack or reduced 

secretion of saliva, this physical layer on the teeth can be incomplete or totally lost or the 

protection is insufficient, increasing tooth wear and dental caries. To improve the oral 

health of affected individuals, liposomes can be formulated similar to the protein globules 

of the salivary pellicle, for adsorption to teeth where they can mimic, substitute or be a part 

of the natural pellicle layer. Thus, through the adsorption of liposomes, the mechanical 

protection of the teeth is exhibited. A liposomal covering on the dental enamel may reduce 

the frequency of contact with acids, increase the resistance of the dentition and thereby 

reduce tooth wear processes. Furthermore, the liposome layer may change the basis for 

bacterial accumulation of plaque bacteria on the tooth surface, thereby influencing the 

development of dental caries.  
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2. AIM OF THE THESIS 

 

The overall aim of this thesis was to develop liposomal formulations that can adsorb to the 

human dental enamel, and thereby physically protect the teeth against tooth wear and 

dental caries.  

 

The specific objectives in the investigations were: 

 

� To prepare liposomes with different characteristics and to study the surface 

coating of liposomes by different types of the polymer pectin (Paper I and III). 

 

� To find which liposomal formulation factors are important for the adsorption of 

liposomes onto the dental enamel by using the model substance hydroxyapatite 

(HA) and phosphate buffer, pH 6.8 - 7.0 (Paper I). 

 

� To examine the interactions between liposomal formulations and components of 

the saliva (Paper II and IV). 

  

� To evaluate the bioadhesion of selected liposomal formulations to the dental 

enamel in a salivary environment (Paper II and IV). 
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3. SUMMARY OF PAPERS  (I-IV) 

 

PAPER I:  

The aim of this study was to find the most promising liposomal formulation for the in vitro 

adsorption to teeth. Formulation factors important for the interaction between liposomes 

and hydroxyapatite (HA), a model substance for the dental enamel, were mapped. 

Experimental design was employed for a systematic approach and multivariate analysis 

was used to evaluate the results. The type of charge on the liposomes (positive, negative), 

the type of main phospholipid (egg-PC, DMPC, DPPC), the type (diacyl-TAP, -ethylPC, -

PA, -PG, -PS) and amount of charged lipid (2.5 and 10 mol%), and the inclusion of 

cholesterol were variables investigated. The type of charge became the most significant 

factor. Positively charged liposomes adsorbed better than negatively charged liposomes to 

HA in phosphate buffer, pH 6.8-7. Positively charged liposomes with DPPC as the main 

lipid were most stable during storage. Based on the results, formulations based on 

positively charged DPPC liposomes with 10 mol% charged lipid included seemed most 

promising for targeting to the teeth. 

 

PAPER II:  

To simulate oral-like conditions and examine the influence of saliva on the interaction 

between liposomes and HA, phosphate buffer was replaced by parotid saliva as adsorption 

medium in this study. Precipitation was observed in samples containing positively charged 

liposomes (DPPC/DPTAP) and parotid saliva as the only components. Turbidimetric 

measurements of mixtures liposomes-parotid saliva were employed to study this 

interaction. DPPC/DPTAP-parotid saliva resulted in very turbid sample, which precipitated 

and phase separated after about 30 min. In contrast, the turbidity of negatively charged 

liposomes was dependent on the nature of the charged lipid. DPPC/DPPG liposomes in 

parotid saliva were very turbid at a constant level, while DPPC/DPPA in parotid saliva 

exhibited low turbidity. The addition of pyrophosphate, a calcium sequestering agent, to 

the liposomes-parotid saliva mixtures, rendered a great fall in the turbidity of samples with 

DPPC/DPPG-liposomes, while only a small reduction was observed for samples with 

DPPC/DPTAP-liposomes. This indicated that calcium may play a role in the interaction 

between negatively charged DPPC/DPPG-liposomes and parotid saliva. 
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Negatively charged DPPC/DPPA liposomes were found most suitable for use in the oral 

cavity as they were not observed to react with components of parotid saliva. 

 

PAPER III: 

This study investigated the surface coating of liposomes by three types of the polymer 

pectin; LM-, HM- and amidated pectin, each in two concentration levels (0.05 and 0.2 

w/w %). The purpose of preparing pectin coated liposomes was to possibly improve the 

bioadhesion of liposomes to the dental enamel. Characterization of uncoated and pectin 

coated liposomes were based on particle size determinations and zeta potential 

measurements. The pectin coating on positively charged liposomes was verified by an 

increase in size and a shift in zeta potentials from positive to negative side of the pectin 

coated particles. A reproducible method for coating the liposomes was established. Pectin 

coating on the negatively charged liposomes could not be demonstrated as the results were 

inconclusive.  

 

PAPER IV: 

This study examined the in vitro adsorption of uncoated and pectin coated liposomes onto 

human dental enamel in a salivary environment. Firstly, pectin coated liposomes were 

shown to adsorb to HA in phosphate buffer and parotid saliva. LM- and HM-pectin coated 

liposomes were selected for further investigations. As enamel specimens, the enamel 

crowns of extracted molars were used. A new, reproducible method for liposome 

adsorption was developed. In principle, the procedure makes use of a dipping device to 

immerse the enamel specimens in different liposomal suspensions. Uncoated positively 

charged liposomes exhibited the highest adsorption levels to the  enamel specimens, while 

the adsorption of liposomes with a negative surface charge (uncoated and pectin coated) 

could not be discriminated. The adsorption was examined by exposing the enamel surface 

for a flow; simulating the flow rate of stimulated saliva secretion. The results indicated that 

pectin coated liposomes retained better than the uncoated liposomes on the dental enamel. 

This support the hypothesis that pectin may help to prolong the adhesion of liposomes on 

the tooth surfaces. 
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4. GENERAL EXPERIMENTAL CONSIDERATIONS 

 
4.1. Materials 

 

4.1.1. Lipids  

A general structure of a phospholipid is illustrated in Fig. 5. All lipids used in the 

studies in this thesis are listed in Table 1 together with their molecular structure and some 

of the important properties. The lipids were used without further purification.  

 

 
 
Fig. 5: General structure of a phospholipid. 

 

 

 

Table 1: The chain length, molecular weight (Mw), main phase transition temperature (Tc), type of charge 

together with the molecular structure of the lipids used in this thesis. The data are taken from Cevc 96 or from 

www.avantilipids.com. a Adapted from www.avantilipids.com. b Fluorescent lipid; fatty acid labeled. 

*)Structure of predominant species. n.a.: Data not available 
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TYPE OF 
LIPID 

CHAIN 
LENGTH 

Mw 
(Da) 

Tc 
(°C) 

TYPE OF 
CHARGE 

MOLECULAR STRUCTURE a PAPER 

MAIN LIPIDS 
DMPC C14 678 23 Neutral 

 

I 

DPPC C16 734 41.5 Neutral 

 

I, II, III, 
IV 

Egg-PC C16-C22 ~770 -10 Neutral 

*)  

I 

CHARGED LIPIDS 
DM-ethylPC C14 742 23.6 Positive 

 

I 

DMPA C14 615 50 Negative 

 

I 

DMPG C14 689 23 Negative 

 

I 

DMPS C14 702 35 Negative 

 

I 

DMTAP C14 590 24.5 Positive 

 

I 

DOPS C18 810 -11 Negative 

 

I 

DOTAP C18 699 -12 Positive 

 

I 

DP-ethylPC C16 799 42 Positive 

 

I 

DPPA C16 671 67 Negative 

 

I, II, IV 

DPPG C16 745 41 Negative 

 

I, II, III 
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(Continued) 
TYPE OF 

LIPID 
CHAIN 

LENGTH 
Mw 
(Da) 

Tc 
(°C) 

TYPE OF 
CHARGE 

MOLECULAR STRUCTURE a PAPER 

CHARGED LIPIDS 
DPPS C16 758 54 Negative 

 

I, II 

DPTAP C16 646 44.5 Positive 

 

I, II, III, 
IV 

Egg-PA C16-C22 ~706 18 Negative *)

 

I 

Egg-PG C16-C22 ~782 < 0 Negative *)

 

I 

PI; from 
wheat germ 

C16-C18  ~856 n.a. Negative 

 

II 

OTHER LIPIDS 
Cholesterol; 
from porcine 
liver 

Sterol 387 n.a. Neutral 

 

I 

NBD-PC b C18 and C6 798 n.a. Neutral 

 

II, IV 
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4.1.2. Pectin 

Pectin is a complex plant polysaccharide where the dominant feature is composed 

of galacturonic acid residues. pKa of pectin is in the range 2.9-3.3 97. The acid groups of 

the galacturonic units can be methoxylated or/and amidated in varying degree, giving rise 

to different types of pectin with different properties. For the surface modification of 

liposomes, three commercial types of pectin were employed (Paper III and IV): high-

methoxylated (HM), low-methoxylated (LM) and amidated (AM) pectin, all of which were 

mainly derived from citrus peel (Fig. 6). The degree of esterification of LM-pectin is 34.8 % 

and of HM-pectin 70.2 %. Having the highest level of carboxylic acid in the structure, LM-

pectin is the most acidic type of pectin among the three types of pectin examined. HM-

pectin is highly substituted with methoxy groups (-OCH3) imparting a more hydrophobic 

structure than LM pectin. Due to the natural origin of pectin, batch-to-batch variation is 

high 98. All the three types of pectin were purified by dialysis with molecular weight cut 

off 8000 Da, followed by characterization of the average molecular weight prior to use. 

Pectin solutions 0.05 and 0.2 %  (w/w) in 5 mM phosphate buffer, pH 7 ± 0.1, were 

prepared for coating onto liposomes. 

    

 

Fig. 6: A schematic illustration of the fundamental unit of the three types of pectin used 

(From Paper III). 
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4.2. Methods 

 

4.2.1.  Preparation and characterization of liposomes 

Liposomes were prepared according to a standard thin film method 99, followed by 

extrusion through double 200 nm membranes to get unilamellar vesicles with the 

appropriate particle size (Paper I-IV). All liposomes were prepared in phosphate buffer 

medium. To surface modify the liposomes by pectin, liposomes were added to purified 

pectin solutions in a controllable manner by means of a peristaltic pump to avoid 

aggregation and ensure reproducible results (Paper III).  

Particle size determinations and zeta potential measurements are two techniques 

routinely used in the physical characterization of liposomes 86. In the present work, these 

methods have been used:  

 

� As a standard protocol to ensure that the preparation of liposomes has been 

successful; both in-process and final product control (Paper I-IV). 

� To examine changes in the liposomal system (e.g. fusion or aggregation of the 

liposomes) during the stability study (Paper I). 

� To verify changes when coating the liposomes with pectin (Paper III). 

 

The mean hydrodynamic diameter of the nanoparticles was determined by means of 

dynamic light scattering (DLS) technique (a Zetasizer 1000 and a Coulter N4 Particle 

sizer), and the surface potential by microelectrophoresis. Calculation parameters for water 

were used, and the measurements were performed at 25°C. All samples were diluted with 

phosphate buffer to an appropriate counting rate prior to analysis. To avoid sample dilution 

before the measurements, the size determinations of pectin coated liposomes were 

performed by use of an additional instrument; an ALV-goniometer (Paper III). This 

instrument is also capable of yielding β-values which is a measure of the width of the 

distribution of the relaxation times in the correlation function. β-values close to 1 indicates 

relatively monodisperse samples (non-aggregated particles). This information was useful in 

the verification of pectin coating on the liposomes.  
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4.2.2. Interactions between liposomes and saliva 

Pure parotid saliva is the most readily obtained among the three main glandular 

secretions when considering sample collection techniques. The serous nature of parotid 

saliva makes it also easier to deal with in experiments. Parotid saliva is always 

supersaturated with respect to enamel hydroxyapatite; average calcium and phosphate 

concentration is 0.9 mmol/l and 3.5 mmol/l, respectively 17, 100. Statherin and acidic PRPs 

constitute the major protein fractions of parotid saliva 101, 102. Prior to use, parotid saliva 

was filtered 0.45µm with PVDF membranes (Millex-HV Durapore®) due to low protein 

binding capacity (Paper II and IV).  

In order to minimize salivary variables, the saliva collection conditions were 

standardized. Acid is the most potent stimulus for salivary secretion, especially parotid 

saliva 17. Sour candies, containing both citric and malic acid, were intensively sucked to 

stimulate secretion in the studies (Paper II and IV). The same type of sour candies was 

used in all studies in an attempt to standardize the flow rate and thus the salivary 

composition. However, the flow rate and the composition of saliva exhibit circadian 

rhythm. Protein concentrations peak in the late afternoon, while sodium and chloride levels 

peak in the morning 38, 103. It was difficult to perform the collection of saliva at a certain 

time of the day due to many samples and parallels in the experiments. To overcome this 

potential variation in the results, the parallels of each sample were collected at different 

time of the day to achieve representative averages, and all samples were randomized to 

avoid biased results. One healthy female donor contributed to the collection of saliva. 

Rykke et al. have demonstrated that the amino acid composition of the acquired pellicle 

formed over 2h was very consistent both inter- and intraindividually 52. 

Saliva is sterile until it enters the oral cavity where it is continuously contaminated 

with oral microorganisms, desquamated epithelial cells, food remnants or other elements 

present in the oral cavity. In order to obtain pure parotid saliva, an individually fitted 

appliance was made to collect saliva directly from the parotid gland into test tubes (Fig. 7). 

To further avoid contamination, the first 1-2 ml of collected saliva was discarded. After 

filtration, parotid saliva was used immediately. The importance of using freshly collected 

saliva was two-fold: 1) To avoid exposure to the atmosphere as CO2 will be released and 

saliva pH will artificially be elevated. 2) To reduce the continuous aggregation of the 

micelle-like globules in the samples prior to use 59.  
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 Fig. 7: The saliva collection device. 

 

The effect of adding liposomal formulations or pectin solutions to parotid saliva 

was studied by turbidimetry with the aid of a spectrophotometer (Paper II and IV). These 

experiments were carried out to examine the aggregation behavior of both uncoated and 

pectin coated liposomes in parotid saliva. The turbidity was followed at 700 nm. 

Preliminary experiments showed low adsorption at this wavelength. Because the liposomes 

contained fluorescent lipids, a high wavelength was also found favorable to avoid any 

interference. The same wavelength has been employed by Young et al. in the 

spectrophotometric analyses of bacterial strains in saliva 104.  

The interactions between uncoated liposomes and salivary components (Paper II), 

and liposomes and the three types of pectin (Paper III) were visualized by the aid of atomic 

force microscopy (AFM). Some problems are related to the AFM technique. The problems 

are associated with the preparation of the specimens: the requirement of very low sample 

concentration, the removal of excess liquid by filter paper can give rise to different 

thickness of the sample layer, problems with liposomal stability because of air drying, and 

the random images produced are inherent in the method. For interpretations of the AFM 

images, it is necessary to have these potential problems in mind. Nevertheless, 

representative AFM images can give an impression of the situation in the samples and may 

provide supportive evidence to confirm a hypothesis.  

 

4.2.3. Bioadhesion of liposomes to hydroxyapatite and dental enamel 

 

The surface properties of synthetic HA as well as the dental enamel are highly 

dependent on the surrounding environment 8. Initially, phosphate buffer, pH 6.8-7, was 

used to have a controlled environment so that the mechanisms behind an interaction could 
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be better understood (Paper I). In the next step of the investigations, it was desirable to 

mimic the realistic conditions of the interaction. To simulate oral-like conditions, freshly 

collected parotid saliva was therefore employed (Paper II and IV). 

HA powder is an easily supplied product and was used as a model substance for the 

human dental enamel in the initial experiments. In Paper I, HA powder was suspended in 5 

mM phosphate buffer, pH 6.8 ± 0.1, stirred over night for hydration, before the adsorption 

experiments. In Paper II and IV, HA was first suspended in water for magnetic stirring 

overnight, evaporated to dryness and then used in the adsorption experiments. Since 

parotid saliva was used as adsorption medium and the volume of each sample was reduced 

in these studies, this pretreatment of HA was necessary in order to obtain about the same 

surface area of HA as in the previous study.   

The adsorption of liposomes to HA was conducted either by adding HA suspended 

in phosphate buffer to liposomes (Paper I), or by adding liposomes to pretreated HA 

suspended in parotid saliva in test tubes (Paper II and IV). The procedure was changed in 

the latter experiments due to the reduced volume and instant use of parotid saliva. 

Corresponding references were prepared similarly without containing HA. Each tube was 

whirlmixed shortly and placed on a rotator to ensure homogenous mixing (20 rpm, 35°C) 

for five minutes. To check if the time for liposome adsorption onto HA was appropriately 

chosen, varying time intervals for the adsorption were tested in a salivary environment at 

35°C (Fig. 8). 

 
 

Fig. 8: Adsorption isotherm (20 rpm, 35°C) for charged liposomes to HA in a salivary environment. The 

black arrow denotes the five-minutes-point on the curves. (-■-) Positively charged liposomes: DPPC/10% 

DPTAP. (-♦-) Negatively charged liposomes: DPPC/2.5% DPPA. 
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The curve for both positively and negatively charged liposomes increased only slightly 

with increasing time. This shows that interactions between liposomes and HA occurs fast, 

and that five minutes is a sufficient time for liposome adsorption onto HA in a salivary 

environment. The continuous aggregation of micelle-like globules in collected saliva 59 

may interfere with the in vitro adsorption process. To reduce these potential problems, a 

short adsorption time was therefore preferable.  

After the adsorption to HA, the test tubes were centrifuged, the supernatants were 

transferred to glass vials and subjected to lipid quantification. Lipid quantification was 

performed by high-performance thin layer chromatography (HPTLC) analysis (Paper I) or 

by fluorescence spectroscopy (Paper II and IV). In the HPTLC-analysis, the supernatants 

were freeze dried and the residues dissolved in chloroform before they were applied on 

silica plates. Without elution, the silica plates were immersed in a detection reagent, cupric 

sulfate – phosphoric acid solution, dried and heated to develop the applied phospholipid 

bands. The mechanism behind this reaction is not clear, however, cupric sulfate tend to 

char the phospholipids, leaving stained bands on the silica plates for scanning by 

densitometry 105. The amount of liposomes adsorbed to HA was calculated as the 

difference between the area under the curve of the sample and the corresponding reference 

in percent. 

To be able to quantify liposomes by fluorescence spectroscopy, 1 mol% of the fatty 

acid labeled fluorescent lipid, NBD-PC, was incorporated in the liposomes investigated 

(Paper II and IV). The excitation wavelength of NBD-PC is 460 nm and the emission 

wavelength 534 nm. From each supernatant, samples were transferred to a microtiter plate 

and the fluorescence was measured in a plate reader. A non-ionic surfactant, Triton X-100, 

was used to induce the disintegration of the liposomes to improve the fluorescence 

detection. The amount of liposomes adsorbed to HA was calculated as the difference 

between the amount of fluorescence detected in the sample and the corresponding 

reference in percent. 

Although synthetic HA has the same surface characteristics as the dental enamel, 

the powder form is not ideal to mimic the adsorption area of the enamel. The enamel 

crown of extracted human molars was therefore collected to obtain a more realistic surface 

for adsorption in Paper IV (Fig. 9). 
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Fig. 9: The roots of molars were cut off at the cemento-enamel junction using a carborundum disc. These 

enamel crowns were used as enamel specimens in Paper IV. 

 

With the use of enamel specimens, it was no longer possible to perform the adsorption in 

test tubes and it was necessary to change the experimental set-up (Fig. 10). A new 

adsorption method was developed (Paper IV). This method involved dipping the enamel 

specimens in liposomal solutions applied in a flat-bottomed cell culture plate. To obtain a 

reproducible dipping technique, an immersion device was utilized (Fig. 10). The dipping 

procedure was standardized by the following steps for each plate:  

1) Equilibration of four enamel specimens in parotid saliva for five minutes.  

2) Incubation of three enamel specimens in liposome sample (containing the 

fluorescent lipid NBD-PC) and one enamel specimen in phosphate buffer (control) 

for five minutes. 

3) Washing all four enamel specimens by quick dipping in phosphate buffer. 

4) Incubation in 2% (w/v)Triton X-100 of all four specimens for two minutes to 

solubilize the adsorbed liposomes for detection by fluorescence spectroscopy.   

The amount of liposomes that have been adsorbed on the dental enamel is reflected by the  

fluorescence intensity detected in Triton X-100 solutions. The average fluorescence 

intensity for the three enamel specimens was calculated to obtain one representative value. 

Three plates were assayed for each type of liposomal formulation. A final average was 

calculated based on the three representative averages of each plate (n = 3).  
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Fig. 10: The experimental set-up for the adsorption of liposomes to human dental enamel. The enamel 

specimens are attached to the clamping element of the immersion device. On the left: detail of the immersion 

of enamel specimens in sample solutions (top) and a representative enamel specimen (bottom). 
 

To examine the duration of the liposome adhesion onto enamel surfaces, the enamel 

specimens were exposed to a flow after step 3 of the dipping procedure. A new 

experimental set-up was developed for this purpose (Paper IV). The enamel specimens 

were placed inside the syringes and a tubing pump was employed to generate flow of 

phosphate buffer (Fig. 11).  

 

Fig. 11: The experimental set-up to investigate the retention of liposomes to human dental enamel. The flow 

rate used was 2 ml/min. 
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After exposing to a flow rate of 2 ml/min for certain time intervals (5, 20 and 60 minutes), 

the enamel specimens were transferred back to the dipping system to execute step 4 of the 

dipping procedure. The test was not continuous and the whole procedure was repeated for 

each time point. The amount of liposomes that remained adsorbed on the dental enamel 

after a certain time is reflected by the fluorescence intensity detected in Triton X-100 

solutions (step 4). The average fluorescence intensity for each plate at each time point was 

calculated in % relative to the intensity detected at time point 0, for that appropriate 

liposomal formulation. The time point 0 (= 100%) was where the dipping procedure was 

executed without any exposure to  flow. 
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5. DISCUSSION OF RESULTS 

 
5.1. Formulation of liposomes 

To share the physicochemical properties of the enamel pellicle, the size of all 

liposomes have been tentatively prepared to be in the same size range as the salivary 

micelle-like globules (100-500 nm 59). The mean particle size of uncoated liposomes have 

been measured to be in the range 90-180 nm (Paper I, II, IV), while that of pectin coated 

liposomes in the range 220-600 nm (Paper III and IV).  

In the present thesis, 32 different liposomal formulations were investigated. The 

lipid composition was varied to yield different surface properties of the liposomes. Both 

positively and negatively charged liposomes were investigated for the potential adsorption 

onto dental enamel (Paper I, II and IV). This was based on the known adsorption of both 

type of charged proteins onto the enamel in the formation of the acquired enamel pellicle 53, 

106. The interest of using both types of charged liposomes for the adsorption to the dental 

enamel was also due to their potential as drug carriers. Several active substances for use in 

the oral cavity are charged. Potential examples are chlorhexidine which is a cationic 

bactericide 107 and fluoride which is an anionic anticaries agent 16. Incorporation of cationic 

or anionic lipids in the liposome formulations are expected to improve entrapment 

efficiency of drugs and other substances which are of opposite charge. A wider range of 

active substances can then be entrapped in the liposomes; offering liposomes greater 

possibilities as drug delivery systems.  

In addition, since the in vitro cellular toxicity of positively charged liposomes on 

human buccal cells are higher than the negatively charged liposomes 108, a new formulation 

was added to the study namely pectin coated liposomes. A polymer coating around the 

liposomes would shield the positive charge at the surface and, thus, reduces the problem 

associated with the positively charged liposomes (Fig. 12). This would also still maintain 

the possibility of entrapping active substances of both type of charge. The chosen polymer 

in the present investigations was pectin (Paper III and IV). 
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Fig. 12: A schematic illustration of pectin coating on positively charged liposomes. 

 

 

Pectin is negatively charged at neutral pH due to the carboxylic acid groups in the 

galacturonic residues of the pectin chain. This feature of pectin enables the surface coating 

of positively charged particles, such as liposomes, by ionic interactions. Pectin is a 

substance generally recognized as safe (GRAS) by the American Food and Drug 

Administration (FDA), and was chosen based on its long and safe history in the food 

industry as a gelling agent or as a stabilizer 97, and its mucoadhesive properties in drug 

delivery systems 98. Although pectin has been mostly studied in systemic drug delivery 

systems, this polymer may as well be promising in the construct of drug carriers for the 

local use in the oral cavity 109. Pectin coating on liposomes is advantageous as it may also 

improve the stability of liposomes in vitro as well as in vivo. Liposomes are physical 

unstable in dried conditions 110, 111. Since the purpose of using liposomes may be to 

ameliorate xerostomic symptoms of the oral cavity, the liposomes may need to be 

protected against dehydration.  

Three types of pectin, LM-, HM- and amidated pectin, were investigated for the 

surface coating of liposomes (Paper III). The pectin coating on positively charged 

liposomes was verified by an increase in size (from diameter about 200 nm to 220-550 nm) 

and a shift in the zeta potentials from positive to negative charge. From the DLS 

measurements, the β-values for the pectin coated liposomes (0.92-0.97) were very close to 

the β-values of the uncoated liposomes (0.98-1.00). The fact that the β-values for the pectin 

coated liposomes were so high, suggests that the increase in particle size after adding 

positively charged liposomes to pectin is not due to the clustering of particles, since large 

aggregates typically have a much broader distribution. Thus, it was believed that the 
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positively charged liposomes can individually adsorb polymer chains at their bilayer 

surface and that there is a low degree of particle aggregation. In contrast, it was difficult to 

verify complete coating of the negatively charged liposomes as the results were 

inconclusive (Paper III). Positively charged liposomes coated with HM-pectin (both 

concentrations) gave the largest pectin coated particles and the least negative zeta potential 

values (Fig. 13). HM-pectin coated liposomes may be preferred for a physical protection of 

teeth because of their large particle size. Less negative charge on the surface may help to 

minimize repulsive forces at the liposome-enamel interface.  

 
Fig. 13: The mean particle size (diameter) of the three types of pectin coated liposomes. Two concentrations 

of pectin (0.05 and 0.2 w/w %) were used to coat the positively charged liposomes (3mM DPPC/10 mol% 

DPTAP). The average zeta potential of each formulation is indicated above the bar. 

 

High and low pectin concentration in the formulation did not reveal any differences in the 

zeta potentials for the respective pectin type (Fig. 13). This indicated that 0.05 % is a 

sufficient concentration to completely coat around the liposomes.  

In order to manufacture a pharmaceutical product, the drug and the dosage form 

must express a sufficient shelf-life, thus, stability studies are required. Liposomal 

formulations are not an exception 112. DPPC- and DMPC liposomes with 2.5 or 10 mol% 

charged lipid included were examined for their in vitro stability in phosphate buffer, pH 

6.8-7 (Paper I). The particle size and zeta potentials of the liposomes were measured at 

specific time points during storage in refrigerator for 37 days. The results indicated that 

DPPC as the main lipid yielded the most physically stable formulations. In a screening 

study of liposomal formulations on buccal cell toxicity, the main lipid DPPC was found 
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less toxic than DMPC 108. The stability data indicated that 10 mol% of positively charged 

liposomes were more stable than 2.5 mol% of the corresponding liposomes (Paper I). Thus, 

among the tested formulations, it appeared that 10 mol% of charged lipid with DPPC as the 

main lipid were the most promising liposomal formulations for further investigations. In 

order to use liposomes or pectin, or a combination of both, in the oral cavity, factors of the 

oral environment that may influence the formulation should be investigated. For example, 

the presence of pectinolytic enzymes in the oral cavity that can lead to unfavorable 

degradation of pectin 97, or potential interactions with components of saliva. 

 

5.2. Interaction studies of liposomes and saliva 

The oral surfaces are constantly exposed to salivary secretions. Foreign agents that 

enter the oral cavity are also introduced to saliva for the subsequent distribution in the oral 

cavity. As saliva is the main oral transport medium, there is a possibility that liposomes 

introduced to the oral cavity will interact with saliva. To investigate how saliva will affect 

the in vivo performance of liposomes, turbidimetric measurements of the mixtures 

liposomes-parotid saliva over time were performed (Paper II and Paper IV). These 

investigations included both uncoated liposomes and pectin coated liposomes. The anionic 

lipids DPPA, DPPG, DPPS and PI and the cationic DPTAP (10 mol % of each charged 

lipid) were included in the uncoated liposomes (Paper II). 

Saliva contains both charged organic components and electrolytes, enabling 

electrostatic interactions with oppositely charged liposomes. Salivary micelle-like globules, 

100-500 nm in size, carry a net negative surface charge 59, 62, 113 and are capable to interact 

with the positively charged DPPC/DPTAP liposomes. Very turbid samples of the mixture 

DPPC/DPTAP liposomes-parotid saliva supported a strong interaction between the 

liposomes and components of saliva, and the formation of large aggregates (Paper II). 

Rykke et al. have reported a size increase of the globular structures with increasing time 59. 

This supported the observation of an abrupt fall in the turbidity of this mixture after about 

30 minutes (Fig. 14). The aggregates grew in size and became so large that they 

sedimented leading to phase separation of the mixture. 
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Fig. 14: A schematic illustration of the interactions between uncoated, charged liposomes and components of 

parotid saliva.  

 

In the case of negatively charged liposomes, the turbidity of the mixtures  

DPPC/DPPA liposomes-parotid saliva remained low, whereas for the mixtures 

DPPC/DPPG liposomes-parotid saliva turbid samples were observed (Fig. 14). For the 

mixtures DPPC/PI liposomes-parotid saliva and DPPC/DPPS liposomes-parotid saliva the 

turbidities remained quite low with values of τ ~ 0.3 and 0.5, respectively. Since the high 

level of turbidity of DPPC/DPPG liposomes was kept relatively constant during the 

measuring time, it was thought that calcium ions from saliva may be involved in this 

interaction. To confirm this, pyrophosphate (PP), which is a calcium sequestering agent, 

was added to the mixtures liposomes-parotid saliva. The addition of PP immediately 

cleared the mixture DPPC/DPPG liposomes-parotid saliva, and the turbidity of the sample 

fell almost to the control level (Fig. 15). In contrast, this phenomenon did not happen to the 

mixtures DPPC/DPPA liposomes-parotid saliva (Fig. 15). This mixture exhibited an initial 

very low turbidity, and the addition of PP did only render a minor effect. Thus, the most 

pronounced effect following the PP treatment among the negatively charged liposomes 

tested was in the order: DPPG > DPPS > PI/DPPA. It seemed therefore that the affinity to 

calcium ions is dependent on the nature of the negatively charged group. In the case of the 

mixtures DPPC/DPTAP liposomes-parotid saliva, the addition of PP did cause a small 

reduction in turbidity. This observation was thought to be due to the presence of calcium 

inherent in the salivary micelle-like structures. Rykke et al. has reported that calcium is 
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important for the maintenance of the micellar globules 59, and the effect of PP was assumed 

to be caused by some degree of sequestration of the bound calcium of these structures. 

 

 
 

Fig. 15: The effect of PP addition (after time point 15 minutes) on the turbidity of the different mixtures of 

liposomes-parotid saliva. 

 

The aggregates formed in the DPPC/DPTAP-parotid saliva mixtures are probably so large 

and dense that it was difficult for PP to penetrate and reach into the bound calcium of the 

micellar globules. Therefore, complete disintegration of the aggregates did not happen and 

only a minor drop in turbidity was observed after PP treatment. 

The turbidity of the mixtures pectin coated liposomes-parotid saliva, and pure 

pectin solutions-parotid saliva was also examined in order to confirm the compatibility of 

pectin coated liposomes with saliva (Paper IV). No changes were observed for the mixtures, 

indicating no aggregation tendencies of pectin coated liposomes and parotid saliva. 

It might seem like the positively charged liposomes (DPPC/DPTAP) are not 

favorable for use in the oral cavity due to aggregation reaction with salivary components. 

The formation of large aggregates may also cause too rapid clearance of the liposomes 

from the oral cavity. However, this disadvantage with positively charged liposomes is 

generalized, because only one type of cationic lipid, DPTAP, was induced in the liposomal 

formulations in these experiments. The nature of the charged lipid seemed to influence the 

surface properties of the negatively charged liposomes and, thus, the interaction 
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mechanisms. Hence, several types of cationic lipids should also be included in the 

liposomal formulations for interactions studies with saliva in order to strengthen this 

hypothesis. At this point, negatively charged DPPC/DPPA liposomes or positively charged 

liposomes coated with pectin seemed to be the most promising liposomal formulations as 

they are least likely to react with saliva.  

 

5.3. Bioadhesion of liposomes to hydroxyapatite and dental enamel 

The use of synthetic hydroxyapatite (HA) as an analogue for the dental enamel in 

adsorption studies is commonly employed 114, 115. In the present papers (Paper I, II and IV), 

HA has been used in the initial experiments to screen potential liposomal formulations for 

the adsorption onto the dental enamel.  

The surface charge, size, phase transition temperature and bilayer stability of 

liposomes are all dependent on the lipid composition 116. In order to formulate liposomes 

that adsorb to HA, screening of various formulation factors for their influence on the 

interaction between liposomes and HA were therefore initially investigated. The type of 

surface charge, the type of main phospholipid, the type and amount of charged lipid, and 

the inclusion of cholesterol in the liposomal formulation were variables examined (Paper I). 

Two significant factors were revealed by multivariate analysis: the “type of charge” and 

the interaction “main lipid x type of charge”. It was not surprising that the “type of charge” 

of the liposomes was important for the adsorption onto HA. Synthetic HA as well as 

human dental enamel express negative surface charge at neutral pH due to phosphate 

groups 7, allowing for electrostatic interactions. Thus, there is a strong attractive force 

towards positively charged species. This was confirmed in Paper I with a high level of 

adsorption onto HA for the positively charged liposomes (10 mol% -TAP as charged lipid). 

The type of main lipid played a role when positively charged liposomes adsorbed onto HA. 

Paper I showed that for positively charged liposomes, the main lipid DPPC adsorbed better 

to HA than DMPC, suggesting the use of positively charged DPPC-liposomes for further 

investigations. Moreover, DPPC is a gel state phospholipid (phase transition temperature 

(Tc) 41.5°C 96) and is rigid at body temperature, while in the same conditions DMPC is a 

fluid phase phospholipid (Tc 23.5°C 96). Szoka et al. have shown that the flexibility of the 

liposomes is important for the interaction with eukaryotic cells having a negative surface 

charge, and that solid vesicles adsorb to a greater extent than fluid vesicles. This study 

supports the choice on DPPC-liposomes. 
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The surface of HA possess amphoteric features in that calcium ions are also present 

at the surface (approximately 10%) 6. This means that negatively charged species can also 

be attracted to HA. The adsorption of the negatively charged liposomes (2.5 and 10 mol% 

of –PG, –PA and –PS as charged lipids, respectively, Paper I) and pectin coated liposomes 

(Paper IV) onto HA was also demonstrated, however, these levels were quite low.  

The surface properties of HA, and hence the interaction process, are highly 

dependent on the surrounding environment. The adsorption studies of charged liposomes in 

Paper I and in the initial experiments in Paper IV were performed in phosphate buffer, pH 

6.8-7. It has been demonstrated in in vitro as well as in vivo studies that most pellicle 

precursor proteins carry a net negative charge, such as acidic PRPs and statherin 55, 117, 118. 

Moreover, the early bacterial colonizers on the enamel surface possess a negative surface 

charge 119. Thus, in the in vivo conditions of the oral cavity, negatively charged species 

have also high affinity to the dental enamel. Based on this theory, it was hypothesized that 

negatively charged liposomes adsorb better in the oral fluid of saliva than in phosphate 

buffer. This prompted to change the adsorption medium; phosphate buffer was replaced by 

freshly collected parotid saliva (Paper II and IV).  

Young et al. have investigated the surface potential of human enamel and HA 

particles suspended in different buffers120. Human enamel and HA particles exhibited an 

overall net negative zeta potential, -17 to -30 mV. Among the tested media, phosphate 

buffer, pH 7.7-7.9, rendered the most negative surface potentials for both enamel and HA 

particles. The particles exhibited less negative zeta potential following incubation in saliva; 

-8 to -14 mV. Apart from pH, both calcium and phosphate ions have shown to be potential-

determining factors for the enamel surface; presence of calcium ions makes the zeta 

potential more positive and phosphate ions makes it more negative 7, 8. Young et al. 

proposed that the high content of calcium in saliva mediates to the adsorption of salivary 

proteins 40, thus, leading to the less negative surface potential of the enamel and HA 

particles observed in the salivary environment. The calcium ions in saliva partly lowered 

the negative surface potentials of the enamel/HA, and partly acted as a bridge between 

negatively charged groups.  

When it comes to the liposomes, the presence of calcium ions in saliva may 

promote the adsorption of negatively charged liposomes onto HA by a reduction in the 

electrostatic repulsion as proposed by Young et al. In phosphate buffer, the phosphate 

groups may contribute to a more negative enamel surface and, conversely, increase the 

repulsion towards the negatively charged liposomes. These mechanism are summarized in 
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Fig. 16. Paper II and IV demonstrated the adsorption of uncoated liposomes (DPPC/DPPA) 

and pectin coated liposomes (LM-and HM-pectin), all with negative surface charge, onto 

HA in parotid saliva, supporting the present hypothesis. Thus, it can be summarized that 

the adsorption of liposomes onto HA is driven by the subtle balance between attractive and 

repulsive forces, and is highly influenced by the surrounding environment (pH and the 

presence of electrolytes).  

 

  
 

Fig. 16: The adsorption of charged liposomes on the enamel surfaces in phosphate buffer compared to that in 

saliva. 

 

In Paper I, it was shown that positively charged liposomes adsorbed better than 

negatively charged liposomes to HA in phosphate buffer. The same result was obtained 

with the dental enamel in a salivary environment (Paper IV). This confirms that the type of 

surface charge on the liposomes play the primary role for the immediate attachment of 

liposomes onto enamel surfaces, independent of the surrounding environment. The 

liposomal formulations selected for the adsorption onto the dental enamel, both uncoated 

and pectin coated liposomes, have been shown to adsorb to HA in a salivary environment 

(Paper II and IV). Pectin has high affinity to calcium ions 121. The presence of these cations 

in saliva was therefore thought to be involved in the immediate attachment of pectin coated 

liposomes to HA. The adsorption of pectin coated liposomes to HA in phosphate buffer, 

pH 6.8, showed that liposomes coated with LM- and HM-pectin exhibited slightly higher 

adsorption levels than liposomes coated with AM-pectin (Paper IV). This suggests that the 

affinity to HA may be affected by amide groups in the pectin structure. From the 

formulation work with pectin coated liposomes (Paper III), 0.05 % (w/w) pectin was found 

to be sufficient to completely coat around the liposomes. Based on these results, 0.05 % 
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LM- and 0.05 % HM-pectin coated liposomes were therefore selected for the adsorption to 

the dental enamel.  

Before the adsorption experiments with the dental enamel, the enamel specimens 

were pre-incubated in parotid saliva (Paper IV). The results indicated that the adsorption of 

liposomes onto the dental enamel was unaffected by the presence of a pellicle layer on the 

enamel surface. This is important in the in vivo conditions, suggesting that liposomes are 

able to adsorb to tooth surfaces covered or partly covered with the acquired enamel pellicle. 

Milk contains casein molecules (phosphoproteins) that are able to form spherical 

complexes with calcium phosphate termed casein micelles 122. These casein micelles 

structurally resemble the micelle-like globules in saliva. Devold et al. has studied the in 

vitro adsorption of milk proteins onto tooth enamel 123. They found that enamel specimens 

pre-incubated in whole saliva did not inhibit or affect the formation of  a “milk pellicle” on 

the enamel surface, and concluded that in vivo adsorption of milk proteins may occur on 

tooth surfaces in the oral cavity. This study supports the findings in Paper IV. Moreover, 

the adsorption of certain milk proteins have shown to inhibit the adhesion of cariogenic 

bacteria to HA 124. Similarly, the idea of an adsorbed layer of liposomes on the tooth 

surface could potentially interfere with the initial bacterial adhesion of plaque formation, 

and thereby hamper the development of dental caries. The inhibitory effect of liposomal 

formulations on the adhesion of cariogenic bacteria on dental enamel remains to be further 

investigated. 

Considerable fluctuations in the oral environment, mainly due to the secretion of 

saliva, may lead to rapid clearance of liposomes from the oral cavity. Moreover, movement 

of the oral soft tissues associated with speaking, eating and swallowing may be a problem 

for liposomes to remain in place. Formulation work today often concentrates on the design 

of formulations to increase their retention time at a certain location 125. Delayed clearance 

from the oral cavity is preferable to prolong the effectiveness of the formulation. It was 

hypothesized that pectin coating on liposomes may improve the bioadhesion to teeth and, 

thus, retain liposomes on the teeth for a protective action. Furthermore, this could enhance 

the substantivity and efficacy of therapeutic agents if they were entrapped in the liposomes, 

by decreasing liposomal clearance from the oral cavity. The local concentrations of the 

active substance at site of action may also be increased. 

In Paper IV, pectin coating on liposomes did not render enhanced level of 

adsorption onto the dental enamel. Positively (DPPC/DPTAP) and negatively charged 

(DPPC/DPPA) liposomes were compared against pectin coated liposomes (0.05 % LM-and 
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HM-pectin, respectively) in this experiment. However, when exposed to a dynamic flow (2 

ml/min), pectin coated liposomes seemed to retain better on the enamel surfaces at longer 

time intervals than the uncoated negatively charged liposomes (Fig. 17). The level of 

retention seemed to be even better or comparable to the positively charged liposomes.  

 

 
Fig. 17: Percent liposomes remaining adsorbed to the dental enamel after exposure to a flow rate of 

phosphate buffer 2 ml/min for different liposomal formulations. Positively charged liposomes: 

DPPC/DPTAP; negatively charged liposomes: DPPC/DPPA; LM-pectin coated liposomes: DPPC/DPTAP + 

0.05 % (w/w) LM; HM-pectin coated liposomes: DPPC/DPTAP + 0.05 % (w/w) HM. 

 

This supports the hypothesis that surface modification by pectin on liposomes helps to 

prolong the adsorption of liposomes on enamel surfaces. It was thought that a similar 

mechanism behind mucoadhesion is responsible for this bioadhesivity. The strengthened 

interaction between liposomes and the enamel was thought to be related to the secondary 

bindings of the pectin chains (van der Waals and hydrogen bindings). The adsorption and 

retention of pectin coated liposomes suggest that these formulations are promising for the 

protection of the enamel by a physical approach. 

Recently, Wattanakorn et al. prepared pectin discs for buccal adhesion for the 

treatment of aphtous ulcers in the oral cavity . They concluded that pectin is a potential 

bioadhesive polymer for buccal drug delivery systems. The purpose of the pectin coated 

liposomes in the present thesis is the bioadhesion to teeth. Since pectin is also bioadhesive 

against oral mucosa, this may pose a problem for the specific targeting to teeth. One way to 
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overcome the problem is to develop a dosage form, e.g. varnish or “teeth spray”, that can 

deliver and retain the pectin coated liposomes directly on the enamel surfaces. However, 

the competitive binding between oral mucosa and the dental hard tissues needs to be 

examined to find the proper use of pectin coated liposomes in the oral cavity. 

The strength and duration of the adsorption is an important perspective considering 

the dynamic environment of the oral cavity. As shown in Paper IV, the adsorption of 

liposomes was challenged by imposing a flow, similar to the flow rate of stimulated saliva 

secretion, at the enamel surface. There are other factors associated with the normal 

functions of the oral cavity that may also interfere with the adsorption and retention 

process. The production of acids by plaque bacteria when sugars are consumed may lead to 

local pH changes in the oral cavity. The influence of the surrounding environment on the 

liposomal adsorption has been a thread through this thesis (Paper I, II and IV). Therefore, it 

would be interesting to see the effects of low pH on the adsorption of liposomes to the 

dental enamel. 
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6. CONCLUSIONS 

 

In the present thesis, 32 different liposomal formulations with both positive and 

negative surface charge were investigated. In addition, positively charged liposomes were 

surface modified with the polymer pectin. Three types of pectin were included in the study; 

low methoxylated, high methoxylated and amidated pectin. The β-values from the DLS 

analysis of the pectin coated liposomes revealed the formation of non-aggregated 

nanoparticles. 

The type of surface charge on the liposomes was found to be the most important 

formulation factor for the adsorption onto the model substance hydroxyapatite in 

phosphate buffer, pH 6.8 - 7.0. Positively charged liposomes adsorbed better than 

liposomes with a negative surface charge. Among the pectin coated liposomal formulations 

tested, liposomes coated with 0.05 % (w/w) LM- and HM-pectin, respectively, adsorbed 

best onto hydroxyapatite.  

Uncoated negatively charged liposomes together with pectin coated liposomes did 

not seem to interact with components of parotid saliva. In contrast, positively charged 

liposomes aggregated with salivary components and were therefore found incompatible 

with saliva. 

Pectin coated liposomes and uncoated negatively charged liposomes adsorbed to 

the dental enamel in a salivary environment. Furthermore, pectin coated liposomes retained 

better on the dental enamel on exposure to flow using phosphate buffer. This indicates 

their possible use as bioadhesive liposomes in dental applications.  

The results from the present thesis suggest that uncoated negatively charged 

liposomes (DPPC/10 mol% DPPA) together with positively charged liposomes (DPPC/10 

mol% DPTAP) coated with 0.05 % (w/w) LM- and HM-pectin are the most promising 

liposomal formulations for use in the physical protection of teeth. 
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7. FUTURE PERSPECTIVES 

 

The present thesis has suggested the use of liposomes in the physical protection of human 

teeth by the adsorption to dental hard tissues. To improve and explore their potential use in 

dental applications, future studies are proposed:  

 

� Verify the protection of teeth by inducing challenges, such as acids, on a liposome 

covered enamel surface.  

 

� Investigate the adsorption of liposomes to restorative materials. 

 

� Improve the bioadhesion to teeth by investigating other biopolymers for coating on 

liposomes. For example, chitosan is a cationic polymer and may lead to strong 

electrostatic interactions with the enamel surface. 

 

� Investigate the possibility of chemical protection by encapsulating drugs, such as 

chlorhexidine or fluoride, in the liposomes. Liposomes may act as reservoirs from 

which the active substance is gradually released. 

 

� Investigate the potential of pH-responsive liposomes for use in caries prophylaxis. 

Liposomes may release entrapped fluoride in response to low pH due to the 

production of acids by cariogenic bacteria. 
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