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Outline of thesis. 
The purpose of this thesis is to summarize the results from four different studies 

where microarray technology has been used as an exploratory tool to gather new insights 

about transcriptional responses to various changes in bacteria from the B. cereus group. 

Two of the projects are very similar, as they both aimed to find genes regulated by a 

transition state regulator. The third project involved comparison of swarm-differentiated 

cells with non-swarming cells. The fourth project originated from an observation that 

certain variants of B. cereus ATCC 14579 grow as long filaments during the exponential 

phase, while other grow as single cells or short chains of visibly separated cells. 

Microarrays and other techniques were used to further characterize the variants and 

describe phenotypic differences and similarities. 

What these projects have in common, apart from the use of microarray technology, 

is that they involve, in some way or another, adaptive responses of the bacteria. The 

regulators PlcR and NprR regulate adaptive responses during the transition phase, while 

swarming is an adaptive form of cellular differentiation which allows the bacteria to 

rapidly colonize a surface. Filamentous growth may also be an adaptive response, although 

this is most likely not the case in this study. However, phenotypes observed during study 

of the variants included increased transcription of genes involved in adaption to stress. 

Effects were also seen on the process of endospore formation, an adaptive response to 

extreme conditions. 

On this background, I will start the thesis with an introduction to the Bacillus 

cereus group and some of the adaptive responses relevant to the various projects. I will 

then summarize the main results from the papers. As microarray analysis has been a 

cornerstone in the work presented in this thesis, I will discuss methodological choices in 

some detail before I proceed to discuss the results.  

During discussion of the results, I will attempt to place our observations in a 

broader context and describe how they comply with what is already known. I will also use 

the opportunity to report some additional observations made while analyzing our results 

and to discuss some of the observations from another angle or in more detail than there is 

room for in an article. Finally, I will sum up our conclusions and outline future 

perspectives for some of the projects.  
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1. Introduction. 
In the year 2009, which marks the 200th anniversary of Charles Darwin and the 

150th anniversary of The origin of species (Darwin, 1950 reprint), there has been much talk 

about the survival of the fittest. In such a perspective, bacteria belonging to the genus 

Bacillus must be considered very fit, something their ancient ancestry indicates (Cano & 

Borucki, 1995; Vreeland et al., 2000). Members of the Bacillus cereus group, which have 

been the targets of this work, are no exception. Their ability to exploit widely divergent 

habitats, and to endure extreme conditions through various pathways of differentiation, 

makes "adapt and survive" a catch phrase of this group. In this introduction, I will present 

the B. cereus group and examine closer some of the adaptive responses these bacteria 

display in different phases of life, with emphasis on those which have been relevant to this 

work. I will also give a brief introduction to the microarray technology, which has been 

central in the studies presented here. 

 

1.1 The genus Bacillus and the Bacillus cereus group. 
The genus Bacillus belongs to the family Bacillaceae (Priest, 1993). Bacteria 

belonging to this genus are gram-positive or gram-variable rod-shaped. They are aerobic or 

facultative anaerobes, and usually motile. They are also capable of forming heat resistant 

endospores, which are metabolically inert and can endure extreme conditions. When 

conditions turn favorable, the endospores can germinate to vegetative cells. The genus 

Bacillus is unusually large, with highly variable GC content, and a further subdivision into 

six subgroups has been proposed (Priest, 1993). The Bacilllus subtilis subgroup (group II) 

includes Bacillus subtilis, which is the type species of the genus, and 17 other species with 

a GC-content between 33 and 45 % (Priest, 1993). The B. cereus group, also referred to as 

B. cereus sensu lato, is a subdivision within the B. subtilis group and comprises the closely 

related species B. cereus sensu stricto, Bacillus thuringiensis, Bacillus anthracis, Bacillus 

mycoides, Bacillus pseudomycoides, and Bacillus weihenstephanensis. These bacteria all 

have characteristic traits, and, with the exception of the two last species, they were 

classified as different species at a time when classification was based on phenotypes. 

Below, I will briefly describe the characteristic properties of the various species: 

 



 3 

Bacillus cereus sensu stricto (Frankland, 1887) includes members of the B. cereus 

group which do not fit any of the other species definitions. Many strains carry conjugative 

plasmids. Some strains are pathogenic, frequently causing emetic (Agata et al., 1995) or 

diarrhoeal food poisoning (Hauge, 1950). The emetic toxin, a dodecadepsipeptide, is non-

ribosomally synthesized, and the genes encoding the responsible enzymes are localized on 

a large plasmid (Ehling-Schulz et al., 2006a; Hoton et al., 2005), while gastroenteritis is 

caused by the secretion of chromosomal virulence factors such as the Hbl and Nhe 

enterotoxins (Arnesen et al., 2008; Michelet et al., 2006).  

Bacillus thuringiensis is characterized by its ability to produce entomopathogenic 

toxins during sporulation, and is widely used as a biopesticide (Schnepf et al., 1998). The 

toxin-encoding genes reside on plasmids.  

Bacillus anthracis is a mammalian pathogen and the causative agent of anthrax 

(Mock & Fouet, 2001; Passalacqua & Bergman, 2006). Its potent virulence is due to the 

presence of two plasmids named pXO1 (182 kb), encoding the the anthrax toxin 

components, and pXO2 (95 kb), encoding an antiphagocytotic γ-D-glutamic acid capsule.  

Bacillus weihenstephanensis  is characterized by its psychrotolerant growth as 

well as characteristic sequence signatures in rDNA genes and in the gene encoding the cold 

shock protein cspA (Lechner et al., 1998). However, psychrotolerant strains are also found 

among other members of the B. cereus group (Guinebretiere et al., 2008). Pathogenicity of 

B. weihenstephanensis strains is generally regarded as low (Stenfors et al., 2002), but 

strains producing the cereulide toxin characteristic of emetic B. cereus strains, have been 

described (Thorsen et al., 2006) 

Bacillus mycoides (Flugge, 1886; Lewis, 1932) and Bacillus pseudomycoides 

(Nakamura, 1998) are non-motile and characterized by their ability to grow as filaments 

(rhizoidal phenotype). They produce intricate colony patterns when grown on agar plates 

(Di Franco et al., 2002).  

Bacillus cytotoxicus has recently been suggested as a separate species due to large 

phenotypic and genetic differences from other B. cereus strains (Lapidus et al., 2008). 

Bacillus cytotoxicus strains have smaller genomes than strains in other species of the 

Bacillus cereus group, and certain genes appear to be absent, which indicates that these 

strains may be distinguishable by simple metabolic tests (Lapidus et al., 2008). The species 

is characterized by moderate thermotolerance (Guinebretiere et al., 2008). 
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As can be seen from the list above, the characteristic phenotypic features can be 

encoded by a small number of genes, in some cases residing on plasmids that may be 

exchanged between cells. At the chromosomal level, these species are all very similar, and 

genetic variation within one species may be as large as the variation between species 

(Helgason et al., 1998; Helgason et al., 2000). The B. anthracis strains are genetically 

monomorphic, and in a phylogenetic tree of the B. cereus group they can all be found on 

the same branch in a cluster of pathogenic B. cereus and B. thuringiensis strains (Kolstø et 

al., 2009). On the other hand, a B. thuringiensis which loses the plasmid encoding the Cry-

toxin, becomes indistinguishable from a B. cereus, and strains from these two species 

cannot be separated in phylogenetic studies (Carlson et al., 1994; Helgason et al., 1998; 

Helgason et al., 2000). An overweight of food and clinical samples are found in the large 

group which has become known as clade I, while soil samples tend to cluster within clade 

II, regardless of their species definition (Helgason et al., 2004; Priest et al., 2004). On this 

genetically interweaved background, it has been argued that B. thuringiensis, B. cereus, 

and B. anthracis may in fact be one species (Helgason et al., 2000; Rasko et al., 2005), but 

for practical reasons the distinctions are kept. B. weihenstephanensis, B. mycoides and B. 

pseudomycoides tend to form phylogenetic subgroups within the B. cereus group (Lechner 

et al., 1998; Nakamura, 1998), and their species definition may be more appropriate, or 

they may not have been sufficiently investigated (Bartoszewicz et al., 2009) For more 

phylogenetic information, see also http://mlstoslo.uio.no. 

The two strains used in this study, the B. cereus type strain ATCC 14579 

(Frankland, 1887; Ivanova et al., 2003) and B. thuringiensis 407 Cry¯, are closely related. 

B. thuringiensis 407 was originally an insect isolate from Brasil, but has been cured of its 

Cry-encoding plasmids (Lereclus et al., 1989). Therefore it has lately also been referred to 

as a B. cereus strain (Guillemet et al., 2009). 

It is hypothesized that bacteria in the B. cereus group primarily live as symbionts in 

vertebrate or invertebrate hosts, and, with the exception of B. anthracis, only occasionally 

act as invasive pathogens (Jensen et al., 2003). The main argument is that all members of 

the B. cereus group can grow saprophytically in a nutrient-rich environment. This is rarely 

found in nature, but frequently encountered in the guts of insects and higher animals. This 

line of reasoning was supported by analysis of the metabolic potential of the strains B. 

cereus ATCC 14579 and B. anthracis A2012, finding only 14-15 coding sequences for 

polysaccharide degradation, but around fifty protease-encoding sequences (Ivanova et al., 
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2003). However, it has later been shown that both B. cereus ATCC 14579 and B. cereus 

ATCC 10987 can metabolize a variety of carbohydrates (Mols et al., 2007), and, as 

mentioned above, B. cereus  ATCC 14579 has been shown to grow in soil extract (Vilain 

et al., 2006). There are also reports that B. cereus, B. thuringiensis, and even B. anthracis 

can grow in the plant rhizosphere (Dunn & Handelsman, 1999; Emmert & Handelsman, 

1999; Park et al., 2008; Saile & Koehler, 2006). Taken together, these reports indicate that 

bacteria in the B. cereus group can flourish in a variety of habitats. 

Due to the bioterrorism potential of B. anthracis, the B. cereus group has been in 

focus in recent years, and an impressive number of genomes have been sequenced. 

Genomes from more than fifteen strains have been closed, and partially assembled 

sequence exists for around sixty more strains (http://www.ncbi.nlm.nih.gov), taking the 

total number up to eighty-four (January 2010). Even though B. anthracis is somewhat 

oversampled in this collection, the vast amounts of genetic information available offer 

unique opportunities for phylogenetic studies and genetic comparisons across strains. 

  

1.2. Communication and multicellular behavior.  
Communication and the ability to act as a community is one of the keys to the 

successful adaptive responses of bacteria (Shapiro, 1998; Shapiro, 2007). In the early 

1960's, it was reported that competence (i.e. the ability to take up DNA from the 

environment) could be induced by a chemical substance isolated from a bacterial culture 

that had already reached the competent phase (Pakula & Walczak, 1963; Tomasz & 

Hotchkiss, 1964; Tomasz, 1965). This is an early description of intercellular communi-

cation in bacteria, and in the following decades there were numerous discoveries of 

chemical signaling substances that induce differentiation or coordinated behavior in 

bacteria.  

Quorum sensing has been used as a collective term to describe activation of a 

certain behavior as a result of density-dependent signaling mechanisms (Bassler & Losick, 

2006; Dunny & Leonard, 1997). Chemical signal substances constitutively expressed at a 

low level are secreted from individual cells, and their concentration in the environment will 

thus depend on the cell density. Through evolution, the system has reached a balance 

where the signal substance reaches a threshold concentration which results in activation at 

the optimal cell density for the specific activity (Dunny & Leonard, 1997). This type of 
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mechanism enables the bacteria to coordinate growth, movement and biochemical 

secretion (Shapiro, 1998).  

Multicellular behavior plays an important role in many adaptive responses 

(Shapiro, 1998). In addition to the competence development mentioned previously, biofilm 

formation, sporulation, bacterial swarming, and activation of virulence factors are some 

examples of behavior that is induced by accumulation of signal substances in the 

environment. The joint efforts of a bacterial population secreting virulence factors or 

exhibiting colonizing behavior is far more effective than the uncoordinated efforts of single 

bacterial cells.  

The chemical structures of the signaling substances are diverse, but peptides or 

modified peptides are commonly used in gram-positive bacteria (Dunny & Leonard, 1997). 

The peptides are frequently synthesized as larger precursor molecules and processed to the 

active form posttranslationally (Dunny & Leonard, 1997). After secretion, the signaling 

molecule may be reimported into the cell (Declerck et al., 2007) or interact with surface 

receptors (Dunny & Leonard, 1997). In the latter case, the receptor domain is often in the 

N-terminal end of a histidine kinase that is part of a two-component regulatory system (de 

Been et al., 2006). In the cytosolic C-terminal end is a phosphotransferase domain. In a 

simple system, when the receptor binds the signal substance, the phosphotransferase will 

phosphorylate and thus activate the cytosolic response regulator component of the two-

component system (de Been et al., 2006). The activated response regulator will bind to 

DNA regions and activate or repress genes to elicit the adaptive response (de Been et al., 

2006). The regulon, i.e. the genes controlled by a given regulator, may vary from only a 

few to several hundred genes.  

Complex processes with great consequences for the cell, such as competence 

development or sporulation, have a far more complex system for signal transduction. In 

these cases, the activation of the receptor by a signal substance will start a phosphorelay 

between different signal transduction proteins (de Been et al., 2006; Dunny & Leonard, 

1997). More than one signal substance may be involved, and each step in the chain of 

phospohorylation events may be influenced by intracellular events, as in the process of 

sporulation (Fujita & Losick, 2005). In this way, the information from the environment 

will be integrated into a complex regulatory network where the sum of many factors 

decides the outcome for the cell.  
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1.2.1. The RNPP family of quorum sensors. 
Structural and phylogenetic analysis indicates that quorum sensors which bind their 

signaling peptide directly, belong to a protein superfamiliy, named RNPP after its current 

members: Rap, NprR, PlcR, and PrgX (Declerck et al., 2007). The signaling peptides of 

these proteins are encoded right downstream of the sequence encoding the regulator itself. 

They are synthesized as precursor peptides and cleaved during or after export out of the 

cell. The active peptide is then reimported, and activates or inhibits its sensor by binding to 

a tetratricopeptide repeat (TPR) domain on the molecule (Declerck et al., 2007). Thus, in 

these cases, the signal is not mediated by a two-component system. The regulators NprR 

and PlcR, which are central in this work, are both quorum sensing activated members of 

the RNPP protein superfamily, Their signaling mechanisms are, as far as they are known, 

described in more detail below. 

 

1.2.1.1. Activation of the PlcR regulator. 
The transcriptional regulator PlcR (phospholipase C regulator) controls a regulon 

dominated by extracellular and cell wall-associated virulence factors (Agaisse et al., 1999; 

Gohar et al., 2002; Lereclus et al., 1996). The regulator is activated at the transition into 

stationary phase, and reaches maximum activity two hours later (Gohar et al., 2002). Its 

expression is dependent on the signaling peptide PapR (peptide activated by PlcR) (Slamti 

& Lereclus, 2002). PapR is synthesized as a 48 amino acid peptide and exported out of the 

cell. In the extracellular environment it is cleaved, and the active heptapeptide is 

reimported via an oligopeptide permease (opp) system (Bouillaut et al., 2008; Gominet et 

al., 2001). When PapR binds to the PlcR TPR-domain, the PlcR regulator is activated and 

able to bind to the PlcR binding sequence (Agaisse et al., 1999). Through binding sites 

upstream of both papR and plcR itself, PlcR autoregulates its own transcription and 

activation in a positive feedback loop (Lereclus et al., 1996; Okstad et al., 1999). Fig. 1 

shows the process of PlcR-activation, and the positive feedback loop. 
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Fig.1. The activation and positive feedback loop of PlcR. 

 

1.2.1.2. Activation of the NprR regulator.  
Downstream of the gene encoding NprR (neutral protease regulator) is a gene sequence 

specifying NprX, a 43 amino acid peptide with a putative export signal (Perchat et al., 

2007). The nprR and nprX genes are located right upstream of the gene nprA, encoding a 

metalloprotease. Studies of deletion mutants lacking nprA, nprR, and/or nprX in a B. 

thuringiensis strain carrying a chromosomal transcriptional fusion between nprA and lacZ, 

showed that NprR and NprX are required for nprA transcription (Perchat et al., 2007). 

Lack of nprX can be complemented by adding to the growth medium a synthetic peptide 

corresponding to the C-terminal part of NprR (Perchat et al., 2007), suggesting that this 

part of NprX acts as a signaling peptide. NprR does not appear to possess autoregulatory 

activity (Stéphane Perchat, personal communication). Fig. 2 shows the process of NprR-

activation as far as it is known. 
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Fig. 2. Possible method of NprR-activation 

 

1.3. Bistability 
The previous chapter may leave the impression that quorum sensing results in 

identical behavior throughout the bacterial community. In reality, the response will always 

be heterogenous. Even during well established multicellular behavior such as biofilm 

formation, competence and sporulation, only part of the cell population will be induced 

(Chung et al., 1994; Hadden & Nester, 1968; Veening et al., 2005b). Furthermore, no 

matter how good the growth environment, a tiny fraction of the cells will still enter 

pathways such as competence and sporulation (Veening et al., 2005b).  

Rather than constituting imperfections of the quorum sensing system, this intrinsic 

instability can be regarded as an adaptive mechanisms which increases the long term 

probability of survival for the community (Veening et al., 2008a). Pathways such as 

competence and sporulation have great costs to the individual cell in terms of growth arrest 

and energy-intensive production (Smits et al., 2006). If only a portion of the cells respond 

to the quorum sensing signal, the remaining cells can continue as before, or perhaps enter 

other pathways of differentiation. Such differentiation results in a robust and flexible 
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population with increased chance of survival, and allows division of tasks between cells in 

a community, e.g. matrix production in biofilm, which is only carried out by a fraction of 

the cells (Kearns, 2008; Veening et al., 2008b) 

Differentiation occurs as a consequence of stochastic processes (noise) that 

influence the biochemical reactions in a cell (Elowitz et al., 2002). The effects will be 

integrated into the regulatory networks, and may be augmented or counteracted by positive 

and negative feedback loops (Gore & van Oudenaarden, 2009). Differentiation can occur 

as a continuum of phenotypes, as observed in individual bacteria swimming (Spudich & 

Koshland, 1976), but many quorum sensing phenomena are bistable, meaning that the cell 

does or does not enter a certain pathway (Veening et al., 2008b). 

A bistable switch is traditionally viewed as a regulatory network which creates 

polarized gene expression. If a transcriptional regulator reaches a threshold activity, an 

auto-regulatory positive feedback loop (or a pairwise number of negative feedback loops) 

is initiated, turning the system on and committing the cell to the regulatory pathway (Smits 

et al., 2006). Below this threshold, the system is not auto-induced, and the cell does not 

enter the pathway. However, it now appears that some of the most important switches are 

not simply turned on or off, but will instead initiate different pathways in a stepwise 

fashion, dependent on their degree of activation and the affinity of the binding sites for 

their regulator. This is the case for DegU and Spo0A, two central regulators that have been 

shown to coordinate several types of multicellular behavior in B. subtilis (Fujita et al., 

2005; Murray et al., 2009; Verhamme et al., 2009).  

As the scientific community has become aware of the concept of bistability, it has 

been recognized as a property of an increasing number of cellular pathways. Sporulation 

(Chung et al., 1994), competence (Cahn & Fox, 1968; Hadden & Nester, 1968), biofilm 

formation(Chai et al., 2008), persistence (Balaban et al., 2004), motility (Mauder et al., 

2008), swarming (Calvio et al., 2005; Calvio et al., 2008; Senesi et al., 2004), filament 

formation (Kearns & Losick, 2005), and protein secretion (Veening et al., 2008a) are 

among the differentiation processes which have been reported to be under control of 

bistable or multistable regulators (Murray et al., 2009).  
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1.4. Motility 
In a world of limited resources, motility is an advantage, as it allows the organism to 

migrate towards nutrients and other favorable conditions, and away from unfavorable ones. 

Bacterial translocation can occur in a variety of ways: Swimming, swarming, gliding, 

twitching, sliding and darting, depending on the organism and the properties of the surface 

or surrounding medium (Henrichsen, 1972; Jarrell & McBride, 2008). Many bacteria have 

flagella which enable them to move by swimming in liquid media or swarming on a solid 

surface. However, the production and maintenance of flagella is structurally complicated, 

and requires energy and amino acid resources (McCarter, 2006). Therefore, flagellar 

activity is under strict regulatory control (Smith & Hoover, 2009b). In this section I will 

briefly describe the flagellar structure and regulation, and also the process of bacterial 

swarming, which is relevant to this work. Finally I will attempt to account for some of 

what is known about flagellar motility in the B. cereus group. 

 

1.4.1. The flagellar organelle 

1.4.1.1. Flagellar structure and function. 
The flagellum consists of three main proteinaceous structures (Fig. 3.), reviewed by 

Terashima et al (2008) and Smith et al (2009b): The basal body contains the motor that 

powers flagellar rotation by conversion of ATP to ADP. This is the most complex structure 

of the flagellum, and it is anchored in the cell envelope. The flagellar hook is the link 

between the motor and the flagellar filament. It is a curved rod and converts the rotary 

motion provided by the basal body motor into wavelike movements by the flagellar 

filament. The flagellar filament is helical and, when moved by the hook, it pushes against 

a surface or the surrounding medium and makes the cell move. Inside, the flagellar 

filament is hollow. During growth, flagellins, the proteins that constitute the building 

blocks of the filament structure, are transported through the hollow fiber and added to its 

distal end.  
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Fig. 3. A simplified model of the flagellar structure. Each of the three main structures are 

composed of a variety of subunits. 

 

The rotational direction of the flagellum governs the directional movement of the 

bacterium and is controlled by a phosphorelay signaling cascade receiving input from 

several two-component systems sensing environmental factors such as pH, temperature, 

the presence of nutrients, and other chemical signals.  

 

1.4.1.2. Regulation of flagellar biosynthesis. 
As previously mentioned, flagellar biosynthesis consumes energy and amino acid 

resources, and is therefore tightly controlled . The composition of the regulatory networks 

varies between species, as reviewed by Smith and Hoover (2009b) and McCarter (2006). 

Tables 1 and 2 show important regulatory proteins in two low GC gram-positive bacteria: 

The model organism B. subtilis and Listeria monocytogenes.  

Regulation in B. subtilis (table 1) resembles the hierarchical and temporally spaced 

control observed in Escherichia coli and Salmonella typhimurium. Here a class 1 gene 

encoding a master regulator induces transcription of class 2 genes coding for the proteins 

needed for synthesis of the basal body and the flagellar hook, as well as transcription 

factors inducing transcription of class 3 genes encoding the flagellin genes needed for the 

flagellar filament. This cascade ensures that proteins are synthesized in the right order 

(Smith & Hoover, 2009b). 
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Table 1. Central regulatory proteins involved in motility in B. subtilis. 
Protein Function Found in 

B. cereus  
References 

DegU Transition state regulator:  
Activates swrAA transcription at low 
concentrations.  
Inhibits transcription of the fla/che 
operon at high concentrations  

  no* (Amati et al., 2004; 
Calvio et al., 2008; 
Tokunaga et al., 
1994) 

SwrAA 
(formerly 
SwrA or 
Ifm), 

Master regulator (class 1 gene): 
Enhances transcription of  the fla/che 
operon containing class 2 genes, class 3 
activators, most chemotaxis genes and 
sigD (encoding σD) 

no (Calvio et al., 
2005; Kearns et 
al., 2004; Senesi et 
al., 2004; Smith & 
Hoover, 2009b) 

σD Transcription factor:  
Positively regulates transcription of 
flagellins (class 3 genes) and induces 
swrAA transcription 

no (Calvio et al., 
2008; Smith & 
Hoover, 2009b) 

FlgM Anti-sigma factor:  
Prevents σD from binding to its 
promoter region until the flagellar basal 
body has been synthesized 

no (Bertero et al., 
1999; Ghelardi et 
al., 2002; Mirel et 
al., 1994) 

*http://img.jgi.doe.gov, http://www.kegg.com, http://blast.ncbi.nlm.nih.gov/Blast.cgi 
 

The fla/che operon of B. subtilis is preceded by a σA promoter, and is transcribed at 

a low rate also in absence of the master regulator SwrAA, so that a swrAA deletion mutant 

will still display swimming motility (Kearns et al., 2004). To induce swarming or full 

swimming motility of B. subtilis in the exponential phase, both DegU and SwrAA are 

required (Calvio et al., 2008 and references therein). 

When in need of a regulatory model for the B. cereus group, it is common to look 

to B. subtilis. However, as will be evident from column three in Table 1, B. subtilis is not 

likely to provide a useful model for all aspects of motility in the B. cereus group. 

Therefore, I will also briefly explain the regulation of flagellar biosynthesis in another 

relative, L. monocytogenes. Regulation of flagellar biosynthesis in this organism is 

different from what is found in B. subtilis and most other bacteria. Here, a central repressor 

controls all genes involved in motility (Grundling et al., 2004; Shen & Higgins, 2006). 

When repression is lifted, flagellar genes are activated in a non-hierarchical manner (Shen 

et al., 2006). Central regulatory proteins are listed in table 2.  
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Table 2. Central regulatory proteins involved in motility in L. monocytogenes. 
Protein Function Found in B.cereus References 
DegU Transition state regulator: 

Activates GmaR transcription 
at low temperatures 

no (Shen et al., 2006) 

MogR Repressor: Controls genes 
involved in motility 

yes (Grundling et al., 
2004; Shen & 
Higgins, 2006) (Smith 
& Hoover, 2009a) 

GmaR Anti-repressor: lifts MogR-
repression of genes involved 
in motility 

Complete gmaR 
only found in strain 
NVH391-98* 

(Shen et al., 2006)  

*http://img.jgi.doe.gov, http://www.kegg.com, http://blast.ncbi.nlm.nih.gov/Blast.cgi 
 

Listeria may perhaps serve as a better model for regulation of flagellar biosynthesis in the  

B. cereus group, since these species do have mogR (Smith & Hoover, 2009a), but a 

complete gmaR has only been found in NVH391-98 (http://Blast.ncbi.nlm.nih.gov). 

1.4.2. Bacterial swarming. 
Bacterial swarming, as reviewed in (Fraser & Hughes, 1999), is a type of 

multicellular behavior displayed by bacteria growing on a solid surface. Swarming bacteria 

develop elongated multinucleate, nonseptate, hyperflagellated cells which align and move 

coordinately across the surface in large rafts. Cells do not divide in the swarming state, but 

will dedifferentiate in order to divide. Swarming functions as an effective way to colonize 

a surface, and a primary requirement for swarm-cell differentiation is a solid surface of 

appropriate viscosity (Fraser & Hughes, 1999). Sufficient cell density is also important, 

and the medium has to be rich enough to support flagellar biosynthesis and the energy 

required for movement (Eberl et al., 1996).  

Exactly how the bacteria sense the solid surface, is not certain, but in one case the 

polar flagellum is reported to be involved (McCarter et al., 1988), and there appears to be a 

link between chemotaxis and swarming, as mutations in genes involved in chemotaxis 

frequently reduce or abolish swarming (Harshey, 1994; Harshey & Matsuyama, 1994). On 

this background it has been speculated that the chemotaxis phosphorelay may be involved 

in the integration of signals leading to swarm-cell differentiation (Fraser & Hughes, 1999).  
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1.4.3. Flagellar motility in the B. cereus group. 
Both B. cereus, B. thuringiensis, and B. weihenstephanensis are known to exhibit 

flagellar motility, but the details of its regulation are not well known. As shown previously, 

regulation is likely to be different from what is observed in B. subtilis, but may be partly 

similar to that of L. monocytogenes, despite the absence of DegU. Genes involved in 

chemotaxis are also reported to be organized differently in B. subtilis and B. cereus 

(Celandroni et al., 2000). Repeated attempts to knock out MogR in B. cereus ATCC 14579 

have not been successful, possibly indicating that MogR is essential in this organism 

(Annette Fagerlund, personal communication).  

In addition to swimming motility, members of the B. cereus group are reported to 

swarm on LB agar with agar concentrations between 0.4-2.5 %, with an optimal range 

between 0.7 % and 1.2/1.5 % (Ghelardi et al., 2002; Senesi et al., 2002). Under normal 

conditions, swarm-differentiated cells are only found in the outermost rim of the colony 

(Ghelardi et al., 2002; Salvetti et al., 2009; Senesi et al., 2002). This way of swarming has 

also been demonstrated in other bacteria (Calvio et al., 2005; Eberl et al., 1999; Harshey & 

Matsuyama, 1994).  

As could be expected, genes involved in chemotaxis and flagellar expression affect 

motility, but different genes affect motility, chemotaxis and flagellar expression to variable 

extent, and other genes may also affect swarming. Table 3 shows the effects of some 

mutations which have been studied in the B. cereus group. However, some of these genes 

have unknown function, and for several of them, it is not known how they inhibit the 

swarming process. The conclusion must be that, in fact, we know very little about 

swarming in bacteria from the Bacillus cereus group, and perhaps even less about the 

regulation of motility in general.  
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Table 3. Effects of mutations on cellular aspects related to motility.  
Nonfunctional gene flagella motile Swarming  chemotaxis reference 

fliY    yes yes no no (Senesi et al., 2002) 
flhA    no no no no (Ghelardi et al., 2002) 
flhF   yes yes no yes (Salvetti et al., 2007) 
B.t.407 homologues 
of  
BT9727_0602  
  (hyp. protein) 
BT9727_2595  
  (sarcosine oxidase,     
   beta subunit) 
BT9727_3195  
  (acetyltransferase) 
BT9727_2764  
  (katX catalase) 
BT9727_3344  
  (oppA, ABC   
   transporter, substrate- 
   binding protein) 
 BT9727_5059  
  (dGTP  
  triphosphohydrolase ) * 

  yes yes no yes (Salvetti et al., 2009) 

* These genes were found by searching a B. thuringiensis 407 mini-Tn10 insertion library for isolates 
deficient in swarming, but with intact motility and chemotaxis. 

 

1.5. Stress responses 
Bacteria are continuously exposed to different types of stress from the environment, 

and they are equipped to handle temperature fluctuations, various types of chemical stress 

(pH, high salt concentrations, ethanol etc.), and desiccation, as well as attacks from hostile 

microorganisms and host immune systems (Abee & Wouters, 1999; Hecker et al., 2007). 

The genes involved in different stress responses vary. Some genes are specific to one 

particular stress response, while other genes are activated by several types of stress 

(Periago et al., 2002). Stress responses have been studied extensively in B. subtilis (Hecker 

& Volker, 2001; Hecker et al., 2007), and also in members of the B. cereus group, 

particularly B. cereus ATCC 14579 (Browne & Dowds, 2001; den Besten et al., 2009; den 

Besten et al., 2006; Mols et al., 2007; Periago et al., 2002; van Schaik et al., 2004; van 

Schaik et al., 2007), revealing extensive adaption to severe stress by pre-exposure to mild 

stress, and also that adaption led to a large degree of cross-protection between various 

types of stress.  
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Transcription of many stress response genes is induced by heat. Such genes are 

considered part of the heat shock response, though their functions may be diverse. In B. 

subtilis, the heat-inducible genes are classified according to their regulatory mechanism 

(Derre et al., 1999; Hecker et al., 1996). This classification has been adopted also by 

related species.  Below, I briefly present the five classes presently known, and account in 

more detail for the classes relevant to this work.  

 

Class I genes are regulated by the HrcA (heat regulation at CIRCE) repressor, 

which binds to the CIRCE (controlling inverted repeat of chaperone expression) operator 

sequence. Class I genes have a σA-dependent promotor, and include the classical chaperone 

genes groEL, groES, dnaK, and dnaJ (Schulz & Schumann, 1996), and will be presented in 

more detail below. 

Class II genes are positively regulated by σB, an alternative sigma factor involved 

in general stress response (Hecker et al., 2007). These genes are activated both by heat and 

other stresses, e.g. starvation or chemical stresses such as salt and ethanol. This is the 

largest group of stress response genes.Van Schaik et al. have investigated the σB regulon of 

B. cereus ATCC 14579, finding that it is smaller than what is observed in many other 

bacteria (van Schaik & Abee, 2005; van Schaik et al., 2007). 

Class III genes are negatively regulated by CtsR (class three stress gene repressor) 

(Derre et al., 1999). This class includes genes encoding the protease ClpP and the Clp 

ATPases ClpC and ClpE in B. subtilis. (Derre et al., 1999). In L. monocytogenes the ClpB 

ATPase is also part of this regulon (Chastanet et al., 2004). The class III heat shock 

proteins are presented in more detail below 

Class IV genes encode other heat-inducible proteins whose regulatory mechanisms 

are so far unknown. ClpX and FtsH are members of this class (Derre et al., 1999). 

Class V genes are regulated by the CssSR two-component system (control of 

cellular response to secretion stress sensor and -regulator, respectively), and are important 

for the response to secretion and heat stress (Darmon et al., 2002; Hyyrylainen et al., 

2001). This class includes HtrA and HtrB, and the CssSR system also autoregulates its own 

transcription. 
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1.5.1. Chaperones. 
The class I Heat Shock proteins are considered the classical chaperones. 

Chaperones are protein complexes which assist folding and translocation of other proteins, 

and prevent protein aggregation in the cell, reviewed in (Lund, 2001). The classical 

chaperones are the GroE complex and the DnaK chaperone systems. The GroE complex 

consists of two large rings, each made up of GroEL subunits, which form a cavity with a 

protected environment where proteins can fold. A smaller protein, GroES, caps the cavity 

reversibly, and is involved in admission and release of folded proteins (Lund, 2001).  

 The DnaK chaperone system works by different principles. DnaK binds hydro-

phobic areas of unfolded or partially folded proteins, thus protecting them from aggre-

gation until they can fold properly (Lund, 2001). DnaJ and GrpE promote binding and 

release of DnaK to the protein chains, respectively (Lund, 2001). Under physiological 

conditions, the activity of DnaK is particularly important for nascent proteins, while under 

stressful conditions such as elevated temperatures, the action of DnaK can prevent 

aggregation of proteins which have become completely or partially unfolded (Lund, 2001). 

 In Bacillus and Listeria species, transcription of the groESL and hrcA-grpE-dnaKJ 

operons are both regulated by the HrcA repressor, which is the first gene of the operon. 

HrcA thus represses its own transcription (Schulz & Schumann, 1996; Yuan & Wong, 

1995). GroE modulates HrcA activity (Mogk et al., 1997), possibly through a titration 

mechanism where GroE is necessary for correct folding of HrcA, and high levels of other 

non-native proteins will occupy GroE and reduce the folding of active HrcA (Lund, 2001; 

Mogk et al., 1998). 

 

1.5.2. Clp proteases and the CtsR regulator.  
Many of the class III heat shock proteins are subunits of Clp proteases. Clp 

proteases are ATP-dependent proteases which degrade aggregated or improperly folded 

proteins. They are also involved in posttranscriptional regulation through specific 

degradation of particular proteins (Frees et al., 2007; Striebel et al., 2009; Zolkiewski, 

2006).  The proteolytic complex consists of an ATPase and a proteolytic subunit, ClpP 

(Frees et al., 2007). The ATP-binding subunit confers substrate specificity and unfolding 

activity (Zolkiewski, 2006). The ATPase-binding subunits also have independent 

unfolding and chaperone activity (Frees et al., 2007; Striebel et al., 2009; Zolkiewski, 
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2006). In fact, the ClpB-ATPase does not associate with ClpP at all, but is still an 

important stress protein due to its unfolding of aggregated proteins (Zolkiewski, 2006).   

The Clp ATPases ClpC and ClpX are found in most low GC gram-positive bacteria 

(Frees et al., 2007). Other Clp ATPases have a more variable distribution. Table 4 shows 

which Clp proteins are found in the B. cereus group and the  related Gram positive species 

B. subtilis and L. monocytogenes. Table 4 also shows which Clp proteins are under control 

of CtsR, the negative regulator of class III stress proteins. In B. subtilis, CtsR is reported to 

be active as a dimer, and specifically degraded at 37°C in a process involving Clp (Derre et 

al., 2000). CtsR controls its own transcription as well as two proteins involved in its 

regulation, McsA and McsB (Frees et al., 2007).  In B. subtilis, CtsR binding to its 

repressor sites is controlled by McsA, McsB, and ClpC (Frees et al., 2007; Kirstein & 

Turgay, 2005; Kirstein et al., 2005; Kirstein et al., 2007).  

 

Table 4. The presence of Clp proteins in the B. cereus sensu lato, L. monocytogenes and B. 
subtilis. 

Species protein CtsR-regulated References 

Ba
ci

llu
s 

ce
re

us
 

se
ns

u 
la

to
 

ClpP1       yes (Fedhila et al., 2002a) 

ClpP2       no (Fedhila et al., 2002a) 

ClpC       yes* (Fedhila et al., 2002a), this work 

ClpX       no (Frees et al., 2007) 

ClpB       yes* This work  

Li
st

er
ia

 
m

on
oc

yt
og

en
es

 

ClpP1       yes (Chastanet et al., 2004; Nair et al., 2000) 

ClpP2         no (Chastanet et al., 2004) 

ClpC       yes (Nair et al., 2000) 

ClpX       no (Frees et al., 2007) 

ClpB       yes (Chastanet et al., 2004) 

ClpE       yes (Nair et al., 2000) 

Ba
ci

llu
s 

su
bt

ili
s  

ClpP       yes (Derre et al., 1999; Msadek et al., 1998) 

ClpC       yes (Derre et al., 1999; Msadek et al., 1994) 

ClpX       no (Frees et al., 2007) 

ClpE       yes (Derre et al., 1999) 

*Presence confirmed by sequencing, CtsR binding site found with Genome2D (Baerends et al., 2004), paper 
III. 
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1.6. Sporulation 
Bacterial endospores are differentiated cells which are metabolically inactive. They 

can survive without nutrients for long periods of time and germinate when the conditions 

are once again favorable. Endospores are resistant to heat, UV radiation, organic solvents, 

and a variety of other harmful environmental influences (Setlow, 2006; Setlow, 2007). 

Within the endospore core, DNA is protected by small acid soluble proteins (SASPs) and 

dehydrating dipicolinic acid (Driks, 2002). The core is surrounded by a peptidoglycan 

cortex, a protein spore coat, and sometimes also an exosporium (Driks, 2002; Madigan et 

al., 1997)  Sporulation is an important part of the success of the genus Bacillus and their 

notorious reputation as industrial contaminants (Barak et al., 2005). Still, the differenti-

ation into an endospore is energy-intensive, and also means the cell will be unable to 

divide and multiply (Hoch, 1993). Massive sporulation will therefore only be seen under 

conditions which do not support other survival strategies.  

 

1.6.1. Spo0A and initiation of sporulation.  
The master regulator of sporulation is Spo0A (sporulation factor 0A), which needs 

to be phosphorylated (Spo0A~P) in order to become active. In B. subtilis, phosphorylation 

processes start around the transition to stationary phase and proceeds through a 

phosphorelay integrating environmental and cellular signals in a variety of phosphorylation 

and dephosphorylation reactions as indicated in Fig. 4, including a positive feedback loop 

(Burbulys et al., 1991; Fujita & Losick, 2005; Garti-Levi et al., 2008; Ohlsen et al., 1994; 

Perego et al., 1994; Perego, 1998; Perego, 2001; Strauch et al., 1990; Strauch et al., 1992). 

As a result, the concentration of Spo0A and its degree of phosphorylation increases 

gradually. 

As members of the Spo0A regulon (Molle et al., 2003) have different binding 

constants for the regulator in the upstream region of each respective gene, the regulon is 

gradually activated (Fujita et al., 2005). This allows Spo0A, together with the regulator 

DegU, to sequentially activate different transition state adaptive responses and genes 

needed for sporulation. There are indications that this gradual increase, mediated through 

the phosphorelay, is necessary for efficient sporulation (Fujita & Losick, 2005). Perhaps 

even more important to the cell, various survival strategies are activated which may make 

sporulation unnecessary (Doi, 1989; Phillips & Strauch, 2002): Motility increases, and new 

metabolic pathways are derepressed, enabling the cells to metabolize new substances. 



 21 

Degradative enzymes are excreted into the environment (Veening et al., 2008a) in an 

attempt to make available nutrients from the surroundings, or even cannibalize other 

bacteria (Gonzalez-Pastor et al., 2003), and some genes may develop competence 

(Veening et al., 2005b). At higher concentrations, Spo0A~P may activate SinI,  and the 

cells may form a biofilm where the bacteria are protected by an extracellular matrix (Chai 

et al., 2008).  

 

Fig. 4. Some central proteins in the process of SpoA-phosphorylation in B. subtilis 

(Phillips & Strauch, 2002; Veening et al., 2005a) 

 

If the level of phosphorylated Spo0A reaches a (high) threshold concentration, 

transcription of Spo0A-regulated genes directly involved in sporulation is activated, and 
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the cell will be committed to sporulation (Chung et al., 1994; Fujita et al., 2005). The cell 

will then proceed to stage II of the sporulation process and divide asymetrically (Yudkin & 

Clarkson, 2005). Interestingly, there are indications that the Spo0A~P  level continues to 

increase and maintain a regulatory function in the mother cell (Fujita & Losick, 2003). 

Sporulation is a bistable differentiation process, and for a planktonic liquid culture in an 

efficient sporulation medium, about half the population will reach this activation threshold 

and sporulate (Chung et al., 1994; Fujita et al., 2005; Veening et al., 2005a).  

 

1.6.2. The stages of sporulation.  
The timing of the sporulation process depends on both the medium and the strain, 

but under laboratory conditions B. subtilis normally uses at least 7-8 hours, starting from 

the end of the logarithmic growth phase. The process of endospore formation is divided 

into different stages based on cytological changes (Barak et al., 2005; Doi, 1989) (stage I is 

no longer recognized as a separate stage): 

Stage 0: When the cell reaches a threshold concentration of phosphorylated Spo0A 

(Spo0A~P), it is committed to sporulation, even though it is still vegetative. This threshold 

concentration is reached at the end of the logarithmic growth phase or later. Enzymes 

involved in Spo0A activation and regulation are shown in figure 4. 

Stage II: The forespore septum appears and divides the cell assymetrically into a 

small forespore compartment and a larger mother cell compartment. 

Stage III: The forespore is engulfed into the cytoplasm of the mother cell. Both 

cell membranes are intact, resulting in a double membrane around the forespore. Formation 

of calcium dipicolinate starts to dehydrate the forespore. 

Stage IV: The spore cortex (peptidoglycan) starts to develop between the inner and 

outer forespore membrane. At this stage the forespore starts to refract light.  

Stage V: Inner spore coat proteins are deposited on the outer forespore membrane. 

The complex inner spore coat has a multilayered, laminar structure. 

Stage VI: The proteinaceous outer spore coat is deposited on the surface of the 

inner spore coat. The spore matures during this stage, and becomes increasingly resistant to 

heat and chemicals as the spore coats develop.  

Stage VII: The mature spore is released from the mother cell.  
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Cellular regulation of sporulation after asymetric septum-formation has been studied most 

closely in B. subtilis (Eichenberger et al., 2004; Piggot & Losick, 2002; Wang et al., 

2006).  

 

1.6.3. Sporulation in members of the B. cereus group. 
The process of sporulation in members of the B. cereus group appears in many respects to 

follow that of  B. subtilis (de Vries et al., 2004), but differences in regulation would be 

expected. There are observed differences compared to B. subtilis, for instance in 

sporulation histidine kinases and the number of phosphatases (Anderson et al., 2005; 

Brunsing et al., 2005). Furthermore, Spo0B of B. anthracis Sterne has been found to 

exhibit autophosphorylation and ATPase activity, in contrast to B. subtilis Spo0B which is 

only a phosphotransferase (Mattoo et al., 2008). The phosphatase Spo0E, on the other 

hand, has the same role in the two organisms, and B. subtilis Spo0E is active in B. 

anthracis (Dubey et al., 2009).  

 

1.7. Virulence 
With the exception of B. anthracis, most members of the B. cereus group are not 

very invasive, but are considered opportunistic pathogens (Kotiranta et al., 2000). 

Virulence varies greatly both between and within species, from strains accepted for use as 

probiotics (Hong et al., 2005) to B. anthracis, the causative agent of anthrax (Mock & 

Fouet, 2001; Passalacqua & Bergman, 2006). The genes encoding the virulence factors 

leading to anthrax reside on two large plasmids, pXO1 and pXO2, and differ from those 

displayed by most other members of the group (Kolstø et al., 2009; Mock & Fouet, 2001). 

In fact, PlcR, a pleiotropic regulator of virulence in the B. cereus group, is non-functional 

in B. anthracis (Agaisse et al., 1999; Mignot et al., 2001). However, there are reports of B. 

cereus strains which have caused disease with anthrax-like symptoms and harbor plasmids 

similar to pXO1 and pXO2 (Hoffmaster et al., 2004; Hoffmaster et al., 2006; Klee et al., 

2006). B. mycoides and B. pseudomycoides both have functional PlcR, but are rarely 

implied in infection, while B. cereus, B. thuringiensis, and B. weihenstephanensis all 

include strains with potential to cause disease (Ehling-Schulz et al., 2004; Kramer & 
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Gilbert, 1989; Lapidus et al., 2008; Stenfors et al., 2002; Thorsen et al., 2006). Thus, the 

discussion of virulence below will be relevant to strains within all these three species.  

 

1.7.1. The virulence regulator PlcR 
PlcR (phospholipase C regulator) is a pleiotropic regulator of virulence factors in 

members of the B. cereus group (Agaisse et al., 1999). plcR transcription is activated at the 

transition to stationary phase and reaches its maximum two hours later (Lereclus et al., 

1996) (for activation mechanism, see section 1.2.1.1). PlcR positively regulates 

transcription of a large regulon, dominated by secreted and cell wall-associated virulence 

factors, including cytotoxins (e.g. cytotoxin K), enterotoxin complexes (hemolysin BL and 

nonhemolytic enterotoxin), immune inhibitors (InhA2), phospholipases, proteases, and a 

variety of other degradative enzymes (Agaisse et al., 1999; Gohar et al., 2002). Proteins 

controlled by PlcR make up more than eighty percent of the secretome during the transition 

to stationary phase in a rich medium (Gohar et al., 2002). Disruption of PlcR reduced, but 

did not abolish virulence in insect larvae, mice and an ophthalmic rabbit model system 

(Callegan et al., 2003; Salamitou et al., 2000). Motility was also reduced in PlcR-deficient 

strains (Callegan et al., 2003) 

PlcR is a quorum sensor, responding to the cell population density, and positively 

regulates its own transcription (Gominet et al., 2001; Lereclus et al., 1996). However, it is 

also influenced by other regulators in the cell; plcR transcription is repressed, possibly 

indirectly, by Spo0A in its phosphorylated state (Spo0A~P), and will therefore not be 

activated under conditions favoring sporulation (Lereclus et al., 2000). Deletion of the 

two-component system YvfTU resulted in 50 % lower expression of PlcR, but this only 

affected a smaller number of PlcR-controlled genes, and transcription of the genes 

encoding haemolysin BL-components were actually upregulated (Brillard et al., 2008).  

 

1.7.2. Members of the B. cereus group as human pathogens.  
As noted above, most members of the B. cereus group rarely cause serious disease 

in humans. However, there are examples of systemic infections, particularly in 

immunocompromised individuals (Drobniewski, 1993). When introduced through 

traumatized skin such as burns or wounds, B. cereus can cause severe local infections  

(Drobniewski, 1993). Likewise, if B. cereus or B. thuringiensis is introduced into the eye, 
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serious eye infection may occur, which may result in loss of sight within 24 hours (David 

et al., 1994; Miller et al., 2008).  

Still, the diseases most commonly associated with members of the B. cereus group 

in humans are gastrointestinal or emetic food poisoning of short, but rather unpleasant 

duration (Drobniewski, 1993; Hauge, 1950; Kramer & Gilbert, 1989). The emetic disease 

is an intoxication caused by preformed cereulide, a non-ribosomally synthesized peptide, 

while the diarrhoeal disease is usually considered a toxicoinfection caused by vegetative 

cells secreting toxins and degradative enzymes, the majority of which are controlled by 

PlcR. Cytotoxin K (CytK) (Lund et al., 2000) as well as the three-component enterotoxins 

hemolysin BL (Hbl) (Beecher & Macmillan, 1991) and non-hemolytic enterotoxin (Nhe) 

(Granum et al., 1999; Lund & Granum, 1999) are thought to play a central role in 

gastrointestinal infection (Arnesen et al., 2008; Kotiranta et al., 2000), but most likely act 

together with other virulence factors to create the enterotoxic effect (Arnesen et al., 2008).  

 

1.7.3. Members of the B. cereus group as insect pathogens. 
B. thuringiensis is regarded as the primary insect pathogen of the B. cereus group, 

due to its ability to produce large amounts of insecticidal crystal toxins (Schnepf et al., 

1998). These crystal toxins are encoded by cry genes residing on plasmids, Different cry 

genes have specificity towards different insect larvae, and combinations of toxins yield 

synergistic effects (Schnepf et al., 1998). The Cry toxins are produced in large amounts 

during sporulation, e.g. in soil, and several cry genes are preceded by a Spo0A binding site, 

but transcription may also be induced by sporulation-independent mechanisms (Lereclus et 

al., 1995; Schnepf et al., 1998).  

When ingested by susceptible insect larvae, the crystal toxins attack the peritrophic 

membrane lining the insect midgut (Soberon et al., 2009). There are indications that the 

toxins may act synergistically with virulence factors encoded in the chromosome, such as 

chitinase and the PlcR-regulated InhA2 (Fedhila et al., 2002b; Liu et al., 2002). Without 

the toxin-encoding plasmids, B. thuringiensis is indistinguishable from B. cereus 

(Helgason et al., 2000; Rasko et al., 2005). However, even though some B. cereus strains 

are reported to live symbiotically in the insect gut (Margulis et al., 1998), B. cereus strains 

as well as B. thuringiensis strains cured of the cry plasmid still exhibit pathogenicity in oral 

and intrahemocoelic insect infection models (Bouillaut et al., 2005; Fedhila et al., 2002a; 
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Salamitou et al., 2000). Thus, it is also possible to discover chromosomally encoded genes 

which lead to attenuated virulence when rendered non-functional. Examples of such genes 

are ilsA, inhA2,  fur, flhA, plcR, papR, clpP1 (although the effect of clpP1 deletion is 

temperature-dependent) (Bouillaut et al., 2005; Fedhila et al., 2002a; Fedhila et al., 2002b; 

Fedhila et al., 2003; Fedhila et al., 2006; Salamitou et al., 2000; Slamti & Lereclus, 2002), 

and genes of unknown function, such as yqgB/ yqfZ (Fedhila et al., 2004). Virulence was 

strongly attenuated in an insect model by simultaneous deletion of all three inhA-encoding 

genes in B. thuringiensis 407 (Guillemet et al., 2009). Thus it is apparent that 

chromosomally encoded virulence factors also play a role in insect pathogenicity.  
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2. Aims of the research and summary of 
papers. 

In the work presented in this thesis, microarray technology was applied to address 

various questions of an exploratory nature, questions which would be difficult to address 

effectively using traditional methods. Comparative transcriptomic analysis may provide 

insights into the global effects of deletion mutations or cellular differentiation. The method 

has the potential to reveal the transcriptional rationale behind an observed phenotype, and 

also transcriptional changes which do not necessarily result in a visible phenotype under 

the applied conditions. Below I will briefly present the major aim(s) of each study and give 

a summary of the resulting paper.  

 

Paper I: 

Aim: To establish a regulon for the transition state transcriptional activator PlcR, which is 

important to virulence in the B. cereus group. We wanted to verify differential expression 

of genes found by other methods to belong to the PlcR regulon, as well as to identify new 

members of this regulon (paper I) 

 

Summary of results: a PlcR regulon was determined, which consisted of forty-five genes 

controlled by twenty-eight PlcR binding sites. Twenty-two PlcR-controlled proteins were 

secreted, and eighteen were bound to the cell wall or the outside of the cytoplasmic 

membrane. Many of the exported proteins were involved in virulence and degradation, 

supporting the view that PlcR plays a role during host invasion, by activating defensive as 

well as invasive mechanisms. Several exported proteins also have potential regulatory or 

environmental sensing functions, possibly indicating that the PlcR regulon integrates many 

signals from the environment. Of the cytoplasmic proteins, four had confirmed (PlcR) or 

putative regulatory functions.  

Based on the PlcR binding sites found to be active, a new consensus sequence was 

proposed. Areas surrounding the active sites were found to be significantly more AT-rich 

than areas surrounding inactive binding sites. 
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Paper II 

Aim: To establish a regulon for the transition state transcriptional represssor NprR and its 

signalling molecule NprX. As little was previously known about NprR, an important aim 

was also to gain a better understanding of the role of this regulator during the transition 

phase.  

 

Summary of results: Global comparison of gene transcription between B. thuringiensis 

407 nprA’-lacZ ΔnprR-nprX and its isogenic strain using microarrays, showed that NprR-

NprX affected one hundred and eight genes, encoding proteins with a broad range of 

functions. Genes more than four times up- or downregulated, as well as two genes with 

high functional similarity to some of these genes, were considered most likely to be 

members of an NprR regulon. Differential expression of these genes in the two strains was 

confirmed by RT-qPCR and the genes were all found to be at least four times up- or 

downregulated. With the exception of one operon, all genes were downregulated in the 

mutant relative to the reference strain, indicating that NprR primarily functions as a 

transcriptional activator. Some of the genes found to be differentially expressed, were also 

compared by introducing lacZ fusions of their upstream regions into B. thuringiensis 407 

nprA’-lacZ and the ΔnprR-nprX mutant. These experiments confirmed our observations. 

On this background, the forty-two genes were proposed to make up an NprR regulon. Of 

these, one fourth are degradative enzymes, indicating that the NprR regulon may have a 

role in nutrient acquisition during the transition to stationary phase.  

 A BLAST search revealed that complete or partial hits to nprR was found in all but 

one of the currently sequenced members of the B. cereus group (B. cereus H3081.97). No 

hits were found outside the B. cereus group. A search for orthologs to genes belonging to 

the NprR regulon in fifteen completed genomes, identified a subset of eleven genes to be 

practically absent from genomes belonging phylogenetically to clade I, which harbors the 

B. anthracis cluster and many clinical isolates.    

 

 

  



 29 

Paper III. 

Aim: To describe phenotypic differences and similarities between three variants of B. 

cereus ATCC 14579, two which displayed filament formation during exponential growth 

(14579-L1 and 14579-L2), and one which grew as single cells or short chains during all 

stages of growth (14579-S1). The aim was also to establish a genetic or regulatory cause 

for the observed differences. 

 

Summary of results: Microarray comparisons of the variants 14579-S1 and 14579-L1, 

isolated from the same liquid culture, revealed increased transcription of genes encoding 

class I and III stress proteins in the filamentous variant, 14579-L1. This was confirmed by 

RT-qPCR, and mass spectrometry showed that differences in expression could also be 

found for some of the corresponding proteins. Sporulation experiments showed the 

sporulation efficiency of 14579-L1 to be only one tenth of that observed for 14579-S1 and 

14579-L2. Non-sporulated cells, though non-viable, did not lyse.  

 14579-L2 shared most of the morphological phenotypes of 14579-L1, including a 

rugged colony edge when grown on agar plates, and the failure to lyse, both in contrast to 

14579-S1. However, as already mentioned, 14579-L2 was sporulation proficient, and RT-

qPCR showed no upregulation of genes encoding stress proteins. All three variants were 

stable over time, indicating that the observed differences had a genetic basis, but a cause 

for the phenotypic differences and similarities could not be determined. 

 

Paper IV. 

Aim: To study global effects of swarming on gene expression and investigate the 

regulatory mechanisms behind the swarm-differentiated cells. 

 

Summary of results: Microarray comparison of swarm-differentiated versus non-

swarming cells of B. cereus ATCC 14579 found 290 genes to be significantly affected by 

swarming. Half the genes were found to be upregulated, while the other half was 

downregulated. Genes involved in motility, signal transduction mechanisms, and 

intracellular trafficking and secretion were among the COG categories dominated by 

upregulated genes during swarming, in accordance with the hyperflagellated, multicellular 
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nature of the swarming state. Among the most highly upregulated genes, were also genes 

encoding proteins with a potential role in antimicrobial resistance, and further studies 

demonstrated increased resistance towards daptomycin and also towards sodium tellurate 

compared to non-swarming colonies.  

Transport and metabolism of nucleotides, carbohydrates, and lipids (three different 

COG categories) were all dominated by downregulated genes during swarming. In 

addition, a substantial number of genes involved in energy production were found to be 

downregulated, but this was most likely due, at least in part, to differences in oxygen 

availability between swarming and non-swarming cells. Upregulation of genes, however,  

did not seem to be dependent on oxygen conditions. The virulence regulator PlcR and 

many genes controlled by this regulator, showed reduced transcription during swarming, 

while the hbl toxins showed increased transcription, presumably by a PlcR-independent 

mechanism.   
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3. Methodological considerations. 
In this chapter, I will briefly introduce the principles of microarray technology, and 

I will discuss in some detail the choices made during analysis of the microarrays. 

Microarray experiments have been central in the projects presented in this thesis. Even 

though the microarray results may constitute a small part of the final papers, they have 

provided much of the foundation for further studies. Microarray results are not only 

affected by the experimental procedure. Image processing and data analysis also have a 

considerable impact on the final results. These are details which there is not room for in 

article, but which still influence the outcome, and hopefully they may be of interest to 

others who work with this technology.  

 

3.1. Microarray technology, principles and a short history. 
Microarray technology is based on the principle of hybridization (Knudsen, 2004a). 

Two complementary single strands of DNA/RNA will hybridize to form a double strand. 

Adenine binds to thymine or uracil, while cytosine binds to guanine. A microarray is an 

arrangement of one-stranded nucleotide probes attached to a matrix. Depending on the type 

of array, one or two samples are fluorescently labeled, denatured, and applied to the 

matrix, where nucleotide sequences in the samples will bind to matching probes by 

hybridization. RNA is converted to cDNA in the labeling process.   

After hybridization, the slide is scanned. The intensity of the fluorescent signal for 

a given probe is used as a measure of the amount of the matching nucleotide in the sample 

(Knudsen, 2004a). For two-color arrays, the two applied samples bind by competitive 

hybridization, and the scanning is done at two different wavelengths, returning two values 

for each probe. For these arrays, the result is given as a ratio of the signal intensities of the 

two samples to be compared, or a ratio of the sample relative to a reference. Fig. 5 shows 

an overview of the workflow for the laboratory part of a microarray experiment. 
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Fig. 5. The steps of a two-color spotted array gene expression experiment 

 

Hybridization is also the basis of classical techniques such as southern and northern 

blotting, and was, as such, well established. Immobilized probes were also used previously, 

in membrane based dot blots and macroarrays. The novelty of microarrays was in the 

massive parallel capacity for multiple testing. This was among the first true high 

throughput techniques, allowing simultaneous hybridization of a sample to thousands of 

probes printed on a surface. The expression of all genes in a genome could be investigated 

simultaneously. This was particularly feasible for microbial genomes, due to their 

relatively small size.  

In the beginning, two types of microarrays dominated the field: Affymetrix chips 

and two-color arrays spotted on microscope glass slides. Affymetrix synthesizes short 

nucleotide sequences directly on to the chip with high density of probes per area 

(Ragoussis & Elvidge, 2006). This allows the creation of so-called tiling arrays, which 

cover the entire genome sequence with overlapping probes, and can be used to discover 
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small variations and mutations in the genome as well as gene expression studies 

(Ragoussis & Elvidge, 2006). Affymetrix chips are one-color arrays, where one sample is 

hybridized to each chip. However, affymetrix chips are expensive and require highly 

specialized scanners (Dufva, 2005). 

Spotted arrays were a cheaper alternative. Here the array is made by small amounts 

of nucleotide probes printed on the surface of a glass slide (Dufva, 2005). In the beginning, 

probes were based on cDNA, but as an increasing number of sequenced genomes became 

available, the use of synthetic oligonucleotides became more common (Barrett & 

Kawasaki, 2003; Kawasaki, 2006). Due to their lower resolution, spotted arrays were 

primarily used for gene expression studies.  

After a couple of years, other high density array platforms appeared, such as two-

color arrays from Agilent (Wolber et al., 2006),  a variety of array types from NimbleGen 

(Roche) (Kirmizis et al., 2004; Nuwaysir et al., 2002; Okou et al., 2007; Selzer et al., 

2005; Wong et al., 2004), and also high density bead arrays from Illumina (Fan et al., 

2006), to mention a few of the most successful platforms. This allowed the creation of 

tiling arrays for more platforms than Affymetrix, and expanded the possible applications of 

microarrays (Kapranov et al., 2003).  

Lately, however, arrays have met competition from the new high-throughput 

sequencing methods such as SOLiD (ABI) (Cloonan et al., 2008)  and Solexa (Illumina) 

(Mortazavi et al., 2008), leading some scientists to predict the imminent obsolescence of 

microarrays (Shendure, 2008). Direct sequencing of RNA avoids several of the weaknesses 

inherent in the microarray technology. Cross hybridization and artifacts introduced through 

reverse transcription and fluorescent labeling of your sample are not a problem, and better 

reproducibility between different platforms should be expected. Furthermore, sequencing 

may uncover unknown active transcripts and alternative splicings, while a probe-based 

technique will be limited by the design of the probes. With sequencing, a priori knowledge 

of the genome sequence is not absolutely required, but will still be a great advantage to 

those attempting to make sense of the vast amount of data that is generated.  However, at a 

similar cost, sequencing is at the moment not outcompeting high-density arrays for gene 

expression studies (Bloom et al., 2009). Arrays are by now a well established technique, 

and will, at least for some time still, be a more economical alternative than sequencing, 

particularly for large numbers of samples. The technique is likely to be valuable for quite a 
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while yet, particularly within diagnostics, though its use may shift in the direction of 

preliminary analysis and preparative purposes (Blow, 2009). 

 

3.2. The microarray slides. 
The microarrays used in this study are spotted arrays, custom printed on 

aminosilyl-covered glass slides. The probes are 70-mer oligos designed for B. anthracis 

Ames, with supplementary probes for B. anthracis A2012 and B. cereus ATCC 14579 

where the sequence in these strains is less than 93 % identical to the corresponding B. 

anthracis Ames sequence (ungapped alignment), or for unique ORFs in these two strains. 

One probe has been designed for each ORF. Probes matching two hundred ORFs found in 

B. cereus ATCC 10987, but not in the three other strains, are also included. Each probe is 

printed twice, in a pair, on the array, and the entire array is printed twice on each slide, 

resulting in a total number of four replicates for each probe on a slide. Negative and 

positive controls (housekeeping genes) are included.  

The presence of probes for similar genes from multiple strains poses a risk of 

crosshybridization, but the main weakness of the slides stems from the sequencing of the 

B. cereus ATCC 14579 (Ivanova et al., 2003), where many genes were found to carry 

mutations which render them non-functional. For such pseudo-genes, no probes were 

designed. However, resequencing the gene frequently shows that the alleged mutations are 

sequencing errors (Salvetti et al., 2007, paper III), and that the gene is in fact functional 

and may be expressed. Fortunately, such genes may in many cases be detected by the 

anthracis probes. Also, as annotation differs between strains, transcribed areas not 

designated as ORFs in B. cereus  ATCC 14579 may be registered by probes for other 

strains. Significant hits to anthracis probes were therefore investigated to uncover whether 

they were a result of cross hybridization or contained new information.   

 

3.3. Experimental design.  
 A suitable experimental design is important to get the desired information from the 

experiments. When comparing a wild type and a mutant, or two different conditions, direct 

comparison by hybridisation of the two sample types to the same slide was chosen as an 

efficient and easily interpretable method, which was also easy to analyze properly. The 



 35 

disadvantage of such a design is that it can not easily be expanded to accommodate new 

sample types, unlike a design with a common reference.  

For the PlcR-experiments, a hybridization loop (fig. 6) was set up to maximize 

technical and biological variation in as few experiments as possible. However, though 

theoretically possible, it was in reality difficult to distinguish between technical and 

biological replicates during analysis. When the biological material is a bacterial culture, 

biological replicates are easy to obtain, and give more valuable information than technical 

replicates. Thus, for the other analyses in this work, all slides represent independent 

biological replicates, and four slides were normally used for each experiment. Dye swap 

(i.e. alternating the assignment of the fluorescent dyes between the two conditions tested) 

was performed between biological replicates to avoid dye bias.  

 

 

 

 

 

  

 

 
 

 

3.4. Scanning 
The scanner used for the microarray slides was a GenePix 4000b scanner 

(Molecular devices). During scanning, intensity of the scanning beams was adjusted to 

achieve a ratio close to 1 between the sums of the fluorescent signals in the raw image. A 

common piece of advice for microarray scans is to avoid saturated spots. However, as the 

samples are prepared using total RNA, probes corresponding to ribosmal RNA can be 

expected to reach saturation. It has been reported that low-intensity signals (intensities < 

200) lead to erroneous expression ratios which may also affect the total intensity 

normalization factor, while a small number of saturated spots appeared to have few global 
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Fig. 6. To the left, the design used for most of the PlcR experiments. To the right, the 
design used for the other experiments, which only uses two slides to compare two 
biological samples. The slide at the bottom of the arrow was labeled with Cy3 and 
the slide at the tip of the arrow with Cy5. 
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effects (Lyng et al., 2004). Most of the slides were therefore scanned at intensities where a 

small number of spots were saturated. A drawback of this is that bacground intensities 

around the spots may increase. However, the probes will normally appear as black holes in 

the background and do not seem to be affected to a large extent by the background.  

 

3.5. Microarray analysis 
Numerous programs and scripts exist to normalize microarray data and make a 

statistical model based on the results. Though some methods are undisputably better than 

others, a more common situation is that each choice has its advantages and disadvantages. 

In the following, I will discuss the microarray analysis, and choices made along the way. 

Generally, it can be said about the analyses in this work that they are conservative, and that 

robustness has been given priority over statistical power. The filtering scripts used before 

and after normalization were made by Endre Anderssen, and have only been slightly 

modified to suit our use. 

 

3.5.1. Analysis of the raw images. 
Initial analysis of the raw image consists of three steps (Yang et al., 2002): 

Gridding: A grid of probe identifiers is fitted to the raw image, localizing and 

identifying each spot  

Segmentation: The boundaries of each spot are determined, and pixels are 

classified as belonging to the spot (foreground) or to the surroundings (background)  

Intensity extraction: Signal intensities of the foreground and background are 

calculated for each wavelength. In addition, various quality measures may be calculated.  

The Genepix Pro 6.1. software (Molecular Devices, 2005) was used for the raw 

image analysis. The program performs the steps above automatically, but manual 

intervention is necessary to secure proper gridding and segmentation, something which is 

not unusual for spotted arrays (Knudsen, 2004c). Adaptive circle segmentation was used 

(Knudsen, 2004c). 

During the raw image analysis, spots of dubious quality or unduly influenced by 

background were also marked (flagged bad) to make it possible to weigh these down or 
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remove them during downstream analysis. In addition, many spots were automatically 

flagged by the software as “not found”.  

 

3.5.2. Filtering. 
After raw image analysis, signal intensities and additional quality information 

about each spot was exported from the GenePix result file into the statistical computing 

platform R, version 2.7.1. (http://www.r-project.org), and further data analysis was 

performed with the package LIMMA (Linear models for microarray data)  (Smyth, 2005). 

The main focus of our analyses was to find genes which could reliably be assumed to be 

affected by the mutation or the conditions under investigation. As internal replicates on the 

slides were averaged during downstream analysis, it was considered important to remove 

replicate spots of dubious quality. Spots which were flagged “bad” or “not found”, as well 

as very small spots, were excluded from the analysis, as their values were considered 

unreliable. Spots with weak or saturated signal intensities at both wavelengths were 

removed, while spots with one good signal and one weak or saturated signal were kept. 

Due to the nature of saturation, and the tendency of the GenePix scanner to overestimate 

weak signals (Lyng et al., 2004), these spots would most likely have underestimated 

expression ratios and return some false negatives, but some of these genes could be both 

significant and interesting. Likewise, spots with one weak and one saturated signal were 

kept, as their results would be very significant even if their expression ratios were grossly 

underestimated.  

 

3.5.3. Weighting 

Control spots were weighted down so as not to influence the normalization. For 

technical reasons, they were removed before the statistical models were made. Normal 

spots were given a quality weight based on the spread in signal intensity within each spot 

(Bruland et al., 2007). The quality weights were used during normalization and when 

internal replicate spots were averaged. The averaged quality weights were also used when 

the statistical model was made, but in this case the weights were also dependent on the 

number of replicates on which the averaged values were based, and this normally had a far 

higher impact than the quality weights.  
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3.5.4. Background correction 
Background correction is common, and based on the assumption that the 

fluorescence registered from the background will also cover the spot and increase the 

signal intensity. As described above, however, the two signals were seldom additive in our 

experiments, but usually appeared as dark circles against the surrounding background. This 

was particularly striking in arrays with high background, where subtraction of the 

background values would substantially affect signal intensities. In such cases, subtracting 

the background would only increase noise in the data (Knudsen, 2004c). There are also 

studies reporting that background correction may increase the variability of low-intensity 

spot values and reduce the number of differentially expressed spots found (Bruland et al., 

2007; Yang et al., 2002). On these grounds, background intensities were not subtracted 

during microarray analyses performed in this work. Instead, spots which appeared to be 

affected by the background signal were flagged bad during the raw image analysis, and 

subsequently excluded from downstream analysis. However, to stabilize spots with very 

low signal intensities, a small offset (usually in the size range 10-50) was added to all 

signal intensities. This slightly dampened the expression ratios, but usually had only a 

small or negligible effect on those spots which were not removed during filtering.  

 

3.5.5. Normalization 
The purpose of normalization is to remove systematic bias from the data. There are several 

ways to normalize, but, unless external controls are used, they all make assumptions about 

the distribution of the data (Knudsen, 2004b). In this work, data were normalized using 

global loess (Smyth & Speed, 2003), which stipulates that the data are centered around 

zero, i.e. that the sum of signal intensities at each wavelength is equal, but takes into 

account that the bias in signal-ratios often depends on the signal intensities (Knudsen, 

2004b; Smyth & Speed, 2003). Equal sums of signal intensities were also assumed during 

scanning, when the power of the multiplier tubes was adjusted to achieve a total signal 

ratio close to one, and is based on the fact that we started with equal amounts of RNA in 

the two samples to be compared. Printtip-loess was not used, as intensive filtering of some 

areas of a slide could leave few spots on which to base the normalization. In addition, dye 

bias was corrected by dye swap between biological replicates (4.3.1.). 
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3.5.6. Merging internal replicates 
After normalization, technical replicates within each slide were averaged, and the 

averaged value given a weight based on the quality weights of the original spots and the 

number of replicates which had been averaged. Averaging the spots decreases the 

granularity/resolution of the data, which may cause problems if analyzing data from low-

intensity scans, where the spread in signal intensity is smaller. However, the methods 

which include technical replicates in the statistical model assume the same correlation 

between all spots (Smyth et al., 2005), something that does not apply to our array design 

where the four replicates are located in two pairs far apart. Therefore we preferred to 

average the replicates, as this method was robust and applicable to all genes regardless of 

how many and which replicates were left after filtering. For slides scanned at higher 

intensities, the ranking of genes was very similar between analyses with merged and 

unmerged replicates, and there was a tendency that genes predicted to be cotranscribed 

would be treated more similarly in genelists based on merged replicates. 

 

3.5.7. Transformation  
The averaged values were compared across slides to calculate log2 expression ratios and 

significance estimates using linear models and moderated t- statistics as described by 

Smyth (Smyth, 2004). FDR-correction (p = 0.05) was used to correct for the problem of 

multiple testing (Benjamini & Hochberg, 1995; Knudsen, 2004b).  

 

3.5.8. Separate normalization of positive controls 
Probes for twelve typical housekeeping genes were used as positive controls on the slide. 

Probes from this set were frequently found to be differentially expressed, which posed a 

problem, as the controls could not be separated from the ordinary probes, and could not be 

analyzed together with the normal data. To obtain expression ratios for the probes used as 

positive controls, a separate analysis was made where the probe IDs matching those of the 

positive controls were not removed, but analyzed exactly as the the other data, but this time 

influencing normalization. From this analysis, only results for the probes corresponding to 

the positive controls were extracted and added to the remaining data.   
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3.6. Performance of the analysis method.  
During this work, various approaches to experimental design, scanning and analysis 

have been tried and reconsidered, and some of this experience has been accounted for 

above. The resulting analysis method was applied to a variety of scientific questions, 

finding from zero to several hundred significant genes. Due to the strict filtering criteria, 

the analysis is conservative and will most likely not find all true positives, particularly 

among weakly expressed genes. However, a major aim has been to avoid false positives. In 

this respect, it is reassuring that strong results can generally be reproduced by RT-qPCR or 

other methods. For the genes picked out as likely candidates to be under direct control of 

NprR (paper II), fourfold or higher differential expression could be confirmed for all the 

suggested genes by quantitative RT-PCR. The observed increase in differentially expressed 

genes from T1 to T3 in the NprR experiments is also reasonable, as NprR activity was 

expected to increase during this period.  

For the genes found to be significantly upregulated in the microarray comparison 

between filamentous and planktonic variants (paper III), most of the fold changes were 

lower than fourfold. Still, upregulation of eleven out of thirteen genes could be confirmed 

by quantitative RT-PCR, even though, in this case, there was no overlap between the 

samples used for microarrays and those used for RT-qPCR. The microarray results were 

also compared with results from the same experiment carried out in LB broth without 

added glucose (data not shown). Nine of the thirteen genes were found in both genelists, 

and all operons except BC_3705-BC_3706, were represented. BC_3705-BC_3706 were 

also the genes which could not be confirmed by RT-qPCR. As both genes in the operon 

were found to be differentially regulated in one study, the divergent results may be caused 

by biological variability as well as analytical artifacts. Microarray results for paper IV have 

not been confirmed by other methods. A validation would strengthen the data, and be  

particularly valuable for the hypothetical proteins. 

The examples above indicate that the analysis method yields fairly reproducible 

results. Still, the power of microarrays is in its use as an exploratory, hypothesis-generating 

tool, and fold changes are often more reproducible than ranking genes based on p-values 

alone (Shi et al., 2008), which was also evident in paper I, where the results were used not 

only to find new candidate genes, but also to validate genes already known to be controlled 

by PlcR. Of course, an appropriate p-value cut-off should be set to balance the sensitivity 

and specificity of the results, but it is the differential expression of genes and the possible 
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interactions between different genes in the gene list which may provide answers to the 

questions. How large a transcriptional difference has to be in order to be considered 

relevant, depends on both the gene and the study. Therefore, a variety of cut-offs have been 

used in this work. In all cases, knowledge of the organism and its cellular processes is 

necessary to properly interpret the biological significance of the observations, and to 

design suitable follow-up studies. 
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4. Discussion. 
In this section, I will attempt to place some of the results from individual 

subprojects in a larger context. I will also use the opportunity to discuss some aspects of 

the various parts of the project in more detail and perhaps from a different angle than what 

the format of a regular article permits. I will start by discussing the impact of adaptive 

responses on parts of the regulatory and sensory machinery of the cell, and then I will look 

at NprR and PlcR and their roles in the transition state regulatory network. I will also 

briefly look at the phylogenetic distribution of the PlcR regulon. 

The impact of oxygen availability on the study of transcriptional differences will be 

discussed, as this background is also relevant for the following discussion of the 

connection between motility and virulence, seen in light of the results from the PlcR- and 

swarming projects. Finally, I will discuss in more detail some of the unsettled issues of 

paper III, regarding the transient filamentation and occasional sporulation deficiency 

observed in variants of B. cereus ATCC 14579.  

 

4.1. Adaptive responses affect the sensory and regulatory 
networks of the cell.  
Adaptive responses are activated by one or more environmental or internal stimuli, and the 

responses themselves may in their turn modulate the sensory as well as the regulatory 

apparatus the cell. One example of this is the number of genes encoding proteins with 

potentially sensory or regulatory functions in the PlcR regulon (paper I). Also during 

swarming and NprR-deletion, effects are seen on genes with regulatory and sensory 

functions, though these appear to be of a more indirect nature (paper II, table S2, and paper 

IV, table S1). On this background, we wanted to investigate effects of adaptive responses 

on two-component systems, which make up an important part of the cell's system to sense 

and respond to environmental stimuli (de Been et al., 2008). For each microarray 

experiment, the 100 two-component genes found in B. cereus ATCC 14579 by de Been et 

al (2006) were extracted, and genes with a p-value < 0.1 were considered potentially 

interesting candidates. The results for each study are listed in table 5. Microarray 

comparisons from paper IV and the study of nprR-nprX deletion at T1 found no affected 

two-component genes. 
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Table 5. Two-component system genes whose transcription is affected by adaptive 

responses in the B. cereus group.  

locus tag gene 
name 

annotation/predicted function* 
(HK = histidine kinase, RR = response regulator) 

log2FC p-value 

PlcR after 3 hours. 
BC_0577 yufL HK C4-dicarboxylate (citrate) uptake/metabolism -0,8 0,005 
BC_0882 comA RR natural competence -0,6 0,086 
BC_1477 resD RR aerobic/anaerobic respiration/virulence -0,5 0,021 
BC_1478 resE HK aerobic/anaerobic respiration/virulence -0,5 0,011 
BC_1654 cheV RR chemotaxis protein -0,7 0,004 

BC_4470 
HK Sporulation kinase (uroporphyrinogen-III 
synthase) -0,6 0,026 

BC_4836 yxdJ 
RR cell wall stress response, antimicrobial 
resistance 0,5 0,007 

BC_5353 yocF HK membrane fatty acid saturation/desaturation 0,6 0,026 
BC_5462 yycG HK fatty acid biosynthesis, virulence 0,4 0,021 

PlcR after 5 hours. 
BC_1627 cheY RR chemotaxis protein  -0,4 0,090 
BC_3100 HK sporulation initiation -1,7 0,070 

BC_4470 
HK Sporulation kinase (uroporphyrinogen-III 
synthase) -0,8 0,005 

NprR after 3 hours 
BC_4170 spo0A RR stage 0 sporulation protein A -0,6 0,008 
BC_5336 spo0F HK Sporulation initiation phosphotransferase F -0,5 0,042 

swarming 
BC_1627 cheY RR chemotaxis protein 0,5 0,028 
BC_1628 cheA HK chemotaxis protein  0,8 0,024 
BC_4589 phoP RR phosphate uptake/metabolism 0,9 0,085 

 

As activation of two-component systems often leads to regulatory changes (de Been et al., 

2008), small changes in transcription of genes encoding two-component sensors or 

regulators may potentially have a considerable downstream impact. However, looking at 

small changes in differential expression requires caution, and the results must be seen in 

context with the purpose of the regulator as well as observations. Still, it is notable that the 

number of affected two-component genes found in each study was small and could 

frequently be associated with each other or the adaptive response under study. Two of the 

three two-component genes found to have increased transcription during swarming are 

involved in chemotaxis, while the two genes found to be downregulated by the nprR-nprX 
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deletion both are stage 0 sporulation factors. This may indicate a positive effect of NprR-

NprX on sporulation, but such an hypothesis would have to be further investigated. As can 

be seen from table 5, deletion of plcR also negatively affected some genes involved in 

sporulation initiation. This is somewhat more surprising, as high levels of Spo0A are 

known to inhibit PlcR activation, directly or indirectly (Lereclus et al., 2000). However, 

initiation of sporulation is a complex process, and the exact effects of this downregulation 

remains to be elucidated, as B. cereus ATCC 14579 carries as many as fourteen histidine 

kinases with putative roles in the sporulation phosphorelay (de Been et al., 2006).   

PlcR was found to directly activate transcription of the gene encoding the response 

regulator yufM (BC_0578, paper I), but effects were also seen on other two-component 

genes, such as that encoding the corresponding sensor kinase yufL (BC_0577) as well as 

the two component system genes resE (BC_1478) and resD (BC_1477), which have been 

shown to activate transcription of PlcR-activated toxins under low oxidoreductive 

conditions in a manner that is at least partially PlcR-independent (Duport et al., 2006). 

ResD is also shown to bind to the plcR upstream region (Esbelin et al., 2009). In this 

context, it is interesting to note that plcR-deletion leads to reduced transcription of these 

two genes, possibly indicating that PlcR can activate enterotoxin production also by 

indirect regulation and the possibility of mutual influence of PlcR and the ResDE two-

component system on each other. 

The PlcR data should be regarded with extra caution, as the three hour sampling point is at 

the break in the logarithmic growth curve, meaning that even small changes in growth 

between samples may potentially lead to large variations in transcription, which may 

wrongly be attributed to the differences under study, as observed for genes involved in 

arginine biosynthesis in B. subtilis (Comella & Grossman, 2005). At the five hour 

sampling point, the bacterial density is much higher in the wild type than in the plcR 

deletion mutant, and this may also affect gene regulation.   

 

4.2. The roles of NprR and PlcR in the transition state 
regulatory network. 

Cells in a culture reach the transition state when the culture medium can no longer 

support exponential growth, e.g. due to shortage of nutrients, accumulation of waste 

products or other stress. In response, the cell will activate alternative metabolic pathways 
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as well as new transport systems, and secrete degradative enzymes and virulence factors 

into the environment to acquire more nutrients and out-compete other bacteria (Bron et al., 

1998; Gilois et al., 2007; Harwood, 1992). Depending on the environment and the severity 

of the food shortage, various adaptive responses may be activated, including the PlcR- and 

NprR regulons.  

The transition state regulator PlcR is widely recognized as a major regulator of 

extracellular virulence in the B. cereus group (see section 1.7.1.), and this role is further 

emphasized by the PlcR regulon identified in paper I. plcR deletion mutants show 

attenutated virulence in various infection models (Callegan et al., 2003; Salamitou et al., 

2000). However, virulence was not abolished in these model systems, indicating that other 

factors also contribute to virulence in the B. cereus group. AbrB, another important 

transition state regulator, has been shown to control production of the emetic toxin 

cereulide and anthrax toxin genes (Lucking et al., 2009; Saile & Koehler, 2002). 

Though not as dominated by secreted and cell wall proteins as the PlcR regulon, the 

NprR regulon (paper II) also includes a large number of degradative enzymes. This 

indicates that an important role of this regulon is to make available new nutrients through 

various degradative processes targeted at compounds in the environment. The various 

enzymes involved in chitin degradation could imply a role of NprR in 

entomopathogenicity, since chitin is an important component of the peritrophic membrane 

lining the insect gut (Terra, 2000). However, chitin is also one of the most abundant 

biopolymers on earth, found in fungi and present in large amounts in the soil (Shahidi & 

Abuzaytoun, 2005; Vaaje-Kolstad et al., 2009). Virulence effects of the chitinases may 

therefore perhaps be more likely to be of a protective or opportunistic nature. In B. 

anthracis, NprA was found to readily digest proteins belonging to the human extracellular 

matrix and proteins involved in the blood coagulation cascade (Chung et al., 2006; Chung 

et al., 2008), but NprA is found to be a dominant component of the extracellular proteome 

under conditions favoring sporulation, i.e. in minimal media with access to oxygen 

(Chitlaru et al., 2006; Chung et al., 2006; Donovan et al., 1997). These conditions are quite 

different from what would be expected during an infection, and makes invasive virulence 

less likely to be a major function of the NprR regulon. However, it is interesting to note 

that there appears to be a certain redundancy between the regulons of PlcR and NprR, and 

also the regulon of the transition state regulator AbrB, e.g. they all control a variety of 

immune inhibitors with similar functions (Guillemet et al., 2009). Deletion of all three 
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immune inhibitors strongly attenuates virulence in an insect model (Guillemet et al., 2009). 

Thus, it seems that the NprR regulon may contribute to protection of the cell as well as 

more general nutrient acquisition. Hopefully, functional studies will give us a better 

understanding of the role of NprR and its regulon in the near future.  

 

4.3. Phylogenetic variations in the composition of the PlcR- 
and NprR regulons. 

Both PlcR and NprR have been shown to be specific to, and widely distributed in 

the B. cereus group (Agaisse et al., 1999). In paper II, a preliminary investigation of the 

phylogenetic distribution of the forty-two genes belonging to the suggested NprR regulon 

was also performed by searching for genes with orthologous neighborhoods 

(http://img.jgi.doe.gov) in fifteen completed genomes (paper II, Table S4), three of which 

were B. anthracis genomes. This revealed that a subset of eleven genes were practically 

absent from the genomes which belonged phylogenetically to clade I (Didelot et al., 2009; 

Kolstø et al., 2009; Tourasse & Kolstø, 2008, http://mlstoslo.uio.no ). Thus, the NprR 

regulon varies between different phylogenetic groups. This, of course, also allows for the 

possibility that the NprR regulon in clade I strains may include other genes not detected by 

our experiments, and this may also be the case for the PlcR regulon.  

Later, a similar search was made for the forty annotated members of the PlcR 

regulon (paper I) in the same fifteen genomes (Table 6) (http://img.jgi.doe.gov). These 

results showed that most genes in the PlcR-regulon are widely distributed in members of 

the B. cereus group. Only three genes showed a similar distribution to the subset of eleven 

genes found in the NprR regulon: BC_0362, BC_3527, and BC_5351 are, with one 

exception, absent from the investigated clade I genomes and present in nearly all clade II 

and III genomes (Table 6) (Kolstø et al., 2009; Tourasse & Kolstø, 2008, 

http://mlstoslo.uio.no). In addition, hbl genes were found in all investigated clade II 

genomes, but only in a minority of the investigated clade I genomes. These results 

correspond well with other reports about the distribution of toxin genes in the B. cereus 

group (Ehling-Schulz et al., 2005; Ehling-Schulz et al., 2006b; Moravek et al., 2006). 

Recent phylogenetic studies by Didelot et al partly confirmed these observations (Didelot 

et al., 2009). They found an overweight of diarrhoeal isolates in clade II, something which 

was attributed to the more abundant presence of hbl genes in B. thuringiensis (Rivera et al., 
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2000) which dominate clade II (Didelot et al., 2009), while emetic strains were partly 

clonal, and mainly found in clade I. However, isolates from lung, wounds, or bloodstream 

were found to be evenly distributed between clades I and II, which emphasizes the 

opportunistic nature of such infections.     

In summary, neither the presence or absence of specific virulence genes, nor the 

phylogenetic background can explain the large strain to strain variations in virulence. Part 

of the reason for this may lie in the opportunistic nature of many infections, but studies of 

supernatant effects on cell cultures clearly show variations in the pathogenic potential 

between strains. The effect is largely due to differences in toxin concentration, and toxin 

production efficiency may be more important to explain strain virulence than genotype or 

exact composition of the toxin cocktail (Fagerlund et al., 2007; Moravek et al., 2006; 

Rivera et al., 2000). This emphasizes the importance of understanding the regulatory 

mechanisms which control production of virulence factors. 
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Table 6. Distribution of PlcR-regulated genes in fifteen B. cereus group genomes, as found 

by searching for orthologous gene neighborhoods (http://img.jgi.doe.gov.)  
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BC_0362 unknown             x   x   x     x x 
BC_0556 colC x x x x x x x x x x x x x x x 
BC_0576 mcpA x x x   x   x x x x x x x x x 
BC_0577 yufL x x x   x x x x x x x x x x x 
BC_0578 yufM x x x   x x x x x x x x x x x 
BC_0666 inhA2 x x x x x x x   x x x x x x x 
BC_0670 plcB x x x x x x x x x x x x x x x 
BC_0671 smase x x x x x x x x x x x x x x x 
BC_0991 slpA x x x x x x x x x x x x x x x 
BC_1081 prp2 x x x       x x x   x       x 
BC_1082 regulator? x x x   x   x   x x x       x 
BC_1110 cytK         x x x x x x       x   
BC_1713 unknown x x x x x x x x x x x x   x x 
BC_1809 nheA x x x x x x x x x x x x x x x 
BC_1810 nheB x x x x x x x x x x x x x x x 
BC_1811 nheC     x x x x x x x x x x x x x 
BC_2410 tetR x x x x x x x   x x   x x x x 
BC_2411 Drug efflux x x x x x x x   x x   x x x x 
BC_2552 unknown x x x x x   x   x x x x   x x 
BC_2735 nprP2 x x x x x   x   x x x x x x x 
BC_3102 hblB         x   x   x   x   x x x 
BC_3103 hblL1         x   x   x   x   x x x 
BC_3104 hblL2         x   x   x   x   x x x 
BC_3161 colA x x x       x     x           
BC_3383 nprC x x x   x   x   x x       x   
BC_3384 mpbE x x x   x   x   x x       x   
BC_3385 tlpA x x x   x   x x x x       x   
BC_3527 unknown             x   x   x         
BC_3746 lipoprotein x x x x* x x x x x x x   x x x 
BC_3747 sensory box x x x x x x x x x x x x x x x 
BC_3761 plcA x x x x x x x   x x x x x x x 
BC_3762 sfp x x x   x x x x x x x x* x x x 
BC_4509 permease x x x x x x x x x x x x x x x 
BC_4510 ATP-binding x x x x x x x x x x x x x x x 
BC_4511 lppC x x x x x x x   x x x x x x x 
BC_4999 protease x x x x x x x   x x   x x x x 
BC_5101 clo x x x x x x x   x x x x x x x 
BC_5349 papR x x x x x x x x x x x x   x x 
BC_5350 plcR       x x x x x x x x x x x x 
BC_5351 nprB             x   x   x       x 

* The gene is located on a plasmid. 
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4.4. Differences in oxygen availability during swarming 
affect gene transcription. 

The effects of swarming on the transcriptional activity in B. cereus ATCC 14579 

was studied in paper IV. In the B. cereus group, swarm-differentiated cells are normally 

found only in the outer rim of a swarming colony (Ghelardi et al., 2002; Salvetti et al., 

2009; Senesi et al., 2002). Thus, when we harvest a swarming colony, a greater proportion 

of the cells are not in a swarm-differentiated state, which will reduce the transcriptional 

differences observed. However, strong trends should still give a consistent, albeit 

somewhat muted, response. Given that synthesis and operation of flagella is quite energy-

intensive (McCarter, 2006), and that swarming is also hypothesized to require much energy 

(Eberl et al., 1996; Eberl et al., 1999), it was therefore surprising that many of the genes 

found to be most strongly downregulated during swarming, were involved in energy 

production and conversion (COG category C). A closer look revealed, however, that the 

downregulated genes are involved in fermentation and oxidative respiration, while there 

appears to be a weak upregulation of some genes associated with the TCA-cycle. Most 

likely, these changes are not directly brought about by swarming, but result from a 

difference in oxygen availability under swarming and non-swarming conditions. As the 

swarming colony grows in a thin layer covering a large area, it is reasonable to assume that 

oxygen availability will be much better than in a regular colony, where the conditions may 

turn anaerobic for the lower layers. Thus, when we extract RNA from the entire 

population, differential expression due to differences in oxygen availability can be 

expected. In fact, of the twenty-one genes more than threefold downregulated during 

swarming in our study (Table 7), thirteen genes were also found to be significantly affected 

in a study comparing anaerobic to aerobic growth in B. cereus ATCC 14579  (van der 

Voort & Abee, 2009). Of these thirteen, eleven genes were upregulated during anaerobic 

growth (Table 7, column 5), and it is therefore likely that the observed downregulation 

during swarming is, at least partly, due to lower oxygen availability for the non-swarming 

colony, resulting in an upregulation of these genes in the non-swarming control RNA. 

Among the thirteen genes were the arginine deiminase operon arcABDC (BC_0406-

BC_0409), which is reported to be activated by anaerobic growth conditions (Maghnouj et 

al., 2000; van der Voort & Abee, 2009), and its regulator (BC_0410) as well as genes 

involved in various forms of fermentation (BC_0491(-BC_0492), BC_2220), oxidative 

phosphorylation (BC_4792),  and anaerobic respiration (BC_2134, BC_2128).  
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Under anaerobic conditions, the L-lactate dehydrogenase BC_4996, which is 

involved in fermentation, was found to be upregulated. This gene was not significantly 

affected during swarming, but another L-lactate dehydrogenase, BC_4870, was strongly 

downregulated. Relaxing the search criteria to include genes with smaller downregulation 

and higher p-values than those in the Table 7, revealed even more genes which showed the 

same pattern of upregulation under anaerobic growth conditions (van der Voort & Abee, 

2009) and downregulation during swarming (data not included in Table 7). Differences in 

oxygen availability did not seem to have a similar impact on the genes found to be strongly 

upregulated. Among the twenty-five genes which were threefold or more upregulated 

during swarming (data not shown), only one gene, BC_5123, encoding a hypothetical 

protein, was affected by anaerobic conditions in the study by van der Voort and Abee 

(2009).  

Of the ten genes in table 7 not found to be upregulated under anaerobic conditions 

(van der Voort & Abee, 2009), eight code for hypothetical proteins. The genes BC_5026-

BC_5027 are particularly interesting as they are more than fivefold downregulated during 

swarming. These genes are also negatively affected by anaerobic growth according to van 

der Voort and Abee (2009), possibly indicating that their true downregulation during 

swarming could be even more extreme. Further studies of their effects on swarming could 

be potentially interesting.  
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Table 7. Genes more than threefold downregulated during swarming (p < 0.05). 

Locus tag Name 

Fold change  
non-swarming 

swarming 
p-

value 

Significant 
effect of  
anaerobic 
conditions* 

BC_0248 hypothetical protein 4,4 0,02 
BC_0250 hypothetical protein 4,2 0,02 
BC_0406 arginine deiminase 3,9 0,02 up 
BC_0407 ornithine carbamoyltransferase 10,4 0,02 up 
BC_0408 Arginine/ornithine antiporter 7,1 0,02 up 
BC_0409 carbamate kinase 3,4 0,03 up 
BC_0410 Transcription regulator. Crp family 4,0 0,02 up 
BC_0491 formate acetyltransferase 5,0 0,04 up 
BC_0492 pyruvate formate-lyase-activating enzyme 6,5 0,03 up 
BC_0564 lipoprotein. putative 4,6 0,03 
BC_1000 hypothetical protein 3,7 0,02 
BC_2128 nitrite extrusion protein 3,1 0,03 up 
BC_2134 uroporphyrin-III C-methyltransferase 3,5 0,02 up 
BC_2220 alcohol dehydrogenase 3,5 0,02 up 
BC_3526 Collagen adhesion protein 3,8 0,04 
BC_3766 hypothetical protein 3,4 0,02 
BC_4751 hypothetical protein 5,6 0,03 
BC_4792 cytochrome d ubiquinol oxidase. subunit I 4,4 0,03 up 
BC_4870 L-lactate dehydrogenase 3,0 0,04 
BC_5026 hypothetical protein 5,7 0,03 down 
BC_5027 hypothetical protein 5,8 0,04 down 
* According to the study by van der  Voort and Abee (2009).   

 

4.5. Motility and Virulence. 
A coupling of virulence to motility in general and swarming in particular is 

reported for many bacteria (Ghelardi et al., 2002; Ghelardi et al., 2007; Grant et al., 1993; 

Gueriri et al., 2008; Overhage et al., 2008; Verstraeten et al., 2008). This link is stronger 

than just the invasive advantage which can be expected from a motile compared to a non-

motile bacterium: In several examples, genes involved in motility and virulence are 

coregulated or influence each other’s regulation (Bouillaut et al., 2005; Clernmer & 

Rather, 2008; Overhage et al., 2008). In the B. cereus group, motility was shown to be 

reduced in a B. thuringiensis 407 Cry- strain with an insertional deletion in the virulence 

regulator PlcR (Callegan et al., 2003). This is consistent with observations made during 

microarray comparisons of the the ΔplcR mutant with wildtype B. cereus ATCC 14579 
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(paper I), where motility genes (BC_1634-BC_1671) were downregulated in the ΔplcR 

mutant compared to the wild type at T2. Effects of motility on enterotoxin production and 

secretion has also been reported: An insertional deletion of the flhA gene, encoding a 

protein in the flagellar export apparatus, which rendered the mutant deficient in flagella 

formation, also affected secretion of Hbl, production of Hbl, Nhe and CytK, and showed 

attenuated virulence in an insect model system and an endophthalmitis model (Arnesen et 

al., 2008; Bouillaut et al., 2005; Callegan et al., 2005; Ghelardi et al., 2002). Hbl secretion 

has been reported to increase during swarming, and secretion through the flagellar 

apparatus has been suggested (Ghelardi et al., 2007), although this is controversial. Other 

studies conclude that coordination of the flagellar apparatus with several PlcR regulated 

genes is likely to be controlled at the transcriptional level (Bouillaut et al., 2005; 

Fagerlund, 2008). On this background, we wanted to investigate the potential link between 

swarming and PlcR-regulated genes. Effects of swarming on antimicrobial resistance will 

also be discussed. 

 

4.5.1. Swarming negatively affects expression of most PlcR-regulated genes. 
If there is an influence of swarming on virulence or vice versa, one could perhaps 

expect some overlap between the genes affected by swarming (paper IV) and by the 

virulence regulator PlcR (paper I). Of the 290 genes which were found to be significantly 

affected during swarming, around half (160) were also affected by the PlcR deletion at T0 

and/or T2, but there were no clear trends that genes were affected in the same way by 

swarming and by PlcR-activation. Rather, for somewhat more than half the genes (51 of 

the 79 genes affected at T0, and 70 of the 122 genes affected at T3), the two factors 

appeared to have opposite effects.  

When the genes of the PlcR-regulon (paper I) were extracted from the swarming 

microarray data and analyzed, seventeen were found to be affected (p < 0.1) during 

swarming (Table 8). Twelve of these genes were downregulated during swarming, 

including the gene encoding the PlcR regulator itself. As there are several reports in the B. 

cereus group of upregulation of virulence genes under oxygen-limited conditions (Duport 

et al., 2004; Duport et al., 2006; Klichko et al., 2003; Rosenfeld et al., 2005; Zigha et al., 

2007), the relative downregulation of plcR and PlcR-regulated genes during swarming 

may, at least partly, be related to differences in oxygen availability (see section 4.4). 

Therefore, it is interesting to note that three genes encoding Hbl components (BC_3102-
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BC_3104), as well as a serine protease (BC_3762) and a methyl-accepting chemotaxis 

protein (BC_0576) are upregulated. This confirms earlier observations of increased Hbl 

production during swarming (Ghelardi et al., 2002; Ghelardi et al., 2007), and indicates 

that activation of these genes during swarming is PlcR-independent and must be caused by 

other regulatory mechanisms.  

Upregulation of hbl genes simultaneously with downregulation of PlcR and several 

members of the PlcR regulon has also been reported in a deletion mutant of yvfTU, which 

encodes a two-component system (Brillard et al., 2008). In fact, of the eleven PlcR-

regulated genes found to be affected by the yvfTU mutant, ten are among the seventeen 

genes found to be affected during swarming, and the change in expression (up- or down) 

has the same direction as observed during swarming (Table 8). Thus swarming and yvfTU 

deletion seem to have similar effects on PlcR-regulated genes. The downregulation of PlcR 

and parts of its regulon, does not necessarily signify a reduction in virulence during 

swarming, but strongly indicates that virulence during swarming is caused by PlcR-

independent mechanisms (paper IV).  

 

Table 8. PlcR-regulated genes affected by swarming (p < 0.1). 

gene name 
fold change 

ΔplcR/wt 
p-value 

ΔyvfTU-
effect 

BC_0556 microbial collagenase.putative 0,6 0,05 
BC_0576 methyl-accepting chemotaxis protein 1,5 0,06 
BC_0670 phospholipase C 0,7 0,07 down 
BC_0671 sphingomyelinase C 0,6 0,08 down 
BC_0991 S-layer protein. putative 0,7 0,08 
BC_1809 enterotoxin 0,6 0,05 down 
BC_1810 enterotoxin 0,6 0,04 down 
BC_1811 Non-expressed Enterotoxin C 0,6 0,02 
BC_2735 neutral protease 0,6 0,03 

BC_3102 
Hemolysin BL binding component 
precursor 1,5 0,04 up 

BC_3103 Hemolysin BL lytic component L1 1,4 0,07 up 
BC_3104 Hemolysin BL lytic component L2 1,6 0,02 up 
BC_3761 1-phosphatidylinositol phosphodiesterase 0,7 0,08 
BC_3762 serine protease. subtilase family 1,5 0,03 
BC_5101 thiol-activated cytolysin 0,6 0,04 down 
BC_5350 Transcriptional activator plcR 0,7 0,05 down 
BC_5351 Bacillolysin 0,6 0,02 down 
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4.5.2. Swarming may lead to increased antimicrobial resistance. 
Antimicrobial resistance is another aspect of virulence, and swarming motility has been 

found to induce antimicrobial resistance in a variety of species (Lai et al., 2009). In paper 

IV, the swarming colony showed an increased resistance towards daptomycin, and this was 

potentially attributed to the strong upregulation (six-fold) of BC_1435 and BC1436. These 

genes showed some similarity to the liaI and liaH genes (Jordan et al., 2006). Deletion of 

liaH has been shown to increase daptomycin susceptibility (Hachmann et al., 2009). 

However, LiaH belongs to the phage shock protein family, and could theoretically be 

activated by phage activity, consistent with the massive upregulation of transcription of 

genes belonging to the prophage phBC6A51. It would be interesting to investigate further 

the potential role of LiaH in the increase in antimicrobial resistance during swarming, and 

whether the response was specific to daptomycin, or the result of a more general increase 

in antimicrobial resistance caused by the swarm-cell differentiation. Due to their highly 

increased transcription, it would also be relevant to investigate if liaH and/or liaI could 

have a more direct role in the swarming process.  

 

4.6. Filamentous growth – accident or adaptive response. 
In paper III, we investigated similarities and differences between B. cereus ATCC 

14579 variants which grow as filaments in the exponential phase (14579-L1 and 14579-

L2) and a variant which does not display such growth (14579-S1). In spite of many 

interesting observations, a cause (or causes) for the filament formation could not be 

determined. It thus remains an open question whether the observed filament formation is 

part of the natural diversity and adaption of the cells, or a sign of suboptimal changes at the 

genetic level. In this chapter, I will review some known cases of filament formation as a 

natural trait or adaptive respsonse, and discuss whether this is applicable to our 

observations. I will also examine some genetic changes which may result in filament 

formation in B. cereus group species and closely related bacteria, and comment on their 

relevance to this case. Finally, I will discuss whether the phenotypes observed for the 

various variants may be causally related or are more likely to result from common, 

underlying mechanisms.  
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4.6.1. Filamentous growth as a natural trait or adaptive response. 
Throughout the work with filamentous and planktonic morphotypes of B. cereus 

ATCC 14579, the planktonic form has been used as reference or wild type. However, it is 

interesting to note that the original Frankland and Frankland article (1887) describes B. 

cereus (the ancestor to what would become B. cereus ATCC 14579) as having a very 

variable colony morphology. Rough-edged colonies, similar to those made by the 

filamentous forms studied in paper III, appeared to be as common as the smooth, well-

rounded colonies, indicating that filament formation may have been every bit as natural as 

planktonic growth. Their description of various colony types arising from a single CFU 

(colony forming unit) indicates that morphological revertants can be expected.  

Studies also show that particular growth conditions can promote filamentous 

growth. B. cereus growing symbiotically in insect guts, was reported to grow filamentously 

with one end attached to the intestinal wall (Margulis et al., 1998). In culture, sporulation 

and the degree of filament formation of the intestinal bacteria were influenced by 

environmental and chemical signals. Addition of insect intestinal content to the culture 

reduced sporulation and induced the formation of long filaments. It has also been shown 

that B. cereus ATCC 14579 and various soil isolates prefer the filamentous form when 

growing in liquid soil extract or in soil microcosms, and it is hypothesized that the 

alternative growth form may be induced by the presence of Ca2+ ions or other components 

of soil substances, while LB medium promotes planktonic growth (Vilain et al., 2006). In 

our study, filamentous growth in the exponential phase of 14579-L1 and –L2 was observed 

in several different growth media, including LB, while 14579-S1 was consistently 

planktonic under the same conditions, and the variants could not be induced to switch 

phenotypes by changing the liquid growth medium. 

Unlike swarm-differentiated cells, filamentous bacteria are often non-motile or 

have reduced flagellar motility (Hsueh et al., 2007; Kearns & Losick, 2005; Monk et al., 

2004; Msadek et al., 1998). It has therefore been hypothesized that filamentous growth 

represents an alternative form of motility by enabling the bacteria to move by the forces 

inherent to cell elongation (Vilain et al., 2006). This would be a useful trait under 

saprophytic growth conditions, and in an environment which does not support swarming or 

swimming. This type of motility may be comparable to bacterial sliding, described by 

Henrichsen and observed in B. anthracis (Henrichsen, 1972). A similar type of motility 

was observed in the plcR deletion mutant under low-nutrient conditions (Hsueh et al., 
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2007). The plcR deletion mutant exhibited increased production of biosurfactant compared 

to the wild type strain. However, it is unclear whether biosurfactant production and 

filament formation are closely linked, and whether PlcR has a more generally suppressive 

effect on sliding motility.  

In conclusion, there is convincing evidence that environmental factors may induce 

filamentous growth in strains which usually display planktonic growth. In our study, 

however, filament formation during exponential growth was not affected by change of 

growth media, and did not appear to be an adaptive response, but a consistent phenotype of 

the affected variants. 

 

4.6.2. Filamentous growth as a result of changes in genes associated with cell wall 
metabolism. 

Any mutation which leads to a septated, but filamentous phenotype, must in some 

way affect the process of cell wall growth or cell separation. In B. subtilis clpP and clpC 

deletion mutants, reduced degradation of MurAA is believed to be a major cause for 

filamentous growth during the exponential phase  (Kock et al., 2004). MurAA catalyzes 

the first committed step in peptidoglycan biosynthesis and was found to be a substrate for 

the ClpCP complex (Kock et al., 2004). Correspondingly, overproduction of MurAA in B. 

subtilis leads to a twisted, filamentous phenotype (Kock et al., 2004). In our studies, 

however, transcriptional effects on the murAA ortholog BC5288 were not seen in 

microarray analysis, and clpC and clpP1 did in fact show increased transcription as well as 

increased protein levels in 14579-L1 (Table 4). Posttranslational effects on protein stability 

or cell wall production have not been investigated, but no accumulation of cell wall 

material was observed in the AFM images. 

There are also several examples of mutations in autolysins involved in cell 

separation which result in a filamentous phenotype (Fukushima et al., 2006; Ohnishi et al., 

1999; Vollmer et al., 2008). However, in our study, neither microarray results, nor RT-

qPCR showed any transcriptional differences with respect to autolysins. All autolysins 

appeared to be transcribed, but mutations can not be ruled out. The investigation was 

complicated by the fact that it is not known which hydrolases control cell separation in the 

B. cereus group. LytE, LytF, and CwlS, the endopeptidases responsible for cell separation 

in B. subtilis (Fukushima et al., 2006; Ishikawa et al., 1998; Ohnishi et al., 1999), do not 

appear to have close orthologs in the  B. cereus group, and proteins involved in their 
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regulation in B. subtilis, such as σD and IseA (Ohnishi et al., 1999; Yamamoto et al., 

2008), are not found in B. cereus group organisms. Thus, the process of cell separation is 

likely to be differentially regulated. Members of the B. cereus group also differ from B. 

subtilis in that their cell wall is covered with teichuronic acids instead of the teichoic acids 

coating B. subtilis and many other bacteria (Molnar & Pragai, 1971), and this further 

increases the likelihood of divergent mechanisms of cell separation.  

The two-component system WalKR (formerly YycGF), has been found to control 

cell wall metabolism in B. subtilis and many other Gram-positive bacteria (Bisicchia et al., 

2007; Dubrac et al., 2008), and may be likely to do so also in the B. cereus group. The 

walR and walK genes (BC_5462-BC5463) were not affected at the transcriptional level in 

our microarray data. Searching the B. cereus ATCC 14579 genome with the WalR 

consensus binding sequence used for B. subtilis/Staphylococcus aureus (Dubrac et al., 

2008) in Genome2D (Baerends et al., 2004) revealed sixty-nine potential binding sites, but 

none were upstream of genes found to be differentially regulated between 14579-L1 and 

14579-S1 (data not shown). It is therefore unlikely that the observed phenotype in 14579-

L1 is due to differential transcriptional regulation by WalR.  

Autolysin function may also be shut down by indirect effects mediated at the post-

transcriptional level. Examples of such effects are non-functional export systems or 

changes which affect attachment of the autolysin to the cell wall. In B. anthracis, several 

autolysins showed reduced activity in a deletion mutant lacking the csaB gene responsible 

for pyruvylation of cell wall associated polysaccharides (Mesnage et al., 2000). It was 

shown that the pyruvylation was necessary for attachment to the cell wall of proteins 

carrying an SLH binding domain. This indicates that some autolysins involved in cell 

separation in B. anthracis attach to the cell wall by SLH domains. B. cereus ATCC 14579 

also has several autolysins with an SLH domain and contains the csaB gene, even though 

this was not found with the primers used by Mesnage et al (Annette Fagerlund, personal 

communication). However, unlike Mesnage et al, we found no differences between the 

filamentous and short variants when comparing 14579-S1, 14579-L1, and 14579-L2 by 

zymogram analysis (results not shown).  

There are of course even more mutations which can lead to aberrant cell 

morphology with and without co-occurrence of other phenotypes. Though we have tried to 

investigate their relevance to our study, to examine them all is beyond the scope of this 

discussion. The aim of this section has rather been to draw the attention of the reader 
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towards various cellular systems where defects may lead to filament formation, and also to 

point out some of the differences between the B. cereus group and the closely related B. 

subtilis. This does not provide us with an answer to the cause of the filamentous 

phenotypes, but points out some areas which will be relevant for future studies.  

 

4.6.3. Filament formation, sporulation, and stress – is there a connection? 
The filamentous variants 14579-L1 and 14579-L2 shared several phenotypic traits related 

to cell growth and loss of lytic properties. At the same time, they also showed distinct 

differences, as 14579-L1 additionally showed increased transcription and expression of 

class I and III heat shock proteins and a sporulation efficiency which was only one tenth of 

that observed for 14579-L2 and 14579-S1. Table 9 shows similarities and differences 

between the three variants with respect to the investigated traits.  

 

Table 9. Phenotypic similarities and differences between the variants 14579-S1, 14579-L1, 

and 14579-L2 

phenotypic trait  14579-S1 14579-L1 14579-L2 
filamentous growth in exponential phase – + + 
Elongation of individual cells – + + 
Rough colony morphology – + + 
Cell lysis after death or sporulation + – – 
Sporulation efficiency (%) 35 ± 13 5 ± 3 56 ± 25 
increased transcription of  class I and III stress genes 
relative to 14579-S1 (RT-qPCR) – + – 

increased expression of  class I and III stress proteins 
relative to 14579-S1 (ICPL MS) – + NA 

 

As our studies indicate that genetic differences are a likely cause for the observed 

phenotypes, there are several possible reasons for the partially overlapping phenotypes of 

the two filamentous variants: 

1. The two variants have the same mutation, but14579-L1 carries an extra 

mutation which results in additional phenotypes. 

2. The two variants have the same mutation, but 14579-L2 has developed 

compensatory mutations which reverse some of the original phenotypes. 
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3. The two variants have different mutations which affect different parts of the 

same regulatory network. 

The true cause remains unknown at this point, but some insights may be derived 

from a discussion of whether the additional phenotypes of 14579-L1 are likely to be related 

to filamentous growth. Filamentous growth is frequently induced by various types of stress 

both in Bacillus species and other bacteria, but cells will often return to planktonic growth 

when the stress is removed (den Besten et al., 2009; Giotis et al., 2007; Mattick et al., 

2000; Mattick et al., 2003). In our study, filamentous growth occurred without external 

stress, but an upregulation of class I and III heat shock proteins was still observed at both 

the transcriptional and protein level in 14579-L1.  

Class I and III heat shock proteins have chaperone and/or proteolytic activity and 

are involved in protein maintenance. Many proteins require the assistance of chaperones to 

fold properly even under physiological conditions, and the number of proteins found to be 

associated with chaperones rises under stressful conditions (Wickner et al., 1999). 

Traditionally, refolding by chaperones and degradation by proteases have been regarded as 

two different fates which may befall an improperly folded protein. However, these two 

paths are more intertwined than originally recognized, and Clp ATPases not only act as 

proteolytic subunits, but also have protein unfolding and chaperone activity (Frees et al., 

2007; Striebel et al., 2009; Zolkiewski, 2006). (Gottesman et al., 1997; Wickner et al., 

1999). A model has been proposed where both chaperones and proteases are part of a 

posttranslational quality control system based on kinetic principles, the purpose of which is 

to prevent protein aggregation through assisted folding/refolding or degradation of 

nonnative proteins (Gottesman et al., 1997; Wickner et al., 1999).  

All the genes which showed increased transcription and translation in 14579-L1 

(paper III, Table 4), belong to this proposed system of quality control. It is therefore 

possible that their increase reflects an increased need for protein maintenance, perhaps as a 

result of stress or reduced function in other genes involved in protein quality control. Such 

stress could possibly also induce filament formation during exponential growth. However, 

no upregulation of other stress proteins, such as σB or genes belonging to the σB regulon 

(Class II heat shock proteins) (van Schaik et al., 2007) was observed, even though σB is 

reported to be activated by various types of stress in B. cereus ATCC 14579 (van Schaik et 

al., 2004). Still, if there is a connection,  it seems more likely that the filamentous 
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phenotype and the upregulation of class I and III heat shock proteins have a common, 

underlying cause, than that one is caused by the other 

It is not known whether increased expression of class I and III heat shock proteins 

by itself could reduce sporulation efficiency. Studies in B. subtilis indicate that 

upregulation of the hrcA and ctsR regulons by deletion of their respective repressors does 

not have negative effects on wet heat resistance of spores, and no sporulation deficiency is 

mentioned (Melly & Setlow, 2001). There are also other studies which suggest that neither 

overproduction, nor deletion of members of the class I heat shock proteins affect 

sporulation in various bacteria (Grandvalet et al., 1998; Homuth et al., 1997). For the Clp 

proteins which belong to the CtsR regulon, deletion is associated with sporulation 

deficiency in both B. subtilis and B. thuringiensis (Fedhila et al., 2002a; Msadek et al., 

1994; Msadek et al., 1998). In the B. subtilis clpP deletion mutant, the effect on 

sporulation efficiency is mediated through Spo0E, which dephosphorylates Spo0A~P 

(Nanamiya et al., 2000). If this is also the case in the B. cereus group, up-regulation of 

ClpP would seem more likely to accelerate sporulation than decrease it. However, the 

sporulation process is complex, and the proper timing of activation events has been shown 

to be important (Fujita & Losick, 2005), therefore the exact effect of such up-regulation is 

difficult to predict. ClpC is suggested to play a role in degradation of σH in B. subtilis. σH is 

important for the activation of several genes involved in sporulation, and it is posible that 

elevated levels of ClpC could inactivate σH and in this way prevent the inititiation of 

sporulation. In any case, further studies will be needed to determine the cause or causes 

behind the partially overlapping phenotypes of 14579-L1 and 14579-L2. 
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5. Conclusions and future perspectives.   
The establishment of the PlcR regulon for B. cereus ATCC 14579 in paper I in many 

ways concluded several years of research on the effects of this transition state regulator by 

various methods (Agaisse et al., 1999; Fedhila et al., 2003; Gohar et al., 2002; Salamitou 

et al., 2000). The results corresponded well with was previously known, and confirmed the 

role of PlcR as a major regulator of extracellular virulence factors. At the same time, they 

also provided new information, particularly about intracellular proteins whose transcription 

is activated by PlcR, and the ability of PlcR to integrate a variety of environmental inputs 

and modulate its response through the control of other proteins with sensory or regulatory 

potential 

In paper II, we showed that the transition state regulator NprR controls a large regulon 

of genes encoding extra- and intracellular proteins. This uncovered a new level of post-

exponential regulation in the Bacillus cereus group. Further studies of NprR and its 

regulon will provide a better understanding of the functional role of NprR in the transition 

state regulatory network. Also, determination of the NprR binding site will make it easier 

to distinguish between direct and indirect effects of NprR activity.  

The transiently filamentous variants of B. cereus ATCC 14579 studied in paper III, had 

partially overlapping phenotypes, but the 14579-L1 variant was found to carry additional 

phenotypic traits setting it apart from the other two variants studied. The stability of the 

phenotypes in both variants indicated that their cause is genetic, but we were not able to 

determine any affected loci. Furthermore, the phenotypic differences between the 

filamentous variants may indicate that they are affected in different loci, or that one variant 

carries additional mutations. In order to find out more about the nature of the genetic 

differences, sequencing of the different variants is probably a necessary and natural next 

step. 

Paper IV demonstrated the effects of swarming on the transcriptome of B. cereus 

ATCC 14579. Many of the observed changes resulted from differences in oxygen 

availability between swarming and non-swarming colonies, but the study also uncovered 

genes strongly affected by swarming independently of oxygen availability. These genes 

may have a potentially important role in swarming, and are candidate targets for knock-out 

mutations or overexpression in follow-up studies.   



 62 

Over several years, large amounts of microarray data have accumulated in our lab, and 

most of it has been poorly exploited. It would be highly interesting to reanalyze the data in 

a way that would make them suitable for downstream analysis (this would require that 

weak and uncertain genes are weighted down rather than excluded where possible, as most 

types of downstream analysis can't handle missing data). The best slides could then be used 

for meta-analysis with pattern-finding techniques and clustering methods such as K-means 

clustering and PCA (principal component analysis) clustering. Hopefully, this would make 

it possible to find genes which show co-varying or opposite expression profiles under 

various conditions. Such information could increase our understanding of the regulatory 

networks of B. cereus and might lead to new and interesting research projects.  
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Abstract

PlcR is a Bacillus cereus transcriptional regulator, which activates gene expression by binding to a nucleotidic sequence
called the ‘PlcR box’. To build a list of all genes included in the PlcR regulon, a consensus sequence was identified by
directed mutagenesis. The reference strain ATCC14579 sequenced genome was searched for occurrences of this consensus
sequence to produce a virtual regulon. PlcR control of these genes was confirmed by comparing gene expression in the
reference strain and its isogenic D-plcR strain using DNA microarrays, lacZ fusions and proteomics methods. The resulting
list included 45 genes controlled by 28 PlcR boxes. Forty of the PlcR controlled proteins were exported, of which 22 were
secreted in the extracellular medium and 18 were bound or attached to cell wall structures (membrane or peptidoglycan
layer). The functions of these proteins were related to food supply (phospholipases, proteases, toxins), cell protection
(bacteriocins, toxins, transporters, cell wall biogenesis) and environment-sensing (two-component sensors, chemotaxis
proteins, GGDEF family regulators). Four genes coded for cytoplasmic regulators. The PlcR regulon appears to integrate a
large range of environmental signals, including food deprivation and self cell-density, and regulate the transcription of
genes designed to overcome obstacles that hinder B. cereus growth within the host: food supply, host barriers, host
immune defenses, and competition with other bacterial species. PlcR appears to be a key component in the efficient
adaptation of B. cereus to its host environment.
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Introduction

In pathogenic bacteria, the production of virulence factors is often

coordinately regulated in response to changes in the bacterial cell

environment, with various types of regulatory processes being

employed. In Gram-positive bacteria, these processes may involve

two-component systems [1,2], alternative sigma factors [3] or stand-

alone transcription regulators [4]. In some cases, the three regulatory

mechanisms act together, each controlling a part in the production of

virulence factors. This situation is found for instance in the

nosocomial infection agent Staphylococcus aureus, in which more than

40 cell-surface or secreted proteins involved in bacterial virulence are

controlled by a complex network involving the transcriptional

regulator SarA, the two component regulator Agr and the general

stress response regulator SigB [5]. In some species, a master

regulator controls most of the virulence factors, which are therefore

members of the same regulon. Virulence regulons may include a

large number of genes: for example, the PrfA regulon of the food-

borne pathogen Listeria monocytogenes includes 73 genes located on the

chromosome [6]. Functional analysis of genes included in virulence

regulons and a precise understanding of their regulation provide

means to determine how environmental signals are integrated by

virulence regulators and which strategies are used by bacterial cells to

survive and develop within their host environment.

In Bacillus cereus, the transcriptional regulator PlcR (Phospholi-

pase C Regulator) controls most known virulence factors [7]. B.

cereus is a sporulating low-GC Gram-positive bacterium widely

distributed in the environment and genetically close to two other

pathogens: the human pathogen B. anthracis, which is the cause of

anthrax and was implicated in the killing of five people in the US

in the fall of 2001, and the insect pathogen B. thuringiensis. B. cereus
is a food-poisoning pathogen frequently diagnosed as the causative

agent of gastroenteritis [8] but it may also cause more severe

diseases such as endophthalmitis [9] or meningitis [10]. PlcR

controls the expression of several enterotoxins, haemolysins,

phospholipases and proteases [7,11]. PlcR has been shown to

bind to DNA on a specific sequence called the ‘PlcR box’, located

upstream from controlled genes, and at various distances ahead of

the 235 box of the sigma A promoter [11,12]. The transcription

of plcR starts shortly before the onset of the stationary phase t0 and

reaches a plateau two hours later (t2) [13]. plcR transcription is

autoinduced [13], and is repressed by the sporulation factor

Spo0A [14]. PlcR needs PapR to be active: this peptide is

expressed as a propeptide under the control of PlcR, is exported

out of the cell, is processed to form the active peptide either during

export or in the extracellular medium, and is captured back by the

cell through the oligopeptide permease system OppABCDF

[12,15,16]. Thus, the three partners PlcR, OppABCDF and

PapR function as a quorum-sensing system. Therefore, PlcR

integrates at least two classes of signals: cell growth state through

Spo0A and self cell density through PapR [12,14].

Although several B. cereus genes have been demonstrated to be

controlled by PlcR, no detailed study of the whole PlcR regulon

has been undertaken until now. Moreover, several B. cereus group
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genomes have now been sequenced, presenting the possibility of

building a virtual PlcR regulon by searching for matches with the

PlcR box consensus sequence. Using this method, a virtual regulon

was in fact proposed after the sequences of B. cereus ATCC14579

and other strains were published [17–19]. However the presence

of a PlcR box is not sufficient to classify a gene as PlcR-regulated:

experimental evidence is also required. In addition, PlcR may

recognize sequences diverging from the previously defined

consensus sequence, as has been reported in a study of

metalloprotease gene inhA2 regulation [20]. In order to define all

factors involved in the coordinated PlcR-based virulence response

in B. cereus, we have undertaken an extensive study to map the

complete PlcR regulon in the ATCC 14579 reference strain,

utilizing mutagenesis experiments and in silico predictions in

combination with proteomics and transcriptomics analyses.

Results

Directed mutagenesis defines a new PlcR box
A consensus sequence was previously determined by alignment

of the promoter regions of 13 PlcR-controlled genes [11].

However, the PlcR box located upstream from inhA2, a gene

known to be under PlcR control, diverged from this original

consensus sequence by one base. Therefore, we investigated which

substitution could be introduced in the consensus sequence while

still maintaining significant PlcR-dependent activity. Thus, we

mutated half of the palindromic nucleotide sequence of the PlcR

box located upstream from plcA, a PlcR-regulated gene coding for

a phosphatidyl-inositol specific phospholipase C (PI-PLC) and

used to report PlcR activity [12]. The recognition of the mutated

PlcR boxes by PlcR was investigated in the ATCC14579 strain by

a transcriptional fusion between the modified promoter region of

plcA and lacZ, carried on the pHT304-18Z plasmid [21]. The

results, displayed in Table 1, showed that the first and the last

nucleotide of the 16 bp consensus sequence can be replaced by any

base without a greater than five-fold drop in expression of plcA-

lacZ. However, deletion of A or T or their replacement by C or G

in position 7–8 in the middle of the sequence, or a replacement of

C by G in position 5 of the sequence, leads to a dramatic loss of

activity. Similarly A2, T3 or G4 could not be replaced by another

base. Therefore, the PlcR target sequence identified in the

mutagenesis experiment was ‘ATGhAwwwwTdCAT’, were h, w

and d stand for, respectively: C, A or T; A or T; G, A or T. In

addition to the previous consensus sequence ‘TATGnAnnnnTn-

CATA’, this sequence was retained for the subsequent in silico

analysis step.

Searching for PlcR boxes in the sequenced B. cereus
genome
We searched for the two PlcR target sequences TATG-

nAnnnnTnCATA and ATGhAwwwwTdCAT in the B. cereus
ATCC14579 genome sequence. We identified a total of 69 boxes

located at least 35 bp, but not more than 700 bp, upstream from a

putative coding sequence. These boxes may control as many as 138

genes, as the same box could act on several genes putatively

organized into an operon and/or that were divergently transcribed

(see supplementary material, Table S1). Included in this list are genes

that have not been annotated in the published genome sequence of

the ATCC14579 strain (Ivanova et al., 2003; http://www.ncbi.nlm.

nih.gov/genomes/lproks.cgi?view=1), but for which expression was

confirmed by proteomic or genetic means (Bc0361a, this study;

BC3763, [7]; Bc2463a, Bc3185a, Bc5101a, [22]).

Microarray analysis
We used microarrays to determine the ratio of expression

between the wild type ATCC14579 strain and the isogenic DplcR
strain for the 138 genes identified in the in silico procedure. For this
determination, we chose two time points in the growth curve: the

onset of the stationary phase (t0), because PlcR expression

increases sharply at this point, and two hours later (t2), after PlcR

expression reaches a plateau. Most of the genes, which on the basis

of genome annotation were expected to be transcribed as part of

an operon structure, displayed similar expression ratio values.

Only genes with a relative expression ratio greater than 2.5 at t0 or

at t2, and a significance value (p) smaller than 0.2, were considered

for subsequent analysis. Consequently, 75 genes (Figure 1, blue

box) were considered as not controlled by PlcR under standard

culture conditions and were discarded. No microarray data were

available for 25 genes. For most of the 38 remaining genes,

transcription was enhanced by PlcR both at t0 and at t2 (Figure 1).

Noticeably, the clO hemolysin, the cytK cytotoxin and the

enterotoxins hblC, hbLD, hblA and nheA, nheB, nheC, were the genes
most strongly induced by PlcR with relative expression ratios of 10

to 50 in the DplcR mutant versus wildtype cells. The expression of

genes coding for other secreted proteins, including proteases (sfp,
nprB, nprC, mpbE, colA, and colC) and phospholipases (plcA, plcB and

smase) was also induced by PlcR, with a ratio of induction ranging

from 3 to 30 (see supplementary Table S1). The expression of a

high number of genes coding for cell-surface proteins appeared

also to be induced by PlcR, although at a lower level than for

secreted proteins. By contrast, only a few genes coding for cytosolic

proteins, including four transcriptional regulators, had their

expression significantly induced by PlcR. Data relating to plcR

Table 1. Effect of base mutation on the plcA PlcR box activity.

T1 A2 T3 G4 C5 A6 A7 T8 A9 T10 T11 T12 C13 A14 T15 A16

A 20 100 100 1 ND 100 100 ND ND ND ND ND ND ND ND 100

T 100 ND ND ND ND 4 10 100 ND ND ND ND ND ND ND 90

G 70 1 ND 100 6 3 3 2 ND ND ND ND ND ND ND 40

C 20 ND 0 ND 100 2 2 7 ND ND ND ND ND ND ND 45

T A T G N A N N N N T N C A T A

Each column corresponds to each position of the PlcR box located in the region upstream from plcA (BC3761). The unmodified sequence is given in the first line, and the
subsequent next lines give the effect of a base exchange by A, T, G or C. Last line gives the original consensus sequence. The plcA promoter regions including the
modified PlcR boxes are transcriptionally fused with lacZ, and each modified PlcR box activity is expressed as the percentage of beta-galactosidase activity relative to
the unmodified PlcR box. ND means ‘not determined’.
doi:10.1371/journal.pone.0002793.t001
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and papR were discarded, because insertion of the KmR cassette

into the plcR gene introduced a promoter upstream from the

regions recognized by the microarray 70-mer oligos. These genes

have however previously been shown to be PlcR-regulated

[11,13]. Finally, 6 genes appeared to be repressed by PlcR at a

ratio of 2 to 6 in this microarray analysis, either at t0 (BC4986) or

at t2 (BC0069, BC1736, BC3520, BC4982, BC4983).

Transcriptional fusions
Results from the microarray analysis were then crossed with data

from previous proteomic or genetic analysis [7,11–13,22–24]. All

genes encoding secreted proteins and identified by DNA microarray

analysis were confirmed as belonging to the PlcR regulon, including

BC2463a, BC3185a and BC5101a for which microarray results

could not be produced, except for colC, for which no data from

previous reports was available. Some cell surface and cytosolic

proteins (inhA2, prp2 and plcR) were also confirmed as part of the

PlcR regulon. However, for 39 genes, some of which were in operon,

no previous results were available regarding their control by PlcR.

Therefore, we constructed 30 transcriptional fusions between the

genes promoter region including the PlcR box and a lacZ gene, to

determine if they were truly controlled by PlcR. Two genes that were

not previously predicted to be in the ATCC14579 strain genome

sequence, but which were located downstream from PlcR boxes,

were included in the analysis: cwh (BC3763) and a small open reading

frame located downstream from BC0361, which we named

BC0361a. The ratios of b-galactosidase (encoded by lacZ) activity

between the wild type strain and the DplcR strain was plotted at t0 vs

t2 (Figure 2; the kinetics of expression obtained between t21 and t4
are shown in supplementary, Figure S1). Among the 30 promoter

regions assayed by lacZ fusions, 14 were controlled by PlcR whereas

the remaining 16 were not. Microarray results were missing or gave

low ratio values for these 16 PlcR-independent genes.

Proteomic study
We have observed in a previous two-dimensional protein gel

electrophoresis analysis of the B. cereus ATCC14579 secretome at

t2 that most of the extracellular proteins disappeared upon

inactivation of plcR [7]. However, in the same time a large

number of spots appeared on the gel obtained from the mutant

strain. This suggests that PlcR is possibly a repressor for some

extracellular proteins. We identified the protein content of 103 of

these spots by peptide mass fingerprints and by N-terminal

sequencing (see supplementary material, Figure S2 and Table S2),

and only one of the proteins was encoded by a gene preceded by a

PlcR box. This protein, the fructose bisphosphate aldolase FbaA,

was shown by lacZ fusion not to be controlled by PlcR (Figure S1).

Therefore no repressor role for PlcR acting on genes coding for

secreted proteins was identified. The appearance of cytosolic

proteins in the culture supernatant if plcR is inactivated was due to

a greater cell lysis in the mutant strain than in wildtype: this lysis,

determined by measuring isocitrate dehydrogenase activity in the

bacterial cells and culture supernatant, was 1% in the wildtype

strain and 15% in the mutant strain at t2.

Final list of the PlcR-controlled genes
We built a list of PlcR-controlled genes using the data

generated. We added three genes coding for antibacterial peptides

to this list, which were previously shown to be controlled by PlcR:

sppc1, sppc2 and sppc3 [22]. The final list included 45 genes

controlled by 28 PlcR boxes, as the same PlcR box may control

several genes (Table 2 and Figure S4). Genes coding for secreted

Figure 1. DplcR-wt expression ratios as determined by micro-
array experiments. Ratios of expression between the wildtype strain
and the delta plcR strain as determined by microarrays. The log2 of
these ratios were plotted at t2 vs t0. Each red circle represents the values
obtained for one gene. Inside the blue square at the center of the figure
are the genes for which the expression ratios were equal or less than 2.
Genes for which the transcription was induced by PlcR both at t0 and at
t2 are in the yellow square ‘a’, whereas genes induced only at t2 or only
at t0 are in the yellow squares ‘b’ or ‘d’, respectively. Genes repressed by
PlcR both at t0 and at t2 are in the yellow square ‘c’.
doi:10.1371/journal.pone.0002793.g001

Figure 2. DplcR-wt expression ratios as determined by lacZ
fusions. Ratios of expression between the wildtype strain and the delta
plcR strain as determined by lacZ fusions. The log2 of these ratios were
plotted at t2 vs t0. Each red circle represents the values obtained for one
gene. Inside the blue square at the center of the figure are the genes for
which the expression ratios were equal or less than 2. The transcription
of all the other genes was induced by PlcR both at t0 and at t2 (yellow
square ‘a’).
doi:10.1371/journal.pone.0002793.g002
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proteins made up 49% of the regulon, whereas genes coding for

proteins associated to the membrane or to the peptidoglycan (cell

wall proteins) represented 40%. The 22 secreted proteins were

toxins, phospholipases, proteases, peptides with antibacterial activity

and included one cell-cell communication peptide (PapR); however,

the 18 cell wall proteins were annotated as being involved in cell

immunity, drug efflux transport, cell wall biogenesis, and environ-

ment-sensing (in connection with regulation systems). Environmental

sensors included two chemotaxis proteins, McpA and TlpA, the two-

component system sensor YufM and one GGDEF family protein.

The GGDEF family protein displays three conserved domains: a

dinucleotide cyclase and a phosphodiesterase domain, involved in

regulating the intracellular level of cyclic dinucleotide diguanylate, a

second messenger, in response to ligands detected by the PAS

domain [25]. One protein, InhA2, was possibly involved in cell

immunity. InhA2 is a member of the Immune Inhibitor A

metalloprotease family, previously shown to specifically degrade

antibacterial peptides [26] and involved in bacterial virulence [20].

The cytosolic proteins controlled by PlcR were PlcR itself, a TetR

family regulator, a two-component response regulator, a protein of

unknown function and a protein homologous to the RimL ribosomal

alanine acetyl transferase. Therefore, all cytoplasmic PlcR-controlled

proteins of known function are likely to be regulators. The TetR

family regulators are transcriptional repressors involved in the

biosynthesis of antibiotic efflux pumps and the response to osmotic

stress [27]. The two-component response regulator YufM is in an

operon with its sensor component YufL and a chemotaxis transducer

protein McpA, all under PlcR transcriptional control. RimL belongs

to the GNAT superfamily of acetyltransferases [28] and acetylates a

ribosomal protein interacting with elongation factors EF-Tu and EF-

G [29,30].

Analysis of the nucleotidic sequences of the active PlcR
boxes
The 28 active PlcR boxes that we determined were scattered all

along the chromosome (Figure S3, supplementary material).

Consequently, no pathogenicity island could be found in the B.
cereus chromosome. Alignment of the active PlcR boxes led us to a

new consensus sequence, shown as a logo in Figure 3. To

investigate whether nucleotide sequences surrounding active PlcR

Table 2. List of the PlcR-controlled genes in the ATCC14579
strain.

Gene nu Gene ID Name Function Localisation

Bc1809 30019951 nheA Enterotoxin Extracellular

Bc1810 30019952 nheB Enterotoxin Extracellular

Bc1811 30019953 nheC Enterotoxin Extracellular

Bc3102 30021214 hblB Enterotoxin Extracellular

Bc3103 30021215 hblL1 Enterotoxin Extracellular

Bc3104 30021216 hblL2 Enterotoxin Extracellular

Bc5101 30023138 clo Hemolysin I, cereolysin Extracellular

Bc1110 30019265 cytK Hemolysin, cytotoxin Extracellular

Bc3761 30021854 plcA Phospholipase (phosphatidyl
inositol)

Extracellular

Bc0670 30018852 plcB Phospholipase (phosphatidyl
choline)

Extracellular

Bc0671 30018853 smase Phospholipase (sphingomyelin) Extracellular

Bc2735 30020906 nprP2 Neutral protease Extracellular

Bc3383 30021487 nprC Neutral protease Extracellular

Bc5351 30023381 nprB Neutral protease Extracellular

Bc0556 30018742 colC Protease, collagenase Extracellular

Bc3161 30021271 colA Protease, collagenase Extracellular

Bc3384 30021488 mpbE Protease, Enhancin Extracellular

Bc3762 30021855 sfp Protease, subtilase family
protease

Extracellular

Bc5101a NA sppc1 Peptide with anti-bacterial
activity

Extracellular

Bc2463a NA sppc2 Peptide with anti-bacterial
activity

Extracellular

Bc3185a NA sppc3 Peptide with anti-bacterial
activity

Extracellular

Bc5349 30023379 papR Peptide, signaling molecule Extracellular

Bc0576 30018762 mcpA Methyl-accepting chemotaxis
transducer protein

Cell wall

Bc3385 30021489 tlpA Methyl-accepting chemotaxis
transducer protein

Cell wall

Bc0577 30018763 yufL Two-component system sensor Cell wall

Bc3747 30021841 sensory box / GGDEF family
protein

Cell wall

Bc4509 30022587 ABC transporter, permease
subunit

Cell wall

Bc4510 30022588 ABC transporter, ATP-binding
protein

Cell wall

Bc2411 30020542 Drug efflux protein Cell wall

Bc3763 NA cwh Cell wall hydrolase Cell wall

Bc0991 30019146 slpA S-layer protein A, autolysin Cell wall

Bc3746 30021840 Predicted hydrolase or acyl
transferase. Lipoprotein?

Cell wall

Bc0666 30018848 inhA2 Metalloprotease – lipoprotein Cell wall

Bc4999 30023039 CAAX amino terminal protease
family, 6 TM domains

Cell wall

Bc4511 30022589 lppC Acid phosphatase, lipoprotein Cell wall

Bc2552 30020679 Unknown, 2 transmembrane
domains

Cell wall

Bc1713 30019857 Unknown, membrane spanning
protein

Cell wall

Bc3527 30021629 Unknown, membrane spanning
protein

Cell wall

Gene nu Gene ID Name Function Localisation

Bc0361a NA Unknown, 1 TM domain Cell wall

Bc0362 30018570 Unknown, lipoprotein Cell wall

Bc0578 30018764 yufM Two-component system
regulator

Cytoplasm

Bc2410 30020541 tetR Regulator, TetR family Cytoplasm

Bc1082 30019237 Ribosomal protein alanine acetyl
transferase; regulator ?

Cytoplasm

Bc5350 30023380 plcR Transcriptional regulator Cytoplasm

Bc1081 30019236 prp2 Unknown Cytoplasm

Sppc stands for ‘small peptide regulated by PlcR in B. cereus’. Sppc genes are
wrongly annotated in the ATCC14579 genome. Bc2463a, BC3185a and Bc5101a
are located between the PlcR box and, respectively, Bc2463, Bc3185 and
Bc5101. Bc0361a is located between the PlcR box and Bc0361. Overall, 22 PlcR-
controlled proteins are secreted, 18 are located in the cell wall and 5 are located
in the cytosol. Determination of protein subcellular localisation was based on
signal peptides, hydrophobic domains and cell-wall/membrane anchoring
motifs presence.
doi:10.1371/journal.pone.0002793.t002
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boxes could exhibit additional properties required for the box to

be recognized by PlcR, a comparison of sequences upstream or

downstream from the active and inactive PlcR boxes was

performed. We found that in the vicinity of the active PlcR

boxes, the AT-content was much higher than in the vicinity of

inactive boxes (Figure 4). Downstream from all the active PlcR

boxes, we identified a putative 210 sA binding sequence (Figure

S5), suggesting that the PlcR-regulated genes may be transcribed

by a sA-associated RNA polymerase.

Discussion

Building a list of PlcR-controlled genes
In 1999, Agaisse and colleagues used a genetic screen to identify

PlcR-regulated genes. They reported 13 genes encoding exported

proteins, mostly toxins and degradative enzymes [11]. As a

consequence, PlcR appeared to be a pleiotropic virulence

regulator controlling extracellular factors. That study also led to

the definition of a PlcR target sequence, to which the active

complex PlcR/PapR binds [12]. Later, the sequencing of B. cereus

genomes in combination with proteomic and genetic studies

revealed that PlcR may control a much higher number of genes,

all of which were not, at least not directly, involved in virulence

[7,17,24,31]. Indeed, the role of PlcR in virulence has been

extensively documented [31–34]. Various studies have also

suggested that PlcR could acts on other functions, including

sporulation [35] and biofilm formation [36]. We therefore

systematically investigated the PlcR regulon to understand better

the role of PlcR during bacterial infection, and have provided the

first comprehensive, genome-wide characterization of the com-

plete PlcR virulence regulon based on functional experiments. A

virtual PlcR regulon was constructed in silico using the PlcR DNA

target sequence defined through mutagenesis experiments, and

was investigated by transcriptional studies using DNA microarrays

and lacZ fusions. The resulting data were cross-analyzed with data

from proteomic studies, to build a list of 45 genes positively

controlled by PlcR under standard culture conditions. The genes

were scattered along the chromosome, and did not form a

pathogenicity island. Aligning the sequences of the PlcR boxes

located upstream from these genes led to the identification of the

PlcR consensus binding sequence wTATGnAwwwwTnCATAw.

Inactive PlcR boxes
A high number of PlcR boxes turned out to be inactive under

our culture conditions. Alignment of the sequences located

upstream and downstream from the PlcR boxes revealed that,

for active boxes, these sequences are significantly more AT-rich.

Therefore, in addition to the consensus sequence, the genetic

environment of the PlcR box could be critical for the binding of

PlcR to its box, and/or could be important for the transcription

activity of the promoter. Also, we found cases in which a PlcR box

is placed between two divergently transcribed genes, and PlcR

controls the transcription of only one of these genes (for example,

Bc0555/Bc0556). Thus, the binding of PlcR to its box is required

but not sufficient to activate the transcription of genes located

Figure 3. PlcR consensus sequence. The height of the letter
representing a base is proportional to its frequency at each position in
the alignment. For each position, the most frequent base is drawn in
blue, followed by green and pink for less frequent bases.
doi:10.1371/journal.pone.0002793.g003

Figure 4. Percentage of A+T in the vicinity of PlcR boxes. Active boxes are plotted in blue whereas inactive boxes are plotted in red. The
dashed line represents the average A+T percentage for the ATCC14579 chromosome. The difference between active and inactive boxes for the A+T
percentage is highly significant (Qui-square test, p,0.001).
doi:10.1371/journal.pone.0002793.g004
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downstream. A putative sA -10 region consensus sequence was

found downstream from all the active PlcR boxes. In various

conditions, including the host, the transcription of genes not

controlled by PlcR despite the binding of the regulator to the PlcR

box may require alternative sigma factors, such as sB, sH, or ECF

factors. In B. anthracis [37], L. monocytogenes [38,39] and S. aureus [5],

sB has been shown to be involved in virulence under some culture

conditions. Similarly, sH is required for toxin gene expression in

B. anthracis [40]. These two sigma factors are likely to be expressed

in early stationary phase under standard culture conditions

[37,40]. Finally, it seems unlikely that we may have missed any

PlcR-regulated genes in this study due to no expression in LB

medium because no additional genes were identified in a screen

for genes specifically induced during growth in vivo [31].

Role of the PlcR regulon
Ninety percent of the genes included in the final list of PlcR-

controlled genes encode proteins either secreted or located at the cell

wall, i.e. at the interface between the bacterial cell and its

environment – including the eukaryotic host. Proteases and

phospholipases, in addition to enterotoxins and hemolysins, have

been found located at this interface. These enzymes are likely to be

involved in host tissue degradation. Phosphatidylcholine-specific

phospholipase C (PC-PLC) and sphingomyelinase were previously

shown to induce hemolysis [41,42] and the InhA2 metalloprotease is

involved in protecting the bacterial cell from host immune defenses

[26]. Proteins involved in peptidoglycan synthesis and modification

(four genes) are also likely to be involved in bacterial cell protection

by strengthening the cell wall, as suggested by the significantly

greater tendency of cell lysis observed for the plcRmutant strain than

the wildtype strain (this study). Furthermore, three secreted

antibacterial peptides and four drug efflux transporters shown to

be controlled by PlcR for the first time here may protect the cell from

competition with other bacterial species and their bacteriocins.

Thus, these functions may work together to provide nutrition

and bacterial cell protection in a hostile host environment

(Figure 5). The bacterium may feed on host tissues by producing

toxins, phospholipases and proteases. Proteins, peptides and amino

acids have been suggested as the preferred nutrient sources for B.

cereus [17], possibly linked to the growth of the bacterium as a

human and animal pathogen. Meanwhile, other functions of the

regulon may inhibit the growth of other bacterial species in the

same niche, inactivate host antibacterial peptides, and increase cell

wall resistance to lysis.

Sensing the host environment
Sensing the surrounding environment is necessary for a

bacterium to react appropriately to changes. Bacterial pathogens

often use two-component systems to sense their host environment,

and promote or repress the transcription of genes in response to

changes in this environment [1,2]. Interestingly, as shown here for

the first time, four sensors are included in the B. cereus PlcR

virulence regulon, only one of which (YufL) is part of a two-

component system. The other sensors are chemotaxis proteins

(McpA and TlpA) or a GGDEF-family regulator producing a

second messenger. This variety in sensor types is likely to reflect a

variety in the types of signals providing input to the cell.

Furthermore, genes controlled by PlcR-dependent transcriptional

regulators could add to the list of genes controlled by PlcR, and

extend the regulon size. However, these regulators could also

recruit genes already controlled by PlcR. If so, PlcR-controlled

sensors and their regulators could modulate the transcription of

Figure 5. Overview of the PlcR regulon organization. PlcR positively controls (dark line) the transcription of a vast array of genes coding for
proteins located in the cell wall or in the extracellular space. Cell wall proteins are designed in green. Secreted proteins are exported through the
SecA machinery designed in pink. Environmental signals are sensed by cell-wall sensors and act via (dashed line) regulators on undetermined genes
or proteins. PlcR requires PapR to be active (dashed line). Signals integrated by PlcR and PlcR-controlled regulators are designed in red.
doi:10.1371/journal.pone.0002793.g005
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subgroups of PlcR-controlled genes. It was recently suggested that

regulators other than PlcR could act on the expression of PlcR-

controlled genes [43,44]. Accordingly, L. monocytogenes internalins,
which constitute a subgroup of the PrfA virulence regulon, are

simultaneously controlled by sB, itself acting on gene transcription

in response to stress signals [39]. These observations have led us to

propose the following hypothesis for the integration of PlcR/

PapR-related environmental signals in B. cereus: PlcR triggers the

transcription of its regulon, including the sensor proteins, in

response to food deprivation sensed via transition state regulators

and in response to its own cell density sensed via PapR. In turn, the

PlcR-controlled sensors repress (or promote) transcription of

subgroups of genes in response to host signals. The PlcR/PapR

quorum-sensing system thus provides an efficient way to integrate

several environmental signals and produce a gene expression

profile continuously adapted to a changing host environment, such

as that experienced by the bacterium during infection.

Materials and Methods

Strains and culture conditions
The B. cereus strains used in this study were the type strain,

ATCC14579, and the isogenic DplcR strain [32], obtained by

insertion of a KmR cassette in plcR. The two strains were grown in

Luria Bertani broth (LB) at 30uC. Cultures were harvested at the

onset of the stationary phase (t0) or two hours later (t2). The onset

of the stationary phase (t0) was defined as the breakpoint in the

vegetative phase slope.

Directed mutagenesis of the PlcR box
Point mutations were introduced into the PlcR box of the plcA

promoter region by PCR amplification with primer Bc-plc

matching the 59 end of the plcA gene, and primers pRX1 to

pRX18 carrying a modified PlcR box (supplementary Table S3).

Each PCR product (a 390-bp DNA fragment) was digested with

XbaI and HindIII enzymes and cloned between the XbaI and

HindIII sites in pHT304-18Z [21]. The nucleotide sequence of

each DNA fragment was determined and analyzed by Genome

express (France) by using oligonucleotides UP and OVG flanking

the DNA fragments cloned into pHT304-18Z. Plasmids carrying

the plcA’-lacZ transcriptional fusions were introduced into B. cereus
ATCC14579 by electroporation, and ß-galactosidase activity

produced by the recombinant clones was measured two hours

after entry in the stationary phase in LB medium.

Microarray analysis
Harvested bacterial cells were incubated in an equal volume of

ice-cold methanol for 5 minutes before centrifugation at 4uC and

4000 rpm. RNA isolation was performed with the RNeasy Midi

Kit (Qiagen, Germany) together with the RNase-Free DNase Set

(Qiagen, Germany). For microarray slide preparation, 70-mer

oligos from the whole genomic B. cereus ATCC14579 ORFs

(released at NCBI in 2003) were designed and synthesized by

Qiagen-Operon (Germany). The oligos were printed in 50%

DMSO on UltraGAPSTM gamma amino silane-coated slides from

Corning (USA), at the Norwegian Radiumhospital (DNR). The

microarray slides were prehybridized before use for 30–60 min-

utes in a 56SSC/0.1 % SDS/0.1 % BSA solution at 42uC,
according to the UltraGAPSTM Coated Slides instruction manual

from Corning. The slides were then washed three times in MQ

H2O, once in isopropanol and finally spun dry.

cDNA synthesis, labeling and purification was carried out with

the FairPlayTM microarray labeling kit (Stratagene, CA, USA),

using 500 ng random hexamers (Applied Biosystems, CA, USA)

on 20 mg of RNA, and with amino-allyl coupling of Cy3 and Cy5

dyes from Amersham Biosciences (GE Healthcare Bio-Sciences

AB, Sweden). After purification, the samples were concentrated

with a Microcon column (Millipore, MA, USA) and hybridization

solution was added to a final concentration of 30 % formamide,

56SSC, 0.1 % SDS and 0.1 mg/mL sperm DNA, based on the

UltraGAPSTM Coated Slides instruction manual from Corning

(USA). Labeled DNA were denatured at 95uC for 2 minutes, and

incubated at 42uC before hybridization. The samples were

hybridized in a hybridization chamber (Monterey Industries,

CA, USA), humidified with 56SSC for 16 hours in a 42uC water

bath. After hybridization, the slides were washed at 42uC in

0.56SSC/0.01 % SDS and in 0.066SSC, and finally at room

temperature in isopropanol before they were spun dry.

The slides were scanned with an Axon 4000B scanner.

Gridding, spot annotation and calculation was carried out using

GenePix Pro 6.0 software. The R platform [45] and LIMMA

[46,47] were used for filtering, normalization and further analysis

(for details, see supplementary material). P-values were computed

using false discovery rate correction of 0.05.

Transcriptional fusions
Transcriptional fusions were constructed in the pHT304-18Z

plasmid, between the XbaI and PstI or HindIII and BamHI cloning

sites of the plasmid [48]. Primers used for PCR-amplification of

the promoter regions cloned are listed in supplementary Table S4.

The resulting plasmids were then transferred into B. cereus strains
ATCC14579 or ATCC14579 DplcR by electroporation. For b-
galactosidase activity measurement, bacterial cells were lysed using

the FastPrep 120 system (Savant), and b-galactosidase-specific
activities were measured as described previously [49]. The specific

activities are expressed in units of b-galactosidase milligram21 of

protein (Miller units). Two to four assays were performed for each

transcriptional fusion.

Two-dimensional electrophoresis
Protein extracts were prepared from the culture supernatants

and subjected to two-dimensional electrophoresis as described

earlier [7]. The spots were immediately excised and stored at

270uC until use. Proteins were identified by peptide mass

fingerprint and by N-terminal sequencing. Peptide mass finger-

prints were generated after trypsin-digestion and MALDI-TOF

analysis (Biobac, INRA, Jouy-en-Josas, France), and proteins were

identified using ProteinProspector or Mascot programs. N-

terminal sequencing was performed by Prof. K. Sletten at the

Biotechnology Center, University of Oslo, Norway.

Sequence analysis
PlcR boxes were searched in the sequenced genome of the

ATCC14579 strain using the ‘find sequence’ tool of Vector NTI

(Invitrogen). The same method was used to find sA 210 boxes in

the promoter regions of PlcR-controlled genes. The consensus

sequence for PlcR binding (‘PlcR box’) was drawn as a logo where,

at each nucleotide position, the letter height is proportional to the

frequency of the base and to the weight of the position in the

sequence [50]. The content in A+T bases in sequences upstream

and downstream from the inactive and active PlcR boxes were

compared using a chi-square test.

Supporting Information

Table S1 Microarray results for genes with a PlcR box in their

promoter region

Found at: doi:10.1371/journal.pone.0002793.s001 (0.26 MB PDF)
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Table S2 Proteins identified in the culture supernatant of the

delta-PlcR ATCC14579 strain harvested at t2

Found at: doi:10.1371/journal.pone.0002793.s002 (0.19 MB PDF)

Table S3 Primers used for the directed mutagenesis of the PlcR

box

Found at: doi:10.1371/journal.pone.0002793.s003 (0.04 MB PDF)

Table S4 Primers for transcriptional fusions

Found at: doi:10.1371/journal.pone.0002793.s004 (0.05 MB PDF)

Figure S1 Results from lacZ fusions

Found at: doi:10.1371/journal.pone.0002793.s005 (0.13 MB PDF)

Figure S2 Two-dimensional gel electrophoresis of the D-plcR
ATCC14579 supernatant

Found at: doi:10.1371/journal.pone.0002793.s006 (0.97 MB PDF)

Figure S3 Location of PlcR boxes on the ATCC14579

chromosome

Found at: doi:10.1371/journal.pone.0002793.s007 (0.02 MB PDF)

Figure S4 Genetic environment of the 45 PlcR-regulated genes

Found at: doi:10.1371/journal.pone.0002793.s008 (0.26 MB PDF)

Figure S5 Putative 210 sA boxes located downstream of PlcR

boxes for PlcR-controlled genes

Found at: doi:10.1371/journal.pone.0002793.s009 (0.60 MB PDF)
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Primer name 5' - 3' sequence a Restriction site Primer characteristics
OVG CGTAATCTTACGTCAGTAACTTCCACAGTA Complementary to lacZ 5' end
UP CGCCAGGGTTTTCCCAGTCACGAC Universal primer

Bc-plc TGCTCTAGAGCTCCATGGTCCATTTG XbaI Complementary to plcA 5' end
pRX0 CCCAAGCTTCTATGCAATATTTCATATTG HindIII PlcR box upstream from plcA
pRX1 CCCAAGCTTCAATGCAATATTTCATATTG HindIII PlcR box with mutation T1A

pRX2 CCCAAGCTTCCATGCAATATTTCATATTG HindIII PlcR box with mutation T1C

pRX3 CCCAAGCTTCGATGCAATATTTCATATTG HindIII PlcR box with mutation T1G

pRX4 CCCAAGCTTCTGTGCAATATTTCATATTG HindIII PlcR box with mutation A2G

pRX5 CCCAAGCTTCTACGCAATATTTCATATTG HindIII PlcR box with mutation T3C

pRX6 CCCAAGCTTCTATACAATATTTCATATTG HindIII PlcR box with mutation G4A

pRX7 CCCAAGCTTCTATGGAATATTTCATATTG HindIII PlcR box with mutation C5G

pRX8 CCCAAGCTTCTATGCGATATTTCATATTG HindIII PlcR box with mutation A6G

pRX9 CCCAAGCTTCTATGCCATATTTCATATTG HindIII PlcR box with mutation A6C

pRX10 CCCAAGCTTCTATGCTATATTTCATATTG HindIII PlcR box with mutation A6T

pRX11 CCCAAGCTTCTATGCAGTATTTCATATTG HindIII PlcR box with mutation A7G

pRX12 CCCAAGCTTCTATGCACTATTTCATATTG HindIII PlcR box with mutation A7C

pRX13 CCCAAGCTTCTATGCATTATTTCATATTG HindIII PlcR box with mutation A7T

pRX14 CCCAAGCTTCTATGCAAGATTTCATATTG HindIII PlcR box with mutation T8G

pRX15 CCCAAGCTTCTATGCAACATTTCATATTG HindIII PlcR box with mutation T8C

pRX16 CCCAAGCTTCTATGCAATATTTCATCTTG HindIII PlcR box with mutation A16C

pRX17 CCCAAGCTTCTATGCAATATTTCATGTTG HindIII PlcR box with mutation A16G

pRX18 CCCAAGCTTCTATGCAATATTTCATTTTG HindIII PlcR box with mutation A16T

Table S3: Primers used for the directed mutagenesis of the PlcR box 
a The restriction sites are underlined, the wildtype PlcR box is underlined twice, and the modified nucleotides are in 
bold.
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Gene Forward primer Reverse primer 
Bc0069a AACTGCAGCTGGCTAGAGCGTACGG GCTCTAGAGCTAAAAATGCTAGCGGC 

Bc0361aa AAACTGCAGCACGCTATTCGCTTTAC TGCTCTAGATCAGCGTTAAGACTAG 

Bc0442a AAACTGCAGGAGTTGTATGATAAAGGAGATCGG GGTCTAGACAATTGGATCCCAGCCTAAG

Bc0556a AACTGCAGCAGCCAAAATAATCATTGTAGTC GCTCTAGATAAAGCCATTGTACTAATGCTAAGC

Bc0576a AAACTGCAGGCGCCAAATAAATTAGGACG GCTCTAGAATGTCTGCAAAGTACGTCGC

Bc0670a AAACTGCAGTGGGATTGGACTAGTGTTTGG GCTCTAGACTTCAGCAGACCAGCGC

Bc0991a AAACTGCAGGTTTCAACGGACCAATCAAATGTC GGTCTAGACCTTGTTTATTCGGTACTAACACTCGA

Bc1082a AAACTGCAGCTATGGATAGAATTTTTTCATAATCAAA GGTCTAGAGCATCAGTCTCTTTTACTAACCGT

Bc1111a AAACTGCAGTATCTGTTACAACTTGTGACGTCG GGTCTAGACCTATCGTTCGCAGAAATGG

Bc1641a AAACTGCAGCGTTTACATAAAGAACTCCGC GCTCTAGAGCAAGTGCATTTCATTCG

Bc1713a AAACTGCAGCTTGTACAAATGTATGC TGCTCTAGATGACGTGGAATGGAT

Bc2410a AAACTGCAGACTTGCTCATATAAATCACCC GCTCTAGATAAGAAACAAACGCTCAGC

Bc2466a AACTGCAGCAAGCTAAGTTAGCATGTTTAATG GCTCTAGATCCATATTTGGCGAACAAAG

Bc2707c CCCAAGCTTCGCGCTTATAATAAGGAGGAC CGGGATCCATCAGTTTCTGTCGCCTTCTC

Bc3384a AAACTGCAGGAGACTTGGCTGAGCAATCTAAAG GGTCTAGAGTTCGTTCATCAGCATGTAAGTGT

Bc3385a AAACTGCAGTTATACATCAATGATGGGTTCCCC GGTCTAGACCCCAAAACCCTATTAGGGATAAT

Bc3520c CCCAAGCTTTGGGCAGAACATTAAAGC CGGGATCCGCTTTATTTGCCCCAATCTTTC

Bc3521c CCCAAGCTTTGTATAGCTACATGAGGATTTTGAC CGGGATCCCCAAACCCTGTCCGAAAG

Bc3528b CCCAAGCTTTACGAAAGAAGTTACAGCCTCACC GGTCTAGAGCCAGAATACGTGATAGCTAAGG

Bc3740a AAACTGCAGGCTCTTCAATGCCTAAACCATATG GGTCTAGACGGTATTCTTGATTTGCATGATGG

Bc3747a AAACTGCAGCGCAGCCATGTATGAT TGCTCTAGACGAAGCGTACATCTGAAT

Bc3763a AAACTGCAGCACTATTGATAGTGCCTCCTGTTC GGTCTAGAGTGACATTGTAACGCTTTGCTATC

Bc4142a AAACTGCAGCGCATTGACTCTGAAACGAC GGTCTAGAACTCACTCCCTAATCAGAACGTT

Bc4510a AAACTGCAGCTTCAGCCTCAGCTTTGTTAATCC GGTCTAGACCTAGTACTTCACCTTTTGGTAACGAA

Bc4511a AAACTGCAGCCCATGTAATCGAACCTTCATTAG GGTCTAGAGCTGTTTGATACCATAAATCAGCC

Bc4794a AACTGCAGCGTAGGACATCACTATCTGAGTTC GCTCTAGATCCATTATAAGCCTTCGTCTTTTC

Bc4795a AAACTGCAGCAATAATAACACCTTCCACAACTGCC GGTCTAGAGTCGTCCTTCTCGCTTCATTAAAAT

Bc4958a AAACTGCAGAACTATAAGGTTCCTCGTACGTCC GGTCTAGACGTGACCTTTTCCTTCTAATTCAC

Bc4986a AACTGCAGATTGTTTAATCAGTTAGAGAAACC GCTCTAGATTGCCGTCATATATAACGTTTC

Bc5335a AAACTGCAGGTCAAGCTGTGAGAAATGAGC GCTCTAGAATTTTTCTTCTTCCGCAGC

Bc5359a AAACTGCAGAGATGGAAAAATCATCCGAGAAGG GGTCTAGACCCATTGATTTAAGCTGCATACCA

Table S4: Primers for transcriptional fusions.
Primers used to amplify promoter regions of genes selected for lacZ fusions are given in the table. Restriction sites 
are underlined and were PstI and XbaI (a), HindIII and XbaI (b), or HindIII and BamHI (c). 
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Figure S1: Results from lacZ fusions.
Transcriptional fusions were performed between genes promoter regions and lacZ. Beta-galactosidase activity is
plotted as a function of time of for the ATCC14579 wild type and mutant strains.
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Figure S2: Two-dimensional gel electrophoresis of the �-plcR ATCC14579 supernatant.  
The supernatant was harvested at t2. The gel was silver-stained. In red, abbreviated name of the proteins present 
in the spots, and identified by mass spectrometry or by N-terminal sequencing (see table s3). Top scale: pH 
range; left scale: MW range  
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ATCC14579
5411809 bp

Figure S3: Location of PlcR boxes on the ATCC14579 chromosome.
Each dark line represents a PlcR box (active or inactive) and red circles show active PlcR boxes. The
chromosome origin is placed on top of the blue circle.
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Figure S4: Genetic environment of the 45 PlcR-regulated genes.
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