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ABSTRACT

Interactions between closely related species, including resource competition and hybridization, might 

influence phenotypic evolution and play a significant role in evolutionary diversification. There may be 

different outcomes of such interactions on phenotypic evolution. In sympatry, traits may diverge to 

diminish  interspecific  competition  or  maladaptive  hybridization,  a  process  known  as  character 

displacement, or they may convergence for instance due to gene flow. I studied phenotypic evolution in 

three taxa of  Passer sparrows by comparing trait  values of several  morphological characters (beak 

height, beak length, tarsus length, wing length and bib size) in sympatric and allopatric populations of 

the  Spanish  sparrow  (Passer  hispanoliensis),  Italian  sparrow  (Passer  italiae)  and  house  sparrow 

(Passer  domesticus).  The  Italian  sparrow has  a  hybrid  origin  and is  intermediate  between  its  two 

parental  species,  the  house and Spanish  sparrow both genetically  and phenotypically.  I  looked for 

patterns of convergence or divergence in sympatry and inferred these patterns in light of evolutionary 

processes.  I found a complex pattern of sympatric convergence, divergence and parallel shifts in the 

different traits and species. This complexity may be a result of the interplay between gene flow and 

divergent and convergent natural selection affecting the traits. However, the Spanish sparrow stood out 

as one showing more consistent patterns of trait divergence in sympatry with either of the two other 

species.  The  Spanish  sparrow  also  appear  to  occupy  a  broader  niche  when  in  allopatry  than  in 

sympatry, suggesting that interspecific competition may have played a significant role in shaping its 

ecologically relevant traits.



INTRODUCTION

When  differentiated  but  closely  related  taxa  come  into  contact,  they  may  affect  each  other’s 

evolutionary trajectories (Brown & Wilson 1956; Grant 1972; Schluter 2000a; Schluter 2000b; Coyne 

& Orr 2004;  Mallet  2007).  Due to  recent  common ancestry,  such taxa are  likely  to  be  similar  in 

phenotype,  both morphologically and behaviorally, increasing the likelihood of interbreeding. Also, 

closely  related  taxa  are  expected  to  share  similar  ecologies  (Wiens  & Graham 2005),  leading  to 

competition  for  essential  resources  (Cody  1969).  These  processes,  hybridization  and  ecological 

competition, will in turn affect the phenotypic evolution of such taxa. 

Natural  selection  may  favor  character  displacement  in  ecologically  important  traits  that  reduce 

competition  between  taxa.  This  process,  through  which  the  state  of  a  trait  is  changed  by natural 

selection as a result of the presence of another ecologically or reproductively similar species (Brown & 

Wilson 1956; Grant 1972), is thought to be the main evolutionary consequence of resource competition 

(Fox & Vasseur 2008).  Character displacement has been reported across many taxa (Rice & Pfennig 

2010)  and  its  role  in  increasing  isolation  between  taxa  is  well  recognized  (Reifová  et  al.  2011). 

Examples  of  such displacement  have  been found for  beak  size  in  Galapagos  finches  (Lack  1947; 

Schluter & Grant 1984; Schluter et al. 1985) or body size in island lizards (Schoener 1970; Losos 1990). However, character displacement is not the only potential evolutionary outcome of competition between taxa. Competition for essential resources may lead to trait convergence, which is thought to promote coexistence in some cases (Fox & Vasseur 

2008). Haavie et  al.  (2004) reported that the song of the pied flycatcher (Ficedula hypoleuca) has 

converged towards that of the collared flycatcher (F. albicollis) due to heterospecific copying which 

may  facilitate  interspecific  territoriality.  Further,  phenotypes  may  differ  between  sympatry  and 

allopatry for other reasons than interactions between the species. For example, in sympatry, a species  

pair may converge phenotypically due to local adaptation to a common habitat that differs from those 

in allopatric regions. Hall et al. (1966) reported a parallelism on plumage characteristics of pairs of 

African Bush Shrike species of the genus Malaconotus. 



In addition to competing, closely related species may exchange genes. Introgressive hybridization and 

gene  flow  may  result  in  complete  or  partial  fusion  of  differentiated  lineages  so  that  phenotypic 

differentiation is reduced and genetic divergence between the populations hindered (Senar et al. 2006, 

Räsännen & Hendry 2008). On the other hand, if interspecific pairing is maladaptive, e.g. because the 

resulting hybrids have low viability or fertility, natural selection may favor divergence in traits that 

reduce  interbreeding  and  increase  assortative  mating.  This  may  lead  to  the  build-up  reproductive 

isolation through a process known as reinforcement (Servedio & Noor 2003). Reinforcement is the 

adaptive strengthening of pre-mating barriers between taxa that have already developed some post-

mating isolation,  and is considered to be an evolutionary response to maladaptive mating behavior 

(Sætre et al. 1997; Haavie et al. 2004; Price 2008). Finally, hybridization may in some cases lead to the 

formation  of  a  third,  stable  hybrid  taxon  reproductively  isolated  from  either  of  its  parental  taxa 

(Dowling & Secor 1997; Mallet 2007). In this case hybridization does not only favor speciation but 

possibly also major evolutionary innovations (Servedio & Kirkpatrick 1997; Mallet 2007).

In this thesis, I investigate phenotypic evolution in three taxa of  Passer sparrows by comparing trait 

values in sympatric and allopatric populations. The first taxon, the house sparrow (Passer domesticus) 

is a human-commensal sparrow, with a worldwide distribution. Originating in the Middle East,  the 

house sparrow spread through the Paleartic region (domesticus-group) and the oriental region (indicus-

group) following the spread of agriculture some 4000 years ago (Sætre et al., 2012). It occupies a wide 

range of  human-altered  habitats  including farmlands and cities.  Unlike  this,  the  second taxon,  the 

Spanish sparrow (Passer hispaniolensis), is usually found in more mesic and moister habitats than the 

house sparrow, sometimes far from human habitation. Although also the Spanish sparrow feeds off 

cultivated  cereal  crops  they  are  not  as  closely  associated  with  humans  as  the  house  sparrow.  Its 

distribution forms a discontinuous belt from the Iberian Peninsula through the Mediterranean region 

and eastwards to the Middle East and Central Asia. Males of the Spanish sparrow have a black bib 

much larger than that of the house sparrow spreading out sideways over the breast and extending all  

along the body flanks (Summers-Smith 1988). The third taxon, the Italian sparrow (Passer italiae), is a 

human-associated, seed-eating bird of hybrid origin, formed by past episodes of interbreeding between 

the house and Spanish sparrow (Elgvin et al. 2011; Hermansen et al. 2011). It is phenotypically and 

genetically intermediate between the two parental  taxa. Plumage patterns on the head resemble the 



Spanish sparrow (chestnut  colored  head and nape  and white  cheeks)  but  the  underparts  and back 

resemble the house sparrow (a relatively small black bib that spreads out sideways over the breast, and 

brown and black streaked back). The Italian sparrow occupies most of the Italian peninsula and some 

Mediterranean islands and occurs in  sympatry with Spanish sparrows in the Gargano peninsula  in 

southeast Italy and with house sparrows in a narrow hybrid zone in the Alps (Summers-Smith 1988; 

Hermansen et  al.  2011).  Yet,  apparently  the  parental  species  can  live  sympatrically  without  much 

hybridization and introgression (J. S. Hermansen, F. Haas, G.-P. Sætre, unpublished data) even though 

they hybridized in the  past  to  form the  Italian sparrow.  J.  S.  Hermansen,  F.  Haas and G.-P Sætre 

(unpublished data) found no F1-hybrids in a sympatric population of Spanish and house sparrows in 

Spain,  although  backcrossing  was  detected  (house  sparrows  with  introgressed  Spanish  alleles) 

indicating  asymmetrical  introgression.  Sympatric  Italian  and  Spanish  sparrows  on  the  Gargano 

peninsula in Southern-Italy do not appear to hybridize at  all whereas hybridization occurs between 

Italian and house sparrows in the Alps (Hermansen et al. 2011). Accordingly, effects of hybridization 

on phenotypes are likely to be largest in sympatric house and Italian sparrows and smallest in sympatric  

Italian and Spanish sparrows.

To  investigate  how  species  interaction  may  be  affecting  phenotypic  evolution  and  speciation,  I 

compared ecologically important traits such as beak length, beak height, wing length and tarsus length 

as well as one secondary sexual trait, namely bib size, among allopatric and sympatric populations of 

house,  Spanish  and  Italian  sparrows.  A unique  aspect  of  my study  is  that  I  studied  not  only  the 

interactions between a hybrid species and its parental species but also between both parental species, 

which  is  a  unique opportunity to  fully investigate  the  consequences of  species  interactions  at  two 

different phylogenetic levels. Further, it is of particular interest to investigate how phenotypic variation 

within  a  hybrid  species  is  affected  by  species  interactions  with  its  parental  species.  A number  of  

interesting questions can be addressed with the Passer sparrow system. For instance, is the covariance 

structure between traits altered in sympatry and to which extent does this influence divergence and 

convergence  in  sympatry?  Are  the  outcomes  symmetrical  or  asymmetrical  with  respect  to  which 

species respond to sympatry and for which types of traits (body size related traits vs. foraging traits 

(beak) or secondary sexual traits (bib)?



METHODS

Sampling locations and fieldwork

The  sampling  includes  allopatric  house  sparrows  from  the  northern  parts  of  the  Alps  in  France, 

Slovenia  and Switzerland,  allopatric  Italian sparrows from the Italian peninsula,  allopatric  Spanish 

sparrows from Sardinia,  Italian and house sparrows from the contact zone in the Alps, Italian and 

Spanish sparrows from the contact zone in Gargano and house and Spanish sparrows from the contact 

zone in western Spain (Fig. 1).

A total  of  486 adult  male Spanish,  house and Italian sparrows were caught  using mist  nets  at  52  

localities in five countries (France, Italy, Slovenia, Spain, and Switzerland) during 2007 – 2011. The 

sample includes 20 allopatric house sparrows (from four localities), 48 allopatric Spanish sparrows 

(from three localities) and 185 allopatric Italian sparrows (from 22 localities), as well as 50 sympatric 

Spanish sparrows (36 in sympatry with house sparrows from one locality and 14 in sympatry with  

Italian  sparrow from two localities),  111 sympatric  house  sparrows (80  in  sympatry  with Spanish 

sparrow from one locality and 31 in sympatry with Italian sparrow from nine localities) and finally 72 

sympatric Italian sparrows (11 in sympatry with Spanish sparrow from one locality and 61 in sympatry 

with house sparrows from 13 localities) (see Supplementary Table 1 for detailed localities information).

Each individual was measured after capture for four ecologically important traits: beak height, beak 

length, tarsus length, and wing length; the first three traits were measured to the nearest 0.1 mm with a 

dial caliper whereas wing length was measured to the nearest 0.5 mm with a ruler. Finally, the size of a 

secondary sexual trait, namely the bib, was measured according to a visual scale ranging from 1-5 for 

house and Italian sparrows and 6-10 for Spanish sparrow. 

Permissions for catching and measuring birds were obtained from the appropriate authorities in the 

respective countries.



Statistical analyses

All calculations were performed using SPSS (version 15, SPSS, Chicago, Ill., USA). 

Effects of species interactions on phenotype

I calculated the mean, standard deviation (SD) and coefficient of variation (CV) for each trait across 

species in  sympatry and allopatry to investigate species  differences  and possible  effects  of species 

interactions on phenotypic variation in this system. A coefficient of variation is a normalized measure 

of relative  variation and is  used to  compare the degree of variation across species  and traits.  It  is 

expressed as a percentage (%) (CV = 100 * (SD/mean)) (Houle 1992). 

I also compared the size ratios of the different morphological traits  in allopatry and sympatry and 

assessed whether any convergence or divergence has occurred in sympatry (Knouft 2003). The size 

ratio for a given species in sympatry or allopatry was calculated by dividing the largest observed trait 

value by the smallest  trait  value.  I excluded bib size from the size ratio analysis  because of scale 

incongruence, as bib size was not measured on a metric scale.

I  performed  General  Linear  Models  (GLM)  on  all  traits  studied  and  all  species  pairs  with  two 

categorical variables as predictors; species and ecology (i.e. allopatry vs. sympatry). I also included the 

interaction  between  these  two  categorical  predictors  in  the  model  to  test  whether  ecology  had  a 

different  effect  on  the  respective  species.  To  further  distinguish  the  exact  patterns  of  divergence, 

convergence or parallel shifts between allopatry and sympatry in each species investigated, I performed 

Post Hoc Tests (Tukey HDS) between each of the four possible categories investigated.



Effects of species interaction on allometry and phenotypic integration

I performed statistical tests with log-transformed data to assess the allometric relationships among the 

traits investigated. I used an ANCOVA model on each pair of species to investigate whether allometry  

of certain characters (namely beak height and length, which relate to the allometric shape of the beak) 

differed between allopatric and sympatric populations. In the model on log beak length I included one 

continuous predictor (log beak height) and two categorical predictors (species and ecology) as well as 

all their possible interactions. If allometry is different in sympatry versus allopatry, it would manifest as 

a significant interaction between ecology and log beak height. All the non-significant interactions (P > 

0.2) were removed to improve the fit of the model. I used the same approach to estimate the allometry  

of overall body shape by investigating size-related traits, namely tarsus length and wing length  (Jensen 

et  al.,  2003),  that  is,  log  wing  length  with  one  continuous  predictor  (log  tarsus  length)  and  two 

categorical predictors (species and ecology) and all their possible interactions.

Finally, to investigate how bib size is integrated (correlated) with other traits and to what extent this  

trait varies according to the type of species interaction, I estimated a phenotypic integration index based  

on the average absolute mean values of phenotypic correlation between the bib size and the other traits  

(Cane  1993;  Eroukhmanoff  &  Svensson  2008).  I  then  compared  the  percentage  of  increase  (or 

decrease) of integration between allopatry and sympatry in each species pair comparison.



RESULTS

Associations between species interactions and phenotype

For each trait and in each species in sympatry and in allopatry, the mean size and standard deviation 

(SD)  is  presented in  Table 1,  and the corresponding coefficients  of variation (CV) in  Table 2.  As 

evident from the two tables, there is considerable size variation within and between species as well as  

between ecologies (allopatry versus sympatry). The size ratios of four morphological traits in allopatry 

and sympatry are depicted in Fig. 2. Some traits depart from the null assumption of a 1:1 ratio, showing 

patterns consistent with convergence or divergence in sympatry (Fig. 2). To further investigate these 

patterns, I performed GLM analyses on all traits. Below I go through the traits that exhibit significant 

patterns of convergence, divergence or parallel shifts in sympatry relative to allopatry according to the 

GLM analyses.

BEAK TRAITS

House sparrows and Spanish sparrows are more different in beak height and beak length in sympatry 

than  in  allopatry,  consistent  with  a  sympatric  divergence  in  these  traits.  In  particular,  the  Spanish 

sparrows  have  larger  beaks  in  sympatry  than  house  sparrows  (Fig  3).  This  is  confirmed  by  the 

significant effect of ecology (i.e. sympatry vs. allopatry) in the model (beak length: F1, 173 = 12.055, P = 

0.001; beak height: F1, 173 = 12.251, P = 0.001). The two species also differ in beak size in general, as 

manifested by the effect of species in the model. The Spanish sparrows have larger beaks than the 

house sparrows (beak length:  F1,  173  = 66.727, P < 0.001;  beak height:  F1,  173  = 3.827, P = 0.052). 

However, I found no significant ecology x species interaction effect for these two traits (beak length:  

F2, 172 = 1.698, P = 0.194; beak height F2, 172 = 1.868, P = 0.173), suggesting that sympatry bears the same 

effects on both species (Fig. 3).

Both the Italian sparrow and the Spanish sparrow have lower beak heights in sympatry than in allopatry  

(the effect of ecology was significant: F1, 233 = 39.842, P < 0.001). However, I found no significant effect 



of  either  species  or  ecology  x  species  (F1,  233  = 2.277,  P =  0.133  and  F2,  232  = 1.513,  P =  0.220 

respectively), suggesting that the two species changed in parallel in sympatry (Fig. 3).

Both the house sparrow and the Italian sparrow have shorter beak lengths in sympatry than in allopatry 

with a significant effect of both ecology and species in the model (F1, 265 = 3.977, P = 0.047 and F1, 265 = 

3.977, P = 0.047 respectively). I found no significant ecology x species interaction for this trait (F2, 264 = 

0.010, P = 0.922), suggesting again that the two species changed in parallel in sympatry (Fig. 3).

None  of  the  other  beak  trait  comparisons  exhibited  any  significant  effects  of  ecology,  species  or 

ecology x species interaction in the GLM analyses (see also Table 1).

SIZE TRAITS

The wing-lengths of Italian and Spanish sparrows tend to be more similar in sympatry than in allopatry, 

consistent with a pattern of convergence (in allopatry: Tukey post-hoc test: P = 0.001; in sympatry:  

Tukey  post-hoc  test:  P =  0.991)  (Fig  4).  The  two  species  had  a  tendency  to  change in  opposite 

directions from allopatry to  sympatry to  converge to  a  similar  value,  that is,  there was an almost  

significant ecology x species interaction effect (F2, 231 = 3.283, P = 0.071). Yet, there was no significant 

effect of either ecology (F1, 232 = 0.268, P = 0.605) or species (F1, 232 = 1.623, P = 0.204) (Fig. 4).

In contrast, Italian and house sparrows have more divergent wing lengths in sympatry than in allopatry,  

(significant effect of ecology: F1, 266 = 13.796, P < 0.001) suggesting a pattern of sympatric divergence. 

As a  result,  Italian  sparrows  have  longer  wings  in  sympatry  (Tukey  post-hoc  test:  P =  0.001)  as 

manifested  by the significant  effect  of  species in  the model  (F1,  266  = 11.839,  P = 0.001)  (Fig.  4). 

However, I found no significant interaction effect of ecology x species (F2, 265 = 0.026, P = 0.874) (Fig. 

4).



Finally, both house and Spanish sparrows tend to have longer tarsi in sympatry than in allopatry as 

there was a  significant  effect of  ecology (F1,  173  = 10.070, P = 0.002)  and in general,  the Spanish 

sparrows have longer tarsi than the house sparrows (there was a significant effect of species: F 1, 173  = 

21.156, P < 0.001) (Fig. 4). I found no significant interaction effect of ecology x species (F2, 172 = 0.030, 

P = 0.864) (Fig. 4).

None of the other size trait comparisons exhibited any significant effects of ecology, species or ecology 

x species interaction in the GLM analyses (see also Table 1).

BIB SIZE

The bib sizes of Italian and house sparrows are consistent with a pattern of a sympatric convergence, 

because house sparrows have larger bibs in sympatry than in allopatry (Tukey post-hoc test: P = 0.045)  

as there was a significant effect of  ecology x species interaction (F1, 291  = 6.793, P = 0.010) (Fig. 5). 

There was also a significant effect of  ecology (F2, 290  = 4.208, P = 0.041), but no significant effect of 

species (F1, 291 = 0.637, P = 0.425) (Fig. 5). 

Similarly,  where  house  and  Spanish  sparrows  are  in  sympatry,  Spanish  sparrows  show  a  pattern 

consistent with convergence towards a smaller bib (Tukey post-hoc test: P = 0.005) (Fig. 5). There was 

a significant effect of both ecology x species (F2, 178 = 12.080, P = 0.001) and species (F1, 179 = 1893.333, 

P < 0.001), but no significant effect of ecology (F1, 179 = 1.002, P = 0.318) (Fig. 5).

None of the other bib size comparisons exhibited any significant effects of ecology, species or ecology 

x species interaction in the GLM analyses (see also Table 1).



Effects of species interaction on allometry and phenotypic integration

BEAK SHAPE

I found that beak allometry differed between sympatric and allopatric populations of both the Spanish 

and the house sparrow, as manifested by a significant interaction of ecology x log beak height (F2, 166 = 

4.336, P = 0.039). There was an almost significant effect of  log beak height on the model (F1,  167  = 

3.773,  P  =  0.054),  suggesting  a  general  allometric  relationship  between  beak  dimensions  and  a 

significant effect of species, ecology, and species x ecology (F1, 167 = 3.941, P=0.049; F1, 167 = 4.424 P = 

0.037; F2, 166 = 3.885, P = 0.05 respectively) (Fig. 6).

Also in the comparison of Italian and Spanish sparrows, I found a difference in beak allometry between 

allopatric and sympatric populations of the two species, as evidenced by a significant interaction of 

ecology x log beak height (F2, 198 = 7.274, P = 0.008). There was also an almost significant effect of log 

beak  height on  the  model  (F1,  199  = 3.611,  P=0.059),  again  suggesting  that  beak  dimensions  vary 

allometrically, and a significant effect of ecology (F1, 199 = 6.920, P = 0.009), but no significant effect of 

species (F1, 199 = 0.020, P = 0.888) (Fig. 7).

None of the other beak shape comparisons exhibited any significant effects of log beak height, species, 

ecology, ecology x log beak height or species x ecology interactions in the ANCOVA analyses.

SIZE-RELATED TRAITS

I found a significant difference in the allometric relationship between wing length and tarsus length in 

populations of Spanish sparrows in allopatry and sympatry with house sparrows (significant interaction 

of ecology x log tarsus length: F2, 163 = 4.422, P = 0.037). I found a significant effect of log tarsus length 

(F1,  164  = 8.334, P = 0.004), confirming a strong allometric relationship of size-related traits, and of 

species x ecology (F2, 163 = 4.674, P = 0.032) and ecology (F1, 164 = 4.475, P = 0.036) (Fig. 8).



On the contrary, the allometric relationship between wing length and tarsus length is significant (log 

tarsus  length: F1,  199  =  13.045,  P <  0.001)  but  remains  similar  between  allopatric  and  sympatric 

populations of Italian and Spanish sparrows (there was no significant effect of ecology x log tarsus: F2, 

198  = 0.181, P=0.671). There was also no effect of ecology (F1, 199  = 0.172, P = 0.679). However, there 

was a significant effect of  species  (F1, 199  = 7.493, P=0.007), and species x log tarsus length (F2, 198  = 

7.185, P = 0.008) (Fig. 9).

None of the other size trait comparisons exhibited any significant effects of log tarsus length, species, 

ecology, ecology x log tarsus length or species x ecology interactions in the ANCOVA analyses.

I further estimated how bib size is integrated (correlated) with other traits. Where Italian and Spanish 

sparrows are in sympatry there is a pattern such that when one trait (beak height, beak length, tarsus 

length, wing length) is positively correlated with bib size in one species, it is negatively correlated in 

the other species and vice versa. However, this seems not to be the case in allopatry (Table 3). None of 

the other species pair interactions exhibit the same pattern. 

Finally, I estimated the percentage of increase of bib integration between allopatry and sympatry across 

species. Where the house sparrow is in sympatry with the Italian sparrow there is an increase in bib 

integration relative to allopatry (100%), but not where it is in sympatry with the Spanish sparrow (0%). 

There is an increase of bib integration in the Italian sparrow where they are in sympatry with the two 

putative parental species (16.7% in sympatry with the house sparrows and 333.3% in sympatry with the 

Spanish sparrows). There is also an increase in bib integration in the Spanish sparrow where they are in 

sympatry with both house (8.3%) and Italian sparrows (266.7%) (Fig. 10).



DISCUSSION

I compared phenotypic traits among allopatric and sympatric populations of the three sparrow species 

Italian, Spanish and house sparrow, to look for patterns such as convergence, divergence and parallel 

shifts.  I  found  some  overall  differences  between  the  species.  For  instance,  comparing  allopatric 

populations, Spanish sparrows have larger beaks, longer tarsi and wings and larger bibs than allopatric 

house sparrows. The hybrid Italian sparrow is intermediate to the parental species in most traits but has 

for instance longer wings than either of them. Importantly, however, I found a variety of differences in 

traits values, and in the way they integrate with each other, between allopatry and sympatry suggesting 

that species interactions may have influenced phenotypic evolution in the sparrows in complex ways. 

These patterns also tended to be asymmetric in certain combinations of traits and species interactions,  

meaning shifts mostly or only occurred in one taxon. Below I go through how each of the traits differ 

between sympatric and allopatric species pairs and try to infer how processes such as competition,  

hybridization and local adaptations may have affected phenotypic evolution.

Changes in beak dimensions and shape

Comparing beak morphology in allopatric and sympatric species pairs, I found different patterns of 

divergence due to sympatry. In Spanish sparrows and house sparrows, I found evidence for sympatric  

divergence in beak size. This was mainly caused by Spanish sparrows having larger beaks (both higher 

and longer) in sympatry with the house sparrow than in allopatry. Allopatric Spanish sparrows do have 

larger beaks than allopatric house sparrows. Hence, the pattern in sympatry apparently represents an 

accentuation  of  existing  species  difference.  This  pattern  is  consistent  with  ecological  character 

displacement (Grant 1972). Competition for food may have affected the Spanish sparrow in such a way 

that  it  has  specialized  on  larger  and/or  harder  seeds  when  in  sympatry  with  the  house  sparrow 

compared to the allopatric situation. In contrast, I found no evidence of character displacement where 

the Italian sparrow interacts with either of its parental species. The Italian and Spanish sparrow both 

had lower beak heights in sympatry compared to in allopatry and the Italian and house sparrow both 



had shorter beak lengths in sympatry than in allopatry.  This rather reflects  a possible case of local  

adaptation to an exogenous selective pressure (for instance seed size and food availability in general 

which might differ  in these sympatric  regions,  especially in the Alps).  The beak has an important 

function in feeding in birds. Eroukhmanoff et al. (2012) found that beak morphology within the Italian 

sparrow is influenced by climatic factors. Indeed, climatic factors have an impact on local agricultural 

practices and on the availability of food resources, and hence are likely to affect the local optimum of 

size and shape of beak (Symonds & Tattershall 2010; Schluter & Grant 1984). Tentatively, I suggest  

that a combination of interspecific competition and local adaptation to prevailing ecological conditions 

could explain the discrepancies between the patterns found in the different species pairs. 

Interestingly, I also found that beak shape, and more specifically the allometric relationship of the beak 

dimensions, has been altered in some sympatric situations irrespective of whether the traits themselves 

were displaced or not. Indeed, in the sympatric situations where Spanish sparrows were in contact with 

either house or Italian sparrows, not only did the shape of the beak change, but there was no longer any 

significant allometric relationship between beak height and length in this species. Beak allometry has 

been widely studied,  and is  known to be  controlled  by few genes during embryonic  development 

(Abzhanov et al. 2004, Mallarino et al. 2011). In many cases of bird adaptive radiations such as the  

Galapagos  finches  and  the  Hawaiian  Honeycreepers  (Lack  1947,  Lovette  et  al.  2002),  ecological 

displacement has been shown to occur on the shape rather than the dimensions of the beak, and as a 

response to different ecological niches and seed availabilities. Thus, these findings might reflect the 

consequences of competition for food in sympatric situations, which were not detected at the univariate 

level (such as in the interaction between Italian and Spanish sparrows, where only the beak allometry 

of Spanish sparrows seems to have been displaced). Furthermore, the loss of an allometric relationship 

(phenotypic integration) in sympatry in Spanish sparrows implies a change in the fitness landscape that 

reduces phenotypic or genetic correlations between beak traits. Such a change would alter the potential 

evolutionary trajectory of these two traits by reducing constraints on independent adaptive evolution 

(Schluter 1996). Further analysis, for instance using geometric morphometrics, is needed to assess the 

extent of these changes in beak shape.



Changes in body size and shape

Body size is a main factor in niche differentiation among closely related species (Wilson 1975). When 

body size changes as a response to different environmental conditions one also expects changes in 

other  features  of  an  organism (Knouft  2003).  Hence,  understanding  the  implications  of  body size 

evolution is crucial  for understanding the evolution of an array of morphological and physiological 

traits (Futuyma 2009).

Wing length can constitute a good approximation of body size in birds (Grant 1972, Gosler et al. 1998). 

I found that  this trait  either converged or diverged depending on the different  sympatric situations 

studied here. I found that the Italian sparrow diverged towards longer wings when in sympatry with the 

house  sparrow,  possibly  reflecting  ecological  character  displacement.  Wing  length  might  be  of 

importance  for  dispersal  and  migration  processes,  as  well  as  for  foraging  or  escaping  predation. 

Without additional data on wing length, it is however impossible to formulate a reasonable explanation 

for this pattern. In general, the Italian sparrow is phenotypically intermediate to the parental species, 

except for wing length, in which it has the highest trait values. However, when the Italian sparrow is in 

sympatry with the Spanish sparrow, the Spanish sparrow converged in a tendency of having longer 

wings. Tarsus length may also reflect body size in birds. When I compared the parental  species in 

allopatry and sympatry, I found a pattern of parallel shift with a tendency towards longer tarsi in both 

species when in sympatry. Parallel shifts such as these suggest convergence due to shared ecological 

conditions rather than interactions between the sparrow species. However, other sympatric situations 

did not seem to lead to any particular changes in tarsus length.

Allometric relationships related to body size are generally the consequences of adaptation (Futuyma 

2009) and tend to be strongly conserved across closely related taxa (Klingenberg 2008, Klingenberg 

and Zimmermann 1992). It is surprising therefore that when the Spanish sparrow is in sympatry with 

the house sparrow, there is a clear shift in the allometric relationship between tarsus and wing length 

(the  relationship even becomes  negative).  This however does not  seem to be the  case when other 

species interact (even when Spanish and Italian sparrows are in sympatry), which is more in line with  



expectations.  This  extensive  change  in  overall  body  shape  of  the  Spanish  sparrow,  i.e.  Spanish 

sparrows  having  shorter  wings  when  tarsus  length  increases,  and  hence  a  more  robust  shape,  is 

intriguing.  This pattern may of  course result  from sympatric  Spanish sparrows being migratory  as 

opposed to the allopatric Spanish sparrows, which have more of a nomadic behavior. Nevertheless, I 

am not aware of many studies reporting such a clear shift in body shape at the intraspecific level,  

whether it is due to interspecific competition or migration adaptation.

Changes in a secondary sexual trait and its integration

Male bib size in sparrows is a signal involved in female mate choice, as well as an important factor in 

social behavior (Møller 1989; 1990; Kimball 1996; Nakagawa et al. 2007; Griggio & Hoi 2010). Hence 

it  has  the  potential  to  promote  reproductive  isolation.  Bib  size  converged  in  two out  of  the  three 

possible species interactions. More precisely, the Spanish sparrow converged towards a smaller bib size 

when in sympatry with the house sparrow, and the house sparrow converged towards a bigger bib size 

when sympatric with the Italian sparrow. It is interesting to see that in two out of the three possible 

interactions, there was such convergence, which might indicate some degree of gene flow between the 

species, as should be expected in the Alps at least (Hermansen et al. 2011). However, trait convergence 

in bib size in Spain may be an artefact of Spanish males not beeing in breeding mode yet (F. Haas 

personal  communication).  Secondary  sexual  traits  can play a  vital  role  in  species  recognition  and 

reproductive isolation  (Svensson et  al.  2007).  Thus the  apparent  absence of  reproductive  character 

displacement in our system, and even more so, the convergence of this secondary sexual trait in two of 

the three sympatric situations, is puzzling, particularly alongside divergence in other traits. Of course, 

behavior and especially song might play a more efficient role in isolating these species. But it has also  

been shown that species recognition does not necessarily rely only on one single trait but a combination  

of sexual and non-sexual traits,  and their  association might be reinforced in the face of gene flow 

(Merril et al. 2010 ). Interestingly, I found that the bib integrated to other non-sexual traits considerably 

more  in  sympatry in  all  sympatric  situations  for  at  least  one species.  Moreover,  when Italian and 

Spanish sparrows were in sympatry, the phenotypic correlations between bib size and other traits were 

consistently  of opposite  signs across species,  although overall  bib size was not  altered.  These two 



findings  may  suggest  that  the  overall  phenotypic  integration  of  the  bib  tends  to  be  displaced  in 

sympatry, possibly to facilitate species recognition.



CONCLUSIONS

None of the three species  show the same pattern of sympatric  trait  change and thus I  found little 

consistency in the outcomes of interacting with one or the other species. However, the Spanish sparrow 

is the species that show more morphological shifts when it is in sympatry with the other two species. 

As mentioned before, the Spanish sparrow is less human-associated than the house sparrow. In the 

allopatric Sardinian populations, however, Spanish sparrows seem to have a broader niche (TO Elgvin, 

JS Hermansen, SA Sæther & G-P Sætre personal observations). Whereas Spanish sparrows are absent 

from towns and cities  in  Spain and in  the Gargano peninsula,  a  niche instead  occupied by house 

sparrows, they are abundant in Cagliari and other towns in Sardinia. When a species is freed from 

interspecific competition its niche is likely to expand and this will affect the mean and variance of 

ecologically relevant traits. This process is known as character release and is the antithesis of character  

displacement (Grant 1972). The change in allometry of the beak of Spanish sparrows in sympatry with 

both the house and Italian sparrow relative to the allopatric Sardinian populations points to a common 

cause,  and  that  cause  may simply  be  presence/absence  of  a  closely  related  food competitor.  It  is 

tempting to speculate that absence of competition in Sardinia may also explain the other trait changes 

in the Spanish sparrow. As discussed above the sympatric  shift  in body shape and wing length of 

Spanish sparrows,  particularly in sympatry with the house sparrow, could be due to differences  in 

migration behaviour. It is possible that Sardinian Spanish sparrows have abandoned winter migration 

because the human commensal niche becomes available when house or Italian sparrows are absent. 

Humans provide year-round supply of sparrow food through storage of cereals, spilling and feeding of 

domestic animals and hence, there is no need to migrate south during winter. As a parallel, the only  

non-commensal  house  sparrow,  the  sub-species  P.  d.  bactrianus,  is  also  the  only  subspecies  that 

migrates  south  during  winter  (Sætre  et  al.  2012).  The  latter  authors  suggested  that  the  sedentary 

behaviour of commensal house sparrows indeed may be an adaptation to human commensalism.

Finally, it is perhaps not so surprising that the pattern of character changes in sympatry is so complex 

across the three species. In addition to compete for resources they also hybridize to variable extents 



(Hermansen  et  al.  2011).  Hybridization  and  competition  may  affect  the  various  phenotypic  traits 

differently.  Ecologically  important  characters  may  diverge  despite  hybridization,  whereas  neutral 

characters converge because of introgressive hybridization. Similar patterns have been found in the 

genomes of hybridizing taxa (Turner et al. 2005, Harr 2006, Feder & Nosil 2010). That is, massive 

introgression can be observed across the genome with the exception of so-called genomic islands of 

divergence maintained by natural selection and hitchhiking. In a future study it would be interesting to 

investigate whether such genomic islands of divergence are found in the sparrows and whether the 

genes involved affect the phenotypic traits that I have found to diverge in sympatry.

Parallel evolution without convergence implies concordant adaptive evolution in the sympatric species 

pair towards the same ecological niche, and does not suggest any interactions, either competition or 

hybridization, between the sparrow species. Character displacement implies divergent selection due to 

ecological competition or to the production of unfit hybrids. Finally, convergence suggests either that 

competition has led to niches becoming more similar,  or that hybridization and introgression have 

reduced the differences between the taxa that are present in allopatry. All these patterns are found in 

these sparrow species pairs,  suggesting a complex response to competition,  hybridization and local 

ecology.  However,  the  possibility  that  all  the  patterns  I  found  are  in  fact  caused  by  independent 

responses of the two species to local ecological conditions – with no effect of interactions between 

species – cannot be ruled out. More studies with greater replication of sympatry and allopatry for all 

species pairs, and across a variety of environments, are therefore required in order to affirm the impact 

of species interactions.
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TABLES

Table 1. Mean size and standard deviation for each trait and each species according to ecology 
(allopatry vs. sympatry). All trait measures are in mm, except bib size where a visual score 
ranging from 1-10 was used.

SPECIES ECOLOGY1 

TRAITS 

Beak Height Beak Length Wing Length Tarsus Length Bib Size 

Mean SD N Mean SD N Mean SD N Mean SD N Mean SD N 

House Sympatric (I) 7.59 0.29 46 9.46 0.59 46 78.97 2.39 47 17.21 0.82 47 2.45 0.72 31 

Italian Sympatric (H) 7.69 0.29 101 9.67 0.58 101 79.23 2.69 103 19.12 0.72 103 2.32 0.70 60 

House Sympatric (S) 7.78 0.30 130 9.76 0.60 130 78.17 3.35 130 19.33 0.60 130 2.28 0.93 76 

Spanish Sympatric (H) 8.23 0.33 67 10.1 0.41 67 77.95 2.59 66 19.79 0.65 67 7.56 0.80 36 

Italian Sympatric (S) 7.41 0.34 15 9.27 0.33 15 78.67 1.78 15 19.23 0.67 15 2.45 0.61 11 

Spanish Sympatric (I) 7.45 0.69 14 9.64 0.87 14 79.61 1.15 14 19.55 0.44 14 8.00 0.79 13 

House Allopatric 7.56 0.30 38 9.63 0.53 38 77.50 1.85 38 19.09 0.53 38 1.91 0.57 17 

Italian Allopatric 7.78 0.32 284 9.95 0.84 284 78.57 2.38 283 19.09 0.75 283 2.26 0.66 181 

Spanish Allopatric 8.01 0.23 79 9.82 0.41 79 77.49 2.17 79 19.41 0.53 79 8.15 0.60 48 
1I = sympatric with Italian; H = sympatric with house; S = sympatric with Spanish sparrows. 

 

Table 2. Coefficient of Variation (CV) in percentage % for each trait and each species according to 
ecology (allopatry vs. sympatry).

REGION SPECIES ECOLOGY 
TRAITS 

Beak Height Beak Length Wing Length Tarsus Length Bib Size 

Northern Contact Zone 
House Sympatric 3.82 6.20 3.03 4.77 29.51 
Italian Sympatric 3.77 6.01 3.40 3.74 29.96 

Spain 
House Sympatric 3.92 6.16 4.29 3.09 40.75 
Spanish Sympatric 4.06 4.07 3.32 3.27 10.58 

Gargano 
Italian Sympatric 4.59 3.61 2.26 3.49 24.94 
Spanish Sympatric 9.32 9.00 1.44 2.23 9.89 

Alps House Allopatric 4.02 5.53 2.39 2.78 29.63 
Central Italy Italian Allopatric 4.15 8.47 3.02 3.92 29.20 
Sardinia Spanish Allopatric 2.91 4.14 2.80 2.71 7.37 

 



Table 3. Phenotypic correlation between bib size with other traits in sympatry and allopatry of 
Italian and Spanish sparrows. 

ECOLOGY TRAITS 
SPECIES 

Spanish Italian 

Allopatry 

Beak Height -0.124 -0.096 
Beak Length -0.028 -0.118 
Wing Length -0.076 -0.022 
Tarsus Length 0.250 0.012 

Sympatry 

Beak Height -0.588 0.134 
Beak Length -0.445 0.090 
Wing Length 0.471 -0.492 
Tarsus Length 0.271 -0.318 

 

31



FIGURES

Figure 1. Distribution map of the species complex. Distribution of the house sparrow (grey 
area), Spanish sparrow (red area) and Italian Sparrow (yellow area). Hatched grey/red 
areas indicates zones of distributional overlap between house and Spanish sparrows. A 
narrow contac zone between house and Italian sparrows in the Alps is indicated with 
grey/yellow colour.
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Figure 2. Size ratios (the largest observed trait value divided by the smallest trait value for a 
given  species  in  sympatry  or  allopatry)  of  four  morphological  traits  in  allopatric  and 
sympatric  populations  of the  house  sparrow, Italian sparrow and Spanish sparrow. If  size 
ratios of a sympatric species pair is larger than ratios generated from allopatric populations 
this indicates possible divergence, if it is smaller this indicates possible convergence.◊ = beak 
length, □ = beak height, O = tarsus length and Δ = wing length. 
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Figure 3. Mean (± SD) beak sizes (mm) of sympatric  (center)  and allopatric  (periphery) 
populations of three species of sparrows. Bars not sharing a letter differ significantly at 
P = 0.05 according to  a  Tukey post-hoc test.  (Top left)  beak heights  of  house  and 
Spanish sparrows; (top right) beak heights of Italian and Spanish sparrows; (bottom left) 
beak length of house and Spanish sparrows; (bottom right) beak length of house and 
Italian sparrows.
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Figure 4. Mean (± SD) wing and tarsus lengths (mm) of sympatric (center) and allopatric 
(periphery) populations of three species of sparrows. Bars not sharing a letter differ 
significantly at P = 0.05 according to a Tukey post-hoc test. (Top) wing length of Italian 
and Spanish sparrows; (centre) wing length of house and Italian sparrows;  (bottom) 
tarsus length of house and Spanish sparrows.
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Figure 5. Mean (± SD) bib size according to a scale ranging from 1-10 of sympatric (center) 
and allopatric (periphery) populations of three species of sparrows. Bars not sharing a 
letter differ significantly at P = 0.05 according to a Tukey post-hoc test. (Left panel) bib 
size of house and Italian sparrows; (right panel) bib size of house and Spanish sparrows.
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Figure 6. Allometric relationship of beak length (mm) and beak height (mm) in allopatric 
(blue)  and sympatric  (green)  house  (left  panel)  and Spanish  sparrows (right  panel). 
Regression lines: allopatric house sparrow R2 = 0.113; sympatric house sparrow R2 = 
0.058; allopatric Spanish sparrow R2 = 0.212; sympatric Spanish sparrow R2 = 0.013.
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Figure 7. Allometric relationship of beak length (mm) and beak height (mm) in allopatric 
(blue)  and sympatric (green)  Italian (left  panel)  and Spanish sparrows (right  panel). 
Regression lines: allopatric Italian sparrow R2 = 0.150; sympatric Italian sparrow R2 = 
0.121; allopatric Spanish sparrow R2 = 0.231; sympatric Spanish sparrow R2 = 0.009.
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Figure 8. Allometric relationship of wing length (mm) and tarsus length (mm) in allopatric 
(blue)  and sympatric  (green)  house  (left  panel)  and Spanish  sparrows (right  panel). 
Regression lines:allopatric house sparrow R2 = 0.113; sympatric house sparrow R2 = 
0.058; allopatric Spanish sparrow R2 = 0.212; sympatric Spanish sparrow R2 = 0.013.
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Figure 9. Allometric relationship of wing length (mm) and tarsus length (mm) in allopatric 
(blue)  and sympatric (green)  Italian (left  panel)  and Spanish sparrows (right  panel). 
Regression lines: allopatric Italian sparrow R2 = 0.034; sympatric Italian sparrow R2 = 
0.259;allopatric Spanish sparrow R2 = 0.212; sympatric Spanish sparrow R2 = 0.087.
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Figure 10. Percentage of increase of bib integration (based on the average absolute mean 
values of phenotypic correlation between the bib size and the other traits) from allopatry 
to sympatry across species. The colors refer to which species the species on the x-axis 
lives together with. Blue = house sparrow, violet = Italian sparrow and red = Spanish 
sparrow.
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SUPPLEMENTARY

Table S1. Localities and detail information of samples

Country Location

Geographic 
coordinates

Species Ecology
Sample 

SizeLatitude Longitude

Italy Accettura (Basilicata) 40.49204 16.15893 Italian Allopatric 30

Italy Acquaviva 42.35164 13.94448 Italian Allopatric 7

Italy Assisi 43.07017 12.61752 Italian Allopatric 9

Italy Barletta 41.31928 16.28398 Italian Allopatric 6

Italy Burano (Toscana) 42.40 11.37853 Italian Allopatric 5

Italy Castel di Guido (Lazio) 41.90315 12.28384 Italian Allopatric 6

Italy
Figline (Valdarno, 
Toscana) 43.62065 11.47031 Italian Allopatric 2

Italy Guglionesi (Molise) 41.91176 14.91644 Italian Allopatric 14

Italy Lago di Fondi (Lazio) 41.34419 13.35132 Italian Allopatric 7

Italy L'Aquila 42.35074 13.40 Italian Allopatric 9

Italy Lecce 40.35329 18.17401 Italian Allopatric 6

Italy Luni (Liguria) 44.06908 10.02219 Italian Allopatric 6

Italy Mantova 45.15952 10.80 Italian Allopatric 1

Italy
Mass. Montanari 
(Gargano) 41.91303 15.84988 Italian Allopatric 14

Italy Mondolfo 43.75031 13.10 Italian Allopatric 4

Italy Ozzano D'Emilia 44.44357 11.47056 Italian Allopatric 2

Italy Rimini 44.06078 12.56626 Italian Allopatric 13

Italy Sanza (Campania) 40.24563 15.55361 Italian Allopatric 11

Italy Seisciano (Campania) 40.91704 14.48674 Italian Allopatric 9

Italy Staz. Populonia (Toscana) 43.00 10.5408 Italian Allopatric 6

Italy Terni 42.56022 12.64678 Italian Allopatric 7
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Italy Ventotene (Lazio) 40.79346 13.42373 Italian Allopatric 11

Italy Aosta 45.73333 7.316667 Italian Sympatric 5

Italy Avigiliana 45.08333 7.40 Italian Sympatric 10

Italy Bardonecchia 45.83333 6.70 Italian Sympatric 2

Italy Bussoleno (I) 45.13333 7.15 Italian Sympatric 1

Italy Cormns 45.95 13.46667 Italian Sympatric 1

Italy L. Lesina (Gargano) 41.8605 15.3538 Italian Sympatric 11

Italy Oulx 45.03333 6.833333 Italian Sympatric 4

Italy Pont St. Martin 45.60 7.80 Italian Sympatric 4

Italy Pordenone 45.80 12.65 Italian Sympatric 3

Italy Saint Vincent 45.75 7.65 Italian Sympatric 3

Italy Saint-Rhmy-en-Bosses 45.83333 7.183333 Italian Sympatric 2

Italy Susa 45.13333 7.05 Italian Sympatric 20

Italy Valpelline 45.08333 7.333333 Italian Sympatric 5

Slovenia Ozeljan 45.94361 13.73028 Italian Sympatric 1

France Chambery 45.57 5.9118 House Allopatric 9

Slovenia Ljubljana 46.05139 14.50556 House Allopatric 7

Slovenia Postojna 45.78333 13.21667 House Allopatric 3

Switzerland Vouvry (CH) 46.33333 6.883333 House Allopatric 1

Switzerland Camping Sembrancher 46.08333 7.15 House Sympatric 4

Switzerland Liddes 45.98333 7.183333 House Sympatric 3

Switzerland St. Maurice 46.21667 7.00 House Sympatric 5

Switzerland Martigny 46.10 7.066667 House Sympatric 7

Spain Badajoz 38.65 7.216667 House Sympatric 80

France Modane 45.20 6.669167 House Sympatric 2

France St. Jean De Maurienne 45.27306 6.346111 House Sympatric 6

Italy Bardonecchia 45.83333 6.70 House Sympatric 2

Italy Manzano 45.98333 13.38333 House Sympatric 1

Italy Saint-Rhmy-en-Bosses 45.83333 7.183333 House Sympatric 1
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Italy Pula 38.96843 8.976983 Spanish Allopatric 16

Italy San Priamo (Sardinia) 39.35884 9.560575 Spanish Allopatric 23

Italy
Santa Margherita 
(Sardinia) 37.69278 13.02111 Spanish Allopatric 9

Italy Crotone (Calabria) 39.08074 17.12708 Spanish Sympatric 2

Italy L. Lesina (Gargano) 41.8605 15.3538 Spanish Sympatric 12

Spain Badajoz 38.65 7.216667 Spanish Sympatric 36
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