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Abstract 

The independent evolution of different quantitative traits is often thought to require a modular 

structure of the genotype-phenotype map (GP map). In that context, pleiotropy is considered a 

constraint on adaptive evolution. Previous studies have shown that even though a pleiotropic 

GP map can avoid unfavorable genetic correlations among traits, pleiotropy still impedes 

evolution across multiple generations. In this study, a linear model of the GP map is used to 

investigate the effects of pleiotropy on the evolvability of quantitative traits. An R script is 

made for population simulations of two quantitative traits under conflicting selection 

pressures, by means of which a variety of GP maps of different levels and types of pleiotropy 

are compared, both mutually and with modular GP maps. In addition, the predictive power of 

quantitative genetic measures of evolvability is tested. The results show that GP maps with 

extensive pleiotropy can be equally optimal as modular ones, implying that evolvability does 

not require modularity. Examples are provided both where pleiotropy constrains and where it 

enhances the response to selection, depending on underlying assumptions of the GP map. It is 

further shown that quantitative genetics theory can accurately measure evolvability, even 

when genetic correlations and conflicting selection pressures are present. In addition, other 

properties of the GP map affecting evolutionary response are considered. 
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1 Introduction 

The goal of this project is to make a contribution towards better understanding of how the 

genetic architecture affects the evolution of quantitative traits. Several studies have 

investigated how genetic correlations and evolvability are affected by the genetic architecture 

(Lande 1980; Cheverud 1984; Wagner 1989; Slatkin and Frank 1990; Houle 1991; Gromko 

1995; Wagner and Altenberg 1996; Baatz and Wagner 1997; Hansen 2003; Griswold 2006; 

Walsh and Blows 2009). However, basic questions about how standing genetic variance is 

molded by the pleiotropy structure of the genotype-phenotype map, and thereby rendered 

available or not for selection response, seem to remain unresolved. This is true particularly for 

evolution across multiple generations through which predictions from analytical theory cannot 

reach (Lande and Arnold 1983; Arnold et al. 2008). What genetic architecture optimizes the 

response to directional selection? What is the optimal level of pleiotropy?  How well can the 

evolutionary response be predicted under different genetic architectures? This study is meant 

to shed some light on these and other issues involving evolutionary response as a function of 

pleiotropy.  

I have investigated how different structures of the genotype-phenotype map (GP map) with 

respect to pleiotropy affect character evolvability. Pleiotropy is regarded both as a feature 

facilitating coordinated evolution of functionally related characters through integration, and as 

a major source of genetic covariance constraining independent character evolution. It has been 

suggested that evolvability is obtained by modularity of the GP map (Wagner and Altenberg 

1996; Kirschner and Gerhart 1998). Modularity has been found in several traits at different 

phenotypic levels and in different groups of organisms (Wagner et al. 2007). This is however 

not the only way the GP map can be structured to avoid constraining genetic covariances 

(Mitteroecker 2009), and evolvability does not necessarily require modularity (Hansen 2003). 

Another possible genetic architecture that avoids genetic correlations is a GP map where the 

pleiotropy is “hidden”.  

The rate of evolution of a quantitative trait is determined by the strength of selection and the 

level of underlying additive genetic variance (evolvability). Pleiotropy can however tie up 

parts of this variance by linking it to other traits that are under conflicting selection regimes. 

The rate of evolution is then determined by the remaining free genetic variance (conditional 

evolvability (Hansen 2003)). Pleiotropy is thus generally regarded as a constraint on  
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evolvability (Griswold 2006), and modularity is seen as a way of avoiding such constraints 

(Wagner and Altenberg 1996). By means of stochastic population simulations, I have tested 

the hypothesis that pleiotropy reduces evolvability even when it his hidden, that is even when 

it is not generating genetic covariances. Studies have shown that this can be the case under 

some conditions, but that pleiotropy also can increase evolvability under different conditions 

(Baatz and Wagner 1997; Hansen 2003; Griswold 2006). I further test the hypothesis that 

pleiotropy can enhance evolvability by acting as a source of variation even when this ties 

some of the variation up with a trait under conflicting selection. In that respect I seek to 

estimate the optimal level of pleiotropy (Hansen 2003). Another question I address regarding 

effects of the genetic architecture on evolution is, whether the number of loci underlying a 

trait with a certain level of additive genetic variance is important. I hypothesize that this can 

be important, and should be considered when studying the genotype-phenotype map. In 

addition I test how well the conditional evolvability of Hansen (2003) predicts evolution 

across multiple generations, and whether its predictive value depends on the underlying GP 

map. This measure is based on the multivariate Lande equation, whose predictive value needs 

testing (Roff 2007). 

This is thus a thesis in evolutionary quantitative genetics, a field within evolutionary biology 

that addresses quantitative traits. These are phenotypic traits that vary continuously and that 

are typically underlain by many loci (Falconer 1981). If we consider the effect of one locus as 

a random variable, and assume random mating and additivity of effects among loci, thereby 

disregarding epistasis and dominance effects, the distribution of a quantitative trait will be 

approximately normal (Bulmer 1980). There are nonetheless also other effects a trait is 

subject to and the total phenotypic variance of a trait (VP) can be partitioned into genetic 

variance (  ) and environmental variance (  ). Genetic variance can further be divided into 

additive genetic (  ), dominance (  ) and epistatic (  ) variance (Falconer 1981). Dominance 

variance comes from the interactions between the alleles at the same locus, whereas epistatic 

variance results from interactions between alleles at different loci. Environmental variance 

arises from among-individual variation in the environment, that is, the different individuals in 

a population experience different environments. Although it is shown that epistasis can 

potentially have dramatic effects on the response to selection, the general view is that the 

additive genetic variance is the evolutionary important component (Hansen 2006; Roff 2007). 
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2 Theory 

2.1 Evolvability 

The concept of evolvability, meaning the ability to evolve, is central in quantitative genetics. 

Why do organisms evolve, and what is needed for adaptive evolution? As a starting point, 

these questions can be answered by simple inspection of the Lande equation. 

Consider a vector  , where each entry    represents the size of a different quantitative trait in 

an organism. Assume   equals the sum of additive genetic ( ) and environmental effects ( ), 

     , where   and   are independent and multivariate normally distributed. Lande 

(1979) then shows that the multiple trait response (   ) from one generation to the next is 

given by:  

           . 

The term       is defined as the selection gradient, where   

 
 
 
 

   

    

 
   

     
 
 
 
,   is the number of 

traits,     is the population mean of trait   and    is the mean population fitness. Its elements 

give the change in fitness per change in each single trait. Alternatively, the selection gradient 

can be written as  , defined as the vector of partial regression coefficients of individual 

relative fitness ( ) on the characters (Lande and Arnold 1983), and the Lande equation 

becomes: 

       .  (1) 

The vector     gives the change in population mean of each trait from one generation to the 

next, and   is the additive genetic variance-covariance matrix (the G matrix): 
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The term       is the change in mean value of trait  ,    is the change in mean fitness per 

change in population mean of trait  ,      is the additive genetic covariance between trait   

and  . If   equals  ,     is the covariance of the trait with itself, which is the additive genetic 

variance of trait   (   ). The unit of    is one divided by the unit of the respective trait. For a 

single trait, the equation becomes        .  

If we define evolvability as the ability to respond to selection, we see that when        , 

this property lies within the additive genetic variance (  ). The Lande equation separates 

selection from evolvability, which is essential when using this definition of evolvability 

(Hansen et al. 2003b). As Lande explains, the response in multiple traits (  ) does not 

necessarily go in the direction of maximal fitness increase ( ). It is dependent on the structure 

of the additive genetic variance-covariance matrix  , and as the Lande equation shows, the 

response will be equal to the product of   and   (or      ). However, a fitness peak will 

eventually be attained if the adaptive landscape remains constant and there is some level of 

additive genetic variation in all dimensions. This places the evolvability in the G matrix, and a 

measure of evolvability of a single character is simply the additive genetic variance of that 

character (  ), or if comparisons with other characters are to be made, the additive genetic 

variance standardized by the trait mean, 
  

   
     (Houle 1992), (Hansen et al. 2003b).  

The ability to respond to selection, or evolvability, thus corresponds to the amount of additive 

genetic variance   . Based on this, how evolvable do we expect natural populations to be, and 

how high evolutionary rates do we expect to observe? Lynch (1990) investigated how fast 

morphological traits in mammals have evolved compared to what is expected based on neutral 

evolution, that is, if there was no selection, and evolution was driven only by mutation and 

genetic drift. His main result was that the rate of morphological divergence of mammalian 

groups is generally well below the neutral expectation. Most quantitative characters should 

actually be evolvable, as they generally possess large amounts of    (Hansen and Houle 2004; 

Arnold et al. 2008). The challenge in evolutionary quantitative genetics today is therefore not 

to explain rapid evolutionary change, but rather the lack of it, the stasis.  

2.2 Constraints and Pleiotropy 

In quantitative genetics the frequently observed stasis has been difficult to explain. The 

amount of genetic variation does not seem to constrain adaptive evolution (Futuyma 2010), 
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and most traits exhibiting stasis appear to be genetically variable (Hansen and Houle 2004). 

Stabilizing selection has been invoked as explanation for the low rate of morphological 

evolution in mammals (Lynch 1990). However, for stabilizing selection to maintain stasis the 

selective optimum must be constant, and a satisfactory explanation for it to be so has not been 

made (Hansen and Houle 2004).  

One explanation for the existence of stasis is due to entanglement of the character’s variance 

with other characters. When constrained by other characters under stabilizing selection, the 

character’s evolvability may be reduced, as expressed in so-called conditional evolvability 

(Hansen et al. 2003a). Walsh and Blows (2009) argue that the apparent paradox can be 

resolved by considering the geometry of the variation (and selection) in multiple traits. They 

explain that although selection should deplete genetic variance, this may not be observable 

from a single character perspective, as the direction of selection may be different from the 

axes of high genetic variation in phenotype space. Thus, while the individual characters may 

have substantial levels of additive genetic variance, because of genetic covariances between 

them evolution may not be able to move in the direction of natural selection. This can be 

deduced from the Lande equation: For a two-locus scenario the response of a character   is 

determined by the directional selective strength on that character    times its additive genetic 

variance (   or     ). However, it may also be affected by the selection on another character 

   if there is additive genetic covariance between them: 

                   .   (2) 

That is, selection on trait    (  ) induces a correlated response in trait    (      ). Consider 

the case where we want to change trait    without changing trait   . This is equivalent to 

directional selection on trait    combined with stabilizing selection on trait   . Due to 

opposing selective forces the change in trait    may be impaired (fig. 1). The two phenomena 

generating such genetic covariances are linkage disequilibrium (LD) and pleiotropy (Lande 

1980).  The evolutionary important one however is pleiotropy, as recombination eliminates 

covariances due to LD. Lande (1980) explains that LD contributes only little to genetic 

covariances when selection is weak relative to recombination rate. In my simulation 

experiments there is free recombination among loci, so I generally disregard LD as a 

significant factor affecting evolutionary response. However, I did test this assumption (section 

3.2.8).  
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Pleiotropy means that a gene affects two or more characters (Falconer 1981). The term was 

first used in 1910 by the German geneticist Ludwig Plate. The concept was, however, in some 

sense known prior to this, as the observation that multiple medical symptoms could have a 

single common factor was recognized already in pre-Mendelian times (Stearns 2010). 

According to Plate’s definition “a unit of inheritance” is pleiotropic if several characteristics 

are dependent upon it. Pleiotropy is expected to be abundant as it has certain evolutionary 

advantages. When an adaptive change requires coordinated changes in multiple traits, fewer 

mutations are needed if a mutation affects several rather than one trait, thus increasing the 

probability of adaptation (Cheverud 1984). This is achieved by pleiotropy, as modification of 

one gene may induce changes in several characters, reducing the number of mutations needed. 

However, pleiotropy also has the disadvantage of constraining evolution when correlated 

characters are under conflicting selective forces as shown above. This could easily occur if 

pleiotropy was abundant between functionally independent characters such that directional 

selection on one of them was unlikely to be associated with directional selection on the other, 

which would, as most traits, expected to be under stabilizing selection, assuming they track 

local selective optima (Hansen and Houle 2004; Walsh and Blows 2009). 

   

      

   

  

1 

  

1 

a b 

Initial     Initial     

Initial     Initial     

 

1 

 

1 

Figure 1 –  a) Initially the population, whose phenotypic distribution is represented by the ellipse, is 

subject to positive directional selection on   while   is at its optimum. b) Because of positive genetic 

covariance between the two traits there is a positive response in both, and the population mean is 

displaced from the grey dot to the black one. In addition to directional selection on   , the displacement 

induces selection for bringing   back to its optimum resulting in a net selection gradient ( ) 

prependicular to the major axis of the phenotypic distribution. As there is little genetic variance in this 

direction, evolution is slowed down. 
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The concept of “cost of complexity” states that the predicted rate of adaptation decreases with 

increasing number of traits underlying an organism’s phenotype (“complexity”) (Wagner and 

Zhang 2011). The reason for this is explained by a model of the scientist who initiated these 

ideas, Fisher (1930). He presents the phenotype of an organism as a point   in space some 

distance   from its optimum  , the number of dimensions of the space representing the 

number of underlying traits  . For a random change of the phenotype moving   a distance  , 

an adaptation is present if   ends up closer to   than it was before. For this to be possible   

must be smaller than   , and the probability of adaptation will tend to one half for an 

infinitely small  . However, for an   in between these values, the probability of adaptation 

decreases with increasing  . This can be visualized by comparing phenotypes of one, two and 

three dimensions. In one dimension, the phenotype   lies on a line at a distance   from  , 

thus it can only move in two directions. For        the probability of improvement will 

always be one half. In two dimensions however, the phenotype can move in any direction in a 

plane, ending up somewhere on the circle with center   and radius  . The probability of 

improvement is represented by the part of this circle lying within the other circle with center 

  and radius   (fig. 2). For       , this will equal               , which is smaller 

than one half. In three dimensions, the probability of improvement equals             , 

which is even smaller on the interval        (fig. 3).                                                                                                          

                                                                                       

 

 

r 

A O 

R 

n = 2 

 

Figure 2 -  For complexity level   = 2 the 

probability of a phenotypic change of size   of 

being adaptive equals the fraction of the circle 

with radius   that is inside the circle with 

radius  , as moving the current phenotype   

to a point on this part of the circle brings it 

closer to the optimum  . 

 

Figure 3 - The probability of adaptation as a 

function of size of phenotypic change ( ) relative 

to phenotypic distance from optimum ( ) for 

different levels of complexity ( ). 



8 
 

According to Fisher’s geometrical model (Fisher 1930), for large values of  , the probability 

that a random change of size   is adaptive equals                                

  
    

  
   . This probability decreases when   increases. According to Orr (2000)  the 

value of   that maximizes 
   

  
 is 0.925. Kimura (1983), however, took into account that 

mutations with higher adaptive advantage have higher probability of fixation, and showed that 

adaptive evolution is most rapid when mutations have intermediate effects. Assuming 

mutations of constant size   Orr (2000) derived that 
   

  
 as a function of   declines faster than 

 

 
  (   being fitness), thus there seem to be a high cost of complexity. As this model allows for 

universal pleiotropy, where any mutation may affect any character (Orr 2000), the complexity 

  can be considered the degree of pleiotropy and the cost of complexity is thus actually a cost 

of pleiotropy (Wagner and Zhang 2011). The assumption of constant mutational size 

regardless of pleiotropic effects seems however not to be justified empirically (cf. next 

section). 

The cost of pleiotropy will surely be immense in a complex organism with a great number of 

traits. If a mutation at any locus can affect all traits, the probability of such a mutation being 

beneficial will drop to almost zero and adaptive evolution will be rendered impossible. As 

pleiotropy is a common phenomenon and up until recently has practically been regarded as 

universal (Stearns 2010; Wagner and Zhang 2011), it is seen as an important constraint to 

adaptive evolution. 

2.3 Genotype-phenotype map 

The genotype-phenotype map (GP map) describes how genetic variation is translated into 

phenotypic variation (Wagner and Altenberg 1996), by e.g. describing the number of loci per 

trait and the distribution of genetic effects across loci and traits. Pleiotropy is a very important 

aspect of the GP map. One familiar case of specific GP maps that was suggested to be highly 

evolvable is the modular GP map. 

In order for complex organisms to be evolvable the GP map should be arranged in a way that 

avoids the constraining effects of pleiotropy. It was suggested that this is achieved by 

modularity, which means that functionally distinct character complexes are independently 

represented in the genome. In terms of pleiotropy this means that pleiotropic effects are 
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mainly limited to operate within character complexes and not between them (fig. 4) (Wagner 

and Altenberg 1996).   

 

 

 

 

 

Figure 4  –  Modularity: The effects (arrows) of the loci L1-L8 are mainly on characters (Z1-Z4) in the 

same character complex, C1 or C2. Only two of the loci (L4 and L5) affect parts of both character 

complexes. Modified from Wagner and Altenberg (1996). 

 

Although pleiotropy is a common phenomenon, recent studies suggest that pleiotropy is in 

fact highly restricted and that the genotype-phenotype map is highly modular (Wagner and 

Zhang 2011).The results of a QTL study by Wagner et al. (2008a) of linear skeletal traits 

involving two inbred lines of mice were that the mean number of traits affected per gene was 

7.8 (the median was 6), and there was a positive linear relationship between degree of 

pleiotropy (number of affected traits) and total mutational effect of a locus. They showed 

further that the average mutational effect per trait is increasing with the square root of the 

degree of pleiotropy (Wagner et al. 2008a). The “cost of complexity” is based on the 

assumption that all genes affect all traits, leading to the consequence of reduced probability of 

adaptive mutations as complexity increases (cf. Fisher’s geometric model, section 2.2). It also 

assumes constant total effects, leading to a decrease of the average mutational effect per trait 

when the number of traits per gene increases. Both assumptions are refuted here, implying 

evolvability of complex organisms. However, a possible source of error in this study was the 

possibility that multiple mutations have been counted as one. That might have affected some 

of the conclusions, but does not revalidate the “cost of complexity” assumptions (Hermisson 

and McGregor 2008; Wagner et al. 2008b).  

As pleiotropy has been regarded a constraint on evolution because it generates genetic 

covariances to which modularity might be the solution, this project is meant to contribute to 

L2  L3 L4 L5  L6 L7 L8 L1 

Z1 Z3 Z2 Z4 

C1 C2 
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better understanding of how pleiotropy affects the response to selection, or the evolvability of 

phenotypes. I have investigated this question by simulation experiments, tracing the response 

across multiple generations given different genotype-phenotype maps (GP maps). In these 

individual-based simulations, the selection process is implemented via a fitness function, 

which assigns fitness to each individual in the population dependent on its trait values (the 

size of its traits).  

2.4 The model 

The GP map is represented by the B matrix model of Wagner (1989). The model is based on 

the assumption that the part of the genome underlying quantitative traits consists of two 

different types of genes, developmental genes and polygenes. Developmental genes are 

expressed in early development (typically during morphogenesis) and determine where 

different body parts are located and which genes are activated in which body parts. They can 

be for example homeotic genes. The quantitative variation of the different characters is 

however underlain by the polygenes, which can be any gene affecting the quantitative 

measures of the characters. In this way the pleiotropic structure is determined by the 

developmental genes, whereas the polygenes control quantitative measures of the characters 

but not the pleiotropy. The phenotype is represented by a vector   (   ) containing the 

values of   traits. It is partitioned into a genetic ( ) and an environmental component ( ) (also 

    vectors) such that: 

                                               ,      (3) 

where   is a random vector of mean zero and variance   . Each allele at the polygenic loci is 

represented by a value that quantifies its respective gene products’ physiological property 

relevant for the genetic component  . At each locus the value of the two alleles (assuming 

diploid organisms), which I will name the allelic values, are summed to generate the entries 

of the vector   of length equal to the number of polygenic loci  . The value of each entry of 

 , the y values, is thus determined by the alleles at the respective locus, and represents a 

potential to affect the phenotype  . Whether or not and to what degree it it will affect the 

different traits depends on the “developmental function”, the GP map. This is represented by 

an     matrix   (the B matrix). The mapping is then done by linear transformation in the 

following way: 
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                                                       (4) 

This assumes additivity of allelic effects among loci. We further assume a constant B matrix 

(i.e. the developmental genes are not segregating), so the pleiotropic structure of the genome 

does not evolve. The phenotype is thus generated according to the following equation: 

                                             .       (5) 
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   =      
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 .   (5.1) 

In my simulation studies I have considered the case with two characters (   ), thus 

equation (5) becomes: 

       
  
  

   =   
b , b , 
b , b , 

     
 b , 
 b , 

          

y 
y 
 
y 

     +     
e 
 e  

                        (5.2) 

 

Each column in the    -matrix represents a locus, and pleiotropy is defined independently 

for each locus as a non-zero entry in both rows (fig. 5). 

 
       
       

  

 

In the case when the two entries of a column are of the same sign (as is the case of the 

encircled column in figure 5), the alleles at the respective locus will contribute to positive 

genetic covariance between the two traits, provided that the y value does not equal zero. I will 

refer to this as synergistic pleiotropy. If the two entries have opposite signs, that locus can 

contribute to negative covariance, so that will be referred to as antagonistic pleiotropy. 

Modularity in this context means that the two traits have independent genetic representations. 

A fully modular GP map is then represented by a B matrix with no pleiotropy (fig. 6). 

Figure 5 - Example of a B matrix with one pleiotropic 

locus (encircled). 
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Disregarding linkage disequilibrium, such a GP map will not generate genetic covariances, 

irrespective of the allelic values. The resulting G matrix takes the following form:  

   
     

     
 . 

Another way such a G matrix can be generated, is if the pleiotropic effects are “hidden”. This 

is the case when the GP map consists of both synergistic and antagonistic pleiotropy that 

cancel each other out (fig. 6). Thus, like with the modular GP map, no genetic covariance is 

generated. 

 
        
        

  (modular) 

  
        
          

  (hidden pleiotropic) 

 

 

  

Figure 6 - Examples of B matrices which represent a 

modular (top) and a hidden pleiotropic (bottom) GP 

map. 
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3 Materials and Methods 

3.1 Population simulations 

The simulations were performed using R (http://www.r-project.org/, version 2.9.2). They 

involve the following steps. Consider a population of diploid organisms with   freely 

recombining loci underlying two traits. The population size ( ) is fixed. It starts out with 

      unique alleles, which are mapped to the phenotype by the B matrix model. Assume 

further random mating, no mutation, no genotype-by-environment (GxE)-interactions, no 

epistatic effects on phenotype, no dominance effects and a constant B matrix structure. 

Individuals are selected according to a fitness function, with trait 1 being under positive 

directional selection and trait 2 under stabilizing selection. The process continues for 

  generations, and as there is no mutation, the genetic variation is reduced each generation, 

and the loci can eventually go to fixation. Statistical power is attained by doing   recursions. 

The main variables are shown below (table 1).  

3.1.1 What the program does 

A recursion loop starts by creating all the alleles in the initial population. To this end,      

allelic values (  ) are drawn independently from a normal distribution with mean ( ) and 

standard deviation (   ). Before a generation loop is initiated, other necessary variables are 

defined: environmental component ( ), vector of summed allelic values ( ), genetic 

component ( ), optimal value of trait 2 (    
   ), fitness ( ), mean population fitness (  ), 

relative fitness (  
 

  
).  

To create the vector   of length  , for each individual, the two allelic values at each locus 

(  ) are summed. For the traits to start at positive values, a “start-vector” (  ) is used to add 

the value 10 to both traits (eq. 6). The G matrix ( ) and a genetic correlation matrix    are 

calculated based on the phenotype before environmental variation is included. A new vector 

of environmental variation components ( ), generated by drawing for each individual and 

each trait a number from a normal distribution with mean zero and chosen standard deviation 

(    ), is each generation added to the phenotype (rightmost addition in eq. 6), to complete 

http://www.r-project.org/
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the trait values (   and   ). The optimal value of    (    
   ) is set equal to the mean of trait 2 

from the initial population without the environmental effects.  

 
  
  

   =   
   

     
    +    

        

        

     
     

     
          

  

  

 
  

     +     
  

    
 .  (6) 

 

Table 1 

Variables  

Name Description 

Input       

3.065702   (2.902418, 3.228986) 
c Recursions 

t Generations 

N Population size 

s1 Selection coefficient of trait one 

s2 Selection coefficient of trait two 

m Allelic mean 

std Allelic standard deviation 

estd Environmental standard deviation (   ) 
B B matrix 

  

Output  

G[,,i,r]  G-matrix 

nG[,,i,r]  Genetic correlation matrix 

mG[,,i]  Mean G-matrix (across recursions) 

 
nmG[,,i] Mean genetic correlation matrix (across recursions) 

 
XX1[r,i]  Population mean of trait one 

XX2[r,i] Population mean of trait two 

X1[i] Mean across recursions of population mean of trait one 

X2[i] Mean across recursions of population mean of trait two 

gru[x] Cumulative evolvabilities (the cumulative change in trait one per 

generation, from generation one to x, x ∈ [2,G] ) 

Other  

L Number of loci 

z1 Trait 1 

z2 Trait 2 

optz2 Optimum of trait 2 

y3 Allelic values 

x Genetic component of phenotype  

e Environmental component of phenotype  

W  Absolute fitness 

w Relative fitness 

      where i  is a generation index, and r is a recursion index. The output variables are in matrix form, and 

the commas separate the different dimensions. 
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 The fitness of each individual (  ) is calculated according to the fitness function 

                         –    
     ,    (7) 

and the individuals with negative fitness are counted. Negative fitness values are set to zero, 

corresponding to zero probability of reproducing. The population mean fitness (  ) and 

relative fitness of each individual (   
  

  
) are calculated. The relative fitness is used to 

generate a vector of individual-specific intervals, whose sizes correspond to the individuals’ 

relative fitness. The intervals are scaled in order to cumulatively span a range [0,1], so that the 

individuals with the highest relative fitness are represented by the widest interval on the 0-1 

span. The parents of every individual offspring being produced are then independently 

selected (with replacement) by drawing a number from a uniform distribution on the interval 

[0,1], the individuals with highest relative fitness having the  highest probability of parenting 

the next generation. The selected individuals form a matrix with two columns of   

individuals. The allelic values of both alleles at each locus of each selected individual are 

stored in a matrix. 

The next step represents meiosis with freely recombining loci without crossing-over or 

mutation. A matrix is generated, consisting of two pairs of columns of zeros and ones, such 

that for each locus of each individual one homologous allele is represented by a zero and the 

other by a one with a 50% chance. The genetic composition of the offspring is generated by 

element-wise multiplication of this matrix with the matrix of allelic values, summed across 

homologous alleles for each parent, and with one column for each parent such that each 

offspring receives one allele from each parent per locus. The offspring allelic values are 

stored in   .  

The population means of both traits are stored in each generation and recursion, resulting in 

the     matrices     and    . This concludes the generation loop. A plot of the 

population mean trait values against the number of elapsed generations is shown after each 

recursion, and the recursion loop is ended.  

Finally, the mean trait values across recursions are calculated from     and    , and 

plotted against the number of elapsed generations ( ). Other output variables are also 

calculated (table 1). The algorithm is also described in the flow diagram below (fig. 7). 
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Figure 7 – Flow diagram for the algorithm 

Initial population 
     alleles from  a 

normal distribution: 

N( ,   ) 

Alleles 

 Sum of allelic values 

at each locus       

Environmental 
variation 

   effects from a 

normal distribution: 

N(0,    )      

Phenotype 

                           

Fitness 

                           –    
      

 

 
 

Selection + Mating 

Each individual has a probability according to its relative 
fitness for each mating event to be selected as one out 
of two parents. 

Recombination 

Meiosis without any physical linkage 

Offspring 

  new individuals 
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3.1.2 The choice of parameters 

Negative fitness values are invalid and are set to zero in the course of the recursion. However, 

if all individuals have zero fitness, relative fitness values cannot be calculated. This situation 

is possible due to the fitness function (eq. 7):                          –    
     .  

In the following I assume for simplicity that the initial allelic variance as well as the 

environmental variance in the population are equal to the corresponding variance of the 

distribution used to generate them. This is a good approximation as long as the population 

size ( ) is sufficiently large, as the variance in the population (sample variance) is on average 

   

 
 of the variance of the distribution used. In generation one (before selection) the alleles 

have expected value of zero and a variance std
2
, according to the normal distribution they are 

drawn from (           Consider the case when the absolute values of all non-zero entries in 

the B matrix equal one and the B matrix has   such entries per trait. The expected value of 

   and    in generation one is then:  

                                               , where   is a trait index, making     

and    the start value and the environmental effect on trait   respectively, and    the  -th row 

of the B matrix. Thus                 , and the variance is:  

                        .  

                         (assuming independence among loci).  

Since    
   

  is the mean value of    (without environmental effects) in generation one 

     
              and    

    
is an estimate of      . Thus, 

    –    
     

     
  is approximately    

  

and has     and      (because 
    –    

    

      
       ).  

          –    
                   and        –    

            
    .  

Then      becomes:                                 –    
      . 

                                               
      . 

And      becomes   
                

        –    
        (assuming independent traits).  
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 .                           

       
                         

                      . 

       
                         

                    .                  

In any generation      is 

                                –    
                    –    

      . 

This equals 

           
  –         

       
    

               
                

    
 

     

                    
               

    
 

    . 

                                  
     .    (8) 

It is reasonable to set the parameter values such that         . If a large portion of the 

population is wiped out due to negative fitness values this can greatly reduce the effective 

population size and thus affect the evolutionary dynamics. 

For convenience I set the environmental variance equal to one and use this as a reference 

value when setting the other parameters. The trait values will then be given as units of 

environmental variance (  ). 

In order for the population to have a realistic level of heritability (  ) and     , attention 

must be paid to what levels of additive genetic variance (  ) can be used. 

The heritability    
  

  
 

  

     
,        ,                 

 
         , 

where   is a locus index. The term                         =>       .          

     ,                  , where   is a gamete index and all       are independent   

             . The terms       and    are independent                     
  

    

     , where   

             
  

         (9) 
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and     ,       
          

  
   

          
  

     
. For example, setting    equal to      implies that 

         
  

     
 

 
. In the first experiment, I set       

  
       . In order to get   equal to 

    ,      must be equal to     , thus     must equal            . Notice that this is the 

initial heritability before genetic variation is lost by selection and drift. In the experiments the 

    I used was     making the initial    
         

           
 

 

 
      . This is a reasonable value. 

3.1.3 The fitness function 

The fitness function (eq. 7) combines directional selection on trait 1 (  ) with stabilizing 

selection on trait 2 (  ). Trait 1 is the focal trait whose response to selection may be 

constrained when it is correlated with trait 2, as selection tries to maintain the latter at an 

optimal value (    
   ). The coefficients of selection,    and   , determine the strength of 

selection on trait 1 and trait 2 respectively. Stabilizing selection is achieved by a quadratic 

function (         –    
      ) such that fitness is reduced proportionally to the squared 

deviation from the optimum in any direction. The strengths of directional selection are 

expressed in terms of the selection gradient ( ),    
  

   
 ,    

  

   
. Relative fitness equals 

individual absolute fitness divided by mean population fitness,   
 

  
. Thus according to the 

fitness function,                         –    
     ,  

   
  

  
,        (10) 

where                                    
      (cf. eq. 8). If we consider the 

case with only directional selection on trait 1 and no stabilizing selection on trait 2 (    ), 

then      and      . Further, the strength of selection on trait 2, which occurs when the 

trait is displaced from its optimum, can be estimated as follows: 

   
  

   
         

            
   

  
 

               
   

  
 .    (11) 

3.1.4 Selection response 

When measuring the response to selection, I contrast two different measures, the selection 

limit and the short-term response. The selection limit is defined as the total evolutionary 



20 
 

change achievable. In practice this value is calculated by subtracting the mean phenotypic 

value in the first generation from the mean value in some distant generation where I assume 

no more change will happen. This assumption is based on the observation that the mean 

phenotype has not changed significantly for several generations, and that only a minimal 

amount of additive genetic variance underlying the focal trait remains. The short-term 

response is measured either as a cumulative response over some time interval, divided by the 

number of generations passed in that interval, or simply as the total change in mean 

phenotype from the first generation to some later generation. The point here is however that 

the level of underlying additive genetic variance is substantial throughout the time span. The 

numbers are generally mean values over   recursions. Confidence intervals (CI) have 95% 

confidence level. 

3.2 Experiments 

3.2.1 Hidden pleiotropy   

The first problem I treated was whether hidden pleiotropy constrains evolution. In this 

experiment I have compared the selection response over many generations given different GP 

maps. The GP maps all have the same expected amount of initial additive genetic variance 

underlying trait 1. I first considered the question whether hidden pleiotropy reduces the 

evolvability of trait 1, compared to a modular GP map structure with the same genetic effects 

on the focal trait 1.  

Parameter settings: c = 20, t = 751, N = 200, L = 20, s1 = 0.1, s2 = 0.02, std = 0.5. 

Initially               
  

   (eq. 9) and      
  

                      

      . 

The response to selection of trait 1 is measured as the difference between the initial 

population mean and the mean after 750 (t-1) generations of selection. The values are given as 

the mean over c recursions. The program is run seven times, with seven different B matrices 

(B1-B7,listed below). The B matrices include one with all effects being synergistically 

pleiotropic (fully constrained), one with no pleiotropy (fully modular), one with all effects 

being pleiotropic, but with equal amounts of synergistic and antagonistic pleiotropy (fully 
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hidden pleiotropy), and four others with partially hidden pleiotropy. By partially hidden 

pleiotropy I mean that there is both synergistic and antagonistic pleiotropy present, such that 

they partially but not completely cancel each other out (see B matrices below). 

B-matrices: 

        
                    
                    

       

(fully constrained)  

        
                    
                     

       

(20% hidden)  

        
                    
                      

       

(40% hidden ) 

       
                    
                       

       

(60% hidden)  

       
                    
                        

       

(80% hidden)  

      
                    
                         

       

(fully hidden pleiotropy)  

      
                    
                    

       

(fully modular)   

      
                    
                    

       

(no effects on trait 2). 
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The expected initial G matrix in the cases of both the modular and the fully hidden pleiotropic 

GP map equals: 

   
  
  

 . 

According to the Lande equation (eq. 1 and 2) the response should also be the same: 

                       . 

However, as this is only the expected initial G matrix, when evolution changes allele 

frequencies and by chance fixes alleles with not exactly the same allelic values at the different 

loci, covariances can appear in the case of hidden pleiotropy and the term        may deviate 

from zero. The modular GP map, however, avoids genetic covariances irrespective of allele 

frequencies. Thus, my hypothesis is that trait 1 will show a lower response when underlain by 

a 100% pleiotropic GP map (B matrix 6), than when underlain by a fully modular map (B 

matrix 7).  

3.2.2 Mouse B matrix 

Further, an approximate real B matrix was tested for comparison. This B matrix was provided 

by Mihaela Pavlicev, and based on estimated effects on different quantitative traits from 546 

QTLs from the F2/F3 generations of mouse intercross between large (LG/J) and small (SM/J) 

inbred lines of the Cheverud lab (for details on the intercross see Cheverud et al. (1996)). The 

two traits I used were femur and humerus length. In order for this 546-loci B matrix to be 

comparable to the above B matrices, I grouped loci with similar pleiotropy together in “super 

loci” and scaled the effect sizes to give the same initial additive genetic variance as the others. 

The effects of a locus (or rather the potential effects in the case of the B matrix entries     and 

    ) can be regarded as a vector    in the two dimensional phenotype space in the two-trait 

scenario (fig. 8). As the above pleiotropic B matrices have 10 non-zero loci, I have 

constructed  0 “super loci” by partitioning the circle representing the possible directions of    

in 10 equally sized sectors, and summed all loci that fall into each sector according to their 

direction in phenotype space. This resulted in the following B matrix: 
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It was generated in this way in order for it to be able to represent all possible directions in 

phenotype space. Note, however, that the distribution of the    here is highly skewed (most of 

the effects are at the two first loci). I used the same parameter settings as in section 3.2.1 for 

the simulations.   

3.2.3 The effect of number of loci 

An experiment was performed to test whether there is a difference in selection response of 

trait 1 (conditional on stabilizing selection on trait 2), and in how the G matrix changes, 

between a scenario with few loci with large effects and a scenario with many loci with small 

effects, provided equal expected initial G matrix. 

Parameter settings: c  = 20, t = 751, N = 200, L = 2 or 50, s1 = 0.1, s2 = 0.02, std = 0.5. 

Initially (before selection)               
  

    (eq. 9), where   is the trait index and   the 

locus index, thus making      the entry of row   and column   in  . 

     
  

       .          

I used         for both GP maps, and varied the values of  the     ’s. Both GP maps were 

modular with no effects on trait 2 (      ).  

 (a) With two loci of equal potential effects (      on trait 1: 

               
 
                        . 

(b) With 50 loci of equal potential effects (      on trait 1: 

     

   

   

   

     

Figure 8 – The locus    is a 

vector             in the 

phenotype space. 
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          . 

B matrices: 

 
                

  
   (L  =   2)    

 
0.       0.       

0 0
     
 0.       

 0
   (L  =   50).    

In both cases the expected initial G matrix is thus: 

   
  
  

 . 

3.2.4 Alternative allelic distributions 

Theory suggests that the question of whether hidden pleiotropy constitutes a constraint 

depends highly on the distribution of allelic effects in the population (Wagner 1989; Slatkin 

and Frank 1990). It is expected to do so when the distribution is not normal, and not to do so 

when it is. In my model system the allelic values are drawn from a normal distribution and the 

effects are expected to be normally distributed, at least initially. The simulation studies of 

Baatz and Wagner (1997) and Griswold (2006) found that hidden pleiotropy slows down the 

evolution of a trait under directional selection when it is pleiotropically connected to one 

under stabilizing selection. However, the model systems they used do not assume normally 

distributed allelic effects. To address the question of whether it is the distribution of allelic 

effects that determines the impact of hidden pleiotropy on evolution, I have adjusted my 

model system to conform to the studies of Baatz and Wagner (1997) and Griswold (2006) 

(next section).  

The Baatz and Wagner (1997) study uses a model where one trait is under directional 

selection and another trait is under stabilizing selection. The authors used the following 

fitness function:              
  
 

   
  , and they included both a deterministic and a 

stochastic model. The deterministic model (two-locus, two-allele) can be represented by the B 

matrix model as follows:    
  
   

 , where the allelic values are either 0 or 1. They 

showed that the rate of evolution of the focal character is reduced by a term proportional to 



25 
 

         
   (where      ), and they find that when the initial frequency of the alleles 

with value 1 (q) is low then the evolution of trait 1 is inhibited, whereas when the initial 

frequency of those alleles is high the evolution of trait 1 is accelerated. This is because of the 

effects the allele frequencies have on the          
   term. When the allele of value 1 is rare, 

high values of trait 1 are associated with more extreme values of trait 2 (or   
 ) because of the 

asymmetry resulting from the hidden pleiotropy structure of the GP map. When the allele of 

value 0 is rare, low values of trait 1 are associated with more extreme values of trait 2 and the 

term          
   becomes negative, thus accelerating the evolution of trait 1. This means that 

the evolutionary change in trait 1 is reduced by pleiotropy when it is associated with an 

increase in the variance of trait 2, and enhanced when the change in trait 1 is associated with a 

decrease in the variance of trait 2.  It makes biologically sense that when the hidden 

pleiotropy structure gives an additional selective pressure through trait 2 on the alleles either 

in accordance with or in opposite direction of the selective pressure induced by the directional 

selection alone, this can promote or impede the evolution of trait 1, respectively. 

In my experiments the alleles are drawn from a normal distribution, and I use a much higher 

heritability than Baatz and Wagner (1997), so the dynamics could easily be somewhat 

different. I also use generally weaker stabilizing selection and this could as well have an 

effect. Normally distributed allelic effects enable the increase in fitness by substitution at one 

locus at a time, because for some small value of change at a locus affecting both traits, if trait 

2 is close enough to its optimum, fitness can be increased. It is the relative sizes of    and    

and the distance of trait 2 from its optimum that determines how small this value must be.  It 

is natural to repeat some of the simulations with some approximated    and    values: 

          
  
 

   
     

  

   
           

  
 

   
  . Since    

  

   

  
  , approximating   

with    gives       and      
  

  
 , which can be approximated as  

     

  
 . In terms of the 

fitness function used in my experiments                         –    
      if we 

assume      and      
   , then       and    

 

   
  . Values comparable to those used 

by Baatz and Wagner are thus e.g.        and         

To compare between the Baatz and Wagner (1997) setting and my own I simulated the 

response to selection with a hidden pleiotropic GP map and a modular one once in a two-
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allele setting similar to the one used by Baatz and Wagner (1997), and in a setting with 

normally distributed alleles, as I have generally been using. In both settings I have used “my” 

fitness function (eq. 7) with the values derived above, and B matrices with only two loci. 

For the two-allele setting a new parameter was introduced, namely the initial frequency of the 

allele with value 1 (q). The other allele has value 0 and initial frequency 1-q. 

Parameter settings: c = 20, t = 151, N = 1000, L =  2, s1 = 0.2, s2= 0.3, q = 0.02 (biallelic 

setting), std = 0.14 (normal setting), VE = 1. 

B matrices: 

   
  
   

  (hidden pleiotropic) 

   
  
  

  (modular). 

Expected initial G matrices: 

   
       

       
  (both settings, pleiotropic B matrix). 

   
       

  
  (both settings, modular B matrix). 

In this experiment the modular matrix has only zero effects on trait 2 and thus also avoids the 

potential constraining effects of linkage disequilibrium. I have used a larger population size 

here than in the other simulations to cope with the stochasticity resulting from the much lower 

heritability (initial value:    
  

     
      ). 

3.2.5 Mutation-based simulations 

The simulations of Baatz and Wagner (1997) and Griswold (2006) finding constraining 

effects of hidden pleiotropy involved mutation. In order to do a comparable analysis, the 

relevant experiments should be repeated with the inclusion of mutation. I thus modified my 

program to add at random a mutational value from a normal distribution,          , to a 

fraction   of the alleles after each generation of selection. The population was initially 
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genetically homogenous, and the following parameter values were used: c = 20, t = 1001, N = 

200, L = 10, s1 = 0.1, s2 = 0.02, std = 0, mstd = 0.5, u = 0.001. 

B matrices: 

      
          
          

   (modular without constraining LD effects), 

      
          
               

  (100% hidden pleiotropic).  

Both are expected to have the same initial    underlying trait 1, and no initial genetic 

covariances. When it comes to the mutation rate ( ), I have used a number that would 

correspond to 
                                

                                           
          per gamete per 

individual. The corresponding rate in Griswold (2006) was 0.001. 

3.2.6 Even B matrix 

If directional selection is assumed not to be limited to the direction of trait 1 in phenotype 

space, but rather to point in any arbitrary direction   with stabilizing selection in all other 

directions, Hansen (2003) predicts maximum evolvability for a GP map that is fully 

pleiotropic but with maximally variable pleiotropic effects. To test this hypothesis, I let the 

selective regime (and the other parameter values) remain as in the previous cases (section 

3.2.1) and construct a B matrix with maximally different pleiotropic loci. 

It is, however, not obvious that the exact directions of these loci of limited number are 

immaterial with respect to evolvability. I have created an even B matrix (fig. 9 a): 

  
                                                                                     

                                                                                     
   

Interchanging the rows of it generated another reversed even B matrix (fig. 9 b):  
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Figure 9 – Graphic representation of the even (a) and the reversed even (b) B matrix, the arrows 

representing the different loci in terms of their potential effects   , which are all of equal length (  ).  

 

At least for the selection limit, I predict that even though both matrices yield the same 

expected initial G matrix,    
  
  

 , the one with the highest sum of absolute values of the 

entries of B mapping to trait 1 (    ) would have higher evolvability (selection limit) 

according to the rationale in section 4.1.4 (If we assume fixation of a maximum allelic value 

  at all loci, it is the absolute values at the loci affecting trait 1 (    ) that determine total 

evolutionary response, not the squared values which underlie the G matrix). This is the even 

B matrix, for which this number equals 9.152982, whereas for the reversed even B matrix, 

this sum equals 8.705004. The corresponding number for both the 100% hidden pleiotropic 

and the modular GP map (section 3.2.1), which also yield the above mentioned G matrix, is 

10. I thus predict the even B matrices to have slightly lower responses then the hidden 

pleiotropic and the modular. 

3.2.7 Partial hidden pleiotropy vs. partial modularity 

Gromko (1995) investigated the variability of correlated responses using computer 

simulations. He showed that different pleiotropic structures of the GP map with the same 

genetic correlations can yield different levels of variation in correlated responses among 

selection lines. He compared GP maps with some loci generating correlations between two 

a b 
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traits and some loci being either pleiotropic or modular. Two of the GP maps that were 

compared can be represented by the following B matrices: 

      
        
          

       (partially hidden pleiotropic)  

   and 

      
            
            

        (partially modular),    

corresponding to Gromko’s pleiotropy structures ( ,2,0) and (4,0,8) respectively. These GP 

maps are interesting for my study because although they result in the same expected initial G 

matrix, my hypothesis here is that the modular GP map would result in a significantly higher 

evolvability than the hidden pleiotropic one, because the modular GP map has unconstrained 

loci affecting trait 2 that could completely compensate for the correlated responses generated 

by the pleiotropic loci. The hidden pleiotropic system does not have this possibility. An 

experiment was done to test this hypothesis. The following parameter values were applied: c 

= 20, t = 351, N = 200, L = 8 or 12, s1 = 0.1, s2 = 0.02, std = 0.5. I used the two above-

mentioned B matrices. Expected initial G matrix for both configurations: 

   
  
  

  (i.e. the genetic correlation is 50%). 

3.2.8  Linkage disequilibrium 

In addition I tested the validity of the assumption that linkage disequilibrium is an 

unimportant factor in my experiments. Because covariance due to linkage disequilibrium is 

the only constraining factor acting in the case of a modular GP map, I compared the evolution 

of trait 1 when using B7 with the evolution of trait 1 when using a B matrix with no effects on 

trait 2 (B8). In that case LD cannot generate any genetic covariances between trait 1 and trait 

2 as there is no additive genetic variance underlying the latter. I used the same parameter 

settings as in section 3.2.1. The expected initial G matrix is thus: 

    
  
  

 . 
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3.2.9 Effects of the strength of stabilizing selection 

In this experiment, I compared the evolutionary responses of hidden pleiotropic and modular 

GP maps with varying levels of stabilizing selection (s2) in order to check the robustness of 

the results from the experiments in section 3.2.1. 

Parameter settings: c = 20, t = 751, N = 200, L = 20, s1 = 0.1, s2 = variable, std = 0.5.  

B matrices: B6, B7 and B1 (shown above). 

3.2.10 Pleiotropy as a source of variation 

Can pleiotropy increase evolvability by acting as a source of variation? In this experiment I 

have investigated how pleiotropy can increase evolvability by letting more loci affect the 

focal trait. This rests on different assumptions than the previous experiments. There the total 

variation underlying the focal trait was fixed by always having the same top row of the B 

matrix in terms of              
  

   (eq. 9). Then by increasing the level of pleiotropy, 

more and more of these   loci would also affect the trait under stabilizing selection, and the 

focal trait could only be more constrained. This was a useful approach for comparing different 

levels of hidden pleiotropy and modularity. However, with a fixed number of loci underlying 

all quantitative traits in the genome, the more pleiotropic the loci are on average, the more 

loci will on average affect each trait. If the total effect of a locus is not constant but increases 

with the number of affected traits, then the total genetic variation underlying each trait should 

on average increase with increasing average pleiotropy. According to Wagner, Kenney-Hunt 

et al. (2008a) this seems indeed to be the case, as an approximately linear relationship 

between total effect size and number of traits affected was observed. A question that arises 

when the possibility of this positive effect of pleiotropy on evolvability is considered is, what 

the optimal level of pleiotropy would be, as the constraining effects of correlated responses 

still would be present. This was investigated in the following way.  

I again compared the evolutionary response of the focal trait between different GP maps. 

However, I used 350 generations of selection and 50 loci. All entries in the B matrix in this 

experiment were either equal to 1 or 0. I started with a completely modular map, with 25 

different loci affecting each trait. Then I used a B matrix where one of the loci only affecting 

trait 1 and one of the loci only affecting trait 2 were changed to also have an equal effect on 
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the other trait, thus being (2 out of 50 loci being pleiotropic) 4% pleiotropic. I did this for all 

levels of pleiotropy (0%,  %, 8%,   %,    %,…,  00%) and compared the response to 

selection on trait 1. 

Parameter settings: c = 20, t = 351, N = 200, L = 50, s1 = 0.1, s2 = 0.02, std = 0.5. 

Thus, the initial              
  

     increases with increasing pleiotropy. 

B-matrices: 

       
              
              

      (      
  

        ) 

(0% pleiotropy)   

      
              
              

      (      
  

        ) 

(4% pleiotropy)  

      
              
              

      (      
  

        ) 

(8% pleiotropy)  

… 

      
              
              

      (      
  

        ) 

(100% pleiotropy).  

The expected initial G matrices are thus: 

   
     
     

      (0% pleiotropy), 

   
     
     

      (4% pleiotropy),   

   
     
     

      (8% pleiotropy),   

… 
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      (100% pleiotropy).   

3.2.11 Predictive value of the conditional evolvability 

When a trait under directional selection (trait 1) is genetically connected to another trait under 

stabilizing selection (trait 2) Hansen (2003) has shown that the evolvability of trait 1 is 

determined by its conditional genetic variance, assuming multivariate normally distributed 

allelic effects. This variance predicts the evolutionary response of trait 1 after equilibrium 

between the different selective forces working on the two traits has been obtained, such that 

the initial displacement of trait 2 caused by correlated response has reached a certain value 

and stopped responding. The response in trait 1 is then estimated by multiplying the 

conditional additive genetic variance of trait 1 with its selection gradient (  ). The conditional 

genetic variance (      
) of trait 1 on trait 2 equals the additive genetic variance of trait 1 

minus the squared additive genetic covariance between trait 1 and trait 2 divided by the 

additive genetic variance of trait 2, or the additive genetic variance of trait1 times the fraction 

of it being independent of potential constraining characters (its autonomy) (Hansen and Houle 

2008). In terms of the G matrix:       
      

    
 

    
   . Thus, 

           
           

    
 

    
     

  

  
.  

I have tested the predictive value of this conditional evolvability and compared it with the 

univariate version of the  ande’s equation (            ) as well as the bivariate (i.e. 

complete in the case of two traits) Lande equation (                      ). The 

parameter    is approximated in the following way: 

    
            

   

  
 

               
   

  
 . 

As the Lande equation assumes multivariate normal distribution of allelic effects, and the 

conditional evolvability uses the same equation with a constrained variance, it is not evident 

that either will predict well, since the allelic distribution changes through the course of 

evolution. 

Parameter settings: c = 20, t = 201, N = 200, L = 50, s1 = 0.1, s2 = 0.02, std = 0.5. 
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B matrices: 

      
              
              

      (      
  

        ) 

(36% pleiotropy, only synergistic) 

      
              
              

      (      
  

        ) 

(68% pleiotropy, only synergistic)  

      
              
                    

      (      
  

        ) 

(36% pleiotropy, only antagonistic) 

      
              
                    

      (      
  

        ) 

(68% pleiotropy, only antagonistic). 
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4 Results 

4.1.1 Hidden pleiotropy  

Here I investigated whether a hidden pleiotropic GP map reduced the evolvability of trait 1 

compared to a modular map. Examples of the simulation procedure are shown in figure 10. In 

figure 10a and b, a modular B matrix is used and trait 2 is genetically independent from trait 

1, and it is kept at the same value by stabilizing selection. Trait 1, being subject to positive 

directional selection, has a clear response the first few generations while there is a 

considerable amount of additive genetic variance underlying it. After about 200 generations, 

the genetic variation is depleted and the trait stops responding.  

In figure 10c and d, the GP map is pleiotropic and a lower response is demonstrated. All loci 

with non-zero effects are pleiotropic, with 80% of them being synergistic and 20% of them 

being antagonistic such that 40% of the pleiotropy is hidden (B3). After about 100 

generations trait 1 stops responding although it still has some amount of additive genetic 

variance. This variation is, however, not independent from the additive genetic variance of 

trait 2, as can be seen from the correlation graph. Thus according to the Lande equation, the 

stabilizing selection on trait 2 will through covariances induce a negative selection pressure 

on trait 1 diminishing its response:                    . The term      is reduced whenever 

     is non-zero and has an opposite sign to   . In this example      is positive (cf. fig. 10d) 

and    is negative whenever trait 2 is larger than the optimum (whose expected value is 10).  

(     is the additive genetic variance of trait 1 and      is the additive genetic covariance 

between trait 1 and trait 2.) This effect goes the opposite way as well, as trait 2 is slightly 

increased. In this way pleiotropy is constraining the adaptive evolution of trait 1. 

The selection coefficients (s1 and s2) were set such that a huge difference in response in trait 1 

between the scenario with the fully constrained GP map (B1) and the on with the modular 

map (B7) would be observed. The results are given as the mean output values from 20 

recursions. The response values in these two cases were 2.42 (constrained) and 23.14 

(modular). The values are in units of environmental variance with expected initial heritability 

equal to 
 

 
. In the constrained case a fast response is seen the first few generations, that very 

quickly halts and remains at the same level for the rest of the evolutionary time (fig. 11a). As 
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figure 11a shows, mean values of the two traits are very similar, as are their underlying 

genetic variances (fig. 11b). The two traits are genetically completely correlated, as can be 

seen from the correlation graph. As in the second example above (fig. 10), the response stops 

although there still is a certain level of additive genetic variance, implying that conflicting 

selection pressures are present. 

 

Figure 10 – The evolution of trait 1 and trait 2 with a modular (a, b) and a 40% hidden pleiotropic (c, d) 

GP map, example from one single run, mean phenotype (left) and additive genetic variance as well as 

genetic correlation (right). 

 

In the case with the modular GP map the response in trait 1 lasts until the underlying additive 

genetic variance is approximately zero (fig. 11c and d), and trait 2 is maintained at the value 

10 whereas its underlying additive genetic variance is reduced to almost zero, however, 

a b 

c d 
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slower than the additive genetic variance of trait 1. With the 100% hidden pleiotropic GP 

map, the responses are similar to the modular case (fig. 11e), however, with the additive 

genetic variance of trait 2 dropping equally fast as the additive genetic variance of trait 1 (fig. 

11f). This is expected as these variances are underlain be the same loci. In both these cases the 

initial genetic correlation is approximately zero (fig. 11d and f). In the modular case it 

remains there throughout the time span, whereas in the hidden pleiotropic case the correlation 

increases, approximating unity after a few hundred generations. The hypothesis was that a 

correlation would build up and that this would have a constraining affect on the response. 

However, no constraining affect is observed (cf. fig. 11c and e). The correlation may result 

from only a very modest part of the underlying variance, as initially when most of the 

evolutionary change occurs and the level of additive genetic variance is high, the correlation 

is still low (11f). After most of the variance is depleted, a high genetic correlation does not 

matter. In addition, a certain displacement of trait 2 is possible without total cease of the 

response in trait 1 according to the fitness function (eq. 7). The magnitude of such a 

displacement is dependent on the strength of stabilizing and directional selection. 

The responses in trait 1 in the scenarios of all the other GP maps in this experiment have 

values in-between those of the fully constrained and the modular map, the higher percentage 

of the pleiotropy being hidden, the higher the response (figs. 12 and 13a, and table 2). The 

differences in response between the first five B matrices are evident and about five times the 

environmental variance (  ) in magnitude (range: 4.60 - 5.11). In comparison, the differences 

in response between the last three matrices (80% hidden, 100% hidden and modular) are very 

small. After 150 generations trait 1 has reached approximately its final value given all 

matrices (fig. 12). The level of additive genetic variance of trait 1 drops faster for the less 

constrained GP maps (fig. 13b).  

The less pleiotropy is hidden the sooner trait 1 stops responding to selection, however, for the 

last three matrices (80% hidden, 100% hidden and modular) the responses behave very 

similarly (fig. 12). This means that with respect to selection limit a hidden pleiotropic GP map 

does not reduce evolvability compared to a modular GP map (table 2). 
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Figure 11 – The evolution of trait 1 and trait 2 with a fully constrained (a, b), a modular (c, d) and a 100% 

hidden pleiotropic (e, f) GP map (mean from 20 recursions), mean phenotype (left) and additive genetic 

variance as well as absolute values of the genetic correlation (right). (When the additive genetic variance 

of either trait approximates zero, the sample size for the calculation of the mean correlation decreases, 

because the correlation is not calculated in cases where the additive genetic variance of one of the traits 

equals zero.) 

a b 

c d 

e f 
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Figure 12 - The population mean of trait 1 is given as the mean value of 20 recursions. The results under 

the different GP maps are shown by the respective lines, the percentages indicating the degree of hidden 

pleiotropy. (Vertical bars are 95% confidence intervals.) 

 

 

Figure 13 -  a) The selection limit of trait 1 after 750 generations of selection (mean of 20 recursions) is 

given for GP maps of increasing degree of hidden pleiotropy, and compared to a modular map. (Vertical 

bars are 95% confidence intervals.) b) The additive genetic variance of trait 1 across generations for the 

different GP maps. 

a b 
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Table 2 

GP map Selection limit 

0% hidden   pleiotropy / fully 

constrained 

 

2.42 (2.30, 2.54) 

20% hidden pleiotropy 7.53 (7.12, 7.94) 

40% hidden pleiotropy 12.21 (11.63, 12.79) 

60% hidden pleiotropy 16.80 (15.95, 17.66) 

80% hidden pleiotropy 21.89 (21.23, 22.54) 

100% hidden pleiotropy 22.63 (21.92, 23.33) 

(fully) modular 23.14 (22.41, 23.87) 

The table shows the total response (mean and 95% CI) to directional selection in 

trait 1 when trait 2 is subject to stabilizing selection after 750 generations. The 

different rows represent the different genetic architectures. 

 

4.1.2 Mouse B matrix 

By comparison the estimated mouse femur-humerus B matrix resulted in a selection limit of 

4.90 (with CI: (4.60, 5.19)), reached after about 200 generations, and almost reached after 100 

generations (figs. 14a and 12). The absolute value of the correlation being close to one 

indicates high constraint for independent evolution in this GP map (fig. 14b).  

As the distribution allelic effects with respect to direction in phenotype space (  ) here were 

highly skewed (cf. section 3.2.2), this is probably not the most optimal B matrix based on the 

original in terms of evolvability, as according to the experiment on the number of loci (3.2.3), 

it is better with many small loci than a few large ones if the level of additive genetic variance 

is the same, cf. section 4.1.4. As initially              
  

   (eq. 9), the majority of the 

additive genetic variance is generated at the two first loci of the matrix, and as they are both 

quite synergistically pleiotropic this B matrix is apparently rather constrained. This means 

that the femur and humerus have limited possibilities for independent evolution, which is 

expected for homologous segments (Young et al. 2010).  
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Figure 14 - The evolution of trait 1 and trait 2 with the mouse GP map (mean of 20 recursions), mean 

phenotype (a) and additive genetic variance (b) as well as absolute values of the correlation (b). 

 

4.1.3 Short-term response 

Here I compare the different GP maps with regard to the response in the first 20-100 

generations, i.e. the short-term response. I found that the more of the pleiotropy is hidden the 

more generations it takes before trait 1 stops responding (fig. 15a). Initially, all GP maps give 

approximately equal response, the more constrained ones soon slowing down (fig. 15b). The 

first 20 generations of selection the evolution of trait 1 seems identical in the cases of the 

100% hidden pleiotropic GP map and the modular GP map (fig. 15b). In these GP maps, the a 

priori prediction from the Lande equation for the first generation response is              

         
   

        
          , where     

  

  
 ,     

             
   

  
  and            

                          
      , as the initial expected G matrix is     

  
  

  . The 

observed values are close to these (table 3). 

a b 
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Figure 15 - Mean value of trait 1 for the different GP maps, across the first 100 (a) and 20 (b) generations. 

(Vertical bars are 95% CI.) Increased sample size (  = 60). 

 

Table 3 

GP map Generation Response 

100% hidden pleiotropic        
 1 0.5246 (0.4765, 0.5728) 
 5 0.5313 (0.5098, 0.5529) 
 10 0.5124 (0.4964, 0.5284) 
 15 0.5008 (0.4880, 0.5135) 
 20 0.4813 (0.4693, 0.4932) 
 40 0.4002 (0.3916, 0.4088) 
 60 0.3207 (0.3133, 0.3281) 
 80 0.2593 (0.2535, 0.2651) 
 100 0.2151 (0.2106, 0.2197) 
Modular   
 1 0.5388 (0.4856, 0.5921) 
 5 0.5384 (0.5145, 0.5623) 
 10 0.5112 (0.4966, 0.5259) 
 15 0.4958 (0.4831, 0.5085) 
 20 0.4826 (0.4702, 0.4951) 
 40 0.4137 (0.4038, 0.4235) 
 60 0.3334 (0.3266, 0.3401) 
 80 0.2702 (0.2650, 0.2754) 
 100 0.2235 (0.2192, 0.2278) 
The table shows the cumulative response (mean and 95% CI) to directional selection in trait 1 
divided by the number of generations elapsed,  when trait 2 is subject to stabilizing selection. 
The different rows represent the different genetic architectures and after different numbers 
of generations. 

 

a b 
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With a smaller population size ( =50,  =40) the short-term evolvability of the modular and 

the 100% hidden pleiotropic GP map remained similar. After 5 generations the cumulative 

responses divided by the number of generations elapsed were 0.5112 (CI: (0.4715, 0.5508)) 

for the modular GP map and 0.4876 (CI: (0.4350, 0.5401) for the hidden pleiotropic map. 

After 100 generations the numbers were 0.1638 (CI: (0.1573, 0.1702)) and 0.1589 (CI: 

(0.1521, 0.1657)), respectively. The two GP maps also yielded similar results for the selection 

limit (after 750 generations,  =50,  =40) which were 16.78 (CI: (16.16, 17.39)) for the 

modular GP map and 16.35 (CI: (15.67, 17.03)) for the hidden pleiotropic map. Note however 

that except in the very short term (e.g. five generations) the response is significantly reduced 

in both GP maps for  =50 compared to  =200 (cf. table 2 and table 3). For the cumulative 

evolvability this is true already after 20 generations of selection. When the number of loci is 

reduced to 4 ( =4,  =200,  =40) such that expected initial    
  
  

  for both the modular 

and the hidden pleiotropic GP map, the selection limit (after 350 generations) and the short 

term cumulative response are still approximately equal between these two GP maps, the 

modular having slightly larger estimates, as in the other cases.  

4.1.4  The effect of number of loci 

Comparing the response to selection in GP maps comprising 2 and 50 loci with the same 

initial G matrix, I found that the total response after 750 generations of selection (fig. 16a) 

was approximately 3.6 times higher in the case of 50 loci (Selection limit = 44.47, CI: (43.53, 

45.41)) than in the case of two loci (Selection limit = 12.32, CI: (11.23, 13.40)). In both cases 

the GP map was fully modular and the initial G matrix was equal, meaning that also the 

amount of genetic variance for trait 1 was equivalent (fig. 16b).  The following mean G 

matrices resulted: 

2 loci: 

Initially:     
          

  
 .  After 750 generations:      

                  
  

 .     

50 loci: 

Initially:     
              

  
 .  After 750 generations:      

                     
  

 .  
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Figure 16 - Evolution of trait 1 (a) with a GP map of two loci with all     equal to 2.236068  vs. one with 50 

loci with all      equal to 0.4472136, and the amount of additive genetic variance of trait 1 (b). 

 

The reason why the selection limit of the 50 loci GP map (b) was much higher it was for the 2 

loci GP map (a) is apparently because as                    
 
         , then for 

some maximal value   of all    (when alleles have gone to fixation), and all      being equal 

                 , making       in (a) become                    

         , and in (b)                                     . In this case if 

      in (a) is e.g. 20 then       in (b) would be 60, resulting in the expected response 

          five times larger in (b) than in (a). This also follows from the fact that      in (a) 

is only five times larger than in (b), whereas in (b)   is 25 times larger than in (a). This means 

that if the current experiment results in equal mean allelic values in both (a) and (b) when all 

genetic variance is depleted, then the total response in (b) will be five times larger than in (a).   

Would one rather have varied the     value than the values of the     ’s to yield equal initial 

G matrix,    
  
  

  in (a) and (b), then if we let all      equal a number  ,         

    . For simplicity we let     and get          . Then in (a)     
  

 
  and in (b) 

    
  

  
 . As the standard deviation of the allelic values (   ) in (a) is five times larger than 

in (b), and   is 25 times larger in (b) than in (a), I would expect this scenario to yield similar 

results.        

a b 
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This implies that even if the initial G matrix is the same, the total response in the long term is 

larger when the underlying GP map comprises many loci with small effects than if it consists 

of a few loci with large effects. This is important to have in mind when constructing different 

B matrices, and when comparing the response to selection of different GP maps. 

4.1.5 Alternative allelic distributions 

In the biallelic setting the modular GP map yielded an almost immediate fast response (fig. 

17a), whereas the response given the pleiotropic GP map was delayed for some tens of 

generations (the delay was highly variable). In the setting with alleles drawn from a normal 

distribution the two GP maps yielded very similar responses (fig. 17b).  

 

 

a b 

c 

Figure 17 - The evolution of trait 1 for 

a modular and for a hidden pleiotropic 

GP map in a two-allele setting (a) and 

in a normally distributed allele setting 

(b) (Vertical bars are 95% CI.). 

Additive genetic variance of trait 2 for 

the two settings are shown in c. 
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Note that the adaptive dynamics of trait 1 in the two settings are quite different. As explained 

by Baatz and Wagner (1997), the reduction in the evolutionary response of trait 1 is linked to 

the increase in the variance of trait 2. As can be seen in figure 17c, an increase in the additive 

genetic variance of trait 2 takes place in the biallelic setting, but not in the normal distribution 

setting. It seems that the hidden pleiotropic GP map does not suffer from the “adaptive 

inertia” found in Baatz and Wagner (1997) when a continuum of alleles with different effect 

sizes are present, suggesting that adaptive inertia caused by hidden pleiotropy is not a 

common phenomenon of phenotypic evolution. 

4.1.6 Mutation-based simulations 

After 1000 generations of mutation and selection the modular GP map gave a slightly higher 

total response than the pleiotropic one, 106.36   (CI: (100.86, 111.85)) and 98.71   (CI: 

(94.68, 102.75) respectively. Baatz and Wagner (1997) showed that the degree of constraint 

from hidden pleiotropy was dependent on the relationship between the strength of directional 

and stabilizing selection, weak directional and strong stabilizing selection being highly 

constraining. As I have used a fitness function with linear directional selection and quadratic 

stabilizing selection, for a single mutation to be beneficial it must be under a certain value and 

that value depends on the strength of directional and stabilizing selection, as explained above. 

According to the fitness function  (eq. 7),                           –    
     , 

assuming the population mean is at the optimum trait 2 value, a mutation effect of size   is 

beneficial (with the hidden pleiotropic GP map) if                . The standard 

deviation of mutational effect size in this case was         , making              

       . Most mutations would thus be expected to be immediately beneficial, given the 

assumptions made. If, however,      is increased to e.g. 6, then                    

 . In that case most mutations are expected to be initially detrimental. Indeed, when I repeated 

the experiment with       , I found a much larger relative difference in evolutionary 

response between the modular and the pleiotropic GP maps, 5915.31 (CI: (5826.57, 6004.05)) 

and 2094.21 (CI: (2014.31, 2174.11), respectively. In the case with         , the modular 

GP map yielded approximately only an 8% higher response than the hidden pleiotropic GP 

map, whereas when        the difference was approximately 180%.  

If the criterion                    was to be achieved by changing the strength of 

stabilizing selection (  ) rather than the mutational standard deviation (    ), the 
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corresponding value when          would be        . This is much higher than the 

value I have been using in most of the experiments (0.02). For the modular GP map this gives 

a total response after 1000 generations of 111.98 (CI: (107.73, 116.24)), which is 

approximately 810% of the response with the hidden pleiotropic GP map, which was 13.84 

(CI: (12.07, 15.62)). In this case hidden pleiotropy is highly constraining.  

4.1.7 Even B matrix 

The question here was whether it matters what the specific directions of the hidden pleiotropic 

effects are for the evolvability. The selection limit of the even B matrix was slightly (about 

3%) higher than the one of the reversed even B matrix. These B matrices yielded somewhat 

lower selection limits than the modular and 100% hidden pleiotropic ones (about 6-12% 

lower after 750 generations of selection, see tables 2 and 4). 

For the short-term response, initially no significant difference is observed neither between the 

two even matrices nor between these and the modular and hidden pleiotropic one. However, 

after about 5 to 15 generations a small difference is seen in the favor of the modular and 

hidden pleiotropic GP maps (see tables 3 and 5), and from about that point on there is a 

tendency for the even B matrix to yield a slightly higher response than the reversed even B 

matrix. 

 

Table 4 

GP map Selection limit 

Even B 

 

21.39 (20.61, 22.17) 

Reversed even B 20.71 (19.93, 21.50) 

The table shows the response (mean and 95% CI,     ) to directional 

selection in trait 1 when trait 2 is subject to stabilizing selection. The different 

rows represent the different genetic architectures. 
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Table 5 

GP map Generation Response 

Even B        
 1 0.5387 (0.4887, 0.5888) 
 5 0.5095 (0.4868, 0.5322) 
 10 0.4942 (0.4794, 0.5090) 
 15 0.4819 (0.4676, 0.4962) 
 20 0.4659 (0.4527, 0.4791) 
 40 0.3793 (0.3701, 0.3886) 
 60 0.2938 (0.2874, 0.3002) 
 80 0.2341 (0.2293, 0.2389) 
 100 0.1931 (0.1893, 0.1969) 
Reversed even B   
 1 0.5262 (0.4816, 0.5707) 
 5 0.5176 (0.4986, 0.5367) 
 10 0.4911 (0.4798, 0.5023) 
 15 0.4803 (0.4699, 0.4907) 
 20 0.4599 (0.4496, 0.4702) 
 40 0.3695 (0.3595, 0.3794) 
 60 0.2885 (0.2807, 0.2963) 
 80 0.2313 (0.2253, 0.2373) 
 100 0.1907 (0.1860, 0.1955) 
The table shows the cumulative response (mean and 95% CI,     ) to directional selection 
in trait 1 divided by the number of generations elapsed,  when trait 2 is subject to stabilizing 
selection. The different rows represent the different genetic architectures and after different 
numbers of generations. 

 

As the even B matrices are also 100% hidden pleiotropic (with some modular loci) because 

they initially yield no correlations, it is natural to compare them with the 100% hidden 

pleiotropic B matrix (B6) of the experiment in section 3.2.1. The latter had a 5.79% higher 

selection limit than the even B matrix and a 9.24% higher selection limit than the reverse even 

B. The even B gave a selection limit that was 3.26% higher than the selection limit of the 

reversed even B matrix. The corresponding relationships between the sums of the absolute 

values of the entries of B that map to trait 1 were respectively 9.25%, 14.88% and  5.15%. 

Even if these latter ratios are not exactly equal to those of the selection limits, it is natural to 

ask whether the selection limit can be predicted by the sum of the absolute values of the 

entries in the B matrix mapping to trait 1. It has certainly been shown that the G matrix is not 

sufficient in these cases. To test this hypothesis I have created two new B matrices yielding 

equal expected initial G matrix but where one of them has entries of the B matrix mapping to 

trait 1 that sum up to a 25% higher value then those of the other. They are both 100% hidden 
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pleiotropic. I compared their evolutionary responses using the same parameter values as for 

the other experiments on hidden pleiotropy (section 3.2.1). Note that the expected initial 

heritability (  ) here is 99%.  B matrices:  

Regular B matrix =  
        
            

                 
         

      
      

Irregular B matrix =   
        
            

                     
      

   
 
    . 

The regular B matrix yielded a selection limit of 92.11 with CI: (89.17, 95.05), whereas the 

irregular one yielded 72.86 with CI: (70.51, 75.21), the selection limit of the regular one thus 

being 26.42% higher that of the irregular B matrix. This is close to the predicted 25%. It thus 

seems likely that the sum of the absolute values of the B matrix entries mapping to the focal 

trait gives a good prediction of the selection response. In geometrical terms these values are 

the lengths of the projections of the vectors    (fig. 8) onto the trait 1 axis. This could be 

generalized to the hypothesis that it is the sum of these projections onto the axis of any 

direction of selection ( ) that predicts the selection limit. This implies that when this sum is 

unequal among different GP maps, the G matrix alone does not give a good measure of 

evolvability. 

4.1.8 Partial hidden pleiotropy vs. partial modularity 

Here I investigated whether a partially modular GP map enables a higher response than a 

partially hidden pleiotropic GP map with the same initial G matrix. The partially modular GP 

map had a higher total response after 350 generations of selection (at which point the 

remaining additive genetic variance of trait 1 was less then 10% of the initial value, however, 

in the modular case less remained than in the pleiotropic case, 0.02 and 0.34 respectively) 

(table 6, fig 18). For the short-term evolvability the difference between the two architectures 

is less evident (table 7), the modular GP map evolving slightly faster than the pleiotropic one 

after some generations. 
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Table 6 

GP map Selection limit 

Partially hidden pleiotropic      

 

12.81 (12.17, 13.45) 

Partially modular 17.57 (16.71, 18.42) 

The table shows the response (mean and 95% CI) to directional selection in trait 

1 when trait 2 is subject to stabilizing selection. The different rows represent the 

different genetic architectures. 

 
 
 
Table 7 

GP map Generation Response 

Partially hidden 
pleiotropic        
 1 0.4322 (0.3634, 0.5011) 
 5 0.3761 (0.3507, 0.4014) 
 10 0.3531 (0.3309, 0.3754) 
 15 0.3434 (0.3235, 0.3633) 
 20 0.3328 (0.3133, 0.3523) 
 40 0.2610 (0.2460, 0.2760) 
 60 0.1975 (0.1857, 0.2092) 
 80 0.1546 (0.1461, 0.1631) 
 100 0.1260 (0.1188, 0.1331) 
 Partially modular   
 1 0.4151 (0.3283, 0.5018) 
 5 0.3638 (0.3349, 0.3926) 
 10 0.3547 (0.3339, 0.3755) 
 15 0.3332 (0.3135, 0.3529) 
 20 0.3178 (0.2999, 0.3358) 
 40 0.2674 (0.2526, 0.2823) 
 60 0.2221 (0.2104, 0.2339) 
 80 0.1859 (0.1770, 0.1948) 
 100 0.1572 (0.1496, 0.1648) 
The table shows the cumulative response (mean and 95% CI) to directional selection in trait 1 
divided by the number of generations elapsed,  when trait 2 is subject to stabilizing selection. 
The different rows represent the different genetic architectures and after different numbers 
of generations. 
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Figure 18 – The evolution of trait 1 with a partially modular and a partially hidden pleiotropic GP map. 

(Vertical bars are 95% CI.) 

 

4.1.9 Linkage disequilibrium 

When I tested for effects of linkage disequilibrium on the response in trait1, I found that the 

response when the GP map had no effects on trait 2 was only slightly larger than it was when 

the GP map was modular (table 8, fig. 19).  

Table 8 

GP map Selection limit 

No effects on trait 2      

 

24.21 (23.26, 25.17) 

Modular 23.14 (22.41, 23.87) 

The table shows the total response (mean and 95% CI) to directional selection in 

trait 1 when trait 2 is subject to stabilizing selection after 750 generations. The 

different rows represent the different genetic architectures. 
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Figure 19 – The evolution of trait 1 in the case of a modular GP map and in the case of a GP map with no 

effects on trait 2 (mean from 20 recursions). (Vertical bars are 95% confidence intervals.) 

 

This difference should be due to linkage disequilibrium. LD effects are thus not important. 

4.1.10 Effects of the strength of stabilizing selection 

When the stabilizing selection becomes relatively strong,    = 0.08 (log(  ) = -2.526), there is 

a small difference in selection limit of trait 1 between the modular GP map (23.75  ) and the 

100% hidden pleiotropic GP map (21.06  ). In comparison, at this level of stabilizing 

selection the response with a fully constrained GP map is 0.59  . In the case of 100% hidden 

pleiotropy the response seems to be an approximately linear function of log(  ) (fig. 20). In 

the case of weaker stabilizing selection (   = 0.04,    = 0.02,    = 0.01 or  log(  ) = -3.219, 

log(  ) = -3.912, log(  ) = -4.605) the difference between the response in trait 1 of the 

modular map and the 100% hidden pleiotropy map was very small (fig. 20, table 9). 

For the fully constrained GP map the evolutionary short-term response decreased 

approximately linearly with increasing strength of stabilizing selection, as was the case with 
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the selection limit. However, for both the modular and the 100% hidden pleiotropic GP map 

this relationship was quite different. After 20 generations of selection the mean rate of 

evolution increases somewhat with the strength of stabilizing selection for these GP maps 

(table 10). The values for the modular map tend to be slightly higher than those of the 

pleiotropic map. However, there is no significant difference between the modular and the 

hidden pleiotropic GP map at any level of stabilizing selection. 

 

 

Figure 20 – The y-axis gives the selection limit of trait 1 after 750 generations at different levels of 

stabilizing selection on trait 2 and under different GP maps. The x-axis contains the natural logarithm of 

the selection coefficient of trait 2 (  ), cf. the fitness function (eq. 7). The response is in units of 

environmental variance (  ). (Vertical bars are 95% confidence intervals.) 
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Table 9 

GP map    Selection limit 

100% hidden pleiotropic        
 0.01 23.07  (22.32, 23.81) 
 0.02 22.63  (22.06, 23.19) 
 0.04 22.22  (21.42, 23.01) 
 0.08 21.06  (20.30, 21.82) 
 0.16 20.35  (19.47, 21.23) 
Modular   
 0.01 24.31  (23.64, 24.98) 
 0.02 23.64  (22.95, 24.33) 
 0.04 22.97  (22.22, 23.72) 
 0.08 23.75  (23.13, 24.36) 
 0.16 23.00  (22.23, 23.78) 
Fully constrained   
 0.01 4.96  (4.78, 5.14) 
 0.02 2.47  (2.36, 2.59) 
 0.04 1.23  (1.13, 1.33) 
 0.08 0.59  (0.51, 0.67) 
 0.16 0.38  (0.31, 0.45) 
The table shows the total response (mean and 95% CI) to directional selection in trait 1 when 
trait 2 is subject to stabilizing selection after 750 generations. The different rows represent 

the different genetic architectures and levels of stabilizing selection (  ). 
 

Table 10 

GP map    Response 

100% hidden pleiotropic        
 0.01 0.4715 (0.4532, 0.4898) 
 0.02 0.4632 (0.4424, 0.4841) 
 0.04 0.4712 (0.4440, 0.4983) 
 0.08 0.4995 (0.4716, 0.5274) 
 0.16 0.5213 (0.4919, 0.5507) 
Modular   
 0.01 0.4909 (0.4725, 0.5092) 
 0.02 0.4990 (0.4684, 0.5295) 
 0.04 0.5035 (0.4826, 0.5243) 
 0.08 0.5622 (0.5369, 0.5875) 
 0.16 0.5746 (0.5424, 0.6067) 
Fully constrained   
 0.01 0.2200 (0.2117, 0.2284) 
 0.02 0.1205 (0.1128, 0.1282) 
 0.04 0.0617 (0.0573, 0.0661) 
 0.08 0.0298 (0.0255, 0.0340) 
 0.16 0.0179 (0.0140, 0.0219) 
The table shows the cumulative response (mean and 95% CI) to directional selection in trait 1 
for the first 20 generations of selection divided by 20. The different rows represent the 

different genetic architectures and levels of stabilizing selection (  ). 
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4.1.11 Pleiotropy as a source of variation 

The question here was whether an intermediate level of pleiotropy can be beneficial even 

though it generates correlations, when it contributes to the additive genetic variance of the 

focal trait. When the level of pleiotropy reaches about 40% the selection limit drops in a 

linear fashion (fig. 21a). However, it is maximized at an intermediate level of pleiotropy, that 

is, when the percentage of pleiotropic loci is in the area 24 – 36 %. For short-term initial 

evolutionary rate, trait 2 had stopped responding at least after 10 generations of selection. 

This means equilibrium between the opposing selective forces had been reached, and I 

compared the mean rate of evolution from generation 11 to 21. The same trend as for the 

selection limit is present here as well, but it is not as clear (fig. 21b). The single highest 

estimated value was for B matrix 5, corresponding to 16% pleiotropy, as predicted by Hansen 

(2003). However, all GP maps in the range 8-40% pleiotropy had similar responses and 

cannot be clearly distinguished based on this experiment.  

 

 

Figure 21 - The selection limit of trait 1 after 350 generations (a) and mean per generation response of 10 

consecutive generations after 10 generations of selection (b) (mean of 20 recursions) are given for each GP 

map. (Vertical bars are 95% confidence intervals.) 

 

  

a b 
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4.1.12 Predictive value of the conditional evolvability 

Her I tested the predictive value of the Hansen (2003) conditional evolvability where      

      
           

    
 

    
     

  

  
. As the selective equilibrium was reached after the first few 

generations (<20) (fig. 22), I analyzed predictions about the response in trait 1 starting after 

20 generations of selection. Both the Lande equation, which included the indirect selection 

term (the bivariate Lande, with estimated    term), and the conditional evolvability gave good 

predictions of the evolution of trait 1, when stabilizing selection on trait 2 was present. The 

GP map then included 36% synergistic pleiotropy, and the rest of the loci were modular (fig. 

23). The univariate Lande equation (disregarding the effects of indirect selection) gave highly 

inaccurate predictions. When a GP map with 68% pleiotropy was used, the bivariate Lande 

equation estimator gave slightly worse predictions whereas the conditional evolvability 

remained highly accurate. The unconditional additive genetic variance (evolvability) in the 

case with 68% pleiotropy started out and remained higher than it did in the case with 36% 

pleiotropy. For the conditional variance this relationship was reversed. For both GP maps the 

unconditional and the conditional variance were reduced in a similar manner across 

evolutionary time. The unconditional variance was always higher than the conditional 

variance (fig. 23). The GP maps with only antagonistic pleiotropy yielded similar results. 

 

Figure 22 – The evolution of trait 1 and trait 2 with a GP map of 36% of the loci being synergistically 

pleiotropic. Trait 2 has reached its total displacement from optimum after about five generations, so the 

selective equilibrium is obtained. 
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Figure 23 - The cumulative response (mean of 20 recursions) in trait 1 and the mean of its respective 

predicted values from different estimators with a GP map of 36% pleiotropy (left) and a GP map of 68% 

pleiotropy (right) with only synergistic effects (95% CI for the actual response and 95% PI (prediction 

intervals) for the estimates are shown as vertical bars.). Unconditional and conditional evolvabilities of the 

respective GP maps are shown in the bottom row (These include the first 20 generations, and thus the 

phase before equilibrium is reached.).             
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5 Discussion 

 

According to the Lande equation, the per generation change in population means of multiple 

quantitative traits (   ) equals the product of the additive genetic variance-covariance matrix 

( ) and the selection gradient ( ). The selection gradient is a linear representation of selection 

in terms of change in fitness per change in phenotype, and the G matrix expresses how much 

heritable variation there is in each trait (  ), and how much of this variation is independent of 

the other traits. As this representation separates selection from variation, the ability to respond 

to selection is reflected in the G matrix. Whether the G matrix is a sufficiently good measure 

of evolvability is however not trivial (Houle 1991; Gromko 1995; Baatz and Wagner 1997; 

Pavlicev and Hansen 2011). The Lande equation predicts evolutionary change from one 

generation to the next, but how the G matrix changes over time, and thus how the response 

changes, depends on the way in which the genetic variation is expressed as phenotypic 

variation. In other words, evolvability depends on the genotype-phenotype map (Wagner and 

Altenberg 1996). A crucial aspect of the GP map that can affect evolvability is its pleiotropic 

structure, as pleiotropy is the major source of genetic correlations and has thus the potential to 

impede independent evolution of traits. If we assume the pleiotropy at each locus is a stable 

property of the GP map, the genetic component ( ) of the phenotype can be modeled as the 

product of a matrix ( ), describing the GP map, and a vector ( ) of allelic values (Wagner 

1989). It has been criticized that such linear representations of the GP map are not realistic 

and cannot account for all types of evolutionary change (Polly 2008). However, they can be 

good approximations, and are useful for testing hypotheses of how different factors affect 

evolutionary dynamics (Hansen 2008). I have used the model of Wagner (1989) in simulation 

experiments to explore a variety of different GP maps in order to learn about the effects of the 

underlying pleiotropic structure on the evolvability of quantitative traits. A scenario was 

created where a population of individuals with two traits experienced conflicting selection 

pressure, as one trait was under directional selection and the other was under stabilizing 

selection. To find out whether the underlying pleiotropic structure matters if the G matrix is 

given, I have compared GP maps that yield the same expected (average) initial G matrix. The 

main result is that   is in general a good indicator of evolutionary potential and constraint 

(Roff 2007), and pleiotropy that does not contribute to the genetic covariance has only subtle 

effects on evolvability. An important finding is that both the Lande equation and the 
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conditional evolvability are good predictors of evolutionary response across multiple 

generations, despite extensive pleiotropy in the underlying GP map. According to Roff 

(2007), quantitative genetic theory does not predict well when selection and genetic 

correlation are of opposite signs. Here, however, the contrary was found. The conditional 

evolvability proved even more precise than the Lande equation (with estimated   ), and it has 

the great advantage of not demanding information about the strength of stabilizing selection. 

This result, as well as other findings of the study, shows that the strength of stabilizing 

selection is not determining the evolutionary outcome either. It was primarily the selection 

limit (total evolutionary change achievable) that was affected by the underlying GP map. Here 

the partially modular structure proved advantageous when genetic correlations were present, 

and the number of loci as well as the absolute effect sizes in the GP map were highly 

determinative despite a constant initial G matrix.  

The main result from the experiments on hidden pleiotropy was that the response to 

directional selection is not significantly impaired by stabilizing selection on another trait 

when these two traits are only connected by hidden pleiotropy, given only standing genetic 

variance and initially normally distributed allelic effects. This holds for both short- and long- 

term evolution (selection limit), for many as well as very few loci, and for different 

population sizes. The result is, however, conditional on the stabilizing selection not being too 

strong compared to directional selection. My hypothesis was that changes in allele 

frequencies would generate correlations strong enough to constitute a constraint. This 

hypothesis was rejected here. However, as other studies have shown (Slatkin and Frank 1990; 

Baatz and Wagner 1997; Griswold 2006), this is not valid for all distributions of allelic 

effects. In non-normal distributions the underlying pleiotropic structure of the GP map can 

matter. Gromko (1995) showed that different pleiotropic structures of the GP map with the 

same genetic correlations can yield different levels of variation in correlated responses among 

selection lines. Some configurations could even give correlated responses in opposite 

direction to the prediction from selection and correlation (i.e. the Lande equation). The 

variation in the correlated response was higher for GP maps with more loci being modular 

than for more hidden pleiotropic GP maps. As there was no stabilizing selection on the second 

trait in Gromko’s simulations, this was free to drift in the modular case but was constrained 

not to change (or change according to the level of genetic correlation) in the hidden 

pleiotropic case. In the present study, the situation is quite different as the second trait was 

under stabilizing selection. What I found when using the GP maps from Gromko’s study was 
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that the response in trait 1 was significantly higher in the partially modular case (GP map with 

some pleiotropic loci generating correlations and some modular loci) than in the partially 

hidden pleiotropic case (GP map with pleiotropic loci that only partially cancel each other, 

thus generating correlations). This adds to Gromko’s point that these GP maps are not 

equivalent although they give the same initial G matrix. Thus, even if no significant 

difference was found between the evolvability generated by a modular and a hidden 

pleiotropic GP map in the case of uncorrelated characters (section 4.1.1 and 4.1.3), this is not 

necessarily the case when genetic correlation are present, the modular structure having higher 

flexibility to counteract the unwanted correlated responses when opposing selective forces are 

present. This phenomenon seems only evident for the selection limit, however, as a small 

difference was noted in the short term response also in the no correlation scenario (section 

4.1.1 and 4.1.3).  

The main result form the hidden pleiotropy experiment, that hidden pleiotropy does not 

impose constraint on evolvability, seems to be in partial disagreement with a study by Baatz 

and Wagner (1997). They found that the rate of evolution of the focal character is reduced by 

a term proportional to          
   (cf. section 3.2.4). This effect is indeed repeated in this 

study (section 4.1.5) where the biallelic system yielded a significant constraint of hidden 

pleiotropy compared to modularity. In their stochastic model Baatz and Wagner (1997) 

included mutation. Those simulations yielded a lower evolutionary response with hidden 

pleiotropy than the theoretical prediction without any constraining pleiotropy. The degree of 

constraint was dependent on the strength of directional and stabilizing selection. A similar 

result was found by Griswold (2006). He investigated by simulations whether modularity 

increases evolvability (i.e. whether pleiotropy reduces evolvability). He introduced mutations 

with varying level of pleiotropy (  = the number of traits affected by mutation) whose effects 

on the various traits could be of different size and sign, and be correlated in varying degree 

and sign. Selection on a trait could be either directional or stabilizing. When only considering 

directional selection on all traits, he found that increasing the level of pleiotropy reduced 

evolvability when the average mutational correlation was negative and the average mutational 

effect per trait was zero, as well as when the average mutational correlation was zero and the 

average mutational effect was negative. Increasing the level of pleiotropy increased 

evolvability when the average mutational correlation was positive and the average mutational 

effect was zero, as well as when the average mutational correlation was zero and the average 

mutational effect was positive. When both the average mutational effect and the pleiotropic 
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effects of mutations were uncorrelated, increasing the level of pleiotropy did not affect 

adaptation. He also found that evolvability of a trait under directional selection decreases 

when it is pleiotropically associated with a trait under stabilizing selection, but increasing   

for directionally selected traits relative to traits under stabilizing selection increased 

evolvability per trait for traits under directional selection. Griswold used an average 

mutational correlation of zero when considering sets of traits both under directional and 

stabilizing selection, thus corresponding to hidden pleiotropy. The results of the simulations 

where additive genetic variance was generated only through mutations (section 4.1.6) are in 

agreement with Baatz and Wagner (1997)  and Griswold (2006) with regard to whether 

hidden pleiotropy constrains evolution under the current selective scenario. As a very small 

effect of linkage disequilibrium on the selection limit was found (in section 4.1.9), the 

hypothesis that these effects are not important for the current experiments is supported. 

However, as small differences in the responses between some of the GP maps are seen, it is 

reasonable to control for such potential effects. When modularity implies the total lack of 

gene effects on other traits than the focal one, the risk of interpreting constraints due to LD as 

effects of pleiotropy is present. This could be the case in the mutation-based experiment 

(section 3.2.5) where I used a modular GP map that excluded LD effects to conform to the 

system of Griswold (2006). However, these results were only meant to be qualitative as this 

experiment was not the main focus of the study.  

As the answer to whether hidden pleiotropy reduces evolvability compared to modularity 

depends on the level of stabilizing selection, it should be noted that the value of   used in my 

experiments (0.02) was strong enough to significantly reduce evolvability of the femur (trait 

1), when there was stabilizing selection on humerus (trait 2) for the estimated mouse B 

matrix. Compared to that matrix the hidden pleiotropic matrix was non-constraining. The use 

of strong stabilizing selection (e.g.        ) in mutation-based studies with moderate 

mutation rates is not directly transferable to simulations with only standing genetic variance 

with          (allelic standard deviation equaling the standard deviation of mutational 

effects), because the level of additive genetic variance in those cases would initially be much 

higher than in the experiments with mutation. 

The above-mentioned results, however, only apply when initial correlations between the two 

traits are zero. A point that might have been overlooked in this discussion is that when there 

in fact are genetic correlations, and pleiotropy is only partially hidden, a more modular GP 
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map, which gives the same G matrix as the pleiotropic one, yields significantly higher 

evolvability (section 3.2.7 and 4.1.8). This is especially the case for the selection limit. When 

there is an asymmetry between loci with synergistic and antagonistic pleiotropic effects, 

variation at available modular loci can counteract the correlated responses and thus enhance 

evolvability. Whether or not such a variational source is present is not evident from the G 

matrix alone. The experiment with the even B matrices also demonstrates that the structure of 

the GP map is important although the G matrix is unaffected, as these matrices yielded lower 

responses than the comparable modular and hidden pleiotropic ones, at least after some 

generations. They were in this respect also internally not 100% equal. When it comes to the 

selection limit, this experiment and the experiment where I compared a regular with an 

irregular hidden pleiotropic B matrix (section 4.1.7), provide evidence for the hypothesis that 

evolvability is governed by the absolute lengths of the projections of the allelic effects onto 

the axis of the selection gradient, as well as by the structure of the G matrix according to the 

Lande equation. Pavlicev and Hansen (2011) studied GP maps that maximize average 

evolvability (both character evolvability and evolvability in any arbitrary direction in 

phenotype space). They investigated different GP maps under the assumptions of the 

character model and the trait model. In the character model the addition of a pleiotropic effect 

of a locus on a trait does not change the effect on an already affected trait (This is an 

important assumption e.g. in the experiment of section 3.2.10.). The trait model however, 

assumes a constant effect size of each locus regardless of how many traits it affects (see also 

section 2.2), or more precisely the effect of each locus is a vector of constant length in 

phenotype space. In that case, Pavlicev and Hansen found that any GP map avoiding 

correlations maximizes evolvability (whether hidden pleiotropic or modular), as any such 

structures yield the same G matrix. However, if we only take account of standing genetic 

variation, as I do for most of the part in this study, the conclusions reached here imply that if a 

pleiotropic GP map can increase the number of underlying loci affecting each trait compared 

to a modular GP map, the selection limit is only maximized with the hidden pleiotropic map 

(cf. section 4.1.7). Another point worth mentioning, which also speaks in favor of the hidden 

pleiotropic structure as an optimal GP map, is that it is economical with regard to the number 

of loci needed. Given the assumptions I have made in my experiments, it is evident from the 

B matrices that the modular GP maps require more loci than the hidden pleiotropic ones (cf. 

e.g. section 3.2.1) when both traits are to be accounted for. As the genome necessarily must 

have a limited number of loci, a hidden pleiotropic structure might be more realistic than a 
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modular one (Walsh and Blows 2009). In conclusion, my results provide evidence for the 

claim that modularity is not necessary for evolvability (Hansen 2003). For further research it 

would be interesting to test how this conclusion is affected by the number of traits. It could be 

that hidden pleiotropy still would not constrain evolution, but as the modular GP map tended 

to yield slightly higher responses, there could be an underlying constraining effect of 

pleiotropy that could be reinforced when more traits are included. If so, it would be 

interesting to see how this may relate to Fisher’s geometrical model (Fisher 1930), (cf. section 

2.2).    

The fact that pleiotropy can potentially be advantageous for evolvability has been shown 

earlier (Cheverud 1984; Hansen 2003). An attempt at quantifying this advantage is made in 

this study. Under certain assumptions about how more pleiotropic genomes differ from less 

pleiotropic ones (section 3.2.10) it is shown that in terms of the selection limit, an 

intermediate level (around 1/3 of the loci) of pleiotropy is significantly increasing the 

evolvability. Hansen (2003) predicted highest evolvability when 16% of the variation is 

pleiotropic. This corresponds to 16% pleiotropy in my experiment. For the selection limit the 

optimal level of pleiotropy found was 36%. In that case the total response was 24% higher 

than in the modular case. It was also shown that an intermediate level of pleiotropy was 

beneficial also in the short term response, and that within the very few first generations, even 

a higher level of pleiotropy than 36% could be the optimal GP map. The predictions of 

Hansen (2003) however, applies to the rate of evolution after an equilibrium between the 

different selective forces has been reached (i.e., after trait 2 has stopped responding), as it is 

based on the conditional evolvability. When analyzing the rates after this equilibrium the 

trend is still that evolvability as a function of pleiotropy increases in the beginning before it 

drops to almost zero, but the results exhibit much noise. However, the single highest value 

was indeed at 16% pleiotropy, a result which thus supports Hansen’s prediction. 

As mentioned earlier, there were effects of stabilizing selection on the relationship between 

the evolvability of the modular and the hidden pleiotropic GP maps. The stronger the 

stabilizing selection, the larger the difference in favor of the modular map. Over the total 

range of different strengths of stabilizing selection that I used, this effect was not very large 

for either evolutionary time span (around 10%). A rather surprising result, however, was that 

the short-term evolvability increased with increasing strength of stabilizing selection. This 

was found for both the modular and for the hidden pleiotropic GP map. The effect was 
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strongest for the modular GP map. This was not the case for the selection limit. For the fully 

constrained GP map (100% genetically correlated traits) the response was reduced in an 

approximately linear manner as stabilizing selection got stronger. By the same explanation as 

for why stronger stabilizing selection would reduce evolvability under the assumption of 

hidden pleiotropy in the mutation-based case (section 4.1.6), I would expect to observe a 

reduction in selection response as stabilizing selection got stronger here as well. This would 

not apply for the modular GP map, as the underlying genetic bases of the two traits are 

completely independent (disregarding LD). Since the unexpected positive effect of stabilizing 

selection was stronger for the modular GP map, a reduction in evolvability for the pleiotropic 

map could still be present, but with another larger effect working the opposite way that would 

mask it. One possibility is that a reduction in effective population size could be the cause. As 

stabilizing selection increases, the expected initial fitness decreases according to        

                      
       (section 3.1.2). However, none of the values of    that I have 

used in this experiment would yield       , so the potential effect should not be very 

large. In addition, this would be expected to reduce the response rather than to increase it in 

accordance with the results of reduced population size (section 4.1.3).  

Hansen and Houle (2008) have developed measures of evolvability that are able to give 

predictions of the evolution of multiple traits that share additive genetic variance. They 

suggest that the conditional evolvability of Hansen (2003), derived to predict the short term 

evolution based on standing genetic variance, can be useful for making macroevolutionary 

predictions, as it may provide reliable information about the underlying constraints of the 

genetic architecture. I have tested how well conditional evolvability can predict evolution 

over several generations under different GP maps, and thus how good a measure it is of 

evolvability. The results showed that this measure gave good predictions across the whole 

time span considered (about 200 generations) for both a GP map of 36% pleiotropy and one 

with 68% pleiotropy, both when all effects were synergistic and when they were antagonistic. 

When the level of pleiotropy was high (68%) predictions from the Lande equation when trait 

2 was disregarded gave predictions far away from reality, and even when both traits were 

included in the Lande equation (the selection gradient then having to be approximated) its 

predictions after some generations were not as good as those of the conditional evolvability. 

This measure is, however, also using the Lande equation, but it has the advantage of 

simplifying it by only considering one trait and its conditional variance. It thus seems that this 

variance is a good measure of evolvability regardless of the underlying genetic architecture. 
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However, more GP maps should be tested, including hidden and partially hidden pleiotropic 

B matrices, and also different allelic distributions should be considered. 

5.1 Conclusions 

Many important aspects of the genotype-phenotype map are not simply reflected by the 

genetic variance-covariance matrix ( ). Features that may significantly affect evolvability 

include the number of loci and the pleiotropy structure in many regards. Although modularity 

emerges immediately as a strong candidate for optimizing evolvability, and it has here been 

demonstrated that this might in several scenarios be true, there are also several arguments that 

speak in favor of a pleiotropic GP map as the optimal genetic architecture. It has been shown 

that even over many generations of selection, hidden pleiotropy does not necessarily produce 

any constraints on evolvability, and in some respects pleiotropy may also enhance 

evolvability. Still, much is derivable from   alone. Conditional evolvability seems to be a 

good measure of evolvability, which is robust with respect to the GP map. It should be tested 

with other genetic architectures than has been done here, and for multiple traits, in order to 

evaluate its general applicability. The same should be done for the other experiments in this 

study, as it is unrealistic that the number of genetically associated traits in natural organisms 

would be limited to two. Further, before these and other theoretical results can be reliably 

generalized for the real world, more knowledge is needed about the genetic and selective 

conditions in nature. However, this thesis may have helped illuminate some aspects of how 

genetic architecture can affect the evolution of quantitative traits. 
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Appendix 

Software 

For the computational work I have used the following software: 

 

R Development Core Team (2009). R: A language and environment for 

statistical computing. R Foundation for Statistical Computing, 

Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org. 

R version 2.9.2 (2009) 

Copyright © 2009 The R Foundation for Statistical Computing 

 

 

 

Tinn-R – GUI/Editor for R Language and Environment 

Version 2.3.2.3 

Copyright 2001-2011 

Under the GNU General Public License – GPL 
 

The script 

The simulation is run by opening the RGui, and clicking on “Source R code” (menu “File”) 

and choosing the file under which the below script has been saved. A short description 

appears and the program prompts the user for parameter values. The following parameters 

must be provided: the number of recursions (c), the number of generations (t) and the 

population size (N). Next, the program presents the fitness function and asks for the selection 

coefficients (s1 and s2), the allelic mean (m), standard deviation (std) and the environmental 

standard deviation (estd). A selection of possible B-matrices appears, from which one should 

be chosen by entering a corresponding number. Alternatively, one may enter “no” to create a 

new B-matrix. In that case the program prompts the user for the entries in the B-matrix one by 

one row-wise. Each entry is written as a number and submitted by pressing enter. When a row 

is finished, press enter once more without writing anything. The rows must be of equal length. 

When the B-matrix (B) is entered the simulation starts. By entering the variables as 

commands in the Rgui console, R returns their values. One can limit the output to a desired 

subset by indexes (in the brackets), either by a single number or a vector. An empty index 

gives the whole set of values in the respective dimension. 

http://www.r-project.org/
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 The following script does not include all the B matrices used in the experiments, nor the code 

for the other distributions of allelic effects than the normal distribution and also not the code 

for the mutation-based simulations.  

# The Evolution of Two Traits: z2 and z2 

cat("The Evolution of Two Traits: z1 and z2\n") ; 

cat("THE MODEL: (z1,z2) = start-values + B-matrix * y-vector + environmental variance-vector\n") ; 

 

# THE MODEL: (z1,z2) = start-values + B-matrix * y-vector + environmental variance-vector 

#  -->       (z1,z2) = sv + B * y + e 

 

# Parameters 

cat("\n") ; 

cat("Please set parameter values to run program.\n") ; cat("\n") ; 

c <- readline(" number of recursions (c) = ") ; 

c <- as.double(c) ; 

t <- readline(" number of generations (t) = ") ;          # generations 

t <- as.double(t) ; 

N <- readline(" population size (N) = ") ;                # individuals 

N <- as.double(N) ; 

L <- 20                                                   # loci              

P <- 2                                                    # ploidity         (fixed) 

cat("fitness function: W = 1 + s1*(z1-mean(z1)) - s2*(z2-optz2)^2 \n") ; 

s1 <- readline(" selection coefficient 1 (s1) (default: 0) = ") ;      # strength of selection on z1 

if (s1=="") s1 <- 0 ; 

s1 <- as.double(s1) ; 

 

s2 <- readline(" selection coefficient 2 (s2) (default: 0) = ") ;      # strength of selection on z2 

if (s2=="") s2 <- 0 ; 

s2 <- as.double(s2) ; 

 

# Parametres in initial population (normally distributed allelic values): 

 

m <- readline(" allelic mean value (m) (default: 0) = ") ;   # mean  allelic value 

if (m=="") m <- 0 ; 

m <- as.double(m) ; 

 

std <- readline(" allelic standard deviation (std) (default: 0.5) = ") ;   # standard deviation of allelic value 

if (std=="") std <- 0.5 ; 

std <- as.double(std) ; 

 

estd <- readline(" environmental standard deviation (estd) (default: 1) = ") ;   # environmental standard deviation 

if (estd=="") estd <- 1 ; 

estd <- as.double(estd) ; 

 

# "Start-vector" (neutral values of the X's without the allelic effects) 

 

sv <- c(10,10)    

 

cat("\n") ; 

cat("Please choose one of the following B-matrices by entering the corresponding number (1-11) or enter << no 

>> 

to write your own.\n") ; cat("\n") ; 

 

# Define B-matrix (must be a (2 x L)-matrix): 

 

bb11 <- c(0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1)   
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bb12 <- c(0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1) 

bb1 <- rbind(bb11,bb12) 

 

bb21 <- c(0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1)   

bb22 <- c(0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,-1) 

bb2 <- rbind(bb21,bb22) 

 

bb31 <- c(0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1)   

bb32 <- c(0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,-1,-1) 

bb3 <- rbind(bb31,bb32)                                      

 

bb41 <- c(0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1)   

bb42 <- c(0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,-1,-1,-1) 

bb4 <- rbind(bb41,bb42) 

 

bb51 <- c(0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1)   

bb52 <- c(0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,-1,-1,-1,-1) 

bb5 <- rbind(bb51,bb52) 

 

bb61 <- c(0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1)   

bb62 <- c(0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,-1,-1,-1,-1,-1) 

bb6 <- rbind(bb61,bb62) 

 

bb71 <- c(0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1)   

bb72 <- c(1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0) 

bb7 <- rbind(bb71,bb72) 

 

bb81 <- c(0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1)   

bb82 <- c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) 

bb8 <- rbind(bb81,bb82) 

 

bb91 <- c(1.494537,2.769312,0.0007735036,-0.04667998,-0.006092008,-0.02388131,-

0.2719293,0,0,0.1433124)     # mouse matrix 

bb92 <- c(0.764224,2.998482,0.3087173697,0.07636481,0.001893725,-0.01275512,-0.2862922,0,0,-0.0513877) 

bb9 <- rbind(bb91,bb92) 

 

bb101 <- c(1.414214,1.144123,0.437016,-0.437016,-1.441228,-1.414214,-1.144123,-

0.437016,0.437016,1.144123)      # even B matrix 

bb102 <- c(0,0.8312539,1.344997,1.344997,0.8312539,1.731855e-16,-0.8312539,-1.344997,-1.344997,-

0.8312539) 

bb010 <- rbind(bb101,bb102) 

 

bb111 <- c(0,0.8312539,1.344997,1.344997,0.8312539,1.731855e-16,-0.8312539,-1.344997,-1.344997,-

0.8312539)   # even B reversed 

bb112 <- c(1.414214,1.144123,0.437016,-0.437016,-1.441228,-1.414214,-1.144123,-

0.437016,0.437016,1.144123) 

bb011 <- rbind(bb111,bb112) 

 

cat("(1) ");cat(bb11);cat("\n");cat("    ");cat(bb12);cat("\n");cat("\n") ; 

cat("(2) ");cat(bb21);cat("\n");cat("    ");cat(bb22);cat("\n");cat("\n") ; 

cat("(3) ");cat(bb31);cat("\n");cat("    ");cat(bb32);cat("\n");cat("\n") ; 

cat("(4) ");cat(bb41);cat("\n");cat("    ");cat(bb42);cat("\n");cat("\n") ; 

cat("(5) ");cat(bb51);cat("\n");cat("    ");cat(bb52);cat("\n");cat("\n") ; 

cat("(6) ");cat(bb61);cat("\n");cat("    ");cat(bb62);cat("\n");cat("\n") ; 

cat("(7) ");cat(bb71);cat("\n");cat("    ");cat(bb72);cat("\n");cat("\n") ; 

cat("(8) ");cat(bb81);cat("\n");cat("    ");cat(bb82);cat("\n");cat("\n") ; 

cat("(9) ");cat(bb91);cat("\n");cat("    ");cat(bb92);cat("\n");cat("\n") ; 

cat("(10) ");cat(bb101);cat("\n");cat("    ");cat(bb102);cat("\n");cat("\n") ; 

cat("(11) ");cat(bb111);cat("\n");cat("    ");cat(bb112);cat("\n");cat("\n") ; 

cat("\n"); 
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AN <- readline(" Choose a B-matrix (1-11) or type << no >> to set a new one: ") ; 

cat("\n"); 

 

{if (AN == 1) B <- bb1 else if (AN == 2) B <- bb2 else if (AN == 3) B <- bb3 else if (AN == 4) B <- bb4 

 else if (AN == 5) B <- bb5 else if (AN == 6) B <- bb6 else if (AN == 7) B <- bb7 else if (AN == 8) B <- bb8 

else if (AN == 9) B <- bb9 

 else if (AN == 10) B <- bb010 else if (AN == 11) B <- bb011  

  else {cat("Enter the elements of the first row. Press enter key when done.\n"); bbb1 <- scan("");   

        L <- length(bbb1);  

        while (L < 2) { cat("At least two entrees please!\nEnter the elements of the first row.\n"); bbb1 <- scan(""); 

L <- length(bbb1); }; 

        cat("Enter the elements of the second row.\n"); bbb2 <- scan("",nmax=L); 

        B <- rbind(rep(0,L),rep(0,L)); B[1,] <- bbb1 ; B[2,] <- bbb2 ;};} ; 

 

L <- length(B[1,]) ;            # correction for when the predefined B matrices have unequal lengths 

# L must be at least 2!!!        

 

B1 <- B[1,] ; B2 <- B[2,] ; 

 

cat("\n") ; 

cat("B-matrix:\n") ; 

print(B) ; 

 

# Define fitness-function:      

 

fW <- function (z1,z2,optz2,mz1) { 

 

  1 + s1*(z1-mz1) - s2*(z2-optz2)^2    # Fitness ( z1 = trait one , z2 = trait two, optz2 = optimal value of trait 

two, mz1 = mean value of trait one )  

     

}      

 

nw <- 0    # count of negative fitness-individuals  

nnw <- 0   #  -"- after correction                  (must be zero) 

X1 <- rep(0,t) # mean of mean phenotypes 

X2 <- rep(0,t) 

XX1 <- seq(c*t) 

dim(XX1) <- c(c,t) 

XX2 <- seq(c*t) 

dim(XX2) <- c(c,t) 

 

RMW <- 0  # mean relative fitness increase 

RRMW <- rep(0,c) 

 

mG <- seq(2*2*t)     # mean G matrix 

dim(mG) <- c(2,2,t)  

G <- seq(2*2*t*c)    # G matrix 

dim(G) <- c(2,2,t,c) 

nmG <- seq(2*2*t)     # mean genetic correlation matrix 

dim(nmG) <- c(2,2,t)  

nG <- seq(2*2*t*c)      # genetic correlation matrix 

dim(nG) <- c(2,2,t,c) 

 

for (r in 1:c) { 

 

# make an initial population by establishing a L*P*N-matrix (alleles) 

# mean = m standard deviation = std 

 

y2 <- rnorm(L*P*N,m,std) ; 
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dim(y2) <- c(L,P,N) ; 

 

# Other Variables/Functions: 

 

# make y-vectors for the individuals ( (Z1,Z2) = sv + B-matrix * y-vector + e ) 

# where y is the sum of the allelic values at each locus: 

 

y3 <- c(seq(L*P*N*(t+1))) ; # matrix of allelic values,  Establish a dimension for generation.  

dim(y3) <- c(L,P,N,t+1) ; 

y3[,,,1] <- y2 ; 

y <- y3[,1,,] ;  # This is now a L*N*c-matrix 

                            

e <- rnorm(2*N*t,0,estd) ;  # Environmental component of phenotype 

dim(e) <- c(2,N,t) ; 

 

x <- seq(2*N*t) ;   # Genetic component of phenotype 

dim(x) <- c(2,N,t) ; 

 

g <- seq(2*2*t) ;    # preliminary G-matrix 

dim(g) <- c(2,2,t) ; 

xx <- seq(N*2*t) ; 

dim(xx) <- c(N,2,t) ; 

 

ng <- g ;    # preliminary genetic correlation matrix 

 

xx1 <- seq(N*t) ;  # Partition  x in two variables (one per trait) 

dim(xx1) <- c(N,t) ; 

xx2 <- seq(N*t) ; 

dim(xx2) <- c(N,t) ; 

 

# mean phenotypes: 

x1 <- seq(t) ; 

x2 <- seq(t) ; 

 

# optimal trait2-value (for stabilizing selection) 

optz2 <- NA ; 

 

W <- c(seq(N*t)) ;   # fitness 

dim(W) <- c(N,t) ; 

 

# Original fitness before negatives are set to zero, for statistical purposes tW(W): 

tW <- seq(N*t) ; 

dim(tW) <- c(N,t) ; 

 

mW <- c(seq(t)) ;  # mean population fitness 

 

w <- c(seq(N*t)) ; # relative fitness 

dim(w) <- c(N,t) ; 

 

cumint <- c(seq(N*t)) ;   # cumulative intervals 

dim(cumint) <- c(N,t) ; 

 

scumint <- c(seq((1+N+1)*t)) ;  # scaled cumulative intervals 

dim(scumint) <- c(1+N+1,t) ; 

 

selm <- runif(N*P*t) ;  # selection matrix 

dim(selm) <- c(N,P,t) ; 

 

selind <- N*P*t + 1 + c(seq(N*P*t)) ;  # list of selected individuals 

dim(selind) <- c(N,P,t) ; 
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bip <- seq(L*P*P*N*t) ;       # reproduction matrix 

dim(bip) <- c(L*N,P,P,t) ; 

 

y4 <- seq(L*N*P*t) ;           # preliminary allele matrix 

dim(y4) <- c(L*N,P,t) ; 

                              

for (i in 1:t) { 

 

for (j in 1:N) y[,j,i] = y3[,1,j,i] + y3[,2,j,i] ;  # summing alleles at each locus 

                                                       

       # y is a L*N*t-matrix                                             

 

# phenotypes x(B,y): 

 

for (j in 1:N) 

    x[,j,i] = sv + B %*% y[,j,i] ; 

 

xx1[,i] <- x[1,,i] ; 

xx2[,i] <- x[2,,i] ; 

xx[,1,i] <- xx1[,i] ; 

xx[,2,i] <- xx2[,i] ; 

 

g[,,i] <- cov(xx[,,i],xx[,,i])*((N-1)/N) ;        # G-matrix ("population variance") 

for(aa in 1:2) for(ab in 1:2) { 

ng[aa,ab,i] <- g[aa,ab,i] / (sqrt(g[aa,aa,i])*sqrt(g[ab,ab,i])) } ;  # genetic correlation matrix            

 

G[,,i,r] <- g[,,i] ;  # for calc. of mean G-matrix (over c) 

nG[,,i,r] <- ng[,,i] ; # "--" cor. 

 

for (j in 1:N) 

x[,j,i] = x[,j,i] + e[,j,i] ; 

x1[i] <- mean(x[1,,i]) ; 

x2[i] <- mean(x[2,,i]) ; 

 

z1 <- x[1,,i] ;   # trait one 

z2 <- x[2,,i] ;   # trait two 

 

mz1 <- x1[i] ;   # mean of trait one 

mz2 <- x2[i] ;   # mean of trait two  (not used with the current fitness function) 

 

optz2 <- mean(xx2[,1]) ;   # optimal z2 (initial mean z2 without e) 

 

# Fitness function W(z1,z2,optz2,mz1):     

 

for(j in 1:N) 

                          W[j,i] = fW(z1[j],z2[j],optz2,mz1)  ; 

 

 

# Original fitness before negatives are set to zero, for statistical purposes tW(W): 

tW[,i] <- W[,i] ; 

 

# Count negative fitness individuals:  nw(W) & nnw(W) 

 

for(j in 1:N) if(W[j,i] < 0) { nw = nw + 1 ; W[j,i] = 0     

  } ; 

for(j in 1:N) if(W[j,i] < 0)  nnw = nnw + 1 ;   

 

# Mean population fitness:  mW(W) 
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    mW[i] = mean(W[,i])   ; 

 

if(mW[i]==0) { cat("\n"); cat("ERROR!!! Mean fitness = 0 in generation "); cat(i);  

                cat(" in recursion "); cat(r); cat(".\n"); 

                cat("Please adjust parameter settings to avoid negative fitness values.\n"); cat("\n"); 

} ; 

 

# Relative fitness:  w(W,mW) 

 

for (j in 1:N) 

                  w[j,i] = W[j,i] / mW[i] ; 

 

# Vector with cumulative intervals of relative fitnesses:    cumint(w) 

 

for (j in 1:N)  cumint[j,i] = sum(w[1:j,i]) ; 

 

# Vector with scaled cum.int. to sum up to 1:     scumint(cumint,N) 

 

scumint[1,i] <- 0 ; 

scumint[1+N+1,i] <- 2; 

for (j in 1:N) 

                scumint[1+j,i] = cumint[j,i] / N  ; 

 

# Selection: 

# selection matrix (N*P*t):   selm(N,P,t) 

 

# make list of selected individuals:  selind(scumint,selm) 

 

for (p in 1:P) 

    for (j in 1:N) { 

                  a <- 2 + floor(selm[j,p,i] * (N-1)) ; 

                  k <- 0 ; 

                 while(1 != k) 

                   if (selm[j,p,i] > scumint[a,i]) { if(selm[j,p,i] <= scumint[a+1,i]) { selind[j,p,i] = a ; k = 1 } else a = a 

+ 1  

                     } else if(selm[j,p,i] > scumint[a-1,i]) { selind[j,p,i] = a-1 ; k = 1 } else a = a-1}  ;    

 

#Reproduction:                                                     

 

# Random binominal 

nn <- N*P*L ; 

 

gt <- runif(nn)*10 ; 

bik <- gt%/%5 ; 

bil <- (-1)*(bik-1) ; 

bim <- cbind(bik,bil) ; 

dim(bim) <- c(length(bik)/P,P,P) ; 

bim[,1,1] <- bik[1:(length(bik)/2)] ; 

bim[,2,1] <- bil[1:(length(bil)/2)] ; 

bim[,1,2] <- bik[(length(bik)/2+1):length(bik)] ; 

bim[,2,2] <- bil[(length(bil)/2+1):length(bil)] ; 

  

 

for (j in 1:N) { bip[((j-1)*L+1):(j*L),1,1,i] = y3[,1,selind[j,1,i],i] ;  bip[((j-1)*L+1):(j*L),2,1,i] = 

y3[,2,selind[j,1,i],i] ; 

                 bip[((j-1)*L+1):(j*L),1,2,i] = y3[,1,selind[j,2,i],i] ;  bip[((j-1)*L+1):(j*L),2,2,i] = y3[,2,selind[j,2,i],i] 

; 

                 } ; 

 

y4[,1,i] <- bip[,1,1,i]*bim[,1,1] + bip[,2,1,i] * bim[,2,1] ;  
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y4[,2,i] <- bip[,1,2,i]*bim[,1,2] + bip[,2,2,i] * bim[,2,2] ; 

 

for (j in 1:N) 

    for(p in 1:P)  y3[,p,j,i+1] = y4[((j-1)*L+1):(j*L),p,i] ; 

                 

XX1[r,i] <- x1[i] ;  # for calc. of mean of mean phenotype 

XX2[r,i] <- x2[i] ; 

 

} ;  # end of i-loop 

 

rmw <- (mW[t] - mW[1]) / mW[1] ;   # relative augmentation in mean fitness through the whole time span 

RRMW[r] <- rmw ; # for calc. of mean of mean fitn. incr.  

 

# plot phenotypes against generation (x1-black, x2-blue) 

plot(seq(t),x1,ylim=c(min(x1,x2)-0.1*sqrt((min(x1,x2))**2),max(x1,x2)+0.1*sqrt((max(x1,x2))**2)),"l", 

  xlab="Generation",ylab="Mean Phenotype") ; 

lines(seq(t),x2,col="blue") ; 

text(0.1*t+1,max(x1,x2),r) ; 

text(0.15*t+1,max(x1,x2)," of ") ; 

text(0.20*t+1,max(x1,x2),c) ; 

 

} # end of r-loop 

 

for (i in 1:t) { 

X1[i] <- mean(XX1[,i]) ;  # mean of mean phenotypes 

X2[i] <- mean(XX2[,i]) ; 

 

# mean G-matrix and mean genetic correlation matrix 

mG[1,1,i] <- mean(G[1,1,i,]) ; 

mG[1,2,i] <- mean(G[1,2,i,]) ; # !!! remember these are means of numbers that may have opposite sign!!! 

mG[2,1,i] <- mean(G[2,1,i,]) ; # !!! remember these are means of numbers that may have opposite sign!!! 

mG[2,2,i] <- mean(G[2,2,i,]) ;              

nmG[1,1,i] <- mean(nG[1,1,i,]) ;      

nmG[1,2,i] <- mean(nG[1,2,i,]) ; # !!! remember these are means of numbers that may have opposite sign!!! 

nmG[2,1,i] <- mean(nG[2,1,i,]) ; # !!! remember these are means of numbers that may have opposite sign!!! 

nmG[2,2,i] <- mean(nG[2,2,i,]) ; 

 

} 

 

RMW <- mean(RRMW)      # mean of mean fitness increase 

 

# plot (mean of mean) phenotypes against generation (X1-black, X2-blue) 

plot(seq(t),X1,ylim=c(min(X1,X2)-0.1*sqrt((min(X1,X2))**2),max(X1,X2)+0.1*sqrt((max(X1,X2))**2)),"l", 

  xlab="Generation",ylab="Mean Phenotype")  

lines(seq(t),X2,col="blue") 

legend(1,max(X1,X2),c("trait 1","trait 2"),fill=c("black","blue")) 

 

# print parameter values 

cat("\n") ; cat("\n") ; 

cat("Input \n"); 

cat("c = ");cat(c);cat("\n") ; 

cat("t = ");cat(t);cat("\n") ; 

cat("N = ");cat(N);cat("\n") ; 

cat("s1 = ");cat(s1);cat("\n") ; 

cat("s2 = ");cat(s2);cat("\n") ; 

cat("m = ");cat(m);cat("\n") ; 

cat("std = ");cat(std);cat("\n") ; 

cat("estd = ");cat(estd);cat("\n") ; 

cat("\n") ; 

cat("B = ");cat(B1);cat("\n");cat("    ");cat(B2);cat("\n") ; 
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# print results 

cat("\n") ; 

cat("Output \n"); 

cat("G[,,1,1] = \n");print(G[,,1,1]);cat("\n") ; 

cat("G[,,t,1] = \n");print(G[,,t,1]);cat("\n") ; 

cat("mG[,,1] = \n");print(mG[,,1]);cat("\n") ; 

cat("mG[,,t] = \n");print(mG[,,t]);cat("\n") ; 

cat("X1[t] - X1[1] = ");cat(X1[t]-X1[1]);cat("\n") ; 

cat("X2[t] - X2[1] = ");cat(X2[t]-X2[1]);cat("\n") ;   

  

# for the plotting of (cumulative) evolvabilities against generations 

 

gru <- seq(t-1) 

for(fat in 2:t) gru[fat-1] = (X1[fat]-X1[1])/(fat-1)  

 

# for statistics: 

gruu<- seq((t-1)*c); 

dim(gruu)<-c((t-1),c); 

for(fat in 2:t) gruu[fat-1,]=(XX1[,fat]-XX1[,1])/(fat-1); 


