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                                                                                                                            Abstract                               

ABSTRACT 
 
 

Environmental estrogens may modulate the endocrine system through interactions with 

sex steroid-binding protein (SBP), and these processes may be a novel mechanism for 

endocrine disruption. The endogenous hormone 17β-estradiol (E2) together with weakly 

estrogen compounds as di-(n-butyl) phthalate (DBP) and potent estrogen mimics 

(ethynylestradiol, EE2) were all able to induce an up-regulation of total sex-steroid 

binding capacity and SBP gene expression in vitro using a culture of rainbow trout 

(Oncorhynchus mykiss) hepatocytes. This increase was most likely due to the induction of 

the sex steroid-binding protein (SBP) gene and protein itself, although other non-

identified proteins probably contribute to sex steroid-binding as well. The roles of non-

specific binding proteins were assessed using albumin and rainbow trout vitellogenin 

which both showed a very low capacity for binding sex steroids. Quantification of SBP 

protein expression in cell media using western blot and zebrafish SBP antibodies was not 

possible due to low protein concentrations. Exposing hepatocytes to EE2 induced the 

strongest response in both total sex steroid-binding activity and SBP gene-expression 

followed by E2 and DBP. Exposure to endogenous sex steroids and environmental 

estrogens increased SBP gene-expression after 24 hours, while an increase in total sex-

steroid binding capacity was seen after 48 hours of exposure, indicating an up-regulation 

of the SBP gene before secretion of SBP into the cell medium. A concentration-response 

relationship, most likely due to increased SBP secretion and gene expression was seen 

after 96 hours of exposure for both total sex-steroid binding capacity and SBP gene 

expression. 
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ABBREVIATIONS 
 
[3H]-E2  [2,3,6,7-3H]estradiol 

[3H]-T   [1,2,6,7-3H]testosterone 

APS   ammoniumpersulphate 

BBmax   maximum specific binding 

β-ME   β-Mercaptoethanol 

bp   basepair 

BSA   bovine serum albumin 

cDNA   complementary DNA 

CPM   counts per minute 

DBP   di-(n-butyl) phthalate 

DCC   dextran-coated charcoal 

dH2O                distilled water 

DMSO   dimethyl sulphoxide  

E2   17β-estradiol 

ECL   enhanced chemiluminescence 

EDC   endocrine disrupting compound 

EDTA   ethylenediaminetetraacetic acid 

EE2   17α-ethynylestradiol 

EGTA   ethylyneglycol-bis(β-aminoethylether) N, N, N’,N’- tetraaceticacid 

ELISA   enzyme linked immunosorbent assay 

ER   estrogen-receptor 

ERE   estrogen response element 

EtAc   ethyl acetate 

EtBr   ethidium bromide 

GH   growth hormone 

HRP   horseradish peroxidase 

IGF   insulin-like growth factor 

Kd   equilibrium dissociation constant 

kDa   kilo Dalton 
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L-15   Leibowitz 15 medium 

Ligand   molecule that binds to a specific receptor or other target molecule 

mRNA   messenger RNA 

Ns   non-specific binding 

OD   optical density 

PCR   polymerase chain reaction 

PEI   poly(ethyleneimine)solution 

Phytoestrogens estrogenic substances from plants 

PVDF   polyvinylidene fluoride 

qPCR   quantitative polymerase chain reaction 

rtVtg   rainbow trout vitellogenin   

SBP   sex steroid-binding protein 

SDS    sodium dodecyl (lauryl) sulfate 

SDS-PAGE  sodium dodecyl (lauryl) sulfate-polyacrylamide gel electrophoresis 

T   testosterone 

T3   triiodothyronine 

T4   L-thyroxine 

TBS   tris-borat electrophoresis buffer 

TBST    tris-borat electrophoresis buffer with Tween 20 

Temed   N, N, N’,N’-tetra-methylethylenediamine 

TEMG   tris-EDTA-1 thioglycerol-glycerol 

Triplex III  ethylenediaminetetraacetic acid disodium salt 

Tween 20  polyoxyethylene-sorbitan monolaurate 

Vtg   vitellogenin 

Xenoestrogens  synthetic substance that imitate or enhance the effects of estrogens 
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1 INTRODUCTION 
 
Numerous chemicals are used and generated through municipal, agricultural and 

industrial activities. When some pesticides were found to affect wildlife during the 1950s 

and 1960s widespread concern about possible ecological effects started developing 

(Carson, 1962). A discharge into the environment may cause changes, great or small and 

the aquatic ecosystem is of particular concern because this is where most contaminants 

released into the environment are finally deposited either from direct discharge into 

bodies of water or from terrestrial runoff and atmospheric deposition (Pritchard, 2003).  

 

The main threats to the aquatic environment, as it has been perceived have changed from 

time to time, from heavy metals, radioactive discharges and eutrophication to oil 

pollution. In the recent years, a number of chemicals from anthropogenic sources have 

shown the ability to modulate the endocrine system and the topic has emerged as a major 

issue in terms of both science and public policy (Clark, 2001).  

 

 
 
1.1 Endocrine disrupters 

1.1.1 Background  

Large numbers and large quantities of endocrine-disrupting compounds (EDCs) of both 

natural and anthropogenic origin have been released into the environment since the 1940s 

(Colborn, et al., 1993; Colborn, 1996) and endocrine disruption has been postulated as 

the cause of a great number of adverse affects on the health of various wild species 

(Colborn et al., 1993). Chemicals that have shown endocrine toxicity include pesticides, 

herbicides, fungicides, plasticizers, halogenated polyaromatic hydrocarbons and 

phytoestrogens (Muller et al., 1995; Cooper and Kavlock, 1997). These chemicals may 

interact with multiple targets, acting at the level of hormone synthesis, secretion, 

transport, site of action and metabolism (Klaasen, 2001). Exposure to endocrine 

disrupting chemicals has been linked to diminished fertility in birds, fish and mammals, 

abnormal thyroid function in birds and fish and demasculinization and feminization in 
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fish, gastropods and birds (Vos et al., 2000). Some organochlorines including dioxins 

stimulate the arylhydrocarbon (Ah) receptor-mediated xenobiotic metabolism and result 

in the metabolic disruption of steroid hormones as reported in eggshell thinning in birds 

of prey and uterus occlusion in seals (Ratcliffe, 1970; Helle et al., 1976).  

1.1.2 Environmental estrogens 

For the last decade there has been a large focus on EDCs that show estrogenic activity the 

environmental estrogens including the xenoestrogens. These chemicals are able to mimic 

the action of the female sex steroid, 17β-estradiol (E2) and have been claimed to have the 

potential to induce severe effects on reproductive performance in wildlife and humans 

(Colborn and Clement, 1992; Sharpe and Skakkebaek, 1993). Environmental estrogens 

may elicit effects through a number of pathways including direct binding and activation 

of the estrogen receptor (ER), by binding to other nuclear receptors which interact with 

an estrogen response element (ERE) and through other receptor and/or signal 

transduction pathways (Gillesby and Zacharewski 1998; Arukwe and Goksøyr, 2003; 

Kirk et al., 2003).  

 

In aquatic environments, the sources of environmental estrogens are mainly human 

sewage and industrial activities (Atkinson et al., 2003; Tashiro et al., 2003). Numerous 

studies have assessed the effects of E2 and associated xenoestrogens on wild fish (Folmar 

et al., 1996; Jobling et al., 1998; Lee et al., 2000; Folmer et al., 2001) and all of these 

studies have found induction of the yolk protein vitellogenin (vtg) in exposed male fish. 

Although the gene that produces vtg is present in both male and female, the protein is 

normally only activated by estrogens in maturing females (Korsgaard et al., 1983). 

Production of large quantities of vtg has also been seen in male trout held in lagoons 

downstream of inputs of sewage effluent containing EDCs mostly estrogens (MAFF, 

1994). Other effects such as gonadal abnormalities (Gimeno et al., 1998; Jobling et al., 

1998; Miles-Richardson et al., 1999; Rodgers-Gray et al., 2001) and changes in behavior 

(Bayley et al., 1999; Bjerselius et al., 2001) have also been reported in male fish exposed 

to environmental estrogens. 
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In addition, these compounds may alter the levels of critical endogenous hormones or 

show effects on hormone secretion and transport (reviewed in van der Kraak et al., 1998). 

Environmental estrogens can effect hormone-binding proteins in the blood such as the 

sex steroid-binding protein (SBP) and disrupt hormone transport by increasing and 

decreasing the bound-to-free ratio of the hormone in plasma (Wells and Van Der Kraak, 

1999).  

 

1.2 Objectives 
 
 
The objective of this thesis was to determine whether the natural estrogen 17β-estradiol 

and common environmental chemicals such as ethynylestradiol and di-(n-butyl) phthalate 

may modulate the production of sex steroid-binding proteins and potentially play a role in 

endocrine disruption in fish.  

 

To achieve this aim, exposure studies with hepatocytes from rainbow trout 

(Oncorhynchus mykiss) were used to determine whether these chemicals were able to 

affect: 

a. intracelluar gene expression of SBP 

b. release of sex steroid-binding proteins into the cell medium 

c. total sex steroid-binding capacity of proteins released into the cell medium 
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2 BACKGROUND 
 

2.1 Sex steroids 

Sex steroids such as androgens, estrogens and progesterone (Figure 2-1) move through the 

blood stream from their site of production (the testis and ovaries) to target tissues, where 

they enter cells, bind to highly specific receptor proteins in the nucleus, such as the 

estrogen receptor (ER) or androgen receptor, and trigger changes in gene expression and 

metabolism (Callard and Callard, 1987). The steroid hormones are removed from the 

blood by metabolism as they circulate through the liver, usually coupled to either a 

sulphate ion or glucornic acid, thus increasing their solubility in water and the ease with 

which they are excreted in the bile or urine (Evans, 1993). 

 

Major androgens produced by testicular tissue vary between fish species and 

developmental stages, but include: testosterone (T), 11-ketotestosterone, and 

androstenedione (Fostier et al., 1983; Loir, 1990; Bourne 1991). Testosterone is the 

precursor hormone for the production of E2 in the ovarian follicle of females by the 

actions the enzyme aromatase (Lazier and MacKay, 1993). Estrogens play a major role in 

controlling reproduction in females, and to a less extent in males and are essential for cell 

growth and several other biological activities (Cakmak et al., 2006). Other female sex 

steroids include estrone, 17α, and 20β, 21-trihydroxy-4-pregnen-3-one (Fostier et al., 

1987; Barry et al., 1993).  
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 Figure 2-1 Chemical structures of testosterone and 17β-estradiol 

 

                   Testosterone                  17β-estradiol

 
 

Steroid hormones are synthesized in only a few organs, as the testis and ovaries, and due 

to their lipophilic nature do not dissolve easily in plasma and other body fluids. For this 

reason, most of the steroid hormone molecules found in the blood is bound to specific 

and non-specific steroid carrier molecules (Sitteri et al., 1982).  

 

2.2 Sex steroid-binding protein 
2.2.1 Function 

Most vertebrate species sex steroid hormones are carried in the bloodstream bound to 

specific high affinity sex steroid-binding proteins (SBP, alternative name; sex hormone-

binding globulin, SHBG) and to low affinity proteins such as albumins and 

corticosteroid-binding proteins (Sitteri et al., 1982).  In addition to their role as steroid 

carriers, SBPs protect circulating sex steroids from rapid metabolic degradation and 

excretion (Westphal, 1986) and play a role in regulating the amount of steroid that is 

available to target tissues (Pardrige, 1981; Rosner, 1990).  

 

It has also been suggested that SBP plays an additional role in assisting in the cell uptake 

of sex steroids by interacting with a specific receptor on the membrane of target cells. 

The activity of the SBP specific receptor (RSBP) appears to be regulated by occupancy of 

the SBP steroid-binding site (Rosner, 1990) and leads to the induction or suppression of a 

 10



                                                                                                                       Background                             

nuclear steroid receptor by the G-protein cAMP-phosphokinase A pathway and the 

regulation of sex steroid cellular actions (Fortunati, 1999; Rosner et al., 1999).  

 

2.2.2 Sex steroid-binding proteins in fish species 

Sex steroid-binding protein has been identified in the plasma of several fish species and 

exhibits a broad capability for binding endogenous hormones. Steroid binding activities 

have been characterized in plasma in a number of teleosts including Atlantic cod, Gadus 

morhua (Freeman and Idler, 1971), goldfish Carassius auratus (Pasmanik and Callard, 

1986), carp Cyprinus carpio (Chang and Lee, 1992), spotted seatrout Cynoscion 

nebulosus (Laidley and Thomas, 1994) and the salmonoids, rainbow trout Oncorhynchus 

mykiss (Fostier and Breton, 1975), brown trout Salmo trutta (Pottinger, 1988) and 

Atlantic salmon Salmo salar (Freeman and Idler, 1971).  

 

It is well documented that the SBP binding affinity and specificity for endogenous 

hormones vary greatly among different vertebrates (Renoir et al., 1980; Westphal, 1986). 

This is also true for several fish species where studies on the SBP characteristics produce 

a varying degree in the affinity for endogenous sex steroids (Westphal 1986; Chang and 

Chen, 1990). This is reflected in the dissociation constants (Kd: the molar concentration 

of ligand at which half of the available ligand-binding sites are occupied) and Bmax 

values, representing the total number of available binding sites for SBP to endogenous 

sex steroids in different fish species.  

 

The dissociation constant (Kd) is used to express the affinity a protein has for a ligand 

(i.e. E2 or T) in which a lower Kd value corresponds to a higher affinity of ligand, that is 

the more tightly a protein binds a ligand, the lower the concentration of ligand required 

for half the binding sites to be occupied. Dissociation constant (Kd) values and Bmax 

values for spotted seatrout have been reported to be 5.75 nM and 415 nM (Laidley and 

Thomas, 1994), while lower values for both Kd and Bmax are seen in common carp (Kd; 

1.43 nM while Bmax values vary between male and female; 18.9 and 29.9 fmol [3H]-E2/ 

mg protein, respectively) (Klaos et al., 2000). Rainbow trout has rather high binding 

affinity for SBP (Kd 4.7 nM) which coincides with low values for Bmax (Foucher et al., 
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1991). Binding affinity and total number of binding sites have also shown to vary with 

reproductive state in some fish species. Differences between SBP characteristics of 

nonreproductive and reproductive rainbow trout and black bream have been shown by 

higher Bmax levels in vitellogenic trout and bream (Hobby et al., 2000). SBP levels in 

spotted seatrout are highest when plasma concentrations of E2 are peaking (Laidley and 

Thomas, 1997). In contrast no differences in Bmax or Kd are found between vitellogenic 

and nonreproductive greenback flounder (Hobby et al., 2000) or female goldfish 

(Pasmanik and Callard, 1986), male or female carp (Chang and Chen, 1990, 1991). In 

addition to reproductive stage, phylogeny and other factors may determine sex steroid 

binding characteristics in fish (Rosner, 1991).  

 

Despite interspecies variations in Kd and Bmax values, SBPs relative high affinity binding 

of estrogens and androgens and low affinity binding of progesterone and corticosterone 

seems to be common (Fostier and Breton, 1975; Pasmanik and Callard, 1986; Laidley and 

Thomas, 1994; Tollefsen, 2002). The rank order of affinity of steroids binding to SBP in 

several teleost fish species is E2 and T followed by androstenodione, 11-ketotesterone 

and estrone, then estriol, progesterone and cortisol. (Hobby et al., 2000; Øvrevik et al., 

2001; Tollefsen, 2002, see Table 2-1). This is similar to that seen in the salmonids, and 

also to a few non-salmonoids, such as goldfish, carp and spotted seatrout (Pottinger 1986; 

Laidley and Thomas, 1994). It is suggested that the relative affinity of SBP for different 

steroids is related to the steroid structure (Hobby et al., 2000) and the circulating steroid 

concentrations with higher affinity binding in species with low circulating steroid levels 

(Laidley and Thomas, 1994). 

 
 

 

 

 

 

 

 

 

 

 12



                                                                                                                       Background                             

Table 2-1 Relative binding affinity (RBA) of various endogenous steroids in blood plasma for Arctic charr, 

rainbow trout and spotted seatrout SBPs. 

 

 
Steroid 

Arctic Charr1 

RBA (%) 

Rainbow trout2 

RBA (%) 

Spotted seatrout3 

RBA (%) 

17β-estradiol 100 100 100 

Testosterone 75.83 86.6 59.9 

11-Ketotestosterone 8.35 13.3 8.3 

Estrone 1.52 - 70.6 

Estriol 0.47 - 1.7 

Progesterone <0.01 0.22 7.5 
 

* 1 Øvrevik et al., 2001; 2 Tollefsen, 2002; 3 Laidley and Thomas, 1994 

 

Moreover, numerous factors other than steroid hormones could influence SBP 

concentrations including growth factors, nutritional status and hormones implicated in 

general metabolism such as growth hormone (GH), insulin, insulin like growth factor 

(IGF), triiodothyronine (T3) and cortisol (Mercier-Bodard et al., 1989; Vermeulen, 1986; 

Mercier-Bodard et al., 1987; Adlercreutz et al., 1987). 

2.2.3 Mechanisms regulating sex steroid-binding proteins 

Sex steroid-binding protein, which is mainly produced in the liver (Foucher et al., 1991) 

have been purified and fully characterized in a small number of species including human 

and amphibians. Sex steroid-binding proteins in these species are dimeric proteins 

composed of identical protomers with varying degree of glycosylation. The two subunits 

dimerize to form a glycoprotein of approximately 90 kDa (Petra, 1991; Santa-Coloma et 

al., 1985).  

 

The SBP found in various fish species is also a glycoprotein, and as seen in humans it is 

suspected that each sub-unit of the homodimer contains a high-affinity steroid-binding 

site (Grishkovskaya et al., 2002; Miguel Queralt et al., 2005). The molecular weight of 

SBP has been reported for a few fish species. SBP in eel Anguilla japonica has a size of 

64 kDa (Chang et al., 1994), in common carp 194 kDa (Chang and Lee, 1992), in 
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rainbow trout 65 kDa (Fostier and Breton, 1975), Arctic charr Salvelinus alpinus 60 kDA 

(Øvrevik et al., 2001 ) and in spotted seatrout, 135-150 kDA depending on purification 

method (Laidley and Thomas, 1994). In sea bass Dicentrachus labra, SBP has a 

molecular mass of approximately 118 kDa (Migeul-Queralt et al., 2005). 

 

The cDNA of SBP has been cloned and sequenced for many species, but public databases 

only contain the complete genomic sequence of a few of these including human, rat and 

cat (review by Munell et al., 2002). Partial zebrafish and fugufish SBP coding sequences 

are available within public databases together with rainbow trout which share a 95% gene 

sequence identity with the coding sequence for SBP in Atlantic salmon (Miguel-Queralt 

et al., 2005). Little is known about the structure of SBP in fish species or how expression 

of the SBP gene is regulated, but the expression of SBP in developing zebrafish larvae 

and in the gut and testis of adult suggest that SBP might display important functions in 

development, uptake and regulation of steroids in several organs (Miguel-Queralt et al., 

2004).  

 

The exposure of E2 induces SBP production both in vivo and in vitro in rainbow trout 

plasma and liver cells, in spotted seatrout, and in human hepatoma cells (Foucher et al., 

1991; Thomas and Laidley, 1994; Mercier-Bodard et al., 1987). Effects of testicular 

androgens appear to have little or no influence on SBP regulation in mature male trout, 

the same is seen in vitro with exposure of testosterone to cultures of rainbow trout liver 

cells (Foucher et al., 1992; Foucher et al., 1991). Other steroids such as cortisol have no 

effect on SBP regulation in black bream and rainbow trout (Hobby et al., 2000) either. 

Non-steroidal factors such as growth hormone regulate SBP by increasing its production 

in rainbow trout liver cells, while IGF appears to have an inhibitory effect on the 

secretion of SBP and on specific SBP mRNA (Mercier-Bodard et al., 1989). 

 

In addition to this, total sex steroid-binding activity also depend on several other factors 

such as the age of experimental animals, the dose of hormones or compound distributed, 

cellular type and the use of in vivo or in vitro models (review by Munell et al., 2002). 
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Many questions arise regarding the expression and role of SBP in teleosts and other 

species and there is still much controversy regarding the subject.  

 

2.3 Sex steroid-binding proteins potential role in endocrine disruption 

2.3.1 Potential mechanisms of action 

In addition to binding endogenous steroids, SBP can interact with several natural and 

synthetic xenobiotics that bind reversibly to SBP (Danzo, 1997; Dechaud et al., 1999; 

Klaos et al., 2000; Tollefsen 2002; Tollefsen et al., 2002; Tollefsen et al., 2006). The 

binding and modulation of SBP in regard to xenoestrogens could be an additional route 

that may be disturbed by EDCs (Danzo, 1997; Milligan et al., 1998). As shown in several 

fish species, xenoestrogens are able to displace estrogen from the SBP binding site in 

blood plasma, although at considerably higher concentrations than endogenous hormones 

(Klaos et al., 2000; Milligan et al., 1998; Tollefsen et al., 2002; Gale et al., 2004). 

Despite their lower affinity for SBP, it has been suggested that xenoestrogens affect 

endocrine activity in part by disrupting the equilibrium between free and SBP-bound sex 

steroids in blood plasma, or by altering the levels of SBP (Danzo, 1997; Dechaud et al., 

1999; Hodgert et al., 2000; Tollefsen, 2002; Tollefsen et al., 2002). The binding of 

environmental estrogens to the high-affinity sites on SBP may potentially displace 

biologically active steroid and through the reversible binding that occurs, at the same 

time enhance specific delivery of exogenous compounds to the target sites that produce 

sex steroids.  

2.3.2 Compounds known to interact with and modulate SBP 

Natural hormones including estrogens and testosterone occurs frequently in effluent 

discharge of sewage treatment plants (Desbrow et al., 1998; Rodgers-Gray et al., 2000) 

where it can cause endocrine disruption in fish ( Purdom et al., 1994; Harries et al., 1997; 

Routledge et al., 1998). The natural hormone E2 completely displaces radio-labeled 

estrogen from the steroid-binding site on SBP (Klaos et al., 2000; Tollefsen, 2002) and 

increases the amount of SBP in blood plasma in humans and several wildlife species 

(Foucher et al., 1991; Lermite and Terqui, 1991; Orlando and Guillette, 2002).  
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Synthetically produced pharmaceuticals have together with E2 been implicated as the 

primary contaminants contributing to estrogenic activity in surface waters in several 

countries (Desbrow et al., 1998; Snyder et al., 1999). The pharmaceutical estrogen 

ethynylestradiol (EE2) which is used in contraceptive pills and treatments for hormone-

responsive cancers is highly hormonally active and have been detected in sewage 

effluents (Figure 2-2) (Arcand-Hoy and Benson, 1998; Larsson et al., 1999). 

Ethynylestradiol binds with high affinity to the ER-receptor of most vertebrates and can 

induce mammary and hepatic carcinogenesis (Kloas et al. 2000). Ethynylestradiol is also 

reported to induce a dose-dependant increase in the circulating levels of SBP in Atlantic 

salmon blood plasma and  has one of the highest affinities for SBP in rainbow trout 

plasma, although the binding occurs at concentrations 130 times higher than those needed 

for E2 (Tollefsen, 2002; Tollefsen et al., 2002). This binding affinity to EE2 is in general 

agreement with other research on both mammalian and fish SBP, although SBP in the 

channel catfish Ictalurus punctatus has shown to have a higher affinity for EE2 than E2 

(Gale et al., 2004 ), thus concluding that species-specific differences among fish exist.  

 
Figure 2-2 Chemical structures of the synthetic estrogen ethynylestradiol  
 

            17α-ethynylestradiol 

 
 

Man-made chemicals and by-products designed for uses in industry, agriculture, certain 

pesticides and consumer goods such as plastic additives may have estrogenic activity. An 

example is bisphenol A, (Fig 2-3) used in the production of polycarbonates which partially 

displaces E2 from SBP in common carp and rainbow trout (Klaos et al., 2000; Tollefsen 

 16



                                                                                                                       Background                             

et al., in press). Estrogenic degradation products from detergents and surfactants are 

present in sewage effluents and are both lipophilic and persistent. Alkylphenols were first 

found to be estrogenic in the 1930s. (Dodds and Lawson, 1938) and display estrogenic 

effects in rainbow trout hepatocytes (Jobling and Sumpter, 1993). 4-nonylphenol, 4-

octylphenol and 4-tert-butylphenol all have low binding affinities for SBP in several fish 

species including common carp, rainbow trout and catfish plasma (Klaos et al., 2000; 

Tollefsen 2002; Gale et al., 2004; Tollefsen et al,. in press). 

 

Phthalates are found in groundwater, rivers and drinking water and several of these 

chemicals used as plastic additives are estrogenic in tests using a mammalian cell line and 

an in vitro bioassay from rainbow trout (Jobling et al., 1995). Both di-(n-butyl) phthalate 

(DBP) (Fig 2-3) and butyl-benzyl phthalate are able to bind to the rainbow trout estrogen 

receptor and initiate the transcriptional activity of the ER (Jobling et al., 1995). In 

addition to this, DBP disrupts androgen regulated male sexual differentiation 

(Myhlchreest et al., 1999). Phthalates interference with SBP is a possible answer for why 

these weakly acting xenoestrogens cause reproductive disturbances in developing males 

(Tollefsen et al., 2002). Like EE2, DBP induces a dose-dependent increase in the 

circulating levels of SBP (Tollefsen et al., 2002). Phthalates as diethyl phthalate and DBP 

also compete with E2 for the binding to SBP, but at concentrations far higher than those 

needed for endogenous hormones. (Tollefsen 2002, Klaos et al., 2004)  
 

Figure 2-3 Chemical structures of di-(n-butyl) phthalate and bisphenol A 

 

         Di-(n-butyl) phthalate                                Bisphenol A
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In addition to the exposure of single compounds, fish exposed to complex industrial 

effluent from paper mills and offshore and land-based oil production show modifications 

of SBP properties including binding affinities to sex steroids and concentration of SBP in 

plasma which again could influence transport, clearance or actions of both E2 and T 

(Pryce-Hobby et al., 2002; Tollefsen et al., in press).  
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3 MATERIALS AND METHODS 
 
 
3.1 Experimental design 
Liver cells (hepatocytes) were isolated from rainbow trout and kept in culture where the 

cells were exposed to 17β-estradiol (E2), ethynylestradiol (EE2) and di-(n-butyl)-

phthalate (DBP) dissolved in DMSO. The cell medium surrounding the hepatoyctes was 

used in analysis for total steroid binding capacity (binding assays) and in analysis of 

protein expression (western blot). RNA was isolated from the hepatocyte cells and used 

in calculation of the relative gene expression of SBP (qPCR). The role of non-specific 

binding proteins was also evaluated using purified rainbow trout vitellogenin (rtVtg) and 

albumin (BSA). Rainbow trout plasma was used in saturation analysis and in western blot 

with assumed heterologous anti-zebrafish SBP specific antibodies.  

 
3.2 Chemicals 

17β-estradiol (E2), 17α-ethynylestradiol (EE2),  Di-(n-butyl) phthalate (DBP), 

Testosterone (T), Bovine serum albumin (BSA), Collagenese, Dimethyl sulphoxide 

(DMSO), Ethidium bromide (EtBr), Trizma-base, Trizma-HCl, 

Ethylenediaminetetraacetic acid (EDTA), Ethylyneglycol-bis(β-aminoethylether) N, N, 

N’,N’- tetraaceticacid (EGTA), Heparin, Aprotinin, Glycine, Glycerol, Polyoxyethylene-

sorbitan monolaurate (Tween 20), Activated carbon (charcoal), Ficoll-400, Xylene 

cyanol, 1-thioglycerol and Poly(ethyleneimine)solution (PEI) were all purchased from 

Sigma (St.Lois, Oregon, USA). Leibowitz L-15 medium, L-glutamine, penicillin, 

streptomycin and fungizone was supplied by Biowhittaker Inc (Walkersville, Maryland, 

USA). Rainbow trout vitellogenin (rtVtg) was bought from Biosense Laboratories AS 

(Bergen, Norway). NaCl, KCl, MgSO4, Na2HPO4, NaHCO3, CaCl2, β-mercaptoethanol 

(β-Me), Bromphenolblue, Acetic acid, Ethylacetate, Ethylenediaminetetraacetic acid 

disodium salt (Triplex III) and Methanol (Me-OH) were all from Merck (Whitehouse 

Station, New Jersey, USA). Ethanol was bought from Arcus As (Oslo, Norway). The 

RNA isolation kit was from Qiagen (Hilden, Germany) while the high capacity cDNA 
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archive kit came from Applied Biosystems (Foster City, California, USA). TAQ SYBR® 

Green Supermix with ROX, Agarose, N, N, N’,N’-tetra-methylethylenediamine 

(TEMED), Ammonium persulphate (APS), Acrylamide/bis solution (30%),  Sodium 

dodecyl sulfate (SDS) and Goat anti-rabbit IgG (H+L)-HRP-conjugate were from Bio-

Rad Laboratories (Hercules, California, USA). OLIGOLD SBP forward and reverse 

primers and β-actin forward and reverse primers were from Eurogentec (Seraing, 

Belgium). The radiolabelled steroids [1,2,6,7-3H]testosterone ([3H]-T, 95 Ci/mmol) and 

[2,3,6,7-3H]estradiol ([3H]-E2, 83 Ci/mmol) were from Amersham Biosciences 

(Buckinghamshire, England). Dextran T-70 was from Pharmacia Biotech (Uppsala, 

Sweden) and Optiphase Supermix came from Perkin Elmer (Wellesly, Massachusetts, 

USA). Milli-Q® water was collected from a Milli-Q® Ultrapure water purification 

system from Millipore (Billerica, Massachusetts, USA). Antibodies against zebrafish 

SBP was a generous gift from Dr. Geoffrey L. Hammond (University of British 

Columbia, BC, Canada).  

 

3.3 Animals used for experiments 

Rainbow trout, Oncorhynchus mykiss from Killi Oppdrettsanlegg (Dombås, Norway), 

was kept in tanks at the Department of Biology, University of Oslo (Norway) at a water 

temperature of 12ºC, oxygen saturation of approximately 100 % and pH 6.6. The fish 

were fed Ewos Transfer pellet (EWOS, Norway). The tanks received artificial 

illumination 12 h/day. 

 

Zebrafish, Danio rerio from Akvarie fisken Eivind AS (Oslo, Norway) were kept in 

aquariums at the institute of Norwegian Water Research (NIVA). Water temperature was 

approximately 25ºC. Feeding was not necessary as the fish were only kept alive for a 

couple of hours. 
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3.4 Exposure of hepatocytes 
3.4.1 Isolation of cells 

Hepatocytes from rainbow trout were isolated and modified in a two step perfusion 

method as described by Tollefsen et al., (2003). Sexually undifferentiated juvenile or 

male fish were killed by a blow to the head and perfused in situ with a calcium-free 

solution containing NaCl (7.14 g/l), KCl (0.36 g/l), MgSO4 (0.15 g/l), Na2HPO4 (0.4 g/l), 

NaHCO3 (0.3 g/l), and EGTA (10 mg/l) at 12ºC at a rate of 10 ml/min for 10-15 min. The 

liver was perfused with the same buffer (37ºC), containing calcium (CaCl2, 0.22 g/l) and 

collagenese (0.3 g/l) at the same rate for 10-15 minutes and transferred to a Petri dish 

containing ice-cold calcium free re-suspension buffer (EGTA-buffer containing 0.1% 

(w/v) bovine serum albumin) for dispersion. The cells were washed three times by 

centrifugation for (4 min, 500 rpm, 4ºC) and re-suspended in 20 ml Leibowitz 15 medium 

(L-15) containing L-glutamine (0.29 g/l), NaHCO3 (0.38 g/l), penicillin (100,000 units/l), 

streptomycin (100 mg/l) and fungizone (0.25 g/l).  

 

Cell viability and total number of cells was measured with trypan blue exclusion test and 

Coulter particle counter (cell size 10-20 µm) respectively. The cells were diluted in 6 

well plates (Falcon, Bekton Dickinson Labware, Oxnard, CA, USA) as a monolayer 

culture with a density of 1.5 million cells per well and kept in an ambient environment 

(15ºC) for 24 hours before the onset of the exposure studies. 

3.4.2 Exposure of cells 

The hepatocytes were exposed to E2, EE2 and DBP by dissolving the test chemicals in 

DMSO and diluting the stock solution in cell culture media (L-15). Prior to hepatocyte 

exposure half the volume of cell medium was removed and the exposure solution added 

to each well. The cells were exposed for 24, 48 and 96 hours (15ºC) and samples of 

media and cells prepared for analysis of gene expression, protein expression and total 

steroid-binding activity in media. 

3.4.3 Preparation of cell and media samples 

The cell medium (2 ml) was removed, transferred to microtubes and stored at -80ºC. The 

cells were subjected to RNA isolation using an RNeasy Mini Kit (Qiagen, Hilden, 
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Germany) according to  the protocol described in the “RNeasy mini protocol for isolation 

of total RNA from animal cells” (RNeasy Mini Handbook, Qiagen 2002). Each well was 

washed with 350 μl RNeasy lysis buffer (RLT; supplied by Qiagen) containing β-

Mercaptoethanol (β-Me) and the homogenate was transferred to RNase-free microtubes. 

Samples were lysed by passing the homogenates 5 times through a 20-gaug needle (0.9 

mm diameter) fitted to an RNase-free syringe and stored at -80ºC until further RNA 

isolation. 

 

 

3.5 Determination of sex steroid-binding activity 
3.5.1 Preparation of rainbow trout plasma 

Blood was removed from the caudal artery using pre-cooled syringes containing 0.1% 

Heparin (v/v) and 1% protease (v/v) inhibitor Aprotinin (10 TIU/ml, Sigma, St.Lois, 

Oregon, USA). Blood samples were centrifuged at 2000 g (4ºC) for 10 min. The 

supernatant was carefully removed and frozen in aliquots at -80ºC. 

3.5.2 Stripping of sex steroids 

Stripping of plasma and cell media were performed essentially as described by Tollefsen, 

(2002). One volume of Dextran coated charcoal buffer (Dextran T-70 (2.5 mg/ml) and 

activated carbon (25 g/ml) mixed in TEMG; Trizma-HCl (1.404 g/l), Trizma-base (0.134 

g/l), glycerol (100 ml/l), Triplex III (0.372 g/l) and 1-thioglycerol (1.3 g/l) was added to 9 

volumes of sample. Charcoal was eliminated by centrifugation (4500 rpm, 10 min, 4 ºC). 

Two successive charcoal treatments of 5 and 45 min were performed to allow efficient 

elimination of high concentrations of endogenous or exogenous steroids.  

3.5.3 Determination of sex steroid-binding activity 

Saturation binding studies were conducted essentially as described by Tollefsen et al., 

(2002). In essence, 50 µl of [3H]-E2 or [3H]-T standards (0.6-20 nM) were incubated with 

(non-specific binding) and without (total binding) a three fold excess of inert steroid (T or 

E2 mixed in ethyl acetate (EtAc)) in 96-round bottomed polypropylene plates (Nunc, 

Roskilde, Denmark) together with 100 µl of diluted rainbow trout plasma (100 times in 

TEMG buffer) or undiluted DCC stripped cell medium. The plate was covered with 
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sealing tape (Nunc, Roskilde, Denmark) gently swirled and incubated in a refrigerator for 

a minimum of 4 hours. Separation of protein bound sex steroids were performed 

according to microplate based filtration method (Olsen et al., 1995; Gattu et al. 1995; 

Roychoudhury et al., 1997).  

 

The wells of a Millipore Multiscreen® HTS96-well filtration plate (Millipore, Billerica, 

MA, USA) were coated with 200 µl of coating buffer (0.1% PEI (v/v) in dH2O), sealed 

with sealing tape and incubated in a refrigerator for a minimum of 2 hours. The filtration 

plate was mounted on the vacuum manifold (Millipore, Billerica, MA, USA) and washed 

three times in 200 µl ice-cold TEMG buffer by vacuum suction (10 mm Hg’’). To avoid 

the filter paper from running dry, the last wash was emptied by inverting the filtration 

plate and the underdrain was dried using a clean paper towel. 100 µl of the incubation 

solutions were applied to the filtration plate wells and the volume was reduced to 

approximately 25% by vacuum and rapidly washed 5 times in 200 µl of ice-cold TEMG 

buffer as described. The filters were allowed to dry with vacuum suction for one minute, 

the underdrain was removed and the filtration plate was dried for one hour at 50ºC.  

.  

After drying, the bottom of the plate was sealed by a plastic liner (Perkin Elmer, 

Wellesly, MA, USA) and 30 µl of Optiphase Supermix scintillation cocktail (Perkin 

Elmer) was added to each well. The plate was incubated in the dark (2 hr) before 

radioactivity was determined by a MicroBeta Trilux microplate scintillation counter 

(Perkin Elmer, Wellesly, MA, USA) using standard tritium conditions. All incubation 

steps were performed on ice. 

 

Total sex steroid binding capacities were essentially determined as described for 

saturation studies, although a fixed concentration of radio-labelled steroid was used. In 

brief 2.5 nM tracer ([3H]-E2 or [3H]-T) in combination with  (non-specific binding) and 

without (total binding) a three fold excess of inert steroid  were added in duplicates to a 

96-well round bottomed plate and 100 µl of undiluted DCC-stripped medium were added 

to the wells. The sex-steroid binding activity was determined as described earlier. 
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3.5.4 Determination of protein concentration, specific binding and Scatchard plots  

Protein content was determined by method of Bradford (1976). A protein dye solution 

(Bio-Rad Laboratories, Hercules, CA, USA) was diluted in distilled water and filtered 

(Whatman no.1). Samples were diluted in TEMG buffer, applied in triplicate to 

microtitier wells and a protein dye working solution was added. After incubation (5 min, 

20ºC) the absorbance (590 nm) was measured and protein content determined by the use 

of bovine serum albumin (BSA).  

 

Binding data (dpm) from saturation analysis is calculated as specific binding where; 

 
Specific binding (dpm) = [Total background] – [Non-specific background] 
 

To line data from saturation analysis, Scatchard plots were used. In this plot the X-axis is 

specific binding and the Y-axis is the ratio of specific binding to concentration of free 

radioligand (labelled bound/free).  Total available binding sites (Bmax) is the X intercept; 

the equilibrium dissociation constant (Kd) is the negative reciprocal of the slope.  

3.5.5 Determining the role of non-specific binding proteins 

The binding of estrogens and testosterone to other proteins than SBP might be of 

importance when characterizing total steroid-binding capacity. The effect of vitellogenin 

(vtg) and albumin (BSA) on the total-steroid binding capacity assay was determined to 

quantify the role of non-specific binding proteins. 

 

In brief, 0.1% bovine serum albumin in TEMG, purified rainbow trout vitellogenin 

(Biosense Laboratories, Bergen, Norway)  (4µg/ml TEMG), DCC-stripped cell medium 

(control cells), DCC-stripped cell medium from hepatocytes exposed to E2 (exposed 

cells) and rainbow trout plasma (10% v/v in TEMG) and TEMG alone were incubated 

with 5 and 20 nM of either [3H]-E2 or [3H]-T (50 μl) for a minimum of 4 hours in a 

refrigerator. Total sex steroid-binding activity was determined as described earlier.  
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3.6 Immunological detection of sex steroid-binding proteins 

3.6.1 Preparation of plasma from zebrafish 

Zebrafish were anesthetized in ice-water and blood-samples were taken from the fish’s 

dorsal vein using a small pre-cooled syringe containing Heparin (5000 IU/ml, Sigma, 

St.Lois, MA, USA). Blood-samples from several fish were collected in a microtube and 

centrifuged in a micro-centrifuge (4ºC). Plasma was removed using a pipette and stored 

in aliquots at -80ºC.  

  

 
 
3.6.2 SDS-PAGE 

SDS polyacrylamide-gel electrophoresis (SDS-Page) was performed using a mini-

PROTEAN II Electrophoresis system (Bio-Rad Laboratories, Hercules, CA, USA) 

essentially as described by Miguel-Queralt et al., (2005). The glass plate/clamp assembly 

was set in the casting stand and 3.5 ml resolving gel (TEMED (0.5 μl/ml) and APS (10 

μl/ml), dH2O (0.4 ml/ml), Trizma-Base 1.5 M pH 8.8 (0.4 ml/ml), acryl/bis 30% solution 

(334 μl/ml) and SDS (10 μl/ml)) was poured between the glass plates and allowed to 

polymerise for 30 min with a thin layer of dH2O on top. TEMED (0.75 μl/ml) and APS 

(10 μl/ml) were added to a 4% acrylamide gel stock solution (dH2O (0.71 ml/ml, 

Acryl/Bis 30% solution (0.14 ml/ml), 0.5 M Tris pH 6.8 (0.125 ml/ml), SDS (10 μl/ml)) 

and poured directly on top of the resolving gel. After the insertion of a 10-well comb, the 

gel was left to polymerize for approximately one hour. The gel apparatus was fitted to an 

electrophoresis gasket and placed in the electrophoresis tank containing running buffer; 

Trizma-Base (3.02 g/l), glycine (18.8 g/l) and SDS (1.0 g/l). 

  

   

 

Cell medium and plasma from rainbow trout and zebrafish  were diluted 1:1 in boiling 

buffer (Tris-HCl (1.97 g), glycerol (20 ml), SDS (4 g), β-Me (4 ml) and bromophenolblue 

in 100 ml) and boiled (5 min, 95ºC) in microtubes.10 µl of a low molecular weight 

protein standard (Bio-Rad Laboratories, Hercules, CA, USA ) and 20 µl of lysate (protein 

and boiling buffer) where added to the gel and the electrophoresis performed at 100 V on 

ice until the bromophenolblue marker dye reached the bottom of the plate (approximately 

1 hr). 
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3.6.3 Western blotting  

The SDS-gel, still glued to one of the glass plates was placed in transfer buffer containing 

Trizma-Base (3.03 g/l), glycine (14.4 g/l) and  20 % (v/v) methanol for 20 min while a 

PVDF membrane (Millipore, Billerica, MA, USA) was equilibrated in 100 % methanol 

(10 s) and washed in dH2O (2 min). Sponges, 4 pieces of Whatmann paper and the PVDF 

membrane were all soaked in transfer buffer. A transfer cassette was prepared, and 

bubbles of air removed by rolling a glass flask over the assembly. The cassette was fitted 

into a blotting apparatus filled with transfer buffer and blotted at 100 V (45 min) in a 

cooled electrophoresis chamber. The transfer cassette was dismantled and the blot 

cleaned in TBST; TBS containing 0.01% Tween 20 (NaCl (8 g/l), KCl (0.2 g/l), Trizma-

Base (3 g/l) and Tween 20 (500 μl/l)).  

 

The blot was incubated overnight in blocking buffer (5% BSA (w/v) in TBST) (4 ºC), 

rinsed in TBST (10 min) and incubated (37ºC) with the primary antibody; rabbit anti 

zebrafish SBP diluted 500 times in TBST. The use of zebrafish antibodies in western blot 

was chosen as, rainbow trout antibodies for SBP are not available and anti-zebrafish SBP 

has shown to recognize SBPs in the blood of several fish species. The blot was washed 6 

times (10 min) in TBST before incubation with a goat anti-rabbit IgG (H+L)-HRP-

conjugate (60 min, 37ºC) (Bio-Rad Laboratories, Hercules, CA, USA). The blot was 

washed again in TBST and TBS (1 X 10 min) to remove any trace of Tween 20. 

 

Developing was done by incubating the blot (5 min) in a solution containing equal 

amounts of stable peroxide solution and enhancer solution from a Supersignal® West Pico 

kit (PIERCE, Rockford, IL, USA). Inside a darkroom, the membrane was laid between 

two transparent films, bubbles of air were removed and the blot placed in a radiography 

cassette with its protein side up. An ECL™-Hyperfilm (Amersham, Buckinghamshire, 

UK) was placed on top, the cassette was closed and the film exposed for 1 – 30 min 

depending on intensity. Developing was done in an OPTIMAX film processor (Protec, 

Obersterfeld, Germany) and the film was visually rated. 
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3.7 Quantitative real-time PCR analysis of SBP gene expression 
3.7.1 Isolation and purification of RNA 

One volume (350 µl) of 70 % RNase- free ethanol (Arcus, Oslo, Norway) was added to 

the thawed homogenized lysate, mixed by pipetting, applied to an RNeasy mini column 

(Qiagen) in a 2 ml collection tube and centrifuged  (10000 rpm, 15 s). RNeasy wash 

buffer (RW1 buffer) was added (700 μl) and the excess DNA was removed by 

centrifugation (10000 rpm, 15 s) before the column was washed with 500 µl RPE buffer 

(Qiagen) and centrifuged (10000 rpm for 15 s). This step was repeated with a longer 

centrifugation time (10000 rpm for 2 min) before drying the silica-gel membrane 

completely by centrifuging at full speed (1 min). The column was transferred to a new 1.5 

ml RNase-free collection tube, 50 µl of RNase-free water was added and RNA was eluted 

by centrifugation (10000 rpm, 1 min). Samples were stored at -80ºC until analysis by 

Reverse Transcriptase Polymerase Chain Reaction (rtPCR) 

 

The purity and amount of RNA in the isolated samples were determined by optical 

density (OD) of RNA at A280, A260 and A230 in a Lambda 40 UV/V15 Spectrometer 

(Perkin Elmer, Wellesly, MA, USA) and the relationship A260/A280 calculated as the total 

RNA concentration in each sample. Samples were diluted in RNase-free water to a final 

RNA concentration of 20 µg RNA/µl. All steps were performed in a RNase-free 

environment as possible. 

 

3.7.2 DNA amplification 

Reverse Transcriptase Polymerase Chain Reaction was performed using a High Capacity 

cDNA archive kit (Applied Biosystems, Foster City, CA, USA). A master mix (see 

appendix) was made in a 1.5 ml microtube depending on the number of samples. The 

mixture was mixed with 10 µl RNA templates (20 µg RNA/ µl), transferred to PCR-

tubes, run in an Eppendorf mastercycler gradient PCR (Eppendorf, Hamburg, Germany) 

according to specifications given in Table 3-1. The resulting cDNA samples were stored at 

-20ºC until analysis by Quantitative Realtime polymerase chain reaction (qPCR) 
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Table 3-1 PCR program for cDNA synthesis. 
 

Temperature ºC Time 

25  10 min 

37 2 hours 

4 hold 

 

3.7.3 Quantitative polymerase chain reaction 

Quantitative real-time polymerase chain reaction was performed according to method by 

Torsdalen (2003). A master mix containing TAQ SYBR® Green Supermix with ROX  

(Bio-Rad Laboratories, Hercules, CA, USA),  milliQ water and optimal concentrations 

for OLIGOLD forward and reverse primer (Eurogentec, Seraing, Belgium, see Table 3-2) 

was made depending on the number of samples. 10 µl cDNA was added to each 

microtube, applied in triplicates of 25 µl to a 96 well PCR plate (Sarsted, Numbrecht, 

Germany) and coated with optically clear sealing tape (Sarsted, Numbrecht, Germany). 

Air bubbles were removed by centrifugation at 1000 rpm (1 min). The plate was run in an 

Absolute Quantification Assay by a 7500 Real Time PCR System (Applied Biosystems, 

Foster City, CA, USA).  

 
Table 3-2 Primers used in qPCR. 

Primer (OLIGOLD) Sequence 

β-actin -Reverse 5’-CGT-AGT-CCT-CGT-AGA-TGG-GTA-CTG-3’ 

β-actin 378 -Forward 5’-TAC-CAC-CGG-TAT-CGT-CAT-GGA-3’ 

SBP 1251 -Reverse 5’-CAG-GAT-AGC-CTT-GAT-TCA-GAC-TTC-3’ 

SBP 1171 -Forward 5’-GAT-CTA-GAC-CGG-GCG-GTG-TA-3’ 

 

For quantification of cDNA samples a standard curve was made by diluting a mix of 

cDNA samples tenfold (five samples). The housekeeping genes (β-actin) were used as an 

endogen control, by running samples including standard curve samples with forward and 

reverse β-actin primers. 
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The calculation of relative gene expression was done using the standard curve. Samples 

were normalised in relation to the endogen control (β-actin) and in relation to unexposed 

samples (0 hr of exposure to DMSO and test compounds): 

• Ratio of SBP gene amount to amount of endogen control  

• Ratio (sample)/ Ratio (control) 

 

To avoid false positive signals by SYBR® Green binding non-specifically to double-

stranded DNA sequences, the qPCR products were checked for non-specific product 

formation using gel analysis. Samples mixed with gel loading buffer (bromophenolblue 

(2.5 mg/ml), Xylene Cyanol (2.5 mg/ml) and Ficoll- 400 (0.15 g/l) and a 100 bp DNA 

ladder (ABgene, Surrey, UK) were all run in a 1% agarose gel containing EtBr (100 V, 

20 min). The gel was completely covered in TAE buffer containing Trizma-base (4.84 

g/l), concentrated acetic acid (1.142 g/l) and 0.5 M EDTA pH 8.0 (2 ml/l). DNA bands 

were visualised by placing the gel on a UVT-20M UV-table (Herolab, Wiesloch, 

Germany) and photographed by a Polaroid Gel cam (Peca Products, Beloit, WI, USA).  
 

 

 

3.8 Graphical and statistical methods  
Cells were exposed in duplicates and qPCR and total binding activity assays were 

performed on hepatocytes from two individual fish. Statistical analyses were performed 

using GraphPad Prism 4.0 (GraphPad Software Inc. San Diego, USA). 
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4 RESULTS 
 
 

4.1 Determination of sex steroid-binding activity 

4.1.1 Saturation analysis of rainbow trout plasma 

Saturation and Scatchard analysis were conducted to characterize both [3H]-T and [3H]-

E2 binding to the assumed sex steroid-binding protein in diluted samples of rainbow trout 

plasma. Both steroids bound to a high affinity and moderate capacity binding protein in 

rainbow trout plasma and obtain saturation of ligand binding sites at about 10 nM (Fig 4-

1). Scatchard transformation of these specific binding data (Fig 4-2) revealed a linear 

relationship for the binding of both testosterone (T) and estradiol (E2) to the assumed 

rainbow trout SBP. Scatchard analysis yielded a mean equilibrium dissociation constant 

(Kd) and mean total available binding sites (Bmax) of 3.074 nM and 9616 fmol/mg protein 

for testosterone and for estradiol; Kd of 4.72 nM and Bmax 8192 fmol/mg protein. The Kd 

value in saturation analysis using [3H]-T are apparantly slightly lower than in saturation 

analysis with [3H]-E2, while the opposite is true for Bmax values. These are higher for 

[3H]-T than [3H]-E2.  
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Figure 4-1 Total( ■), non-specific( ▲) and specific binding (▼) of [3H]estradiol (A) and 

[3H]testosterone (B) to diluted  plasma from rainbow trout (0.5 mg protein/ml).. The values represent 

analysis of plasma from one representative fish.  
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Figure 4-2 The maximum specific binding (Bmax) and dissociation constant (Kd) estimated by Scatchard 

transformation of the specific binding data from saturation analysis for [3H]estradiol(left) and 

[3H]testosterone (right) in diluted rainbow trout plasma (0.5 mg protein/ml). The values (mean ± SEM) 

represent analysis of plasma from one representative fish.  
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4.1.2 Saturation analysis of cell medium 

Cell medium from rainbow trout hepatocyte cultures exposed to 17β-estradiol for 48 

hours was stripped in a 1 to10 cell medium: DCC ratio. The DCC-stripped cell medium 

was subjected to saturation and Scatchard analysis to determine whether cell media 

display similar binding characteristics as plasma for estradiol and testosterone. Saturation 

analysis showed a large difference between total and non-specific binding as seen for 

plasma, but no clear saturation of estradiol or testosterone binding sites were obtained 

(Fig 4-3). Scatchard analysis confirmed that that high affinity binding sites as seen in 

saturation analysis of rainbow trout plasma were not clearly identified in the medium. 

The Kd and Bmax values were calculated using non-linear regression of the specific 

binding data. Values for Kd and Bmax in saturation analysis using [3H]-E2 were given as 

29.94 ± 22 nM and 5347 ± 2773 nM and respectively. The same results were obtained in 

saturation analysis using [3H]-T (Fig 4-4), where Kd values were given as 31.72 ± 20 nM 

and Bmax, 6122 ± 2752 nM. 
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Figure 4-3  Total( ■), non-specific( ▲) and specific binding (▼) of [3H]estradiol in  1:10  DCC stripped 

cell medium (A) from a  rainbow trout hepatocyte culture exposed to E2 for 48 hours. Scatchard 

transformation of the specific binding data (B) revealed no linear relationship. The values represent 

analysis of cell medium from one representative experiment. 
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Figure 4-4 Total( ■), non-specific( ▲) and specific binding (▼) of [3H]testosterone in  1:10  DCC 

stripped cell medium (A) from a  rainbow trout hepatocyte culture exposed to E2 for 48 hours. Scatchard 

transformation of the specific binding data (B) revealed no linear relationship. The values represent 

analysis of cell medium from one representative experiment. 
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4.1.3 Total sex steroid-binding activity 

Total binding activity in rainbow trout hepatocytes increased with both time and 

concentration compared to control. All chemicals showed an increase in total binding 

activity after 48 hours of exposure. The largest increase was seen in hepatocyte cultures 

exposed to EE2 (Fig 4-5 B and E). Compared to solvent control, total binding activity 

increased 4 times. Total binding in hepatocyte cultures exposed to E2 (Fig 4-5 A and D) 

increased with two times, while a three time increase was seen for hepatocyte cultures 

exposed to DBP (Fig 4-5 C and F). Although the present increase is almost equal for 

testosterone and estradiol after 96 hours, the curves appear different at 24 and 48 hours of 

exposure.  

 

A concentration-response relationship was clearly seen for EE2, E2 and DBP after 96 

hours exposure. (Fig 4-6). Maximum induction was seen at 10-8 mol/l for E2 and 10-7 

mol/l DBP (Figure 4-6 A and C). A concentration-response relationship was also seen for  

total binding activity assays with [3H]-T, displaying maximum induction at 10-5 mol/l for 

E2 and 10-8 mol/l for DBP. The maximum induction of EE2 (Fig 4-6 B and E) is not 

apparent as response was still increasing at the highest exposure concentration (10-5 

mol/l). Interestingly, total sex steroid-binding activity in [3H]-E2 assays was clearly 

higher than control even at the lowest concentrations of EE2 and E2, suggesting that 

these compounds induce total binding activity responses even at lower concentrations 

than those tested in this work. Variation increases in the highest concentrations of EE2, 

which is probably due to the high concentrations of the potent estrogen affecting cell 

viability. A similar, but not as extreme trend is seen for DBP.  
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Figure 4-5 Total binding activity to cell medium proteins from rainbow trout hepatocytes exposed to 1 µM  

of the test chemicals 17β-estradiol (A, D),  ethynylestradiol (B,E) and  di(n-butyl) phthalate (C, F) over 

time. Left graphs displays data for total binding capacity to [3H]-E2 and the right for total binding capacity 

to [3H]-T.  The values (mean ± SEM) represent analysis of cell medium from one representative fish. 
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Figure 4-6 Total binding activity to cell medium proteins  from rainbow trout hepatocytes exposed to E2 

(A, D), EE2 (B,E) and DBP (C, F) after 96 hours of exposure at increasing concentrations. Left graphs 

displays data of binding to [3H]-E2 and the right for binding to [3H]-T.  The values (mean ± SEM) 

represent analysis of cell medium from one representative fish. 
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4.1.4 Determining the role of non-specific binding proteins 

Cell medium contains many carrier proteins other than SBP. These may be an important 

reason for why saturation of cell medium does not occur in the full saturation analysis. 

Binding to bovine serum albumin (BSA) and vitellogenin (vtg) were thus determined to 

asess the role of the assumed non-specific binding proteins. Compared to the contribution 

of the total binding activity to TEMG buffer alone (blank), binding to vtg and BSA 

appear to play a minor role, in total binding activity assays. Cell medium (control cells) 

however, increases total binding activity two times compared to the blank, whereas total 

binding steroid-binding activity of plasma and E2 exposed cells increase 10-20 times (Fig 

4-7).  
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 Fig 4-7 Total binding activity  (%) of [3H]-E2 (A) and  [3H]-T (B) to 0.4 % vitellogenin in TEMG (vtg), 01 

% albumin in TEMG (BSA), DCC-stripped control cell medium (control cells),  DCC stripped cell medium 

collected from E2 exposed hepatocyte cells (exposed cells) and rainbow trout plasma. The values (mean ± 

SEM) show percentage increase in total binding activity compared total binding activity of TEMG buffer. 
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4.2 Immunochemcial detection of sex steroid-binding proteins 

Western blots (Fig 4-8) of fish plasma samples from rainbow trout and zebrafish probed 

with anti-zebrafish SBP antiserum showed weak but comparable bands indicating that the 

polyclonal antibodies bind to both zebrafish and rainbow trout SBP. High protein 

concentrations due to a low dilution of plasma samples in boiling buffer gives quit broad 

blurry bands Compared to the low molecular weight protein standard, the size of the 

protein bands appear similar to 60 to 85 kD for rainbow trout and zebrafish. The western 

blot confirms what appears to be the presence of a protein with similar molecular size as 

the assumed rtSBP in cell medium from rainbow trout hepatocytes exposed to increasing 

concentrations of E2 for 96 hours. The bands were not as clear as that for rainbow trout 

plasma, but this may be caused by the relative lower levels of proteins present in cell 

growth media.  

  
Fig 4-8 Expression of SBP in zebrafish plasma (zfp), rainbow trout plasma (rtp) and cell medium from 

hepatocytes exposed to E2 for 96 hours. 
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4.3 Analysis of sex steroid-binding protein gene expression 

4.3.1 Assay optimalisation 

Optimal concentration was tested for both forward and reverse SBP primers. This was 

done by testing all possible concentrations on cDNA from the same sample. The clearest 

qPCR product was seen at primer concentrations of 900 nM. 

 

Standard curves for β-actin and SBP in an absolute quantification assay displayed slopes 

with gradients between -3.0 and –3.4 (results not shown). This is a good indication of the 

qPCR reaction being close to optimal (exponential). A selection of PCR products run in 

agarose gel (Fig 4-9) show equal sized products of approximately 25 bp. The qPCR 

products were therefore assumed to quantify the SBP gene.  

 

To verify that the PCR products were indeed SBP, SBP-specific probes were used 

together with SBP forward and reverse primers. The SBP probes were tested, but did not 

produce a qPCR that corresponded to the chosen primers. As no PCR product was 

formed, the probes nucleotide was sequenced and the reported sequence displayed limited 

similarity with the rainbow trout SBP nucleotide sequence. This suggests that the SBP 

probes were not representing SBP, although more unlikely due to high quality gene bands 

in agarose gel.  

 
Fig 4-9 Selection of qPCR products run with and without SBP specific probes.  
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  probe   no probe probe  no probe 
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4.3.2 Quantification of SBP in E2, EE2 and DBP exposed hepatocytes 

h time (Fig 4-

 

 in 

y 

 concentration-response relationship was clearly seen for EE2 and DBP after 96 hours 

 

The gene-expression of SBP in rainbow trout hepatocytes increased with bot

10) and concentration (Fig 4-11) when exposed to the test compounds. Induction of gene 

expression was seen after 24 hours for all compounds, but the highest increase in SBP 

gene expression compared to β-actin is seen in hepatocytes exposed to E2 and EE2 after 

48 hours of exposure, thus coinciding with attaining maximum binding activity in the cell

media. SBP gene expression was induced with a factor of almost four times for EE2, 

whereas E2 exposure led to three times increase in SBP gene expression. The increase

SBP gene expression agree well with the increase in total binding capacity of both EE2 

and E2, reported to be four and two times, respectively. Although maximum SBP gene 

expression was also obtained after 48 hours of exposure to DBP, this compound was onl

able to induce a two times increase in SBP gene expression, slightly lower than what was 

observed in total binding capacity assay.  

 

A

exposure, where maximum induction was obtained for 10-7 mol/l EE2 and DBP (Fig 4-11 

B and C). This is similar to DBP concentrations reported in total binding capacity assays. 

Slightly lower concentrations for EE2 maximum induction are however seen in qPCR 

data compared to total sex steroid-binding activity. The natural estrogen E2 did not yield 

a clear concentration-response relationship at the concentrations tested (Fig 4-11 A). The 

SBP gene expression was clearly higher than SBP expression in control cells even at the

lowest concentrations of DBP, EE2 and E2, thus suggesting that these compounds induce 

SBP gene up-regulation even at lower concentrations than those tested in this work. 
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Fig 4-10 Quantitative gene expression of SBP in rainbow trout hepatocytes exposed to 1 μM of the test 

chemicals E2 (A), EE2 (B) and DBP (C) over time. Results from one representative fish, are displayed as 

an increase in the expression of the SBP gene compared to the expression of β-actin and solvent ( mean ± 

SEM). 
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Fig 4-11 Quantitative gene expression of SBP in rainbow trout hepatocytes exposed for 96 hours to 

increasing concentrations of E2 (A), EE2 (B) and DBP (C). Results from one representative fish, are 

displayed as an increase in the expression of the SBP gene compared to the expression of β-actin and 

solvent (mean ± SEM).
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5 DISCUSSION 
 
 
The objective of this thesis was to determine whether common environmental chemicals 

may modulate the production of sex steroid-binding proteins (SBP) and potentially play a 

role in endocrine disruption in fish. This was done by optimising and applying methods to 

measure total extracellular sex steroid-binding capacity in a primary cell culture from 

rainbow trout hepatocytes and measure the gene expression of SBP. A small selection of 

environmental compounds that previously has been shown to modulate the circulating 

levels of SBP in fish (Tollefsen, 2002) was used to study the mechanism of action. 

 

The metabolism and tissue availability of endocrine disrupting compounds (EDCs) may 

be modulated through binding to SBP and can be a mechanism for endocrine disruption 

in wildlife species (Crain et al., 1998). Low concentrations of EDCs may lead to 

induction of SBP and modulation of the free bio-available levels of both EDCs and sex 

steroid concentrations in the bloodstream (Tollefsen et al., 2002; Wells and van der 

Kraak, 1999). The consequence of this being that altered EDCs interact with steroid 

specific receptors.  

 

SBP has been reported to bind several endocrine disrupting compounds, including 

bisphenol A, diethylstilbestrol and 4-nonylphenoxyacetic acid in rainbow trout plasma 

(Milligan et al., 1998). Later studies have further revealed the binding of both natural and 

anthropogenic EDCs from distinct chemical groups to rainbow trout plasma (Tollefsen 

2002; Tollefsen et al. in press). Some of these compounds, including ethynylestradiol 

(EE2) are able to displace the endogenous sex steroids from SBP, and by doing so 

increase the equilibrium dissociation constant (Kd) in binding assays in a dose-dependant 

manner. The same has been seen following in vivo exposure of Atlantic salmon to EE2 

and di-(n-butyl) phthalate (DBP), which both induce a concentration-dependant increase 

in plasma estradiol binding capacity (Tollefsen et al., 2002).  
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5.1 Total sex steroid-binding capacity 
In order to document a similar sex steroid-binding site in cell medium and rainbow trout 

plasma, radio-ligand assays were first studied on rainbow trout plasma. Saturation 

analysis showed that the radio-labelled testosterone and estrogen bound to SBP in a 

saturable and specific manner. Kd and Bmax values were similar to those found in earlier 

studies (Tollefsen 2002; Øvrevik et al., 2001; Laidley and Thomas, 1994). Kd values for 

the testosterone assays were smaller than estradiol, indicating that T may have a higher 

affinity for the ligand. Lower Kd values in saturation analysis with T has also been seen in 

rainbow trout plasma and cell medium in other binding assays (Foucher et al.., 1990).  

 

The SBP characteristics of hepatocyte cell medium did not show the same high-affinity 

binding capacity to SBP as in rainbow trout plasma. A total binding activity assay 

measures the total binding activity of all proteins that bind to E2 or T; one can only 

assume that the binding is due to an increase in SBP production. The data from saturation 

analysis suggest the presence of low-affinity binding sites and it was suspected that other 

proteins in the cell medium bound to estrogen and testosterone, the consequence of this 

being that the binding to E2 or T never became saturated. Earlier studies on trout hepatic 

cell culture media has revealed a saturable testosterone binding site where Scathcard plot 

analysis of saturation experiments showed a class of high affinity binding sites (Kd 4.7 

nM), indicating SBP to be the same protein in plasma and cell media (Johnson et al., 

1985).  

 
In the present study the total sex steroid-binding capacity increased in hepatocyte cultures 

exposed to E2, EE2 and DBP. This is the same as has been seen for SBP levels in plasma 

of rainbow trout and Atlantic salmon exposed to the same estrogenic compounds 

(Tollefsen et al., 2002). Increase in total binding capacity was measured after 48 hours, 

but a concentration-related response was seen after 96 hours of exposure. The results do 

however, vary between binding assays using [3H]-E2 or [3H]-T. The reason for 

differences between the two radio-labelled ligands is uncertain, but could be due to 

different affinities for SBP. Unlabelled testosterone is reported to have a higher affinity 

for SBP in competition with other steroids to [3H]-T in rainbow trout hepatocyte cultures 
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(Foucher et al., 1990). Another possibility is the effects of incubating filtration plates 

with coating buffer (0.1 % PEI) at different time-intervals. This is at the time-being 

unknown, and could be a possible explanation for differences between [3H]-T and [3H]- 

E2. The greater sex-steroid binding values obtained for the binding of estradiol compared 

to testosterone may be a result of slightly lower losses during the DCC-stripping 

associated with higher binding affinity for estradiol than for testosterone (Laidley and 

Thomas, 1994). Despite these higher values, the increase in total binding activity after 96 

hours of the exposed cultures of heptocytes was approximately the same.   
 

There has not been conducted many comparable studies on the effects of SBP in cell 

medium of non mammalian species. A slow increase of SBP binding capacity has been 

reported in rainbow trout plasma and culture media from hepatocytes after in vivo or in 

vitro exposure to 17β-estradiol (E2) (Foucher et al., 1991). The increase in SBP 

production was seen together with a large production of vitellogenin (vtg) (Foucher et al., 

1991). In vitro vtg induction to E2 occur earlier and to a larger degree than the induction 

of SBP and this suggest that low susceptibility to SBP in male hepatocytes is not the only 

reason for the slow SBP response to E2 (Foucher et al., 1991). Concentration-related 

responses of SBP production  have been obtained during E2 stimulation from 96 hr to 

144 hr in rainbow trout hepatocytes, but the increase in SBP production compared to 

controls was not always significant (10 and 100 nM were effective for increasing SBP) 

(Foucher et al., 1991). Such delays prior to increasing SBP production under exposure to 

E2 has also been shown in vivo in women and in vitro using hepatoma cell lines of human 

origin (Mercier-Bodard et al., 1987; Clair et al., 1985). The exposure to androgens was 

not tested in this particular study but, androgens have been found to increase SBP 

production in several studies in vitro and in vivo (Lee et al., 1987; Mercier-Bodard et al., 

1987; Plymate et al., 1988). 

 

In human hepatocarcinoma cell lines, the secretion of SBP increased significantly 

following exposure to both E2 and T (Mercier-Bodard et al., 1987). Incubation with EE2 

also led to an increased SBP production, although this particular experiment reported no 

increase in SBP after exposure to testosterone (Li and Humpel, 1990). Our results suggest 
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that estrogens of both synthetic and natural origin appear to be important potential 

regulators of total sex steroid-binding capacity, potentially due to SBP from hepatocyte 

cultures. 

 

Binding of sex steroids in plasma consist of high-affinity binding proteins like the SBP 

and low-affinity binding proteins like corticosteroids and albumin (Sitteri et al., 1982). It 

is possible that the low affinity binding sites represent a substantial part of the capacity 

plasma has to bind sex steroids (Westphal, 1986) (97-99 % of sex steroids in the blood 

are bound to carrying proteins, where of SBP accounts for 40-70 % ) (Tollefsen, 2002). 

The presence of non-specific binding proteins can be seen when measuring the total 

binding of fractioned plasma samples in several fish species. Measuring total sex steroid-

binding of each fraction reveals one large peak, most likely  the SBP, and a smaller peak 

that also contributes to the total sex steroid-binding activity (Hobby et al., 2000, Øvrevik 

et al., 2001). These studies indicate a presence of proteins other than SBP or multiple 

forms of SBP that bind E2 and T. 

 

It has previously been suggested that decreased binding affinity to SBP found in 

reproductive female fish may be an artefact of the increased plasma levels of vtg (Laidley 

and Thomas, 1997). Our studies show that vtg binding to estradiol is minor and that the 

same is true for vtg binding to testosterone. Other studies where vtg have been partially 

purified from SBP plasma samples also indicate that estradiol does not appear to bind to 

vtg (Hobby et al. 2000).  

 

When testing the binding of albumin to radio labelled E2 and T in our studies, albumin 

did not appear to bind estradiol nor testosterone. Although the overall contribution of 

albumin was minor, the source of the albumin was from a mammal and there might be a 

possibility that albumin-like proteins from fish will bind testosterone and estradiol with a 

higher affinity. Albumin has not been found in fish, but proteins with some of the 

characteristics of albumin are present (Davidson et al., 1989). Proteins that share these 

characteristics with mammal albumin have been identified in the plasma of trout. 

(Davidson et al., 1989; Maillou and Nimmo, 1993) and these albumin-like proteins may 
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be responsible for low-affinity, high capacity binding of E2 (Westphal, 1986). There is 

also a strong possibility that other binding proteins present in the medium could bind sex 

steroids as well, for example the corticosteroid binding globulin (Tollefsen, 2002). 

 

Total sex steroid-binding activity to unexposed DCC-stripped cell medium was also 

tested. The binding activity increased two times compared to blank samples, which was 

higher than total sex steroid-binding activity of both albumin and vtg. This increase 

further suggests the presence of other binding proteins contributing to total sex steroid-

binding activity, together with a baseline production of SBP secreted by the unexposed 

hepatocytes. The over ten time increase seen in total sex steroid-binding activity in cell 

cultures exposed to E2 compared to unexposed cells is most likely due to an increase in 

SBP secretion by the hepatocytes. 

 
Regulation of SBP appears to show similar patterns in teleost and mammalian species. As 

shown in this thesis and elsewhere, exposure to sex steroids clearly increase SBP 

production. Growth hormone (GH) has been suggested to play an important role in SBP 

basal production in the liver, by increasing SBP accumulation in rainbow trout hepatocyte 

cells. Insulin is clearly inhibitory of SBP production in liver cells from both teleost and 

human origin (Foucher, 1991; Plymate et al., 1988). The thyroid hormones T3 and T4 did 

not influence SBP concentration in rainbow trout hepatic cell culture media (Foucher et 

al., 1991), while T4 has been shown to stimulate SBP production in hepatoma cell lines 

(Plymate et al., 1998).  

 

 
5.2 Sex steroid-binding protein expression 
To confirm that SBP was the main contribution to total sex steroid-binding activity and 

not other binding proteins, the protein expression of SBP was examined using zebrafish 

SBP specific antibodies in a western blot. Antibodies for SBP in fish species are only 

available for sea bass and zebrafish. Zebrafish antibodies were chosen as they are 

reported to bind to SBP from several fish species as well as human SBP (Hammond pers 

comm.). An increase in total-binding activity over time in cell medium from exposed 
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hepatocyte cultures had already been documented and the aim of this experiment was to 

determine whether the observed activities can be attributed SBP. Anti-zebrafish SBP was 

able to bind specific proteins in rainbow trout plasma and cell medium, but due to the low 

protein concentrations in cell medium the protein bands were very weak. This made it 

impossible to distinguish the intensity of the protein bands which could have given an 

indication of the approximate amount of SBP in each cell medium sample. The results 

conclude that western blot using zebrafish SBP antibodies was not a suitable method for 

comparing the amount of SBP protein in cell medium samples from rainbow trout 

hepatocyte cultures. As a consequence of this partial confirmation of SBP modulation by 

immonuchemical methods, gene expression studies were conducted.  
 

 
5.3 Gene expression of sex-steroid binding protein 
Quantitative realtime polyclonal chain reaction (qPCR) was used to quantify the amount 

of SBP specific genes in rainbow trout hepatocytes. In the present study, an increase in 

SBP gene expression was seen in rainbow trout hepatocytes after exposure to the natural 

estrogen 17β-estradiol and the well known endocrine disrupters EE2 and DBP over time 

and concentration. An up-regulation of the SBP gene was seen after 24 hours and kept 

increasing over time in DBP and EE2 exposed samples, while even the lowest 

concentrations of all test compounds tested induced SBP two times or more compared to 

endogen control and unexposed samples. Earlier studies with human hepatoma cells have 

shown that E2 has been able to stimulate SBP gene expression to a similar degree to that 

observed for rainbow trout hepatocytes in the present study (Mercier-Bodard et al., 

1987). Exposure to androgens has also shown a very moderate effect on gene expression 

of SBP in human hepatoma cells (Mercier-Bodard et al., 1990; Hoop et al., 1990). Other 

studies have seen no effect of the sex steroids on SBP mRNA thus suggesting that the 

response to E2 may involve a different mechanism than the transcriptional activation of 

the estrogen receptor (Hoop et al, 1985).  

 

The fact that the SBP probes were tested and did not produce a qPCR product was 

confusing. The sequencing of the probes reported limited similarity with the rainbow 
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trout SBP nucleotide sequence. There could be two possible explanations for this. Either 

the primers are amplifying something other than SBP, assuming that the sequencing was 

correct and that the Genebank clone was incorrect. Another possibility is that the 

sequencing of the nucleotide sequence was incorrect. Although not determined in this 

work, agarose gels document one distinct gene, thus suggesting that the probes utilised in 

some of the optimalisation steps do not represent SBP. 

 

 

5.4 Relationship between synthesis and binding capacity  
The increase in SBP gene expression occurs to be much faster compared to the increase 

in total sex steroid-binding capacity. The qPCR data from exposed hepatocytes showed 

an increase in SBP gene expression after 24 hours, while total binding activity increased 

after 48 hours exposure, indicating an up-regulation of the SBP gene before the excretion 

of the protein into the cell medium. More concentrations of exposure solutions were 

tested in total sex steroid-binding activity assays than what was measured in qPCR. The 

qPCR data do however show similarity with total sex steroid-binding activity, inducing 

SBP gene-expression in EE2, E2 and DBP exposed hepatocytes with approximately the 

same factor as total sex steroid-binding activity over time. Concentration-response curves 

appear similar for EE2 and DBP in both assays, although total sex steroid-binding 

activity shows maximum induction at lower concentrations. 17β-estradiol does not 

display a clear concentration-response curve in qPCR. The reason for this could be that 

an increase in total sex steroid-binding activity and gene expression is seen at lower 

concentrations of test compounds than what is clear from the qPCR concentration-

response curve. The graph for qPCR data therefore only displays the portion of the 

concentration-response curve as indicated by a three-fold induction at the lowest 

concentrations. In both total sex steroid-binding activity and qPCR studies the potent 

estrogen, EE2 induced the strongest responses followed by endogenous E2 and the 

weakly estrogenic DBP. In conclusion, the large increase in total sex steroid-binding 

activity in hepatocyte cultures exposed to these compounds was most likely due to the 

induction of SBP since the increase in total binding coincides with SBP gene production. 
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5.5 The role of sex steroid-binding protein in endocrine disruption 
Sex steroid-binding protein is able to bind both natural and anthropogenic estrogenic 

compounds. Interactions with SBP and modulation of SBP properties may represent a 

novel mechanism for endocrine disruption as studies on the plasma transport of sex 

steroids have shown. The environmental chemicals are able to interact with SBP and 

modulate the sex steroid-binding properties (Tollefsen, 2002), by inhibiting the binding 

of [3H]-E2 to binding sites in plasma whereof a reduction in the affinity for E2 is seen 

(Martin et al., 1996; Hodgert Jury et al., 2000; Tollefsen, 2002). Although these 

chemicals normally exist in complex mixtures in the environment, synergistic effects 

between endogenous and exogenous estrogenic compounds have not been demonstrated. 

Their structural resemblance make the compounds behave in a similar manner when 

binding to SBP and therefore act in an additive fashion where all of the natural and 

synthetic ligands compete with each other for binding to SBP (Tollefsen et al. 2002).  

 

In fish the plasma SBP resembles the estrogen receptor (ER) by binding both naturally 

and synthetic environmental estrogens, although much lower concentrations are often 

needed to induce SBP than endocrine responses directly associated with ER (Milligan et 

al., 1998; Kloas et al., 2000; Tollefsen 2002). The modulation of SBP by xenobiotics 

may influence the concentration of SBP molecules, or displace endogenous steroids from 

SBP binding sites. It is however still unclear if the transport of sex steroids by SBP, if the 

ratio of free (bio-available) to bound steroids are affected and if SBP may represent a 

novel mechanism for endocrine disruption or if this mechanism interacts with ER-

mediated responses. Consequences of the interactions between SBP and EDC’s are still 

unclear, but present work has shown that environmental estrogens are able to increase 

expression of the SBP gene and at the same time increase total sex steroid-binding 

capacity An increase most likely due to increased SBP production by the liver cells, 

highlighting an understanding of how SBP gene expression and secretion in the liver is 

impacted by the actions of estrogens.  
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5.6 Variability between hepatocyte isolations 
The different isolations of trout hepatocytes showed variability in total binding activity 

and qPCR data. This variability could be due to the stress shown to affect sex steroid 

binding to SBP in black bream (Hobby et al., 2000) induced under cell isolations or 

differences in sexual maturity, genetic variation or differences in metabolic status due to 

age, size, reproductive stage or nutritional status. Capture and handling stress has been. In 

addition, the amount of SBP could be influenced by the presence of endogen and 

exogenous hormones and other non-hormonal factors. Variation could also be due to 

differences in sensitivity towards induction by estrogens (Campbell et al., 1994) in the 

hepatocytes and/or the ability to synthesize SBP by E2 stimulation.  

 

4.7 Proposal for future activities 

It is obvious from the present data that EDCs may influence SBP mediated mechanisms, 

but the assessment or role in endocrine disruption is limited, and a number of issues need 

to be addressed.  

 

 
• The exposure of rainbow trout hepatocytes cultures to the same chemicals at even 

lower concentrations and with more replicates is needed to properly characterize 

concentration-response relationships for total binding activity and qPCR assays. 

• The problems with sequencing SBP specific probes and primers need to be 

clarified to confirm if this is of relevance for the results obtained with quantitative 

PCR. 

• Develop enzyme linked immunosorbent assay (ELISA) to quantify the excretion 

of the sex steroid-binding protein in rainbow trout hepatocyte cultures based on 

specific antibodies towards rainbow trout or antibodies with broad species 

specific reactivity  

• The effects of SBP production and mechanisms for regulating gene expression 

and protein excretion are still unclear. The use of mechanistic studies in in vivo 
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experiments and the established methods in this thesis will help reveal the role of 

SBP in steroid regulation, intracellular signalling and possibly in endocrine 

disruption 

 

5.8 Conclusions 
An increase was seen in SBP specific gene expression and total sex steroid-binding 

capacity in a rainbow trout hepatocyte culture exposed to the endogenous hormone 17β-

estradiol, and the well known endocrine disrupters ethynylestradiol (EE2) and di-(n-

butyl) phthalate (DBP). This increase was most likely due to the induction of the sex 

steroid-binding protein (SBP) gene and protein itself, although other non-identified 

proteins probably contribute to total sex steroid-binding activity as well. The 

quantification of SBP using anti zebrafish SBP antibodies was not possible due to low 

protein concentrations present in the cell medium. Overall, the exposure to EE2 induced 

the strongest response in both total sex steroid-binding activity and qPCR assays, 

followed by E2. As an increase in total sex steroid-binding activity over time and 

concentration was comparable with an in increase in SBP gene expression over time and 

concentration, the increase in sex-steroid binding activity measured in cell medium was 

most likely due to increased secretion of sex steroid-binding protein by the rainbow trout 

hepatocytes.
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APPENDIX 
 
A1 Mastermixes used in qPCR and PCR 
 
A1.1 Mastermix used in reverse trancriptase PCR 
 
Reagents /material µl in each sample 

10X RT buffer 2 

25X DNTP* 2 

10X Random primer 0.8 

Multiscribe RT 1 

Milli Q H20 4.2 

TOTAL 10 
RNA 10 

 
A1.2 Mastermix used in quantitative PCR 
 
Reagents/Material 1/2X µl 3.25Xµl Reagents/material 1/2Xµl 3.25Xµl 

TAQ Sybr Green Supermix 12.500 40.625 
TAQ Sybr Green 

Supermix 
12.500 40.625 

Primer reverse 20 pmol/ul 

(900nm) 
1.125 

3.6562

5 

Primer reverse 20 pmol/ul 

(300nm) 
0.375 1.21875 

Primer forward 20pmol/ul 

(900nm) 
1.125 

3.6562

5 

Primer forward 20pmol/ul 

(300nm) 
0.375 1.21875 

Milli Q H2O 8.000 
26.812

5 
Milli Q H2O 9.75 31.6875 

TOTAL 23.000 74.75 TOTAL 23.000 74.75
cDNA 2.000 6.5 cDNA 2.0000 6.5 

Total 25.000 81.25 Total 25.0000 81.25 
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